CS231M - Mobile Computer Vision

Announcements

Next Wed team presentations start

Please select the paper you want to present

P2 submission deadline has been postponed to Friday 16t



CS231M - Mobile Computer Vision

Optical flow and tracking

- Introduction

- Optical flow & KLT tracker

- Motion segmentation



From images to videos

« Avideo Is a sequence of frames captured over time

* Now our image data is a function of space
(X, y) and time (t)

— [(Xﬁy'st)




Tracking features

Courtesy of Jean-Yves Bouguet — Vision Lab, California Institute of Technology



Optical flow

Vector field function of the spatio-temporal image brightness variations

Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT




Optical flow

Vector field function of the spatio-temporal image brightness variations
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http://www.youtube.com/watch?v=JILkkom6tWw



http://www.youtube.com/watch?v=JlLkkom6tWw

Uses of motion

Improving video quality
— Motion stabilization
— Super resolution

Segmenting objects based on motion cues
Tracking objects
Recognizing events and activities



Super-resolution

+ lrani, M.; Peleg, S. (June 1990). "Super Resolution From Image Sequences". International Conference on Pattern Recognition

» Fast and Robust Multiframe Super Resolution, Sina Farsiu, M. Dirk Robinson, Michael Elad, and Peyman Milanfar, EEE TRANSACTIONS ON

IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004
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Super-resolution

Each of these images
looks like this:
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Super-resolution

The recovery result:
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Visual SLAM
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Courtesy of Jean-Yves Bouguet — Vision Lab, California Institute of Technology



Segmenting objects based on
motion cues

« Background subtraction
— A static camera is observing a scene
— Goal: separate the static background from the moving foreground




Segmenting objects based on
motion cues

* Motion segmentation

— Segment the video into multiple coherently moving objects
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S. J. Pundlik and S. T. Birchfield, Motion Segmentation at Any Speed,
Proceedings of the British Machine Vision Conference 06



Tracking objects

* Facing tracking on openCV

OpenCV's face tracker uses an algorithm called Camshift (based on the meanshift algorithm)

http://www.youtube.com/watch?v=HTk UwAYzVk



Tracking objects

Tracking objectsReal-Time Facial Feature Tracking on a Mobile Device
P. A. Tresadern, M. C. lonita, T. F. Cootes in IJCV (2012)
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MoBio: Mobile Biometrics

Phil Tresadern
University of Manchester

Fig. 1 Facial feature tracking running in real-time on the Nokia
N900 smartphone. A video is available from http://www.youtube.com/
watch?v=Y86rOh1Y_kk



FaceHugger: The ALIEN Tracker

Object Tracking by Oversampling Local Features. Del Bimbo, and F. Pernici, IEEE Transaction On Pattern Analisys And Machine
Intelligence, 2014

Double Loop

« Use Scale Invariant Feature Transform (SIFT) when applied to (flat) objects

http://www.micc.unifi.it/pernici/#alien

DOWNLOAD http://www.micc.unifi.it/pernici/



Joint tracking and 3D localization

W. Choi & K. Shahid & S. Savarese WMC 2009
W. Choi & S. Savarese , ECCV, 2010



Tracking body parts

Cascaded Models for Articulated Pose Estimation, B Sapp, A Toshev, B
Taskar, Computer Vision—ECCV 2010, 406-420

Courtesy of Benjamin Sapp



Recognizing events and activities

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action
Categories Using Spatial-Temporal Words, (BMVC), Edinburgh, 2006.


http://www.macs.hw.ac.uk/bmvc2006/

Recognizing group activities
Crossing — Talking — Queuing — Dancing — jogging

gﬂg:g%aﬁre;eé CE\é:FZ:Fixlzlolz X: Crossing, S: Waiting, Q: Queuing,
’ W: Walking, T: Talking, D: Dancing

2



Motion estimation technigues

« Optical flow

— Recover image motion at each pixel from spatio-temporal
Image brightness variations (optical flow)

* Feature-tracking

— Extract visual features (corners, textured areas) and
“track” them over multiple frames



Optical flow

Definition: optical flow is the apparent motion of
brightness patterns in the image

GOAL: Recover image motion at each pixel by
optical flow

Note: apparent motion can be caused by lighting changes without
any actual motion




Estimating optical flow

./' ) Q )
N, o
o—» O z (@) .
I(x,y,t-1) [(X,y,t)

Given two subsequent frames, estimate the apparent motion
field u(x,y), v(x,y) between them

« Key assumptions

* Brightness constancy: projection of the same point looks the
same in every frame

« Small motion: points do not move very far
« Spatial coherence: points move like their neighbors



The brightness constancy constraint

(z,y) v

BN N

displacement = (u,v) (z _|: w,y 4 v)

[(X,y,t-1) [(X,y,1)
Brightness Constancy Equation:

(X, y,t=1) =1(X+u(x,y), y +V(x, y),t)
Linearizing the right side using Taylor expansion:

Image derivative along X

L(X+U, Yy +Ut) = 1O Y, t=D) £ L -u( ) + 1, V(X y) + 1,

[(X+u,y+u,t)—1(X,y,t=)=1_-u(x,y)+1, -v(x,y)+ I,

)
Hence, |,-U+1,-v+I,20 —VI-{uv] +1 =0



The brightness constancy constraint

Can we use this equation to recover image motion (u,v) at
each pixel?
Vi-uv] +1,=0

How many equations and unknowns per pixel?

*One equation (this is a scalar equation!), two unknowns (u,Vv)



Adding constraints....

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In
Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674—-679, 1981.

How to get more equations for a pixel?
Spatial coherence constraint:

Assume the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel

0= Ii(p;) + VI(p;) - [u v] p: = (X, V)
- I:(p1) Iy(p1) - Ii(p1)
I:(p2)  Iy(p2) { U } _ | Li(p2)
: : v :
I:(p2s) Iy(p2s) - Ii(p2s) |




Lucas-Kanade flow

Overconstrained linear system:

- L(p1) Iy(p1) - Li(p1) |
Io(p2) Iy(p2) || u ] _ | I(p2) | A d=1b
: : v : 25x2 2x1 25x1
| Lx(p2s) Iy(p2s) | | Ii(p2s) |




Lucas-Kanade flow

Overconstrained linear system

- L(p1) Iy(p1) | - Li(p1) |
[:(p2)  Iy(p2) u] = _ | Li(p2) A d=1D

25x2 2x1 25x1

_ Iw(1;)25) Iy(I.)25) | i It(I;25) _

Least squares solution for d given by (ATA) d= ATb

[zzxfx zfxfy] [u] _ [ > Iy
SIxly SLy || v |~ | Syl

AT A Alp

The summations are over all pixels in the K x K window



Conditions for solvability

« Optimal (u, v) satisfies Lucas-Kanade equation

Sl SELI, | [w] _ [ S
/ SLly, SELI, || o]~ | S

AT A AT

When is this solvable?
« ATA should be invertible
- Eigenvalues A, and 2 , of ATA should not be too small
« ATA should be well-conditioned
— A 1/ X, should not be too large (1 , = larger eigenvalue)

N Does this remind anything to you?



M = ATA is the second moment matrix !
(Harris corner detector...)

S Ll Y I.I,

M= Al A =
Y LIy Y Iyl

« Eigenvectors and eigenvalues of ATA relate to

edge direction and magnitude

« The eigenvector associated with the larger eigenvalue points
In the direction of fastest intensity change

* The other eigenvector is orthogonal to it



Interpreting the eigenvalues

Classification of image points using eigenvalues
of the second moment matrix:

A




Edge

Svi(vn!
— gradients very large or very small
— large A, small A,



Low-texture region

S vi(vn?!
— gradients have small magnitude
—small A, small A,



High-texture region

S vi(vn?!
— gradients are different, large magnitudes
— large A, large A,



What are good features to track?

Can we measure “quality” of features from just a
single image

Good features to track:
- Harris corners (guarantee small error sensitivity)

Bad features to track:

- Image points when either A, or A, (or both) is small (i.e., edges or
uniform textured regions)



Ambiguities In tracking a point on a line

The component of the flow perpendicular to the gradient
(.e., parallel to the edge) cannot be measured

gradient

\u’,v’)

edge

This equation V| -[u' V']T =0

Is always satisfied when (u’, v’) Is
perpendicular to the image
gradient



The barber pole illusion

http://en.wikipedia.orqg/wiki/Barberpole illusion



http://en.wikipedia.org/wiki/Barberpole_illusion

The barber pole illusion

http://en.wikipedia.orqg/wiki/Barberpole illusion



http://en.wikipedia.org/wiki/Barberpole_illusion

Aperture problem cont'd

40

rc Pollefeys COMP 256 2003



Motion estimation technigues

Optical flow

* Recover image motion at each pixel from spatio-temporal
Image brightness variations (optical flow)

Feature-tracking

« Extract visual features (corners, textured areas) and
“track” them over multiple frames

e Shi-Tomasi feature tracker
 Tracking with dynamics

* Implemented in Open CV



Shi-Tomasi feature tracker

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.

Find good features using eigenvalues of second-
moment matrix

« Key idea: “good” features to track are the ones that can be
tracked reliably

From frame to frame, track with Lucas-Kanade and a

pure translation model

More robust for small displacements, can be estimated from
smaller neighborhoods

Check consistency of tracks by affine registration to the

first observed instance of the feature
« Affine model is more accurate for larger displacements
Comparing to the first frame helps to minimize drift


http://www.ces.clemson.edu/~stb/klt/shi-tomasi-good-features-cvpr1994.pdf

Tracking example

Figure 1: Three frame details from Woody Allen’s
Manhattan. The details are from the lst, 11th, and
21zt frames of a subsequence from the mowvie.

Figure 2: The trafic sign wmdows from frames
1,6,11,16,21 as tracked (top), and warped by the com-
puted deformation matrices (bottom).



Recap

« Key assumptions (Errors in Lucas-Kanade)

« Small motion: points do not move very far

« Brightness constancy: projection of the same point
looks the same in every frame

« Spatial coherence: points move like their neighbors



Revisiting the small motion assumption

Is this motion small enough?
« Probably not—it's much larger than one pixel (2" order terms dominate)
* How might we solve this problem?

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Reduce the resolution!

20 40 80 & 100 120 140 180

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=5 pixels

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1



Coarse-to-fine optical flow estimation

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1



Multi-resolution Lucas Kanade Algorithm

* Compute ‘simple” LK at highest level
« Atleveli
* Take flow u _;, v, | from level i-1

bilinear interpolate it to create u,”, v~
matrices of twice resolution for level §

multiply u, ", v, by 2

compute f, from a block displaced by
(). v, ()

Apply LK to get w, (x, v). v, (x, v) (the
correction in tlow)

o

Add corrections u,'v,", ie. u, = u, + u,,

v, =v, + v,



Optical Flow Results

[ucas-Kanade
without pyramids

Fails in areas of large
OO

W
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Optical Flow Results
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003


http://www.ces.clemson.edu/~stb/klt/

Recap

« Key assumptions (Errors in Lucas-Kanade)

« Small motion: points do not move very far

« Brightness constancy: projection of the same point
looks the same in every frame

« Spatial coherence: points move like their neighbors




Motion segmentation

?

INn this scene

Ion

How do we represent the mot




Motion segmentation

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

Break image sequence into “layers” each of which has a
coherent (affine) motion




Affine motion

u(x,y)=a, +a,x+a,y
v(X,y)=a, +a.x+a.y

Substituting into the brightness
constancy equation:

l,-u+l, -v+1 ~0




Affine motion

u(x,y)=a, +a,x+a,y
v(X,y)=a, +a.x+a.y

Substituting into the brightness
constancy equation:

I (@, +a,x+azy)+1 (a, +ax+agy)+1, =0

« Each pixel provides 1 linear constraint in
6 unknowns

 If we have at least 6 pixels in a neighborhood,
a,... ag can be found by least squares minimization:

Err(@) =Y [1,(a, +ax+ay) + 1, (@, +ax+ay) +1,)°




How do we estimate the layers?

1. Obtain a set of initial affine motion hypotheses

. Divide the image into blocks and estimate affine motion parameters in each
block by least squares
—  Eliminate hypotheses with high residual error

2. Map into motion parameter space

3. Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain
a smaller set of hypotheses to describe all the motions in the scene




How do we estimate the layers?

1. Obtain a set of initial affine motion hypotheses

. Divide the image into blocks and estimate affine motion parameters in each
block by least squares
—  Eliminate hypotheses with high residual error

2. Map into motion parameter space

3. Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain
a smaller set of hypotheses to describe all the motions in the scene

4. Assign each pixel to best hypothesis --- iterate
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Example result
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J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.



http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf

CS231M - Mobile Computer Vision

Next lecture:

Recognition & classification



