CS231M · Mobile Computer Vision

Structure from motion

- Cameras
- Epipolar geometry
- Structure from motion

Pinhole camera

f = focal length o = center of the camera

Pinhole camera

 $(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$

From retina plane to images

Pixels, bottom-left coordinate systems

From retina plane to images

Converting to pixels

1. Off set

$$(x, y, z) \rightarrow (f \frac{x}{z} + c_x, f \frac{y}{z} + c_y)$$

Converting to pixels

Off set From metric to pixels

$$(x, y, z) \rightarrow (f k \frac{x}{z} + c_x, f l \frac{y}{z} + c_y)$$

 $\alpha \beta^{z}$

Units: k,I : pixel/m f : m Non-square pixels $\pmb{lpha},\,\pmb{eta}$: pixel

Camera Matrix

Homogeneous coordinates

For details see lecture on transformations in CS131A

$$(x,y) \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

Converting *from* homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Camera Matrix

Camera Skew

 $P' = M P = K \begin{bmatrix} I & 0 \end{bmatrix} P$

World reference system

- •The mapping so far is defined within the camera reference system
- What if an object is represented in the world reference system

World reference system

Properties of Projection

- Points project to points
- Lines project to lines
- Distant objects look smaller

Properties of Projection

Angles are not preservedParallel lines meet!

Vanishing point

$P' = K \begin{bmatrix} I & 0 \end{bmatrix} P = K \begin{bmatrix} R & T \end{bmatrix} P_{w}$

- $P_1 \dots P_n$ with known positions in $[O_w, i_w, j_w, k_w]$
- $p_1, \ldots p_n$ known positions in the image

Goal: compute intrinsic and extrinsic parameters

Camera Calibration

$P' = K \begin{bmatrix} I & 0 \end{bmatrix} P = K \begin{bmatrix} R & T \end{bmatrix} P_{w}$

- $P_1 \dots P_n$ with known positions in $[O_w, i_w, j_w, k_w]$
- $p_1, \ldots p_n$ known positions in the image

Goal: compute intrinsic and extrinsic parameters

CS231M · Mobile Computer Vision

Structure from motion

- Cameras
- Epipolar geometry
- Structure from motion

Can we recover the structure from a single view?

Why is it so difficult?

Intrinsic ambiguity of the mapping from 3D to image (2D)

Can we recover the structure from a single view?

Intrinsic ambiguity of the mapping from 3D to image (2D)

Courtesy slide S. Lazebnik

Two eyes help!

Given *m* images of *n* fixed 3D points

•
$$\mathbf{x}_{ij} = \mathbf{M}_i \mathbf{X}_j$$
, $i = 1, \dots, m, j = 1, \dots, n$

From the mxn correspondences \mathbf{x}_{ij} , can we estimate:

•m projection matrices \mathbf{M}_i motion•n 3D points \mathbf{X}_j structure

Study relationship between X, x₁ and x₂

- Epipolar Plane
- Baseline
- Epipolar Lines

- Epipoles e₁, e₂
 - = intersections of baseline with image planes
 - = projections of the other camera center

- Epipolar Plane
- Baseline
- Epipolar Lines

- Epipoles e₁, e₂
 - = intersections of baseline with image planes
 - = projections of the other camera center

Example: Converging image planes

- Epipoles are at infinity
- Epipolar lines are parallel to x axis

Example: Parallel Image Planes

Why are epipolar constraints useful?

- Two views of the same object
- Suppose I know the camera positions and camera matrices
- Given a point on left image, how can I find the corresponding point on right image?

Why are epipolar constraints useful?

Why are epipolar constraints useful?

- Two views of the same object
- Suppose I know the camera positions and camera matrices
- Given a point on left image, how can I find the corresponding point on right image?

Assume camera matrices are known

$$p^{T} \cdot E p' = 0$$
$$E = [T_{\star}] \cdot R$$

E = essential matrix

(Longuet-Higgins, 1981)

Cross product as matrix multiplication

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a}_{\times}]\mathbf{b}$$

Epipolar Constraint p R, T $p^{T} F p' = 0$ **F** = Fundamental Matrix (Faugeras and Luong, 1992) $F = K^{-T} \cdot [T_{\star}] \cdot R K'^{-1}$

Epipolar Constraint $p_1^T \cdot F p_2 = 0$ p_1 p_2 e_2 e_1

- $F p_2$ is the epipolar line associated with $p_2 (I_1 = F p_2)$
- $F^T p_1$ is the epipolar line associated with $x_1 (I_2 = F^T p_1)$
- $Fe_2 = 0$ and $F^Te_1 = 0$
- F is 3x3 matrix; 7 DOF
- F is singular (rank two)

Why F is useful?

- Suppose F is known
- No additional information about the scene and camera is given
- Given a point on left image, how can I find the corresponding point on right image?

Why F is useful?

- F captures information about the epipolar geometry of 2 views + camera parameters
- MORE IMPORTANTLY: F gives constraints on how the scene changes under view point transformation (without reconstructing the scene!)
- Powerful tool in:
 - 3D reconstruction
 - Multi-view object/scene matching

Estimating F

Estimating F

OPENCV: findFundamentalMat

CS231M · Mobile Computer Vision

Structure from motion

- Cameras
- Epipolar geometry
- Structure from motion

From the mxn correspondences \mathbf{x}_{ij} , can we estimate:

•m projection matrices \mathbf{M}_i motion•n 3D points \mathbf{X}_j structure

Similarity Ambiguity

- The scene is determined by the images only up a similarity transformation (rotation, translation and scaling)
- This is called **metric reconstruction**

- The ambiguity exists even for (intrinsically) calibrated cameras
- For calibrated cameras, the similarity ambiguity is the only ambiguity

[Longuet-Higgins '81]

Similarity Ambiguity

• It is impossible based on the images alone to estimate the absolute scale of the scene (i.e. house height)

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl

Structure from Motion Ambiguities

 In the general case (nothing is known) the ambiguity is expressed by an arbitrary affine or projective transformation

Projective Ambiguity

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edition, 2003

Metric reconstruction (upgrade)

- The problem of recovering the metric reconstruction from the perspective one is called **self-calibration**
- Stratified reconstruction:
 - from perspective to affine
 - from affine to metric

Mobile SFM

- Intrinsic camera parameters are known or can be calibrated.
- For calibrated cameras, the similarity ambiguity is the only ambiguity [Longuet-Higgins '81]
- No need for stratified solution or auto-calibration

• Metric reconstruction can be determined if a calibration pattern is used or the absolute size of an known object is given.

Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

Algebraic approach (2-view case)

Apply a projective transformation H such that:

$$\mathbf{M}_1 \mathbf{H}^{-1} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \qquad \qquad \mathbf{M}_2 \mathbf{H}^{-1} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$$

Canonical perspective cameras

Algebraic approach (2-view case)

- Compute the fundamental matrix F from two views (eg. 8 point algorithm)
- 2. Compute **b** and **A** from **F**

Compute **b** as least sq. solution of **F b** = 0, with |**b**|=1 using SVD; **b** is an epipole

$$A = -[b_{\star}] F$$

3. Use **b** and **A** to estimate projective cameras

$$M_1 = \begin{bmatrix} I & 0 \end{bmatrix} \qquad M_2 = \begin{bmatrix} -\begin{bmatrix} \mathbf{b}_x \end{bmatrix} \mathbf{F} & \mathbf{b} \end{bmatrix}$$

4. Use these cameras to triangulate and estimate points in 3D

For details, see CS231A, lecture 7

Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

Affine structure from motion (simpler problem)

From the mxn correspondences \mathbf{x}_{ij} , estimate:

- *m* projection matrices **M**_{*i*} (affine cameras)
- *n* 3D points **X**_j

Affine cameras

Camera matrix M for the affine case

$$\mathbf{x} = \begin{pmatrix} u \\ v \end{pmatrix} = M \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} = \mathbf{A}\mathbf{X} + \mathbf{b}; \qquad \mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$$

Centering the data

Normalize points w.r.t. centroids of measurements from each image

$$\mathbf{x}_{ij} = \mathbf{A}\mathbf{X}_j + \mathbf{b} \rightarrow \hat{\mathbf{X}}_{ij} = \mathbf{A}_i \mathbf{X}_j$$

A factorization method - factorization

Let's create a $2m \times n$ data (measurement) matrix:

A factorization method - factorization

Let's create a 2m × n data (measurement) matrix:

The measurement matrix D = M S has rank 3 (it's a product of a 2mx3 matrix and 3xn matrix)

• Singular value decomposition of D:

Since rank (D)=3, there are only 3 non-zero singular values

M = Motion (cameras)

What is the issue here? D has rank>3 because of:

- measurement noise
- affine approximation

Theorem: When **D** has a rank greater than p, $\mathbf{U}_{p}\mathbf{W}_{p}\mathbf{V}_{p}^{T}$ is the best possible rank- p approximation of **A** in the sense of the Frobenius norm.

$$\mathbf{D} = \mathbf{U}_{3}\mathbf{W}_{3}\mathbf{V}_{3}^{T} \qquad \begin{cases} \mathbf{A}_{0} = \mathbf{U}_{3} \\ \mathbf{P}_{0} = \mathbf{W}_{3}\mathbf{V}_{3}^{T} \end{cases}$$

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\sum_{i=1}^{\min\{m, n\}} \sigma_i^2}$$

Affine Ambiguity

• The decomposition is not unique. We get the same **D** by using any 3×3 matrix **C** and applying the transformations:

$M \rightarrow MC$ $S \rightarrow C^{-1}S$

• Additional constraints must be enforced to resolve this ambiguity

Reconstruction results

C. Tomasi and T. Kanade. <u>Shape and motion from image streams under orthography:</u> <u>A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

Bundle adjustment

Non-linear method for refining structure and motion Minimizing re-projection error

Bundle adjustment

Non-linear method for refining structure and motion Minimizing re-projection error

$$E(\mathbf{M}, \mathbf{X}) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(\mathbf{x}_{ij}, \mathbf{M}_{i} \mathbf{X}_{j})^{2}$$

- Advantages
 - Handle large number of views
 - Handle missing data
 - Can leverage standard optimization packaged such as Levenberg-Marquardt

• Limitations

- Large minimization problem (parameters grow with number of views)
- Requires good initial condition

Used as the final step of SFM

Results and applications

Courtesy of Oxford Visual Geometry Group

Lucas & Kanade, 81 Chen & Medioni, 92 Debevec et al., 96 Levoy & Hanrahan, 96 Fitzgibbon & Zisserman, 98 Triggs et al., 99 Pollefeys et al., 99 Kutulakos & Seitz, 99 Levoy et al., 00 Hartley & Zisserman, 00 Dellaert et al., 00 Rusinkiewic et al., 02 Nistér, 04 Brown & Lowe, 04 Schindler et al, 04 Lourakis & Argyros, 04 Colombo et al. 05

Golparvar-Fard, et al. JAEI 10 Pandey et al. IFAC , 2010 Pandey et al. ICRA 2011 Microsoft's PhotoSynth Snavely et al., 06-08 Schindler et al., 08 Agarwal et al., 09 Frahm et al., 10

CS231M · Mobile Computer Vision

Next lecture:

Example of a SFM pipeline for mobile devices: **the VSLAM pipeline**

