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ON THE IMPLEMENTATION OF A PRIMAL-DUAL
INTERIOR POINT METHOD*

SANJAY MEHROTRAt

Abstract. This paper gives an approach to implementing a second-order primal-dual interior point
method. It uses a Taylor polynomial of second order to approximate a primal-dual trajectory. The computa-
tions for the second derivative are combined with the computations for the centering direction. Computations
in this approach do not require that primal and dual solutions be feasible. Expressions are given to compute
all the higher-order derivatives of the trajectory of interest. The implementation ensures that a suitable
potential function is reduced by a constant amount at each iteration.

There are several salient features of this approach. An adaptive heuristic for estimating the centering
parameter is given. The approach used to compute the step length is also adaptive. A new practical approach
to compute the starting point is given. This approach treats primal and dual problems symmetrically.

Computational results on a subset of problems available from netlib are given. On mutually tested
problems the results show that the proposed method requires approximately 40 percent fewer iterations
than the implementation proposed in Lustig, Marsten, and Shanno Tech. Rep. TR J-89-11, Georgia Inst.
of Technology, Atlanta, 1989]. It requires approximately 50 percent fewer iterations than the dual affine
scaling method in Adler, Karmarkar, Resende, and Veiga [Math. Programming, 44 (1989), pp. 297-336],
and 35 percent fewer iterations than the second-order dual affine scaling method in the same paper. The
new approach for estimating the centering parameter and finding the step length and the starting point have
contributed to the reduction in the number of iterations. However, the contribution due to the use of second
derivative is most significant.

On the tested problems, on the average the implementation shown was found to be approximately two
times faster than OB1 (version 02/90) described in Lustig, Marsten, and Shanno and 2.5 times faster than
MINOS 5.3 described in Murtagh and Saunders [Tech. Rep. SOL 83-20, Dept. of Operations Research,
Stanford Univ., Stanford, CA, 1983].

Key words, linear programming, interior point methods, primal-dual methods, power series methods,
predictor-corrector methods

AMS(MOS) subject classifications. 90C05, 90C06, 90C20, 49M15, 49M35

1. Introduction. This paper considers interior point algorithms for simultaneously
solving the primal linear program"

minimize

(P) s.t.

and its dual

maximize

(D) s.t.

cx
Ax b,

x>=O,

b TTl"

ATTr + S C,

s>=O,

where c, x, s 9]", 7r, b 91", and A 9]"n. It is assumed that A has full row rank.
This can be ensured by removing the linearly dependent rows in the beginning. The
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576 SANJAY MEHROTRA

primal-dual methods, which use solutions of both (P) and (D) in the scaling matrix,
are of primary interest.

The primal-dual algorithms have their roots in Megiddo [21]. These were further
developed and analyzed by Kojima, Mizuno, and Yoshise [15] and Monteiro and
Adler [27]. They showed that the central trajectory can be followed to the optimal
solution in O(x/-ffL) iterations by taking "short steps." Kojima, Mizuno, and Yoshise
[16] showed that the primal-dual potential function [31], which is a variant of Kar-
markar’s potential function [13], can also be reduced by a constant amount at each
iteration and therefore, they developed a primal-dual large step potential reduction
algorithm.

McShane, Monma, and Shanno [20] were the first to develop an implementation
of this method. They found it to be a viable alternative to the then popular dual affine
scaling method [1], [26] for solving large sparse problems. They also found that this
method typically takes fewer iterations than the dual affine scaling method. However,
it was found to be only competitive with the dual affine scaling method because of
the additional computations that their implementation had to perform. This
implementation created some artificial problems (by adding artificial variables/con-
straints to the original problem) and maintained primal and dual feasible solutions of
these problems. Further developments on this implementation were reported in Choi,
Monma, and Shanno [4].

Lustig, Marsten, and Shanno [18] implemented a variant of the primal-dual
method which is based on an earlier work of Lustig [17]. This method is developed
by considering the Newton direction on the optimality conditions for the
logarithmic barrier problem. An important feature of their approach is that it did
not explicitly require that feasible solutions for the primal or the dual problem be
available. They showed that the resulting direction is a particular combination of
primal-dual affine scaling direction, feasibility direction, and centering direction. In
support of their method they reported success in solving all the problems in the netlib
[7] test set.

This paper builds on the work of Lustig, Marsten, and Shanno [18]. In doing so
it makes use of the work of Monteiro, Adler, and Resende [28] and Karmarkar,
Lagarias, Slutsman, and Wang [14]. The discussion in this paper assumes that direct
methods are preferred over iterative methods for solving linear equations arising at
each iteration ofthe algorithm. In our view, the following accomplishments are reported
in this paper:

It gives an algorithm and describes its implementation by using first and second
derivatives of the primal-dual affine scaling trajectory Taylor polynomial and by
effectively combining the second derivative with a centering direction.

A comparison with the results reported in the literature (on mutually tested
problems) shows that the method developed in this paper takes approximately 50
percent fewer iterations than the dual affine scaling method as implemented by Adler,
Karmarkar, Resende, and Veiga 1 ], 40 percent fewer iterations than the primal-dual
method implemented in Lustig, Marsten, and Shanno [18], and 55 percent fewer
iterations than the logarithmic barrier function method implemented in Gill, Murray,
and Saunders [8]. It requires 35 percent fewer iterations than the second-order dual
affine scaling method implemented in Adler, Karmarkar, Resende, and Veiga 1 and
20 percent fewer iterations than the "optimal three-dimensional method" implemented
by Domich, Boggs, Donaldson, and Witzgall [5].

An efficient preliminary implementation of the proposed approach was
developed. On average, it was found to be two times faster than OB1 (version 02/1990)
[18]. On average, it was also found to be 2.5 times faster than MINOS 5.3.
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PRIMAL-DUAL INTERIOR POINT METHOD 577

While developing our implementation we ensure that a suitable potential func-
tion is reduced by a constant amount. This is accomplished by taking a two tier
approach. Most ofthe work is performed at the first level, which uses extensive heuristic
arguments. The second level ensures the robustness of the implementation.

It gives expressions for computing first and higher derivatives of a primal-dual
trajectory. This trajectory starts from any positive point and goes to the optimum.

It gives an adaptive approach to computing the centering parameter.
It gives a modified heuristic for computing step length at each iteration. The

approach allows us to adaptively take steps much closer to the boundary.
It gives an approach to generating primal and dual starting points, which treat

these problems symmetrically.
We find it convenient to outline the proposed approach first. This is done in the

next section. The organization of this paper is given in that section. The following
notation and terminology is used throughout this paper.

Notation and terminology, xk, 7r k, and s k represent the estimate of solutions of
(P) and (D) at the beginning of iteration k. Xk and Sk are used to represent diagonal
matrices whose elements are xk,xk ,xk and s k sk k

1, .,Sn, respectively, sGk--
Axk- b, k ATTrk+ Sk- C, x, and G are referred to as error vectors. D2 represents
matrix (sk)-ax k. e is used to represent a vector of all ones. ei represents column of
an identity matrix. is used to represent the Euclidean norm of a vector.

The term search direction in primal space is used for a direction px, which is
constructed from a combination of directions (pl,p2). The term primal blocking
variable is used for a variable that will first become negative when moving in a direction.
The term step factor represents the fraction of step length that makes the blocking
variable zero. Similar terminology is used for directions in the dual space.

Central trajectory is the set of feasible points in (P) and (D) satisfying xi(lz)si(lz)
/z, for i= 1,..., n. In all references to central trajectory we assume that x(/x), s()
exists for all

2. Implementation of an interior point method. This section outlines the approach
we take to implement an interior point method. We do this to provide a complete
picture of this paper and to fix certain additional notations used throughout. Various
steps in the development of this implementation are discussed in more detail in 3-7.
The procedure is outlined in Exhibit 2.1 and it is called AIPM (an interior point
method). We now discuss the procedure.

Procedure AIPM
Input: Let x> 0 and s> 0, 7r be the given starting points.
For k 0, 1,... until a stopping criterion is satisfied do:

Step 0

ks := ATTrk + sk c,

:k := AXk b,

D2:= sk-’x k.
Step 1

c find the first derivative of primal-dual affine scaling trajectory.

pl :--(AD2AT)-I(b-AD2k),
psl := k Arpl,

p 1 := xk D2p 1.

EXHIBIT 2.1. A pseudo-code for implementing a second-order primal-dual method.
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578 SANJAY MEHROTRA

Step 2
c compute centering parameter /k.

CALL CENPAR (X k, pxl, S k, ps1,/zk).

C compute the second derivative of primal-dual trajectory with the centering direction.
Step 3

vi:=-2* ((pxl),. (psi)i- )/sk for i= 1, 2... n,

p=2:=(AD2AT)-IAv,

ps2 := ATp=2,

p := V D2p2.

c construct a Taylor polynomial and find maximum steps (e, e,.) using this polynomial.
Step 4

CALL SFSOP (xk, pl, p2, ex, s k, psl, ps2, e).

c construct a search direction.
Step 5

p := e * p1- .5 * e 2 * ps2,

p := e * p 1 -.5 * e * p2,

px := ex * p1- .5 * e * p2.

c compute step factors (fx, f).
Step 6

CALL GTSF (xk, p, s k, p, f,f ).

c generate trial points.
Step 7

:= x -fx * p,

:= s k -f * p,

:= rk -f * p,.

c test if the trial point is acceptable.
Step 8

If an appropriate potential function is reduced, then

X
k+l :___ ,

S
k+l ;--- y,
k+l

7/" :--

else
perform a line search/if necessary compute
additional vectors and ensure reduction in the potential function.

endif

EXHIBIT 2.1 (continued).

D
ow

nl
oa

de
d 

10
/0

1/
12

 to
 1

28
.1

04
.1

.2
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



PRIMAL-DUAL INTERIOR POINT METHOD 579

The approach used to generate a starting point is discussed in 7.
Given xk, rk, and s k, Step 0 computes error vectors :k and :k representing the

amount by which primal and dual constraints are violated. D2 has the primal-dual
scaling matrix.

Step 1 computes direction pxl in primal and pl, psl in dual spaces. These
directions are tangent to a primal-dual trajectory. This trajectory is discussed in 4.
Expressions to compute all derivatives of this trajectory at a point are also developed
in 4.

The primal and dual directions computed at Step 1 are used in procedure CENPAR
to estimate the centering parameter /z k. Our approach to estimating the centering
parameter is given in Exhibit 5.1. This approach is discussed in 5.

Step 3 computes the second derivative of the primal-dual trajectory and the
centering direction. These directions could be computed separately. However, in the
current implementation we prefer to combine their computation in order to save a
forward and a back solve. We use the tangent direction and the direction in Step 3 to
construct a Taylor polynomial and to find a maximum step to the boundary (in primal
and dual spaces separately) using this polynomial. This is done in Procedure SFSOP
given in Exhibit 4.1. The computations performed in this procedure are also discussed
in 4.

In Step 5 we use the maximum step in a Taylor polynomial to generate search
directions px, p, and ps. In Procedure GTSF (Exhibit 6.1) we compute a fraction
(f,f) of the total step to the boundary in the search direction. This is discussed
further in 6. Using the search directions and the step factors, trial point , ,, g is
generated in primal and dual spaces.

Step 8 ensures the robustness of the overall procedure. It is loosely defined here.
It depends on the choice of the function used to measure the progress of the algorithm
and the best possible theoretical results that could be proved for this function. The
potential function we used to ensure the progress is developed in the next section ( 3),
and our motivations for using it are discussed there.

If the potential function is not reduced by the desired amount at the trial points,
we may perform a line search and, if necessary, compute additional directions to ensure
a reduction in this function. This actually happened for the potential function we
discuss in the next section. If this happens, we generate an additional three trial points
by using e, := es := min(e,, e); e, := e,, e := 0; and e := 0, e := es in Step 5 to compute
p, p=, p. The potential function was always reduced by the desired amount at one of
the new trial points. Therefore, on the tested problems, additional vectors were never
computed and explicit line searches were never performed.

3. A potential function. In our view the interior point methods generate one or
more interesting search directions at each iteration and effectively combine these
directions to ensure that sufficient progress in a suitable convergence function is made.
Various proposed methods differ in the directions they compute, in how they combine
these directions (implicitly or explicitly), and in the convergence function they use to
measure the progress [12]. Unfortunately, to our knowledge, the current theoretical
understanding of these methods has not reached a point where a clear superiority of
one method is established. Hence, practical implementations [1], [5], [18], [19], [20],
[22], [26] rely on heuristic arguments and empirical evidence obtained from performing
experiments on a set of real problems.

Use of a suitable potential function is frequently ignored while developing fast
implementations. In our experience, an important reason, among others, is that the
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580 SANJAY MEHROTRA

cost of performing line searches in one- or higher-dimensional subspaces is significant
on sparse problems, and it is frequently not justified by the return.

In our opinion use of heuristic arguments is justified, but not at the cost of the
robustness ofthe solution procedures. Hence, even though in this paper several different
heuristics are proposed and their use justified solely on the basis of empirical evidence,
in the actual implementation we recommend the use of a potential function.

We now develop the potential function that was used to measure progress in our
implementation. We find it instructive to go through some construction to motivate
this function. Some steps used in this construction appeared in Karmarkar [13] and
others in Goldfarb and Mehrotra [9] and Todd and Ye [31].

S
OLet x> 0, 7r, > 0, be any given point. Let :o Axo b and :o ATTr+ So- C.

In order to solve (P) and (D), it is enough to find an optimal solution of

minimize

Sot.

(3.1)

A

Ax A b,

arTr-I s As c,

c rx- b r"a" + (b rTr- crx) O,

x,&, _->0, i=l,2,...,n.

(x, 7r, s, 1) is a feasible interior solution of (3.1). Let Z be a matrix whose columns
are the basis for the null space of A. Multiplying the second set of equations in (3.1)
with JAr" Z]r and solving for the free variables 7r results in

(3.2) 7r (AAT)-I(Ac As + AAsC);

therefore, solving (3.1) is the same as:

minimize A

s.t. Ax-A b,

PDO) ZTs AzTO ZTc,
cTx + b T(AAT)-As +A bT(AAr)-Ac,

Xi, Si, A O,

where s% (b TTr-- CX- bT(AAr)-A(). Consider the potential function

(3.3) F(x, s, A)= p In A- L In xisi
i=1

for p--2n+x/2n+ 1. In the Appendix we show that F(x, s, A) can be reduced by a
constant amount (.25) at any feasible solution of (PDO).

Let k=((b--axk) r, (c--sk)rz, br(aar)-la(c-sk)-crxk) r. Note that :k is A k

times the last column in (PDO). If xk, 7r k, s k, A k and xk+, rk+l, sk+, Ak+ are feasible
solutions of (PDO), then

/k+l
F(xk+l, s k+l, A k+l) F(xk, s k, A k) p In --- In-

i=1

=p In IlQfl+ll]- lnx/k+ls/k+l
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PRIMAL-DUAL INTERIOR POINT METHOD 581

for any nonsingular matrix Q )(n+l)(n+l). An important consequence of this observa-
tion is that it ensures that the potential function

(3.4) E (x, s, :, Q)= p In QII- In x,s,
i-----1

can be reduced by a constant amount at each iteration. We use the following potential
function

E(x, s, )-- p In II(’x, ’sU, ,)11- In x,s,,
il

where K, and Ks are some prespecified constants. The potential function (3.5) is used
for the following reasons: (i) We think that a potential function of the form (3.5) is
superior for developing implementations because it allows for numerical errors [10].
(ii) It is easily computable without having to know Z. (iii) It allows us to separately
update primal and dual solutions and the corresponding error vectors. (iv) There is
no unknown that has to be determined during the algorithm. (v) Finally, it is possible
to compute directions which ensure that (3.3), and therefore (3.5), is reduced by a
constant amount.

The potential function (3.5) is, however, dependent on the scaling of rows (in
general, the choice of Q in (3.4)). Because of this, a search direction that may be
acceptable while using one scaling matrix may become unacceptable for a different
choice. However, in our implementation we use it to our advantage. We think that the
construction of directions p,,1, p=l, psl and px2, p=2, ps2 discussed in the next section
is inherently biased towards finding (nearly) feasible solutions first. The values of x
and s are chosen so that they emphasize primal and dual feasibility over the feasibility
of the last equality constraint in (PDO). As a consequence of this, search directions
that reduce ,, and/or s significantly, and do not reduce (or possibly increase) the
error in the last equality constraint of (3.1) become acceptable.

x 100 maxi {s} and s 100 maxi {x} were used for all the problems in our
implementation. The construction of x and so is described in 7.

A reduction by constant amount in (3.5) at each iteration ensures convergence to
an optimal solution provided that i"--1 In xis remain bounded. On the other hand, if
(3.5) cannot be reduced by a constant amount at some iteration, then either (P) or
(D) or both do not have a feasible solution. We may introduce a constraint providing
an upper bound on x and s if we detect (through some tests) that the method is not
converging.

4. Derivatives of a primal-dual trajectory. This section provides motivation for
using directions px 1, pl, Ps 1, p,,2, p2, ps2 in Procedure AIPM. It was mentioned that
these directions use first and second derivative information of a primal-dual trajectory
at a given point. This section defines the trajectory of interest and also shows how to
compute all of its derivatives at a given point. While we used the potential function
(3.5) to measure the progress, derivatives of the primal-dual trajectory being considered
are used because they are easily computed and found to be effective in practice.

The results in Monteiro, Adler, and Resende [28] are used frequently to develop
these expressions. Monteiro, Adler, and Resende [28] assume that feasible solutions
are available. We do not assume this here. The expressions are given in the context
of linear programming problems. Extensions to convex quadratic programming are
straightforward.
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582 SANJAY MEHROTRA

Assume that xk> 0, "/l"k, sk> 0 is the current point. Consider the following system
of nonlinear equations:

X()s()=Xs,
Ax(a b + asc,

(4.1)
aTTr(a)+ s(a)= c+

x(,)_->o, s(,)_->o

for a [0, 1]. Let w(a)=(x(a), rr(a),s(a)) represent the solutions of (4.1) for a
given a.

PROPOSIa’ION 4.1. If the system of equations (4.1) has a solution for a =0, then it
has a solution for all re [0, 1 ]. Furthermore, the solution is unique for a (0, 1 ].

Proof For a (0, 1 (4.1) gives the optimality conditions for the weighted logarith-
mic barrier problems

minimize B(x, a)=- c + olks Tx Ol xki sk In x,
i=1

(P) s.t. Ax b + ak

and

x>0,

maximize (b + a)rTr + xsi In si
i=1

(D) s.t. AT’It’+ S C+,
s>0.

Let x(0), (0), s(0) represent a solution of (4.1) for a 0. For a fixed a e [0, 1],
Y() (1-)x(0)+x is a feasible solution for (P) and (a) (1-a)(0)+,
g(a)=(1-a)s(O)+s is a feasible solution for (D). If the feasible set of (P) is
bounded, then obviously (P) has a solution.

We now consider the case when the feasible set of (P) is unbounded. Since (a),
g(a) is a feasible solution for (D), it can be shown that the set {dlAd =0, d0,
d O, (c + a)Td O} is empty. Hence, the set Pt {x[Ax b + a, x > O, (c +
a)rx t} is bounded for all values of < m. Fuhermore, since the feasible region
of (P) is nonempty and unbounded, Pt is nonempty for all values of > t*, where t*
is the minimum value of (c+ a)rx subject to Ax b + a, x O. Clearly, B(x, a)
is bounded over Pt for all values of t. Now, to complete the proof for the existence
of the solution, note that in B(x,a), (C+a)Tx increases linearly in t, while
max =, (xs) In xg subject to {x[Ax b + a, x > O, (c + a)TX t} increases only
logarithmically in t.

The proof for the uniqueness of solution follows from the strict convexity of
B(x,a).

Let dw(a)/da be the jth derivative of (a). It is now shown that dJ(a)/da
can be computed for all j at a 1. Differentiating (4.1) for the first time gives

S()
dx() +X()
da

(4.2) A

ds() Xksk,
da

dx() x,
da

ds(a) kda
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PRIMAL-DUAL INTERIOR POINT METHOD 583

The solution of (4.2) at ot 1 is given by

dot
_(ADAT)--1( b AD k),

(4.3)
ds(1)
dot ks _ATd’a’(1)

dot

dx(1)
dot

xk D2 ds(1)
dot

Further differentiating (4.2) gives

() dlxi(1) d(J-l)si(1
1=o dot dot(j-l)

=0, j>=2,

(4.4) AdJX(1)

i=l,...,n,

ds(1)ATd;r(1)
_

dot dot

From (4.4) it is clear that dJw(ot)/dot can be computed recursively. The derivatives
can be computed explicitly from

(4.5)

dJTr(1) _(AXS-,
dot

AT )-’ ASk-’u,

dis(l) ATdJr(1)
da dot

d Jx(1) sk-’u -ll- sk-’xk dJs(1)
dot dot

)( )ui=-j
dx(1) d-)s(1)
dot dot (j-)

i, i=l,...,n; j>--2.

The recursion (4.5) is the same as the recursion given in Monteiro, Adler, and
Resende [28] and Karmarkar et al. [14] (see also Megiddo [21] and Bayer and Lagarias
[2]). The derivatives resulting from the computations would be the same if :k 0 and

k 0 is assumed, and in the latter paper if no centering and reparameterization is done.
The point w(1 e) for 1 > e > 0 can be approximated by using the rth-order Taylor

polynomial

(4.6) w((1-e), r) -= w(1)/ i (-e)J dJw(1)
j=l j! dot

The Taylor polynomial is considered for the following two reasons.
(1) In the special case Monteiro, Adler, and Resende [28] established powerful

results (near the central path) for this approximation.
(2) Computational results indicate that near the optimal solution the first- and

second-order approximations result in nearly unit steps. Our results also indicate that,
asymptotically, w(ot) is well represented by the Taylor polynomial of a lower order.
In this context Megiddo [21] has argued that for problems with unique optimal solution,
if we start close to an optimal solution, the primal-dual paths take us approximately
in a straight line to the optimal solution. Most of the tested problems do not satisfy
this assumption, however they still show this property.
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584 SANJAY MEHROTRA

In addition to other things, practical implementations that compute more than
one direction must offset the cost of doing extra work. Adler et al. [1] were the first
to show that in the dual affine scaling method the information from a second derivative
can be used to significantly reduce the number of iterations. However, on problems
in the netlib test set they found that reduction in the number of iterations did not
always translate into reduction in cpu time on sparse problems. Computational results
were also given in Karmarkar et al. [14] on a small set of "representative problems"
using methods implemented in the AT&T KORBX system [3].

This paper restricts itself to using the second-order Taylor polynomial. In fact,
we compute only two directions. The tangent direction dJw(c)/da is computed at
Step 1 of Procedure AIPM. Step 3 combines the computation of a second derivative
with that of a centering direction. This saves a forward and a back solve. We must
compute two directions at each iteration in order to use the adaptive approach for
computing the centering parameter ( 5).

Our strategy of combining the computations for second derivative and the centering
direction seem to work in practice for the following reasons. (i) The performance of
interior point methods in practice weakly depends on the choice of centering parameter.
(ii) If we view the computations in constructing the Taylor polynomial as that of
finding a search direction, then in practice it appears that a wide range of e can be
used without adversely affecting the performance of the implementation. To illustrate
this, we would like the reader to compare the iteration counts reported in Mehrotra
[24], [25] for a predictor-corrector method with those in Table 8.2. The predictor-
corrector method results if we take e 1 at each iteration.

We find that taking different steps in primal and dual spaces generally results in
superior performance. This is similar to the experience of Choi, Monma, and Shanno
[4] for their method. We construct different polynomials

(4.7) 2x(e2, 2) -= xk- exPxl + expx2,

(4.8) s( e, 2)-= sk- epsl + e2p2

in primal and dual spaces. The computations for ex and es that use (4.7)-(4.8) are
described in Procedure SFSOP (step from second-order polynomial) of Exhibit 4.1.
A procedure that finds the root of a quadratic equation is used to implement SFSOP.

Procedure SFSOP (Xk, pxl, px2, ex, s k, psl, p2, es)
Find maximum 0_-< ex--< 1 such that X(ex, 2) is feasible.
Find maximum 0=< e-< 1 such that s(e, 2) is feasible.

EXHIBIT 4.1. Computations for step size using the Taylor polynomial.

Before concluding this section, we point out that if there are reasons to believe
that at the current iterate it is better to target a solution satisfying XS W for some
positive diagonal matrix W, then expressions for derivatives of a trajectory taking us
to such a point can be obtained in a similar manner. The only difference would be to
replace "ogXks k’’ in (4.1) with "aXksk+(1--a)We. In particular, we may use the
Heuristic CENPAR to compute the centering parameter (given in the next section) in
order to decide a target point on the central path, then go back and find desired
derivatives of a trajectory going to this point.
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PRIMAL-DUAL INTERIOR POINT METHOD 585

5. Centering. In 4 expressions were developed to construct a Taylor polynomial
at a given point in order to approximate a path going to an optimal solution. Obviously,
the performance of the algorithm depends to a great extent on how well a "small-order"
Taylor polynomial approximates this path at the current point, and on the domain in
which the Taylor polynomial results in good approximations.

The results in Monteiro, Adler, and Resende [28] and the convergence results of
large step polynomial time algorithms proved by Freund [6], Gonzaga and Todd [11],
and Ye [32] implicitly or explicitly use the properties of the central path. The projected
gradient ofthe potential function used for analysis in these papers encourages centering.
On the other hand, it is not clear if the central path (with equal weights) is the best
path to follow, particularly since it is affected by the presence of redundant constraints
[30]. Furthermore, the points on (or near) the central path are only intermediate to
solving the linear programming problem. It is only the limit point on this path that is
of interest to us.

In view of this, we make our implementation weakly dependent on centering. The
centering direction is obtained by solving the equations

jr txk(AD2Ar)-lASk-’e, s AT, x p,ksk-’e D2s
/x

k is called the centering parameter. It was mentioned in 4 that the computation
for the centering direction is combined with computations for the second derivative
to save an extra forward and backward solve.

Heuristic CENPAR given in Exhibit 5.1 was used to compute/xk. In the description
of this heuristic we assume that the direction tangent to the primal-dual affine scaling
trajectory has been computed. The heuristic is adaptive. It attempts to generate a value
of tx k, depending on the progress that could be made by moving in the tangent direction.

Heuristic CENPAR (Xk, Px 1, S k, Ps 1, k)
Step 1. Let e, el be computed as follows:

( )Xx ,1e)l min
(px 1)x

{ xki (pxl),>O},lx argmin
(px 1)i

e,1 min
(ps 1)1,

/s argmin {( si (pl)i > 0}.pl)i

Step 2. Let mdg=(X-exlpl)r(s-eslp.l).

Step 3. Let/xk=-
xrs [ tndg’

\xs]

Step 4. Let ef =(p)I)rD--2(pxl)+(pI)rD2(psl)xs
Step 5. If (ef> 1.1)/xk=/xk/min (ex, e).
EXHIBIT 5.1. A heuristic to compute centering parameter.
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586 SANJAY MEHROTRA

The motivation behind various steps in Heuristic CENPAR are now discussed.
For the moment assume that sex 0 and Cs 0. If this is the case, then x rs is the current
duality gap and mdg is the minimum duality gap that one can achieve by moving in
directions px I and ps I in primal and dual spaces, respectively, ex I and e 1 are always
taken smaller than one, because at this value the computations for p 1 and p 1 ensure
that sex 0 and s 0 if no numerical error is present. Hence, for v 1 the choice of
/x is such that it targets the point on the central path at which the duality gap is mdg.

The ratio mdg/xTs provides us "some indication" of how well the primal-dual
affine scaling trajectory is being approximated locally. A value of ratio mdg/xTs near
1 means that the local approximations are not good, whereas mdg/xTs near zero
indicates that the approximations of the trajectory are good.

Table 5.1 gives the number of iterations required to solve the problems for choices
of v- 1, 2, 3, 4. All other parameters were the same as those for results in Table 8.2.
The last column of this table gives the number of iterations required to solve the
problem if no centering was done. The results in Table 5.1 on the test problems show
only a moderate variation in the number of iterations for values of v between two and
four.

The discussion on the computation of the centering parameter thus far assumed
that x 0 and O. If this is not the case, then ef (error factor) is used as an indicator
for their contribution to the search direction. If : 0 and : O, then it is easy to see
that

Dp, 1 DAT AD2AT)-AD](xks’)/2e,

D-lpx 1 [I- DAT(AD2AT)-AD](xksk)I/2e;

hence ef as defined in Step 4 of Exhibit 5.1 is equal to 1. If ef is smaller than 1, it
indicates that the presence of :x and : is probably reducing the norm of the search
direction and, therefore, it is expected to allow for larger steps in primal and/or dual
spaces. Since k and k reduce linearly in step size when moving in directions p 1 and
psl, respectively, larger steps result in greater reduction in the error vectors. Hence,
the value of ef smaller than one is not likely to hurt the performance of the
implementation.

Now if ef> 1, then empirical results indicate that the presence of , and/or s
results in a reduction in the step length, which adversely affects the improvement in
the duality gap as well as the reduction in the error vectors. Therefore, it might be
indicating trouble ahead. If this happens in practice, we seem to quickly get out of
the trouble spots by placing more emphasis on centering. In the current implementation
this is accomplished in Step 5.

6. Step length. Standard practice [1], [5], [18], [19], [20], [26] has been to move
a certain fixed distance (step factor) to the boundary to avoid one-dimensional line
searches. The step factor in the case of primal-dual methods has typically been .995
or .9995 18].

Although the performance of step factor =.995 or .9995 appears satisfactory in
practice, in our view, it has a major drawback as a heuristic: it limits the asymptotic
rate of convergence of the algorithm. Furthermore, during the earlier phase of the
algorithm it is overly aggressive. A modified approach to computing step factor is
given in Exhibit 6.1. It adaptively allows for larger (and smaller) step factors. In an
extreme case it may allow a full step to the boundary and generate a point with zero
duality gap.
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PRIMAL-DUAL INTERIOR POINT METHOD 587

TABLE 5.1

Performance of implementation for different choices of u. +Stopped
after 100 iterations with one digit of accuracy in objective function.

Problem

afiro
adlittle
scagr7

stochforl
sc205
share2b

sharelb
scorpion
scagr25

sctapl
brandy
scsdl

israel
bandm
scfxml

e226
agg
scrs8

beaconfd
scsd6
shipO4s

agg2
agg3
scfxm2

ship041
fffffS00
ship08s

sctap2
scfxm3
shipl2s

scsd8
czprob
ship081

shipl21
25fv47

2 3 4 nc

9 8 7 7 8
14 11 10 10 11
17 14 13 13 15

16 16 16 16 21
14 12 11 11 11
14 12 12 13 14

23 22 22 20 25
13 12 12 12 12
19 17 16 17 18

17 15 15 15 17
21 20 20 19 19
9 8 8 8 8

30 25 24 24 26
20 17 17 19 17
21 19 18 18 19

25 21 20 20 21
27 22 25 27 56
24 21 21 21 22

11 8 7 7 7
13 10 10 10 10
15 12 13 13 15

23 21 24 23 26
22 19 21 21 23
22 18 19 19 20

14 12 12 12 12
36 38 38 38 100
16 13 13 13 13

15 13 12 12 13
25 20 20 20 19
18 16 16 17 19

12 10 9 9 9
39 33 35 35 38
18 14 14 14 14

19 16 16 17 17
32 27 26 25 27D
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588 SANJAY MEHROTRA

Procedure GTSF (x k, Px, s k, Ps, fx,Z
Let

and

Compute fx such that

Ix argmin { xi

s, I(p),>o}.ls argmin
(Ps)i

(Xk,-L * (p),.)(s-(p.),)=(6.1) n * "ya

f := max (L, Yy)

and f such that

(x-p)(s-p)

(S,x-f * (ps),s)(X-(px),s)=
(6.2) n *

f max (f, yy)

(xk--px)T(sg--ps)

EXHIBIT 6.1. Computation of step factor.

The step factor in the primal space is chosen so that the product of primal blocking
variable (lx) and the corresponding dual slack is nearly equal to the value their product
would take at the point on the central trajectory at which the duality gap is equal to
(X--px)r(s--ps)/(n * ya). Note that if sex=0 and : =0, then (x--px)T(s--p) is the
duality gap at the point obtained after moving full step. The parameter y, > 1 should
be used. The parameter 0 < y/<_- 1 is used to safeguard against very small or negative
steps. The explanation for computation of step factor for the dual variables is similar.
In essence, the choice offx and f is guessing the minimizer of potential function (3.5)
in directions Px and p while implicitly assuming that x 0 and : 0.

Provided that the computations for the search directions were performed with
sufficient accuracy, the computational experience on the tested problems shows that
the number of iterations required to solve the problems is relatively insensitive to the
choice of y and y/in a large range. We experimented with values of y .5, .75, .9,
.99, .999 and y 1/(1-yy). In our experience we found that on most problems the
number of iterations were fewer for a larger choice of yy, but the difference was small
for yy in the range .75 to .999.

However, we observed a very interesting phenomenon. The implementation
showed signs of instability for larger values of y/for problems brandy, scfxml, scfxm2,
and scfxm3. For these problems to obtain eight digits of accuracy in the solutions at
the last two iterations of the algorithm, the conjugate gradient method was needed to
improve the accuracy in the search direction. These problems were successfully solved
to the desired accuracy for yy .5, .75 and yy .9.

An examination of problem data of brandy, scfxml, scfxm2, and scfxm3 shows
that for these problems the set of optimal primal solutions is unbounded. An examin-
ation of various stages of our implementation (with different choices of parameters)
revealed that allowing for a larger step factor may result in premature convergence of
dual slacks corresponding to primal variables unbounded in the optimal set. At a later
iteration, this further causes the primal unbounded variables to become very large.
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PRIMAL-DUAL INTERIOR POINT METHOD 589

Hence, xi/si corresponding to these variables become disproportionately large. This
results in cancellation of large numbers when computing the Cholesky factor, causing
computations to become less stable.

The reader is referred to Mehrotra [23] for a more elaborate discussion of the
precision of computations in the context of interior point methods and to Mehrotra
[22] for a discussion of issues involved in developing implementations based on the
preconditioned conjugate gradient method, which we may want to use to improve the
numerical accuracy.

7. Initial point. In all of our implementations the initial point is generated as
follows. We first compute

(7.1) =(AAT)-IAc; =c--AT’n’; :=AT(AAT)-lb,
and 6 max (-1.5 min {)i}, O) and 6 max (-1.5 min {i}, 0). We then obtain

(,+6xe)T(+6se)
(7.2) 6, x + .5 *

(Y + &,e) r(g+ ,se)
(7.3) 6, 3 + .5

Land generate 7r= and si=+ ,i=l,...,n and x=Y+ ,i=l,...,n as an
initial point.

We first discuss the validity of the above approach in generating x> 0 and s> 0.
In the cases in which it fails to produce such a point, either the problems reduce to
that of finding a feasible solution of (P) or (D), or an optimal solution is generated.

From the definition of 6 and we know that x=> 0 and sO_-> 0. A positive point
is always generated, if 6 > 0 and 6 > 0. Furthermore, to show that x> 0 and s> 0,
it is sufficient to show that 6 > 0 and 6 > 0.

First consider the case when 6 0 and 0. Clearly, in this case Y is a feasible
solution for (P) and , is a feasible solution for (D). If yT 0, then these solutions
are optimal for the respective problems. Otherwise, yT> 0 and hence > 0 and 6" > 0.
Now consider the case when 6 =0 and 6 > 0. In this case if Y # 0 for all i, then
obviously > 0 and 6 > 0. On the other hand, if Y 0 for all i, then b 0 and the
problem reduces to that of finding a feasible solution of (D). This problem can then
be solved separately or by generating a perturbed problem for which the right-hand
side is Ae for any positive 6. 6e can be used as a feasible interior solution of the
perturbed problem, and (7.2)-(7.3) can be used to generate a feasible point of the
perturbed problem. Finally, the case when 6 > 0 and 6 0 can be argued in a similar
manner.

We now discuss some properties of the proposed approach.

7.1. Desirable properties of the proposed approach.
Shift in origin. The approach is independent of the shift in origin. To explain

what we mean by this, consider the dual problem

maximize b r (Tr + A7r)

(D(A)) s.t. AT(’rr+ATr)+s=c,
s>_--0

for any fixed choice of Act. Clearly, the polytope defined by the constraints in (D(A))
is the same as the polytope defined by the constraints in (D) except for a shift of

D
ow

nl
oa

de
d 

10
/0

1/
12

 to
 1

28
.1

04
.1

.2
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



590 SANJAY MEHROTRA

origin. It is desirable that an initial point be the same in relation to the respective
polytopes. Note that in (7.1) is independent of the choice of Ar.

To demonstrate how similar arguments hold for (P), we consider an equivalent
formulation of this problem. Let Z be a matrix whose columns form the basis for the
null space of A, and let Xo be any point satisfying Axo b. It is easy to see that (P)
is equivalent to

minimize (cTZ)(y+ Ay)
(p(A))

s.t. Z(y+ Ay) >=-Xo
for y n-m and any (fixed) choice of Ay. An approach analogous to that of finding
g computes

_(ZZ)--’Zxo.
The slacks in the constraint of (P(Z)) are given by

Xo z(zrz)-lZrxo [I z(zrz)-lzr]xo ar(aar)-laxo ar(aar)-l b .
Note that is the orthogonal projection of any vector satisfying Ax b onto the range
space of A. Since and g are independent of Ay and Ar, respectively, it is obvious
that x and so are also independent of this.

Simple scaling. The initial point is not affected if all the constraints in (P) are
scaled by a constant or if c is scaled.

7.2. Undesirable properties of the proposed approach.
Column scaling. The initial point is affected by the scaling of columns of A. To

illustrate this, in Table 7.1 we give a number of iterations required to solve the problems
after problems were scaled by using subroutine MSSCAL from MINOS. All other
details of the implementation were kept the same as those for results in Table 8.2.

The results in Table 7.1 indicate that scaling of columns may effect the performance
of the implementation. On most problems, use of MSSCAL improved the number of
iterations required to solve the problem or the number of iterations did not change
significantly. The notable exception was problem fffffS00. For this problem, scaling
increased the number of iterations by about 40 percent.

We point out that (P) and (D) can be solved in one iteration if we know the
correct scaling of columns of A. Hence, the problem of finding the best scaling of
columns appears to be as difficult as solving the linear programming problem itself.

Presence of redundant constraint. The initial point generated by using this approach
is affected by the presence of redundant constraints. This can be a problem, for example,
if redundant dual constraints with large slacks (primal variables with huge costs) are
present. In this regard we point out that the central trajectory itself is affected by the
presence of such constraints.

A possible way to alleviate this problem would be to ask the user to give relative
importance to various primal variables (dual constraints) in solving the problem. A
clearly redundant variable could be assigned zero weight, and therefore it could be
removed while generating an initial point. In general, the possibility of solving weighted
least squares problems to generate initial points in the context of "warm start" should
be explored further.

All the approaches [1], [5], [18], [26] used for practical implementations that are
reported in the literature are dependent on column scaling and the presence of
redundant constraints. Furthermore, they lack one of the desirable properties that the
proposed approach has.
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TABLE 7.1

Effect of scaling on the performance of the algorithm.

Problem

afiro
adlittl
scagr7

stochforl
sc205
share2b

sharelb
scorpion
scagr25

sctapl
brandy
scsdl

israel
bandm
scfxml

e226
agg
scrs8

beaconfd
scsd6
ship04s

agg2
agg3
scfxm2

ship041
fffffSO0
shipO8s

sctap2
scfxm3
shipl2s

scsd8
czprob
ship081

shipl21
25fv47

No scaling Scaling

7 6
10 10
13 14

16 8
11 11
12 14

22 24
12 12
16 17

15 15
20 17
8 7

24 17
17 15
18 17

20 16
25 16
21 18

7 8
10 10
13 12

24 20
21 19
19 20

12 12
38 52
13 14

12 12
20 20
17 14

9 9
35 30
14 15

16 15
26 23

The choice of constants "1.5" and ".5" in computing x and 8 is arbitrary. The
arguments about the validity of the approach (and its properties) do not change if we
replace 1.5 with any constant larger than one and .5 with any constant larger than
zero. We may do a one-dimensional line search (possibly in direction e) on the potential
function (3.5) to generate these constants.
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8. Computational performance. The basic ideas presented in this paper were imple-
mented in a FORTRAN code. This section discusses our computational experience
with this implementation and compares it with the results documented in the literature.

All testing was performed on a SUN 4/110 work station. The code was compiled
with SUN Fortran version 1.0 compiler option "-O3." All the cpu times were obtained
by using utility etime. The test problems were obtained from netlib [7]. The test set
includes small and medium size problems. The problem names and additional informa-
tion on these problems are given in Table 8.1.

All problems were cleaned by using the procedure outlined in Mehrotra [22]. An
in-house implementation of the minimum degree heuristic was used to permute the
rows. Complete Cholesky factor was computed at each iteration to solve the linear
equations. The procedure and the associated data structure, which we used to compute
the Cholesky factor, were described in Mehrotra [23]. All the linear algebra subroutines
were written by the author.

The algorithm was terminated when the relative duality gap satisfied

(8.1)
c Tx b TTr
1 +lbTTrl

eexit.

In the actual implementation :, and :s were computed afresh at each iteration. However,
(s)i was set to zero and absorbed in si if it satisfied I(s)l/s <.001. This occasionally
saved some computational efforts.

The following parameters were set to obtain the results reported in Table 8.2.

Eexit 10-8

v=3

yf--.9, ya =10

100 * max {s}

(in (8.1)),

(in Procedure CENPAR),

(in Procedure GFSF),

(in (3.5)),

Ks 100 max {x/} (in (3.5)).

The number of iterations required to solve the problems is given in the second
column of Table 8.2. The primal objective value recorded at termination is given in
column 3. The relative duality gap (8.1) is given in column 4. The primal infeasibility,

(8.2) Ilax b II/(1 + Ilxll),

and the dual infeasibility,

(8.3) IIA% + s- c11/(1 + s II),

recorded at termination are given in columns 5 and 6, respectively. This information
on relative duality gap and primal and dual feasibility is the same as that given in
Lustig, Marsten, and Shanno [18]. We use the same stopping criterion and provide
similar information in order to be consistent while making comparisons.

All the problems were accurately solved to eight digits. A comparison with the
results in Lustig, Marsten, and Shanno [18] show that on many problems in our
implementation the accuracy in the objective value at termination was better. This is
primarily due to our approach for computing the step factor.

In Table 8.3 we compare the number of iterations required to solve the test
problems. Column 2 of this table gives the number of iterations taken by our
implementation. Column 3 gives the number of iterations taken by the dual affine

D
ow

nl
oa

de
d 

10
/0

1/
12

 to
 1

28
.1

04
.1

.2
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



PRIMAL-DUAL INTERIOR POINT METHOD 593

scaling method, as reported by Adler et al. 1 ]. Column 4 gives the number of iterations
required by the second-order dual affine scaling method in Adler et al. 1]. Column 5
gives the number of iterations reported in Lustig, Marsten, and Shanno [18] for a
primal-dual method. Column 6 gives the number of iterations reported in Gill, Murray,
and Saunders [8] for a logarithmic barrier function method. Column 7 gives the number

Problem

afiro
adlittle
scagr7

stochforl
sc205
share2b

sharelb
scorpion
scagr25

sctapl
brandy
scsdl

israel
bandm
scfxml

e226
agg
scrs8

beaconfd
scsd6
ship04s

agg2
agg3
scfxm2

ship041
fffff800
shipO8s

sctap2
scfxm3
shipl2s

scsd8
czprob
ship081

shipl21
25fv47

TABLE 8.1
Problem statistics.

Rows Columns Nonzeros

28 32 88
57 97 465
130 140 553

118 111 474
206 203 552
97 79 730

118 225 1,182
389 358 1,708
472 500 2,029

301 480 2,052
221 249 2,150
78 760 3,148

175 142 2,358
306 472 2,659
331 457 2,612

224 282 2,767
489 163 2,541
491 1,169 4,029

174 262 3,476
148 1,350 5,666
403 1,458 5,810

517 302 4,515
517 302 4,531
661 914 5,229

403 2,118 8,450
525 854 6,235
779 2,387 9,501

1,091 1,880 8,124
991 1,371 7,846

1,152 2,763 10,941

398 2,750 11,334
930 3,523 14,173
779 4,283 17,085

1,152 5,427 21,597
822 1,571 11,127
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TABLE 8.3
Comparison of number of iterations with other implementations.

Problem

afiro
adlittle
scagr7

stochforl
sc205
share2b

sharelb
scorpion
scagr25

sctapl
brandy
scsdl

israel
bandm
scfxml

e226
agg
scrs8

beaconfd
scsd6
ship04s

agg2
agg3
scfxm2

ship041
fffffS00
ship08s

sctap2
scfxm3
shipl2s

scsd8
czprob
ship081

shipl21
25fv47

AIPM AKRV2 AKRV1 LMS GMS DBDW

7 15 20 13 20 10
10 18 24 17 18 15
13 19 24 22 24 18

16 19
11 20 28 16 32
12 21 29 17 46

17
14

22 33 38 40 35 28
12 19 24 18 33 17
16 21 29 24 28 21

15 23 33 22 53 21
20 24 38 27 41 21
8 16 19 12 13 8

24 29 37 47 36 24
17 24 30 28 31 21
18 30 33 31 37 23

20 30 34 31 38 24
25 32
21 29 39 50 59 25

7 17 23 21 34 17
10 18 22 15 15 13
13 22 30 21 40 15

24 32
21 32
19 29 39 37 42 29

12 21 28 22 36 17
38 59 55
13 21 32 23 34 16

12 25 34 23 41 16
20 30 40 39 42 31
16 23 35 27 46 16

9 18 23 15 15 13
35 35 52 57 56 41
14 23 31 24 22 17

16 23 32 27 24 17
24 52 48 44 28

of iterations reported in Domich et al. [5] for a variant of the method of centers. Our
method and the second-order dual affine scaling method in Adler et al. 1] computes
two directions at each iteration. The method implemented in Domich et al. [5] computes
three directions at each iteration and solves a linear programming problem defined by
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PRIMAL-DUAL INTERIOR POINT METHOD 597

using these directions. All other implementations compute only one direction at each
iteration.

On the average the number of iterations required by our implementation to solve
the mutually tested problems is 40 percent less than that reported in Lustig, Marsten,
and Shanno [18]; it is 50 percent less than that reported in Adler et al. [1]; and it is
55 percent less than that reported by Gill, Murray, and Saunders [8]. Compared to
the results in Adler et al. [1] for their second-order method, the results show that our
method takes about 35 percent fewer iterations. Finally, our implementation required
20 percent fewer iterations than those required in Domich et al. [5].

It is useful to point out that it is possible to further reduce the total number of
iterations needed to solve the problems by using higher-order derivatives. This is
discussed in a subsequent paper.

The number of iterations was always fewer than the number of iterations required
by the second-order dual affine scaling method implemented by Adler et al. 1]. Many
of the problems were solved in practically half the number of iterations when compared
with 1 ].

9. Comparison with OB1 and MINOS 5.3. This section compares the cpu times
required by our implementation to those required by the implementation of the
primal-dual method in OB1 [18] (02/90 version) and the simplex method in MINOS
5.3 [29]. The source codes (also written in FORTRAN) of OB1 (02/90 version) and
MINOS 5.3 were compiled using compiler option "-O3." Hence, everything was
identical while making these comparisons. All the default options of OB1 (02/90
version) and MINOS 5.3 were used. Printing was turned to minimum level in both
cases. In the case of OB1 (02/90 version), crush 2 was used for all problems.

The times for MINOS 5.3 are those for subroutine M5SOLV only. The TIMER
subroutine in OB1 was used to compute its cpu times. The times for OB1 were calculated
as follows:

OB1 Time=end of hprep-after mpsink+end of obdriv-after getcmo.

Times required by MINOS 5.3, OB1 (02/90 version), and our implementation do
not include times spent in converting the MPS input file into a problem in the standard
form. The times required by our implementation include all the time spent after the
input files were converted into a problem in the standard form.

The times required by our implementation is given in the second column of Table
9.1. The times required by OB1 (02/90 version) are given in column 3 and the times
required by MINOS are given in column 4. Column 5 gives the ratio of times required
by OB1 (02/90 version) to our code. Column 6 gives the ratio of times required by
MINOS 5.3 to our code.

From these results we find that, on the average, our implementation in the current
state performs two times better than the implementation in OB1 (02/90 version). The
ratio of cpu times with OB1 (02/90 version) is more or less uniform.

Comparing the results with MINOS 5.3 we find that the proposed implementation
is on the average better by a factor of 2.5. In this case, however, the ratio of cpu times
varies significantly. MINOS 5.3 was generally superior on problems with few relatively
dense columns, whereas our implementation of the primal-dual method was superior
on problems with sparse Cholesky factor.

10. Conclusions. Details of a particular implementation ofthe primal-dual method
are given. This implementation requires a considerably smaller number of iterations
and saves considerable computational effort. We have given expressions to compute
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598 SANJAY MEHROTRA

TABLE 9.1
Comparison of cpu time with OB1 and MINOS 5.3 on SUN 4/110.

Problem

afiro
adlittle
scagr7

stochforl
sc205
share2b

sharelb
scorpion
scagr25

sctapl
brandy
scsdl

israel
bandm
scfxml

e226
agg
scrs8

beaconfd
scsd6
ship04s

agg2
agg3
scfxm2

ship041
iliif800
ship08s

sctap2
scfxm3
shipl2s

scsd8
czprob
ship081

shipl21
25fv47

Total

AIPM OB1 MINOS5.3
OB1

AIPM
MINOS5.3

AIPM

.12 .60 .09 5.0 .7

.64 1.81 .70 2.8 1.1
1.11 2.75 1.66 2.5 1.5

1.48 2.91 1.50 2.0 1.0
1.49 3.33 2.16 2.2 1.4
1.50 3.00 1.46 2.0 1.0

3.27 9.21 3.98 2.8 1.2
2.87 7.06 5.92 2.4 2.0
5.23 10.43 15.32 2.0 2.9

4.92 9.18 7.71 1.8
7.18 15.30 11.55 2.1
2.46 5.46 6.15 2.2

58.37 127.01 6.11 2.2
8.01 17.61 22.09 2.2

10.55 20.82 12.76 2.0

9.38 15.83 15.30 1.7
32.88 47.46 7.32 1.4
13.31 43.95 40.86 3.3

2.56 9.28 1.97 3.6
5.66 10.56 31.19 1.9
6.92 17.58 6.63 2.5

65.86 100.92 10.05 1.5
66.66 94.74 10.95 1.4
21.69 46.74 51.42 2.1

8.90 24.35 13.20 2.7
80.90 140.01 14.33 1.7
9.50 23.05 20.43 2.4

30.04 47.75 56.02 1.6
33.31 72.84 107.40 2.1
14.06 31.78 47.85 2.2

10.38 21.98 230.23 2.1
33.78 81.93 166.03 2.4
18.12 42.81 19.34 2.4

28.56 63.11 120.31 2.2
164.53 334.14 941.41 2.0

766.20 1,507.29 2,011.4

1.6
1.6
2.5

.1
2.7
1.2

1.6
.2

3.1

.8
5.5
.95

.15
0.16
2.37

.54

.17
2.1

1.9
3.2
3.4

22.2
4.9
1.0
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PRIMAL-DUAL INTERIOR POINT METHOD 599

all the derivatives at a given point of a primal-dual affine scaling trajectory. The
implementation described here effectively combines the second derivative with the
centering vector. Heuristics for computing centering parameter and step length were
given and their effectiveness was demonstrated. A new approach to generating a starting
point was used. In addition, the results demonstrate that it is possible to develop fast
(robust) implementations of interior point methods, which ensure sufficient reduction
in a potential function at each iteration.

Comparison with OB1 (02/90 version) and the simplex method show that our
implementation was faster by a factor of 2 and 2.5, respectively.

Acknowledgments. I thank Professor Michael Saunders for making the source code
of MINOS 5.3 available. I thank Professor Roy E. Marsten for releasing a copy of
OB1 for comparison in this paper. Also, I thank Mr. I. C. Choi for helping out with
OB1 and Professor Donald Goldfarb for his constant encouragement, which made this
work possible. I also thank the two anonymous referees for their careful reading of
this paper and for their suggestions for improvement.

Appendix. Here we prove that the potential function (3.3) can be reduced by a
constant amount at each iteration. The development of our proof is based on the
analysis in Freund [6]. Let us define I-= 2n + 1,

,i=- o z
cT (AAT)-1A a

f) r =_ (b r, crZ, br(AAT)-IAc), and y (x r, s r, A) r. Hence, without loss of generality,
consider the problem

minimize yt

(PD) s.t. Ay b,

y>0,=

where y e Rt. Let us consider the potential function

(A.1) F(y)=- In y- E In y,,
i=1

where =/+vq. The function F(y) in (A.1) is the same as the function (3.3). Let
yk > 0 be any feasible point of (PD) and let yk be the diagonal matrix whose diagonal
elements are (Yl,..., Yt). Let

d -= [I-r(,r)-lA](/e,_ e),

where ,, yk. Let yk+l y k (e/]l d II) Y d, < 1. Then

k+ y/k+1 Z yk+
F(y )- F(yk) 3 In y----- )’, In y--’.ki=1

=ln 1-ll--d -i=lln 1-
2

2(1- e)
2

2(1-e)"
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600 SANJAY MEHROTRA

The inequality above follows by using the fact that In (1 + 8)_-< 8 for 8>-1, and
In (1 + 8) -> (82/2(1 e)) if 181--< e < 1.

If [[dl[->_ 1, then for e =.5, F(y) is reduced by .25.
Otherwise, if lid < 1, then from the definition of d, we have

,’ 7" ,,7" fi (y e
k e)+ y

(d+e)= y e
P P

which gives a feasible solution to the dual of (PD). Furthermore, the duality gap is
given by

yk e T"( d + e) t/VTIId<=Y l+vQ <ykt"

But y/k is also the current objective value. Therefore, the optimal objective value of
(PD) must be positive. If this is the case, then either (P) or (D) has no feasible
solution, and we would stop.

Hence, if (P) and (D) have a feasible solution then F(y) can be reduced by .25
at each iteration. A failure to reduce F(y) by this amount would imply that either (P)
or (D) has no feasible solution.
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