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The Need for RANSAC

® Why do I need RANSAC? | know robust statistics!
" “Robust Statistics” Huber [1981]

% M-estimator, L-estimator, R-estimators, ...

% Least Median of Squares (LMedS), ...

® Breakdown point of an estimator

" “Proportion of incorrect observations ... an estimator can handle before giving an
incorrect ... result” [Wikipedia]

® Robust estimators can achieve breakdown point of 50%

% Forexample: median

® Usually a non-linear, non-convex optimization problem needs to be solved

COMPUTER SCIENCE

NNNNNNNNNNN




The Need for RANSAC

" Problems

® Estimators for more complex entities (eg. homographies, essential
matrices, ...)?

" Inlier ratio of computer vision data can be lower than 50%

® Hough Transform

¥ Excellent candidate for handling high-outlier regimes

® Canonly handle models with very few parameters (roughly 3)

" RANSAC is a good solution for models with slightly larger number
of parameters

® Roughly up to 10 parameters (depending on inlier ratio)
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RANSAC [Fischler & Bolles 81]

® Hypothesize-and-verify framework

% Sample hypothesis and verify with data

% Assumptions

® Qutliers provide inconsistent (ie. random) votes for models

® There are sufficiently many inliers to detect a correct model

" Hypothesis generation

% Sample subset of data points and fit model parameters to this subset

% Plain RANSAC: sample points uniformly at random

® Verification on all remaining data points
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Algorithm Outline

___________________________________ XoR o } inlier threshold

Select random sample of minimum required size to fit model parameters
Compute a putative model from sample set

Verification stage: Compute the set of inliers to this model from whole data set
Check if current hypothesis is better than any other of the previously verified
Repeat 1-4
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Number of Iterations

" Probability of selecting an inlier given by inlier ratio  piatier

% Samplesize s

% Confidence value for having sampled at least one all-inlier sample P

" Number of iterations &

% Let’s put all of this together: 1—P2

P =0.99; proportion of outliers

S 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Probability of having selected at least
one outlierin each of the k trials

LS log(1-P)
log(l _pfnlier)
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RANSAC Parameters

" How to find inlier ratio?

® Provide lower bound for initialization and recompute when new best
hypothesis has been found

% Scale of inlier noise

® Confidence for having sampled at least one all-inlier sample
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Shortcomings of ‘Plain” RANSAC

% Scale of inlier noise (for inlier-outlier threshold) needs to be specified
" Correct model is not generated with user-defined confidence

" Estimated model might be inaccurate

® Degenerate cases not handled

® Can be sped up considerably
" Better hypothesis generation

" Faster verification schemes

® Multiple models
" Model selection

" Interesting problem, but not covered in remainder
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Noisy Inliers

“ Problem: not every all-inlier-sample provides-a good solution

% Sampling more than one all-inlier-set might be necessary!

1 )Sample size

® In practice, solution often found only after roughly k=(
iterations

Pinlier

log(1-P)

- IS inaccurate
log( 1 - pinlier)

% Simple calculation &>
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Increase Accuracy of Estimated Models

® Lo-RANSAC
® Runinner RANSAC loop with non-minimal sample size to refine hypothesis of minimal sample size

" “Locally Optimized RANSAC “ Chum, Matas, Kittler [DAGM03]

% MLESAC

" Fit model by max likelihood rather than max inlier count

" “MLESAC: A new robust estimator with application to estimating image geometry” Torr & Zisserman [1996]
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Handling Degenerate Cases

" “Two-view geometry estimation unaffected
by a dominant plane” Chum et.al. [CVPR05]

" Estimate fundamental

" If successful try to fit homography to triplet
of 7-cardinalty MSS
" If homography can be found run
plane-and-parallax fundamental estimation

% 2 points off the plane need to get fundamental
from known homography

% 2-pt RANSAC over outliers of homography

¥ else non-planar case

Figure 1: The LAMPPOST scene with 97% of correct tentative
correspondences lying in or near a dominant plane. In 100 runs,
RANSAC fails to find a single inlier on the lamp 83 times: in the
remaining 17, no more than 4 out of the 10 correspondences on
the lamppost are found. Points on the lamppost are far from the
dominant plane and therefore critically influence the precision of
epipolar geometry and egomotion estimation. The DEGENSAC
algorithm, with the same computational complexity as RANSAC,
found the 10 lamppost inliers in all runs. Corresponding points ly-
ing in the dominant plane are dark, off-the-plane points are light,
and the points on the lamp are highlighted by line segments.

® Other approaches for making RANSAC robust w.r.t. degeneracies
" “RANSAC for (quasi-)degenerate data (QDEGSAC)” Frahm & Pollefeys

|[CVPROG6]
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Hypothesis Generation

® Trade-off between exploration and exploitation
% Previously verified hypothesis tell us something about inlier set

" Still, we should avoid narrowing our search too quickly

% Especially important for multi-model case
" Eg. estimation of multiple planesin a scene

% Points on other planes act as outliers to plane under consideration
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PROSAC

® “Matching with PROSAC - progressive sample consensus” Chum & Matas [CVPR05]

% Use of a-priori knowledge

% Confidence of a matching pair (eg. based on descriptor matching distance)

® PROSAC: Favor high-quality matches while sampling points for minimal sample
" Sort correspondences according to matching score
" Consider progressively larger subsets of putative correspondences
" Note: draws the same samples as RANSAC would, just in different order
" Pro
® Candecrease the number of required hypothesis considerably
% Contra

" Performance gain depends on data
" Practical observation: high-confidence matches appear often appear in clusters on same spatial structure

" Degenerate configurations...
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Verification

® Phrase hypothesis verification in sequential testing framework
® Subsample remaining data and verify on this subset

® Ifinlier ratio is sufficiently low: terminate verification

% Several papers have been published

® Threshold determined based on Td,d tests

% “Randomized RANSAC with Td,d test” Matas, Chum [IVC04]

Speedup of 2-7 times
compared to standard
RANSAC according to:

> “AComparative Analysis of

" Bail-Out test based on hyper-geometric distribution

" “An effective bail-out test for RANSAC consensus scoring” Capel [BMVCO5]

" Wald’s Sequential Probability Ratio Test (WaldSAC) Eg\/ﬁ;\sﬂzﬁc@;fﬁﬁfadmg
" “Optimal randomized RANSAC” Chum & Matas [PAMIO7] _]  Random Sample Consensus”

Raguram et.al. [ECCVO8]
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Preemptive RANSAC

® “Preemptive RANSAC for live structure and motion estimation” Nister
ICCVO03]

® Find a good estimate within a fixed time budget (eg. in a vSLAM system)

" ldes

" Generate fixed number of hypothesis

= Verify all of them in parallel
" Breadth-first verification scheme

% Verify all hypothesis on a subset of the data

® Prune unpromising hypothesis and retain promising ones

" Verify onincreasingly larger subsets, followed by pruning step
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ARRSAC

® Adaptive Real-Time RANSAC

® Carefully designed combination of previous

Table 1. Evaluation results for ten selected real image pairs. The images show vari-
ation over a range of inlier ratios and number of correspondences. It can be observed
from the above results that the ARRSAC approach produces significant computational
speed-ups, while simultaneously providing accurate robust estimation in real-time. In
practice, the ARRSAC technique stays well within the time budget, with estimation
speeds ranging between 55-350 Hz. It can be seen from the table that the number of hy-
potheses evaluated by ARRSAC is always less than preemptive RANSAC. In addition.
the correct epipolar geometry is always recovered.
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RANSAC approaches
A :— 083 N — 1322 T B8 Bed | B85 | 880 | =85 033 1099
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I:(c=0.76. N = 1508) I 045 0934 | b4 | 951 949 60 1149
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Further Evaluation and Comparisons

" “Performance
et.al. [BMVC09

Fvaluation of RANSAC Family” Choi

Inlier Ratio 0300| 0400| 0500| 0600| O700| O.B00| 0900 | |Mag. of Noise| 0250 0500( 1.000| 2.000| 4.000
LMeds 27.320 | 6461 | 1321 | 135 | 1408| 1379 1509| |LMeds 1379 | 1372 1295| 1256 1228
RAMNSAC 1.305 1.323 1326 1330 1.390 1415 | 1423 | [RANSAC 1385 | 1380 1.315| 1282 1.259
MSAC 12291 1266 | 1284 1337 1373 1415| 1.535| [MSAC 1389 1319( 1306 1246 1.193
MLESAC 1248 | 1269 1289 1316| 1358 | 1410| 1446 | [MLESAC 1364 | 1341 1309| 1262| 1218
LO-RANSAL 1245| 1229 1229 1221 | 1229| 1253| 1.255| |LO-RANSAC 1219 | 1224 1202| 1203| 1222
R-RANSACT 1317 | 1323 1304 1341 1394| 1401 1475 (R-RANSACT 13% | 1363 1286 1232| 1180
R-RANSACS [15.210 | 1848 | 1131| 1.229| 1291| 1370| 1.389 | [R-RANSACS 1253 | 1325| 1413| 1583| 1618
FH MAPSAC | 7.708 | 2.036 | 1647 | 1484 | 1463 | 1490| 1526 | |[FH'MAPSAC 1458 | 1557 | 1513 | 1395 | 1406
AMLESAC 2051 | 1477 | 1452 1529| 1517 | 1526| 1575 | |AMLESAC 1479 | 1499 1942| 1192 | 1164
GASAC 28.640 | 7.370 | 1108 | 1.077| 1100 1120 1.147 | |GASAC 1098 ( 1100( 1102 1115| 1124
pbM-estimator] 1.023| 1034 | 1209| 1255| 1286 1291 | 1.355| |pbM-estimator] 1258 | 1.272| 1264 | 1296| 1306
UMLESAC 5.246 | 1382 1402| 1383 1398 | 1433 1489 | |uMLESAC 1361 | 1232 1069| 1025| 1051
RANSAC® 47.010 |13.920 | 3.031 | 1688 | 13856 1255| 1.187 | |RANSAC" 1389 1379 1409 1440 1552
MLESAC* 50.110 |10.240 | 2839 | 1694 | 1.352| 1235 1145 | |MLESAC* 1357 | 1326 1330 1388 | 1468
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Shortcomings of ‘Plain” RANSAC

% Scale of inlier noise (for inlier-outlier threshold) needs to be specified

" Correct model is not generated with user-defined confidence

" Estimated model might be inaccurate
® Degenerate cases not handled

® Can be sped up considerably
" Better hypothesis generation

" Faster verification schemes

® Multiple models
" Model selection

® Interesting problem, but not covered here
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RANSAC Conclusion

" Many different ‘flavours’

" Still an active research area
Google RANSAC -
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