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Abstract 

In this paper we develop and analyze real-time and ac- 
curate filters for nonlinear filtering problems based on 
the Gaussian distributions. We present the systematic 
formulation of Gaussian filters and develop efficient and 
accurate numerical integration of the proposed filter. 
We also discuss the mixed Gaussian filters in which the 
conditional probability density is approximated by the 
sum of Gaussian distributions. Our numerical testings 
demonstrate that new filters significantly improve the 
extended Kalman filter with no additional cost and the 
new Gaussian sum filter .has a nearly optimal perfor- 
mance. 

1 Introduction 

In this paper we develop a class of Gaussian filters 
for nonlinear filtering based on the Kushner equation. 
The optimal nonlinear filter equation is described by 
the so-called Kushner equation, that is the conditional 
probability density function is governed by a nonlinear 
stochastic PDEs driven by a noisy observation. There 
has been increasing researches in developing robust and 
efficient numerical integrations of the Kushner equation 
as well as the Zakai equation. The Zakai equation is 
linear and mathematically equivalent to the Kushner 
equation by the change of probability measure. A re- 
lationship between the numerical integrations of Zakai 
and Kushner equations is discussed in [5]. Applications 
of such numerical methods have been successfully tested 
and demonstrated the superiority of the nonlinear filter 
comparing to, for example the extended Kalman-Bucy 
filter. However they are limited to a relatively lower 
dimensional signal process. 

The objective of this paper is to develop and analyze 
a nonlinear filter based on sum of Gaussian distribu- 
tions. An efficient implementation of of the proposed fil- 
ter is developed based on the quadrature rule discussed 
in [SI. Our proposed filter greatly improves the per- 
formance of the extended Kalman-Bucy filter without 
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increasing much of computational complexities. We dis- 
cuss the nonlinear filtering problem for the continuous- 
time signal system for Rn-valued diffusion process ~ ( t ) .  
But our proposed method can be extended to  the signal 
process with hidden Markov chains. 

We will present an application of the proposed fil- 
ter including the target detection and tracking using IR 
measurements and report numerical findings. 

The following are an outline of the paper. In Section 
2 we derive our proposed Gaussian filter. In Section 
3 we analyze the stability and asymptotic behavior of 
the Gaussian filter. In Section 4 we discuss the mixed 
Gaussian filter. Finally, we discuss the implementation 
of the proposed filter in Section 5. 

We formulate the optimal filter in a recursive form. 
Our proposed Gaussian filter is based on an approxima- 
tion of the recursive form based on Gaussian distribu- 
tions. We consider the continuous-time signal system 
for Rn-valued diffusion process z(t):  

d 2 ( t )  = f ( z ( t ) )  dt + a(2(t)) d W l ( t ) ,  z(0) = 20 (1.1) 

and the observation process y ( t )  E RP is of the form 

y ( t )  = Jo' h(z(s ) )  ds + wJ2(t)  (1.2) 

where w1 and w2 are Brownian motions. In addition, it 
is assumed that 202 is independent of z(t), and zo is a 
random variable with the density function po E L2(Rn).  
Throughout what follows f : R" -i R", a : R" -i Rnxn 
and h : Rn -i RP are bounded continuous functions and 
f and (T are also Lipschitz continuous. 

The diffusion processes ( z ( t ) ,  y ( t ) )  are considered on 
a complete probability space (Cl, F, P). Let us denote 
by F! the P-completed a-field generated by the obser- 
vations {y(s),O 5 s 5 t } .  It is a standard fact that for 
a bounded function 4, the best mean square estimator 
of q5(z(t)) based on the observations {y(s), 0 5 s 5 t }  is 
given by 7r[q5] := E[q5(z(t))lFF]. Moreover, a fundamen- 
tal result of filtering theory (see e.g.[2], [8])  says that if 
4 E CZ(Rn), then 7rt[4] satisfies the stochastic differen- 
tial equation 

(1.3) drt [41 + 7rt [A*41dt 
= (dhq5l - .t[q5l.tEhl)(d!dt) - d h l d t )  
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where the generator A* is the formal adjoint operator 
to A 

with 

If the measure T t ( d z )  = E[<(z(t) E d z ) I F t ]  admits a 
smooth density n(t ,z)  with respect to the Lebesgue 
measure, it is easy checked that ~ ( t , z )  satisfies the 
Kushner equation 

d T ( t )  + A T @ )  d t  = ( h  - ~ t [ h ] ) ~ ( t )  ( d g ( t )  - ~t[h] d t )  
(1.4) 

where ~ ( 0 ,  z) = PO(Z) and ~ t [ h ]  = JRn h(z).rr(t, z) dz. 

?(t) = E[z(t)lF/ satisfies 
From (1.3) and (1.4) the optimal state estimate 

d?(t)  = f z ) ( t ) d t  + L ( t ) ( d g ( t )  - h T ) ( t )  d t )  (1.5) 

where 

and ' 

L( t )  = (z - P(t))(h(z) - hT)(t))%(t,z) dz. s," 
2 Gaussian Filter 

We consider a Gaussian approximation of the optimal 
nonlinear filter by approximating T by the normal dis- 
tribution N ( 2 ( t ) ,  P( t ) )  . 

T ( t ,  z) N N ( t ,  2) = N ( 3 ( t ) ,  P( t ) ) ( z )  

- - 1 e- 3 (z-*(t))tP(t)-*(z-*(t))  
((27r)n detP(t))' /Z 

Then we obtain the filter equation 

- (1)  - ( 1 )  
d 2 ( l ) ( t )  = f(z) ( t ) d t  + L ' " ( t ) ( d y ( t )  - h(z) ( t ) d t )  

(2.1) 
with 

(2.2) 

and 

In order to obtain the update of P(t )  we observe 

-L(l)(t)(h(z(t)) - h z ) ( t ) )  d t  

+ a ( ~ ( t ) )  d w i ( t )  - L( t )  dWq(t) .  

By Ito's rule 

d ( z ( t )  - 2 ( t ) ) ( z ( t )  - 2( t ) ) t  

= d ( z ( t )  - 2 ( t ) ) ( ~ ( t )  - 2( t ) ) t  

+(z(t)  - 2(t))d(z(t )  - 2(t)) t  

+ ( a ( ~ ( t ) ) o ( z ( t ) ) ~  + ~ 5 ( t ) L ( t ) ~ )  dt .  

Thus 

q t )  = E[(x( t )  - 2(t))(z( t )  - 2(t))"Ff] 

(z - 2 ( t ) ) ( z  - 2 ( t ) ) t ~ ( t ,  x) d x  
= L" 

satisfies 

@(t) = 9(0) 

+.^(t).^(t)' + L( l ) ( t )L( l ) ( t ) t ]  dt .  I 

(2.4) 
For the simplicity of our discussion we assume a(z) = o 
and set C = aut. Now we take the Gaussian normaliza- 
tion by replacing T( t ,  z) by the Gaussian approximation 
N ( d 1 ) ( t ) ,  P( t ) ) ,  P( t )  = P( l ) ( t )  and obtain 

where 

- (1)  
+(a: - i(')(t))(f(z) - f(z) ) t ] N ( ? ( l ) ,  P )  d z  

(2.6) 
Note that if f(z) = Az ,  h(z)  = H z  and PO = N(zo,  Po) 
then (2.5) reduces to the Riccati equation 

d -P(t)  = AP( t )  + P(t)At  - P(t )HtHP(t )  + C 
d t  
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i.e., 

F( l ) (P( l ) ,  P )  = AP + PAt and L(l)(t) = P( t )Ht  

- (1) - (1)  
Note that f(z) ( t )  depend on P(t )  and 
thus (2.1) and (2.5) are coupled. In order to the fil- 
ter equation (2.1) separated from the covariance update 
P(t )  we propose the following variant. 

d d 2 )  = f ( J 2 ) ( t ) )  dt  + L(2) ( t ) (dy ( t )  - h ( d 2 ) ( t ) )  d t )  

d 
d t  

( t )  and h(z) 

-P(2)(t)  = F(2)(2(2) ( t ) 'P(2) ( t ) )  - L(2)( t )L(q t ) t  + c 
(2.7) 

where 

3 Stability and Performance 
Bound 

In this section we analyze the stability of the Gaussian 
filters (2.1)-(2.6) and (2.7)-(2.8). We assume that 

(f(.i) - f(zz),zi - 2 2 )  I w 1x1 - 2212 (3.1) 

for 21, 2 2  E Rn. Then we have the following theorem. 

Theorem 3.1 There exists a unique path-wise non- 
negative symmetric solution P ( ~ )  ( t )  to equation 

with P ( 2 ) ( 0 )  = PO 2 0. 

Proof: Let S = { P  E Rnxn : P = Pt and P 2 0). 
First note that since h is Lipschitz continuous, 

lL(2)1 5 MI 1 lsI2N(O, P) d s  5 MI IP(2)I 

for P E S and some M I  > 0 independent of x ( ~ ) .  Also, it 
can be proved that @ is locally Lipschitz continuous uni- 
formly on S in d2).  Assume that Po I .  E I and C 2 E I 
for some E > 0. Thus there exits a locally defined unique 
solution P in S. We show that there exists 6 = 6 ( ~ )  such 
that P( t )  2 61. Note that there exists a constant 6 > 0 

R" 

such that @ ( d 2 ) , P )  2 0 for all d2)  and P E S satisfy- 
ing [PI < 6, since @(z,O) = C > 0. Thus $ P  > 0 on 
S fl {IPI 5 6) and hence P( t )  2 6 > 0. Since E > 0 is 
arbitrary, it follows that P(t)  E S. 

Next we establish a priori bound of P( t )  of solutions to 
(3.2).  Since 

t r F ( 2 ) ( d 2 ) , P )  = 2 (f(z) - f (d2)) ,z  - 2 ( 2 ) ) N ( 2 ( 2 ) ,  P ) d x  L. 
12 - 2(2 )12N(2(2 ) ,P )dx  = 2 w t r P ,  5 2w S,n 

it follows from (2.8) that 

d 
dt 
-tr P( t )  5 2w tr P ( t )  + tr E. 

By Gronwall's inequality 

tr P(t )  5 e2wttr P(0) + e2w ( t - s )  tr ds.0 I' 
Suppose there exists a bounded continuous function 

L : P E R" + L(P) E RnXP such that 

(f(z) - f(2) - L(P)(h(z)  - /I(*)), 2 - 2)  5 -WO 12 - 212 

(3.3) 
for WO > 0 and 2, 2 E R". Then we have the following 
bound. 

Theorem 3.2 Assume that assumption (3.3) holds. 
Then the solution P ( 2 ) ( t )  satisfies the bounded 

(3.4) 

- M M t  + L(2)L(2)t  + c 
where 

M 1 L ( 2 )  - (Z - P)(h(z) - h(P))tN(P, P )  d z .  s,. 
Using the same arguments as in the proof of Theorem 
3.1 we obtain the desired bound. 0 

We can show the stability result of the Gaussian filter 

Theorem 3.3 There exists a unique path-wise non- 
negative symmetric solution ~ ( l ) ( t )  to equation 

(2.1)-(2.6) its fOllOWS. 

d 
d t  
--P(l)(t) = F(l)(f(l)(t),P(l)(t)) - L(Q(t)L(l)( t ) t  + c 

(3 .5)  
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with P(l)(O) = PO 2 0. Assume that for L E Rnxp 

( f ( ~ ) - f ( ~ ) - L ( h ( ~ ) - h ( s ) . ) , ~ - s )  5 -WO I z - s ~ ~ .  (3.6) 

Then the solution P(l ) ( t )  to (3.5) satisfies (3.4). 

Proof: The proof of the theorem is exactly same as 
those for Theorems 3.1-3.2 observing 

- (1)  
(f(x) - f(x) )"(z - d1) )N(2 ( ' ) ,  P ) (x )  dx s,. 

= 1 1  (f(z) - f(s))(z - s ) t N ( x ) N ( s )  dxds.0 
RnxRn 

Similarly we have the stability result for the optimal 
filter (1.5). 

Corollary 3.4 If assumption (3.6) holds, then 

Proof: Using the same arguments that lead to (2.4), 
we have @(t)  = E[le(t) - 2(t)121F!] satisfies 

@(t)  5 @ ( O )  + tr (LLt + E) 

x r ( t ,  x ) r ( t ,  s )  dxds. 

The remaining of the proof is similar to those for The- 
orem 3.2. 0 

Finally, we discuss the performance of the (Gaus- 
sian) filter of the form (2.7). 

Theorem 3.5 Consider the filter of the form 

d2(t) = f ( 2 ( t ) )  d t  + L(t,2)(dg(t) - h(P(t)) d t )  

where L : R+ x Rn + RPXn is a bounded Lipschitz 
continuous function. Assume that 

(f(5) - f (2 ) -L ( t , d ) (h ( z )  -h(f)),x-?) 5 w(t) lz-212 

(3.7) 
Then we have the estimate 

E[lz( t )  - 2(Q121& Y 1 < - e;lb' 2 4 s )  ds tr P(0) 

where 

L(t)  = (x - 2( t ) ) (h(x)  - h(2(t)))%(t ,x)  dx. s,. 
Thus (3.8) follows from the same arguments as in the 
proof of Theorem 3.1. 0 

4 Mixed Gaussian Filter 

In this section we discuss the mixed Gaussian filter. The 
mixed Gaussian filter assumes the form 

m 

$( t ,x )  = W ( t )  N(2i,P,(t)). 
k=l 

The i-th Gaussian distribution N(&,  Pi(t)) is computed 
by the Gaussian filter described in Section 2 in a parallel 
manner. The weights az ( t ) ,  1 5 i 5 m determines the 
likelihood of each Gaussian distribution. We propose 
the following update formula. 

We consider the discrete-time measurement case. 
That is, we have observation 

Y k  = h(x(tk)) + vk (4.1) 

where t k  = k At and vk are white noises with covariances 
R,  and independent of x( t ) .  Let Y k  = { y z ,  1 5 i 5 k}. 
The probability density function Pklk  of the conditional 
expectation E[S(tk)lYk] is given by Bayes' formula 

pklk (x) = c .-?(r-h(z))'R-'(ar-h(s))pklk-l (x) (4.2) 

where the one-step prediction Pklk-1 = p ( t k )  is given by 
the Fokker-Planck 

d 
dt  -p(t) + Ap(t) = 0 with P(tk-1)  = p k - l l k - 1 .  (4.3) 

We apply the Gaussian filter to (4.2)-(4.3) and obtain 

Predictor Step 

d - ( 1 )  

d t  
-2(1)(t) = f(x) ( t )  

(4.4) 
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where the filter gain L k  is defined by 

L k  = Pxy(R + PYy)-' (4.6) 

and the covariance matrices Pxy ,  Pyv is defined by 

Py, = Ln ( h ( z )  - i ) ( h ( z )  - i)tN(xklk-l 9 P k l k - l )  dx 

We apply the Gaussian filter (4.2)-(4.6) to each Gaus- 
sian distribution N ( x ~ ~ l , k - l  , Pk(i)llk-l) and obtain the 

update N ( z $ ,  P$). Each update is independent from 
the others and can be performed in a parallel manner. 
Next, we update the weights a t )  for the new update 
p + ( x )  at the end of corrector step. 

We determine the weights a t )  by the minimization 
of the sum of collocation errors: 

I j=1 

over a E Rm satisfying a 2 a0 > 0, wherepklk is defined 
as in the corrector step (4.2) with 

A positive constant a0 is chosen so that the likelihood of 
each Gaussian distribution is nonzero (e.g., a0 = 0.001). 
Problem (4.7) is formulated as the quadratic program- 
ming 

min subject to a 2 ao, 

where 6 > 0 is chosen so that the singularity of the ma- 
trix AtA is avoided and the matrices ( A ,  b)  are defined 

1 6 - atAtAa - atAtb + - IaI2 2 2 

(4.8) 

by 

j=1 

Thus, we solve (4.8) to obtain the weights of) at each 
corrector step by using the existing numerical optimiza- 
tion method The theoretical foundation of the Gaussian 
sum approximation as above is that any probability den- 
sity function can be approximated as closely as desired 
by a Gaussian sum. 

5 Quadrature Rules 

In this section we discuss an implementation of the pro- 
posed filters. In [6] we develop the approximation meth- 
ods for the integral of the form 

If we assume C = StS and change the coordinate of 
integration by t = Sts + 3,  then 

with @(s) = F(Sts  + 3) .  We apply the Gauss-Hermite 
quadrature rule. The Gauss quadrature rule is given by 

where the equality holds for all polynomials of degree up 
to 2m - 1 and the quadrature points xi and the weights 
are determined (e.g., see [3]) as follows. Let J be the 
symmetric tri-diagonal matrix with zero diagonals and 
Ji,i+l = m, 1 5 i 5 m - 1. Then { x i }  are the 
eigenvalues of J and wi equal to I(wi)1I2 where ( w i ) ~  is 
the first element of the i-th normalized eigenvector of J .  
Thus, I is approximate by 

m m 

il=l in=l 
(5.3) 

where qi = 3, 1 5 i 5 m and I, is exact for all 
polynomids of the form silsiz . . . sin with 1 5 i k  5 2m- 
1. In order to evaluate I, we need mn-point function 
evaluations. For example m = 3 we have 

1 2 
41 = -6, 92 = 0, 93 = h and w1 = wg = -, 6 w2 = -_ 3 

and 13 requires Sn-point function evaluations. 

PI of p, defined by 
Next, we consider be the polynomial approximation 

where 
H . .  - P(hei) - 2F(O) + F(-hei) 

h2 a,% - 7 

with h = 8, which is only based on the- values 
F ( f h e i )  = P l ( f h e i ) ,  1 5 i 5 n and F(0)  = 
Pl(O), and uses the the diagonal second order correction 
E;, $ Hiis; of the central difference approximation of 
F. Then the integrals I is approximated by 

1 2  1 
e-3IsI ds = p(0) + Cy', 5 Hi,i PI(S) 

(5.4) 
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5.1 Examples [5] K.Ito and B.L.Rozovskii, Approximation of the 
Kushner equation for nonlinear filtering, SIAM J. 

First we consider the one dimensional equation Control & Optim., (2000), to appear. 

d z ( t )  = 5 ( ~  - z3) dt + .5 dwl ( t )  

dy  = (z( t )  - .5)'dt + +R+ dwZ(t)  

[6] K.Ito and K.Xiong, New Gaussian filters for non- 
linear filtering problems, IEEE Trans. AC, (2000), 
to appear. 

[7] H. J. Kushner, Approximations to optimal nonlin- 
ear filters, IEEE Trans. Autom. Control, 12 (1967), 

Then the filter equation (2.1)-(2.6) is given by 

d f ( t )  = 5(f  - (3pi + 2')) d t  546-556. 
+ p K 1 2 ( f  - .5) ( d y ( t )  - ( ( 2  - .5)' + p )  d t )  

[8] R.Sh.Lipster and A.N.Shiryayev, The  Statistics 
of Random Process, I,II, Springer-Verlag, Berlin 
(1977). 

d 
- p ( t )  = 10(-3P2 + 1)p - (40 + 4R-l(f  - .5)2)p2 + Q 
dt  

where R = .01 and Q = .25. 

Next we consider the Lorenz's system 

[9] E.Pardoux, Equations du filtrage non lineaire, de 
la prediction wt du lissage, Stochastics, 3 (1979), 
127-168. 

10(22 - a )  

21x2 - 8x3 

[lo] B.L.Rozovskii, Stochastic Evolution Systems, Lin- 
ear Theory and Application to  Nonlinear Filtering, 
MIA, Kluwer Academic Publishers, (1991). 

2821 - 22 - q x 3 )  d t  + U ( I) d w l ( t )  

d y ( t )  = h(z( t ) )  dt  + R; dw2(t)  

with h(x) = ( 2 1  - 5)' + xi + xi. Since the system is 
quadratic 

F(2) ( f7P)  = f , ( f ) P  + Pf,(P)t 

L(') = Ph, (2)tR-1 

an thus the filter equation (2.1)-(2.6) is given by 

d?(t) = [f(f) + (0, -p13,  PI^)^] d t  + P/L, (~)~R- '  ( d y ( t )  - (h(f) + tr P )  d t )  

d 
dt 
-P(t) = f , ( f )P  + P f z ( f ) t  - Ph,(f)tR-'h,(f)P + Q 

where Q = u' bbt. 
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