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on Gaussian Filters
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Abstract—This paper proposes a numerical-integration per-
spective on the Gaussian filters. A Gaussian filter is approximation
of the Bayesian inference with the Gaussian posterior proba-
bility density assumption being valid. There exists a variation of
Gaussian filters in the literature that derived themselves from
very different backgrounds. From the numerical-integration
viewpoint, various versions of Gaussian filters are only distinctive
from each other in their specific treatments of approximating
the multiple statistical integrations. A common base is provided
for the first time to analyze and compare Gaussian filters with
respect to accuracy, efficiency and stability factor. This study is
expected to facilitate the selection of appropriate Gaussian filters
in practice and to help design more efficient filters by employing
better numerical integration methods.

Index Terms—Cramer–Rao bound, Gaussian filter, monomial,
nonlinear filtering, numerical-integration, product rule, stability
factor.

I. INTRODUCTION

THE role of filtering in the practical systems—from space-
craft attitude estimation [1] to ballistic target tracking [2],

[3] and precision agriculture [4], [5]—cannot be overempha-
sized at all. Almost all real systems involve nonlinearity of one
kind or another to which the Bayesian inference provides an
optimal solution framework for dynamic state estimation prob-
lems [6]. Because the Bayesian solution requires the propa-
gation of the full probability density, in general the optimal
nonlinear filtering is analytically intractable. Approximations
are thus necessary, e.g., Gaussian approximation to the pos-
terior probability density [7]–[13] or approximating the den-
sity with piecewise constant functions [14]. The class of fil-
ters derived under Gaussian assumption is commonly called the
Gaussian filters. So far, there has been a variation of Gaussian
filters that derived themselves from very different backgrounds.
The most celebrated one is the extended Kalman filter (EKF)
[15], which came into being as a result of adapting any en-
countered nonlinear system to the linear Kalman filter [9] by
approximating the nonlinearity through successive linearization
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at the current estimate. Since its first successful application in
the Apollo guidance system in 1968 [15], [16], the EKF has
been applied to deal with nonlinear filtering problems in many
practical systems. When being employed to address significant
nonlinearities, however, the EKF may become very difficult to
tune and even prone to divergence. Long-term experiences have
shown that it is only reliable for systems that are almost linear in
the update interval. Most of the EKF’s difficulties owe much to
the local linearization at a single point in the probabilistic state
space. There are other filters employing the high-order Taylor
expansion, such as the second-order filter [17], which is not fre-
quently used in engineering because it has to evaluate the cum-
bersome Hessian matrix.

Recently, an unscented transformation (UT)-based Kalman
filter [18] arose and was widely approved as a promising sub-
stitute for the EKF [19]–[21]. The UT was developed to ad-
dress the deficiencies of local linearization using an intuitive
method of transforming statistical information.1 In light of the
intuition that approximating a probability distribution is easier
than approximating an arbitrary nonlinear transformation, the
UT makes probabilistic inference by 1) parameterizing the mean
and covariance of a probability distribution via a set of deter-
ministically selected samples, 2) propagating them through the
true nonlinear transformation, and 3) calculating the parame-
ters of the propagated Gaussian approximation from the trans-
formed samples. Eliminating cumbersome derivation and eval-
uation of Jacobian/Hessian matrices, the UT-based unscented
Kalman filter (UKF) is much easier to implement and outper-
forms the EKF. Lefebvre et al. [22] interpreted the UT as a
statistical linear regression (a discrete implementation of the
statistical linearization [17], which, in contrast to the local lin-
earization, employs the system information at multiple points
in the state space). This insight justifies from another aspect the
derivative-free UKF’s benefits over the local linearization-based
EKF.

Ito et al. [7] proposed two Gaussian filters from the standpoint
of numerical integration. The so-called Gauss–Hermite filter2

(GHF) was obtained by employing the product Gauss-Hermite
quadrature rule while the central difference filter (CDF) was
constructed using the polynomial interpolation methods. These
two filters performed better than or as good as the UKF in nu-
merical tests there. Meanwhile, Norgaard et al. [10] devised a di-
vided difference filter (DDF) through approximating the deriva-
tives, e.g., Jacobian/Hessian matrices, by the central divided dif-
ferences formed using the Sterling’s polynomial interpolation

1The motivation of the UT was recently well documented in a survey paper
[21].

2It should be reminded that the GHF was once presented several decades ago
[23], [24].
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formula. Recently, the Gaussian particle filter (GPF) was sug-
gested making use of the idea of Bayesian sampling [8]. With
the Gaussian assumption being valid, the GPF is asymptoti-
cally optimal in the number of random samples, which means
that equipped with the computational ability to handle a large
number of samples, the GPF is supposed to outperform any an-
alytical Gaussian filter. Kotecha and Djuric [8] have done a nice
comparison among the GPF, the EKF, and the UKF. As pointed
out in [25], the GPF actually extends the analytical Gaussian
filters using Monte Carlo integration and the Bayesian update
rule. In view of its asymptotical optimality, it may be promising
to use the GPF as a guide telling how best a Gaussian filter
could perform, just like the role of the Cramer–Rao bound [26]
for any nonlinear filter. The disadvantage of any random sam-
pling-based filter, such as the GPF, is that we have to assume
great computational burden, usually hundreds of times larger
than an analytical filter does. Therefore, the discussions below
exclude the GPF and are dedicated to analytical Gaussian filters.
It is worthy to remember a practical rule: only when all analyt-
ical tools do not suffice the requirements is the simulation-based
method necessary.

A question now arises: with so many different Gaussian
filters, how do we decide which one is suitable for a filtering
problem in hand? In the literature, there have been efforts to
compare part of the above-mentioned Gaussian filters on a
case-by-case base [2], [27]. However, it is not advisable to
implement and compare all filters before making the final
decision. Different from previous literature [7], [10], [15],
[17], [18], this paper is intended not to come up with novel
filters but to build a common platform to analyze and compare
all off-the-shelf Gaussian filters with no or restricted need of
numerical simulations.3 Hopefully, we wish to obtain from
this study some constructive insights that help design novel
Gaussian filters in future research.

The contents are organized as follows. Section II gives a con-
cise formulation of the general Gaussian filter. Section III de-
rives all of the existing approximate Gaussian filters through
applying different methods of numerical integration to calcu-
late the multidimensional statistical integrals necessitated in the
general Gaussian filter. Section IV makes a comparative study
of the approximate Gaussian filters with respect to accuracy, ef-
ficiency and stability factor. In numerical examples, we also
carry out the Cramer–Rao lower bound for the reference of
performance comparison. Discussions and conclusions are in
Section V.

II. GENERAL GAUSSIAN FILTER FORMULATION

Now we formulate the general Gaussian filter in a concise
manner. For a rigorous development, readers are referred to [7]
and [29] for details. Consider a discrete-time nonlinear system
written in the form of dynamic state-space model as

process equation

observation equation (1)

3Quite recently, Lefebvre et al. [28] made a less comprehensive review on
Kalman filters than this paper from the standpoint of statistical linearization.

where and are some known functions. The random
process noise is uncorrelated with the system
states at time instant ; the random measurement
noise and is uncorrelated with the system state
and the process noise at all time instants.

The nonlinear filtering problem is to estimate the true but un-
known system state given the noisy observations at time in-
stant , denoted by in the sequel. If the probability
density is well approximated by the Gaussian distribution, a
Gaussian filter in the Kalman-like structure (using linear update
rule) can be used to address the estimation task [7], [20], [21].
The Gaussian distribution being uniquely characterized by its
first two moments (mean and covariance), the general Gaussian
filter is formulated as [7], [29, pp. 249–260]

(2)

where

(3)

It is clear that the general Gaussian filter above necessitates
five expectations as in (3). For example, the optimal prediction

, conditioned on the observations at time instant
, corresponds to the expectation of the nonlinear process

function of the random variables , taken over the posterior
probability density of the state at time instant , i.e.,

(4)

where is the dimension of the system state. The second ex-
pectation is taken over the posterior probability density at time
instant as well while the last three expectations are taken
over the prior probability density at time instant . Hence, these
expectations involve five multiple integrals, two for mean and
three for covariance, of the same dimension as the state.

III. APPROXIMATE GAUSSIAN FILTERS

Now for brevity we consider a multiple integral of the form

(5)
where is a random variable with mean and covariance .
Numerically approximating (5), an integral over an infinite in-
tegration region with a Gaussian weight, is also an important
issue in finances and statistics, etc. [30], [31].
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Fig. 1. Relations among the Gaussian filters.

Let . Since covariance is positive, it is always
possible to find such a matrix square root , e.g., using the effi-
cient Cholesky decomposition [32]. Substituting
into the right-hand side of (5) yields

(6)

with . The above is a normal Gaussian
weighted integral over the unbounded space. For a general
nonlinear function , the above integral cannot be solved
analytically. Various approximations to (6) result in a variation
of approximate Gaussian filters in the present literature, as noted
in [7]. The connection between the general Gaussian filter and
the existing approximate Gaussian filters is sketched in Fig. 1.
Comprehensive discussions will be made case by case in the
immediate sequel.

Generally speaking, most multiple integration rules are de-
signed to integrate a certain class of polynomials exactly. Before
getting involved in further details, we first introduce the defini-
tion of the precision of an integration rule [33].

Definition: A rule is said to have precision if it integrates
monomials up to degree exactly, that is, monomials
with and , but not exactly for some mono-
mial of degree .

A. Product Gauss–Hermite Rule

The most natural approach to address a multiple integral is to
treat it as a nested sequence of the univariate integral and then
to use the unidimensional quadrature rule with respect to each
argument in turn. The resulting multiple integration formula is
a product rule [33], [34]. Regarding the multiple integral in (6),

the Gauss–Hermite quadrature rule can be used [32]. It says that,
given an integer , we can find a set of points and
weights such that the approximation

(7)

is exact for polynomials of degree , i.e., the linear combi-
nation of monomials up to degree . The Gauss–Hermite
rule is best in the sense that it integrates exactly monomials of
as high degree as possible and thus excellent for large classes
of functions arising in practice. The program for generating
weights and points is readily off the shelf [32]. Given ,
for example

and

(8)

By the product rule, (6) is approximated as

(9)

where . The product rule based on the
-point Gauss–Hermite quadrature integrates exactly mono-

mials with , but it does not integrate ex-
actly and is therefore of precision .

Applying the above product Gauss–Hermite rule to calculate
the five integrals in (3) gives birth to the GHF [7], [23], [24]. The
filter badly suffers from the curse of dimensionality, that is to
say, the number of function evaluations grows exponentially
with the state dimension . Depending on the complexity of
the integrand (process and observation functions), computation
expenses due to a large number of function evaluations usually
limit the use of the GHF to practical systems of dimension no
more than five or six.

B. Rules Exact for Monomials

By allowing nonproduct rules, it is possible to find efficient
rules in the sense of having precision yet requiring
function evaluations fewer than [33]–[37]. The points of
such a rule are chosen directly in instead of using a grid of
points.4 Recall that the integral in (6) is not ordinary but has a
special property in that both the integral region and the weight
function are fully symmetric. More formally [35], a set is
said to be fully symmetric if implies , where
is obtained from by permutations and changes of sign of the
coordinates of . A function defined on a fully symmetric
set is fully symmetric if . It follows that any finite
fully symmetric set can be decomposed into a finite number of
disjoint subsets having the property that any member of a par-
ticular subset can be used to generate the whole subset. In the

4Novak et al. [38] presented an interpolatory method for high-dimensional in-
tegration using the Smolyak formulas, which are linear combinations of product
formulas with the special properties, i.e., only products with a relatively small
number of points are used and the linear combination is chosen such that the
interpolation property for is preserved for d = 1 is preserved for d > 1.
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sequel, the set generated by a point
in is denoted by , where the zero co-
ordinates have been suppressed for brevity. For example,
given a point , then the set generated by is

. The particular
point is referred to as a generator.

Since the region and the Gaussian weight function are both
fully symmetric, the fully symmetric integration rule developed
in [35] can be used to handle the integral in (6).

(10)
where is a short notation of with the sum
extending over all the points in the fully symmetric set .
From the definition of fully symmetry, it can be readily proved
that the fully symmetric integration rule is exact for any mono-
mial odd in one or more coordinates.

For example, the rule of precision 3 (with function
evaluations) takes the form

(11)

The set has points while the set contains only the
origin. In such a case, we need only consider the monomials up
to degree 3 without any odd power, i.e., 1 and . Substituting
the two monomials into (11) respectively yields

(12)

The above equations5 give and ,
in which is a free parameter. With this rule, (6) is ap-
proximated as

(13)

where is the -dimensional unit vector, with the th coordi-
nate being 1 and other coordinates 0. Applying the above rule
to (3) yields right the UKF [18], [21]. This relationship was first
revealed by Lerner [40]. In the UKF context, the free parameter

was suggested to choose so as to capture the fourth-order
principal moment .

It is possible to construct rules of higher precision along the
same lines by solving a set of nonlinear equations in real do-

5The desired equations are linear in weights, but nonlinear in points (see, for
example, (12)). The solution can thus be extremely difficult to obtain and the
points and/or weights may be complex, or there may even be no solution [37],
[39]!

main. McNamee and Stenger [35] developed rules of arbitrary
precision in with the number of function evaluations
being , . Capstick et al. [39] argued that the
McNamee–Stenger scheme breaks down for some considerably
high precision, e.g., 15, due to singular nonlinear equations, but
it does not make a difference in this paper since we have no
interests in such a high precision here. The McNamee–Stenger
rule of precision 5 takes the form [40]

(14)

Now only the monomials 1, , , and need to be con-
sidered. By solving the resulting four nonlinear equations, we
obtain

and

(15)

Applying the rule of precision 5 to (3) gives birth to a higher
order UKF, which is slightly different from the Julier’s high-
order UKF (see [21, App. IV]) in that the latter corresponds to a
rule of precision 5 using the generators , , and .
Julier’s high-order UKF needs to solve four equations in five
unknowns. The problem was addressed there by incorporating
the sixth-order moments information. However, with a simple
algebra manipulation, we can see that this rule exists only if

(otherwise, the nonlinear equations have no real roots;
see footnote 5 for explanation). The UKF using a set of simplex
sigma points [41], [42], [21, App. III] can also be readily derived
from the integration rule of precision 2 [34, pp. 79–88].

In [37], Genz et al. constructed a fully symmetric interpola-
tory integration rule for multidimensional integrals in the form
of (6). Unlike the McNamee–Stenger scheme, Genz’s rule takes
an explicit form and needs not to solve a set of nonlinear func-
tions, i.e.,

(16)
Here, in which are nonnegative
real numbers with . is a set of all distinct -par-
titions of the integers defined by

(17)

with . If the weights are given by

(18)

where is the number of nonzero components in , and

(19)
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for , with , then the integration rule has precision
. To be more efficient, are determined by successive

extensions of the one-dimensional 3-point Gauss–Hermite rule
so that certain sets of weights vanish. For precision 3
and 5 , we emphasize that Genz’s rules are exactly the
same as the counterparts of the McNamee–Stenger scheme [43].
The development is involved and omitted here. For precision
no less than 7, Genz’s rules diverge from and have a smaller
stability factor than the corresponding McNamee–Stenger rules
[39]. For the definition of the stability factor, readers are referred
to Section IV.

C. Methods of Approximation

The idea is to approximate the integrand by a sequence of
functions so that each of them can be integrated in closed form.
The integral of the approximation then constitutes an approxi-
mation to the integral [33]. A common choice is to employ the
Taylor polynomials. For example, the first-order Taylor polyno-
mial approximation is

(20)

Substituting (20) into (6), we obtain

(21)

Obviously, this rule is of precision 1. It should be reminded that
(21) can only be applied to the two mean integrals in (3). For
covariance approximation, we need to consider an integral of
the other form

(22)

Different from in (6), here has three different Gaussian
weighted integrands, namely, , , and their product .
The above definition of precision is not directly applicable to
such a case, so we need a redefinition so as to encompass (22).
Specifically, we say a rule is of precision if it is exact for each
element monomial of the integrand up to degree , but not exact
for some element monomial of degree . Regarding (22),
the integrand is the product , of which the factors

, are restricted to be monomials. For instance, if

, then , can be 1 and or
and , respectively.

Substituting (20) into (22)

(23)

The above rule has precision 3. For example, let
and , then

and

(24)

which indicates that is exact for monomials of degree
up to 3 but not for a monomial of degree 4, with

. It can be verified that is exact for all mono-
mials odd in one or more coordinates. Applying (21) and (23)
to respectively approximate mean and covariance in (3) recovers
the EKF. The high-order EKF can be similarly derived based on
the corresponding high-order Taylor polynomial [17]. It is ap-
parent from (21) and (23) that the EKF and its variations only
employ the information at a single point in the probabilistic state
space and have to evaluate the Jacobian/Hessian matrices, which
is nontrivial and even impossible for cumbersome systems. An
alternative is to replace the derivatives by central divided differ-
ences, yielding the DDF that is a class of derivative-free filters
with points ( and ) [10]. The DDF1 is based on
the first-order Taylor polynomial approximation. In specific, it
gives (see [10, eq. (24) and (26)])

(25)

where is the same as in (15). has precision 1;
has precision 3. Note that is exact for some monomial
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of degree 4 such as with and
and all monomials odd in one or more coordinates. Based on
the second-order Taylor polynomial approximation, the DDF2
is (see [10, eq. (30) and (40)])

(26)

where . has
precision 3. Following the same line of (24), we can verify that

is exact for monomials up to degree 3 but not for
with , so has precision 3. How-
ever, it should be noted that is indeed exact for all mono-
mials of degree 4 but with , and
all monomials odd in one or more coordinates.

Almost at the same time, Ito et al. [7] proposed the CDF from
the viewpoint of numerical integration. The CDF1 is based on
the incomplete quadratic interpolatory polynomial that excludes
monomials with . It can be proved that the CDF1 is
essentially identical to the DDF2 [20]. On the other hand, the
CDF2 is based on the quadratic interpolatory polynomial with

points ( , and ). In contrast to
, here denotes the set generated only by permutations. For

example, if then . Specifi-
cally (see [7, eq. (3.6) and (3.7)])

(27)

where .
has precision 3 and has precision 5, which can be

verified following the same line of (24).

IV. COMPARATIVE STUDY: ANALYSIS AND SIMULATION

A. Accuracy, Efficiency, and Stability Factor

The accuracy of a filter in terms of precision is summarized in
the second column of Table I. The precision of the GHF depends
on what number of points is used for the univariate integral. A
list in the ascending order is

EKF DDF 2-point GHF UKF DDF CDF

CDF 3-point GHF and UKF (28)

Unsurprisingly, the overall reported results in the literature
[1]–[3], [7], [10], [19], [21] accord to the list.

As compared with rules exact for monomials, methods of ap-
proximation make use of the fact that the covariance integrals
have the special structure that the integrands are exclusively
products of two functions (see (22)) and thus choose to address
the multipliers separately. In contrast, rules exact for monomials
treat any integral in an unaltered manner whatever the integrand
is (see (10)). As a result, although of the same precision, the
DDF2/CDF1 theoretically tends to outperform the UKF3 be-
cause is exact for all monomials of degree 4 but
with . This fact essentially explains
why the CDF1 (or equivalently the DDF2) was reported to be
superior to the UKF3 in [7, Example 8.2]. On the other hand, the
UKF3 theoretically tends to outperform the 2-point GHF in that
the UKF3 is exact for a monomial of degree 4 with the free pa-
rameter ; the DDF1 theoretically tends to outperform
the EKF because is exact for some monomials of degree
4, such as with and while is
not. According to these analyses, a finer list is obtained as

EKF DDF 2-point GHF UKF DDF CDF

CDF 3-point GHF and UKF (29)

It should be reminded that this is a theoretical conclusion
and thus can only be served as a general guide. For a specific
problem, the borderlines in between may become weakened
(see the numerical examples in the sequel).

For efficiency comparison in the third column, we prefer to
use the number of function evaluations as the criterion. An ex-
ception is the EKF that employs the derivative information in-
stead of function values in approximating covariance integrals
(see (23)). Its computational cost is comparable to that of the
UKF3 because it has to calculate the Jacobian matrix [21]. It
appears from Table I that the GHF is the most demanding filter
in computation and the DDF1 is the least.
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TABLE I
COMPARISONS OF APPROXIMATE GAUSSIAN FILTERS

Another important issue that arises when using an integration
rule is its stability6 factor. Generally speaking from the perspec-
tive of integration, a rule with all of its points inside the integra-
tion region and all of its weights positive is more desirable and
will have a small error than a formula for which one or both of
these properties is lacking [33], [34]. For integrals of interest (6)
and (22) in this paper, the first property is guaranteed. However,
we are not so lucky with the second property of positive weights.
For example, with the UKF3, the weight in (13)
will be negative when . Integration rules with both
positive and negative weights are particularly undesirable if the
magnitude of the weights are large compared with . The
reason is that a large amount of roundoff error is introduced if

(30)

Therefore, a standard measure of the stability factor of an in-
tegration rule is the sum of the absolute values of the weights

[33], [37], [39]. A completely
stable rule has , but so far there is no known gen-
eral method for constructing stable but efficient rules. Table I
lists the stability factors in the last column. Note that the sta-
bility factor cannot be used to investigate the numerical sta-
bility of covariance calculations for the methods of approxi-
mation-based filters because it is defined to be used in the case
that has only one integrand. Fortunately, the forms of in
(23), in (25), in (26), and in (27) assure
in nature the positive definiteness of the resulting covariance.
Of all Gaussian filters, the GHF is the only one that is com-

6The stability in the paper relates to the roundoff error [33, pp. 208–217] for
integration calculation. It has little to do with the stability of a filter in the sense
of mean-square error.

pletely stable but, as mentioned above, its computational cost
increases exponentially with dimension. The EKF is numeri-
cally stable in the mean but we have to derive and compute the
Jacobian matrix. The UKF, the DDF, and the CDF become nu-
merically unstable when the dimension is larger than 3 or 4.
The unstability might lead to the problem of yielding a nonpos-
itive, semidefinite covariance in implementation, which is fatal
for any Gaussian filter. Although the numerical unstability does
not necessary incur failure of a filter, we have to take cautions
when applying it to moderately large dimension systems. With
the UKF, Julier et al. [18] proposed to use a modified form that
evaluates the covariance about the projected mean. An alterna-
tive approach is to find the “closest” positive definite covariance
matrix [40, Sec. 6.3]. Recently, the UKF has found a number of
applications in practice [1]–[3], [7], [10], [19], [21], [44]–[46],
in which the target systems are mostly of lower dimension. In
view of the numerical unstability, the UKF is supposed to en-
counter troubles when being used to high-dimensional systems.

B. Numerical Examples

We next examine each Gaussian filter using three representa-
tive examples, viz. the univariate nonstationary growth model,
the ballistic target reentry and bearing only tracking, all of which
have significant nonlinearity and have been extensively investi-
gated in the literature [7], [8], [18], [47]–[50]. We also presented
the Cramer–Rao lower bound (CRLB) [26], [51] for the refer-
ence of performance comparison. The theoretical CRLB pro-
vides the best achievable error performance for any filter, which
admits us to quantify how much scope is left to improve a filter.
In specific, the covariance matrix of the estimate has a lower
bound (referred to as the CRLB) as follows:

CRLB (31)
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1) Univariate Nonstationary Growth Model: This model is
very popular in econometrics. It is formulated as

(32)

where the process noise and the measure-
ment noise . This model has bimodality in na-
ture, depending on the sign of observations. The reference data
were generated using and . The CRLB was
approximated by Monte Carlo averaging across 100 reference
trajectories.

We have something to add before proceeding. Because the
system (32) is of dimension , it is straightforward to prove
that the UKF3, UKF5, and 3-point GHF are analytically iden-
tical to each other (see (13), (14), and (9)) and the CDF2 is ana-
lytically identical to the DDF2 as well (see (26) and (27)). Thus,
for this system, the list in (29) becomes

EKF DDF 2-point GHF UKF DDF CDF

CDF 3-point GHF and UKF (33)

from which we can predict that the UKF3/UKF5/3-point GHF
will be ”identical” to the CDF1/CDF2/DDF2.

For each filter, the initial conditions were , .
The performance was compared using the mean-square error
(MSE) defined by

MSE (34)

The MSEs of 50 Monte Carlo runs are plotted in Fig. 2, as well
as the MSE derived from the CRLB by averaging across time
instants, i.e.,

CRLB-MSE CRLB (35)

In Fig. 2, The CRLB-MSE is by far smaller than that of any filter,
which indicates all of the above Gaussian filters are not good
enough to address this system. However, this does not hinder
the comparison among Gaussian filters.

The mean and standard variance of MSEs are plotted in Fig. 3.
The UKF3/UKF5/3-point GHF is not distinguishable from the
CDF2/DDF2, which shows that the above prediction is right.
The EKF is the largest, and the DDF1 is the second largest in
MSE. The 2-point GHF comes as the third, but its standard vari-
ance of MSEs is slightly larger than that of the DDF1. We see
that the observations agree rather well with the analytical con-
clusion in (33).

2) Ballistic Target Re-entry: The aim is to estimate the posi-
tion , velocity , and constant ballistic co-
efficient of a body as it re-enters the atmosphere at a
very high altitude with high speed. The motion is determined by
altitude- and velocity-related drag terms, and the body is con-
strained to fall vertically. The position of the body is measured at

Fig. 2. MSEs of each filter across 50 random runs and the MSE derived from
the CRLB.

Fig. 3. Mean and standard variance of MSEs across 50 random runs.

discrete time instants using a radar capable of measuring range
contaminated by Gaussian noise. The radar locates at an alti-
tude , and the horizontal distance between the body and
the radar is .

The continuous time dynamics of the system are

(36)

where and the constant
relates the air density with altitude. The range is

(37)

where . The measurements are made at the fre-
quency of 1 Hz.
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Fig. 4. Averaged absolute position error (UKF3, UKF5, DDF2/CDF1, CDF2,
and 3-point GHF overlap each other).

In the previous literature, a fourth-order Runge–Kutta scheme
with 64 steps between each observation was employed to inte-
grate (36) in order to deal with the significant nonlinearity of the
system [7], [18], [50]. For the EKF, it was necessary to recalcu-
late the Jacobian 64 times between each update; for the other
derivative-free filters, the predication at each point was calcu-
lated using the small steps, and it was only necessary to calculate
the mean and covariance just before each measurement arrived.

The following data were used: the system parameters were
chosen as , , , ,
and . The initial true state of the system was

, and the initial estimate is

with covariance

For this example, we used the averaged absolute error to com-
pare each filter. The averaged absolute error of the th compo-
nent of the state at time instant is defined by

(38)

where is the number of Monte Carlo runs. In the absence of
process noise, the CRLB recursion for the system (36) and (37)
is identical to the covariance matrix propagation of the EKF,
where the Jacobians are evaluated at the true state.

In Figs. 4–6, we show the averaged absolute error for each
component committed by each filter across a simulation con-
sisting of 50 Monte Carlo runs, as well as the CRLB. These
figures show that the EKF and DDF1 are the least accurate fil-
ters with the latter being slightly better than the former. The
2-point GHF has a noticeable improvement over the EKF and

Fig. 5. Averaged absolute velocity error (UKF3, UKF5, DDF2/CDF1, CDF2,
and 3-point GHF overlap each other).

Fig. 6. Averaged absolute coefficient error (UKF3, UKF5, DDF2/CDF1,
CDF2, and 3-point GHF overlap each other).

DDF1. Other filters, namely, the UKF3, UKF5, DDF2/CDF1,
CDF2, and 3-point GHF, come next as the best, approaching
optimality in position estimation. There is no discernible differ-
ence in accuracy from each other. Recall the fact that although
of precision 3, the UKF3, DDF2/CDF1 and CDF2 are indeed
exact for the fourth-order principle moment. The result indicates
that a rule’s inexactness for the fourth-order cross moments has
little influence on performance for this example. On the other
hand, the improvement of the 2-point GHF over the EKF and
DDF1 implies the significance of the second-order moment; the
further improvement of the UKF3, UKF5, DDF2/CDF1, CDF2,
and 3-point GHF over the 2-point GHF implies the significance
of the fourth-order principle moment. These insights will be
helpful to the choice of a filter in practice.
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Fig. 7. Averaged absolute position error with the associated 2�-deviation
bound (dotted line for the EKF and dashed line for the DDF1).

Fig. 8. Averaged absolute position error with the associated 2-standard devia-
tion bound (dotted line for the 2-point GHF and dashed line for the UKF3).

Fig. 7 plots the errors of the EKF and DDF1 in position esti-
mates, the associated estimates of the -deviation bounds and

CRLB. Since the UKF3, UKF5, DDF2/CDF1, CDF2, and
3-point GHF are quite similar in accuracy, Fig. 8 only plots the
2-point GHF and UKF3 for clarity. The -deviation bounds
are given by twice the averaged square root of the diagonals of
the covariance matrix. The estimate error of a consistent filter
should lie below its corresponding bound with a possibility of
0.95. Obviously, the EKF and DDF1 do not produce consistent
estimates after 20 s or so (see Fig. 7) and are too optimistic with
the estimate. The 2-point GHF and UKF3 stay well below their
associated bounds for the whole time span (see Fig. 8).

3) Bearing Only Tracking: The target moves within the
plane according to the standard second-order model

(39)

Fig. 9. MSEs of each filter across 100 random runs and the MSE derived from
the CRLB.

where ,

and

Here, and denote Cartesian coordinates of the moving target.
The system noise , where is the 2 2
identity matrix. A fixed observer at the origin of the plane takes
noisy measurements of the target bearing

(40)

where the measurement noise . Obviously, the
state is unobservable for certain target-observer geometries,
making the posterior probability density highly non-Gaussian.
A Gaussian filter performs satisfactorily only when the
Gaussian assumption is valid. If not, a Gaussian filter would
risk divergence.

The reference data were generated using ,
. The initial true state of the system was

, and the initial esti-
mate was with covariance

. Realistic amounts
of process noise make a very small impact on the CRLB for
bearing only tracking [51], so the CRLB carried out for this
example assumed zero process noise.

The MSEs of 100 Monte Carlo runs for each component are
plotted in Fig. 9, as well as the MSE derived from the CRLB by
averaging across time instants as shown in (35). It appears
that divergence occurs for most of filters. In such a case, we
turn to use for comparison the number of runs of divergence,
instead of the MSE. Table II provides the number of runs of
divergence for each filter out of 500 Monte Carlo implementa-
tions. The result agrees very well with the analytical ranking in
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TABLE II
NUMBER OF RUNS OF DIVERGENCE FOR EACH FILTER

(29). The 3-point GHF is the only one that did not diverge in our
simulation.

V. DISCUSSIONS AND CONCLUSION

This paper reviews the Gaussian filters from the perspective
of numerical integration. Specifically, we present in a unified
numerical-integration framework the derivation of a number of
approximate Gaussian filters. It shows that all Gaussian filters
are approximations of the general Gaussian filter by using a
specific numerical integration method of some kind or another,
such as the Gauss–Hermite product rule, rules exact for mono-
mials and methods of approximation. This perspective provides
a well-founded understanding of all the existing Gaussian fil-
ters with respect to accuracy, efficiency, and stability factor. The
analytical findings are tabulated, from which a ranking of accu-
racy of various Gaussian filters is derived. The numerical results
agree nicely with the analytical ranking list. We believe that this
perspective will facilitate selection of Gaussian filters in prac-
tice and hopefully be useful to design more efficient and stable
filters by employing better numerical integration methods.

Given a nonlinear system, the ideal scenario of selecting a
suitable Gaussian filter could be the following.

1) Confirm the validity of the Gaussian assumption. This
should be done with a CRLB-like bound that tells the best
achievable performance for any Gaussian filter using the
linear update rule. The development of the bound remains
an open problem. Regardless of its Bayesian updating, the
GPF equipped with sufficient samples can be expected to
play this role.

2) Select a candidate Gaussian filter according to Table I. It
depends on which aspect or aspects most matter. For ex-
ample, if the accuracy alone is the most concerned, it will
be advisable to select the 3-point GHF or the UKF5.

3) Apply the candidate to the target system to see whether it
is qualified. If not, there will be no need to carry out other
Gaussian filters, and we have to design new algorithms
of higher precision or directly turn to use sampling-based
filters, e.g., the GPF or the general particle filter.

The work in this paper is an essential step to put the above
scenario into reality.
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