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Goals of this Lecture

® Explaining building blocks for 3D reconstructions
" Two-view geometry in more detail

® Triangulation

® Bundle adjustment
] DnP

" Loop closure with visual location recognition

® Putting all the pieces together
" Hierarchical StM
% vSLAM
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THE Reference for Most of this Lecture

SECOND EDITION .

Richard Hartley and Andrew Zisserman
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Recap: Camera Matrix

® Pinhole camera model (calibrated vs. uncalibrated case)

fr 0 pg]
P=K[R,t] K=[0 f, py
0 0 1

® Principal point p
" Intersection of principal axis with image plane

® Principal axis: line through camera centre orthogonal to image plane

® Camera center (aka. centre of projection, pinhole) in world coordinates?

(1)

% Affine camera model
® Camera center at infinity

® Parallel projection
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Recap: Two-View Geometry

% Two-view geometry

" rundamental matrix x'X Fx = 0

" Degree of freedoms?
" fssential matrix X Ex=0 with E= K”FK = [t],R
" Degree of freedoms?
® 5-pointalgorithm
" Needs to solve a 10t degree univariate polynomial

® Provides 10 solutions (counting multiplicities; some of them complex)

" See also “Five-Point Motion Estimation Made Easy” by Hongdong Li and Richard Hartley

® Estimation of fundamental or essential
® Find keypoints and extract feature descriptors
® Putative correspondences by matching feature descriptors

" RANSAC loop for geometric verification
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Example: Pre & Post RANSAC

Fig. 114, Automatic computation of the fundamental matrix between two images using RANSAC.
(a) (b) left and right images of Keble College, Oxford. The motion berween views is a translation and
rotation. The images are 640 x 480 pixels. (¢) (d) detected corners superimposed on the images. There
are approximately 500 corners on each image. The following results are superimposed on the left image:
(¢) 188 putative matches shown by the line linking corners, note the clear mismatches; (f) outliers — 89
of the putative matches. (g) inliers — 99 correspondences consisient with the estimated F; (h) final set of
157 correspondences after guided matching and MLE. There are still a fow mismaiches evident, e.g. the
long line on the left.

Figure from: “Multiple View Geometry”
Hartley & Zisserman

Two-view geometric
verification is not perfect
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Goals of this Lecture

® Explaining building blocks for 3D reconstructions

" Two-view geometry in more detail

® Triangulation

® Bundle adjustment
] DnP

" Loop closure with visual location recognition

® Putting all the pieces together
" Hierarchical StM
% vSLAM
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Decomposing the Essential Matrix

" Assume the correct essential has been found
® Goal: decompose essential into rotation and translation

" Problem: decomposition is not unique: 4 solutions exist
" With: svd(E) = Udiag(1,1,0)V*

— — p— —

0 1 0 0 -1 0 0 1 0
[t]x=+U|-1 0 0|UT R=U|1 0 0|]VIiorR=U|-1 0 0fV?
0 0 0 0o 0 1 0 0 1
% Seealso MVG sec. 9.6.2 (2Md edition)
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Decomposing the Essential Matrix

Figure from: “Multiple View Geometry”
Hartley & Zisserman

ic) id)

% Interpretation
" baseline reversal

¥ Rotation of one camera 180° about baseline

® Points arein front of camera only in one solution
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Two-View Geometry in Practice

% Beaware of planar scenes
" Homography explains point correspondences x’ = Hx
% Let’s pick a random point ¥ in 27 view
" Considerlinespannedby x' andy’ : I' = [y'], x" = [y'], Hx

T
% Obviously, x' liesonthisline: 0=x"1"=x

% Less of a problem for essential matrices

" 1ll-conditioned motions

" Purerotations: reveals no 3D structure

b c

® Forward motions Figure from: “Multiple View Geometry”
Hartley & Zisserman

" Rotation-translation ambiguity: translation vs. rotation around an axis far away

" Severe problem for nearly planar scenes with small depth variation

% Especiallyimportant for narrow field of view (like on mobile phones)
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Goals of this Lecture

® Explaining building blocks for 3D reconstructions
" Two-view geometry in more detail
® Triangulation

® Bundle adjustment

[] DN P

" Loop closure with visual location recognition

® Putting all the pieces together
" Hierarchical StM
% vSLAM
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Triangulation

® Assume known
® Camera poses (for at least two frames)

" Image correspondences

® Shoot rays through image points and intersect in 3D
" Rayswon’tintersect due to image noise
" Minimizing meaningful reprojection error is non-trivial

" Example: 2-view triangulation

2 2

1 | 1 :1A31 1 (] 1 (af
- 1 1
0|2 \aa) "3 \a )|, |77 ()~ 7
’ 3 2 :EB 2 2 :BB 2 :ES 2 9
s.t. X TFx=0
b c
" Leads to roots of 61" degree univariate polynomial Figure from: “Multiple View Geometry”

Hartley & Zisserman
" Quiz: Are there 3D points which can’t be triangulated from two views?

" Yes: points on baseline (ie. Points which project onto epipoles)
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Triangulation

" Assume known

® Camera poses (for at least two frames)

" Image correspondences

® Direct Linear Transform (DLT)

% Simple method, minimizes algebraic error

® Eliminate scale factor (= projective depth)
Xf = PfX e )\fo = PfX

[x71xp = 03:1 = [xf ] Py X

% Stack measurements from all images and solve with SVD

. 2
P;IX
min [ [xg]Pr]X];

® What about points at infinity?
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Triangulation

® Depth uncertainty of triangulated 3D points mostly depends on

angle between intersected rays

® Small angle = inaccurate triangulation

% Small baseline = small angle

% Large baseline - large angle?
® Not always true! Example?

" Forward motions...
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Goals of this Lecture

® Explaining building blocks for 3D reconstructions
" Two-view geometry in more detail

® Triangulation

“ Bundle adjustment
[] PnP

" Loop closure with visual location recognition

® Putting all the pieces together
" Hierarchical StM
% vSLAM
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Bundle Adjustment

® We know how to perform 2-view reconstruction
" Assume we have initial guess of 3D reconstruction

" Goal: refine a meaningful geometric error
" Reprojection error

® Cycle consistency when camera sees same points again after making a
loop
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Point-Pose-Graph

® Conceptual representation of SftM

% Vertices: camera poses & 3D points
% Edges

® Edges between camera vertices if estimate of relative pose is available (eg. from
essential matrix)

" Edges between camera and 3D point if point has been seen in this camera (=
measurements)
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Bundle Adjustment

" Unknowns

® 3D coordinates of points & camera poses

" Dataevidence

% 2D feature point correspondences

® Initial guess available

% Decompose pairwise essentials + three view verified

¥ Refineinitial guess by minimizing reprojection error while adhering to cycle constraints
" Modern BA frameworks phrase optimization problem as optimization over point-pose graph
% “g20: A General Framework for Graph Optimization” Kimmerle et.al. [[CRA11]
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Bundle Adjustment: Parameterization of
Unknowns

® Rotation matrices
® Euler angles (avoid them if possible)
" Unit-quaternions

" Angle-axis & exponential-map

® 3D points (aka. Landmarks in robotics community)
" Inhomogeneous coordinates (x,y,z)
% Problem: points at infinity (or ‘sufficiently’ far away)
® Homogeneous coordinates (x,y,z,w)
® Problem: arbitrary scale per point leads to rank deficiency in Hessian

" Inverse depth parameterization of point relative to a camera (eg. the one which has
observed the point first)
® No problems with points at infinity
" Reprojection error becomes ‘more linear’ = Important for filtering based SLAM systems

" “Inverse Depth Parameterization for Monocular SLAM” Civera, Davison, Montiel [Trans. On Robotics 08]
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Bundle Adjustment: Numerical Details

" non-linear robust LS with residuals  Tij = Xi5 — f(Xz', R;, Kj)

t : t-1 2
" Linearize residual and compute update direction: A% —afgfgg{lﬂr +JAXH2

Hxx Hxc
Hy. Hce
% Choose ‘smart’ parameterization for rotations & robust cost function (not L2)

" Gauss-Newton approximation of Hessian: H J1J-= [

® Computation of update direction: Gauss-Newton with Schur-complement trick

I Of|Hxx Hxc|_|Hxx Hxc
-HiI -HYy I||H%-. Hceo 0 Hoo - HY HyyHxc

12 3 456789 ABCD

Block-diagonal: easy to invert
e

Fill-in after Schur-complement
trick occurs whenever two
cameras observe the same 3D
point

5C
6B
6C
ic
7D
8C
8D
9c
9D

D0 M Wwom= o & Wk =

(b) (c) Image from: http://szeliski.org/Book/

Figure 7.9 (a) Bipartite graph for a toy structure from motion problem and (b) its associated
Jacobian J and (c¢) Hessian A. Numbers indicate 3D points and letters indicate cameras. The
dashed arcs and light blue squares indicate the fill-in that occurs when the structure (point)

variables are eliminated.
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Bundle Adjustment: Gauge Freedom

¥ Choice of global coordinate system is arbitrary

" Often fixed to first camera P1 = [I3,03x1]
" 1stcamera has no error

® Introduces bias since error is not distributed evenly across all cameras

" Relative BA

% ldea: Let’s not select and designate a single global coordinate system
" Instead: Choose multiple coordinate systems to express variables

" Express 3D points relative to camera which first observed point

¥ Relative transformations between coordinate systems allow to transform 3D points to other coordinate
system

® Erroris more evenly spread
% Loop closures can be handled better
" Con
" Jacobian matrices of BA become denser due to chaining relative transformations

¥ “Relative Bundle Adjustment Based on Trifocal Constraints” Steffen, Frahm, Forstner [ECCV10]
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Goals of this Lecture

® Explaining building blocks for 3D reconstructions
" Two-view geometry in more detail

® Triangulation

® Bundle adjustment
“ PnP

" Loop closure with visual location recognition

® Putting all the pieces together
" Hierarchical StM
% vSLAM
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PnP Motivation: Sequential StM, vSLAM

" SLAM: Simultaneous Location And Mapping
® Terminology used in robotics

® VSLAM: visual SLAM based entirely on images

® Known as sequential SftM in computer vision

® Sequential SftM (aka. Incremental SfM)

" |nitialize structure and motion from two views

" Foreach new image
® Compute camera pose given 3D structure from previous iteration (PnP problem)
¥ Refine camera poses (new & previous ones) and structure with BA

" ‘Densify’ structure by triangulating new 3D points

" VSLAM = “sequential SfM in realtime” with video stream from camera
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PnP Problem

" Perspective n-Point camera pose computation

" Compute camera pose from n given 3D-2D point
correspondences

¥ Calibrated case: How many correspondences are minimally
required?
® 3 (be aware: up to four solutions)

" P3P: “Review and Analysis of Solutions to the Three Point
Perspective Pose Estimation Problem” Haralick et.al. [|JCV94]

® OpenCV methods: solvePNP (..) and solvePnPRansac(...)

® Efficiency of PnP makes sequential SfM so attractive

® RANSAC efficiency largely depends on minimal sample size!
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P3P

® P3P again boils down to solving polynomial equations. ..

p

Y24+ 22 -YZp—d? =0
724 X2~ X Zq— 2 =0
X?+Y?2—-—XYr—¢?2=0.

N

p=2cosa, q=2cos[3, r=2cosy

® Figure from: “Complete Solution Classification for the Perspective-Three-Point Problem”
Gao et.al. [PAMIO3]
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Goals of this Lecture

® Explaining building blocks for 3D reconstructions
" Two-view geometry in more detail

® Triangulation

® Bundle adjustment
] DnP

® Loop closure with visual location recognition

® Putting all the pieces together
" Hierarchical StM
% vSLAM
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Loop Closure and Scale Drift

Loop closure problem P!

" Accumulation of errorin sequential SfSMor ./ N
SLAM leads to gaps in cycles

® 3D structure might not overlap when closing

(a) Local maps obtained with pure (b) Local maps auto-scaled.
a I O O p monocu lar SLAM.
n'r.!

® Visual SLAM and sequential SfM especially
suffer from scale drift Iy

" Loop detection A

o DeteCt Wh'Ch parts ShOU ld Overlap (c) After loop closure. (d)AeriaIviewofthecénhj-rtyard.
. “A comparison of loop closing
" Leads to cycles in pose-graph techniques in monocular SLAM”

N Cycles stabilize BA Williams et.al. [RAS09]
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Loop Detection

" Appearance based approaches most popular - s =

% Similar techniques used forimage retrieval d4 f S

ImageSearch at the VIzCentre
:

= p L] & ‘ »"-x(
. Y 2. g
_ \ . @ H .3_.! )
EEEE (a) Local maps obtained with pure (b) Local maps auto-scaled.

monocular SLAM.

’ i
AT
o a0
& N
- ey

Im eSearch at the VIzCentre

“Scalable recognition with T
vocabulary tree” 2 O\E

Nister & Stewenius [CVPRO6] / \E

Extract discriminative feature descriptors of keyframes L /
" SIFT, SURF, etc. o N

(c) After loop closure. (d) Aerial view of the courtyard.

% Store descriptors in efficient search data structure
“A comparison of loop closing

® Inverted index, vocabulary tree, ... techniques in monocular SLAM”

" Issue a query with descriptors of query image and verify if any of Williams et.al. [RASO9]

top-K results is geometrically consistent
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Goals of this Lecture

® Explaining building blocks for 3D reconstructions
" Two-view geometry in more detail

® Triangulation

® Bundle adjustment
] DnP

" Loop closure with visual location recognition

“ Putting all the pieces together
® Hierarchical StM
® VvSLAM
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Hierarchical Structure-from-Motion (SfM)

® Foreach pair of images

% perform 2-view reconstruction = set of two view reconstructions

® Triplet generation

¥ Assemble pairwise reconstructions which share a common camera into triplets

C1 O >0 (s ! 2
C'2 O >O C 3
Cl @, >0 C 3 03
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Hierarchical Structure-from-Motion (SfM)

® Increase robustness by three-view verification (loop consistency)

% Cycle consistent relative poses

" Remove spurious matches which survived two-view verification (eg. due to repetitive
texture)

% Slight complication: translations from pairwise reconstructions are only known up to
scale

" Choose arbitrary scale between first image pair, eg. Ht12H2 =1

" 3D points jointly seen in views 1,2, and 3 provide scale for t13 to3

" Register verified triplets (using shared edges)

" Again pay attention to different scale in neighboring triplets

® Merge sub-reconstructions

% Sprinkle BA steps in-between
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Hierarchical Structure-from-Motion (SfM)

® Challenges

® Generation of high-quality correspondences

" Handling thousands of images: Avoid pairwise matching of images

® Large scale optimization problem with many local minima

" Repetitive structures

" windows and building facades are highly repetitive. ..
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Results
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® Photo Tourism [2006]
% http://phototour.cs.washington.edu/
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Goals of this Lecture

® Explaining building blocks for 3D reconstructions
" Two-view geometry in more detail

® Triangulation

® Bundle adjustment
] DnP

" Loop closure with visual location recognition

® Putting all the pieces together
® Hierarchical SfM
“ vSLAM
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Visual SLAM

% Stream of temporally ordered images

% Simultaneously compute 3D map and camera pose
w.r.t. map

®“ Two main approaches
® Filtering

" Key-frame based

STANFORD CS231-M  2014-04-28 35 ‘ STANFORD

ELECTRICAL ey sV T rss Yy R COMPUTER SCIENCE

EMGINEERING




Filtering vs. Key-Frames

" Recall SftM point-pose graph

® Bipartite graph

(L
¥ @.‘*/‘l

O g
3D landmarks vs. camera POSES (a) Bayesian Network (b) Markov Random Field

® Filtering: marginalize over previous
camera poses

" State: 3D landmarks + current
camera pose

- Key—Frame BA: keep subset of “Real-Time Monocular SLAM: Why Filter?”
Strasdat et.al. [ICRA1Q]
frames as keyframes

" State: 3D landmarks + camera poses for all key frames
® Nowadays preferred
" BA canrefine state in a thread separate from tracking component

“ “Parallel Tracking and Mapping for Small AR Workspaces” Klein & Murray [ISMARO7]
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Information to Keep Track of

" State

% Camera poses of keyframes

® 3D coordinates of reconstructed points

" Data evidence

® 2D locations of detected keypoints

% Descriptors of keypoints

% Additional data: timestamps, IMU data, ...

® Bookkeeping: Data association

% Which 2D keypoints correspond to a certain 3D point?

% Sometimes replicated multiple times for faster queries
% Which keyframes have observed a given 3D point?
" Which 3D point corresponds to a given 2D keypoint?
Some systems keep track of multiple descriptors per 3D point

® Handles appearance changes of 3D points

% Also helpful for relocalization

ST CS231-M  2014-04-28
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Keyframe-Based SLAM: Operation modes

" vSLAM system has 3 main modes of operation
" Bootstrapping

® Compute an initial 3D map
" Mostly based on concepts from two-view geometry
® Normal mode
% Assumes a 3D map is available and incremental camera motion
® Track points and use PnP for camera pose estimation
® Recovery mode

" Assumes a 3D map is available, but tracking failed: no incremental
camera motion anymore

® Relocalize camera pose w.r.t. previously reconstructed map
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System Components

ELECTRICAL CS231-M  2014-04-28
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® Bootstrapping
% Initial 3D map generation
® 3D tracker and PnP pose estimator
" Processes incoming frames as quickly as possible
" Relocalization
" Recovering from tracking failure
¥ Canalso be used for loop closure detection
" Mapping data structure
®  Point-pose graph
®  Bundle adjustment
" Runsinseparate thread and refines estimates
" Accesses mapping data structure
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The Life of a Frame

Bootstrapping
“The black art”

Normal case

IP Detection | | 2D Tracker | | Selection of first Epipolar Pose Initial 2-view Goto ‘Normal’
two keyframes Estimator reconstruction case
3D Tracker Keyframe PnP Pose Refine Pose Densify 3D
selection Estimator with BA points
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VvSLAM Results

Monocular SLAM “Double Window

Optimisation for Constant

: . Time Visual SLAM”
|0C3| beWSlng motion Strasdat et.al. [ICCV11]
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The Life of a Frame

Bootstrapping
“The black art”

Normal case

IP Detection | | 2D Tracker | | Selection of first Epipolar Pose Initial 2-view Goto ‘Normal’
two keyframes Estimator reconstruction case
3D Tracker Keyframe PnP Pose Refine Pose Densify 3D
selection Estimator with BA points
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IP Detection

® Avoid clusters of interest points

¥ RANSAC estimates suffer when many IPs are
close together

Roughly unitformly distributed IP
" Introduce grid

® Avoid imbalanced number of IPs in grid cells

Be aware of complexity of IP detector and
descriptor

® SIFT is powerful, but expensive to compute

Many options available

% |P Detectors: FAST, Harris corner, Scale-
space extrema (SIFT), MSER, ...

" Descriptors: image patch, BRISK, SIFT, ...
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The Life of a Frame

Bootstrapping
“The black art”

Normal case

IP Detection | | 2D Tracker | | Selection of first Epipolar Pose Initial 2-view Goto ‘Normal’
two keyframes Estimator reconstruction case
3D Tracker Keyframe PnP Pose Refine Pose Densify 3D
selection Estimator with BA points
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Initial Selection of Two Keyframes

“ Avoid “non-parallax views”

® Pure rotation of camera
®In practice: “pure” depends on [unknown] depth of points

" Motion of points at infinity will always appear as due to
pure rotation

® Low-parallax views

" Small translations and forward motion

® Avoid planar scenes
® Fundamental matrix is ill-defined for planar scenes

® Essential can be estimated, but care must be taken!
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Initial Selection of Two Keyframes

® How to avoid theses cases without knowing 3D structure and camera poses?

% Check for planar scene

® Can correspondences be explained with homography?

% Ifyes, raise red flag

® Check for sufficiently large parallax

" Compensate for displacements due to camera rotation
% Can bedone very efficiently if gyroscope is available

% Areremaining displacements sufficiently large?
" Ifyes, good for triangulation

® Compensation for camera rotation
® Decompose essential into rotation and translation

® Apply rotation as homography to image measurements (similar to stereo rectification)

" Remaining displacement between feature points is due to translation
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The Life of a Frame

Bootstrapping
“The black art”

Normal case

IP Detection | | 2D Tracker | | Selection of first Epipolar Pose Initial 2-view Goto ‘Normal’
two keyframes Estimator reconstruction case
3D Tracker Keyframe PnP Pose Refine Pose Densify 3D
selection Estimator with BA points
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Active Search

% Also known as Guided Search
" Avoid searching naively for IP and matching descriptors

% Setting: Incremental camera motion and known depth of 3D
points
® Good initial guess available where to expect corresponding point

® Can also include motion model of camera (eg. constant velocity)

" OrIMU measurements

% Forexample: patch-based KLT tracker (Kanade-Lucas-Tomasi)

¥ See also lecture on Wednesday

% Active Search and PnP makes vSLAM efficient!

?Iﬁﬁﬂﬁ?@ﬂ{ CS231-M  2014-04-28 48

NNNNNNNNNN

‘ STANFORD

COMPUTER SCIENCE




The Life of a Frame

Bootstrapping
“The black art”

Normal case

IP Detection | | 2D Tracker | | Selection of first Epipolar Pose Initial 2-view Goto ‘Normal’
two keyframes Estimator reconstruction case
3D Tracker Keyframe PnP Pose Refine Pose Densify 3D
selection Estimator with BA points

(STANFORD

COMPUTER SCIENCE

STANFORD

ELECTRICAL

CS231-M  2014-04-28 49




Bundle Adjustment

® Bundle adjustment is a big topic on its own

® Recent approaches

% “Double Window Optimisation for Constant Time Visual SLAM” Strasdat et.al.
[ICCV11]

" Split BA objective into two terms
" Cycle consistency of loops

" Reprojection error
% Minimize within window of recent frames
" “Towards Linear-time Incremental Structure from Motion” Changchang Wu [3DV13]
" Carefully designed sequential SfM system

% Conjugate gradient with early termination instead of Cholesky
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Ideas for Class Projects

“ BA

% Implementation of conjugate gradient based BA approach with double window optimization

®  Exploit IMU data
" Gyroscope, accelerometer, compass
" Motion field for feature tracking

" Accelerometer provides measurements in metric units
" Very noisy measurements

¥ Estimation of absolute scale still possible

" Self-calibration App (aka. auto-calibration)

% Assumptions about intrinsics lead to constraint for each frame on camera matrices

" Examples: Square pixels, constant but unknown focal length, ...

" Line-based SfM

% Lines are strong cues for pose estimation

"  Especially in indoor scenes

% Dense reconstructions on the phone
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