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Abstract This paper is intended to pave the way for new
researchers in the field of robotics and autonomous systems,
particularly thosewho are interested in robot localization and
mapping. We discuss the fundamentals of robot navigation
requirements and provide a review of the state of the art tech-
niques that form the bases of established solutions for mobile
robots localization andmapping. The topicswe discuss range
from basic localization techniques such as wheel odometry
and dead reckoning, to the more advance Visual Odometry
(VO) and Simultaneous Localization and Mapping (SLAM)
techniques. We discuss VO in both monocular and stereo
vision systems using feature matching/tracking and optical
flow techniques. We discuss and compare the basics of most
common SLAM methods such as the Extended Kalman Fil-
ter SLAM (EKF-SLAM), Particle Filter and the most recent
RGB-D SLAM. We also provide techniques that form the
building blocks to those methods such as feature extraction
(i.e. SIFT, SURF, FAST), feature matching, outlier removal
and data association techniques.
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Introduction

In the past few decades, the area of mobile robotics and
autonomous systems has attracted substantial attention from
researchers all over the world, resulting in major advances
and breakthroughs. Currently, mobile robots are able to
perform complex tasks autonomously, whereas in the past,
human input and interaction was a necessity.Mobile robotics
has applications in various fields such as military, medical,
space, entertainment and domestic appliances fields. In those
applications, mobile robots are expected to perform compli-
cated tasks that require navigation in complex and dynamic
indoor and outdoor environments without any human input.
In order to autonomously navigate, path plan and perform
these tasks efficiently and safely, the robot needs to be able to
localize itself in its environment. As a result, the localization
problem has been studied in detail and various techniques
have been proposed to solve the localization problem.

The simplest form of localization is to use wheel odom-
etry methods that rely upon wheel encoders to measure the
amount of rotation of robots wheels. In thosemethods, wheel
rotationmeasurements are incrementally used in conjunction
with the robot’smotionmodel to find the robot’s current loca-
tionwith respect to a global reference coordinate system. The
wheel odometry method has some major limitations. Firstly,
it is limited to wheeled ground vehicles and secondly, since
the localization is incremental (based on the previous esti-
mated location), measurement errors are accumulated over
time and cause the estimated robot pose to drift from its
actual location. There are a number of error sources in wheel
odometrymethods, themost significant beingwheel slippage
in uneven terrain or slippery floors.

To overcome those limitations, other localization strate-
gies such using inertial measurement units (IMUs), GPS,
LASER odometry and most recently Visual Odometry
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(VO) [88] and Simultaneous Localization and Mapping
(SLAM) [36,38] methods have been proposed. VO is the
process of estimating the egomotion of an agent (e.g., vehicle,
human, and robot) using only the input of a single or multiple
cameras attached to it [101]. Whereas SLAM is a process in
which a robot is required to localize itself in anunknownenvi-
ronment and build amap of this environment at the same time
without any prior information with the aid of external sen-
sors (or a single sensor). AlthoughVOdoes not solve the drift
problem, researchers have shown that VO methods perform
significantly better than wheel odometry and dead reckoning
techniques [54]while the cost of cameras ismuch lower com-
pared to accurate IMUs and LASER scanners. The main dif-
ference betweenVOand SLAM is that VOmainly focuses on
local consistency and aims to incrementally estimate the path
of the camera/robot pose after pose, and possibly performing
local optimization.Whereas SLAM aims to obtain a globally
consistent estimate of the camera/robot trajectory and map.
Global consistency is achieved by realizing that a previously
mapped area has been re-visited (loop closure) and this infor-
mation is used to reduce the drift in the estimates. Figure 1
shows an overview of VO and SLAM systems.

This paper extends on the past surveys of visual odom-
etry [45,101]. The main difference between this paper and
the aforementioned tutorials is that we aim to provide the
fundamental frameworks and methodologies used for visual
SLAM in addition to VO implementations. The paper also
includes significant developments in the area of Visual
SLAM such as those that devise using RGB-D sensors for
dense 3D reconstruction of the environment.

In the next section, we will discuss the related work in this
area. In “Localization” and “Mapping” we will discuss the
localization and mapping problems respectively. The SLAM
problem will be presented in “Simultaneous Localization
and Mapping” section and the fundamental components
in VO and V-SLAM will be discussed in “Fundamental
Components in V-SLAM and VO” section. In “RGB-D
SLAM” section wewill present the RGB-D SLAM approach
for solving the V-SLAM problem. Finally we will conclude
this paper in “Conclusion” section.

Related Work

Visual Odometry

VO is defined as the process of estimating the robot’s motion
(translation and rotation with respect to a reference frame)
by observing a sequence of images of its environment. VO
is a particular case of a technique known as Structure From
Motion (SFM) that tackles the problem of 3D reconstruction
of both the structure of the environment and camera poses
from sequentially ordered or unordered image sets [101].
SFM’s final refinement and global optimization step of both
the camera poses and the structure is computationally expen-
sive and usually performed off-line. However, the estimation
of the camera poses in VO is required to be conducted in
real-time. In recent years, many VO methods have been pro-
posed which those can be divided into monocular [19] and
stereo camera methods [79]. These methods are then further
divided into featurematching (matching features over a num-
ber of frames) [108], feature tracking [31] (matching features
in adjacent frames) and optical flow techniques [118] (based
on the intensity of all pixels or specific regions in sequential
images).

The problem of estimating a robot’s ego-motion by
observing a sequence of images started in the 1980s by
Moravec [82] at Stanford University. Moravec used a form
of stereo vision (a single camera sliding on a rail) in a move
and stop fashion where a robot would stop to extract image
features (corners) in the first image, the camera would then
slide on a rail in a perpendicular direction with respect to the
robot’smotion, and repeat the process until a total of 9 images
are captured. Features were matched between the 9 images
using Normalized Cross Correlation (NCC) and used those
to reconstruct the 3D structure. The camera motion trans-
formation was then obtained by aligning the reconstructed
3D points observed from different locations. Matthies and
Shafer [79] later extended the aboveworkbyderiving an error
model using 3D Gaussian distributions as opposed to the
scalarmodel used inMoravec’smethod. Other notable works

Fig. 1 A block diagram
showing the main components
of a: a VO and b filter based
SLAM system

Image Sequence 

Feature Detec�on 

Mo�on Es�ma�on 

Local Bundle Adjusment 

(a)

State Predic�on 

Odometry 

State Correc�on 

Sensor/Camera 
Measurement 

Landmark/Feature 
Extrac�on 

Data Associa�on 

(b)

123



Intell Ind Syst (2015) 1:289–311 291

related to stereo VO were also appeared in literature. For
instance, in [90] a maximum likelihood ego-motion method
formodeling the errorwas presented for accurate localization
of a rover over long distances while [73] described a method
for outdoor rover localization that relied on raw image data
instead of geometric data for motion estimation.

The term “Visual Odometry” was first introduced by Nis-
ter et al. [88] for it’s similarity to the concept of wheel
odometry. They proposed pioneering methods for obtain-
ing camera motion from visual input in both monocular and
stereo systems. They focused on the problem of estimating
the camera motion in the presence of outliers (false feature
matches) and proposed an outlier rejection scheme using
RANSAC[44].Nister et al.were also thefirst to track features
across all frames instead of matching features in consecutive
frames. This has the benefit of avoiding feature drift during
cross-correlation based tracking [101]. They also proposed
a RANSAC based motion estimation using the 3D to 2D re-
projection error (see “Motion Estimation” section) instead of
using the Euclidean distance error between 3D points. Using
3D to 2D re-projection errors were shown to give better esti-
mates when compared to the 3D to 3D errors [56].

VO is most famous for its application in the ongoing
robotic space mission on Mars [22] that started in 2003
involving two rovers that were sent to explore the geology
and surface of the planet. Other research involving VO was
performed by Scaramuzza and Siegwart [102] where they
focus on VO for ground vehicles in an outdoor environ-
ment using a monocular omni-directional camera and fuse
the motion estimates gained by two following approaches. In
the first approach, they extracted SIFT [77] features and used
RANSAC for outlier removal while in the second approach
an appearance based method, which was originally proposed
by [27], was used for the vehicle pose estimation. Appear-
ance based techniques are generally able to accurately handle
outdoor open spaces efficiently and robustly whilst avoiding
error prone feature extraction and matching techniques [6].

Kaess et al. [67] proposed a stereo VO system for out-
door navigation in which the sparse flow obtained by feature
matching was separated into flow based on close features
and flow based on distant features.The rationale for the sep-
aration is that small changes in camera translations do not
visibly influence points that are far away. The distant points
were used to recover the rotation transformation (using a two-
point RANSAC) while close points were used to recover the
translation using a one-point RANSAC [67]. Alcantarilla et
al. [3] integrated the visual odometery information gained
from the flow separationmethod in their EKF-SLAMmotion
model to improve the accuracy of the localization and map-
ping.

We have so far discussed the history of the VO problem
and mentioned some of the pioneering work in this area that
mainly focused on monocular VO, stereo VO, motion esti-

mation, error modeling, appearance based, and feature based
techniques. In the next section we will present a brief history
of and the related works to the visual SLAM problem.

Visual SLAM

As we described in the introduction section, SLAM is a way
for a robot to localize itself in an unknown environment,
while incrementally constructing a map of its surroundings.
SLAM has been extensively studied in the past couple of
decades [48,66,91] resulting in many different solutions
using different sensors, including sonar sensors [71], IR sen-
sors [1] and LASER scanners [26]. Recently there has been
an increased interest in visual based SLAM also known as V-
SLAM because of the rich visual information available from
passive low-cost video sensors compared to LASER scan-
ners. However, the trade off is a higher computational cost
and the requirement for more sophisticated algorithms for
processing the images and extracting the necessary informa-
tion. Due to recent advances in CPU and GPU technologies,
the real time implementation of the required complex algo-
rithms are no longer an insurmountable problem. Indeed,
variety of solutions using different visual sensors including
monocular [28], stereo [78], omni-directional [70], time of
flight (TOF) [103] and combined color and depth (RGB-D)
cameras [56] have been proposed.

One of the pioneering V-SLAM solutions was proposed
by Davison et al. [28]. They employed a single monocular
camera and constructed a map by extracting sparse features
of the environment using a Shi and Tomasi operator [103]
and matching new features to those already observed using
a normalized sum-of-squared difference correlation. The use
of single monocular camera meant that the absolute scale
of structures could not be obtained and the camera had to
be calibrated. Furthermore, since an Extended Kalman Filter
(EKF) was used for state estimation, only a limited number
of features were extracted and tracked to manage the compu-
tational cost of the EKF. Se et al. [56] proposed a vision based
method for mobile robot localization and mapping using the
SIFT [77] for feature extraction.

A particular case of V-SLAM, known as cv-SLAM (Ceil-
ing Vision SLAM), was studied by pointing the camera
upwards towards the ceiling. The advantages of cv-SLAM
when compared to the frontal view V-SLAM are: less
interactions with moving obstacles and occlusions, steady
observation of features and the fact that ceilings are usually
highly textured and rich with visual information. Jeong et
al. [63,64] were the first to propose the cv-SLAM method,
where they employed a single monocular camera that was
pointed upwards towards the ceiling. Corner features on
the ceiling were extracted using a Harris corner detec-
tor [53]. A landmark orientation estimation technique was
then used to align and match the currently observed and
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previously stored landmarks using a NCC method. Other
researchers [23,24,58,59] followed suit and produced var-
ious studies on cv-SLAM using different techniques for
feature extraction and data association (DA).

Most Recently, there has been an increasing interest in
dense 3D reconstruction of the environment as opposed to the
sparse 2D and 3D SLAM problems. Newcombe and Davi-
son [85]were successful in obtaining a dense 3Dmodel of the
environment in real time using a single monocular camera.
However, their method is limited to small and highly textured
environments. Henry et al. [56]were the first to implement an
RGB-D mapping approach that employed an RGB-D cam-
era (i.e. Microsoft Kinect). They used this information to
obtain a dense 3D reconstructed environment and estimated
the 6 degree of freedom (6DOF) camera pose. They extracted
Features From Accelerated Segment Test (FAST) [96] fea-
tures in each frame, match them with the features from the
previous frame using the Calonder descriptors [12] and per-
formed a RANSAC alignment step which obtains a subset of
feature matches (inliers) that correspond to a consistent rigid
transformation [56]. This transformation was used as an ini-
tial guess in the Iterative Closest Point (ICP) [12] algorithm
which refined the transformation obtained by RANSAC.
Sparse Bundle Adjustment (SBA) [76] was also applied in
order to obtain a globally consistent map and loop closure
was detected by matching the current frame to previously
collected key-frames. Similarly Endres et al. [41] proposed
an RGB-D-SLAM method that uses SIFT, SURF [10] and
ORB [97] feature descriptors in place of FAST features.
They also used a pose-graph optimization technique instead
of Bundle Adjustment for global optimization. Du et al. [34]
implemented an RGB-D SLAM system that incorporates on-
line user interaction and feedback allowing the system to
recover from registration failures which may be caused by
fast camera movement. Audras et al. [5] proposed an appear-
ance based RGB-D SLAM which avoids the error prone
feature extraction and feature matching steps.

Newcombe et al. [61,84] proposed a depth only map-
ping algorithm using an RGB-D camera. They developed an
ICP variant method that matches the current measurement to
the full growing surface model instead of matching sequen-
tial frames. They also segmented outliers (such as moving
humans) and divided the scene into foreground and back-
ground. This allowed a user to interact with the scenewithout
deteriorating the accuracy of the estimated transformations
and demonstrated the usability of theirmethod in a number of
augmented reality applications. The major downside to their
approach is that it is limited to small environments.Whelan et
al. [113] outlined this problem and proposed an extension to
KinectFusion that enabled the approach to map larger envi-
ronments. This was achieved by allowing the region of the
environment that is mapped by the KinectFusion algorithm
to vary dynamically.

Bachrach et al. [8] proposed a VO and SLAM system
for unmanned air vehicles (UAVs) using an RGB-D camera
that relied on extracting FAST features from sequential pre-
processed images at different pyramid levels, followed by an
initial rotation estimation that limited the size of the search
window for feature matching. The matching was performed
byfinding themutual lowest sumof squared difference (SSD)
score between the descriptor vectors (80-byte descriptor con-
sisting of the brightness values of the 9 × 9 pixel patch
around the feature and omitting the bottom right pixel). A
greedy algorithm was also applied to refine the matches and
obtain the inlier set which were then used to estimate the
motion between frames. In order to reduce drift in the motion
estimates, they suggested matching the current frame to a
selected key-frame instead of matching consecutive frames.
Hu et al. [57] outlined the problem of not having enough
depth information in large rooms due to the limitations of
RGB-D cameras. They proposed a switching algorithm that
heuristically chooses between an RGB-Dmapping approach
similar to Henry et al.’s [55] method and a 8-point RANSAC
monocular SLAM, based on the availability of depth infor-
mation. The two maps were merged using a 3D Iterative
Sparse Local Submap Joining Filter (I-SLSJF). Yousif et al.
outlined the problem of mapping environments containing
limited texture, as such, they proposed a method [116,117]
that solves this issue by only using depth information for
registration using a ranked order statistics based sampling
scheme that is able to extract useful points for registration
by directly analyzing each point’s neighborhood and the ori-
entations of their normal vectors. Kerl et al. [69] recently
proposed a method that uses both photometric and geomet-
ric information for registration. In their implementation, they
use all the points for registration and optimize both intensity
and depth errors. Another recent method proposed by Keller
et al. [68] allows for 3D reconstruction of dynamic environ-
ments by automatically detecting dynamic changes in the
scene. Dryanovski et al. [33] proposed a fast visual odome-
try and mapping method that extracts features from RGB-D
images and aligns those with a persistent model, instead of
frame to frame registration techniques. By doing so, they
avoid using dense data, feature descriptor vectors, RANSAC
alignment, or keyframe-based bundle adjustment (BA). As
such, they are able to achieve an average performance rate of
60Hz using a single thread and without the aid of a GPU.

In the above section, we discussed various approaches
to solving the V-SLAM problem. Earlier methods generally
focused on sparse 2D and 3D SLAM methods due to limi-
tations of available computational resources. Most recently,
the interest has shifted towards dense 3D reconstruction of
the environment due to technological advances and availabil-
ity of efficient optimization methods. In the next section, we
will discuss the localization problem and present the different
localization techniques based on the VO approach.
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Localization

Visual Odometry

VO is the process of estimating the camera’s relative motion
by analyzing a sequence of camera images. Similar to wheel
odometry, estimates obtained by VO are associated with
errors that accumulate over time [39]. However, VO has been
shown to produce localization estimates that are much more
accurate and reliable over longer periods of time compared
to wheel odometry [54]. VO is also not affected by wheel
slippage usually caused by uneven terrain.

Motion Estimation

In general, there are three commonly used VO motion esti-
mation techniques called: 3D to 3D, 3D to 2D and 2D to 2D
methods. Figure 2 illustrates an example of the VO problem.
The motion estimation techniques are outlined here.

3D to 3D Motion Estimation In this approach, the motion is
estimated by triangulating 3D feature points observed in a
sequence of images. The transformation between the camera
frames is then estimated byminimizing the 3DEuclidean dis-
tance between the corresponding 3D points as shown below.

T = argmin
T

∑

i

|Xi − TX́i|2 (1)

In the above equation, T is the estimated transformation
between two consecutive frames, X is the 3D feature point
observed by the current frame Fk , X́ is the corresponding 3D
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Fig. 2 An example of a monocular VO system. The relative poses Tnm
between cameras viewing the same 3D point are computed bymatching
the corresponding points in the 2D image. If the points’ 3D location is
known, a 3D to 3D or 3D to 2D method may be used. The global poses
Cn are computed by concatenating the relative transformations with
respect to a reference frame (can be set to the initial frame)

feature point in the previous frame Fk−1 and i is theminimum
number of feature pairs required to constrain the transforma-
tion. The minimum number of required points depends on
the systems’ DOF and the type of modeling used. Although
using more points means more computation, better accuracy
is achieved by includingmore points than theminimumnum-
ber required.

3D to 2D Motion Estimation This method is similar to the
previous approach but here the 2D re-projection error is min-
imized to find the required transformation. The cost function
for this method is as follows:

T = argmin
T

∑

i

|z − f (T, X́i)|2 (2)

where T is the estimated transformation between two con-
secutive frames, z is the observed feature point in the current
frame Fk , f (T, X́i ) is the re-projection function of it’s cor-
responding 3D feature point in the previous frame Fk−1 after
applying a transformation T and i is the number of feature
pairs. Again, the minimum number of points required varies
based on the number of constraints in the system.

2D to 2D Motion Estimation The 3D to 3D and 3D to
2D approaches are only possible when 3D data are avail-
able. This is not always the case, for instance, estimating
the relative transformation between the first two calibrated
monocular frames where points have not been triangulated
yet. In this case, the epipolar geometry is exploited to estimate
this transformation. An example of the epipolar geometry is
illustrated in Fig. 3. The figure shows two cameras, sepa-
rated by a rotation and a translation, viewing the same 3D
point. Each camera captures a 2D image of the 3D world.
This conversion from 3D to 2D is referred to as a perspec-
tive projection and is described in more detail in “Camera
Modeling and Calibration” section. The epipolar constraint
used in this approach is written as:

q′�Eq = 0 (3)

where q and q′ are the corresponding homogeneous image
points in two consecutive frames andE is the essential matrix
given by:

E = [t]×R (4)

where R is the rotation matrix, t is the translation matrix
given by:

t =
⎡

⎣
tx
ty
tz

⎤

⎦
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Reprojected point
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R|T

Fig. 3 Illustration of the epipolar geometry. The two cameras are indi-
cated by their centres OL and OR and image planes. The camera centers,
3D point, and its re-projections on the images lie in a common plane.
An image point back-projects to a ray in 3D space. This ray is projected
back as a line in the second image called the epipolar line (shown in
red). The 3D point lies on this ray, so the image of the 3D point in the
second view must lie on the epipolar line. The pose between OL and
OR can be obtained using the essential matrix E, which is the algebraic
representation of epipolar geometry for known calibration

and [t]× is the skew symmetric matrix given by:

[t]× =
⎡

⎣
0 −tz ty
tz 0 ty

−ty tx 0

⎤

⎦ .

Full descriptions of different ways to solve the motion
estimation using the above approach are provided by [75,
86,119].

Stereo Vision Versus Monocular Vision

Stereo Visual Odometry In stereo vision, 3D information is
reconstructed by triangulation in a single time-step by simul-
taneously observing the features in the left and right images
that are spatially separated by a known baseline distance. In
Stereo VO, motion is estimated by observing features in two
successive frames (in both right and left images). The follow-
ing steps outline a common procedure for stereo VO using a
3D to 2D motion estimation:

1. Extract and match features in the right frame FR(I ) and
left frame FL(I ) at time I , reconstruct points in 3D by
triangulation.

2. Match these features with their corresponding features in
the next frames FR(I+1) and FL(I+1).

3. Estimate the transformation that gives the minimum sum
of square differences (SSD) between the observed fea-
tures in one of the camera images (left or right) and
the re-projected 3D points that were reconstructed in the
previous frame after applying the transformation to the
current frame (see Eq. 2).

4. Use a RANSAC type refinement step (see “Refining the
Transformation Using ICP” section) to recalculate the
transformation based on inlier points only.

5. Concatenate the obtained transformation with previously
estimated global transformation.

6. Repeat from 1 at each time step.

Monocular Visual Odometry For the reconstruction of fea-
ture points in 3D via triangulation, they are required to be
observed in successive frames (time separated frames). In
monocular VO, feature points need to be observed in at least
three different frames (observe features in the first frame,
re-observed and triangulate into 3D points in the second
frame, and calculate the transformation in the third frame). A
major issue inmonocular VO is the scale ambiguity problem.
Unlike stereo vision systems where the transformation (rota-
tion and translation) between the first two camera frames can
be obtained, the transformation between the first two consec-
utive frames in monocular vision is not fully known (scale is
unknown) and is usually set to a predefined value. Therefore,
the scale of the reconstructed 3D points and following trans-
formations are relative to the initial predefined scale between
the first two frames. The global scale cannot be obtained
unless additional information about the 3D structure or the
initial transformation is available. It has been shown [89] that
the required information can be collected using other sensors
such as IMU’s, wheel encoders or GPS. The procedure for
monocular VO is similar to stereo VO (described in “Stereo
Vision Versus Monocular Vision” section). However, unlike
stereo VO, the triangulation of feature points occurs at dif-
ferent times (sequential frames).

A possible procedure for Monocular VO using the 3D to
2D motion estimation is described in the following steps:

1. Extract features in the first frame FI at time step I and
assign descriptors to them.

2. Extract features in the next frame FI+1 and assign
descriptors to them.

3. Match features between the two consecutive frames. Esti-
mate a transformation (with predefined scale) between
the first two frames using a 5-point algorithm [86] and
triangulate the corresponding points using this transfor-
mation (3D points will be up to the assumed scale).

4. Extract features in the following frame FI+2, match them
with the previously extracted features from the previous
frame.
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5. Use a RANSAC to refine the matches and estimate the
transformation that gives the minimum sum of square
differences (SSD) between the observed features in the
current frame FI+2 and the re-projected 3D points that
were reconstructed from the two previous frames after
applying the transformation (see Eq. 2). This process is
called Perspective N Points (PnP) algorithm [74].

6. Triangulate the matched feature pairs between FI+1 and
FI+2 into 3D points using the estimated transformation.

7. Set I = I + 1, repeat from step 4 for every iteration.

Visual Odometry Based on Optical Flow Methods

Optical flow calculation is used as a surrogate measurement
of the local imagemotion. The optical flow field is calculated
by analyzing the projected spatio-temporal patterns of mov-
ing objects in an image plane and its value at a pixel specifies
howmuch that pixel has moved in sequential images. Optical
flow measures the relative motion between objects and the
viewer [47] and can be useful in estimating the motion of a
mobile robot or a camera relative to its environment.

Optical flow calculation is based on the Intensity Coher-
ence assumption which states that the image brightness of a
point projected on two successive images is (strictest assump-
tion) constant or (weakest assumption) nearly constant [7].
This assumption leads to the well-known optical flow con-
straint:

∂ I

∂x
vx + ∂ I

∂y
vy + ∂ I

∂t
= 0 (5)

where vx and vy are the x and y optical flow components. A
number of algorithms to solve the optical flow problem using
motion constraint equations have been proposed (see [115]
for a list of current approaches).

Having calculated the 2D displacements (u, v) for every
pixel, the 3D camera motion can be fully recovered. Irani et
al. [60] described an equation for retrieving the 6DOFmotion
parameters of a camera which consist of three translational
(Tx , Ty, Tz) and three rotation components (Ωx ,Ωy,Ωz).
Their approach is based on solving the following equations:

[
u
v

]
=

⎡

⎣
− fcTx+xTz

Z + xy
fc

Ωx −
(
x2
fc

+ fc
)

Ωy + yΩz

− fcTy+xTz
Z − xy

fc
Ωy +

(
y2

fc
+ fc

)
Ωx + xΩz

⎤

⎦

(6)

where fc is the camera’s focal length and (x , y) are the image
coordinates of the 3D point (X , Y , Z ).

Assuming that the depth Z is known, there are six
unknowns and a minimum of three points are required to
fully constrain the transformation. However, in many situ-
ations, additional constraints are imposed such as moving
on a flat plane, therefore reducing both the of DOF and the

minimum number of points required to constrain the trans-
formation.

Mapping

In most real-world robotics applications, maps of the envi-
ronment in which the mobile robot is required to localize and
navigate are not available. Therefore, in order to achieve true
autonomy, generating a map representation of the environ-
ment is one of the important competencies of autonomous
vehicles [109]. In general, mapping the environment is con-
sidered to be a challenging task. The most commonly used
mapping representations are as follows.

Metric Maps

In metric maps, the environment is represented in terms of
geometric relations between the objects and a fixed reference
frame [92]. The most common forms of metric maps are:

Feature Maps

Feature maps [21] represent the environment in a form of
sparse geometric shapes such as points and straight lines.
Each feature is described by a set of parameters such as its
location and geometric shape. Localization in such environ-
ments is performed by observing and detecting features and
comparing thosewith themap features that have already been
stored. Since this approach uses a limited number of sparse
objects to represent a map, its computation cost can be kept
relatively low and map management algorithms are good
solutions for current applications. The major weakness in
feature map representation is its sensitivity to false data asso-
ciation [9] (a measurement that is incorrectly associated to a
feature in the map). This is particularly evident in data asso-
ciation techniques that do not take the correlation between
stored features into account. DA solutions to this problem
have been proposed such as [83] and those are discussed in
more detail in “Data Association” section.

Occupancy Grids

Occupancy Grid maps [14,40] are represented by an array of
cells in which each cell (or pixel in an image) represents
a region of the environment. Unlike feature maps which
are concerned about the geometric shape or type of the
objects, occupancy grids are only concerned about the occu-
pancy probability of each cell. This probability value ranges
between 0 (not occupied) and 1 (occupied). In occupancy
grid mapping, DA between the observed measurements and
the stored map is performed by similarity based techniques
such as cross correlation [9]. One of the major advantages
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Fig. 4 An example of a
different mapping techniques. a
Feature map. b Topological
map. c Occupancy grid map [51]
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of this representation is its usefulness in path planning and
exploration algorithms in which the occupancy probability
information can reduce the complexity of the path planning
task. Themajor drawback of this method is its computational
complexity especially for large environments. A trade-off
between accuracy and computational cost can be achieved
by reducing the resolution of the mapwhere every cell would
represent a larger region.

Topological Maps

In contrast to metric maps which are concerned about the
geometric relations between places or landmarks, topolog-
ical maps are only concerned about adjacency information
between objects [35] and avoid metric information as far as
possible [92]. Topological maps are usually represented by
a graph in which nodes define places or landmarks and con-
tain distinctive information about them and connecting arcs

that manifest adjacency information between the connected
nodes. Topological maps are particularly useful in repre-
senting a large environment in an abstract form where only
necessary information are held. This information includes
high level features such as objects, doors, humans and other
semantic representation of the environments. Figure 4 illus-
trates a simple example of a topological map. One of the
major advantages of topological maps is its usefulness in
high-level path planning methods within graph data struc-
tures such as finding the shortest path. DA is performed
by comparing the information obtained from sensor mea-
surements to the distinctive information held at each node.
For example, DA can be performed using place recognition
approaches such as using a visual dictionary [4] or other high
level feature matching approaches. Additional constraints
between nodes may be added when re-observing places and
detecting loop closures. One of themain weaknesses of topo-
logical maps is the difficulty in ensuring reliable navigation
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between different places without the aid of some form of a
metric locationmeasure [9].Methods such as follow the right
or left wall are adequate in many applications such as navi-
gating in a static indoor environment (for example all doors
are closed). However, relying only on qualitative information
may not be sufficient for navigation in dynamic and cluttered
environments. Anothermajor weakness is the issue of detect-
ing false DA where the robot fails to recognize a previously
observedplace (maybedue to small variations of the place) or
associating a location with an incorrect place. In such cases,
the topological sequence is broken and the robot’s location
information would become inaccurate [9].

Hybrid Maps (Metric + Topological)

In general, metric maps result in more accurate localization,
whereas topological maps results in an abstract represen-
tation of the environment which is more useful for path
planning methods. The functionalities of those representa-
tions are complementary [92] and the combination of metric
(quantitative information) and qualitative information have
been used to improve navigation and DA [93,110].

Simultaneous Localization and Mapping

In the previous sections, we described the localization and
mapping problems separately. SLAM is an attempt to solve
both of those problems at the same time. SLAM approaches
have been categorized into filtering approaches (such as
EKF-SLAM [106] and particle filter based SLAM [81]) and
smoothing approaches (such as GraphSLAM [111], RGB-
D SLAM [56], Smoothing and Mapping [30]). Filtering
approaches are concerned with solving the on-line SLAM
problem in which only the current robot state and the map
are estimated by incorporating sensor measurements as they
become available. Whereas smoothing approaches address
the full SLAM problem in which the posterior is estimated
over the entire path along with the map, and is generally
solved using a least square (LS) error minimization tech-
nique [49].

Extended Kalman Filter Based SLAM

The EKF is arguably the most common technique for state
estimation and is based on the Bayes filter for the filtering
and prediction of non linear functions in which their linear
approximations are obtained using a 1st order Taylor series
expansion. EKF is also based on the assumption that the
initial posterior has a Gaussian distribution and by applying
the linear transformations, all estimated states would also
have Gaussian distributions.

The EKF-SLAM is divided into two main stages: predic-
tion and update (correction). In the prediction step, the future
position of the robot is estimated (predicted) based on the
robot’s current position and the control input that is applied
to change the robot’s position from time step k to k+1 (usu-
ally obtained by dead reckoning techniques), while taking
into account the process noise and uncertainties. The general
motion model equation can be formulated as:

Xk+1 = f (Xk,Uk) + Wk (7)

where Xk+1 is an estimate of the robot’s future position,
f (Xk,Uk) is a function of the current estimate of the robot’s
position Xk and the control input that is applied to change
the robot’s position from time step k to k + 1 and Wk is the
process uncertainty that is assumed to be uncorrelated zero
mean Gaussian noise with covariance Q.

The general measurement (observation) model can be for-
mulated as:

z = h(Xk) + Vk (8)

where z is the noisy measurement, h(X̄k) is the observation
function and Vk is the measurement noise and is assumed to
be uncorrelated zero mean Gaussian noise with covariance
R.

EKF-SLAMhas the advantage of being easy to implement
and ismore computationally efficient thanotherfilters such as
the particle filter [109]. However, EKF-SLAMmajor limita-
tion is its linear approximation of non-linear functions using
the Taylor expansionwhich can result in inaccurate estimates
in some cases. Another limitation is caused by the Gaussian
density assumption which means that the EKF-SLAM can-
not handle the multi-modal densities associated with global
localization (localizing the robot without knowledge of its
initial position).

FastSLAM 1.0

TheFastSLAM1.0 [81] is popular SLAMtechnique based on
the Rao-Blackwellized particle filter [32]. As it is described
in [109] the FastSLAM 1.0 consists of three main stages:
Sampling (drawing M particles), updating and re-sampling
(based on an importance factor). For simplicity, in our expla-
nations, we assume known DA (i.e. the correspondence
between measurements and landmarks are known). We also
assume that only one landmark is observed at each point in
time. Another important assumption in the FastSLAM 1.0
method is that features are conditionally independent given
the robot pose. In other words, in contrast to the EKF-SLAM
that uses a single EKF to estimate the robot pose and the
map, FastSLAM 1.0 uses separate EKFs (consisting of a
mean μk

j,t and a covariance �k
j,t ) for each feature and each
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particle. This means the total number of EKFs is M × N
where N is the total number of features observed. We also
assume that the motion model used here is the same one
described in the EKF-SLAM section, and the observations
are also based on the range-bearing sensor measurements
(although this method can also be applied to vision and other
sensors). Let us denote the full SLAM posterior as Yt which
consists of [x[k]

t , (μk
1,t,�

k
1,t), . . . , (μ

k
j,t,�

k
j,t)] for k = 1 : M

particles and j = 1 : N features, x [k]
t is the pose of the kth

particle at time t . In the following section we describe the
FastSLAM 1.0 procedure in detail.

Sample

The first step is to retrieve M (k = 1 : M) particles and
their features [x[k]

t−1, (μ
k
1,t−1,�

k
1,t−1), . . . , (μ

k
j,t−1,�

k
j,t−1)]

from the previous posterior Yt−1, where x[k]
t−1 = [x [k]

x(t−1)

x [k]
y(t−1) θ

[k]
t−1]T is the kth particle’s pose at time t . This

follows by sampling a new pose for each particle using a
particular motion model.

Observe new features

The next step is to observe features and add new ones to
each state. In the case that a feature has not been observed
previously, that feature’s mean μk

j,t and covariance Σk
j,t are

added to the state vector of all particles using the following
equations:

[
μk
j,t

]
=

[
μk
x, j,t

μk
y, j,t

]
=

[
x [k]
xt + r cos(θ [k]

t + φ)

x [k]
yt + r sin(θ [k]

t + φ)

]
(9)

where r and φ are the range and bearing measurements
respectively. To find the Jacobian of (9) with respect to the
range and bearing, we have:

Hm =
[
cos(θ [k]

t + φ) −r sin(θ [k]
t + φ)

sin(θ [k]
t + φ) r cos(θ [k]

t + φ)

]
. (10)

The covariance matrix of the new feature can also be calcu-
lated by:

�k
j,t = HmQtHT

m (11)

whereQt is the measurement noise covariance matrix. In the
case that only new features are observed, a default importance
weight is assigned to the particle w[k] = p0.

Update

If the robot re-observes a feature (assuming known data-
association), an EKF update step is required to compute

the importance factor for each particle. As part of the EKF
update, we first need to calculate themeasurement prediction
based on each particle’s predicted location using:

ẑ =

⎡

⎢⎢⎣

√(
μk
x, j,t − x [k]

xt

)2 +
(
μk
y, j,t − x [k]

yt

)2

arctan

(
μk
y, j,t−x [k]

yt

μk
x, j,t−x [k]

xt

)
− θ

[k]
t

⎤

⎥⎥⎦ . (12)

Nextwe need to calculate the Jacobian of (12)with respect
to the feature location using:

H =
⎡

⎢⎣
μk
x, j,t−x [k]

xt

r

μk
y, j,t−x [k]

yt

r

−
(

μk
y, j,t−x [k]

yt

r2

)
μk
x, j,t−x [k]

xt

r2

⎤

⎥⎦ (13)

r =
√

(μk
x, j,t − x [k]

xt )2 + (μk
y, j,t − x [k]

yt )2. (14)

We then need to calculate the measurement covariance
and the Kalman gain by:

Q = H�k
j,t−1H

T + Qt (15)

K = �k
j,t−1H

TQ−1 (16)

and update the mean and covariance of the re-observed fea-
ture by:

μk
j,t = μk

j,t−1 + K(zt − ẑ) (17)

�k
j,t(I − KH)�k

j,t−1. (18)

Finally, the importance factor w[k], which is based on the
ratio between the target distribution and the proposal distri-
bution, is calculated using:

w[k] = |2πQ| −1
2 exp

(
−1
2
(zt − ẑ)TQ−1(zt − ẑ)

)
. (19)

A detailed derivation ofw[k] is provided by [109]. For all the
other features that have not been observed, their estimated
location remains unchanged:

μk
j,t = μk

j,t−1 (20)

�k
j,t = �k

j,t−1. (21)

The previous steps are repeated for all particles.

Re-sample

The final part of the FastSLAM algorithm is to find the pos-
terior Yt by completing the following steps:

1. Initialize Yt = 0 and counter = 1.
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2. Draw random particle k with a probability ∝ w[k].
3. Add [x[k]

t , (μk
1,t,�

k
1,t), . . . , (μ

k
j,t,�

k
j,t)] to Yt.

4. Increment counter by 1. If counter = M terminate.
Otherwise, repeat from 2.

Other Well-Known Nonlinear Filtering Methods

When the motion and observation models are highly non-
linear, the EKF can result in a poor performance. This is
because the covariance is propagated through linearization
of the underlying non-linear model. The Unscented Kalman
Filter (UKF) [65] is a special case of a family of filters
called Sigma-Point Kalman Filters (SPKF), and address’s
the above issue by using a deterministic sampling technique
known as the unscented transform in which a minimal set
of sample points, called “sigma points” around the mean are
carefully deterministically selected. These points are then
propagated through the non-linear functions, from which the
mean and covariance of the estimate are then recovered to
obtain a Gaussian approximation of the posterior distribu-
tion. This results in a filter that more accurately captures the
true mean and covariance in comparison to the EKF [65].
Since no linearization is required in the propagation of the
mean and covariance, the Jacobians of the system and mea-
surement model do not need to be calculated, making the
Unscented Kalman Filter an attractive solution and suitable
for application consisting of black-boxmodelswhere analyti-
cal expressions of the system dynamics are either unavailable
or not easily linearized [94]. Another extension to the EKF
is the Iterated EKF (IEKF) [11] method which attempts to
improve upon EKF, by using the current estimate of the state
vector to linearize the measurement equation in an iterative
mode until convergence to a stable solution.

Monte Carlo localization (MCL) [29] is another well
known filtering method for robot localization utilizing a par-
ticle filter (similar to FastSLAM). Assuming that the map of
the environment is provided, the method estimates the pose
of a robot as it moves and senses the environment. The algo-
rithm uses a particle filter to represent the distribution of
likely states, with each particle representing a possible state,
i.e. a hypothesis of where the robot is [109]. The algorithm
typically starts with a uniform random distribution of parti-
cles over the configuration space, meaning the robot has no
information about its location is and assumes it is equally
likely to be at any point in space. When the robot moves,
it shifts the particles by predicting its new state after the
motion. When sensor information is obtained, the particles
are re-sampled based on recursive Bayesian estimation, i.e.
how well the actual sensed data correlate with the predicted
state. Ultimately, the particles should converge towards the
actual position of the robot [109]. Particle filter (PF) based
estimation techniques, In contrast to Kalman filtering based
techniques, are able to represent multi-modal distributions

and thus can re-localize a robot in the kidnapped situation
(when the localization estimation fails and a robot is lost).
The particle filter has some similarities with the UKF in that
it transforms a set of points via known nonlinear equations
and combines the results to estimate the posterior distribu-
tion. However, in the particle filter the points are selected
randomly, whereas in the UKF the points are chosen based
on a particular method. As such, the number of points used
in a particle filter generally needs to be much greater than
the number of points in a UKF, in an attempt to propagate
an accurate and possibly non-Gaussian distribution of the
state [94]. Another difference between the two filters is that
the estimation error in a UKF does not converge to zero,
whereas the estimation error in a particle filter converges to
zero as the number of particles approaches infinity (at the
expense of computational complexity) [105].

Another method that is suitable for problems with a large
number of variables is the Ensemble Kalman Filter [43]
(EnKF). EnKFs represent the distribution of the system
state using a collection of state vectors, called an ensemble,
and replace the covariance matrix by the sample covari-
ance computed from the ensemble. EnKFs are related to the
particle filters such that a particle is identical to an ensem-
ble member. The EnKF differs from the particle filter in
that although the EnKF uses full non-linear dynamics to
propagate the errors, the EnKF assumes that all probability
distributions involved are Gaussian. In addition, EnKFs gen-
erally evolve utilizing a small number of ensembles (typically
100 ensembles), as such, making it viable solution for real
time applications. The main difference between the EnKF
and the UKF is that in EnKF, the samples are selected heuris-
tically, whereas samples are selected deterministically in the
UKF (and Sigma-Point Kalman Filters generally).

Distributed Filtering Methods

The aforementioned filtering methods are based on a single
centralized filter in which the entire system state must be
reconfigured when the feature points change, a problem that
is particularly evidentwhenmapping dynamic environments.
This causes an exponential growth in computational compu-
tation and difficulties to find potential faults. In order to tackle
those limitations,Won et al. proposed a visual SLAMmethod
based on using a distributed particle filter [114]. As opposed
to the centralized particle filter, the distribute SLAM sys-
tem divides the filter to feature point blocks and landmark
block. Their simulation results showed that the distributed
SLAM system has a similar estimation accuracy and requires
only one-fifth of the computational time when compared to
the centralized particle filter. Rigatos et al. [95] outline the
problem of multiple autonomous systems (unmanned sur-
face vessels) tracking and perusing a target (another vessel).
They proposed a solution for the problem of distributed con-
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trol of cooperating the unmanned surface vessels (USVs).
The distributed control aims at achieving the synchronized
convergence of the USVs towards the target and at maintain-
ing the cohesion of the group, while also avoiding collisions
at the same time. The authors also propose new nonlinear
distributed filtering approach called “Derivative-free distrib-
uted nonlinear Kalman Filter”. The filter is comprised of
fusing states estimates of the target’s motion which are pro-
vided by local nonlinear Kalman filters performed by the
individual vessels. They showed in their simulation evalu-
ation that their method was both faster and more accurate
than other well known distributed filtering techniques such as
the Unscented Information Filter (UIF) and Extended Infor-
mation Filter (EIF). Complete mapping of the environment
becomes very difficult when environment is dynamic or sto-
chastic as in the case of moving obstacles. For such problems
the secure autonomous navigation of the robot can be assured
with the use of motion planning algorithms such as the one
described above [95], in which the collisions risk is mini-
mized.

Data Fusion Using Filtering Methods

Data fusion is the process of combing information from
a number of different sources/sensors in order to provide
a robust and complete description of an environment or
process of interest, such that the resulting information has
less uncertainty than would be possible when those sources
were used individually. Data fusion methods play a very
important role in autonomous systems and mobile robotics.
In principle, automated data fusion processes allow infor-
mation to be combined to provide knowledge of sufficient
richness and integrity that decisions may be formulated and
executed autonomously [37]. The Kalman filter has a num-
ber of features which make it ideally suited to dealing with
complex multi-sensor estimation and data fusion problems.
In particular, the explicit description of process and obser-
vations allows a wide variety of different sensor models to
be included within the basic method. In addition, the con-
sistent use of statistical measures of uncertainty makes it
possible to quantitatively evaluate the role of each sensor
towards the overall performance of the system. The linear
recursive nature of the algorithm ensures that its application
is simple and efficient. As such, Kalman filters (and EKFs
for nonlinear applications) have become very common tools
for solving various data fusion problems [37]. Other filters
that have been previously discussed may also be similarly
used for data fusion such as in [20], where they outline the
problem of the unreliability of Global Positioning Systems
in particular situations. As such, propose a solution that uti-
lizes a Particle Filter for fusing data from multiple sources
in order to compensate for the loss of information provided
by the GPS.

Fundamental Components in V-SLAM and VO

Camera Modeling and Calibration

Perspective Projection

Acameramodel is a functionwhichmapsour 3Dworld onto a
2D image plane and is designed to closelymodel a real-world
physical camera. There are many camera models of varying
complexity. In this paper, we will explain the basic and most
commonmodel: the perspective cameramodel. Perspective is
the property that objects that are far away appear smaller than
closer objects, which is the case with human vision and most
real world cameras. Themost commonmodel for perspective
projection is the pinhole camera model which assumes that
the image is formed by the intersecting light rays from the
objects passing through the center of the projection with the
image plane. An illustration of the perspective projection is
shown in Fig. 5. The pinhole perspective projection equation
can be written as:

λ

⎡

⎣
u
v

1

⎤

⎦ = K X =
⎡

⎣
fx 0 cx
0 fy cy
0 0 1

⎤

⎦

⎡

⎣
X
Y
Z

⎤

⎦ (22)

where u and v are the 2D image coordinates of a 3D point
with coordinates X , Y and Z , after it is projected onto the
image plane. λ is a depth factor, K is the intrinsic calibration
matrix and contains the intrinsic parameters: fx and fy are
the focal lengths in the x and y directions, and cx and cy
are the 2D coordinates of the projection center. Note: when
the field of view of the camera is larger than 45◦, the effects

(u0,v0)

X

p

C

Fig. 5 Illustration of the perspective projection camera model. Light
rays from point X intersect the image plane at point p when passing
through the center of the projection
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of the radial distortion may become noticeable and can be
modeled using a second or higher order polynomial [101].

Intrinsic Camera Calibration

Camera calibration is the process of finding the quanti-
ties internal to the camera (intrinsic parameters) that affect
the imaging process such as the image center, focal length
and lens distortion parameters. Precise camera calibration is
required due to having camera production errors and lower
quality lenses and is very important for 3D interpretation of
the image, reconstruction of world models and the robot’s
interaction with the world. The most popular method uses a
planar checkerboard pattern with known 3D geometry. The
user is required to take several images of the checkerboard
at varying poses and covering the field of view of the camera
as much as possible. The parameters are estimated by solv-
ing a LS minimization problem where the input data are 3D
locations of the square corners on the checkerboard pattern
and their corresponding 2D image coordinates. There are a
number of open source software available for estimating the
camera parameters such as the MATLAB camera calibration
toolbox [15] and [100] and the C/C++ OpenCV calibration
toolbox [16].

Feature Extraction and Matching

Vision sensors have attracted a lot of interest from researchers
over the years as they provide images that are rich in informa-
tion. In most cases, raw images need to be processed in order
to extract the useful information. Features that are of inter-
est range from simple point features such as corners to more
elaborate features such as edges and blobs and even com-
plex objects such as doorways andwindows. Feature tracking
is the process of finding the correspondences between such
features in adjacent frames and is useful when small vari-
ations in motions occur between two frames. Conversely,
feature matching is the process of individually extracting
features and matching them over multiple frames. Feature
matching is particularly useful when significant changes in
the appearance of the features occur due to observing those
over longer sequences [46]. In the following sections, we
will briefly describe the most common feature, also called
keypoint, region of interest (ROI) or point of interest (POI),
extraction techniques that are used in mobile robotics appli-
cations.

Harris Corner Detector

The corner detectionmethoddescribed by [53] and illustrated
in Fig. 6b, is based on Moravec’s corner detector [82] in
which a uniform region is defined to have no change in image
intensities between adjacent regions in all directions, an edge

which has a significant variation in directions normal to the
edge and a corner by a point where image intensities have
a large variation between adjacent regions in all directions.
This variation in image intensities is obtained by calculating
and analyzing an approximation to the SSDbetween adjacent
regions [53].

FAST Corners

Features From Accelerated Segment Test (FAST) [96] is a
corner detector based on the SUSANmethod [107] in which
a circle with a circumference of 16 pixels is placed around
the center pixel. The brightness value of each pixel in this
circle is compared to the center pixel. A region is defined
as uniform, an edge or a corner based on the percentage
of neighboring pixels with similar intensities to the center
pixel. FAST is known to be one of the most computationally
efficient feature extraction methods [96]. However it is very
sensitive to noise. FAST features are illustrated in Fig. 6a.

SIFT Features

Scale Invariant Feature Transform (SIFT) is recognized by
many as one of the most robust feature extraction tech-
niques currently available. SIFT is a blob detector in which
a blob can be defined as an image pattern that differs from
its immediate neighborhood in terms of intensity, color and
texture [104]. The main reason behind SIFT success is that
it is invariant to rotation, scale, illumination and viewpoint
change. Not only is SIFT a feature detector but also a fea-
ture descriptor, therefore giving each feature a distinctive
measure which improves the accuracy and repeatability of
feature matching between corresponding features in differ-
ent images. The main downside of this method is that it is
computationally expensive. SIFT features are extracted by
analyzing the Difference of Gaussian (DoG) between images
at different scales. A feature descriptor is computed by divid-
ing the region around the keypoint into a 4×4 subregions. In
each subregion, an orientation histogram of eight bins is con-
structed. This information is then stored in 4× 4× 8 = 128
byte description vector. An example of SIFT features is illus-
trated in Fig. 6d. The combination of keypoint location,
scale selection and the feature descriptor makes SIFT a very
robust and repeatable technique for matching corresponding
features in different images even under variations such as
rotation, illumination and the 3D viewpoint.

SURF Features

Speeded Up Robust Features (SURF) [10] is a feature (blob)
detector and descriptor that is largely inspired by SIFT. In
contrast to SIFT which uses the DoG to approximate the
Laplacian of Gaussian (LoG), SURF employs box filters (to
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(b)(a)

(e)(d)(c)

Fig. 6 Comparison of different features extraction methods using an
image obtained from the Oxford dataset [80]: a FAST, b HARRIS, c
ORB, d SIFT, e SURF. The size of the circle corresponds to the scale
and the line corresponds to the orientation (direction of major change

in intensity). Note that FAST and HARRIS are not scale and rotation
invariant, as such, they are illustrated by small circles (single scale) and
no orientation

approximate the second order Gaussian) and image integrals
for the calculating the image convolution in order to approx-
imate the Hessian matrix. To find the keypoint and its scale,
analysis of the determinant of the approximated Hessian
matrix is performed to find the local maximum across all
scales. A robust descriptor which has similar properties to
the SIFT descriptor but with less computational complexity
is also introduced. For orientation assignment of the interest
point Haar-wavelet responses are summed up in a circu-
lar region around the keypoint and the region around the
keypoint is then divided into n × n subregions in which
Haar-wavelet responses are computed and weighted with a
Gaussian kernel for obtaining the descriptor vector. SURF
outperforms SIFT in terms of time and computational effi-
ciency. However, SIFT slightly outperforms SURF in terms
of robustness. Surf features can be seen in Fig. 6e.

BRIEF Descriptor

Binary Robust Independent Elementary Features (BRIEF)
is an efficient feature point descriptor proposed by Calon-
der et al. [18]. BRIEF relies on effectively classifying image
patches based on a relatively small number of pairwise inten-
sity comparisons. Based on this comparison, binary strings

are created which define a region that surrounds a keypoint.
BRIEF is a feature descriptor only and needs to be used in
conjunction with a feature detector such as Harris corner
detector, FAST, SIFT or SURF. Matching between descrip-
tors can be achieved by finding the nearest neighbor using
the efficient Hamming distance. Recently, a feature detector
and descriptor named “ORB” [97] (See Fig. 6c) has been
proposed which is based on the FAST feature detector and
BRIEF descriptor.

3D Descriptors

3D descriptors are useful when 3D information is available
(point clouds). Some of the most well-known 3D Descrip-
tor methods are Point Feature Histogram (PFH) [98], Fast
Point Feature Histogram (FPFH) [99], 3D Shape Context
(3DSC) [46], Unique Shape Context (USC) [112] and Sig-
natures of Histograms of Orientations (SHOT) [112]. The
PFH captures information of the geometry surrounding every
point by analyzing the difference between the directions of
the normals in its local vicinity. The PFH does not only pair
the query keypoint with its neighbors, but also the neigh-
bors with themselves. As such, the PFH is computationally
demanding and is not suitable for real-time applications.
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The FPFH extends the PFH by only considering the direct
connections between the query keypoint and its surround-
ing neighbors. To make up for the loss of extra connections
between neighbors, an additional step after all histograms
have been computed is added: the sub-PFHs of a point’s
neighbors are merged with its own and is weighted accord-
ing to the distance between those. This provides point surface
information of points as far away as 2 times the radius used.
The 3DShapeContext is a descriptor thatworks by construct-
ing a structure (sphere) centered at the each point, using the
given search radius. The “north pole” of that sphere is pointed
in the same direction as the normal at that point. Then, the
sphere is divided in 3D regions (regions vary in volume in
the radial direction as they are logarithmically spaced so they
are smaller towards the center). A descriptor is computed by
counting the number of points in each 3D region. The count
is weighted by the volume of the bin and the local point
density (number of points around the current neighbor). As
such, the descriptor is resolution invariant to some extent. In
order to account for rotation variances, the support sphere is
rotated around the normal N times and the process is repeated
for each, giving a total of N descriptors for a point. This
procedure is computationally expensive, as such, the USC
descriptor extends the 3DSC by defining a local reference
frame that provides a unique orientation at each point. This
procedure reduces the size of the descriptor when compared
to 3DSC, since computing multiple descriptors to account
for orientations is not required. SHOT descriptor is similar
to 3DSC and USC in that it encodes surface information
within a spherical support structure. The sphere around each
keypoint is divided into 32 bins, and for each bin, a descrip-

tor containing one variable is computed. This variable is the
cosine of the angle between the normal of the keypoint and
the neighboring point inside the bin. Finally, the descriptor is
obtained by augmenting local histograms. Similiar to USC,
SHOT descriptors are also rotation invariant.

Data Association

DA is defined as the process of associating a measurement
(or feature) to its corresponding previously extracted feature.
DA is one of themost important aspects of SLAMandVO. In
SLAM, correct DA between the current measurements and
previously stored features is vital for the SLAM convergence
and obtaining a consistentmap. FalseDAwill cause the robot

to think it is at a location where it is not, therefore diverging
the SLAM solution. In VO, correct data association between
features in successive frames is required to obtain an accurate
estimation of the transformation between frames. We will
describe the most common methods used for DA.

Data Association Based on Visual Similarity

Sum of Square Differences SSD is a similarity measure that
uses the squared differences between corresponding pixels
in two images. SSD has the following formula:

SSD=
n∑

i=−n

n∑

j=−n

((I1(u1+i, v1+ j) − I2(u2+i, v2 + j))2

(23)

where I1 and I2 are the first and second image patches cen-
tered at (u1, v1) and (u2, v2) respectively.

Another similarity measure similar to SSD is the Sum of
Absolute Differences (SAD) in which the absolute differ-
ences between corresponding pixels is used instead of the
squared difference. SSD is a more robust similarity measure
compared to SAD. However, it is less computationally effi-
cient.

Normalized Cross Correlation Normalized Cross Corre-
lation (NCC) is one of the most common and accurate
techniques for finding the similarity between two image
patches. The technique works by summing the product of
intensities of the corresponding pixels in two image patches
and normalizing this summation by a factor based on the
intensity of the pixels. NCC has the following formula:

NCC =
∑n

i=−n
∑n

j=−n I1(u1 + i, v1 + j) · I2(u2 + i, v2 + j)
√(∑n

i=−n
∑n

j=−n I1(u1 + i, v1 + j)2
)

.
(∑n

i=−n
∑n

j=−n I2(u2 + i, v2 + j)2
) (24)

The higher the NCC value, the more similarity between
the compared image patches. Note: Because of the normal-
ization, NCC outperforms both SAD and SSD in cases where
there is a variation in the brightness levels between the com-
pared patches. However, NCC is a slower method since it
involves more complex operations includingmultiplications,
divisions and square root operations.

RANSAC Refinement

The above steps for feature matching and DA usually result
in false matches (outliers) mainly due to noisy sensors and
lightning and view point variation. The Random Sampling
Consensus (RANSAC) is the most common tool used for
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estimating a set of parameters of a mathematical model from
a set of observed data which contains outliers. An example of
the refined matches using RANSAC can be seen in Fig. 7d–f.
The RANSAC method for refining the matches between two
frames generally consists of the following steps:

1. Randomly select the minimum number of matched fea-
tures (e.g. points in one frame and their matches in
the next) required to estimate the transformation (i.e.
three points for a 6DOF system using the 3D to 2D re-
projection error estimation method).

2. Estimate the transformation (rotation and translation
parameters) using the selected points.

3. Apply the obtained transformation to the remaining
points.

4. Find the distance (l2 distance is commonly used) D
between the transformed points and their corresponding
matches.

5. Pairs with D less than a predefined threshold τ are con-
sidered inliers.

6. Count the total number of inliers obtained by this trans-
formation.

7. Repeat the previous steps n times.
8. Transformation with the highest number of inliers is

assumed to be the correct transformation.
9. Re-estimate the transformation using LS applied to all

the inliers.

RANSAC is a non-deterministic algorithm in the sense
that it produces a reasonable result only with a certain prob-
ability, with this probability increasing as more iterations are
allowed. A number of RANSAC extensions have been pro-
posed over the years. Chum et al. [25] proposed to guide
the sampling procedure if priori information regarding the
input data is known, i.e. whether a sample is likely to be an
inlier or an outlier. The proposed approach is called PROgres-
sive SAmple Consensus (PROSAC). Similarly, SAC-IA [99]
proposed the selection of points based on those with the
most similar feature histograms. Another example is the pre-
rejection RANSAC algorithm [17]. This method adds an
additional verification step to the standard RANSAC algo-
rithmwhich eliminates some falsematches by analyzing their
geometry.

Loop Closure

Loop closure (also known as cycle closure) detection is the
final refinement step and is vital for obtaining a globally
consistent SLAM solution especially when localizing and
mapping over long periods of time. Loop closure is the
process of observing the same scene by non-adjacent frames
and adding a constraint between them, therefore consider-
ably reducing the accumulated drift in the pose estimate. To

illustrate this, imagine a case where a robot moves in a closed
looped corridor while it continuously observes features of its
environment. By the time the robot goes back to its initial
position, the error in the robot’s position estimate has accu-
mulated and is offset by a finite distance from the actual
position. Now assume that the robot realizes it is observing
the initial scene, therefore it adds a constraint between the
current frame and the initial frame (based on the features
location estimates in the scene) and hence, reduces the over-
all drift in position and map estimates.

The most basic form of loop closure detection is to match
the current frame to all the previous frames using feature
matching techniques. This approach is computationally very
expensive (computational expense increases linearlywith the
number of estimates [42]) due to the fact that the num-
ber of frames are increased over time and matching the
current frame with all the previous frames is not suitable
for real-time applications. A solution to this problem is
to define key frames (a subset of all the previous frames)
and compare the current frame with the key frames, only.
The simplest form of key frame selection is to select every
nth frame. Kerl et al. [69] proposed a key-frame selection
method based on a differential entropy measure. Other solu-
tions such as the one used by [56] is to perform a RANSAC
alignment step (similar to the one described in “RANSAC
Refinement” section) in between the current frame and a key
frame. A new key frame is selected only when the num-
ber of inliers detected by the RANSAC alignment step is
less than a predefined threshold (making it a new scene). In
order to improve the computational efficiency and avoid the
RANSAC step between each frame and the key frame, they
proposed adding a key frame when the accumulated rota-
tion or translation exceeds a predefined threshold (10 ◦ in
rotation or 25 cm in translation [8]). In order to filter the
loop closure frame candidates, they used a place recognition
approach based on the vocabulary tree described by Nister
and Stewenius [87] in which the feature descriptors of the
candidate key frames are hierarchically quantized and are
represented by a “bag of visual words” (B.O.W). Another
well-known approach that is similar toB.O.W is theVector of
Locally Augmented Descriptors (VLAD) [62]. As opposed
to B.O.W which constructs a histogram for each image sim-
ply based on counting the number of occurrences of the visual
words in the image, VLAD constructs a descriptor by sum-
ming the residuals between each image descriptor and the
associated visual word resulting in a more robust visual sim-
ilarity recognition approach [62]. Alternatively, instead of
selecting key frames or matching to all the previous frames,
Endres et al. [41] also presented a loop closure method that
matched the current frame to 20 frames consisting of the
three most recent frames and uniformly sampled previous
frames, therefor resulting in amore computationally efficient
approach.
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RGB-D SLAM

RGB-D SLAM (or RGB-D mapping) is a V-SLAM method
that usesRGB-D sensors for localization andmapping.RGB-
D sensors are ones that provide depth information in addition
to the color information. Although RGB-D sensors have
been popularized by the Microsoft Kinect and Asus Xtion
PRO when they were released in 2010, older RGB-D SLAM
solutions had already existed. For example, Biber et al. [13]
proposed a SLAMmethod that uses a combination of a laser
scanner and a panoramic camera. The more recent RGB-D
cameras such as the Kinect are based on the structured light
approach which capture RGB color images and provide pixel
depth information. Localization and mapping using RGB-D
cameras have become an active area of research mainly due
to the low cost of these cameras which provide very useful
information for mapping. The aim of RGB-D SLAM is to
obtain a dense 3D representation of the environment while
keeping track of the camera pose at the same time. Using
both color and depth information has a number of advan-
tages over using either color or depth. Some of those reasons
are outlined below:

1. Associating each pixel with a depth value provides a
dense and colored point cloud. This allows for the visu-
alization of dense 3D reconstructed environments.

2. RGB-D sensors provide metric information, thus over-
coming the scale ambiguity problem in image based
SLAM systems.

3. Some environments contain limited texture. as such, the
availability of depth information allows the SLAM sys-
tem to fall back on depth only approaches such as ICP.

4. Other environments may contain limited structure. In
those cases, the system can fall back on using RGB infor-
mation for matching and registration.

In the following sections, we will describe the basic steps
that constitute the RGB-D SLAM method. Although there
is an intensity based RGB-D SLAM approach [5], the main
approach is based on using features and we will describe
this approach in detail (similar to [34,41,56]) in the follow-
ing sections. A system overview of a typical RGBD-SLAM
system is shown in Fig. 8.

Feature Extraction, Matching and Refinement

Thefirst step is to extract andmatch features across sequential
images. We discussed feature extraction techniques such as
SIFT, SURF and ORB in “Feature Extraction andMatching”
section in which points of interest such as edges and corners
are detected in the images. The depth information provided
by the RGB-D camera are then used to obtain these points
in 3D (point clouds). Matching extracted features between

sequential frames is then performed using an appropriate DA
technique. If the descriptors are appearance based (based on
the intensity value of pixels in the neighborhood of a fea-
ture), a similarity measure such as NCC or SSD is required.
Matching between SIFT and SURF features is performed
by a distance based approach such as the euclidean distance
nearest neighbor. The Hamming distance is usually used to
match between features with BRIEF descriptors. Matching
features using SIFT, SURF and BRIEF descriptors can be
seen in Fig. 7a, b and c respectively. The next step is to
estimate the camera’s relative transformation (with respect
to the previous location) using the feature matches between
sequential frames. This is a typical VO problem and can be
solved using one of themotion estimationmethods discussed
in “Motion Estimation” section. The most common method
is to estimate the motion based on the 3D–2D re-projection
error. In an ideal casewhere all features arematched correctly
between frames, this overdetermined systemcan be solved by
a LS based optimization method. However, because of noise,
illumination changes and other factors, not all matches are
correct (as illustrated in Fig. 7a–c) and estimating the trans-
formation in the presence of these false matches (outliers) is
required. Aswe explained earlier, RANSAC is themost com-
mon tool used for estimating a set of parameters in the pres-
ence of outliers. The refinedmatches can be seen in Fig. 7d–f.

Refining the Transformation Using ICP

The ICP is a common technique in computer vision for align-
ing 3D points obtained by different frames. ICP iteratively
aligns the closest points (correspondences found using a fast
nearest neighbor approach) in two clouds of points until con-
vergence (change in the estimated transformation becomes
small between iterations or maximum number of iterations
is reached).

ICP has been shown to be effective when the two clouds
are already nearly aligned [56]. As such, a good initial esti-
mate would help the convergence of the ICP. In situations
in which a bad estimate is used, convergence could occur at
an incorrect local minimum, producing a poor estimate of
the actual transformation. In RGB-D SLAM, the RANSAC
transformation estimate can be used as the initial guess in
the ICP algorithm. In cases where RANSAC fails to obtain
a reliable transformation (number of inliers are less than
a threshold) which may be caused by the low number of
extracted features from a texture-less scene, the transforma-
tion is fully estimated using the ICP algorithm and using an
initial predefined transformation (usually set to the identity
matrix).

Global Transformation

The previous steps provide an estimate of the camera motion
transformation between two frames. In order to obtain a

123



306 Intell Ind Syst (2015) 1:289–311

Fig. 7 Features matching
methods: a SIFT matches, b
SURF matches, c BRIEF
matches, d–f refined matches
using RANSAC

(a) (d) 

(b) 

(c) 

(e) 

(f) 

Fig. 8 A block diagram
showing the main components
of a typical RGBD-SLAM
system
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matching 

RANSAC refinement and 
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RANSAC refinement and 
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Global pose es�ma�on  
(concatena�ng rela�ve poses) 

Pose Graph Op�miza�on / 
BA 

global estimate with respect to a reference frame, all the
transformations up to the current time need to be concate-
nated. Let us denote the transformation between two frames
as:

Tk,k−1 =
[
Rk,k−1 tk,k−1

0 1

]
(25)

where Rk,k−1 ∈ SO(3) is the rotation matrix and tk,k−1 ∈
�3×1 is the translation vector between frames taken at time-
steps k and k − 1 respectively where k = 1 . . . n. The global
estimate Gn can be calculated using the following formula:

Gn = Gn−1Tn,n−1 (26)

where Gn−1 is the previous global transformation with
respect to an initial reference frame G0 at k = 0 and Tn,n−1

is the transformation between the current frame and the pre-
vious frame.

Global Optimization

The previous steps (except reconstructing the 3D map)
describe a typical VO problem which is concerned with
obtaining a locally consistent estimate of the camera trajec-
tory. In order to obtain a globally consistent estimate (in order

to reduce the drift), a global refinement is required. The com-
mon approaches for this requirement are as follows.

Pose Graph Optimization

Pose graphoptimization is a global optimizationmethodused
in SLAM and VO problems that are represented by a graph
model. The graph model consists of nodes that correspond to
the camera poses and edges which represent the constraints
between the nodes, described by rigid-body transformations.
The pose graph model allows the formation of constraints
between non-adjacent poses by observing the same features
from different locations. The goal of this optimization is
to find the arrangement of poses that best satisfies those
constraints. Generally, this is a non-linear LS optimization
problem which can be described as:

C∗ = argmin
C

∑

i,j

||Ci − Ti,jCj||2 (27)

where C∗ = C∗
1 . . .C∗

n is a vector containing all the opti-
mized camera poses (x, y and z values). There are a number
of approaches for solving the above optimization problem
and we will briefly describe common ones here.
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1. GraphSLAM GraphSLAM [111] is a full-SLAM prob-
lem which means that a posterior (robot poses and map)
is calculated over the entire path x1:t along with the map,
instead of just the current pose calculation in online-
SLAM [109] (such as the EKF-SLAM). It works by
representing the SLAM posterior by a graphical network
which leads to a sum of non-linear quadratic constraints
and optimizing the graph by taking all the constraints
into account using standard optimization techniques. The
result is a maximum likelihood map and a corresponding
set of robot poses [109].

2. TORO Tree-based Network Optimizer [52] is a graph
optimizationmethod that is based onOlsen’smethod [94]
for solving the optimization problem using a stochas-
tic gradient descent (an optimization technique used for
finding the local minimum based on the observation that
a function decreases fastest in the direction of the neg-
ative gradient or it’s approximation). In this approach,
Olsen’s method is extended by introducing a tree-based
parametrization for the nodes in the graphwhich results in
a faster convergence and better computational efficiency.
This optimization technique is used by [55] in theirRGB-
D SLAM method.

3. HOG-MAN Hierarchical Optimizations onManifolds for
Online 2Dand3Dmapping [50] is an efficient pose-graph
optimization approach in which the problem can bemod-
eled based on different levels of abstraction. Instead of
targeting the optimization of the full problem (all the
nodes of the graph), this method only optimizes a sim-
plified problem which contains all the required relevant
information and is constructed incrementally. This is per-
formed by updating only the parts of the map that are
required for DA. This approach has the advantage of
reducing the computational complexity of the SLAM
problem while preserving the global consistency [50].

4. g2o General Framework for Graph Optimization [72]
is an open-source framework for graph-based optimiza-
tion that is applicable to both SLAM and BA problems.
It includes a number of linear solvers such as the pre-
conditioned conjugate gradient (PCG), CHOLMOD and
CSparse. g2o allows the user to specifically re-define the
error function to be minimized and choose the method
for solving the linearized problem. This technique is used
by [41] in their RGB-D SLAM optimization step.

5. Ceres The Google Ceres Solver [2] a powerful open
source C++ library for modeling and solving large, com-
plicated optimization problems. Ceres applications range
from rather simple fitting curves and robust regression
to the more complicated pose graph optimization and
BA problems. Ceres’s biggest advantage is its simplicity
and user friendliness as it had been designed so that the
user can easily build and modify the objective function
(desired cost function), one term at a time. And to do so

without worrying about how the solver is going to deal
with the resulting changes in the sparsity/structure of the
underlying problem [2]. Ceres offers numerous options
to the user, such using a robust cost functions to reduce
the influence of outliers. In addition Ceres supports many
solvers such as Levenberg–Marquardt, Powells Dogleg,
and Subspace dogleg methods in which the user may
choose from depending on the size, sparsity structure,
time and memory budgets, and solution quality require-
ments.

Global/Local Bundle Adjustment Optimization

BA is another global optimization method similar to pose-
graph optimization and is commonly used in computer vision
applications. BA jointly optimizes the camera pose and the
3D structure parameters that are viewed and matched over
multiple frames by minimizing a cost function. BA is usu-
ally called Global Bundle Adjustment (GBA) when taking
all frames into consideration, and Local Bundle Adjustment
(LBA) in which the optimization is applied over a number of
fixed frames (a window). In general, the cost function to be
minimized can be formulated as [45]:

arg min
Xi ,Ck

∑

i,k

||pik − g(Xi,Ck)||2 (28)

where Xi is the i th 3D point, pik is its corresponding image
point observed in the kth frame and g(Xi,Ck) is the re-
projection function according to the camera pose Ck.

GBA generally results in a more accurate optimization
when compared to LBA since it takes all previous frames
into account in the optimization. However, optimizing over
a window limits the number of parameters that are solved
in the optimization and therefore LBA is more suitable for
real-time applications in which the computational resources
are limited.

Loop Closure for RGB-D SLAM

Similar to other types of SLAM, as we discussed in “Loop
Closure” section, a loop closure step is required to obtain a
globally consistent map and reduce the drift.

Map Representation

The previous global optimization and loop closure steps pro-
duces a globally consistent trajectory (i.e. each node/frame is
associated with an optimized global pose). In order to build
the map, the points are projected to 3D using the following
equations:
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X = (u − cx ) ∗ Z/ fx (29)

Y = (v − cy) ∗ Z/ fy (30)

where (u, v) is the image coordinate of an extracted visual
feature and (X,Y, Z) is its projected 3D coordinate in the
camera optical frame. Z is obtained from the depth image
which is provided by the RGB-D sensor. fx and fy are the
focal lengths in the horizontal and vertical axises respec-
tively and (cx , cy) is the 2D coordinate of the camera optical
center. After applying this projection, 3D points are then
transformed to a common reference frame using the opti-
mized trajectory.

Conclusion

In this paper, a extensive theoretical review of solutions for
the VO and visual SLAM (V-SLAM) problems is presented.
We initially outlined the history of the research undertaken
in those areas and discussed the localization and mapping
problems, separately. The SLAM problem was discussed
and the basic framework for solving this problem was pre-
sented. We also discussed the fundamental techniques used
in both VO and V-SLAM such as feature extraction and DA
methods.Wefinally presented the recently popularizedRGB-
D SLAM approach for solving the V-SLAM problem. The
RGB-DSLAMapproach consists of combining visual odom-
etry methods for finding the relative transformation between
frames, and SLAMmethods for global optimization and loop
closure. The paper paves the way for new researchers in this
area to have clear understanding of the subtleties of differ-
ent solutions and would help practitioners to choose the best
available approach for these tasks.
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