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1. Introduction

A ®nitely generated residually-®nite group G has only ®nitely many subgroups of
each ®nite index. Let the number of subgroups of index n be an�G�. The study of
this sequence and its asymptotic behaviour has attracted considerable interest over
the past ®fteen years, and the subject has come to be known as subgroup growth
in contrast to the dual notion of word growth.

One tool which has proved useful in analysing the behaviour of this invariant is
the zeta function of a group. This is de®ned to be the Dirichlet series with
coef®cients an�G�:

zG�s� �
X
n2N

an�G�nÿs:

If the group G is in®nite cyclic, then zZ�s� � z�s�, the classical Riemann zeta
function. More generally, a free abelian group of rank n has zZ n�s� �Qn

i�1 z�sÿ i� 1�. The study of these Dirichlet series was initiated in [8] and
[19] for ®nitely generated nilpotent groups. One advantage of working with
nilpotent groups is that the zeta function enjoys an Euler product in terms of
natural local factors de®ned for each prime p:

zG�s� �
Y

p prime

zG; p�s�

where

zG; p�s� �
X1
i�0

ap i�G�pÿ i s:

We can equally well restrict our zeta functions to count just normal subgroups
of ®nite index. In this case we will denote the zeta function by zNG�s� and its
corresponding local factors by zN

G; p�s�.
We can consider the zeta function as a purely formal gadget. However for groups

for which the coef®cients an�G� grow polynomially, this function converges on
some right half of the complex plane. Such groups, known as PSG groups (for
polynomial subgroup growth) have been classi®ed as the virtually soluble groups of
®nite rank (see [14]). One of the key features of classical zeta functions of number
theory is the possibility of extending the zeta function meromorphically beyond
the abscissa of convergence. In this paper we prove the following.
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Theorem 1.1. Let G be a ®nite extension of a free abelian group of ®nite
rank. Then zG�s� and zNG�s� can be extended to meromorphic functions on the
whole complex plane.

This theorem should be contrasted with non-abelian examples where natural
boundaries abound (see [6]). The theorem, proved in § 2, extends the work of
Bushnell and Reiner [1, 2] to show that the zeta function of a ®nite extension of
an abelian group is always made out of the classical examples of Hey [9] of zeta
functions of central simple algebras.

A number of people have asked what relationship the zeta functions of groups have
to the work of Bushnell and Reiner; we hope that § 2 will provide an answer.

One of the interesting questions about these zeta functions which has not been
considered is the explicit effect on the function of extending or descending by a ®nite
group. As an example compare the in®nite cyclic group Z where zZ�s� � z�s� and the
in®nite dihedral group D1 where zD1�s� � 2ÿ sz�s� � z�sÿ 1�. So extending by a
®nite group (here C2) therefore has quite a subtle effect on the lattice of
subgroups even to the extent of changing the rate of polynomial growth.

In this paper we have calculated concrete examples to show the effect of
extending Z2 by a ®nite group. It reveals how sensitive the zeta function is as the
nature of the poles varies dramatically.

We have focused on the plane crystallographic groups. There are seventeen
isomorphism types of these objects, which are sometimes called the Fedorov or
wallpaper groups. Each of them is an extension of a free abelian group of rank 2
by a small ®nite soluble group. These groups have fairly standard names
among the crystallographic community and we conform to these. For a
discussion of presentations of these groups, and their mutual involvement, see
[3]. It is an important fact that subgroups of ®nite index in plane crystallographic
groups are plane crystallographic. This reduces the amount of work involved in
our calculations.

The proof of Theorem 1.1 provides quite an explicit approach to calculate these
zeta functions but relies on ignoring the effect of ®nitely many `bad' primes. This
is acceptable in proving a result like Theorem 1.1. However in the case of the
plane crystallographic groups, we exploit a slightly more sensitive method to
calculate these functions which provides a complete calculation of the zeta
functions without needing to throw away anything. This method has its origins in
[5] where the ®rst author showed how to prove rationality of the local zeta
functions of ®nite extensions of groups and the calculations here can be
considered as an implementation of the theoretical ideas developed in [5]. The
calculations are somewhat intricate, though repetitive. We therefore present the
results and provide sample calculations to illustrate the method. The interested
reader should consult the second author's thesis for more details [15].

Despite the considerable theoretical development concerning these zeta
functions (see, for example, [5, 12] etc.), the only explicit examples of these
functions prior to the examples presented here are some ®nitely generated
torsion-free nilpotent groups of class 2 (see [8, 19, 7]) and the congruence
subgroups in SL2�Zp� (see [11]). We therefore hope that our examples will
contribute to this list.

Our examples already provide some interesting corollaries and answers to some
previously open questions.
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The ®rst question concerns ®nding examples of groups with the same zeta
function, which will give us some indication as to how good an invariant the zeta
function is. We make the following de®nition after Sunada et al.

De®nition 1.2. Call two groups G and H isospectral if zG�s� � zH�s�.

Following Sunada's example we might ask `Can we hear the shape of a drum?',
that is, what is the zeta function telling us about the shape of the group?

In [8] examples of zeta functions are calculated to show that if two ®nitely
generated torsion-free nilpotent groups of class 2 and Hirsch length 7 or smaller
are isospectral then they must be commensurable, that is, coincide on some
subgroup of ®nite index.

However, by cardinality considerations, we always know that there are
uncountably many groups with the same zeta function. For example, there are
uncountably many p-adic analytic groups all of whose zeta functions are rational
by [5] but only countably many rational functions. In [10] Ilani presented a
countable number of examples of isospectral pro-p groups: let Pk denote the

closed subgroup of the multiplicative group 1� pZp generated by �1� p� p k

and
put Mk � Pk ´ Zp where Pk acts on Zp by multiplication. Then Mk for k 2N are
non-isomorphic isospectral pro-p groups with zeta function zp�s�zp�sÿ 1�. This
follows because all subgroups of ®nite index are two-generated.

Two groups with the same pro®nite completion will obviously have the same zeta
function because the lattice of subgroups of ®nite index in a group coincides with
that of its pro®nite completion. So it is of interest to observe examples of groups
with non-isomorphic pro®nite completions which nonetheless have the same zeta
function. Our analysis of the crystallographic groups reveals two such groups.

Theorem 1.3. The groups p1 � hx; y j �x; y�i and pg � hx; y; t j �x; y�;
t 2 � y; xt � xÿ1i are isospectral but have non-isomorphic lattices of subgroups
of ®nite index.

Note that having different lattices of subgroups of ®nite index is even stronger
than having non-isomorphic pro®nite completions. For example, there are two
non-isomorphic groups of order 256 which have isomorphic subgroup lattices
(E. A. O'Brien, personal communication).

Avinoam Mann brought to our attention the following explanation of the
isospectral behaviour of Theorem 1.3 which is originally due to Mednykh [16].
The groups p1 and pg are the oriented and unoriented versions of a surface group
of genus 1. More generally the oriented and unoriented surface groups of genus n
are generated by x1; y1; . . . ; xn; yn subject to a single relator. In the case of
oriented groups this is �x1; y1� . . . �xn; yn� � 1; and for unoriented groups the
relation is x2

1 y2
1 . . . x2

n y2
n � 1. These two groups are always isospectral for the

following reason: subgroups of ®nite index are determined by homomorphisms
into Sn which in turn are determined by the number of solutions in Sn of the
equation given by the relator of each group. These two equations always have the same
number of solutions because the irreducible characters of Sn are all real. More
speci®cally for p1 and pg the number of elements in Sn commuting with any
element is the same as the number of elements inverting it. Note that when the
genus is greater than 1, subgroups grow too fast for the zeta function to converge.
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The group pg also provides an example of a non-nilpotent group whose zeta
function enjoys an Euler product.

Theorem 1.4. The group pg � hx; y; t j �x; y�; t 2 � y; xt � xÿ1i is not nilpotent
but zpg�s� �

Q
p prime zpg; p�s�.

This Euler product is somewhat accidental and follows from Theorem 1.3 since
the zeta function coincides with the zeta function of the abelian group p1 which
does have an Euler product. This discovery prompted a search for other examples
of the same phenomenon, and we found pm and p1 ´ C2 (though the last group is
not plane crystallographic). The proofs of Theorems 1.3 and 1.4 follow by
inspection of the results contained in § 4.

The non-nilpotent examples should be contrasted with the following result for
®nite groups.

Proposition 1.5. If G is ®nite then zG�s� �
Q

p prime zG; p�s� if and only if G
is nilpotent.

Proof. Let jG j � p
n1

1 . . . pnr
r . Looking at the subgroups of index jG j, we see

from the Euler product that ap
n i
i
�G� � 1 for each i. Therefore the number of

Sylow pi-subgroups is

ajG j=p
n i
i
�G� �

Y
j 6� i

a
p

n j
j

�G� � 1:

Hence there is a unique Sylow pi-subgroup for each i � 1; . . . ; r, which implies
that G is nilpotent.

We would still be interested in providing an example of a pro®nite group to
answer the following question (in the negative, presumably).

Question. If zG�s� �
Q

p prime zG; p�s� then is G virtually pro-nilpotent?

Acknowledgements. We gratefully acknowledge the developers of the Compu-
tational Algebra systems AXIOM, GAP and MAGMA. The zeta functions in this
paper have all been checked up to and including the coef®cient of 100ÿ s, and in
some cases up to 1000ÿ s. Indeed, empirical data in the form of computations of
subgroups of small index played a vital role in detecting errors of calculation. The
second and third authors also acknowledge the hospitality of the University of
Melbourne, where part of this work was done. The second author acknowledges
the ®nancial support of the EPSRC, and of the University of Bath, during the
course of this work.

2. Meromorphic continuation

One of the important properties that one would like to prove about our zeta
functions is that they can be meromorphically continued to the whole complex
plane. In general this is not possible as explained in [6]. However in this section
we prove Theorem 1.1, that the zeta function of a ®nite extension of a free
abelian group does admit meromorphic continuation.
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It is instructive to consider the corresponding situation for the zeta function of a
number ®eld K. If K =k is an abelian extension, we can write the zeta function
zK�s� of K as a product of L-functions of the base ®eld k:

zK�s� � zk�s�
Y
x 6� 1

L�s; x�: �2:1�

Here the second product is taken over those characters x of the idele classes of k
which are trivial on the class group H corresponding to the abelian extension
K =k. The evaluation of this product at s � 1 gives the class number formula.
Note that L-functions are also at the heart of proving Dirichlet's Theorem on
primes in arithmetical progressions.

What makes the product (2.1) so attractive is that the right-hand side is entirely
de®ned in terms of the ®eld k. This is the strength of class ®eld theory at work
which relates abelian extensions of k to the structure of the idele class group of k.

Although we cannot hope for anything as beautiful as this in the theory of zeta
functions of groups, it nevertheless may be possible to write the zeta function of a
®nite extension of a group as some sort of twisted zeta function of the base
group, perhaps using characters of the ®nite quotient. This is possible in some
sense when the base group is an abelian group, as we now illustrate.

We ®rst make a de®nition of various partial zeta functions as in [5]. Let E be a
group with a ®nite index normal subgroup T and put P � E=T . For each
subgroup T < E� < E, put

z
E�
E �s� �

X
H 2H�E��

jE� : H jÿ s;

z
E�
E; p�s� �

X
H 2Hp�E��

jE� : H jÿ s;

z
E�;N
E �s� �

X
H 2HN�E��

jE� : H jÿ s;

z
E�;N
E; p �s� �

X
H 2HN

p �E��
jE� : H jÿ s;

where

H�E�� � fH < E: TH � E�g;
Hp�E�� � fH 2H�E��: H has p-power index in E�g,
HN�E�� � fH N E: TH � E�g;
HN

p �E�� � fH 2HN�E��: H has p-power index in E�g:

2.1. Counting subgroups
Since

zE�s� �
X

T < E�< E

jE : E�jÿ sz
E�
E �s�;

zE; p�s� �
X

T < E�<p E

jE : E�jÿ sz
E�
E; p�s�;

515zeta functions of crystallographic groups

PLM



to prove meromorphic continuation it suf®ces to prove it for the partial zeta
functions z

E�
E �s�. (Here <p means a subgroup of p-power index.) We have a

similar situation for the normal zeta function z N
E �s� which we shall come back to

later in § 2.2. For now we focus on z
E�
E �s�. We may suppose, without loss of

generality, that E� � E.
The following proposition shows how, when T is abelian, we can write the zeta

function of a ®nite extension as a sort of L-function of the base group.

Proposition 2.1. We have

z E
E �s� �

X
T� 2HN�T �

jT : T�jÿsjDer�P; T =T��jdT�

where dT� � 1 if T =T� has a complement in E=T� and dT� � 0 otherwise. (Recall

that HN�T � � fT� < T: T� N Eg.)

Proof. If H < E and HT � E then T� � H Ç T is a normal subgroup of E. For
each T� 2HN�T � we want to count how many complements H there are for
T =T� in E=T�. If there is one such complement then there are precisely
jDer�P; T =T��j such complements. For a proof of this we refer to Proposition 1
of Chapter 3 of [18]. However, since the ®nite extension of T may not split, it is
not always the case that complements exist. We shall see below that we can
ignore ®nitely many primes, in which case we are always guaranteed a
complement so the factor dT� will not trouble us for long.

We begin by showing that z E
E �s� has an Euler product, even though zE�s�

generally does not. Since E is not nilpotent, it is not obvious at ®rst sight that
z E

E �s� should have an Euler product.

Proposition 2.2.

z E
E �s� �

Y
p prime

z E
E; p�s�:

Proof. We can replace E by its pro®nite completion bE since the lattice of
subgroups remains the same. Note that bE is a ®nite extension ofbT � �bZ�d � �Qp Zp�d �

Q
p
bTp by P. De®ne Tp 0 �

Q
q 6� p

bTq. If H is a subgroup

of index n � p
a1

1 . . . p
a k

k in bE such that H ´ bT � bE then H ´ Tp 0i
is a subgroup of

index p
ai

i in bE and H ´ Tp 0i
´ bT � bE. Hence

H 7! �H ´ Tp 0
1
; . . . ;H ´ Tp 0

k
� �2:2�

de®nes a map between the set of subgroups H of index n in bE such that
H ´ bT � bE and the product of the k sets of subgroups �H1; . . . ;Hk� of indices,

respectively, p
a1

1 ; . . . ; p
a k

k in bE and Hi
bT � bE. This map is injective since

H � Tpi
H ´ Tp 0

i
. We must show ®nally that this is also a surjection, that is, if

Hi
bT � bE for i � 1; . . . ; k then HbT � bE where H � H1 Ç . . . Ç Hk. Now

jbE : �H1 Ç . . . Ç Hk�bT j � jH1
bT : �H1 Ç . . . Ç Hk�bT j

� jH1 : �H1 Ç . . . Ç Hk�bT Ç H1j:
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This last index divides jH1 : �H1 Ç . . . Ç Hk�j, which in turn divides

jH1 ´ �H2 Ç . . . Ç Hk� : H1j
which is a power of p1. But a similar analysis with H2 implies then that

�H1 Ç . . . Ç Hk�bT � bE:
Hence the map in (2.2) is a bijection which implies the Euler product claimed in
the statement of Proposition 2.2.

We show now that the zeta function of E is a variation on a classical zeta function
®rst considered by Hey and Eichler and later by Solomon, Bushnell and Reiner.

We recall the de®nition of Solomon's zeta function. Throughout, R is a
Dedekind ring with quotient ®eld K. In the global case, K is an algebraic number
®eld and R is the ring of integers of K. In the local case, K is the completion of a
number ®eld at some non-Archimedean place and R is the valuation ring in K.
Let A denote a ®nite-dimensional semisimple K-algebra. We denote by L an order
in A. This means that L is a subring of A, ®nitely generated as an R-module and
containing a K-basis of A.

Solomon de®ned the zeta function of L to be

zL�s� �
X
X Ì L

jL : X jÿ s;

where the sum is taken over left ideals X of ®nite index in L. We can generalise
this to considering V a ®nitely generated left A-module on n generators containing
a full left L-lattice M (where full means that M 
 K � V ). Then we set

zM�s� �
X

X Ì M

jM : X jÿ s

where X ranges over all L-sublattices of M.
For each prime p set Ap � Qp P with order Lp � Zp P. Then the induced action

of P on the abelian group T de®nes a left Ap-module Vp � T 
Qp with Lp-lattice

Mp � T 
 Zp � bTp. Let Ep be the group bE=Tp 0 where Tp 0 �
Q

q 6� p
bTq was de®ned

in the proof of Proposition 2.2. Then Ep is an extension of the abelian group
Mp � T 
 Zp by P. The following proposition shows how our zeta function is a
weighted version of Solomon's zeta function.

Proposition 2.3. If p is a prime then

z E
E; p�s� � z

Ep

Ep
�s� �

X
Xp Ì Mp

jMp : Xpjÿ sjDer�P; Mp =Xp�jdX p

�
X

Xp Ì Mp

jMp : Xpjÿ sjDer�P; Mp =Xp�j if � p; jP j� � 1;

where Xp ranges over Lp-sublattices of Mp.

Proof. The ®rst equality is a straightforward consequence of the fact that a
subgroup of p-power index in bE contains Tp 0 combined with the fact that all
subgroups of Ep have p-power index in Ep if their join with Mp is Ep. The second
equality follows from Proposition 2.1 and the fact that if Xp 2HN�Mp� (that is, a
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subgroup of Mp normal in Ep) then it is a Lp-sublattice of Mp and conversely. If p is
coprime to jP j then the extension Mp by P splits and hence Mp =Xp has a complement
in Ep =Xp for every Lp-sublattice Xp, that is, dXp

� 1 (see Theorem 7.7 of [17]).

Remark 1. In the case that the extension E of T by P splits, we can take the
Q-algebra A to be the group algebra QP with order ZP. The induced action of
P on the abelian group T de®nes a left A-module V � T 
Q with L-lattice M � T ,
and we can write the global zeta function as a weighted version of Solomon's
zeta function

z E
E �s� �

X
X Ì M

jM : X jÿ sjDer�P; M=X �j

where X ranges over L-sublattices of M.

So by Proposition 2.2,

z E
E �s� �

� Y
� p; jP j� 6� 1

Qp� pÿs�
�

´
Y

� p; jP j��1

X
Xp Ì Mp

jMp : Xpjÿs jDer�P; Mp =Xp�j; �2:3�

where Qp�X� is a rational function by [5]. Since Q�s� � �Q� p; jP j� 6�1 Qp� pÿs�� is a
meromorphic function on the whole complex plane, we suppose for the rest of the
section that � p; jP j� � 1 and therefore we can focus our attention onP

Xp Ì Mp
jMp : Xpjÿ sjDer�P; Mp =Xp�j.

By [1, § 3.3], if Lp is decomposable into a direct sum of orders Lp �
L1 � . . .� L r then the Lp-lattice Mp and a sublattice Xp will have corresponding
decompositions: Mp � M1 � . . .�Mr (where Mi � Li Mp), Xp � X1 � . . .� Xr and

jDer�P; Mp =Xp�j �
Yr

i�1

jDer�P; Mi =Xi�j:

HenceX
Xp Ì Mp

jMp : Xpjÿs jDer�P; Mp =Xp�j �
Yr

i�1

X
Xi Ì Mi

jMi : Xijÿs jDer�P; Mi =Xi�j:

Now the algebra A decomposes into a product of simple algebras A1 � . . .� Ar

which in turn gives a decomposition of Ap � Ap;1 � . . .� Ap; r. Note that Ap; i will
not necessarily be simple but we return to this point in a bit. The problem is that
the order Lp may not have a corresponding decomposition. However if the order
is maximal then it does: Lp � L1 � . . .� L r where L i is a maximal order in Ap; i.
Now for almost all primes p with � p; jP j� � 1, Lp is in fact a maximal order in
the algebra Ap (see [4, Proposition 27.1]).

Therefore for � p; jP j� � 1 we may reduce to the case where we may suppose
that A is a simple Q-algebra and hence

A � Mm�D�;
D is the division algebra with centre F;

F is the finite extension of Q with valuation ring R;

dimF D � e2;

V � W k where W is the simple left A-module Dm:
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The task is to identify almost all the local factorsX
Xp Ì Mp

jMp : Xpjÿs jDer�P; Mp =Xp�j

as something classical which we can put together to get something that we can
meromorphically continue.

We proceed now in an analogous manner to the proof in § 4.2 of [1]. For each
prime p, we have a further decomposition of the local algebra Ap >

Q
p j p Ap

where the product is taken over all prime ideals p of R lying over p. Each Ap is a
central simple Fp-algebra and is isomorphic to a full ring of integers Mmp

�Dp�
over some central simple Fp-division algebra Dp of dimension e2

p, say. Note that
ep mp � em which is the degree of both Ap over Fp and A over F . There are in
fact only ®nitely many p such that for some prime p lying over p, ep > 1; or in
other words the division algebra D splits for almost all primes p. Also the module
Vp � Ap ´ V is W

kp
p where Wp � D

mp
p , the simple left Ap-module. Since Vp is also

the completion of V at p, comparison of dimensions shows that kp ep � ke. When
ep � 1 therefore we get kp � ke. We have a corresponding decomposition of
Mp >

Q
p j p Mp where Mp � Mp 
 Rp and Rp is the ring of integers of Fp. As

above, our function can be decomposed further as a product over all the primes p
lying over p:X

Xp Ì Mp

jMp : Xpjÿs jDer�P; Mp =Xp�j �
Y
p j p

X
Xp Ì Mp

jMp : Xpjÿs jDer�P; Mp =Xp�j:

Lemma 2.4. If � p; jP j� � 1 then

jDer�P; Mp =Xp�j � jMp : �CMp
�P� � Xp�j �

Y
p j p
jMp : �CMp

�P� � Xp�j:

Proof. There are two things to show here:

(1) jDer�P; Mp =Xp�j � jMp =Xp : CMp = Xp
�P�j and

(2) CMp =Xp
�P� � �CMp

�P� � Xp�=Xp.

Proof of (1). Each derivation corresponds to a complement for Mp =Xp in
Ep =Xp since the extension splits now. Such complements are conjugate. Let Q be
a complement. Then jDer�P; Mp =Xp�j is equal to the number of conjugates of Q in
Ep =Xp, which is jEp =Xp : NEp =Xp

�Q�j � jMp =Xp : NMp =Xp
�Q�j since Ep =Xp � Mp Q.

If m 2 NMp =Xp
�Q� then �m; q� 2Mp =Xp Ç Q � 1. Hence NMp =Xp

�Q� � CMp =Xp
�P�.

Proof of (2). Suppose that a 2Mp and ag � a mod Xp for all g 2 P. ThenP
g2P ag � jP ja mod Xp. Now

P
g2P ag 2 CMp

�P�. Since � p; jP j� � 1, we have
a� jP ja�Pg2P ag mod Xp.

This completes the proof of the lemma.

Now since CM�P� � CV�P�Ç M and CV�P� � CW�P�k, where CW�P� is an
A-submodule of the simple module W , either CM�P� � M or CM�P� � 0. Put

« � 0 if CW�P� � W ;

1 if CW�P� � 0:

�
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Then CM�P� � M or 0 according to « � 0 or 1. Since CMp
�P� � CM
Rp

�P� �
CM�P� 
 Rp, we have, for � p; jP j� � 1,X

Xp Ì Mp

jMp : Xpjÿs jMp : �CMp
�P� � Xp�j �

X
Xp Ì Mp

jMp : Xpj«ÿ s:

We may now apply the formula due to Hey (see, for example, Formula
(16) of [1]) to calculate

P
Xp Ì Mp

jMp : Xpj«ÿ s since this is just the zeta function
of a Lp-lattice Mp inside an Ap-module where Lp is a maximal order:

X
Xp Ì Mp

jMp : Xpj«ÿ s �
Ykpÿ1

j�0

zRp
�mp ep�sÿ «� ÿ ep j�:

Referring back to formula (2.3) and assuming still for the moment that A is a
simple algebra, we have

z E
E �s� � Q�s� ´

Y
� p; jP j��1

Y
p j p

Ykpÿ1

j�0

zRp
�mp ep�sÿ «� ÿ ep j�

� S�s� ´
Ykeÿ1

j�0

zR�me�sÿ «� ÿ j�;

where

S�s� � Q�s� ´

� Y
� p; jP j� 6� 1

Ykeÿ1

j�0

zRp
�me�sÿ «� ÿ j�

�ÿ1

´

 Y
p j p; � p; jP j��1

ep > 1

Ykp epÿ1

j�0
j 6� 0 mod ep

zRp
�mp ep�sÿ «� ÿ ep j�

!ÿ1

:

Since there are only ®nitely many primes p with ep > 1 for some prime p lying
over p and each of the terms in these products is a rational function, S�s� admits
meromorphic continuation to the whole of C. But since zR�me�sÿ «� ÿ j� is just
the Dedekind zeta function of the number ®eld F which admits meromorphic
continuation to the whole of C, we may deduce that z E

E �s� also admits
meromorphic continuation to the whole of C.

To complete the proof we return to the case that A is not simple. Recall that E
is a ®nite extension of the free abelian group T by a ®nite group P. To calculate
z E

E �s� explicitly up to a ®nite product of rational functions we are required to
gather the following data:

(1) decompose A � QP into simple components A � A1 � . . .� Ar;

(2) let Fi denote the centre of the simple algebra Ai and Ri its ring of integers;
Ai is isomorphic to a full ring of matrices of rank mi over some central
Fi-division algebra Di;

(3) let n2
i � dimFi

�Ai� � m2
i e2

i where e2
i � dimFi

�Di�;
(4) let V � T 
Q be the module for A induced by the action of P on T; then

V � V1 � . . .� Vr where Vi � AiV � �Wi�k i and Wi is the Ai-module �Di�m i ;
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(5) set «i � 0 or 1 according to whether CWi
�P� � CWi

�A� � Wi or 0; then

z E
E �s� � S�s�

Yr

i�1

Yki eiÿ1

j�0

zRi
�ni�sÿ «i� ÿ j� �2:4�

where S�s� is a product over a ®nite number of primes p of rational
functions in pÿs:

The conclusion of all this is that z E
E �s� admits continuation to a meromorphic

function on the whole complex plane. This completes the proof of Theorem 1.1.

Note that from the formula (2.4) we can write down an explicit expression for
the zeta function up to a ®nite number of Euler factors. We shall explain in § 3 a
subtler procedure which will enable us to calculate the full zeta function in
particular cases. As we shall see in § 4 it is the bad primes which distinguish split
and non-split cases of an abelian group T extended by a ®nite group P.

2.2. Counting normal subgroups
As in the previous section we can focus our attention on proving meromorphic

continuation for z
E�;N
E �s� since

z N
E �s� �

X
T < E� N E

jE : E�jÿsz
E�;N
E �s�;

z N
E; p�s� �

X
T < E� N p E

jE : E�jÿsz
E�;N
E; p �s�:

In a similar fashion we also have an Euler product, which means that we can
concentrate on the local factors for almost all primes.

Proposition 2.5.

z
E�;N
E �s� �

Y
p prime

z
E�;N
E; p �s�:

The proof is the same as in Proposition 2.2 with the extra note added that H is
normal if and only if each H ´ Tp 0 is normal for each prime p.

Let Ep be the group bE=Tp 0 where Tp 0 �
Q

q 6� p
bTq was de®ned in the proof of

Proposition 2.2. Then Ep is an extension of the abelian group Mp � T 
 Zp by P.
Again we can reduce to considering the group Ep since the following holds.

Proposition 2.6. We have z
E�;N
E; p �s� � z

Ep �;N
Ep

�s� where Ep� � bE�=Tp 0 .

However, the one thing that we cannot assume as in the previous section is that
Ep � Ep�, since if H is normal in Ep�, it does not imply of course that H is normal
in Ep. If H is normal in Ep then certainly Xp � Mp Ç H and Ep� � Mp H are normal
in Ep. In particular, Xp is a Lp-sublattice of Mp where Lp � Zp P, an order inside
the group algebra Ap � Qp P. We need to know how to tell, given Ep� normal in Ep

and a Lp-sublattice Xp, whether there exists a normal complement H for Mp =Xp in
Ep�=Xp with H normal in Ep. Once we reduce the situation to considering primes p
coprime to the order of P this is done by the following.
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Proposition 2.7. Suppose that � p; jP j� � 1. Let Mp < Ep� be normal in Ep

and Xp be a Lp-sublattice of Mp. Then there exists a normal complement H for
Mp =Xp in Ep�=Xp with H normal in Ep if and only if �Ep�; Mp�< Xp. If such a
complement exists, it is unique.

Proof. Note ®rst that since we have the coprime condition, we always have a
complement H for Mp =Xp in Ep�=Xp and all such complements are conjugate in
Ep� (see [17, Theorem 7.77]). If H is normal in Ep then since Mp is also normal
in Ep, �H; Mp�< Mp Ç H � Xp. Hence �Ep�; Mp� � �HMp; Mp�< Xp. Also H is a
unique complement since it is normal in Ep and all complements are conjugate.

For the converse we want to prove that NEp
�H � � Ep. If g 2 Ep then H g < Ep�

is also a complement for Mp =Xp in Ep�=Xp. Since complements are conjugate in

Ep�, there exists k 2 Ep� such that H g k � H, that is, gk 2 NEp
�H �. Hence

Ep � Ep�NEp
�H � � Mp NEp

�H � since Ep� � Mp H and H < NEp
�H �. This implies

then that

jEp : NEp
�H �j � jMp : Mp Ç NEp

�H �j:
But since �H; Mp�< �Ep�; Mp�< Xp < H, we have Mp Ç NEp

�H � � Mp. Hence
jEp : NEp

�H �j � 1, that is, Ep � NEp
�H �. This completes the proof.

Corollary 2.8. Suppose that � p; jP j� � 1. Then

z
E�;N
E; p �s� � z

Ep �;N
Ep

�s� �
X

Xp Ì Mp

�Ep �;Mp�< Xp

jMp : Xpjÿs

where Xp ranges over Lp-sublattices of Mp.

Note that if Ep� � Mp then this is just the Solomon zeta function zMp
�s� of the

lattice Mp. More generally we have the following.

Corollary 2.9. Suppose that � p; jP j� � 1. Then

z
E�;N
E; p �s� �

X
Xp Ì Mp

jMp : Xpjÿs � zMp
�s�;

where Xp ranges over Lp-sublattice of Mp, and Mp � Mp = �Ep�; Mp�. (Recall that we
are assuming that Ep� is normal in Ep so that �Ep�; Mp� itself is a Lp-sublattice
of Mp.)

Corollary 2.10. The function z N
E �s� admits meromorphic continuation to the

whole complex plane.

Proof. This now follows the same argument as in the previous section without
the added complication of the weighted term we obtain from the derivations when
we count all subgroups. Note also that �Ep�; Mp� � �E�; T � 
 Zp. Hence, except
for a ®nite number of primes, z

E�;N
E �s� is essentially zM�s� where M � T = �E�; T �.

We will see this in practice in § 6 when we interpret the calculations of z N
E �s� for

the wallpaper groups made in § 4.2 in terms of Solomon's zeta function.
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3. Method to calculate `bad' primes

The ®rst place where the zeta function of a ®nite extension of a group was
systematically considered in terms of the zeta function of the base group was in
[5]. It was shown in § 2.2 of that paper how one can extend knowledge of the
rationality of the zeta function of a uniform pro-p group G1 to prove the
rationality of any ®nite extension G of G1.

This result can then be applied to calculate the local zeta function of an
extension G of an abstract ®nitely generated group G1 whose pro-p completion is
uniform and whose subgroups of p-power index are all subnormal. This is
explained in Theorem 3.3 of [5]. For example, this includes ®nite extensions of
nilpotent groups. More generally, as explained in the last paragraph of [5], it also
includes all ®nite extensions of ®nitely generated groups of ®nite rank. As proved
by Lubotzky and Mann [13], ®nitely generated, residually ®nite groups of ®nite
rank are actually ®nite extensions of soluble groups of ®nite rank. This is
precisely the class of groups for which the global zeta function de®nes an analytic
function on some right half of the complex plane (see [14]).

In the following two sections an adaptation of this method is applied to
calculate explicitly the zeta functions of the wallpaper groups, certain ®nite
extensions of the free abelian group of rank 2.

We take E to be a ®nite extension of a free abelian group T of rank 2 on x and
y. As is well known, every subgroup T� of ®nite index in T is free on elements
xayb and yc where a; c > 0 and 0 < b < c, and these exponents are uniquely
determined subject to the given constraints. The index jT : T�j � ac. The elements
xayb and yc are a `good basis' for T� in the terminology of [8] and [5].

Suppose T < E� < E. In order to enumerate all subgroups of ®nite index in E,
it suf®ces to list all groups T� and E�, and ®nd all H such that HT � E� and
H Ç T � T�. This will enable us to calculate z

E�
E �s� and hence

zE �
P

T < E�< E jE : E�jÿs z
E�
E �s�. For such an H to exist, it is a necessary

condition that H normalize T� so T� 4 E�. To test this we may choose elements X
of E� which generate E� modulo T . One may determine whether or not T� 4 E�
by conjugating the good basis for T� by elements of X and testing for membership
in T�. Since T� has ®nite index in E�, it is not necessary to check conjugation by
inverses of elements of X. We now assume that T� 4 E�. If H is a subgroup of E
whose meet and join with T are (respectively) T� and E�, then there is a natural
isomorphism between E�=T � HT =T and H =T�. This isomorphism sends the
preferred generators X of E�=T to preferred generators of H =T�.

Interestingly enough, this process is reversible. Suppose we have elements Y of
E�=T� in a distinguished bijective correspondence with X and such that
corresponding elements coincide modulo T . Find a set of de®ning relations R for
E�=T on the generating set X. Let H � hY ; T�i and suppose that the elements of
Y satisfy the relations R modulo T�, where each element of Y replaces the
corresponding element of X in each relation. It follows that H =T� is a quotient of
E�=T . However, H =�H Ç T � is isomorphic to E�=T and simultaneously is a
quotient of H =T� and thus is a quotient of E�=T . We conclude that H =�H Ç T �
is not a proper quotient of H =T� by ®niteness (or because polycyclic by ®nite
groups are Hop®an). Thus T� � H Ç T and E� � HT . Moreover, the generators Y
are (modulo T�) the ones induced from X in the previous paragraph.

In § 2.2 of [5] the preferred set of generators X is taken to be a transversal
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fx1; . . . ; xng for T in E� and then Y � ft1 x1; . . . ; tn xng is a right transversal for T�
in H where ft1; . . . ; tng is a `transversal basis' for H (see De®nition 2.10 of [5]).
In Lemma 2.12 of [5], conditions are given for when a set ft1; . . . ; tng de®nes a
transversal basis for some subgroup which corresponds to checking above that the
elements of Y satisfy the relations R modulo T�. When it comes to explicit
calculations this choice of a transversal for the generating set is inef®cient and a
more judicious choice is made instead.

In order to enumerate all the normal subgroups of ®nite index in E we have to
make a minor modi®cation. If H is a normal subgroup of ®nite index in E, then
HT , the smallest overgroup of T containing H, will itself be normal in E, and
H Ç T must also be normal in E.

Thus when looking for T� and E� we may restrict attention to the case that they
are both normal in E. This may be veri®ed by suitable conjugation and
membership testing. When this is done, we may apply the standard method to
®nd subgroups H with appropriate meet and join with T , but this will not
guarantee that H 4 E. A speci®c check must be made that a generating set of E
will conjugate generators of H into H. We may do this modulo T� if we wish, so
the issue can be settled inside the ®nite group E=T�. The same issue arises in
§ 2.3.1 of [5] where extra conditions are needed to ensure that the set ft1; . . . ; tng
de®nes a transversal basis for some normal subgroup of E.

4. Results

4.1. The zeta functions of the wallpaper groups
The zeta functions of the wallpaper groups are now listed. We have arranged as

far as possible that z E
E �s� (which each time will represent the new calculation

being made in each example) appears as the ®rst term in the formula. However
some collecting of terms has been done so that the ®rst expression also includes
terms from intermediate subgroups E� which give rise to zeta functions of a
similar structure. This results, for example, in the non-nilpotent groups whose zeta
functions nonetheless have Euler products, like pm and pg.

p1 � hx; y j �x; y�i has zeta function

z�s�z�sÿ 1�:
p2 � hx; y; r j �x; y�; r 2; xr � xÿ1; yr � yÿ1i has zeta function

z�sÿ 1�z�sÿ 2� � 2ÿsz�s�z�sÿ 1�:
pm � hx; y; m j �x; y�; m2; xm � x; ym � yÿ1i has zeta function

�1� 2ÿs�2�z�s�z�sÿ 1�:
pg � hx; y; t j �x; y�; t 2 � x; yt � yÿ1i has zeta function

z�s�z�sÿ 1�:
p2mm � hx; y; p; q j �x; y�; � p; q�; p2; q2; x p � x; xq � xÿ1; y p � yÿ1; yq � yi has

zeta function

�1� 2ÿs�3 � 2ÿ2 s�2�z�sÿ 1�z�sÿ 1�
� �2ÿs�1 � 7 ´ 2ÿ2 s�z�s�z�sÿ 1� � 2ÿsz�sÿ 1�z�sÿ 2�:
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p2mg � hx; y; m; t j �x; y�; t 2; m2 � y; xt � x; xm � xÿ1; yt � yÿ1; mt � mÿ1i has
zeta function

�1ÿ 2ÿ2s�2�z�sÿ 1�z�sÿ 1�
� �2ÿs�1 � 3 ´ 2ÿ2s�z�s�z�sÿ 1� � 2ÿsz�sÿ 1�z�sÿ 2�:

p2gg � hx; y; u; v j �x; y�; u2 � x; v2 � y; xv � xÿ1; yu � yÿ1; �uv�2 i has zeta
function

�1ÿ 2ÿs�1�2z�sÿ 1�z�sÿ 1�
� �2ÿs�1 ÿ 2ÿ2s�z�s�z�sÿ 1� � 2ÿsz�sÿ 1�z�sÿ 2�:

cm � hx; y; t j �x; y�; t 2; yt � yÿ1; xt � xyi has zeta function

�1� 2ÿ2 s�2�z�s�z�sÿ 1�:
c2mm � hx; y;m; r j �x; y�;m2; r 2; ym � yÿ1; xm� xy; yr � yÿ1; xr � xÿ1; r m � rÿ1 i

has zeta function

�1� 2ÿ2 s�3�z�sÿ 1�z�sÿ 1�
� �2ÿs�1 ÿ 2ÿ2 s � 2ÿ3 s�3�z�s�z�sÿ 1� � 2ÿsz�sÿ 1�z�sÿ 2�:

p4 � hx; y; r j �x; y�; r 4; yr � xÿ1; xr � yi has zeta function

z�sÿ 1�L�sÿ 1; x4� � 2ÿ2 sz�s�z�sÿ 1� � 2ÿsz�sÿ 1�z�sÿ 2�;
where x4 is the extended primitive residue class character x4: Z! �Z=4Z�� with

x4�a� �
1 if a� 1 mod 4;

ÿ1 if a� 3 mod 4;

0 otherwise;

8>><>>:
and L�s; x� denotes the Dirichlet L-function of x,

L�s; x� �
X1
n�1

x�n�nÿs:

Notice that z�s�L�s; x4� is the Dedekind zeta function of the number ®eld
Q�q4� where q4 is a primitive 4th root of unity. We shall see why this should be
in § 6.

p4mm � hx; y; r; m j �x; y�; r 4; m2; yr � xÿ1; xr � y; xm � y; r m � rÿ1i has zeta
function

�1� 4 ´ 2ÿs � 4 ´ 2ÿ2s�z�2sÿ 2� � �4 ´ 2ÿ2s � 5 ´ 2ÿ3s � 8 ´ 2ÿ4 s�z�s�z�sÿ 1�
� �2 ´ 2ÿs � 8 ´ 2ÿ2s � 4 ´ 2ÿ3s�z�sÿ 1�z�sÿ 1�
� 2ÿ2sz�sÿ 1�z�sÿ 2� � 2ÿsz�sÿ 1�L�sÿ 1; x4�:

(The L-function L�sÿ 1; x4� is explained above.)
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p4gm � hx; y; r; t j �x; y�; r 4; t 2; yr � xÿ1; xr � y; xt � y; r t � rÿ1 xÿ1 i has zeta
function

�1ÿ 4 ´ 2ÿ2s�z�2sÿ 2� � �4 ´ 2ÿ2s ÿ 3 ´ 2ÿ3s � 8 ´ 2ÿ4 s�z�s�z�sÿ 1�

� �2 ´ 2ÿs ÿ 4 ´ 2ÿ2s � 12 ´ 2ÿ3s�z�sÿ 1�z�sÿ 1�

� 2ÿ2sz�sÿ 1�z�sÿ 2� � 2ÿsz�sÿ 1�L�sÿ 1; x4�:
p3 � hx; y; r j �x; y�; r 3; xr � xÿ1y; yr � xÿ1 i has zeta function

z�sÿ 1�L�sÿ 1; x3� � 3ÿsz�s�z�sÿ 1�;
where x3 is the extended primitive residue class character x3: Z! �Z=3Z�� with

x3�a� �
1 if a� 1 mod 3;

ÿ1 if a� 2 mod 3;

0 otherwise:

8><>:
As we saw in the example of p4, z�s�L�s; x3� is the Dedekind zeta function of

the number ®eld Q�q3� where q3 is a primitive 3rd root of unity.

p31m � hx; y; r; t j �x; y�; r 2; t 2; �tr�3; xr � x; yt � y; xt � xÿ1y; yr � xyÿ1 i has
zeta function

�1� 3ÿs�z�2sÿ 2� � 2ÿsz�sÿ 1�L�sÿ 1; x3�
� �3 ´ 3ÿs ÿ 2 ´ 6ÿs � 12 ´ 12ÿs�z�s�z�sÿ 1�:

p3m1 � hx; y; r; m j �x; y�; r 3; m 2; r m � rÿ1; x r � xÿ1 y; y r � xÿ1; x m � xÿ1;
y m � xÿ1 y i has zeta function

�1� 3ÿs�2�z�2sÿ 2� � 2ÿsz�sÿ 1�L�sÿ 1; x3�
� �3 ´ 3ÿs ÿ 2 ´ 6ÿs � 12 ´ 12ÿs�z�s�z�sÿ 1�:

p6 � hx; y; r; j �x; y�; r 6; xr � y; yr � xÿ1 yi has zeta function

�1� 3ÿs�1�z�sÿ 1�L�sÿ 1; x3� � 3ÿsz�sÿ 1�z�sÿ 2� � 6ÿsz�s�z�sÿ 1�:
p6mm � h x; y; r; m j �x; y�; r 6; m 2; y r � xÿ1 y; x r � y; x m � xÿ1; y m � xÿ1 y;

r m � rÿ1 y i has zeta function

�1� 2 ´ 2ÿs � 3 ´ 3ÿs � 10 ´ 6ÿs�z�2sÿ 2� � �2ÿs � 4ÿs�z�sÿ 1�L�sÿ 1; x3�
� 3 ´ 3ÿs�1� 8 ´ 4ÿs�z�sÿ 1�z�sÿ 1� � 6ÿsz�sÿ 1�z�sÿ 2�
� �6 ´ 6ÿs ÿ 5 ´ 12ÿs � 24 ´ 24ÿs�z�s�z�sÿ 1�:

4.2. The normal zeta functions of the wallpaper groups

z N
p1�s� � z�s�z�sÿ 1�;

z N
p2�s� � 1� 6 ´ 2ÿs � 4 ´ 4ÿs � 2ÿsz�s�z�sÿ 1�;

z N
pm�s� � �1� 5 ´ 2ÿs � 2 ´ 4ÿs�z�s� � 2ÿs�1� 2ÿs�z�s�2;
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z N
pg�s� � �1� 2ÿs ÿ 2 ´ 4ÿs�z�s� � 2ÿs�1� 2ÿs�z�s�2;

z N
p2mm�s� � 1� 13 ´ 2ÿs � 20 ´ 4ÿs � 4 ´ 8ÿs � �2 ´ 2ÿs � 10 ´ 4ÿs � 4 ´ 8ÿs�z�s�

� �4ÿs � 8ÿs�z�s�2;
z N

p2mg�s� � 1� 5 ´ 2ÿs � 2 ´ 4ÿs � �2 ´ 2ÿs � 2 ´ 4ÿs ÿ 2 ´ 8ÿs�z�s�
� �4ÿs � 8ÿs�z�s�2;

z N
p2gg�s� � 1� 2ÿs�1�1ÿ 2ÿs�z�s� � 2ÿs � 2ÿ2s�1 � 2ÿ2 s�1� 2ÿs�z�s�2;
z N

cm�s� � �1� 2ÿs�z�s� � 2ÿs�1ÿ 2ÿs � 2 ´ 4ÿs�z�s�2;
z N

c2mm�s� � 1� 2ÿs�2 � 2ÿs�1�1� 2ÿs�z�s� � 2ÿs�1� 2ÿs�1 � 2ÿ2s�1�
� 2ÿ2 s�1ÿ 2ÿs � 2 ´ 4ÿs�z�s�2;

z N
p4�s� � 1� 3 ´ 2ÿs � 2 ´ 4ÿs � 2 ´ 8ÿs � 2ÿ2sz�s�L�s; x4�;

z N
p4mm�s� � 1� 7 ´ 2ÿs � 7 ´ 4ÿs � 6 ´ 8ÿs � 2 ´ 16ÿs � �8ÿs � 16ÿs�z�2s�;
z N

p4gm�s� � 1� 3 ´ 2ÿs � 3 ´ 4ÿs � 2 ´ 8ÿs � �8ÿs � 16ÿs�z�2s�;
z N

p3�s� � 1� 3ÿs�1 � 3ÿsz�s�L�s; x3�;
z N

p31m�s� � 1� 3ÿs � 2ÿs�1� 3ÿs� � 6ÿs�1� 3ÿs�z�2s�;
z N

p3m1�s� � 1� 2ÿs�1� 3ÿs�1� � 6ÿs�1� 3ÿs�z�2s�;
z N

p6�s� � 1� 2ÿs � 3ÿs � 6ÿs � 12ÿs � 6ÿsz�s�L�s; x3�;
z N

p6mm�s� � 1� 3 ´ 2ÿs � 4ÿs � 2 ´ 6ÿs � 12ÿs � 24ÿs � �12ÿs � 36ÿs�z�2s�:

5. Examples

We give two sample calculations. The ®rst is straightforward without being
trivial, and illustrates the method very quickly. The second is a little more
intricate, and demonstrates how congruence conditions on primes may arise.
Details of all the other calculations may be obtained from the second author and
are contained in [15].

5.1. The zeta function of pm
This group can be presented as

E � hx; y; m j �x; y�; m2; xm � x; ym � yÿ1 i:
The translation subgroup T is generated by x and y. The point group P,

generated by mT, is cyclic of order 2.
We ®rst count subgroups H of ®nite index in E such that HT � E. Now

T� � hxc yd; ye i for suitable natural numbers c, e and 0 < d < e (uniquely). The
condition that T� 4 E amounts to �xc yd�m � xc yÿd 2 T� and �ye�m � yÿe 2 T�. We
distinguish m, a generator of E=T � hm jm2 i, and seek mxa yb which satis®es
�m1 xa yb�2 � x2 a 2 T�.
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Now, yÿ e is contained in T� regardless of the value that e takes. For x2a and
xc yÿd are in T� if and only if there are integers a1, a2, b1 and b2 such that
x2a � �xc yd�a1�ye�b1 and xc yÿd � �xc yd�a 2�ye�b 2 . Since we are only concerned
with m1xa yb modulo T�, we may assume that 0 < a < c and 0 < b; d < e.
Moreover, subject to these restrictions, the various cosets mxa yb T� are distinct.

The following set of necessary and suf®cient conditions must hold:

C1 � f2a� ca1; 0� da1 � eb1; c � ca2;ÿd� da2 � eb2; 0 < a < c; 0 < b; d < eg
for integers a1, a2, b1 and b2.

We ®nd it convenient to summarize the possible subgroups H via a matrix
of exponents

1 a b

0 c d

0 0 e

0B@
1CA:

The condition 2a � ca1 is satis®ed exactly when either a � 1
2

c or a � 0. If
a � 1

2
c, then a1 � 1 so that 0 � d � eb1. Now d < e so a � 1

2
c forces d � 0. If

d 6� 0, then ÿ2d � eb2 yields that d � 1
2

e. We get three cases, in each of which b
is free within the range 0 < b < c. The possibilities are:

(i) a � d � 0 and no extra restrictions on c, e, or

(ii) a � 1
2

c (and c is even), d � 0, or

(iii) a � 0, d � 1
2

e (and e is even).

We form the three corresponding sums to obtain a contribution towards zpm�s� ofX
c; e2N

cÿseÿse�
X

c2 2N;e2N
cÿseÿse�

X
c2N; e2 2N

cÿseÿse

� �1� 2ÿs � 2ÿs�1�z�s�z�sÿ 1�
� �1� 3 ´ 2ÿs�z�s�z�sÿ 1�:

The subgroup E2 is free abelian of rank 2 so zE 2
� z�s�z�sÿ 1�. Now, E2 has index

2 in E so the contribution from E2 to the zeta function of E is 2ÿsz�s�z�sÿ 1�:
zpm�s� � �1� 4 ´ 2ÿs�z�s�z�sÿ 1�:

5.2. The zeta function of p4
This group can be presented as

E � p4 � hx; y; r j �x; y�; r 4; yr � xÿ1; xr � yi:
The translation subgroup T is generated by x and y. The point group P,

generated by rT, is cyclic of order 4. Possible groups E� are

(i) E1��E �,
(ii) E2 � hx; y; r 2 i, and

(iii) E4 � hx; yi,
where the subscript denotes the index in E. Finite index subgroups H such that
HT � E1 can be generated as

H � hr 1 xa yb; xc yd; ye i;
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where T� � hxc yd; ye i and we have 0 < d < e and 0 < e. We must force T� to be
normal in E and ensure that �rxa yb�4 2 T�. Also, since we are only concerned
with r 1xa yb modulo T�, we may take a, b in the ranges 0 < a < c and 0 < b < e.
The matrix of exponents is

1 a b

0 c d

0 0 e

0B@
1CA:

Just as for the previous example, we expand out these words and then attempt
to rewrite them as words in the generators of T�:

C2�fÿd � ca1; c � da1 � eb1;ÿe � ca2; 0 � da2 � eb2; 0 < a < c; 0 < b; d < eg:
We can rewrite the second and fourth of the equations in C2 using the identities

from the ®rst and third. We get these two new equations:

c � ÿca1a1 ÿ ca2 b1 and 0 � ÿca1a2 ÿ ca2 b2:

The last condition simply determines b2 � ÿa1. The previous condition tells us
that a2

1 is congruent to ÿ1 modulo a2. For ÿ1 to be a square modulo n, a natural
number, either n must be a product of prime powers where each prime is
congruent to 1 modulo 4 or, 1

2
n must be of this form. Furthermore, if n (or 1

2
n) is

of this form, then there are 2m choices for the `square root' of ÿ1, where m is the
number of distinct prime factors of n (or 1

2
n respectively).

The matrix of exponents now becomes

1 a b

0 c ÿca1

0 0 ÿca2

0B@
1CA:

We see that, given c and ÿa2, there are c choices for a, ÿca2 choices for b,
and 2m choices for ÿca1 , where m depends on a2 as above. Summing over all
possible values for a, b, c, a1 and a2, we getX

c2N;a 2 2S
cÿscÿsccaÿs

2 a2 w�a2� �
X

c2N;a 2 2 2S

cÿscÿsccaÿs
2 a2 w� 1

2
a2�:

Here w and S are de®ned as follows:

w�n� � 2m; where m is the number of distinct prime divisors of n;

S � fn j n 2N and for all primes p such that p jn; p� 1 mod 4g:
If we set z ��s� �Pn2S w�n�nÿs, then the zeta function for E1 is

�1� 2ÿs�1�z�2sÿ 2�z ��sÿ 1�

� �1� 2ÿs�1�
Y

p prime

1

�1ÿ p1ÿ s��1� p1ÿ s�

´
Y

p� 1 mod 4

�1� 2p1ÿ s � 2p2ÿ2 s � . . .�:
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NowY
p prime

1

�1� p1ÿ s�
Y

p� 1 mod 4

�1� 2p1ÿ s � 2p2ÿ2 s � . . .�

� 1

�1� 2ÿs�1�
Y

p odd prime

1

�1� p1ÿ s�
Y

p� 1 mod 4

�1� p1ÿ s��1� p1ÿ s � p2ÿ2 s � . . .�

� 1

�1� 2ÿs�1�
Y

p� 3 mod 4

1

�1� p1ÿ s�
Y

p� 1 mod 4

1

�1ÿ p1ÿ s�

� 1

�1� 2ÿs�1� L�sÿ 1; x4�;

where x4 is the extended primitive residue class character x4: Z! �Z=4Z�� with

x4�a� �
1 if a� 1 mod 4,

ÿ1 if a� 3 mod 4,

0 otherwise;

8><>:
and L�s; x� denotes the Dirichlet L-function of x,

L�s; x� �
X1
n�1

x�n�nÿs �
Y

p

1

�1ÿ x� p�pÿs� :

Hence

�1� 2ÿs�1�z�2sÿ 2�z ��sÿ 1� � z�sÿ 1�L�sÿ 1; x4�:
The group E2 is isomorphic to p2, while E4 is isomorphic to p1, and for the
purposes of this demonstration we assume that p1 and p2 have already been
investigated. We take the contributions from these subgroups to be the appropriate
Dirichlet series multiplied by the respective indices on E. We must be careful not
to overcount subgroups in the case of E2, and only count those whose join with T
is E2. The contributions are then summed, to obtain

zp4�s� � z�sÿ 1�L�sÿ 1; x4� � 2ÿsz�sÿ 1�z�sÿ 2� � 2ÿ2 sz�s�z�sÿ 1�
and our demonstration is complete.

The method we use to ®nd a formula for the normal zeta function of a
crystallographic group is very similar to the above except that the number of
conditions which need to be examined rises sharply [15].

6. Theory versus practice

In this section we return to the theoretical arguments of § 2 and interpret the
zeta functions of the wallpaper groups in the context of zeta functions of orders.
We compare the results of § 4 with the formula derived at the end of § 2 for the
zeta function at good primes.

Table 1 compares the calculations of the zeta functions counting all subgroups
of ®nite index. For each example we record
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Table 1. Counting subgroups in the wallpaper groups.

E P Ai Fi ni ei ki «i z T ;N
E �s�, z E

E �s�,

p1 1 Q Q 1 1 2 0 z�s�z�sÿ 1� z�s�z�sÿ 1�
p2 C2 � hr i Qj Q 1 1 0 0 1 1

Q�r ÿ 1� Q 1 1 2 1 z�s�z�sÿ 1� z�s�z�sÿ 1�
pm, pg, cm C2 � hmi Qj Q 1 1 1 0 z�s� z�s�

Q�mÿ 1� Q 1 1 1 1 z�s� z�sÿ 1�
p2mm, Qj Q 1 1 0 0 1 1

p2mg, C2 ´ C2 Q� pqÿ 1� Q 1 1 0 1 1 1
p2gg, � h pi ´ hqi Q� pÿ 1� Q 1 1 1 1 z�s� z�sÿ 1�
c2mm Q�qÿ 1� Q 1 1 1 1 z�s� z�sÿ 1�

p4 C4 � hr i Qj Q 1 1 0 0 1 1
Q�r ÿ 1� Q�q4� 1 1 1 1 zQ�q4��s� zQ�q4��sÿ 1�
Qj Q 1 1 0 0 1 1

p4mm, D8 � C4 ´ C2
Q�mÿ 1� Q 1 1 0 1 1 1

p4gm � hr i ´ hmi Q�r 2 ÿ 1� Q 1 1 0 1 1 1
Q�mr 2 ÿ 1� Q 1 1 0 1 1 1
M2�Q� Q 2 1 1 1 z�2s� z�2�sÿ 1��

p3 C3 � hr i Qj Q 1 1 0 0 1 1
Q�r ÿ 1� Q�q3� 1 1 1 1 zQ�q3��s� zQ�q3��sÿ 1�

p31m, S3 � C3 ´ C2
Qj Q 1 1 0 0 1 1

p3m1 � hr i ´ hm i Q�mÿ 1� Q 1 1 0 1 1 1
M2�Q� Q 2 1 1 1 z�2s� z�2�sÿ 1��
Qj Q 1 1 0 0 1 1

p6 C6 � hr i Q�r 2 ÿ 1� Q�q3� 1 1 0 1 1 1
Q�r 3 ÿ 1� Q 1 1 0 1 1 1
Q�r 3 ÿ 1� 
Q�r 2 ÿ 1� Q�q3� 1 1 1 1 zQ�q3��s� zQ�q3��sÿ 1�
Qj Q 1 1 0 0 1 1

D12 � C6 ´ C2

Q�mÿ 1� Q 1 1 0 1 1 1

p6mm � hr i ´ hm i
Q�r 3 ÿ 1� Q 1 1 0 1 1 1
Q�mr 3 ÿ 1� Q 1 1 0 1 1 1
M2�Q� Q 2 1 0 1 1 1
M2�Q� Q 2 1 1 1 z�2s� z�2�sÿ 1��

P
LM



(1) the structure of A � QP and its decomposition into simple components
A � A1 � . . .� Ar;

(2) Fi, the centre of the simple algebra Ai, and Ri, its ring of integers; Ai is
isomorphic to a full ring of matrices of rank mi over some central Fi -
division algebra Di;

(3) n2
i � dimFi

�Ai� � m2
i e2

i where e2
i � dimFi

�Di�;
(4) the integer ki de®ned as follows: if V � T 
Q is the module for A induced

by the action of P on T then V � V1 � . . .� Vr where Vi � AiV � �Wi�ki

and Wi is the Ai-module �Di�mi ;

(5) set «i � 0 or 1 according to whether CWi
�P� � CWi

�A� is Wi or 0; then

z E
E �s�,

Yr

i�1

Yki eiÿ1

j�0

zRi
�ni�sÿ «i� ÿ j�

where , will mean up to multiplication by rational functions in pÿs for
each prime p with � p; jP j� � 1 and Di not split over p.
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Table 2. Counting normal subgroups.

E P 1 < P� N P �Ep �; Mp� z
E� ;N
E �s�,

p1 1 1 1 z�s�z�sÿ 1�

p2 C2 � hr i 1 1 z�s�z�sÿ 1�
hr i Mp 1

pm, pg, cm C2 � hm i 1 1 z�s�2
hm i Qp y z�s�

p2mm,
1 1 z�s�2

p2mg,
C2 ´ C2 h pi Qp y z�s�

p2gg
� h pi ´ hqi hqi Qp x z�s�

h pqi, h p; qi Mp 1

C2 ´ C2
1 1 z�s�2

c2mm � hr i ´ hm i hm i, hrmi Qp y z�s�
hr i, hr; m i Mp 1

p4 C4 � hr i 1 1 zQ�q4��s�hr 2i, hr i Mp 1

p4mm, D8 � C4 ´ C2
1 1 z�2s�

p4gm � hr i ´ hmi hr i, hr 2 i,
Mp 1hr 2; m i, hr; mi

p3 C3 � hr i 1 1 zQ�q3��s�hr i Mp 1

p31m, S3 � C3 ´ C2 1 1 z�2s�
p3m1 � hr i ´ hmi hr i, hr; m i Mp 1

p6 C6 � hr i 1 1 zQ�q3��s�hr i, hr 2 i, hr 3 i Mp 1

D12 � C6 ´ C2
1 1 z�2s�

p6mm � hr i ´ hmi hr i, hr 2 i, hr 2; m i,
Mp 1hr 3 i, hr 3; mi, hr; mi
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Table 2 compares the calculations of the normal zeta function. Here we need to
record the normal subgroups E� lying between E and T and the structure of
�E�; T �. For E� � T we will get

z T ;N
E �s�,

Yr

i�1

Yki eiÿ1

j�0

zRi
�ni sÿ j�:

In both tables qn denotes a primitive n th root of unity, and the element
j �Pg2P g. If T k E� N E then we put P� � E�=T . In Table 1, z T ;N

E �s� and
z E

E �s� are each ,-equivalent to the product of the r functions (one corresponding
to each simple component of A) listed in the corresponding row.

We refer to [4, Example 7.39] for the structure of A in the case that P is a
dihedral group. Note that we never get any instance above where a simple
component of A involves a division algebra. Hence the only bad primes will be
those for which � p; jP j� � 1. This tallies when one compares Tables 1 and 2 with
the calculations in § 4. (Some care must be taken reading the zeta function of
the bad prime from the results in § 4 since some collecting of terms has been
done.) If the point group was a quaternion group (not an example which
arises in the wallpaper groups) then we would get a division algebra (see [4,
Example 7.40]).
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