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Goals of this Lecture 

Explaining building blocks for 3D reconstructions 

 Two-view geometry in more detail 

 Triangulation 

 Bundle adjustment 

 PnP 

 Loop closure with visual location recognition 

Putting all the pieces together 

 Hierarchical SfM 

 vSLAM 
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THE Reference for Most of this Lecture 
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Recap: Camera Matrix 

 Pinhole camera model (calibrated vs. uncalibrated case) 

 

 

 Principal point p 

 Intersection of principal axis with image plane 

 Principal axis: line through camera centre orthogonal to image plane 

 Camera center (aka. centre of projection, pinhole) in world coordinates? 

 

 

 Affine camera model 

 Camera center at infinity 

 Parallel projection 
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Recap: Two-View Geometry 

 Two-view geometry 

 Fundamental matrix 

 Degree of freedoms? 

 Essential matrix 

 Degree of freedoms? 

 5-point algorithm 

 Needs to solve a 10th degree univariate polynomial 

 Provides 10 solutions (counting multiplicities; some of them complex) 

 See also “Five-Point Motion Estimation Made Easy” by Hongdong Li and Richard Hartley 

 Estimation of fundamental or essential 

 Find keypoints and extract feature descriptors 

 Putative correspondences by matching feature descriptors 

 RANSAC loop for geometric verification 
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Example: Pre & Post RANSAC 

Figure from: “Multiple View Geometry” 
Hartley & Zisserman 

Two-view geometric 
verification is not perfect 
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Goals of this Lecture 

Explaining building blocks for 3D reconstructions 

 Two-view geometry in more detail 

 Triangulation 

 Bundle adjustment 

 PnP 

 Loop closure with visual location recognition 

Putting all the pieces together 

 Hierarchical SfM 

 vSLAM 
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Decomposing the Essential Matrix 

 Assume the correct essential has been found 

 Goal: decompose essential into rotation and translation 

 Problem: decomposition is not unique: 4 solutions exist 

 With:  

 

 

 

 

 See also MVG sec. 9.6.2 (2nd edition) 

 

 

 

 

 

 



CS231-M 2014-04-28 9 

Decomposing the Essential Matrix 

 Interpretation 

 baseline reversal 

 Rotation of one camera 180° about baseline 

 Points are in front of camera only in one solution 

 

Figure from: “Multiple View Geometry” 
Hartley & Zisserman 
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Two-View Geometry in Practice 

 Be aware of planar scenes 

 Homography explains point correspondences 

 Let’s pick a random point        in 2nd view  

 Consider line spanned by       and        : 

 Obviously,         lies on this line:  

 Less of a problem for essential matrices 

 But you’ll get two equally valid but different solutions… 

 Ill-conditioned motions 

 Pure rotations: reveals no 3D structure 

 Forward motions 

 Rotation-translation ambiguity: translation vs. rotation around an axis far away 

 Severe problem for nearly planar scenes with small depth variation 

 Especially important for narrow field of view (like on mobile phones) 

Figure from: “Multiple View Geometry” 
Hartley & Zisserman 
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Triangulation 

 Assume known 

 Camera poses (for at least two frames) 

 Image correspondences 

 Shoot rays through image points and intersect in 3D 

 Rays won’t intersect due to image noise 

 Minimizing meaningful reprojection error is non-trivial 

 Example: 2-view triangulation 

 

 

 

 Leads to roots of 6th degree univariate polynomial 

 Quiz: Are there 3D points which can’t be triangulated from two views? 

 Yes: points on baseline (ie. Points which project onto epipoles) 

Figure from: “Multiple View Geometry” 
Hartley & Zisserman 
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Triangulation 

 Assume known 

 Camera poses (for at least two frames) 

 Image correspondences 

 Direct Linear Transform (DLT) 

 Simple method, minimizes algebraic error 

 Eliminate scale factor (= projective depth) 

 

 

 

 Stack measurements from all images and solve with SVD 

 

 What about points at infinity? 
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Triangulation 

 Depth uncertainty of triangulated 3D points mostly depends on 

angle between intersected rays 

 Small angle  inaccurate triangulation 

 

 

 

 Small baseline  small angle 

 Large baseline  large angle? 

 Not always true! Example? 

 Forward motions… 
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Bundle Adjustment 

 We know how to perform 2-view reconstruction 

 Assume we have initial guess of 3D reconstruction 

 Goal: refine a meaningful geometric error 

 Reprojection error 

 Cycle consistency when camera sees same points again after making a 

loop 
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Point-Pose-Graph 

 Conceptual representation of SfM 

 Vertices: camera poses & 3D points 

 Edges 

 Edges between camera vertices if estimate of relative pose is available (eg. from 

essential matrix) 

 Edges between camera and 3D point if point has been seen in this camera (= 

measurements) 
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Bundle Adjustment 

 Unknowns 

 3D coordinates of points & camera poses 

 Data evidence 

 2D feature point correspondences 

 Initial guess available 

 Decompose pairwise essentials + three view verified 

 Refine initial guess by minimizing reprojection error while adhering to cycle constraints 

 Modern BA frameworks phrase optimization problem as optimization over point-pose graph 

 “g2o: A General Framework for Graph Optimization” Kümmerle et.al. [ICRA11] 
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Bundle Adjustment: Parameterization of 
Unknowns 

 Rotation matrices 

 Euler angles (avoid them if possible) 

 Unit-quaternions 

 Angle-axis & exponential-map 

 3D points (aka. Landmarks in robotics community) 

 Inhomogeneous coordinates (x,y,z) 

 Problem: points at infinity (or ‘sufficiently’ far away) 

 Homogeneous coordinates (x,y,z,w) 

 Problem: arbitrary scale per point leads to rank deficiency in Hessian 

 Inverse depth parameterization of point relative to a camera (eg. the one which has 

observed the point first) 

 No problems with points at infinity 

 Reprojection error becomes ‘more linear’  Important for filtering based SLAM systems 

 “Inverse Depth Parameterization for Monocular SLAM” Civera, Davison, Montiel [Trans. On Robotics 08] 
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Bundle Adjustment: Numerical Details 

 non-linear robust LS with residuals 

 Linearize residual and compute update direction: 

 Gauss-Newton approximation of Hessian:  

 Choose ‘smart’ parameterization for rotations & robust cost function (not L2) 

 Computation of update direction: Gauss-Newton with Schur-complement trick 

Image from: http://szeliski.org/Book/ 

Fill-in after Schur-complement 
trick occurs whenever two 
cameras observe the same 3D 
point 

Block-diagonal: easy to invert 
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Bundle Adjustment: Gauge Freedom 

 Choice of global coordinate system is arbitrary 

 Often fixed to first camera 

 1st camera has no error 

 Introduces bias since error is not distributed evenly across all cameras 

 Relative BA 

 Idea: Let’s not select and designate a single global coordinate system 

 Instead: Choose multiple coordinate systems to express variables 

 Express 3D points relative to camera which first observed point 

 Relative transformations between coordinate systems allow to transform 3D points to other coordinate 

system 

 Pro 

 Error is more evenly spread 

 Loop closures can be handled better 

 Con 

 Jacobian matrices of BA become denser due to chaining relative transformations 

 “Relative Bundle Adjustment Based on Trifocal Constraints” Steffen, Frahm, Förstner [ECCV10] 
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PnP Motivation: Sequential SfM, vSLAM 

 SLAM: Simultaneous Location And Mapping 

 Terminology used in robotics 

 vSLAM: visual SLAM based entirely on images 

 Known as sequential SfM in computer vision 

 Sequential SfM (aka. Incremental SfM) 

 Initialize structure and motion from two views 

 For each new image 

 Compute camera pose given 3D structure from previous iteration (PnP problem) 

 Refine camera poses (new & previous ones) and structure with BA 

 ‘Densify’ structure by triangulating new 3D points 

 vSLAM = “sequential SfM in realtime” with video stream from camera 



CS231-M 2014-04-28 24 

PnP Problem 

 Perspective n-Point camera pose computation 

 Compute camera pose from n given 3D-2D point 

correspondences 

 Calibrated case: How many correspondences are minimally 

required? 

 3 (be aware: up to four solutions) 

 P3P: “Review and Analysis of Solutions to the Three Point 

Perspective Pose Estimation Problem” Haralick et.al. [IJCV94] 

 OpenCV methods: solvePNP(…) and solvePnPRansac(…) 

 Efficiency of PnP makes sequential SfM so attractive 

 RANSAC efficiency largely depends on minimal sample size! 
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P3P 

 P3P again boils down to solving polynomial equations… 

 

 

 

 

 

 

 

 Figure from: “Complete Solution Classification for the Perspective-Three-Point Problem” 

Gao et.al. [PAMI03] 
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Loop Closure and Scale Drift 

 Loop closure problem 

 Accumulation of error in sequential SfM or 

SLAM leads to gaps in cycles 

 3D structure might not overlap when closing 

a loop  

 Visual SLAM and sequential SfM especially 

suffer from scale drift 

 Loop detection 

 Detect which parts should overlap 

 Leads to cycles in pose-graph 

 Cycles stabilize BA 

“A comparison of loop closing 
techniques in monocular SLAM” 

Williams et.al. [RAS09] 



CS231-M 2014-04-28 28 

Loop Detection 

 Appearance based approaches most popular 

 Similar techniques used for image retrieval 

 

 

 

 

 Extract discriminative feature descriptors of keyframes 

 SIFT, SURF, etc. 

 Store descriptors in efficient search data structure 

 Inverted index, vocabulary tree, … 

 Issue a query with descriptors of query image and verify if any of 

top-K results is geometrically consistent 

“Scalable recognition with 
vocabulary tree” 

Nister & Stewenius [CVPR06] 

“A comparison of loop closing 
techniques in monocular SLAM” 

Williams et.al. [RAS09] 
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Hierarchical Structure-from-Motion (SfM) 

 For each pair of images 

 perform 2-view reconstruction  set of two view reconstructions 

 Triplet generation 

 Assemble pairwise reconstructions which share a common camera into triplets 
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Hierarchical Structure-from-Motion (SfM) 

 Increase robustness by three-view verification (loop consistency) 

 Cycle consistent relative poses 

 Remove spurious matches which survived two-view verification (eg. due to repetitive 

texture) 

 Slight complication: translations from pairwise reconstructions are only known up to 

scale 

 Choose arbitrary scale between first image pair, eg.  

 3D points jointly seen in views 1,2, and 3 provide scale for  

 Register verified triplets (using shared edges) 

 Again pay attention to different scale in neighboring triplets 

 Merge sub-reconstructions 

 Sprinkle BA steps in-between 
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Hierarchical Structure-from-Motion (SfM) 

 Challenges 

 Generation of high-quality correspondences 

 Handling thousands of images: Avoid pairwise matching of images 

 Large scale optimization problem with many local minima 

 Repetitive structures 

 windows and building facades are highly repetitive… 

 … 
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Results 

 Photo Tourism [2006] 

 http://phototour.cs.washington.edu/ 
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Visual SLAM 

Stream of temporally ordered images 

Simultaneously compute 3D map and camera pose 

w.r.t. map 

Two main approaches 

 Filtering 

 Key-frame based 
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Filtering vs. Key-Frames 

 Recall SfM point-pose graph 

 Bipartite graph 

 3D landmarks vs. camera poses 

 Filtering: marginalize over previous 

camera poses 

 State: 3D landmarks + current 

camera pose 

 Key-Frame BA: keep subset of 

frames as keyframes 

 State: 3D landmarks + camera poses for all key frames 

 Nowadays preferred 

 BA can refine state in a thread separate from tracking component 

 “Parallel Tracking and Mapping for Small AR Workspaces” Klein & Murray [ISMAR07] 

 

“Real-Time Monocular SLAM: Why Filter?” 
Strasdat et.al. [ICRA10] 



CS231-M 2014-04-28 37 

Information to Keep Track of 

 State 

 Camera poses of keyframes 

 3D coordinates of reconstructed points 

 Data evidence 

 2D locations of detected keypoints 

 Descriptors of keypoints 

 Additional data: timestamps, IMU data, … 

 Bookkeeping: Data association 

 Which 2D keypoints correspond to a certain 3D point? 

 Sometimes replicated multiple times for faster queries 

 Which keyframes have observed a given 3D point? 

 Which 3D point corresponds to a given 2D keypoint? 

 Some systems keep track of multiple descriptors per 3D point 

 Handles appearance changes of 3D points 

 Also  helpful for relocalization 
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Keyframe-Based SLAM: Operation modes 

 vSLAM system has 3 main modes of operation 

 Bootstrapping 

 Compute an initial 3D map 

 Mostly based on concepts from two-view geometry 

 Normal mode 

 Assumes a 3D map is available and incremental camera motion 

 Track points and use PnP for camera pose estimation 

 Recovery mode 

 Assumes a 3D map is available, but tracking failed: no incremental 

camera motion anymore 

 Relocalize camera pose w.r.t. previously reconstructed map 
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System Components 

 Bootstrapping 

 Initial 3D map generation 

 3D tracker and PnP pose estimator 

 Processes incoming frames as quickly as possible 

 Relocalization 

 Recovering from tracking failure 

 Can also be used for loop closure detection 

 Mapping data structure 

 Point-pose graph 

 Bundle adjustment 

 Runs in separate thread and refines estimates 

 Accesses mapping data structure 
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The Life of a Frame 

2D Tracker 

3D Tracker PnP Pose 
Estimator 

Epipolar Pose 
Estimator 

Selection of first 
two keyframes 

Refine Pose 
with BA 

Densify 3D 
points 

Initial 2-view 
reconstruction 

Query DB for 
top K results 

Bootstrapping 

“The black art” 

Normal case 

‘Failure’ 
recovery mode 

and loop 
closure 

Goto ‘Normal’ case or 
insert loop in pose graph 

Bundle Adjustment 

IP Detection 

Extract ‘expensive’ 
features 

Goto ‘Normal’ 
case 

Geometric 
verification 

PnP Pose 
Estimator 

Keyframe 
selection 

Separate 
Thread 
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vSLAM Results 

“Double Window 
Optimisation for Constant 
Time Visual SLAM” 
Strasdat et.al. [ICCV11]  
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IP Detection 

 Avoid clusters of interest points 

 RANSAC estimates suffer when many IPs are 

close together 

 Roughly uniformly distributed IP 

 Introduce grid 

 Avoid imbalanced number of IPs in grid cells 

 Be aware of complexity of IP detector and 

descriptor 

 SIFT is powerful, but expensive to compute 

 Many options available 

 IP Detectors: FAST, Harris corner, Scale-

space extrema (SIFT), MSER, … 

 Descriptors: image patch, BRISK, SIFT, … 
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Initial Selection of Two Keyframes 

Avoid “non-parallax views” 

 Pure rotation of camera 

 In practice: “pure” depends on [unknown] depth of points 

Motion of points at infinity will always appear as due to 

pure rotation 

 Low-parallax views 

Small translations and forward motion 

 Avoid planar scenes 

Fundamental matrix is ill-defined for planar scenes 

Essential can be estimated, but care must be taken! 
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Initial Selection of Two Keyframes 

 How to avoid theses cases without knowing 3D structure and camera poses? 

 Check for planar scene 

 Can correspondences be explained with homography? 

 If yes, raise red flag 

 Check for sufficiently large parallax 

 Compensate for displacements due to camera rotation 

 Can be done very efficiently if gyroscope is available 

 Are remaining displacements sufficiently large? 

 If yes, good for triangulation 

 Compensation for camera rotation 

 Decompose essential into rotation and translation 

 Apply rotation as homography to image measurements (similar to stereo rectification) 

 Remaining displacement between feature points is due to translation 
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Active Search 

 Also known as Guided Search 

 Avoid searching naïvely for IP and matching descriptors 

 Setting: Incremental camera motion and known depth of 3D 

points 

 Good initial guess available where to expect corresponding point 

 Can also include motion model of camera (eg. constant velocity) 

 Or IMU measurements 

 For example: patch-based KLT tracker (Kanade-Lucas-Tomasi) 

 See also lecture on Wednesday 

 Active Search and PnP makes vSLAM efficient! 
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Bundle Adjustment 

 Bundle adjustment is a big topic on its own 

 Recent approaches 

 “Double Window Optimisation for Constant Time Visual SLAM” Strasdat et.al. 

[ICCV11]  

 Split BA objective into two terms 

 Cycle consistency of loops 

 Reprojection error 

 Minimize within window of recent frames 

 “Towards Linear-time Incremental Structure from Motion” Changchang Wu [3DV13] 

 Carefully designed sequential SfM system 

 Conjugate gradient with early termination instead of Cholesky 
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Ideas for Class Projects 

 BA 

 Implementation of conjugate gradient based BA approach with double window optimization 

 Exploit IMU data 

 Gyroscope, accelerometer, compass 

 Motion field for feature tracking 

 Accelerometer provides measurements in metric units 

 Very noisy measurements 

 Estimation of absolute scale still possible 

 Self-calibration App (aka. auto-calibration) 

 Assumptions about intrinsics lead to constraint for each frame on camera matrices 

 Examples: Square pixels, constant but unknown focal length, … 

 Line-based SfM 

 Lines are strong cues for pose estimation 

 Especially in indoor scenes 

 Dense reconstructions on the phone 
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