
CS231M · Mobile Computer Vision

Structure from motion
- Cameras

- Epipolar geometry

- Structure from motion



Pinhole perspective projection
Pinhole camera

f

o

f = focal length

o = center of the camera
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From retina plane to images

Pixels, bottom-left coordinate systems
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yc

From retina plane to images



Converting to pixels
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C=[cx, cy]
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Converting to pixels
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1. Off set

2. From metric to pixels
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• Matrix form?
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Camera Matrix



Homogeneous coordinates

homogeneous image 

coordinates

homogeneous scene 

coordinates

• Converting from homogeneous 

coordinates

For details see lecture on 

transformations in CS131A



Camera Matrix
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Camera matrix K



Camera Skew
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 PMP '  PIK 0

K has 5 degrees of freedom!



World reference system

Ow

iw

kw

jw
R,T

•The mapping so far is defined within the camera 

reference system

• What if an object is represented in the world 

reference system
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World reference system
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Properties of Projection
• Points project to points

• Lines project to lines

• Distant objects look smaller



Properties of Projection
•Angles are not preserved

•Parallel lines meet! Vanishing point



Camera Calibration

jC

Calibration rig

• P1… Pn with known positions in [Ow,iw,jw,kw]

• p1, … pn known positions in the image 

Goal: compute  intrinsic and extrinsic parameters

  wPTRK PIKP 0'



Camera Calibration

jC

Calibration rig

image

  wPTRK PIKP 0'

http://docs.opencv.org/_downloads/camera_calibration.cpp

• P1… Pn with known positions in [Ow,iw,jw,kw]

• p1, … pn known positions in the image 

Goal: compute  intrinsic and extrinsic parameters
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Pinhole perspective projection
Can we recover the structure from a single view?

C

Ow

P
p

Calibration rig

Scene

Camera K

Why is it so difficult?

Intrinsic ambiguity of the mapping from 3D to image (2D)



Intrinsic ambiguity of the mapping from 3D to image (2D)

Courtesy slide S. Lazebnik

Can we recover the structure from a single view?



O2
O1

x2

x1

?

Two eyes help!

This is called triangulation

K =knownK =known

R, T

X



Structure from motion problem

x1j

x2j

xmj

Xj

M1

M2

Mm

Given m images of n fixed 3D points 

•xij = Mi Xj , i = 1, … , m,    j = 1, … , n  



From the mxn correspondences xij, can we estimate: 

•m projection matrices Mi

•n 3D points Xj

x1j

x2j

xmj

Xj

motion

structure

M1

M2

Mm

Structure from motion problem



X

O2
O1

x2

x1

Study relationship between X, x1 and x2

K =knownK =known

R, T

Epipolar geometry!



• Epipolar Plane • Epipoles e1, e2

• Epipolar Lines

• Baseline

Epipolar geometry

O1
O2

x2

X

x1

e1 e2

= intersections of baseline with image planes 

= projections of the other camera center



• Epipolar Plane • Epipoles e1, e2

• Epipolar Lines

• Baseline

Epipolar geometry

O1
O2

x2

X

x1

e1 e2

= intersections of baseline with image planes 

= projections of the other camera center

For details see CS131A

Lecture 9



Example: Converging image planes

e

e’



O1
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X

e2

x1 x2

e1

Example: Parallel image planes

• Baseline intersects the image plane at infinity

• Epipoles are at infinity

• Epipolar lines are parallel to x axis



Example: Parallel Image Planes

e’ at 

infinity

e at 

infinity



- Two views of the same object 

- Suppose I know the camera positions and camera matrices

- Given a point on left image, how can I find the corresponding point on right image?

Why are epipolar constraints useful?



Why are epipolar constraints useful?

O1
O2

X



- Two views of the same object 

- Suppose I know the camera positions and camera matrices

- Given a point on left image, how can I find the corresponding point on right image?

Why are epipolar constraints useful?
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R, T

0 pEp
T E = essential matrix

(Longuet-Higgins, 1981)

Essential matrix

Assume camera matrices are known

  RTE  
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Cross product as matrix multiplication
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Epipolar Constraint

0pFp
T

 F = Fundamental Matrix
(Faugeras and Luong, 1992)

  1



  KRTKF
T

R, T



Epipolar Constraint

O1
O2

p2

P

p1

e1
e2

• F p2 is the epipolar line associated with p2 (l1 = F p2)

• FT p1 is the epipolar line associated with x1 (l2 = FT p1)

• F e2 = 0   and   FT e1 = 0

• F is 3x3 matrix; 7 DOF 

• F is singular (rank two)

021  pFp
T



Why F is useful?

- Suppose F is known

- No additional information about the scene and camera is given

- Given a point on left image, how can I find the corresponding point on right image?

l’ = FT xx



Why F is useful?

• F captures information about the epipolar geometry of 
2 views + camera parameters 

• MORE IMPORTANTLY: F gives constraints on how the 
scene changes under view point transformation 
(without reconstructing the scene!)

• Powerful tool in:
• 3D reconstruction
• Multi-view object/scene matching 
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Estimating F

The Eight-Point Algorithm
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Estimating F

OPENCV: findFundamentalMat
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From the mxn correspondences xij, can we estimate:

•m projection matrices Mi

•n 3D points Xj

x1j

x2j

xmj

Xj

motion

structure

M1

M2

Mm

Structure from motion problem



Similarity Ambiguity

• The ambiguity exists even for (intrinsically) calibrated cameras

• For calibrated cameras, the similarity ambiguity is the only ambiguity
[Longuet-Higgins ’81]

• The scene is determined by the images only up a similarity
transformation (rotation, translation and scaling)

• This is called metric reconstruction

Similarity



• It is impossible based on the images alone to estimate the 
absolute scale of the scene (i.e. house height)

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl

Similarity Ambiguity



Structure from Motion Ambiguities

• In the general case (nothing is
known) the ambiguity is
expressed by an arbitrary affine
or projective transformation

 iiii TRKM jij XMx 

jXH 1
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Projective



Projective Ambiguity

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edition, 2003



Metric reconstruction (upgrade)

• Stratified reconstruction: 
• from perspective to affine
• from affine to metric

• The problem of recovering the metric reconstruction from 

the perspective one is called self-calibration



• Intrinsic camera parameters are known or can be calibrated.
• For calibrated cameras, the similarity ambiguity is the only

ambiguity
• No need for stratified solution or auto-calibration

Mobile SFM

• Metric reconstruction can be determined if a calibration pattern is used or 
the absolute size of an known object is given.

[Longuet-Higgins ’81]

Similarity



• Algebraic approach (by fundamental matrix)

• Factorization method (by SVD)

• Bundle adjustment

Structure-from-Motion Algorithms



x1j

x2j

M1

M2

Algebraic approach (2-view case)

jiji XMx 

Apply a projective transformation H such that:
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Canonical perspective cameras



Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views 

(eg. 8 point algorithm)

2. Compute b and A from F

3. Use b and A to estimate projective cameras

4. Use these cameras to triangulate and estimate 

points in 3D

Compute b as least sq. solution of F b = 0, 
with |b|=1 using SVD; b is an epipole

A= –[b×] F 

 01 IM   bFb ][2 xM 

For details, see CS231A, lecture 7 



• Algebraic approach (by fundamental matrix)

• Factorization method (by SVD)

• Bundle adjustment

Structure-from-Motion Algorithms



Affine structure from motion
(simpler problem)

Image
World

Image

From the mxn correspondences xij, estimate: 

•m projection matrices Mi (affine cameras)

• n 3D points Xj
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Affine cameras

Camera matrix M for the affine case



Centering the data

jiij XAx  ˆ

Normalize points w.r.t. centroids of measurements from each image

jX

ijx̂

bAXx  jij
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A factorization method  - factorization

Let’s create a 2m  n data (measurement) matrix:



Let’s create a 2m  n data (measurement) matrix:
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The measurement matrix D = M S has rank 3
(it’s a product of  a 2mx3 matrix and 3xn matrix)

A factorization method  - factorization

(2m × n)

M

S



Factorizing the Measurement Matrix
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D = MS



• Singular value decomposition of D:
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D U W VT

Factorizing the Measurement Matrix



Since rank (D)=3, there are only 3 non-zero singular values

Factorizing the Measurement Matrix



M = Motion (cameras) 

S = structure

Factorizing the Measurement Matrix



Theorem: When       has a rank greater than                            is the best 
possible rank- approximation of      in the sense of the Frobenius norm.
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What is the issue here? 

Factorizing the Measurement Matrix

• measurement noise 
• affine approximation

D has rank>3 because of: 



Affine Ambiguity

• The decomposition is not unique. We get the same D by using 
any 3×3 matrix C and applying the transformations:

M → MC

S →C-1S

• Additional constraints must be enforced to resolve this ambiguity

= ×D M SC C-1

M’ S’



Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 

A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


• Algebraic approach (by fundamental matrix)

• Factorization method (by SVD)

• Bundle adjustment

Structure-from-Motion Algorithms



Bundle adjustment
Non-linear method for refining structure and motion

Minimizing re-projection error
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Non-linear method for refining structure and motion

Minimizing re-projection error

 
2m
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n

1j

jiij M,D),M(E 
 

 XxX

• Advantages
• Handle large number of views
• Handle missing data
• Can leverage standard optimization packaged such as 
Levenberg-Marquardt

• Limitations
• Large minimization problem (parameters grow with number of views)

• Requires good initial condition

Used as the final step of SFM

Bundle adjustment



Results and applications

Courtesy of Oxford Visual Geometry Group

Levoy et al., 00

Hartley & Zisserman, 00

Dellaert et al., 00

Rusinkiewic et al., 02

Nistér,  04

Brown & Lowe, 04

Schindler et al, 04

Lourakis & Argyros, 04

Colombo et al. 05

Golparvar-Fard, et al.  JAEI 10

Pandey et al. IFAC , 2010

Pandey et al.  ICRA 2011

Microsoft’s PhotoSynth

Snavely et al., 06-08

Schindler et al., 08

Agarwal et al., 09

Frahm et al., 10

Lucas & Kanade, 81

Chen & Medioni, 92

Debevec et al., 96

Levoy & Hanrahan, 96

Fitzgibbon & Zisserman, 

98

Triggs et al., 99

Pollefeys et al., 99

Kutulakos & Seitz, 99
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Next lecture:

Example of a SFM pipeline for 
mobile devices: the VSLAM 
pipeline




