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AbstractÐDetermining the rigid transformation relating 2D images to known 3D geometry is a classical problem in photogrammetry

and computer vision. Heretofore, the best methods for solving the problem have relied on iterative optimization methods which cannot

be proven to converge and/or which do not effectively account for the orthonormal structure of rotation matrices. We show that the

pose estimation problem can be formulated as that of minimizing an error metric based on collinearity in object (as opposed to image)

space. Using object space collinearity error, we derive an iterative algorithm which directly computes orthogonal rotation matrices and

which is globally convergent. Experimentally, we show that the method is computationally efficient, that it is no less accurate than the

best currently employed optimization methods, and that it outperforms all tested methods in robustness to outliers.

Index TermsÐPose estimation, absolute orientation, optimization,weak-perspective camera models, numerical optimization.
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1 INTRODUCTION

DETERMINING the rigid transformation that relates images
to known geometry, the pose estimation problem, is one

of the central problems in photogrammetry, robotics,
computer graphics, and computer vision. In robotics, pose
estimation is commonly used in hand-eye coordination
systems [1]. In computer graphics, it plays a central role in
tasks that combine computer-generated objects with photo-
graphic scenesÐe.g., landmark tracking for determining
head pose in augmented reality [2], [3], [4], [5] or interactive
manipulation of objects. In computer vision, pose estima-
tion is central to many approaches to object recognition [6].

The information available for solving the pose estimation
problem is usually given in the form of a set of point
correspondences, each composed of a 3D reference point
expressed in object coordinates and its 2D projection
expressed in image coordinates. For three or four noncol-
linear points, exact solutions can be computed: A fourth- or
fifth-degree polynomial system can be formulated using
geometrical invariants of the observed points and the
problem can be solved by finding roots of the polynomial
system [7], [8], [9], [10], [11], [12]. However, the resulting
methods can only be applied to a limited number of points
and are thus sensitive to additive noise and possible outliers.

For more than four points, closed form solutions do not
exist. The classical approach used in photogrammetry is to
formulate pose estimation as a nonlinear least-squares

problem and to solve it by nonlinear optimization algo-
rithms, most typically, the Gauss-Newton method [13], [14],
[15]. In the vision literature, the work by Lowe and its
variants [16], [17] is an example of applying the
Gauss-Newton method to the pose estimation problem.
As with most nonlinear optimizations, these methods rely
on a good initial guess to converge to the correct solution.
There is no guarantee that the algorithm will eventually
converge or that it will converge to the correct solution.

A class of approximate methods for pose estimation has
been developed by relaxing the orthogonality constraint on
rotation matrices and/or by simplifying the perspective
camera model [18], [19], [20], [21], [22], [23], [24], [25]. In
iterative reduced perspective methods [23], [26], an approx-
imate solution computed using a simplified camera model
is iteratively refined to approach a full perspective solution.
In these methods, the rotation matrix is computed in two
steps: First, a linear (unconstrained) solution is computed
and then this solution is fit to the ªclosestº orthogonal
matrix. It has been shown that this two-step approach for
computing rotation is not the same as finding the best
orthogonal matrix [27]. Again, with such methods there is
no guarantee that they will eventually converge to the
correct solution when applied iteratively.

The developments in this article were originally moti-
vated by the work of Haralick et al. [28]. They introduced a
pose estimation algorithm which simultaneously computes
both object pose and the depths of the observed points. The
algorithm seems to be globally convergent, although a
complete proof was not given. What makes this algorithm
attractive is that the nonlinearity due to perspective is
eliminated by the introduction of the depth variables.
However, this algorithm has not received much attention,
probably due its slow local convergence rate (hundreds of
iterations), as indicated in [28] and found by ourselves.

In our approach, we reformulate the pose estimation
problem as that of minimizing an object-space collinearity
error. From this new objective function, we derive an
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algorithm that operates by successively improving an
estimate of the rotation portion of the pose and then
estimates an associated translation. The intermediate rota-
tion estimates are always the best ªorthogonalº solution for
each iteration. The orthogonality constraint is enforced by
using singular value decomposition, not from specific
parameterization of rotations, e.g., Euler angles. We further
prove that the proposed algorithm is globally convergent.
Empirical results suggest that the algorithm is also
extremely efficient and usually converges in five to
10 iterations from very general geometrical configurations.
In addition, the same experiments suggest that our method
outperforms the Levenberg-Marquardt methods, one of the
most reliable optimization methods currently in use, in
terms of both accuracy against noise and robustness against
outliers.

1.1 Outline of the Article

The remainder of this article is organized as follows:
Section 2 describes the formulation of the pose estimation
problem more formally and briefly reviews some of the
classical iterative methods used to solve it. Section 3
introduces the orthogonal iteration algorithm and proves
its global convergence. The link between weak perspective
and the proposed method is also presented. In Section 4,
detailed performance analyses using large scale simulations
are given to compare our method to existing methods.
Finally, Section 5 concludes by suggesting some directions
in which the method could be extended. An appendix
contains technical arguments for two results needed for
discussions within the article.

2 PROBLEM FORMULATION

2.1 Camera Model

The mapping from 3D reference points to 2D image
coordinates can be formalized as follows: Given a set of

noncollinear 3D coordinates of reference points pi �
�xi; yi; zi�t; i � 1; . . . ; n; n � 3 expressed in an object-cen-

tered reference frame, the corresponding camera-space

coordinates qi � �x0i; y0i; z0i�t, are related by a rigid trans-

formation as:

qi � Rpi � t; �1�
where

R �
rt1
rt2
rt3

0@ 1A 2 SO�3� and t �
tx
ty
tz

0@ 1A 2 R3 �2�

are a rotation matrix and a translation vector, respectively.
The camera reference frame is chosen so that the center

of projection of the camera is at the origin and the optical

axis points in the positive z direction. The reference points

pi are projected to the plane with z0 � 1, referred to as the

normalized image plane, in the camera reference frame.1 Let

the image point vi � �ui; vi; 1�t be the projection of pi on the

normalized image plane. Under the idealized pinhole

imaging model, vi, qi and the center of projection are

collinear. This fact is expressed by the following equation:

ui � rt1pi � tx
rt3pi � tz

�3a�

vi � rt2pi � ty
rt3pi � tz

�3b�

or
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Fig. 1. The reference frames in the pose estimation problem.

1. We assume throughout this article that the camera internal calibration
(including both lens distortion and the mapping from metric to pixel
coordinates) is known.



vi � 1

rt3pi � tz
�Rpi � t�; �4�

which is known as the collinearity equation in the photo-
grammetry literature. However, another way of thinking of
collinearity is that the orthogonal projection of qi on vi
should be equal to qi itself. This fact is expressed by the
following equation:

Rpi � t � Vi�Rpi � t�; �5�
where

Vi � viv
t
i

vtivi
�6�

is the line-of-sight projection matrix that, when applied to a
scene point, projects the point orthogonally to the line of
sight defined by the image point vi. Since Vi is a projection
operator, it satisfies the following properties:

kxk � kVixk; x 2 R3; �7a�

V t
i � Vi; �7b�

V 2
i � ViV t

i � Vi: �7c�
In the remainder of this article, we refer to (4) as the

image space collinearity equation and (5) as the object space
collinearity equation. The pose estimation problem is to
develop an algorithm for finding the rigid transform �R; t�
that minimizes some form of accumulation of the errors (for
example, summation of squared errors) of either of the
collinearity equations (see Fig. 2).

2.2 Classical Iterative Methods

As noted in the introduction, the most widely used and
most accurate approaches to the pose estimation problem
use iterative optimization methods. In classical

photogrammetry, the pose estimation problem is usually
formulated as the problem of optimizing the following
objective function:

Xn
i�1

"
ûi ÿ rt1pi � tx

rt3pi � tz

� �2

� v̂i ÿ rt2pi � ty
rt3pi � tz

� �2
#
; �8�

given observed image points v̂i � �ûi; v̂i; 1�t, which are
usually modeled as theoretical image points perturbed by
Gaussian noise. The rotation matrix, R, is usually para-
meterized using Euler angles. Note that this is a minimiza-
tion over image-space collinearity.

Two commonly used optimization algorithms are the

Gauss-Newton method and Levenberg-Marquardt method.

The Gauss-Newton method is a classical technique for

solving nonlinear least-squares problems. It operates by

iteratively linearizing the collinearity equation around the

current approximate solution by first-order Taylor series

expansion and then solving the linearized system for the

next approximate solution. The Gauss-Newton method

relies on a good local linearization. If the initial approximate

solution is good enough, it should converge very quickly to

the correct solution. However, when the current solution is

far from the correct one and/or the linear system is ill-

conditioned, it may converge slowly or even fail to

converge altogether. It has been empirically observed [29]

that, for the Gauss-Newton method to work, the initial

approximate solutions have to be within 10 percent of scale

for translation and within 15o for each of the three rotation

angles.
The Levenberg-Marquardt method can be regarded as an

interpolation of steepest descent and the Gauss-Newton
method. When the current solution is far from the correct
one, the algorithm behaves like a steepest descent method:
slow, but guaranteed to converge. When the current
solution is close to the correct solution, it becomes a
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Fig. 2. Object-space and image-space collinearity errors.



Gauss-Newton method. It has become a standard technique
for nonlinear least-squares problems and has been widely
adopted in computer vision [30], [31] and computer
graphics [3].

2.3 Why Another Iterative Algorithm?

Classical optimization techniques are currently the only
choice when observed data is noisy and a high accuracy
solution to the pose estimation problem is desired. How-
ever, since these algorithms are designed for solving general
optimization problems, the specific structure of the pose
estimation problem is not fully exploited. Furthermore, the
commonly used Euler angle parameterization of rotation
obscures the algebraic structure of the problem. The analysis
for both global and local convergence is only valid when the
intermediate result is close to the solution. At the same time,
recent developments in vision-based robotics [32], [33], [34]
and augmented reality demand pose estimation algorithms
be not only accurate, but also be robust to corrupted data
and be computationally efficient. Hence, there is a need for
algorithms that are as accurate as classical optimization
methods, yet are also globally convergent and fast enough
for real-time applications.

3 THE ORTHOGONAL ITERATION ALGORITHM

In this section, we develop our new pose estimation
algorithm, subsequently referred to as the orthogonal
iteration (OI) algorithm. The method of attack is to first
define pose estimation using an appropriate object space
error function and then to show that this function can be
rewritten in a way which admits an iteration based on the
solution to the 3D-3D pose estimation or absolute orientation
problem. Since the algorithm depends heavily on the
solution to absolute orientation, we first review the absolute
orientation problem and its solution before presenting our
algorithm and proving its convergence.

3.1 Optimal Absolute Orientation Solution

The absolute orientation problem can be posed as follows:
Suppose the 3D camera-space coordinates qi could be
reconstructed physically (for example, by range sensing) or
computationally (for example, by stereo matching or struc-
ture-from-motion). Then, for each observed point, we have

qi � Rpi � t: �9�
Computing absolute orientation is the process of determin-
ing R and t from corresponding pairs qi and pi: With three
or more noncollinear reference points, R and t can be
obtained as a solution to the following least-squares
problem

min
R;t

Xn
i�1

kRpi � tÿ qik2; subject to RtR � I: �10�

Such a constrained least-squares problem [35] can be solved
in closed form using quaternions [36], [37] or singular value
decomposition (SVD) [27], [38], [36], [37].

The SVD solution proceeds as follows: Let fpig and fqig
denote lists of corresponding vectors related by (1) and
define

�p �def 1

n

Xn
i�1

pi; �q �def 1

n

Xn
i�1

qi; �11�

that is, �p and �q are the centroid of fpig and fqig,
respectively. Define

p0i � pi ÿ �p; q0i � qi ÿ �q; �12�
and

M �
Xn
i�1

q0ip
0
i
t
: �13�

In other words, 1
nM is the sample cross-covariance matrix

between fpig and fqig: It can be shown that [27] if R�; t�

minimize (10), then they satisfy

R� � arg maxR tr�RtM� �14�

t� � �qÿR��p: �15�
Let �U;�; V � be a SVD of M, that is, UtMV � �: Then, the

solution to (10) is

R� � V Ut: �16�
Note that the optimal translation is entirely determined by

the optimal rotation and all information for finding the best

rotation is contained in M as defined in (13). Hence, only

the position of the 3D points relative to their centroids is

relevant in the determination of the optimal rotation matrix.

It is also important to note that, although the SVD of a

matrix is not unique, the optimal rotation is as shown in

Appendix A.

3.2 The Algorithm

We now turn to the development of the Orthogonal

Iteration Algorithm. The starting point for the algorithm is

to state the pose estimation problem using the following

object-space collinearity error vector (see Fig. 2):

ei � �I ÿ V̂i��Rpi � t�; �17�
where V̂i is the observed line-of-sight projection matrix

defined as:

V̂i � v̂iv̂
t
i

v̂tiv̂i
: �18�

We then seek to minimize the sum of the squared error

E�R; t� �
Xn
i�1

keik2 �
Xn
i�1

k�I ÿ V̂i��Rpi � t�k2 �19�

over R and t. Note that all the information contained in the

set of the observed image points fvig is now completely

encoded in the set of projection matrices fV̂ig. Since this

objective function is quadratic in t, given a fixed rotation R,

the optimal value for t can be computed in closed form as:

t�R� � 1

n
I ÿ 1

n

X
j

V̂j

 !ÿ1X
j

�V̂j ÿ I�Rpj: �20�
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For (20) to be well-defined, I ÿ 1
n

Pn
i�1 V̂i must be positive

definite, which can be verified as follows:
For any 3-vector x 2 R3, it can be shown that

xt�I ÿ 1

n

Xn
i�1

V̂i�x

� 1

n

Xn
i�1

�kxk2 ÿ xtV̂ix� � 1

n

Xn
i�1

�kxk2 ÿ xtV̂ t
i V̂ix�

� 1

n

Xn
i�1

�kxk2 ÿ kV̂ixk2� > 0:

�21�

While kxk2 ÿ kV̂ixk2 can be individually greater than or
equal to zero, they cannot be all equal to zero unless all
scene points are projected to the same image point.
Therefore, (21) is generally strictly greater than zero and,
thus, the positive definiteness of V̂i is asserted.

Given the optimal translation as a function of R and
defining

qi�R� �def
V̂i�Rpi � t�R�� and �q�R� �def 1

n

Xn
i�1

qi�R�; �22�

(19) can be rewritten as:

E�R� �
Xn
i�1

kRpi � t�R� ÿ qi�R�k2: �23�

This equation now bears a close resemblance to the absolute
orientation problem (compare with (10)). Unfortunately, in
this case, we cannot solve for R in closed form as the sample
cross-covariance matrix between fpig and fqi�R�g, that is,

M�R� �
Xn
i�1

q0i�R�p0it where p0i � pi ÿ �p;

q0i�R� � qi�R� ÿ �q�R�;
�24�

is dependent on R itself.
However, R can be computed iteratively as follows: First,

assume that the kth estimate of R is R�k�, t�k� � t�R�k��, and
q
�k�
i � R�k�pi � t�k�. The next estimate, R�k�1�, is determined

by solving the following absolute orientation problem:

R�k�1� � arg minR
Xn
i�1

kRpi � tÿ V̂iq�k�i k2 �25�

� arg maxR tr RtM�R�k��
� �

; �26�

where the set of V̂iq
�k�
i is treated as a hypothesis of the set of

the scene points qi in (10). In this form, the solution for
R�k�1� is given by (16). We then compute the next estimate
of translation, using (20), as:

t�k�1� � t R�k�1�
� �

�27�

and repeat the process. A solution R� to the pose estimation
problem using the orthogonal iteration algorithm is defined
to be a fixed point to (25), that is, R� satisfies

R� � arg minR
Xn
i�1

kRpi � tÿ V̂i�R�pi � t�R���k2: �28�

Note that a solution does not necessarily correspond to the

correct true pose.

3.3 Global Convergence

We now wish to show that the orthogonal iteration

algorithm will converge to an optimum of (25) for any set

of observed points and any starting point R�0�. Our proof,

which is based on the Global Convergence Theorem [39,

chapter 6], requires the following definitions:

Definition 3.1. A point-to-set mapping A from X to Y is said to

be closed at x 2 X if the assumptions

1. xk ! x; xk 2 X
2. yk ! y; yk 2 A�xk� imply
3. y 2 A�x�:

The point-to-set mapping A is said to be closed on X if it is

closed at each point of X.

Note that continuous point-to-point mappings are

special closed point-to-set mappings.

Definition 3.2. A set S is said to be closed if xk ! x with

xk 2 S implies x 2 S. S is said to be compact if it is both

closed and bounded.

Define OI : SO�3�7!SO�3� to be the mapping that

generates R�k�1� from R�k�, that is, R�k�1� � OI�R�k��.
According to the Global Convergence Theorem [39], to

prove the global convergence of the orthogonal iteration

algorithm we need to show that

1. OI is closed.
2. All fR�k�g generated by OI are contained in a

compact set.
3. OI strictly decreases the objective function unless a

solution is reached.

To verify the first condition, we note that OI can be

considered as the composition of three mappings:

F : SO�3�7!R3�3 is a point-to-point mapping that repre-

sents the computation of M�k� �M�R�k�� in (24).

SVD : R3�3 7!SO�3� � GL�3� � SO�3� is a point-to-set map-

ping that represents the calculation of the SVD of M�k�.

G : SO�3� � GL�3� � SO�3�7!SO�3� is a point-to-point map-

ping that represents the computation of R�k�1� from the

SVD of M�R�k�� using (16),

where SO�3� is the set of 3� 3 orthogonal matrices and

GL�3� is the set of 3� 3 diagonal matrices.
The first and the last mappings, F and G, are continuous

and, hence, are closed. In Appendix A, it is shown that

SVD is also a closed mapping. Therefore, it follows that OI

is closed using the fact that the composition of closed

mappings is also closed [39].
Since OI always generates orthogonal matrices and the

set of orthogonal matrices SO�3� is compact (closed and

bounded), the second criteria is met.
Finally, we seek to prove the third criteria. The sum of

squared error of the estimate R�k�1� can be related to that of

R�k� as follows:
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E R�k�1�
� �

�
Xn
i�1

kq�k�1�
i ÿ V̂iq�k�1�k2

�
Xn
i�1

kq�k�1�
i ÿ V̂iq�k�i � V̂iq�k�i ÿ V̂iq�k�1�

i k2

�
Xn
i�1

kq�k�1�
i ÿ V̂iq�k�i k2

�
Xn
i�1

q
�k�
i ÿ q

�k�1�
i

� �t
V̂ t
i�

2 q
�k�1�
i ÿ V̂iq�k�i

� �
� V̂iq�k�i ÿ V̂iq�k�1�

i

�
�
Xn
i�1

kq�k�1�
i ÿ V̂iq�k�i k2

�
Xn
i�1

q
�k�
i ÿ q

�k�1�
i

� �t
V̂ t
i

�
2q
�k�1�
i ÿ V̂i q

�k�
i � q

�k�1�
i

� ��
:

�29�
Applying the fact that V̂i � V̂ t

i V̂i to the second term in the
righthand side of the last equation in (29), we have

Xn
i�1

�
2 V̂iq

�k�
i

� �t
V̂iq

�k�1�
i ÿ 2kV̂iq�k�1�

i k2

ÿ kV̂iq�k�i k2 � kV̂iq�k�1�
i k2

�
� ÿ

Xn
i�1

kV̂iq�k�1�
i ÿ V̂iq�k�i k2:

�30�
But, according to (25) and (27),

Xn
i�1

kq�k�1�
i ÿ V̂iq�k�i k2 �

Xn
i�1

kq�k�i ÿ V̂iq�k�i k2 � E R�k�
� �

�31�

and we obtain

E R�k�1�
� �

� E R�k�
� �

ÿ
Xn
i�1

kV̂iq�k�1�
i ÿ V̂iq�k�i k2: �32�

Assume that R�k� is not a fixed point of OI, which implies

R�k�1� 6� R�k� and q
�k�1�
i 6� q

�k�
i . If

Pn
i�1 kV̂iq�k�1�

i ÿ V̂iq�k�i k2 is

equal to zero, then V̂iq
�k�1�
i � V̂iq�k�i . But since the optimal

solution to the absolution orientation problem is unique,

according to (25), we must have R�k�1� � R�k�, which contra-

dicts our assumption thatR�k� is not a fixed point. Therefore,Pn
i�1 kV̂iq�k�1�

i ÿ V̂iq�k�i k2 cannot be zero. Combined with (32),

we have

E R�k�1�
� �

< E R�k�
� �

; �33�

meaning that OI decreases E strictly unless a solution is
reached.

Now, we can claim that the orthogonal iteration
algorithm is globally convergent, that is, a solution, or a
fixed point, will eventually be reached from arbitrary
starting point. Although global convergence does not
guarantee that the true pose will always be recovered, it
does suggest that the true pose can be reached from very a
broad range of initial guesses. Based on the experiments in

Section 4.1, we have empirically observed that the only
constraint on R�0� for OI to recover the true pose is that it
does not result in translation with negative z component,
i.e., it does not place the object behind the camera.

3.4 Initialization and Weak Perspective
Approximation

The OI algorithm can be initiated as follows: Given an initial

guess R�0� of R, compute t�0�. The initial pose �R�0�; t�0�� is

then used to establish a set of hypothesized scene points

V̂i�R�0�pi � t�0��, which are used to start the first absolute

orientation iteration. Although the orthogonal iteration

algorithm is globally convergent, it does not guarantee that

it will efficiently or eventually converge to the correct

solution. Instead of choosingR�0�, we can treat vi themselves

as the first hypothesized scene points. This leads to an

absolute orientation problem between the set of 3D reference

points pi and the set of image points vi considered as

coplanar 3D points. This initial absolute orientation problem

is related to weak perspective approximation.

3.4.1 Weak-Perspective Model

Weak-perspective is an approximation to the perspective

camera model described in Section 2.1. Under the weak

perspective model, we have the following relation for each

reference point pi

ui � 1

s
�rt1pi � tx� �34a�

vi � 1

s
�rt2pi � ty�; �34b�

where s is called scale or principle depth. Weak perspective is

valid when the depths of all camera-space coordinates are

roughly equal to the principle depth and the object is close

to the optical axis of the camera. Conventionally, the

principle depth is chosen as the depth of the origin of the

object space, that is, the z-component of the translation tz
when �p, the center of the reference points, is also the origin

of the object space. Here, we decouple the scale s from tz, so

it can be chosen as the one that minimizes its deviation from

the depths of the camera space coordinates

Xn
i�1

rt3pi � tz ÿ s
ÿ �2

: �35�

Of course, we also need to minimize the square of the image
error over R, t, and s

Xn
i�1

�
rt1pi � tx ÿ sûi
ÿ �2� rt2pi � ty ÿ sv̂i

ÿ �2
�
: �36�

Combining (35) and (36), and weighting them equally, we
have the following least-squares objective function:Xn

i�1

kRpi � tÿ sv̂ik2: �37�

This is the same objective function as for absolute
orientation, (10), but with the additional scale variable
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and the (implicit) constraint that all camera-space coordi-
nates have the same depth. In this new objective function,
the value of s together with R and t must be determined
simultaneously.

By considering the following modified objective function
[36], [27]

min
R;t;s

Xn
i�1

k 1���
s
p Rp0i ÿ

���
s
p

q0ik2; �38�

the solution for s can be found to be

s �
�����������������������Pn

i�1 kp0ik2Pn
i�1 kq0ik2

s
: �39�

The rotation matrix of the pose is independent of s, yet it
reduces the overall least-squares objective function. After R
and s are determined, t can be computed as:

t � s�vÿR�p; �40�
where �v � 1

n

Pn
i�1 v̂i. Note that if the origin of the object

space is placed at �p, i.e., �p � 0, then s � tz.

3.4.2 Initial Absolute Orientation Solution

With the OI algorithm, the initial rotation will be the same

as those computed using the aforementioned weak-per-

spective algorithm, however, the translation is different in

that it is computed using (20) as a result of optimizing (19).

Let us rewrite (20) here

t�R� � 1

n
I ÿ 1

n

X
j

V̂j

 !ÿ1X
j

V̂j ÿ I
ÿ �

Rpj: �41�

Comparing (40) and (41), we find that the former is
approximated by the latter if the following conditions hold:

I ÿ 1

n

X
j

V̂j

 !ÿ1

� I �42�

1

n

X
j

V̂jRpj � s�v for some s > 0: �43�

The first condition states that the scene points are located close
to the optical axis and the second condition states that the
scene points are distributed like a plane parallel to the image
plane. These two conditions closely resemble the conditions
under which weak-perspective approximation is valid.

In summary, we have reformulated the pose estimation
problem under the weak-perspective model as the problem
of fitting the set of the reference points to a planar projection
of the image points. Using the image points themselves as
the hypothesized scene points in the initial absolute
orientation iteration results in a pose solution better than
the unmodified weak-perspective solution. This pose
solution serves, therefore, as a good initial guess for the
subsequent iterative refinement.

3.5 Depth-Dependent Noise

The global convergence of the OI algorithm is attained at
the expense of being biased when the observed image

points are perturbed by homogeneous Gaussian noise. The
pose solution will implicitly more heavily weight reference
points that are farther away from the camera. This is
because the object-space collinearity error increases as the
reference point is moved away from the camera.

We can reduce this bias by slightly modifying the
optimization algorithm. Note that the projection operator,
V̂i; is a function of the image vector vi. If the noise
distribution were accounted for, the orthogonal iteration
algorithm would involve minimizing the following objec-
tive function:

Xn
i�1

�Rpi � t�t�I ÿ V̂i���ÿ1
i �I ÿ V̂i��Rpi � t�; �44�

where ��i is the covariance matrix associated with V̂i due to
noise in image point vi. The presence of this matrix
prohibits using the orthogonality of the rotation matrix to
simplify the dependence of the objective function on R. An
exact closed-form solution is not possible unless the
orthogonality constraint on rotation is dropped, in which
case the problem becomes a linear least-squares problem.
This linear approach faces the same problems encountered
by other linear methods for pose estimation.

Although the general weighted least-squares problem
cannot be solved, if, instead, the absolute orientation
problem is presented as an equally-weighted or a scalar-
weighted least squares, we can still find closed-form
solutions in which the orthogonality constraint is fully
considered. In order to do this, we must assume that image
error for each image coordinate is identical. Supposing that
the error in camera-space coordinates is roughly propor-
tional to the depth, the covariance matrix can then be
approximated as:

��
�k�
i � d

�kÿ1�
i

� �2
aI; �45�

where a is some constant and d
�kÿ1�
i is the depth of q

�kÿ1�
i .

The intermediate absolute orientation problem can now be
formulated as a scalar-weighted least squares

Xn
i�1

1

d
�k�
i

� �2
kRpi � tÿ V̂i R�k�pi � t�k�

� �
k2: �46�

Such weighting schemes were used in [40], [41] and can be
easily incorporated into the algorithm developed above.

Note, however, that this kind of bias is significant only
when the object is very close to the camera or the depth of
the object is comparable to the distance between the object
and the camera. According our experiments in Section 4.1,
the bias is noticeable only when the ratio between the size of
the object in the direction of optical axis and distance to
camera is smaller than 3.5, in which cases unbiased
methods like Levenberg-Marquardt may be preferable.

4 EXPERIMENTS

We have developed implementations of OI in both C++ and
in Matlab. The code for the latter can be found from http://
www.cs.jhu.edu/~hager. These implementations have been
tested in both simulation and on real data and have also
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been compared with implementations of other pose
estimation algorithms. The results of these experiments
are detailed below.

4.1 Dependence on Object Location and Initial
Guesses

In this section, we evaluate the proposed algorithm as a
function of distances to camera and to optical axis,
respectively. The purpose is to study the following three
aspects of the algorithm:

1. The performance of OI when it is initialized with a
weak-perspective pose as a function of how suffi-
cient the weak-perspective model approximates the
true perspective camera model. The validity of the
weak-perspective model can be characterized by the
following two parameters:

. distance to camera and

. distance to optical axis.

2. The effect of the bias described in Section 3.5 when
the distance between the object and the camera is
relatively small compared to the size of the object in
the direction of optical axis.

3. The performance of OI when it is randomly
initialized compared to that of OI when it is
initialized with a weak-perspective pose.

The set of 3D reference points are defined as the eight
corners of the box defined by �ÿ5; 5� � �ÿ5; 5� � �ÿ5; 5� in the
object space. The translation vector is varied with increasing
distance to camera and with increasing distance to optical
axis. Uniformly distributed random 3D rotation is gener-
ated for each translation [42]. The set of reference points are
then transformed by the selected rotation and translation.

Finally, the resulting 3D points are projected onto the
normalized image plane to produce image points.
Gaussian noise with signal-to-noise ratio (SNR) = 70 dB
is added to both coordinates of the image points to

generate the perturbed image points. The variance � of
the noise is related to signal-to-noise ratio (SNR) by
SNR � ÿ20 log��tz=10� dB.

The following two tests are conducted on the generated
input data:

D1. The translation vector is generated by fixing tx � 5 and
ty � 5, and varies tz=10 from 1.5 to 50 by a step of 1. The
purpose is to measure how well the proposed algorithm
performs when the target object is approaching the
camera.

D2. The translation vector is generated by fixing tx � 5 and
tz � 200 and varies ty=10 from 1.5 to 50 by a step of 1. The
purpose is to measure how well the proposed algorithm
performs when the target object is moving away from the
optical axis.

The distances are expressed relative to the object size. For
each translation, the average rotation error and translation
error are computed over 1,000 uniformly distributed
rotation matrices.

4.1.1 Results and Discussions

Depth-dependent noise. From Fig. 4 and Fig. 5, we can see

that, as the target object moves closer to the camera, the

translation error increases due to the bias of OI toward

points farther away from camera. However, the effect is

significant only when the ratio between the distance to

camera and the object size in z direction is smaller than 3.5.

Beyond this, the average translation error remains almost

constant as the object moves away from the camera when

image points are perturbed by noise with the same SNR.
It is interesting to see that the average rotation error is

almost not affected by the bias. It seems that the biasing effects

introduced by each V̂i are canceled by each other during the

computation of rotation, while their influences remain

significant in the computation of translation using (20).
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Fig. 4. Rotation error as a function of distance to camera. The
results for OI initialized with weak-perspective pose are plotted as
squares ( tu) and the results for OI randomly initialized are plotted
as diamonds (�). Each point represents results averaged over 1,000
uniformly distributed rotations.

Fig. 3. Number of iterations as a function of distance to camera.
The results for OI initialized with weak-perspective pose are
plotted as squares ( tu) and the results for OI randomly initialized
are plotted as diamonds (�). Each point represents results
averaged over 1,000 uniformly distributed rotations.



Weak-perspective approximation. Besides the effect of

depth-dependent noise, we can see that the average rotation

and translation errors do not vary significantly as the

distance to camera and the distance to optical axis change

(see the plots of squares (tu) in Figs. 4, 5, 7, and 8). However,

the number of iterations does decrease (see plots of squares

(tu) in Figs. 3 and 6) as the camera model is better

approximated by weak-perspective model when the

object moves away from the camera and/or approaches

the optical axis. This means that, when the weak-

perspective pose is closer to the true pose, OI can

converge to it faster. However, even if the weak-perspective

pose is not close enough, OI can still reach it with the same

accuracy. It just takes more steps.

Initial guesses. When OI is initialized with randomly

generated rotation, the average number of iterations taken

by OI to converge is roughly the same for different object

locations and is generally higher than when using weak-

perspective initialization (see plots of diamonds (�) in Figs. 3

and 6). From Fig. 4 and 7, we can see that the average

rotation error is almost the same as with weak-perspective

initialization, while average translation error varies within a

range of 2 percent of the true translation (see plots of

diamonds (�) in Figs. 5 and 8).
With more than six point correspondences, one expects a

unique pose solution [43] under noiseless conditions.

Although in noisy cases there may be a few spurious fixed

points to which OI converges, our experiments show that,

by merely constraining initial rotation so that it does not
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Fig. 8. Translation error as a function of distance to optical axis.
The results for OI initialized with weak-perspective pose are
plotted as squares ( tu) and the results for OI randomly initialized
are plotted as diamonds (�). Each point represents results
averaged over 1,000 uniformly distributed rotations.

Fig. 7. Rotation error as a function of distance to optical axis. The
results for OI initialized with weak-perspective pose are plotted as
squares ( tu) and the results for OI randomly initialized are plotted
as diamonds (�). Each point represents results averaged over 1,000
uniformly distributed rotations.

Fig. 6. Number of iterations as a function of distance to optical
axis. The results for OI initialized with weak-perspective pose are
plotted as squares ( tu) and the results for OI randomly initialized
are plotted as diamonds (�). Each point represents results
averaged over 1,000 uniformly distributed rotations.

Fig. 5. Translation error as a function of distance to camera. The
results for OI initialized with weak-perspective pose are plotted as
squares (tu), and the results for OI randomly initialized are plotted
as diamonds (�). Each point represents result averaged over 1,000
uniformly distributed rotations.



place the object behind the camera, OI seems to be able to

reach the true pose.

4.2 Comparisons to Other Methods

In this section, the the proposed algorithm is compared to

other methods using different test strategies with synthe-

tically generated data. The protocol for generating the input

data used throughout this section is governed by the

following control parameters: number of points N , signal-

to-noise ratio (SNR), and percentage of outliers (PO). The

test data was generated as follows:
A set of N 3D reference points are generated uniformly

within a box defined by �ÿ5; 5� � �ÿ5; 5� � �ÿ5; 5� in the

object space. A uniformly distributed random 3D rotation is

generated as in Section 4.1. For translation, the x and y

components are uniformly selected from the interval �5; 15�
and the z component was selected from the interval �20; 50�.
The set of reference points is then transformed by the

randomly selected rotation and translation.
Following this, a fraction (= PO) of the 3D points are

selected as outliers. Each of these points is replaced by

another 3D point whose components are taken from a

uniform distribution within a box �ÿ5; 5� � �ÿ5; 5� � �ÿ5; 5�

in the object space. The rest of the processing is the same as
that in Section 4.1.

4.2.1 Standard Comparison Tests

In the following section, we will investigate the properties
of the proposed method in comparison to other techniques
based on experimental results. For this purpose, we design
a set of standard comparison tests on synthetic data with
varying noise, percentages of outliers, and numbers of
reference points.

The following four standard tests were conducted on the
generated input data:

C1. Set N = 20, PO = 0. Record the log errors of rotation and
translation against SNR (30 dB-70 dB in 10 dB step). The
purpose is to measure how well the tested methods resist
noise.

C2. Set N = 20, SNR = 60 dB. Record the log errors of
rotation and translation against PO (5-25 percent in
5 percent step). The purpose is to see how well the tested
methods tolerate outliers.

C3. Set PO = 0, SNR = 50 dB. Record the log errors of
rotation and translation against N (10 to 50 by step of 10).
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Fig. 12. Result (average translation error) of Experiment C1 for

comparing with the Levenberg-Marquardt method. Error is in log scale.

Each point in the plot represents 1,000 trials.

Fig. 11. Result (average rotation errors) of Experiment C1 for comparing

with the Levenberg-Marquardt method. Error is in log scale. Each point

in the plot represents 1,000 trials.

Fig. 10. Average numbers of iterations used by the tested methods.

Each point in the plot represents 1,000 trials.

Fig. 9. Average running times used by the tested methods. Each point in

the plot represents 1,000 trials.



The purpose is to investigate how the accuracy can be
improved by increasing the number of reference points.

To assess the performance of the methods, we measure
the mean error in rotation and translation over 1,000 trials
for each setting of the control parameters.

4.2.2 Results and Discussions

The methods tested here are the orthogonal iteration

algorithm, a linear method using full perspective camera

model [18], and a classical method using Levenberg-

Marquardt minimization. An implementation of LM (called

LMDIF) in MINPACK2 is used in our experiments. LM

starts from the same initial solutions as those generated

from the orthogonal iteration algorithm. The geometrical

configurations are chosen in such a way that the weak-

perspective approximation is poor in general. With poor

initial guesses, LM behaves like a steepest descent method,

which exhibits a slow convergence rate. This explains why

LM is slower than the proposed method with increasing

SNR or PO. On the other hand, the proposed method is as

fast as LM when both are initialized with appropriate

values. This leads us to believe that the proposed method

has quadratic-like local convergence similar to that of the

Gauss-Newton method.
Figs. 9 and 10 show the average running times and

number of iterations of the methods we tested against the
number of reference points. These times are measured for
SNR � 60 dB and PO � 0 on a Silicon Graphics IRIS Indigo
with a MIPS R4400 processor. The orthogonal iteration
algorithm is clearly much more efficient than LM, having
about the same accuracy as LM without outliers (see
Figs. 11, 12, 15, and 16). It significantly outperforms LM in
the presence of outliers, as shown by Figs. 13 and 14.

5 CONCLUSION

In this article, we have presented a fast and globally
convergent pose estimation algorithm. Large-scale empiri-
cal testing has shown that this algorithm is generally more
efficient and no less accurate than the classical Levenberg-
Marquardt method in unconstrained geometrical condi-
tions. Hence, the algorithm is well-suited for any situation,
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Fig. 16. Result (average translation errors) of Experiment C3 for

comparing with the Levenberg-Marquardt method. Error is in log scale.

Each point in the plot represents 1,000 trials.

Fig. 15. Result (average rotation errors) of Experiment C3 for comparing

with the Levenberg-Marquardt method. Error is in log scale. Each point

in the plot represents 1,000 trials.

Fig. 14. Result (average translation errors) of Experiment C2 for

comparing with the Levenberg-Marquardt method. Error is in log scale.

Each point in the plot represents 1,000 trials.

Fig. 13. Result (average rotation errors) of Experiment C2 for comparing

with the Levenberg-Marquardt method. Error is in log scale. Each point

in the plot represents 1,000 trials.

2. Visi t http://www.mcs.anl .gov/summaries/minpack93/
summary.html for information about the public-domain package MIN-
PACK-2 that implements these methods.



especially where both efficiency and accuracy are desired
and, in particular, when good prior initialization is not
available.

There are several possible extensions to this algorithm.
For example, the method can be extended to handle
uncertainty in the locations of the reference points on the
object by slight modification of the objective function. The
optimization could also be easily extended to perform a
robust optimization step using IRLS methods [44], making
it yet more robust to outliers. In addition, our results
suggest that OI tends to find the correct pose solution,
suggesting that there are few, if any, spurious local minima.
We are currently working to determine the conditions
under which the pose computed by OI is unique and the
error of OI can be analytically determined.

We are currently implementing a version of the algo-
rithm within the XVision [45] environment for use in robotic
applications, as well as augmented and virtual reality. An
initial implementation described in [46] has shown that, by
combining efficient local tracking with efficient pose
estimation, it is relatively simple to construct a real-time
object tracking system which runs on typical desktop
hardware. An interesting extension will be to extend the
formalism to include pose estimation from lines and to
compare the efficiency and accuracy with other existing
pose tracking system such as demonstrated by Lowe [30].

APPENDIX A

UNIQUENESS OF THE OPTIMAL SOLUTION TO THE

ABSOLUTE ORIENTATION PROBLEM

We show that the best rotation R to (10) is unique. Let

M � U�V t � �1û1v̂
t
1 � �2û2v̂

t
2 � �3û3v̂

t
3 �47�

be an SVD of M, where U and V are orthogonal matrices
and � is diagonal. The solution for R is V Ut. U , �, and V are
unique 1) making the same permutation P of the columns
of U , elements of �, and columns of V , or 2) changing the
sign of the corresponding columns of U and V , or 3)
replacing columns of U and V corresponding to repeated
singular values by any orthonormal basis of the span
defined by the columns. This corresponds to rotating the
columns by an orthogonal matrix.

For a square matrix M with an SVD M � U�V t, all three
changes do not affect V Ut. Let the new SVD under any of
these changes be U 0�0V 0t. For rotation, let

U 0 � UT; V 0 � V T;
then

V 0U 0t � V TTtUt � V Ut

since TTt � I. The same reasoning can be applied to
permutation since permutation matrices are special cases
of rotation matrices. Changing signs of corresponding
columns of U and V will not change V Ut since
V Ut � v̂1û

t
1 � v̂2û

t
2 � v̂3û

t
3.

APPENDIX B

CLOSEDNESS OF SVD

Suppose that Mk !M, that �Uk;�k; Vk� is an arbitrary SVD

of Mk, and that �Uk;�k; Vk� ! �U;�; V �: To show that SVD,

viewed as a point-to-set mapping, is closed, we must show

that �U;�; V � is a SVD of M.
From the closedness of SO�3�; U and V are orthonormal

matrices. Likewise, the set of diagonal matrices in GL�3� is a

closed subgroup and, hence, � is a diagonal matrix.

Therefore, �U;�; V � is an SVD of some matrix M 0 � U�V t.

However, by the continuity of transposition and matrix

multiplication, if �Uk;�k; Vk� ! �U;�; V �, then Uk�kV
t
k !

U�V t and, hence, Mk !M 0. Therefore, M �M 0 and,

consequently, �U;�; V � is an SVD of M.
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