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1. OUTLINE



2. DIHEDRAL GROUP Dy
Let G=D, =(r,f:r=f2=1,flrf=r"1)and H<G.

2.1 nis odd

Proposition 2.1.1. (Conrad) Let n be odd, then every subgroup of D,, is conjugate to one of the
following:

o (r?), where d is a divisor of n.
o (rl f), where d is a divisor of n.

The character table of D,, is given by:

Xtriv | 1 1
Xsign 1 1 -1
1/}]' 2 e27rz'j/n + e—2m’j/n 0

Proposition 2.1.2. Let x be the character of the permutation module CIH\G]. Then x decomposes
as followed:

'Z' H:<Td7f>7 thenX:XtT'ZU—"_ijj? ]e {%7 27”7"'?%%}

2. H= <,,,d>’ then X = Xtriv +X5Zgn+22_] 1/}]7 .7 € {%7%77%%}

Proof. 1. H= (rd, f).

First, we count fixed points when g € G acts on C[H\G|. The elements of H\G are { Hr® |0 <
a<d-—1}. For 0 <i<n—1, we have

(Hr*)r' = Hr* = r' ¢ H

Moreover,
(HrY)f =Hr* = a=0
Hence,

, d, ifie{d,2d...n
() = {d,2dmf
0, otherwise

Now, we can use inner product of characters to decompose Y:

b <X7Xtm'v> =1



b <X7 Xsign> =0

G s) = Il ZX (9)¥;(g

geG

1 Lin_
= 5 21+ (r) + (%) + oy (r2 DY)
1 : . .
_ %[Qd(l + 627r]d/n + 6727r]d/n + 647r]d/n 747r]d/n 4o+ e71'(771)d /n ,ﬂ(,,l)cp/n)]
If j is a multiple of 7, then e2mkid/n | o=27kjd/n — 9 This means
1 1 n
(o ts) = 5 2d(1 +25(5 ~ 1)) =1
Moreover, j is bounded above by an integer k4. such that
kmax_g<n—1> N k::d_l
n 2
If j is not a multiple of %, then (x,v;) =0 as
2-1)d/n _

X = 1+62ﬂ]d/n+6 27T]d/n_"_e4ﬂ'jd/’n+€ 47T]d/n+ te” m(%—1)d? /n+e (5

20 4G =1 pwtw . fwis

X=ldwt+w" ' +w?+w" 2+  +w2

However, w™® = 1. This means, X = 0
2. H=(rd).
The elements of H\G are {Hr* 0 <a<d—-1}U{Hfr*|0<a<d-1}. For0<i<n-—1,

we have
(Hr*)r' = Hr* = ' ¢ H

Moreover,
(Hfr“y'=Hfr* = r'cH

And there does not exist any j such that

Hr®f=Hr* or (Hr'f)f=Hr"f

Hence, the character x is given by:
, d, ifie{d,2d...,n}
x(r') = {

0, otherwise



For example: Let n = 15. The character table is given by, where w? = 27/15 4 =2mi/15

g e r 2 o3 ot 5 6 Ty
Xtriv | 11 1 1 1 1 1 1 1
Xsign | 1 1 1 1 1 1 1 1 -1

3 2wl Wl W w? 2 W W0
s 2 W Wl 2 W Wl 2 W0
Vg 2 Wb oWl Wl W 2 Wl W2 0
X3y 3 00 3 0 0 3 0 1
Xyl o 00 5 0 0 5 0 1
X3y |60 0 6 0 0 6 0 0
Xy (1000 10 0 0 10 O 0

Consider H = (r3, f). The coset representatives are H, Hr, Hr?. First we find the projection
of x onto 5. Note that

n—1
Pi= ) s(g)g =)
gEDn 1=0

Now projecting Ps onto H, Hr, Hr? gives:
n—1 ' .
HP; = Zmer’ =5(2H + W Hr + w®Hr?)
i=0

n—1
HrPs = Zw5iH7“i =5(w!H + 2H7r + WP Hr?)
i=0
n—1
Hr?Ps = Zw&Hri =5(w’H +w'YHr 4+ 2H7r?)
i=0
Using row reduce, we obtain the basis:

vle—Hr2
UQZHT—HT‘2

Let v = H — Hr?. Then, the lift of v onto G is given by

T=1+r3 40 e f P S % -

P25 S M2 g5 8 el g



2.2 n is even

Proposition 2.2.1. (Conrad) Let n be even, then every subgroup of Dy, is conjugate to one of the
following:

o (r?), where d is a divisor of n.
o (rl f), where d is a divisor of n.
o (r® rf), where d is a divisor of n.

The character table of D, is given below:

g |e rm ri1<i<m-—1) f rf
x1 |1 1 1 1 1
Yo |1 1 1 -1 -1
xs |1 (=)™ (—1) -1
xa|l (=1)™ (1)t -1 1
Wi |2 2(=1)1 ¥r/n g e72mi/n g

Proposition 2.2.2. Let x be the character of the permutation module C[H\G]. Then x decomposes
as followed:

1. H=(r f)
o dis odd, then x = x1+ > ;¢;, Jj€ {%%" d§1%}
o dis even, then x =x1+ X3+ ;% J€ 7
2. H= (rd,rf)

e d is odd, then x = x1+ >_; ¥j, je{%,%,...,%%}

5



e d is even, then x = x1 +X4+Zj Vi, JE€ {%7%7'“)%%}

3. H=(rd
o dis Odd, th@nX:X1+X2+2EJw]7 ]E{%a%’b7a%%}
e dis even, then x = X1+ X2+ X3 +Xa+2) ¢, J€ {%’%Tn"”’d%%}

Proof. 1. H=(rd f).
The elements of H\G are {Hr® |0 <a <d—1}. For 0 <i <n — 1, we have

(Hr*)r' = Hr* = r' ¢ H

Moreover,
(Hr)f = Hr* = (Hr")*=H

If d is even, then a = 0,d/2; however, if d is odd, then a = 0. Moreover, consider,
a a d—a a+1 d—1
H(r)(rf)=Hr* = Hr* % =Hr = 0= —5— and a€N

This is only possible if d is odd. Hence, x(rf) = 0 if n is even and x(rf) = 1 if n is odd.
Hence, if d is odd, we have

. d, ifie{d2d..n}
x(r') =

0, otherwise

If d is even, then

o Jd, ifie{d,2d..,n}
x(r) = {0, otherwise
x(f) =2
x(rf)=0

2.2.1 Where to find the smallest frame?

Consider Dq5.

|H| 10 5 02 2 6 2 10 6 2
|frame| | 3 6 15 15 5 15 3 5 15




Consider Doy.

Vv W1 WQ W?, W4
H |2 f) ) 2 f) (*rf)

Hl | 24 12 24 12

|frame| 2 4 2 4
4 Vi Va V3 |7 I N T Vo Vio Vi
H |[(f) 20 50 050 () ¢80 () 028 56 26 ()
|H| 2 4 6 8 2 12 2 16 6 4 2
|frame| | 24 12 8 6 24 4 24 3 8 12 24

To construct the smallest frame, we want the largest subgroup.

Proposition 2.2.3. Let V; be a 2-dimensional submodule of D,, with character x; as defined above.

The largest subgroup such that V; C C[H\ Dy] is H = (r*, f), where k = n/ ged(n, 7).

2.3 Frame Examples

2.3.1 Dihedral Group

Consider D3 and H = (f). Then, C[H\D,,] = sp{H, H,, H?}. Let x be the character of C[H\D,].

Then, x = x¢riv + ¥1. The character table is given by

g |e v f

Xtriv |11
Xsign |1 1 —1
Y1 |2 =1 0
x |3 0 1

Now the projector of C[H\D,] onto V; is given by:

P = Z z/;l(gfl)g =2 —(r+ r2)

g€Ds
The Frame for C[H\D,] is given by

{vy = Pi(Ht)|t € Ry} = {vet|t € Ry}
Hence,
Te = P/(H) =2H — (Hr + Hr?)
Ty = PI(H) = 2Hr — (H + Hr?)
T2 = P(H) = 2Hr* — (H + Hr)

®

<




Let v; be the lift of 7z onto C[D,]. Let ®; = {guvilg € G} = {sw|s € Ly}. Note that
Ly ={1,r,r%}.
Hence,
®,2 = {e.v,2,rv,2,1%0,2}

, Where
evps =2 +2fr* —e— f—r — fr
rue = 2e 4 2fr —r — f —r? — fr?
r2vT2:2f—|-2r_€_fT_fr2_r2

2.3.2 Symmetric Group
Let G =5, and H = 5,,_1. Then,
H\G={H(i,n)|1 <i<n}

, where H(i,n) = {o € Sy|o(i) =n}
Now note that C[H\G| decomposes into the trivial module Vi1 and the zero-sum module
Vo—sum- Let ©; = H(i,n). The frame for Vo_gym in H\G is given by

® = {w;|1 <i<n}

, where w; = nv; — Z’;:l v;.
Note that

wio = (nv; — Z@)U = NVs-1(j) — ngfl(j) = Ws-1(4)
j=1 j=1

Hence, we can write the frame simply as
& = {wiolo € S,}
Now, we lift w; onto C[G].

w; =n Z O’—ZO’

c€Sn,0(i)=n o€Sy
Now to find the frame,
®; = {ow;|lo € Sp} = {owiloc € Ly}

Note that Ly = {(j,n) € Syl < j < n}. Hence,

Gomwi=n > (no— D (@Gne=n Y o-> 0

0E€Sn,o(i)=n o€Sn c€Sn,o(i)=j o€Sn

Hence,

@:{uij:n Z U—Za|1§j§n}

O'GSn,O'(’L):‘] oESh

8



Example

Let G = S3. Then,

Dy = {ug1, ug2, u3}
, Where
u = 2(132) +2(12) — (23) — (12) — (1) — (123)
ugs = 2(1) + 2(13) — (23) — (132) — (12) — (123)
sy = 2(23) + 2(123) — (1) — (12) — (132) — (13)

Note that &3 =2 ®,» by letting, r — (123) and f — (23).

2.4 Generalized Symmetric Group

(Tom) The irreducible representations of G,,, are indexed by r-partitions of n, which are ordered
r-tuples of the form v = (y(V)...,4(")) such that each v(?) is a partition and [y |+ -+ |y = n.

An ordered set partition of shape v is a set partition of {1,2,..,n} into blocks of 'y](i).

2.4.1 Young Subgroup

let IL, denotes the set of ordered set of partitions of shape 7.

Definition 2.4.1. A Type-1 Young subgroup of shape v is a subgroup Gr for any m € 11, such that
it is a stabilizer for 7V and a stabilizer for 7®), k> 1, up to &".
In other words,

£y r LY
Gr=DS,neDDGo
j=1 7 i=2 j=1 7

, where Gﬂ(i) is the wreath product of the symmetric group Sﬂu) with C,.
j j

Proposition 2.4.2. (Himmet Can Prop 3.20 300) Let M, = C[G\H]. Then the mutiplicity of
the irreducible G appearing in M, is ezactly one.

Hyperoctahedral Group
We denote Gy, 2 = H. Let M, = Cl[Gr\H]. Also let v = ('y(l),'y(Q)) = (p,v).

Proposition 2.4.3. (Gessinger and Kinch II1.5 12)

My = @B D KoK auvsHas
(o,B)Fn ACpu

,where X C pif MN(i) < p(i) for all i, and AU p is a concatenation of the two partitions, and
rearranging into decreasing sequence.



Proposition 2.4.4. (Gessinger and Krinch I1.3 9 ) The multipicity of H , ) appearing in M, )
15 1.

Definition 2.4.5. A Type-2 Young subgroup of shape 7 is a subgroup G for any m € 1L, such that
it is a stabilizer for all 7@, 1 < < r.

In other words,

ro (")
Do
i=1 j=1
Proposition 2.4.6. (Puttaswamaiah Corrollary 35) Let M, = C[G7\H]. Then the mutiplicity of
the irreducible G appearing in M, is exactly one.
2.5 Propositions

Proposition 2.5.1. Lifting and Projecting commute:

Proof. The projector onto V is given by

e LHS: First we project ery onto V:

1 m
= Py(en) |G|ZX Jerg = Z Z X gi:ZAieHgi
i=1

geG i=1 x€Hg;

, where \; = > 9 (I el D and g; indexes the right coset representative.

Now, we lift onto C[G]:

vy = Z Z Ai€hg, = Z Ag€q

i=1 he H geq

Ifl
, where \g =" p, %

e RHS: First we lift ey onto C[G]

w=3 e

heH

Now, projecting onto V' gives:

10



i=1 h’EH heH
1 & ,
= @ Z x((h'gi)™) Z €hg;
i=1 h'eH heH
m / 1
x((h'g
-y MR s,
i=1 h'eH heH
m
= Z AiChg; = Z Ageq
i=1 he H geG

Definition 2.5.2. Let H < G. Define a lifting of vectors from C[G\H] onto C[G] as

(f)H:GH—)Zeh

heH

Proposition 2.5.3. Let P, be a right G-homormorphism projection onto irreducible module with
character x. Then,

¢ Py (H) = Pyor(H)

Proof.

o Py(H) = ¢H(|G’ZX g Hg)

geG

I

g€G heH

Peou(H) = P( D h)

heH

|ZZX 9)

heH geG

Since the summation sign commutes, ¢y Py (H) = Py¢u(H)

11



2.6 Irreducible Frames are tight

2.6.1 Frame Operator

Definition 2.6.1. Let J be an indexing set. Let (fj)jcs in IH.

1. The synthesis operator V is a linear map from ly(J) — H given by

Vi=a— EE:ajj}

j€J

In matriz form, and representing a by a vector:

| |
V=1 H fo ... fa

2. The analysis operator VT is a linear map from H — lo(J) given by
V= f = ((, f))jes

In matriz form:

_flT_

| = -

—fnT—

3. The frame operator S is defined by S = VVT. Hence

S:f =Y AL

jeJ

Note that trace(S) =3, ||£;|/%. This is because

trace(S) = trace(VV?T) = trace(VI'V) = Zf]Tf] = Z<fj7fj> = Z 155112

JjeJ JjeJ JjeJ
Proposition 2.6.2. A finite sequence (f;)jes is a tight frame with bound A if and only if
S=VVT = Aly

12



Proof. — (fj)jes is a tight frame. Then for all f €

1
f=g 2 fii
jeJ
Then,
Sf=Y _(f i) fi = Af
jeJ
«— Let S = AI:}{
Then
S AP = trace(S) = Adim(H)
jeJ
]

Proposition 2.6.3. Let (,) be G-invariant. The frame operator S commutes with the action of
geG:

S(gf) =95(f),VgeG,feXH

Proof. Let ® = (¢4)gec be a group frame with a frame operator S:

S(hf) =Y (hf,dg)dg=hD> (f,h 7 dgdh ™ dg = D> (f, bp-1g)dp-15 = hS(f)

heG geG gelG
]

Theorem 2.6.4. (Waldron 10.5) Let v be any non-zero vector in an irreducible module V. Then
(gv)geq is a tight frame.

Let S be the frame operator for (gv)geq. S has positive eigenvalues, let that be A, and the
corresponding eigenvector w.

S(g-w) = gS(w) = gAW = A(g.w)

Since eigenspaces are submodules, and V is irreducible, then we must have (gw)gec spanning
V. Hence S= Aly. By proposition 1.6.2, (gv)geq is a tight frame.

13
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