
Combinatorics of
Genome Rearrangements

Guillaume Fertin, Anthony Labarre, Irena Rusu, Éric Tannier, and Stéphane Vialette

	c o m p u tat i o n a l b i o l o g y

	Combinatorics of Genome Rearrangements
	 Guillaume Fertin, Anthony Labarre, Irena Rusu, Éric Tannier, and Stéphane Vialette

	F rom one cell to another, from one individual to another, and from one species to another, the content of DNA molecules is often
	 similar. The organization of these molecules, however, differs dramatically, and the mutations that affect this organization are
	 known as genome rearrangements. Combinatorial methods are used to reconstruct putative rearrangement scenarios in order
	 to explain the evolutionary history of a set of species, often formalizing the evolutionary events that can explain the multiple
	 combinations of observed genomes as combinatorial optimization problems. This book offers the first comprehensive survey of
	 this rapidly expanding application of combinatorial optimization. It can be used as a reference for experienced researchers or as
	 an introductory text.
		 Genome rearrangement problems have proved so interesting from a combinatorial point of view that the field now belongs as
	 much to mathematics as to biology. This book takes a mathematically oriented approach, but provides biological background
	 when necessary. It presents a series of models, beginning with the simplest (which is progressively extended by dropping
	 restrictions), each constructing a genome rearrangement problem. The book also discusses an important generalization of
	 the basic problem known as the median problem, surveys attempts to reconstruct the relationships between genomes and
	 phylogenetic trees, and offers a collection of summaries and appendixes with useful additional information.

	 Guillaume Fertin is Professor of Computer Science at the University of Nantes. Anthony Labarre received a PhD in Mathematics
	 and Computer Science from the Université Libre de Bruxelles. Irena Rusu is Professor of Computer Science at the University of
	N antes. Éric Tannier is a Researcher in the Laboratory of Biometrics and Evolutionary Biology of the University of Lyon. Stéphane
	 Vialette is a Researcher in the Gaspard-Monge Institute of Electronics and Computer Science at the University of Paris-Est
	M arne-la-Vallée.

	 Computational Molecular Biology series

“Combinatorics of Genome Rearrangements is the first computer science monograph on this rapidly expanding field. The authors
	 have managed the seemingly impossible feat of combining scope and coherence; they have pulled together all the disparate
	 research lines and integrated them through a common treatment and notation. This volume is simultaneously an accessible
	 computational biology textbook for computer science and bioinformatics students, an easy and thorough entry to the field
	 for professionals attracted by the novelty and diversity of the problems in the field, and an up-to-date reference book for
	 specialists.”
	 David Sankoff, Department of Mathematics and Statistics, University of Ottawa

“This book will be a defining book for the field of genome rearrangement and is destined to become a classic as soon as it
	 hits the bookshelves. The authors have done an excellent job in presenting one of the most technically challenging areas of
	 computational biology in an easily understood manner. Dobzhansky and Sturtevant would not be disappointed.”
	 Pavel Pevzner, Ronald R. Taylor Chair of Computer Science, Director, Interdisciplinary Bioinformatics Program, University of
	 California, San Diego

	T he MIT Press
	M assachusetts Institute of Technology
	 Cambridge, Massachusetts 02142
	 http://mitpress.mit.edu

Fertin, Labarre, Rusu, Tannier, and Vialette
Com

binatorics of Genom
e Rearrangem

ents

978-0-262-06282-4

Combinatorics of Genome Rearrangements

Sorin Istrail, Pavel Pevzner, and Michael Waterman, editors

Computational molecular biology is a new discipline, bringing together computa-

tional, statistical, experimental, and technological methods, which is energizing and

dramatically accelerating the discovery of new technologies and tools for molecular

biology. The MIT Press series on Computational Molecular Biology is intended to

provide a unique and e¤ective venue for the rapid publication of monographs, text-

books, edited collections, reference works, and lecture notes of the highest quality.

Computational Molecular Biology: An Algorithmic Approach

Pavel A. Pevzner, 2000

Computational Methods for Modeling Biochemical Networks

James M. Bower and Hamid Bolouri, editors, 2001

Current Topics in Computational Molecular Biology

Tao Jiang, Ying Xu, and Michael Q. Zhang, editors, 2002

Gene Regulation and Metabolism: Postgenomic Computation Approaches

Julio Collado-Vides, editor, 2002

Microarrays for an Integrative Genomics

Isaac S. Kohane, Alvin Kho, and Atul J. Butte, 2002

Kernel Methods in Computational Biology

Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert, editors, 2004

An Introduction to Bioinformatics Algorithms

Neil C. Jones and Pavel A. Pevzner, 2004

Immunological Bioinformatics

Ole Lund, Morten Nielsen, Claus Lundegaard, Can Keşmir, and Søren Brunak,

2005

Ontologies for Bioinformatics

Kenneth Baclawski and Tianhua Niu, 2005

Biological Modeling and Simulation: A Survey of Practical Models, Algorithms, and

Numerical Methods

Russell Schwartz, 2008

Combinatorics of Genome Rearrangements

Guillaume Fertin, Anthony Labarre, Irena Rusu, Éric Tannier, and Stéphane

Vialette, 2009

Combinatorics of Genome Rearrangements

Guillaume Fertin, Anthony Labarre, Irena Rusu, Éric Tannier and Stéphane Vialette

The MIT Press
Cambridge, Massachusetts
London, England

6 2009 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical
means (including photocopying, recording, or information storage and retrieval) without permission in
writing from the publisher.

For information about special quantity discounts, please email special_sales@mitpress.mit.edu

This book was set in Times New Roman and Syntax on 3B2 by Asco Typesetters, Hong Kong.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Combinatorics of genome rearrangements / Guillaume Fertin . . . [et al.].
p. cm. — (Computational molecular biology)

Includes bibliographical references and index.
ISBN 978-0-262-06282-4 (hardcover : alk. paper) 1. Translocation (Genetics)—Mathematical models.
2. Translocation (Genetics)—Data processing. 3. Combinatorial analysis. 4. Genomics—Mathematics.
I. Fertin, Guillaume, 1972– II. Series.
[DNLM: 1. Gene Rearrangement. 2. Genome. 3. Models, Genetic. QU 470 C731 2009]
QH462.T7C66 2009
572.8 077—dc22 2008042152

10 9 8 7 6 5 4 3 2 1

mailto:special_sales@mitpress.mit.edu

Contents

Preface xiii

Acknowledgments xv

1 Introduction 1
1.1 A Minimalist Introduction to Molecular Evolution 1

1.2 Birth of the Combinatorics of Genome Rearrangements 4

1.3 Statement of the Problem 6

1.4 Scope of This Survey 7

1.5 Overview of the Models 7

1.6 Organization of the Book 8

I DUPLICATION-FREE MODELS: PERMUTATIONS 11

2 Genomes as Permutations 13
2.1 The Symmetric Group 13

2.2 The Cycles of a Permutation 14

2.3 Signed Permutations 15

2.4 Distances on Permutation Groups 15

2.4.1 Rearrangements as Generators 16

2.4.2 Invariant Distances 17

2.5 Circular Permutations 18

2.5.1 Classical Circular Permutations 19

2.5.2 Genomic Circular Permutations 19

2.6 First Measures of Similarity between Permutations 20

2.6.1 Breakpoints 20

2.6.2 Common Intervals and Semipartitive Families 21

3 Distances between Unsigned Permutations 25
3.1 Transposition Distance 25

3.1.1 Lower Bounds on the Transposition Distance 26

3.1.2 Upper Bounds 29

3.1.3 Improving Bounds Using Toric Permutations 32

3.1.4 Easy Cases 33

3.1.5 Approximation Algorithms 34

3.1.6 Conjectures and Open Problems 35

3.2 Prefix Transposition Distance 36

3.2.1 Lower Bounds 37

3.2.2 Upper Bounds 38

3.2.3 Diameter 38

3.2.4 Easy Cases 39

3.2.5 Approximation Algorithms 39

3.2.6 Variant: Insertion of the Leading Element 40

3.3 Reversal Distance 40

3.3.1 Lower Bounds 40

3.3.2 Upper Bounds 43

3.3.3 Easy Cases 43

3.3.4 Computational Complexity 44

3.3.5 Approximation Algorithms 45

3.3.6 Exact Algorithms 46

3.4 Prefix Reversal Distance (Pancake-Flipping) 47

3.4.1 Lower Bounds 47

3.4.2 History 48

3.4.3 Variants 48

3.5 Variants 49

3.5.1 Block Interchange Distance 49

3.5.2 Element Interchange Distances 50

3.5.3 Weighted Reversals 52

3.5.4 Fixed-Length Reversals 54

3.5.5 Bounded Variants 54

3.5.6 Cut-and-Paste 55

3.5.7 Strip Moves 55

3.5.8 Stack-Sorting 56

3.5.9 Tandem Duplications and Random Losses 58

3.5.10 Combined Operations: Reversals and Transpositions 59

3.6 Relations between Distances on Unsigned Permutations 61

4 Distances between Signed Permutations 63
4.1 Conserved Interval Distance 63

4.2 Signed Reversal Distance 64

4.2.1 Reversals 64

4.2.2 The Distance Formula 65

4.2.3 The Scenario of Reversals 67

4.2.4 The Space of All Optimal Solutions 68

4.2.5 Experimental Results 69

4.3 Variants of Sorting by Reversals 69

4.3.1 Perfect Signed Reversal Distance 69

4.3.2 Prefix Reversals (Burned Pancakes) 70

4.3.3 Reversals That Are Symmetric around a Point 70

vi Contents

4.3.4 Weighted Reversals 71

4.3.5 Fixed-Length Reversals 71

4.4 Combined Operations 72

4.4.1 Reversals and Transpositions 72

4.4.2 Reversals, Transpositions, Transreversals, Revrevs 72

4.5 Double Cut-and-Joins 73

5 Rearrangements of Partial Orders 75
5.1 Genomes as Partially Ordered Sets 75

5.2 Partially Ordered Sets 75

5.2.1 Basic Definitions 75

5.2.2 Representing Posets 77

5.2.3 Topological Sorting 77

5.3 Constructing a Poset 78

5.4 Reversal Distance 79

5.5 Breakpoint Distance 80

5.5.1 Exact Algorithms 80

5.5.2 Heuristics for Computing the Breakpoint Distance 81

6 Graph-Theoretic and Linear Algebra Formulations 83
6.1 Simple Permutations and the Interleaving Graph 83

6.2 The Overlap Graph 84

6.3 The Local Complementation of a Graph 85

6.4 The Matrix Tightness Problem 85

6.5 Extension to Sorting by Transpositions 86

6.6 The Intermediate Case of Directed Local Complementation 87

II MODELS HANDLING DUPLICATIONS: STRINGS 89

7 Generalities 91
7.1 Biological Motivations 91

7.2 Strings and Rearrangements on Strings 92

7.3 Balanced Strings 94

7.4 How to Deal with Multiple Copies? 95

8 Distances between Arbitrary Strings 97
8.1 The Match-and-Prune Model 98

8.1.1 Breakpoint Distance 100

8.1.2 Signed Reversal Distance 106

8.1.3 Adjacency Similarity 108

8.1.4 Common Intervals Similarity 111

8.1.5 Conserved Intervals Similarity 113

8.1.6 Conserved Intervals Distance 114

8.1.7 MAD and SAD Numbers 118

8.1.8 Heuristics 119

Contents vii

8.2 The Block Edit Model 123

8.2.1 Block Covering Distance 123

8.2.2 Symmetric Block Edit Distance 126

8.2.3 Large Block Edit Distance 129

8.2.4 String Edit Distance with Transpositions 130

8.2.5 Signed Strings 131

9 Distances between Balanced Strings 133
9.1 Minimum Common String Partition Problems 133

9.1.1 Unsigned MCSP 134

9.1.2 Signed MCSP 135

9.1.3 Reversed MCSP 137

9.1.4 Full Breakpoint Distance 138

9.2 Reversal Distance 138

9.2.1 Unsigned Reversals 138

9.2.2 Signed Reversals 141

9.2.3 Sorting by Reversals with Length-Weighted Costs 142

9.2.4 Prefix Reversals on Unsigned Strings (Pancake-Flipping) 144

9.2.5 Reversals of Length at Most 2 147

9.3 Unsigned Transpositions 147

9.3.1 Unit Cost Transpositions 147

9.3.2 Length-Weighted Transpositions 150

9.3.3 Restricted Length-Weighted Transpositions 150

9.3.4 Prefix Transpositions 152

9.3.5 Adjacent Swaps 153

9.4 Unsigned Block Interchanges 153

9.4.1 Unit-Cost Block Interchanges 153

9.4.2 Character Swaps 155

9.5 Relations between Distances 157

III MULTICHROMOSOMAL MODELS 159

10 Paths and Cycles 161
10.1 Genomes 161

10.2 Breakpoints 162

10.3 Intervals 163

10.4 Translocation Distance 164

10.4.1 Feasibility 166

10.4.2 Unsigned Genomes 166

10.4.3 Signed Genomes 167

10.4.4 Translocations Preserving Centromeres 168

10.4.5 Variants and Special Cases 169

10.5 Double Cut-and-Joins (2-Break Rearrangement) 170

10.6 k-Break Rearrangement 171

10.7 Fusions, Fissions, Translocations, and Reversals 172

10.8 Rearrangements with Partially Ordered Chromosomes 174

viii Contents

11 Cycles of a Permutation 175
11.1 A Model for Multichromosomal Circular Genomes 175

11.2 A Generalization to Signed Genomes 178

11.2.1 A Different Kind of Signed Permutation 178

11.2.2 The Operations 179

11.2.3 Some Results 179

12 Set Systems and the Syntenic Distance 181
12.1 Introduction 181

12.2 Structural Properties 182

12.2.1 Compact Representation 182

12.3 Lower Bounds 184

12.4 Diameter 185

12.5 Algorithmic Results 185

12.5.1 Syntenic Distance 185

12.5.2 Easy Cases 186

12.6 Conjectures and Open Problems 189

IV MULTIGENOMIC MODELS 191

13 Median and Halving Problems 193
13.1 Breakpoint Median 194

13.1.1 Complexity 194

13.1.2 Algorithms 195

13.2 Reversal and DCJ Median 197

13.2.1 Complexity 197

13.2.2 Algorithms 197

13.2.3 Variants 198

13.3 Duplicated Genomes 199

13.3.1 The Double Distance 199

13.3.2 Genome Halving 201

13.3.3 Solving Tetraploidy 202

13.3.4 Guided Halving 202

13.3.5 Genome Halving with Unordered Chromosomes 203

13.4 Other Variants, Generalizations, and Discussion 205

13.4.1 Other Operations 205

13.4.2 More Permutations in the Input 205

13.4.3 Medians and Centers 205

13.4.4 Discussion 206

14 Rearrangement Phylogenies 207
14.1 The Large Parsimony Problem 207

14.2 The Large Parsimony Problem with Gene Orders 209

14.2.1 Breakpoint and Reversal Phylogenies on Permutations 209

14.2.2 Variants 211

Contents ix

14.3 Heuristics for the Breakpoint/Reversal Phylogeny Problem 211

14.3.1 Tree Steinerization 212

14.3.2 Sequential Addition 216

14.3.3 Character Encodings 217

14.4 Variants 220

V MISCELLANEOUS 221

15 Software 223
15.1 Pairwise Rearrangements 223

15.1.1 Unichromosomal Models 223

15.1.2 Multichromosomal Models 225

15.2 Phylogeny Reconstruction and Medians 226

15.2.1 BPAnalysis 226

15.2.2 MGR 226

15.2.3 GRIL 226

15.2.4 GRAPPA 227

15.2.5 MedRbyLS 227

15.2.6 rEvoluzer and amGRP 227

15.2.7 GENESIS 228

16 Open Problems 229
16.1 Complexity Issues 229

16.1.1 Hardness 229

16.1.2 Approximability 230

16.1.3 Polynomial Complexity 231

16.2 Diameter 231

16.3 Tightness of Bounds 232

APPENDICES 233

A Graph Theory 235
A.1 Undirected Graphs 235

A.1.1 Basic Definitions 235

A.1.2 Paths and Cycles 236

A.1.3 Connectivity 237

A.1.4 Bipartite Graphs 238

A.1.5 Trees and Forests 238

A.1.6 Matching 238

A.1.7 Adjacency Matrix 239

A.2 Directed Graphs 240

A.2.1 Basic Definitions 240

A.2.2 Paths and Cycles 241

A.2.3 Connectivity 241

A.2.4 Directed Acyclic Graphs 241

x Contents

B Complexity Theory 243
B.1 The Class NP 243

B.1.1 NP-Optimization Problems: From PTAS to APX 246

B.1.2 NP-Optimization Problems: Beyond APX 250

B.1.3 Parameterized Complexity 250

B.2 Some NP-Complete Problems 252

Glossary 257

Bibliography 263

Index 283

Contents xi

Preface

In 1984, at a congress in Paris, François Jacob, one of the most famous evolutionary

scientists, stated that ‘‘La molécule de l’hérédité est raboutée, modifiée, coupée, ral-

longée, raccourcie, retournée’’ (the molecule of heredity is sewed together, modified,

cut, lengthened, shortened, reversed) during evolution. From one cell to another, one

individual to another, one species to another, the content of the DNA molecules is

often similar, but their organization often di¤ers dramatically. The mutations that

a¤ect this organization are called genome rearrangements, and the structural di¤er-

ences between molecules in two genomes motivate the study of their combinatorics.

Indeed, the inference of the evolutionary events that can explain the multiple combi-

nations of observed genomes can often be formalized as combinatorial optimization

problems.

The variety of problems that have been raised in this domain is so interesting from

a combinatorial point of view that this field has grown and become partly indepen-

dent of the application, so that it now belongs as much to mathematics as to biology.

The mathematics and algorithmics related to genome rearrangements have witnessed

a huge expansion over these last years, and this dynamics seems to be continuing at

the present time. Due to this success, the field has swallowed other studies that were

developed earlier and without biological motivations. For example, many problems

about sorting permutations with constraints are now presented as rearrangement

problems, without considering the biological relevance of the constraint.

Although molecular biology gave birth to it, combinatorics of genome rearrange-

ments is now a mathematical and algorithmic field that has found its own coherence.

It has its own important results, many peripheral developments, and its famous open

problems. A great interest of this domain is the simplicity of the formulation of the

problems, compared to the sometimes great complexity or even nonexistence of so-

lutions. Moreover, the fact that the subject has now been studied for nearly two de-

cades and has been discussed only in specialized research literature motivates both a

thorough survey of the topic and an introduction to a broader audience. This book

intends to fulfill both goals.

Acknowledgments

Sèverine Bérard, Gaëlle Giberti, and Julien Moncel participated in the birth of the

project that led to the present book. The decision to undertake this work was made

during a meeting in Lyon funded by the ACI ‘‘Nouvelles Interfaces des Mathéma-

tiques,’’ p-vert, led by Marie-France Sagot.

Anthony Labarre was funded by the Fonds pour la Formation à la Recherche

dans l’Industrie et dans l’Agriculture (FRIA), by a grant from the Fonds National

de la Recherche Scientifique (FNRS), and by Communauté Française de Belgique—

Actions de Recherche Concertées. He wishes to thank his family and friends, as well

as his adviser Jean-Paul Doignon. Eric Tannier was funded by the French National

Research Institute for Computer Science (INRIA) and by the Agence Nationale de

la Recherche (ANR), projects JC05_49162 (GENOMICRO) and NT05-3_45205

(REGLIS).

1 Introduction

Although this book is combinatorially inclined and does not devote much discussion

to the biological issues, we will start with a short introduction to molecular evolu-

tion, for conceptual and historical purposes; indeed, this is where the combinatorial

study of genome rearrangements originates, and the invention of most variants of

genome rearrangement problems are still driven by biological constraints. This intro-

duction is not necessary to understand the combinatorial problems and their solu-

tions, but it allows us to place them in their context and explain why they are

important, independently of their mathematical value.

1.1 A Minimalist Introduction to Molecular Evolution

The ‘‘molecules of heredity,’’ the support of genetic information, are present in every

cell of all living organisms (bacteria, plants, animals, etc.). Each molecule is called a

chromosome, and the set of all chromosomes is what we will call the genome. Chro-

mosomes are made of DNA (deoxyribonucleic acid), a double-stranded molecule in

which each strand is a long succession of nucleotides (a sequence). Nucleotides can

be of four types—A, C, G, and T—and the two DNA strands are coupled in such a

way that an A on one strand is always coupled with a T on the other strand, and a C

on one strand is always coupled with a G on the other strand. Those strands are said

to be complementary: the sequence on one strand determines the sequence on the

other one. Figure 1.1 shows a representation of the above concepts.

Because of complementarity, a DNA molecule is usually represented as a single

sequence (one arbitrary strand), but the organization in two strands will often be cru-

cial for our purpose. Chromosomes can be either circular (the sequence forms a circle

and has no ends), which is often the case in bacteria, or linear (the sequence has two

ends, called telomeres), which is often the case in animals and plants. A segment of

DNA is a part of this molecule made of consecutive nucleotides. A gene is a segment

of DNA that contains the information needed to construct the other molecules in the

cell.

What accounts for the diversity of living organisms is the possibility for DNA to

replicate itself with some inaccuracy: one genome is used to produce another, almost

identical genome. This inaccuracy is the principle of molecular evolution.

A DNA molecule may evolve by point mutations (i.e., mutations at the level of

nucleotides). There are three di¤erent kinds of point mutations: substitutions (one

nucleotide is replaced with another), insertions (a nucleotide is added to the se-

quence), and deletions (a nucleotide is removed from the sequence). Detecting these

events is the goal of sequence alignment (for a presentation of this topic, see, for ex-

ample, Setubal and Meidanis [333] or Jones and Pevzner [224]).

Figure 1.1
A chromosome and a fragment of a DNA molecule
Source: National Institutes of Health, National Human Genome Research Institute, Division of Intra-
mural Research

2 1 Introduction

However, a sequence may also evolve by modifying its organization at a larger

scale. These large-scale mutations are called rearrangements, or structural variations,

and detecting them is the goal of genome rearrangement problems. The main rear-

rangements include the following:

� Deletions. A segment of the genome is lost (see figure 1.2).

� Transpositions. A segment of the genome moves to another location (see figure 1.3).

Transpositions are sometimes referred to as translocations or insertions, but transpo-

sition is well adopted in the field of combinatorics of genome rearrangements.

� Inversions or reversals. A segment of the genome is reversed and the strands are

exchanged (see figure 1.4).

� Duplications. A segment of DNA is copied and inserted in the genome. There are

three main standard types of duplications: tandem duplications, illustrated by figure

1.5, which insert the copy next to the original; retrotranspositions, which insert a

copy of a gene at an arbitrary location in the genome; and whole genome duplica-

tions, which copy either the whole genome or some of its chromosomes.

Figure 1.2
Deletion of the dotted region in a chromosome

Figure 1.3
Transposition of the dotted region in a chromosome

Figure 1.4
Reversal of the underlined segment, resulting in the boxed segment

Figure 1.5
Tandem duplication of the dotted region in a chromosome

1.1 A Minimalist Introduction to Molecular Evolution 3

� Reciprocal translocation. A segment of a chromosome that contains a telomere is

exchanged with a segment of another chromosome that also contains a telomere

(see figure 1.6).

� Fusion. Two chromosomes are joined into one (see figure 1.7).

� Fission. One chromosome splits into two (this is the inverse of a fusion).

� Horizontal, or lateral, transfer. A segment of the genome is copied from one

genome to another. This is common mainly in unicellular organisms.

All these operations act on a genome at the level of DNA segments rather than on

nucleotides. This is why a genome is often represented by a sequence of segments in

that setting: they are the segments that are found in an almost identical state in sev-

eral species, not cut by rearrangements. Two segments are said to be homologous if

they derive from a common ancestor and are distinguished by a replication event

(they end up in two di¤erent genomes) or by a duplication event (they both belong

to the same genome).

Genes are often taken as those homologous segments because, due to their func-

tional utility, they are less subject to small mutations and are rarely cut by rearrange-

ments, which is not the case for other parts of the genome.

1.2 Birth of the Combinatorics of Genome Rearrangements

In 1936 two renowned biologists, Dobzhansky (the inventor of the synthetic theory

of evolution) and Sturtevant (the discoverer of rearrangement processes in genomes

at the beginning of the twentieth century) proposed for the first time to use the degree

Figure 1.6
Reciprocal translocation of the dotted regions in two chromosomes

Figure 1.7
Fusion of two chromosomes

4 1 Introduction

of disorder between the organization of genes in two di¤erent genomes as an indica-

tor of an evolutionary distance between organisms (see Dobzhansky and Sturtevant

[145, 146]). They proposed a scenario of inversions to explain chromosomal di¤er-

ences between 17 groups of flies, as well as a reconstruction of putative ancestral gene

arrangements and species histories from the observation of the gene order along the

chromosomes.

Since rearrangements are relatively rare events, scenarios minimizing their number

are more likely to be close to reality. In 1941 Sturtevant and Novitski [343] formu-

lated the problem of minimizing the number of inversions that may explain the dif-

ferences in arrangements between two species: ‘‘. . . for each such sequence there was

determined the minimum number of successive inversions required to reduce it to the

ordinal sequence chosen as ‘standard.’ For numbers of loci above nine the determi-

nation of this minimum number proved too laborious, and too uncertain, to be car-

ried out. . . .’’

The reconstruction of genome rearrangements from the examination of chromo-

somes, using techniques such as ‘‘chromosome banding’’ or ‘‘in-situ hybridisation’’

[301] were numerous, all focusing on relatively close species, so that the number of

rearrangements was small. All these studies were based on the parsimony criterion,

which makes molecular biologists often prefer explanations of di¤erences between

genomes that involve as few mutations as possible. This principle makes the connec-

tion with combinatorial optimization possible, because the optimization principle

meets the parsimony criterion.

As we entered the genome sequencing era, the importance of rearrangements in

evolution or illnesses was pointed out by several biologists, such as Palmer and Her-

bon [289], who examined the di¤erences in the gene order of the mitochondrial

genomes of cabbage and turnip, which are very similar in sequence but dramatically

di¤erent in structure. It was not until 1982 that some researchers working in combi-

natorial optimization started to formalize and become involved in this problem, in

order to overcome the limit of nine genes stated by Sturtevant and Novitski [343].

Watterson et al. [369] proposed to represent the relative positions of genes in di¤erent

genomes as permutations. In order to propose an evolutionary scenario between two

species, one had to solve the problem of transforming one circular permutation into

another with a minimum number of inversions. The problem was far from being

solved after this first article, but it was well stated.

Transforming one permutation into another by means of a minimum number of

allowed operations is often equivalent to sorting a permutation by means of the

same operations (see page 17). Though it took a decisive start in a biological context,

the problem of sorting permutations with constraints was not new: a few mathemati-

cians and computer scientists had already tackled that kind of problem in the past.

Those problems were not, however, motivated by biology: constraints were related

1.2 Birth of the Combinatorics of Genome Rearrangements 5

to data structures as stacks, or were simply introduced as games that later turned out

to be particular cases of genome rearrangement problems, or found uses in other

fields.

New models were later proposed to handle more operations, duplicated segments,

and several chromosomes. Shortly after Watterson et al. [369], the field started its

dramatic expansion.

1.3 Statement of the Problem

The genome rearrangement problem is formulated in its most general form as follows:

given a set of genomes and a set of possible evolutionary events, find a shortest set of

events transforming those genomes into one another.

What ‘‘genome’’ means here, and what events are, makes the diversity of the prob-

lem. Miscellaneous models have been proposed, depending on various parameters,

and we briefly review them in section 1.5. ‘‘Shortest’’ usually refers to the number of

events, but it may also mean ‘‘of least weight’’ if events are weighted (e.g., according

to their probability of occurrence).

The length (or weight) of an optimal sequence of events transforming one genome

into another is called the distance between the two genomes. We will often require

that this distance be a metric on the set of genomes, in the mathematical sense, and

we recall its definition here.

Definition 1.1 A metric d on a set S is an application

d : S � S ! R : ðs; tÞ 7! r

satisfying the following three axioms:

1. For all s; t A S, dðs; tÞb 0 and dðs; tÞ ¼ 0 if and only if s ¼ t (positivity).

2. For all s; t A S, dðs; tÞ ¼ dðt; sÞ (symmetry).

3. For all s; t; u A S, dðs; uÞa dðs; tÞ þ dðt; uÞ (triangular inequality).
A set S equipped with a metric d is called a metric space and is denoted ðS; dÞ.

Finding an optimal sequence of events between two genomes of course yields the dis-

tance between the two genomes, but the converse is not always true. Therefore, most

of the time we will examine both aspects of the problem. A related problem we will

be interested in is that of determining the diameter of a metric space.

Definition 1.2 The diameter of a metric space ðS; dÞ is the maximal value the dis-

tance can reach, that is,

max
s; t AS

dðs; tÞ:

6 1 Introduction

1.4 Scope of This Survey

This survey is restricted to the algorithmic and combinatorial aspects of genome rear-

rangements, but it also encompasses a few problems that are similar in spirit, even if

they were not motivated by biology in the first place. The motivation for this is two-

fold: first, those problems deserve at least to be mentioned here, since they are closely

related to genome rearrangement problems; and second, the study of related prob-

lems or variants of our problems may provide insight on the original problems we

are interested in.

There has been a lot of work on probabilistic models and statistical studies of

genome rearrangement problems, which we will not consider in this work. We refer

the reader to the surveys of Eriksson [165] and Durrett [150]. As the reader may have

guessed by reading section 1.1, we also will not delve much into the biological

aspects, and will focus on the mathematical aspects of genome rearrangements,

though we will mention applications and biological contexts where appropriate.

Some partial surveys have been published in earlier articles or book chapters. In

1995, Hannenhalli and Pevzner [197] wrote the first survey on the combinatorics of

genome rearrangements, mainly based on their success at sorting signed permuta-

tions by reversals (see sections 3.3 and 4.2). The chapters by Pevzner [296] and Setu-

bal and Meidanis [333] dedicated to genome rearrangements mainly focus on sorting

permutations by reversals. The books edited by Gascuel [182], Sanko¤ and Nadeau

[322], Böckenhauer and Bongartz [74], Jiang et al. [222], and Tseng and Zelkowitz

[360] contain chapters that survey part of the field or try to give a quick overview of

it. A survey article by Li et al. [247] reveals the importance and popularity of the

field, and this book intends to be a more developed version of it.

1.5 Overview of the Models

Depending on the assumptions that are made on the data, or the events we want to

study, di¤erent models can be used. The basic objects will be homologous markers

(i.e., segments of genomes that can be found in several species, leading to the belief

that they belonged to the common ancestor of these species). Genes are a good exam-

ple of such markers, though they are not the only ones; but since genes were histori-

cally first used as markers for genome rearrangement studies, we often say ‘‘genes’’

for ‘‘homologous markers,’’ as a simplification.

We will start with the simplest possible model, and progressively extend it by drop-

ping restrictions. In the case where

1. the order of genes in each genome is known,

2. all genomes share the same set of genes,

1.5 Overview of the Models 7

3. all genomes contain a single copy of each gene, and

4. all genomes consist of a single chromosome,

genomes are modeled by permutations (see page 13): each gene can be assigned a

unique number and is found exactly once in each genome.

As explained in section 1.1, a DNA molecule has two strands, and some rear-

rangements may change the strand that a segment belongs to. Therefore, each seg-

ment may be assigned a þ or a � sign (þ is omitted most of the time) to indicate

the strand it resides on, leading to the model of signed permutations (see page 15).

We have also seen in section 1.1 that chromosomes can be linear or circular, and the

latter case can be modeled using circular permutations rather than linear (classical)

ones.

In spite of all the technical progress that has been made over the last decades and

the large number of genomes that have been completely sequenced, many genomes

have been only partially sequenced, which means that we cannot model them using

permutations because genes are not totally ordered. In that case, genomes can never-

theless be modeled by partially ordered sets, and some studies can still be conducted

using that model, as we will see in chapter 5.

In general, however, genes do not appear exactly once in each genome: due to

duplications and deletions, there can be several copies of a gene in a given genome,

or no copy at all. In that case, genomes are modeled by strings (on the alphabet of

genes, see page 91) rather than permutations. Of course, it is possible to sign the ele-

ments of the string or to deal with circular strings.

A great part of living organisms have a genome that consists of several chromo-

somes (in a variable number, which can lie between 1 and 100), as is the case for all

animals, and permutations as we have presented them are no longer a realistic model

in that case. One can use the disjoint cycle decomposition of permutations (see page

14) to represent each chromosome using a cycle, in the case where chromosomes are

circular, but this concept does not extend to linear chromosomes or strings since it

cannot model duplicated genes. We may therefore want to extend our model to dis-

joint sets of paths and cycles (page 159), where each path or cycle models a chromo-

some.

Finally, one may not care about or simply not know the order of genes in each

chromosome, and care only about whether two genes are in synteny (i.e., whether

they belong to the same chromosome). In that case, genomes are modeled by collec-

tions of sets of genes (see chapter 12).

1.6 Organization of the Book

The first three parts of this book are organized according to the models presented in

the previous section, each part being devoted to a mathematical object that has been

8 1 Introduction

used to construct genome rearrangement problems. Part IV is devoted to an impor-

tant generalization of the basic genome rearrangement problem, known as the me-

dian problem, which aims at considering more than two genomes at the same time

and inferring their common ancestors. It surveys the attempts to reconstruct the kin

relationships between genomes by drawing phylogenetic trees in which nodes are an-

cestral configurations and branches (edges) account for evolutionary events.

Part V is a collection of summaries that provide useful additional information on

the field, such as a list of available software based on the algorithms that we describe

in the book and a list of open problems. This book also includes two appendices:

appendix A is devoted to basic concepts of graph theory, and appendix B recalls

the basics of the algorithmic theory of complexity, as well as a few NP-complete

problems.

1.6 Organization of the Book 9

I DUPLICATION-FREE MODELS: PERMUTATIONS

2 Genomes as Permutations

Permutations were the first mathematical objects to serve as formal models for study-

ing arrangements of DNA fragments among several species. Studies that use permu-

tations in this context make use of a common knowledge (either classical or invented

ad hoc) that is worth discussing here before stating our first genome rearrangement

problems. More information about permutation group theory can be found in the

books by Bóna [76] and Wielandt [370].

2.1 The Symmetric Group

Permutations are functions, which we will also view as orderings of a given finite set.

Definition 2.1 A permutation p is a bijection over the set f1; 2; . . . ; ng. The image of

i A f1; 2; . . . ; ng by p is denoted by pi. The elements pi of the permutation are called

genes.

A permutation induces a total order � on f1; 2; . . . ; ng: we write pi 0 pj if i < j.

A classical notation used in combinatorics to denote a permutation p is the two-row

notation

1 2 � � � n

p1 p2 � � � pn

� �
;

we will adopt the traditional notation used in the genome rearrangement literature

by keeping only the second row, that is,

p ¼ ðp1 p2 � � � pnÞ:
We refer to permutations as defined in definition 2.1 as linear permutations, as

opposed to other kinds of permutations that will be introduced later.

The classical multiplication or composition of permutations is applied, as the com-

position of functions, from right to left: when writing p � s, we first apply s, then p,

which results in the permutation ðps1 ps2 � � � psnÞ. For example, if p ¼ ð3 1 4 2Þ and
s ¼ ð4 1 3 2Þ, then p � s ¼ ð2 3 4 1Þ. This operation induces a group structure on the

set of all permutations. Indeed, composition is associative; the identity permutation

i ¼ ð1 2 � � � nÞ is the corresponding neutral element; and the inverse permutation of p

is the permutation p�1 obtained by exchanging positions and elements in p, that is,

p�1
pi

¼ i for 1a ia n.

Definition 2.2 The symmetric group, denoted by Sn, is the set of all permutations of

f1; 2; . . . ; ng with the operation �.

2.2 The Cycles of a Permutation

Orderings are by no means the only possible representation of permutations: another

representation is the well-known disjoint cycle decomposition.

Definition 2.3 A cycle of a permutation p, denoted by C ¼ ði1; i2; i3; . . . ; ik�1; ikÞ is a
set of elements such that for 1a ja k � 1, pij ¼ ijþ1 and pik ¼ i1.

Every permutation decomposes into the product of disjoint cycles, and this decom-

position is unique (up to ordering of the cycles and of the elements within each cycle).

For example, the permutation (4 8 9 7 6 5 1 3 2 10) decomposes into the cycles (1, 4,

7), (2, 8, 3, 9), (5, 6), and (10). Note the distinction between the two notations: for

instance, ð1 2 � � � nÞ is the identity permutation, whereas ð1; 2; . . . ; nÞ is the permuta-

tion ð2 3 4 � � � n� 1 n 1Þ. A natural graphical representation of permutations follows

from this decomposition.

Definition 2.4 The graph of a permutation p in Sn is the directed graph with vertex

set f1; 2; . . . ; ng and with edge set fði; piÞ j 1a ia ng.
The cycles of this graph are the cycles of the permutation p. Figure 2.1 shows a

representation of the graph of (4 8 9 7 6 5 1 3 2 10).

Definition 2.5 All permutations that have the same disjoint cycle decomposition

form a conjugacy class.

Figure 2.1
Graph of the permutation (4 8 9 7 6 5 1 3 2 10)

14 2 Genomes as Permutations

For example, p ¼ ð1; 2; 3Þð4; 5; 6Þ and s ¼ ð1; 3; 5Þð2; 4; 6Þ belong to the same con-

jugacy class. This is the particular case for the symmetric group of the general notion

of a conjugacy class in any group.

Definition 2.6 A permutation is even if the number of even cycles in its disjoint cycle

decomposition is even or, equivalently, if it can be expressed as a product of an even

number of 2-cycles. Otherwise, it is odd.

Definition 2.7 The alternating group An is the subgroup of Sn formed by all even per-

mutations.

2.3 Signed Permutations

Signed permutations model the organization of genomes better than unsigned per-

mutations, because they take into account the double helix structure of DNA. In-

deed, given one arbitrary starting point for a chromosome, each DNA strand has

an orientation, and by complementarity, the orientation of one strand is the reverse

of the orientation of the other. This orientation corresponds to the direction in which

genes are transcribed on a given strand.

Definition 2.8 A signed permutation on f1; 2; . . . ; ng is a permutation of the set

f�n; . . . ;�2;�1; 1; 2; . . . ; ng that satisfies p�i ¼ �pi.

The one-row notation that was mentioned in section 2.1 in the context of unsigned

permutations is also used for signed permutations. For example, the permutation

�4 �3 �2 �1 1 2 3 4

3 �1 4 2 �2 �4 1 �3

� �
is simply denoted by

ð�2 �4 1 �3Þ;
in which we drop the mapping of the negative elements since keeping it would be re-

dundant, according to definition 2.8. Composition and inversion of signed permuta-

tions are well defined. The neutral element for the operation � remains the identity

permutation i ¼ ð1 2 � � � nÞ.
Definition 2.9 The hyperoctahedral group, denoted by SG

n , is the set of all signed per-

mutations of f�n; . . . ;�2;�1; 1; 2; . . . ; ng with the operation �.

2.4 Distances on Permutation Groups

In this section, we use G to denote a permutation group, either signed or unsigned.

2.4 Distances on Permutation Groups 15

2.4.1 Rearrangements as Generators

Permutations may represent not only genomes, but also mutations (rearrangements),

in such a way that a mutation r will transform a genome p into the genome p � r.
For example, for a permutation p, the reversal of the segment pi; . . . ; pj ði < jÞ in

the permutation p is modeled by the permutation

r ¼ ð1 � � � i � 1 j j � 1 � � � i þ 1 i j þ 1 � � � nÞ
or, in the signed case,

r ¼ ð1 � � � i � 1 �j �ð j � 1Þ � � � �ði þ 1Þ �i j þ 1 � � � nÞ;
and

p � r ¼ ðp1 � � � pi�1 pj pj�1 � � � piþ1 pi pjþ1 � � � pnÞ
or, in the signed case,

p � r ¼ ðp1 � � � pi�1 �pj �pj�1 � � � �piþ1 �pi pjþ1 � � � pnÞ:
Therefore, computing a sequence of rearrangements that transforms a permutation

p into a permutation s comes down to finding a sequence r1; . . . ; rk such that

p � r1 � � � � � rk ¼ s or, equivalently, s�1 � p ¼ r�1
k � � � � � r�1

1 .

If the set of allowed rearrangements is such that it is always possible to obtain any

permutation in G by composing those rearrangements, they are said to be generators

of G . In this case, rearrangement problems on permutations can be formulated as

follows:

Given any two permutations p and s in G and a set S of generators of G , find a

minimum length factorization of s�1 � p that consists only of elements of S.

Problems related to the factorization of permutations had been studied long before

mathematicians became interested in genome rearrangement problems. There are

some general complexity results that prevent us from hoping for a general solution

to the problem: Even and Goldreich [168] have shown that finding such a factoriza-

tion is NP-hard, and Jerrum [221] has shown that the problem is PSPACE-complete,

even if jSj ¼ 2. Some of these problems are easy to solve, however, if the set of gen-

erators is fixed, and not part of the instance: well-known examples include the case

where S is the set of all exchanges of elements, whether they are adjacent (in which

case an optimal sorting algorithm is the well-known ‘‘bubble sort’’; see Knuth [237])

or not (in which case it corresponds to factorization of permutations into 2-cycles, a

problem first solved by Cayley [100]). Jerrum [221] gives a few other examples of

such tractable problems.

Generators of a permutation group yield the following natural graphical represen-

tation, which is fundamental in group theory.

16 2 Genomes as Permutations

Definition 2.10 Given a set S of generators of a permutation group G , the Cayley

graph associated with ðS; GÞ is the graph whose vertices are the elements of G and

whose edges connect two vertices such that the corresponding elements can be trans-

formed into one another using an element of S.

Figure 2.2 shows the Cayley graph associated with ðS;S4Þ, where S is the set of all

exchanges of adjacent elements, and S4 is the group of all linear unsigned permuta-

tions of 4 elements. The notion of diameter introduced in definition 1.2 has a natural

interpretation in that setting: it is the length of the ‘‘longest shortest path’’ between

any two vertices of the Cayley graph corresponding to the given group and set of

generators.

2.4.2 Invariant Distances

Given a set of generators of a permutation group, a distance between two permuta-

tions p and s can be defined as the minimum number of generators r1; . . . ; rk such

that p � r1 � � � � � rk ¼ s. This is indeed a distance, according to definition 1.1. The

distances we consider satisfy an additional property that allows us to reduce genome

rearrangement problems to a simpler canonical problem.

Figure 2.2
The Cayley graph associated with ðS;S4Þ, where S is the set of all exchanges of adjacent elements, also
known as the permutohedron of order 4
Based on a picture by David Eppstein

2.4 Distances on Permutation Groups 17

Definition 2.11 A distance d on G is left-invariant if for all p, s, t in G , we have

dðp; sÞ ¼ dðt � p; t � sÞ:
Left-invariance can be intuitively explained as follows. Given two genomes that

can be represented as permutations of the same set of genes, the number of opera-

tions that will be required to transform one genome into the other does not depend

on how genes are numbered: one can arbitrarily assign a unique number to each gene

and ‘‘rename’’ the genes in the other genome accordingly, without modifying the cor-

responding distance between the two genomes. Left-invariance is an important un-

derlying concept in genome rearrangements because it is the reason why many

problems considered in that field reduce to a sorting problem: indeed, computing

the distance of interest between any two permutations p and s is by left-invariance

equivalent to computing the distance between permutations s�1 � p and i, and we

can therefore restrict our attention to computing the distance between a permutation

and the identity. An immediate corollary of this property is that for all those dis-

tances and any permutation p in G , we have dðp; iÞ ¼ dðp�1; iÞ. Since most of the

time we will be considering the distance of a permutation from the identity, we will

abbreviate dðp; iÞ into dðpÞ.
Definition 2.12 Given a permutation p, a sequence of k rearrangements r1; . . . ; rk is

called a sorting sequence for p if p � r1 � � � � � rk ¼ i.

As the reader might wonder, there is also a concept known as right-invariance, but

most distances used in genome rearrangements do not satisfy this property. We note,

however, that right-invariant distances between permutations have applications in

statistics (see Diaconis [135]) and in the theory of adaptive sorting algorithms (see

Estivill-Castro and Wood [166]).

2.5 Circular Permutations

Circular permutations model circular chromosomes. They are especially relevant be-

cause most unichromosomal genomes actually consist of a circular chromosome

(bacteria are a notable example). They also model the evolution of mitochondrial

and chloroplastic genomes, which are small, independent circular chromosomes

found in the cells of all animals and plants, as well as the ‘‘nuclear genome,’’ which

most often contains several linear chromosomes.

We define two kinds of circular permutations: the ‘‘classical’’ ones, found in the

mathematical literature, and the ‘‘genomic’’ circular permutations with equivalence

classes that are a bit broader than in the classical case: permutations are supposed

to model chromosomes, and since linear chromosomes have no prescribed starting

point, circular chromosomes have no preferred reading direction (clockwise or coun-

18 2 Genomes as Permutations

terclockwise). Usually this information is not taken into account in studies of linear

chromosomes as permutations. This can be justified by the study of chromosome seg-

ments. But it cannot be justified for circular permutations, for which it is necessary to

take into account the fact that they may be read in both directions.

2.5.1 Classical Circular Permutations

Let first 1� be the equivalence relation between signed or unsigned linear permuta-

tions defined as follows: we write p1� s if there exists an integer k such that for all i

in f1; 2; . . . ; ng, pi ¼ sðiþk mod nÞþ1. In other words, p and s are equivalent if p can be

obtained by rotating the elements of s (or conversely). An equivalence class under

this relation is called a (signed or unsigned) circular permutation, and may be denoted

using any of its elements.

In order to avoid confusion between linear and circular permutations, we use the

notation ½p1 p2 � � � pn� to denote circular permutations; therefore, we have

½p1 p2 � � � pn� ¼ fðp1 p2 � � � pnÞ; ðp2 p3 � � � pn p1Þ; . . . ; ðpn p1 � � � pn�1Þg:
We will also use the � symbol to explicitly denote circular permutations without

expanding their content. For instance, p is a linear permutation, whereas p� is a cir-

cular one. If p ¼ ðp1 � � � pnÞ is a linear (signed or unsigned) permutation, we refer to

the circular permutation pe� ¼ ½p1 � � � pn nþ 1� as its corresponding circular exten-

sion. Any linear permutation in the equivalence class of a circular permutation p� is

called a linearization of p�.

2.5.2 Genomic Circular Permutations

The following definition corresponds to how circular permutations are often

described in combinatorics of genome rearrangement literature (see, e.g., Meidanis

et al. [265], Solomon et al. [342]). Let1� be the relation between signed or unsigned

linear permutations defined as follows: we write p1� s if

� either there exists an integer k such that for all i in f1; 2; . . . ; ng, pi ¼ sðiþk mod nÞþ1

� or ðp1; . . . ; pnÞ ¼ ðsn; . . . ; s1Þ if p and s are unsigned, and ðp1; . . . ; pnÞ ¼
ð�sn; . . . ;�s1Þ if p and s are signed.

In other words, p and s are in relation if p can be obtained by rotating the elements

of s or by reversing the whole set of elements, flipping the signs for signed permuta-

tions. The transitive closure of 1� is an equivalence relation, and an equivalence

class under this equivalence relation is called a (signed or unsigned) genomic circular

permutation, and may be denoted using any of its elements.

For each problem involving circular permutations, we will mention whether it is

solved for classical or genomic circular permutations. Note that given one genomic

2.5 Circular Permutations 19

signed circular permutation such that one linearization p contains only elements with

a þ sign, the subclass containing all permutations in which all elements have a þ sign

corresponds to the classical unsigned circular permutation of p. This observation will

lower the number of di¤erent variants to consider.

2.6 First Measures of Similarity between Permutations

Some measures of similarity and dissimilarity between permutations (they are nu-

merous in the literature; see, for example, the survey by Estivill-Castro and Wood

[166]) are used in computational biology, even if they do not explicitly correspond

to rearrangement events. They are nevertheless useful, and we present here two

examples based on concepts that will be used by other distances we will introduce

later.

2.6.1 Breakpoints

� Introduced by Sanko¤ and Blanchette [317].

� Complexity: polynomial. Computing the distance and diameter is a trivial problem,

contained in the definition.

One of the first intuitions inspired by the parsimony criterion is that if a group of

genes appears consecutively in several species, then they must have been present in

the same order in the ancestral species, and were not separated during evolution.

This translates mathematically into the notions of adjacencies and breakpoints,

which, despite their simplicity, deserve a clarification because their definition in the

literature varies according to the models and operations under consideration (see

also a discussion on multichromosomal genomes in section 10.2).

Definition 2.13 The linear extension of a (signed or unsigned) permutation p of

f1; 2; . . . ; ng is the permutation of f0; 1; . . . ; nþ 1g defined by p l ¼ ð0 p1 � � � pn nþ 1Þ.
For the linear extension of signed permutations, it is a convention that 0 has a pos-

itive sign.

Definition 2.14 Let p l be the linear extension of a (signed or unsigned) permutation

p on f1; 2; . . . ; ng. A point of p is an ordered pair ðp l
i ; p

l
iþ1Þ for 0a ia n. Moreover:

� If p l
iþ1 ¼ p l

i þ 1, it is called an adjacency;

� If p l
iþ1 ¼ p l

i � 1, it is called a reverse adjacency;

� If it is not an adjacency, it is called a breakpoint;

� If it is neither an adjacency nor a reverse adjacency, it is called a strong breakpoint.

20 2 Genomes as Permutations

For a circular permutation p�, its canonical linearization is the linearization of p�

placing the last element n at the last position. Note that a genomic unsigned permu-

tation has two canonical linearizations, and a classical signed permutation may have

none. In this case, define the canonical linearization as the one of the corresponding

genomic permutation. We say that the points, adjacencies, reverse adjacencies, and

breakpoints are the points, adjacencies, reverse adjacencies, and breakpoints of the

linear permutation ðp1 p2 � � � pn�1Þ, where p is a canonical linearization. Note that in

genomic unsigned permutations, adjacencies correspond to reverse adjacencies, and

breakpoints to strong breakpoints.

We illustrate those concepts by the following example: points are indicated by �s

in the permutation (0 � 4 � 8 � 9 � 7 � 6 � 5 � 1 � 3 � 2 � 10). Of all those points, (8, 9) is an

adjacency; (7, 6), (6, 5), and (3, 2) are reverse adjacencies; and all other points are

breakpoints.

The number of points and breakpoints of a permutation p (be it signed or

unsigned, linear or circular) are denoted by pðpÞ and bpðpÞ, respectively. Moreover,

we use the notation sbðpÞ for the number of strong breakpoints. Note that if p� is a

circular permutation of f1; 2; . . . ; ng, then pðp�Þ ¼ n, and if p is a linear permutation

of f1; 2; . . . ; ng, then pðpÞ ¼ nþ 1.

Breakpoints yield a first simple example of an evolutionary distance between

genomes: the breakpoint distance between two permutations p and s is defined as

bpðp; sÞ ¼ bpðs�1 � pÞ. This distance is trivial to compute, and some authors have

argued that it is not less realistic than others (see, e.g., Sanko¤ and Blanchette

[317]). It corresponds to the number of adjacencies in one permutation that are not

adjacencies in the other. It is extended to circular permutations by applying the same

formula, removing element n from the linearization where n is the last element.

2.6.2 Common Intervals and Semipartitive Families

Common intervals are an extension of adjacencies that model the fact that groups of

genes stay together in a genome, but not necessarily in the same order or with the

same direction.

Definition 2.15 An interval (or segment) of a permutation p is a set fjpaj; jpaþ1j; . . . ;
jpb�1j; jpbjg, with 1a aa ba n.

The elements pa and pb are the extremities of the interval.

Definition 2.16 A set I is said to be a common interval of permutations p and s if it is

an interval of both p and s.

In the particular case where s ¼ i, an interval I ¼ fjpaj; . . . ; jpbjg of p is a common

interval (common to p and i) if, given m ¼ mini A ½a;b�jpij and M ¼ maxi A ½a;b�jpij, I

2.6 First Measures of Similarity Between Permutations 21

contains all integers in the range ½m;M�, which is equivalent to requiring that

M �m ¼ b� a.

As an example, let us consider the permutation (8 9 7 6 5 3 1 4 2 10); its nontrivial

(i.e., we do not list singletons nor the whole permutation) common intervals with re-

spect to i are indicated as line segments below.

8 9 7 6 5 3 1 4 2 10

Computing the set of common intervals of two permutations is both easy and very

interesting, because it raises a modular structure of di¤erences between permutations

that can be useful in many rearrangements studies. (For a method of construction,

see, for example, Bui et al. [91]).

Definition 2.17 Two common intervals of permutations p and s are said to overlap if

they intersect and neither of them is contained in the other. A common interval is

called strong if it does not overlap any other common interval.

Definition 2.18 The strong interval tree of permutations p and s is the graph whose

vertex set is the set of strong intervals of p and s, and which contains an edge be-

tween two strong intervals I1 and I2 if I1 H I2 and there is no other strong interval

I3 such that I1 H I3 J I2. This graph is a tree rooted at the interval f1; 2; . . . ; ng, so
that each node has one parent and possibly several children, ordered according to

their position in both permutations.

Lemma 2.1 (See, for example, Bui et al. [91].) Let I be a strong interval of two per-

mutations p and s. One of the following is true:

Figure 2.3
Example of a PQ-tree of common intervals for the permutation (8 9 7 6 5 3 1 4 2 10). Linear nodes are
drawn as rectangles, and prime nodes are represented as ellipses

22 2 Genomes as Permutations

� No union of children of I in the tree of strong intervals is a common interval of p

and s; in this case I is called prime.

� All the subsets that are the union of consecutive children are common intervals of p

and s; in that case I is called linear.

Definition 2.19 The strong interval tree is called a PQ-tree, and the prime nodes are

identified as P-nodes; linear nodes are identified as Q-nodes.

All these notions are immediately useful for common intervals of permutations,

since the family of common intervals of two permutations is weakly partitive and

linear. Figure 2.3 shows an example of a PQ-tree of a family of common intervals.

Bergeron et al. [49] use the structure of common intervals to infer a metric between

permutations, whereas Bernt et al. [65] use the structure of common intervals to give

a hint on the type of rearrangements that have occurred for specified instances.

2.6 First Measures of Similarity Between Permutations 23

3 Distances between Unsigned Permutations

Unsigned permutations were the first combinatorial model of genomes for the study

of rearrangements (see Watterson et al. [369]), and are still used when the orientation

of the markers is not known, as is the case, for example, when the data come from in

situ hybridization (see Wienberg [371]). All permutations in this chapter are unsigned,

unless explicitly stated otherwise.

3.1 Transposition Distance

We begin our survey of permutation-related genome rearrangement problems with

the operation of transposition (the term ‘‘transposition’’ comes from biology and

refers to transposons, which are sequences of DNA that can be displaced in a

genome. They therefore have nothing to do with algebraic transpositions to which

mathematicians are used). Transpositions consist in displacing an interval of the per-

mutation or, equivalently, in exchanging two contiguous intervals of the permuta-

tion. However simple the problem of sorting by transpositions might seem, a lot of

questions remain open, the most notable being the complexity of the sorting problem

and computing the associated distance, as well as the diameter of the symmetric

group under this operation.

� Introduced by Bafna and Pevzner [30].

� Complexity: unknown.

� Best approximation ratio: 11
8 by Elias and Hartman [160].

� Diameter: unknown. Lies between nþ1
2

� �
(see Bafna and Pevzner [30]) and 2n

3 (see

Eriksson et al. [164]).

Definition 3.1 For any permutation p in Sn, the transposition tði; j; kÞ with

1a i < j < ka nþ 1 applied to p exchanges the intervals determined respectively

by i and j � 1 and by j and k � 1, transforming p into p � tði; j; kÞ. Therefore,

tði; j; kÞ is the following permutation:

1 � � � i � 1 i i þ 1 � � � j � 2 j � 1 j j þ 1 � � � k � 1 k � � � n
1 � � � i � 1 j j þ 1 � � � k � 1 i i þ 1 � � � j � 2 j � 1 k � � � n

 !
:

The transposition distance of a permutation p will be denoted by tdðpÞ. Table 3.1

shows the distribution of the transposition distance for 1a na 10.

For a (classical) circular permutation p�, the action of a transposition can be mod-

eled on the intervals of any of its linearizations. The problem of sorting a circular

permutation by transpositions is equivalent to the problem of sorting linear permuta-

tions by transpositions, as proved, for example, by Hartman [201]. Indeed, it is easy

to see that any transposition on an arbitrary linearization has the same result as an-

other transposition on a canonical linearization. No study of the transposition dis-

tance of genomic circular permutations has been reported.

3.1.1 Lower Bounds on the Transposition Distance

3.1.1.1 Lower Bounds Based on Breakpoints It can easily be seen that one transposi-

tion can decrease the number of breakpoints by at most three, as illustrated by the

following example:

ð5 1 3 2 4Þ ! ð5 1 2 3 4Þ:
This yields a first lower bound on the transposition distance.

Theorem 3.1 [30] For all p in Sn, we have tdðpÞb bpðpÞ
3 .

Breakpoints can be categorized into two di¤erent classes, which are well known in

the literature of sorting procedures: breakpoints such that piþ1 > pi are called

Table 3.1
The number of permutations p in Sn with tdðpÞ ¼ k

n
k 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0

3 1 4 1 0 0 0 0 0

4 1 10 12 1 0 0 0 0

5 1 20 68 31 0 0 0 0

6 1 35 259 380 45 0 0 0

7 1 56 770 2,700 1,513 0 0 0

8 1 84 1,932 13,467 22,000 2,836 0 0

9 1 120 4,284 52,512 191,636 114,327 0 0

10 1 165 8,646 170,907 1,183,457 2,010,571 255,053 0

26 3 Distances between Unsigned Permutations

ascents, and breakpoints such that piþ1 < pi are called descents. We use desðpÞ to de-

note the number of descents in a permutation p.

It can be easily checked that whereas the number of breakpoints may decrease by

three through the application of a transposition, the number of descents can decrease

only by two (see our above example in the case of breakpoints). Since i has no de-

scent, we immediately have a lower bound of
desðpÞ

2 . However, it should be noted

that, contrary to the number of breakpoints and to the transposition distance, the

number of descents in a permutation may di¤er from the number of descents in its

inverse. This yields a second lower bound, mentioned by Eriksson et al. [164].

Theorem 3.2 [164] For all p in Sn,

tdðpÞbmax
desðpÞ

2
;
desðp�1Þ

2

� �
:

An observation related to breakpoints allows us to restrict our study of sorting by

transpositions to a particular class of permutations characterized by the following

idea: since the identity permutation is the only permutation with no breakpoint, a

first intuitive sorting strategy would be to preserve adjacencies and ‘‘repair’’ break-

points. A lemma by Christie [115] confirms that the intuition of preserving adjacen-

cies always leads to an optimal solution.

Lemma 3.1 [115] For a permutation p, there exists an optimal sorting sequence of

transpositions that never breaks the adjacencies of p.

Every permutation p can be uniquely transformed into a permutation with no

adjacency without a¤ecting its distance, by partitioning p into strips.

Definition 3.2 A strip is a maximal interval of p containing no breakpoint.

The reduced permutation corresponding to p is obtained by discarding the leftmost

(resp. rightmost) strip if it begins with 1 (resp. if it ends with n), then keeping the

minimal element of each strip in p, and finally renumbering the remaining ele-

ments appropriately. For example, the reduced permutation corresponding to

(4 5 6 3 1 7 8 2), in which strips are underlined, is (4 3 1 5 2), through replacing

strips 4 5 6 and 7 8. Lemma 3.1 implies that the transposition distance of the reduced

permutation is the same as the transposition distance of p, and we can therefore re-

strict our attention to sorting reduced permutations.

3.1.1.2 Lower Bounds Based on the Cycle Graph The cycle graph of a permutation,

introduced by Bafna and Pevzner [30], is one of the many variants of a perva-

sive structure that has proved most useful in obtaining theoretical results on genome

3.1 Transposition Distance 27

rearrangement problems. Indeed, most important results in the field (e.g., bounds,

approximation algorithms, or formulas for computing rearrangement distances)

make an extensive use of parameters based on the cycle graph or on a close structure.

Definition 3.3 The cycle graph of a permutation p of f1; 2; . . . ; ng is the directed

graph GðpÞ with vertex set f0; 1; . . . ; n; nþ 1g and whose arcs consist in

� black (or reality) arcs ðp l
i ; p

l
ði�1ÞÞ for 1a ia nþ 1,

� gray (or desire) arcs ði; ði þ 1ÞÞ for 0a ia n,

where p l is the linear extension of p (see definition 2.13).

Reality arcs represent what we have (the permutation p), whereas desire arcs indi-

cate what we want to obtain (the permutation i). Each vertex of the cycle graph has

one incoming arc of each color and one outgoing arc of each color. As a straight-

forward consequence, the cycle graph decomposes in a single way into alternating

cycles (i.e., cycles that alternate black and gray arcs). The number of alternating

cycles in GðpÞ is denoted by cðGðpÞÞ.
Figure 3.1 shows the cycle graph of a linear permutation. It is straightforward to

define the cycle graph using the circular extension instead of the linear extension:

identify 0 and nþ 1 in definition 3.3. This gives the circular layout of the cycle graph

used in figure 3.2, which is frequently encountered in the literature. Since sorting a

permutation, its linear extension or its circular extension is equivalent, any model

can be preferred for devising bounds or algorithms.

Since the identity permutation i is the only permutation whose cycle graph con-

tains nþ 1 cycles, which is the maximum possible number, sorting a permutation p

by transpositions comes down to, from a graph-theoretic point of view, increasing

Figure 3.1
Cycle graph of the permutation (5 4 1 6 3 2) and its decomposition into three cycles

28 3 Distances between Unsigned Permutations

the number of cycles in GðpÞ in as few steps as possible. The remark of Bafna and

Pevzner [30] that a transposition may increase the number of cycles by at most two

yields a lower bound on the transposition distance.

Theorem 3.3 [30] For every permutation p, we have tdðpÞb pðpÞ�cðGðpÞÞ
2 .

This bound can be sharpened by taking the parity of cycles into account. An alter-

nating cycle is said to be odd if it has an odd number of gray (or black) arcs, and even

otherwise. The number of odd (resp. even) cycles in GðpÞ is denoted by coddðGðpÞÞ
(resp. cevenðGðpÞÞ).
Theorem 3.4 [30] For every permutation p, we have tdðpÞb pðpÞ�codd ðGðpÞÞ

2 .

3.1.2 Upper Bounds

3.1.2.1 Upper Bounds Based on Breakpoints The first upper bound based on the

number of breakpoints was computed by Bafna and Pevzner [30], and stated that

for all p in Sn, tdðpÞa 3
4 bpðpÞ. It is deduced from a 3

2-approximation algorithm (see

section 3.1.5) and the lower bound of theorem 3.4. It has been outperformed by

Eriksson et al. [164].

Theorem 3.5 [164] For every permutation p,

tdðpÞa
2
3 bpðpÞ
� �

if n < 9;

2bpðpÞ�2
3

j k
if nb 9:

8<
:

This bound is obtained by proving that two operations, either on the permutation

or on its inverse, are su‰cient to create three adjacencies.

Figure 3.2
(a) The cycle graph of [0 5 4 1 6 3 2], and its unique decomposition into three alternating cycles ((b) two
2-cycles, and (c) a 3-cycle)

3.1 Transposition Distance 29

3.1.2.2 Upper Bounds Based on the Cycle Graph A first straightforward upper bound

is deduced from the possibility to increase the number of cycles of GðpÞ by at least

one at each step, which corresponds to creating one adjacency at a time.

Theorem 3.6 [30] For all p in Sn,

tdðpÞa pðpÞ � cðGðpÞÞ:
The following upper bound is based on a 3

2-approximation algorithm and the lower

bound of theorem 3.4.

Theorem 3.7 [30] For all p in Sn,

tdðpÞa 3ðpðpÞ � coddðGðpÞÞÞ
4

:

3.1.2.3 Upper Bounds Based on the G-Graph Labarre [240] introduced a slight vari-

ant of the graph of a permutation that proved useful for the problem studied in this

section. It is essentially the same graph, except that vertices are ordered by position.

Definition 3.4 The G-graph of a permutation p in Sn is the directed graph GðpÞ with
ordered vertex set ðp1; . . . ; pnÞ and arc set fðpi; pjÞ j pi ¼ jg.

Figure 3.3 shows an example of a G-graph. If C ¼ ði1; i2; . . . ; ikÞ is a cycle of p,

we obtain a cycle ðpi1 ; pi2 ; . . . ; pik Þ, which we also denote as C, in GðpÞ, and call it a

k-cycle. The length of a cycle in GðpÞ is therefore k.
In a fashion quite similar to the parity of cycles defined in the context of GðpÞ, a

k-cycle in GðpÞ is odd (resp. even) if k is odd (resp. even). Likewise, cðGðpÞÞ denotes the
number of cycles in GðpÞ, and coddðGðpÞÞ (resp. cevenðGðpÞÞ denotes the number of odd

(resp. even) cycles in GðpÞ. Labarre [240] derived an upper bound based on these cycles.
Theorem 3.8 [240] For all p in Sn,

tdðpÞa n� coddðGðpÞÞ:

3.1.2.4 Other Upper Bounds An upper bound based on the length of a longest

increasing subsequence of a linear permutation was deduced by Guyer et al. [192].

Figure 3.3
The G-graph of the permutation (4 1 6 2 5 7 3)

30 3 Distances between Unsigned Permutations

Definition 3.5 Given a permutation p, a subsequence of p is a subset fpi1 ; . . . ; pikg of

nonnecessarily contiguous elements of p, with i1 < i2 < � � � < ik. The subsequence is

increasing if pi1 < � � � < pik , and it is a longest increasing subsequence if there is no

other increasing subsequence in p with more elements.

Guyer et al. [192] observed that a permutation could be sorted by transpositions

by ‘‘growing’’ its longest increasing subsequence. That subsequence can always be

increased by at least 1 at each step, which yields the following upper bound.

Observation 3.1 [192] For all p in Sn,

tdðpÞa n� jLISðpÞj;
where jLISðpÞj is the length of a longest increasing subsequence of p.

The right-hand side of the above inequality is also known as Ulam’s distance (see

Diaconis [135]), which we denote as ulamðpÞ.
Benoı̂t-Gagné and Hamel [40] proposed another view of sorting by transpositions,

in order to avoid using the cycle graph.

Definition 3.6 For any p in Sn, the left code of an element pi is

lcðpiÞ ¼ jfpj j pj > pi and 1a ja i � 1gj;
and the right code of an element pi is

rcðpiÞ ¼ jfpj j pj < pi and i þ 1a ja ngj:
The left (resp. right) code of a permutation is the sequence formed by the left (resp.

right) codes of its elements.

The left code of an element pi simply counts the number of elements that are

larger than pi and precede it in p, and the right code of an element pi counts the

number of elements that are smaller than pi and follow it in p. For example, the per-

mutation p ¼ ð5 4 1 6 3 2Þ has the left code lcðpÞ ¼ ð0; 1; 2; 0; 3; 4Þ and the right code

rcðpÞ ¼ ð4; 3; 0; 2; 1; 0Þ; it can easily be seen that only the identity permutation has

ð0; 0; . . . ; 0Þ as both left and right codes, so the goal is to increase the number of 0s

in the left or right code of a permutation.

Definition 3.7 A plateau in a sequence S is a subsequence of contiguous ele-

ments that have the same nonzero value. We denote as platðSÞ the number of plateaus

in S.

Lemma 3.2 [40] For any p in Sn, we have

tdðpÞaminfplatðlcðpÞÞ; platðrcðpÞÞg:

3.1 Transposition Distance 31

3.1.2.5 Upper Bounds for Special Classes of Permutations Elias and Hartman [160]

proved upper bounds on the distance of three special classes of permutations.

Definition 3.8 A permutation p in Sn is simple if GðpÞ contains no cycle with more

than three black arcs (the total number of arcs is at most six).

Definition 3.9 A permutation p in Sn is a 2-permutation (resp. 3-permutation) if all

cycles in GðpÞ have two (resp. three) black arcs.

Note that a 2-permutation (resp. 3-permutation) exists only if pðpÞ can be divided

by 4 (resp. 3). Simple permutations were initially introduced because they are easier

to study than arbitrary permutations, due to the simpler structure of their cycle

graphs. Any permutation can be transformed into a simple permutation in linear

time (see Gog and Bader [186]), and the transformation preserves the lower bound

of theorem 3.4 on the transposition distance.

Theorem 3.9 [160] For every simple permutation p that is not a 3-permutation,

dðpÞa pðpÞ
2

� 	
:

Theorem 3.10 [160] For every 3-permutation p,

dðpÞa 11
pðpÞ
24

� 	
þ

3 pðpÞ
3 mod 8

 �
2

$ %
þ 1:

3.1.3 Improving Bounds Using Toric Permutations

Eriksson et al. [164] introduced a useful equivalence relation on Sn whose equiva-

lence classes are called toric permutations. As in the work of Hultman [214], for x in

f0; 1; 2; . . . ; ng, let xm ¼ ðxþmÞ ðmod nþ 1Þ, and define the following operation on

extended circular permutations:

mþ pe� ¼ ½0m p1
m p2

m � � � pnm�:
Two permutations p, s in Sn are said to be torically equivalent if there exists

m ð0ama nÞ such that se� ¼ mþ pe�. An equivalence class for this relation is

called a toric permutation, and is denoted by p�
� when it contains the permutation p.

We illustrate those concepts with the following example: let p ¼ ð3 1 5 2 4 6Þ; then
pe� ¼ ½0 3 1 5 2 4 6�, and

0þ pe� ¼ ½0 3 1 5 2 4 6�;

1þ pe� ¼ ½1 4 2 6 3 5 0�;

32 3 Distances between Unsigned Permutations

2þ pe� ¼ ½2 5 3 0 4 6 1�;

3þ pe� ¼ ½3 6 4 1 5 0 2�;

4þ pe� ¼ ½4 0 5 2 6 1 3�;

5þ pe� ¼ ½5 1 6 3 0 2 4�;

6þ pe� ¼ ½6 2 0 4 1 3 5�;
which yields p�

� ¼ fð3 1 5 2 4 6Þ; ð1 4 2 6 3 5Þ; ð4 6 1 2 5 3Þ; ð2 3 6 4 1 5Þ;
ð5 2 6 1 3 4Þ; ð2 4 5 1 6 3Þ; ð4 1 3 5 6 2Þg, and all permutations in that set are tori-

cally equivalent.

It is easily seen that any two permutations that are torically equivalent have the

same number of breakpoints; but they have more in common, as shown by the fol-

lowing property, which is actually the main reason why toric permutations were

introduced.

Lemma 3.3 [164] Any two permutations that are torically equivalent have the same

transposition distance.

This implies that any bound that is valid for a given permutation remains valid for

all permutations to which it is torically equivalent. This does not improve any bound

that is based on parameters preserved by toric permutations, such as the number of

breakpoints or the number of cycles in the cycle graph, as shown by Hultman [214].

However, any bound based on parameters that are not preserved by the toric equiv-

alence relation can be improved using that relation. This is, for example, the case for

the cycles of the G-graph, which helps sharpen the bound of theorem 3.11.

Theorem 3.11 [240] For all p0 i in Sn,

tdðpÞa n�max
s A p��

coddðGðsÞÞ:

3.1.4 Easy Cases

This section lists some linear permutations whose transposition distance can be com-

puted in polynomial time.

� The reversed permutation w ¼ ðn n� 1 � � � 2 1Þ has transposition distance n
2

� �þ 1

(see Christie [115] and a simple proof by Eriksson et al. [164]).

� 2-permutations have a transposition distance equal to n=2 (see Christie [115]).

� Permutations of the form ð2 4 6 � � � n 1 3 5 � � � n� 1Þ with n even have transposi-

tion distance n=2 (see Christie [115]).

3.1 Transposition Distance 33

� The permutation kk, defined by

k1 ¼ ð4 3 2 1Þ
k2 ¼ ð4 3 2 1 5 9 8 7 6Þ
..
.

kk ¼ ð4 3 2 1 5 9 8 7 6 10 � � � 5k k þ 3 k þ 2 k þ 1 kÞ;

8>>>><
>>>>:
has transposition distance 2k þ k

2

� �
(see Christie [115]).

� The permutation p ¼ ð4 3 2 1 5 13 12 11 10 9 8 7 6 sÞ, where s is any 2-

permutation constructed using numbers starting from 14, has distance bnþ1
2 c þ 1,

where n is the size of the permutation. It is currently the permutation with the largest

known value for the transposition distance (see Elias and Hartman [160]).

� g-permutations are linear reduced permutations that fix all even elements (thus n

must be odd). An example of a g-permutation is (3 2 1 4 7 6 9 8 5). Any permutation p

that reduces to a g-permutation has distance tdðpÞ ¼ n� coddðGðpÞÞ (see Labarre [240]).
Other constructions that are solvable in polynomial time were considered by

Christie [115]. Special cases of g-permutations were used by Labarre [240] to deduce

a variety of other classes of permutations whose distance can be computed in polyno-

mial time.

3.1.5 Approximation Algorithms

The first polynomial-time approximation algorithm for sorting by transpositions was

given by Bafna and Pevzner [30], and had an approximation ratio of 3=2, while run-

ning in quadratic time, in the size of the permutation. It is based on the two theorems

that follow definition 3.10.

Definition 3.10 For a permutation p, a k-transposition is a transposition t such that

cðGðp � tÞÞ ¼ cðGðpÞÞ þ k.

Theorem 3.12 [30] For all p in Sn, if GðpÞ contains a cycle with at least three black

arcs, then it is possible to apply

� either a 2-transposition or

� a 0-transposition followed by two consecutive 2-transpositions.

Theorem 3.13 [30] For all p in Sn, if GðpÞ contains no cycle with more than two

black arcs, then it is always possible to apply a transposition that creates two odd

cycles in GðpÞ.
Bafna and Pevzner’s algorithm consists in repeatedly using either 2-transpositions

or 0-transpositions followed by two consecutive 2-transpositions, whereas GðpÞ con-

34 3 Distances between Unsigned Permutations

tains cycles with more than two black arcs, then using 2-transpositions as long as p

is not sorted. Since theorem 3.12 guarantees that we can always create at least four

odd cycles using three transpositions, the approximation ratio of 3=2 follows from

theorem 3.4.

Following Bafna and Pevzner [30], Christie [115], Gu et al. [190], and Hartman

[201] devised simpler and faster 3=2-approximation algorithms based on the same

principles. The 3=2-approximations of Gu et al. [190] and Hartman [201] use a trans-

formation of the initial permutation into a simple one for which the same lower

bound holds.

The approximation ratio of 3=2 was outperformed by Elias and Hartman [160],

who proposed an 11=8-approximation algorithm with time complexity Oðn2Þ. It is
based on the same principle as the other algorithms described above (namely, the

lower bound of theorem 3.4), and consists in applying series of transpositions, a cer-

tain proportion of which are 2-transpositions. If the series have length 3, and at least

two transpositions in each series are 2-transpositions, then this strategy yields a 3=2-

approximation. Elias and Hartman [160] proved that for simple permutations of n

elements, where n is su‰ciently large there always exists a series of 11 transpositions,

at least eight of which are 2-transpositions. The proof of correctness of that algo-

rithm is heavily computer-driven and based on a huge case analysis requiring the ver-

ification of more than 80,000 configurations.

All algorithms discussed above are based on the cycle graph. Another structure,

called the breakpoint diagram, was introduced by Dias et al. [140] and used to derive

a 2.25-approximation running in time Oðn2Þ. The authors claim that although

their algorithm has a poorer ratio, it has the advantage of being much easier to

implement. To date, it does not seem to have been used by other authors.

Benoı̂t-Gagné and Hamel [40] also tried to bypass the cycle graph, and obtained a

3-approximation; they noted that their algorithm and the heuristics they proposed

actually perform much better in practice, but the theoretical bound has not been

improved.

Feng and Zhu [171] designed a variant of a balanced binary tree to encode permu-

tations, which they call a permutation tree. This structure allows improvement of the

running time of algorithms that use it; the authors illustrate this by showing that they

can implement Hartman and Shamir’s algorithm [202] in such a way that its running

time becomes Oðn log nÞ.

3.1.6 Conjectures and Open Problems

The main open problems regarding transpositions are obviously to determine the

complexity of the sorting problem and of the distance computation problem. No

exact polynomial-time algorithm is yet known, but Dias and Carvalho de Souza

[136] proposed an integer linear programming model with Oðn4Þ variables and

3.1 Transposition Distance 35

Oðn6Þ constraints; however, it seems that even though it solves the sorting problem to

optimality, it is exceedingly time-consuming even for permutations of size 8. On a re-

lated matter, Radcli¤e et al. [309] have proved that sorting binary strings by trans-

positions is NP-hard (see part II).

Another problem is to determine the diameter of Sn under transpositions. On the

one hand, an upper bound can be derived from theorem 3.5: it is less than 2
3 n. On the

other hand, the best lower bound has been shown by Elias and Hartman [160], dis-

proving a conjecture by Eriksson et al. [164]: as we have seen in section 3.1.4, some

permutations need nþ1
2

� �þ 1 transpositions to be sorted. The known values of the di-

ameter of Sn under transpositions are shown in table 3.2.

As observed by Bafna and Pevzner [30], each transposition can change the number

of cycles in the cycle graph by 0, 2, or �2. Since sorting by transpositions can be for-

mulated as ‘‘creating odd alternating cycles as fast as possible,’’ it is intuitively fool-

ish to use �2-transpositions in a sorting algorithm. All approximation algorithms

based on the cycle graph make the assumption that such transpositions can always

be disregarded, but they still have not been proved to be useless.

Conjecture 3.1 [115] For any permutation, there always exists an optimal sorting se-

quence of transpositions that contains no �2-transposition.

Christie [115] asked whether it was possible to decide in polynomial time whether a

permutation p is tight with respect to the lower bound of theorem 3.1, a question that

is still unanswered today, even for 3-permutations. The same ‘‘tightness question’’

concerning the other lower bounds does not seem to have received much attention.

The question of sorting circular genomic permutations (see page 18) has never

been handled.

3.2 Prefix Transposition Distance

Since the problem of sorting by transpositions seems very challenging, some

researchers have tried to study variants of this problem, in the hope that they would

shed some light on the original problem. In this section, we discuss a restricted ver-

sion of sorting by transpositions in which only the ‘‘beginning’’ of the permutation

may be moved. Due to the definition, it is studied only on linear permutations.

Table 3.2
Known values of the diameter of Sn under transpositions

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

diameter 0 1 2 3 3 4 4 5 5 6 6 7 8 8 9

Source: Eriksson et al. [164]

36 3 Distances between Unsigned Permutations

� Introduced by Dias and Meidanis [138].

� Complexity: unknown.

� Best approximation ratio: 2, by Dias and Meidanis [138].

� Diameter: unknown. Lies between 3nþ1
4

� �
(Labarre [241]) and n� log8 n (Chitturi

and Sudborough [110]).

Definition 3.11 A prefix transposition is a transposition (definition 3.1) tði; j; kÞ with
i ¼ 1.

The prefix transposition distance of a permutation p will be denoted by ptdðpÞ.
Table 3.3 shows the distribution of the prefix transposition distance for 1a na 10.

3.2.1 Lower Bounds

It is a trivial fact that the prefix transposition distance is always at least as large as

the transposition distance; therefore, any lower bound on tdðpÞ is also a lower bound

on ptdðpÞ. Dias and Meidanis [138] obtained another lower bound, based on the fol-

lowing concepts.

Definition 3.12 A prefix transposition breakpoint in a permutation p in Sn is a break-

point of p, except that ð0; p1Þ is always a prefix transposition breakpoint. The num-

ber of prefix transposition breakpoints in a permutation p is denoted by ptbðpÞ.
Definition 3.13 For a permutation p, a k-prefix transposition is a transposition t such

that ptbðp � tÞ ¼ ptbðpÞ þ k.

As in the case of transpositions, the set of possible values for this parameter is

bounded.

Table 3.3
The number of permutations p in Sn with ptdðpÞ ¼ k; 1a na 10

n
k 0 1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0

3 1 3 2 0 0 0 0 0 0

4 1 6 14 3 0 0 0 0 0

5 1 10 50 55 4 0 0 0 0

6 1 15 130 375 194 5 0 0 0

7 1 21 280 1,575 2,598 562 3 0 0

8 1 28 532 4,970 18,096 15,532 1,161 0 0

9 1 36 924 12,978 85,128 188,386 74,183 1,244 0

10 1 45 1,500 29,610 308,988 1,364,710 1,679,189 244,430 327

3.2 Prefix Transposition Distance 37

Lemma 3.4 [138] For any k-prefix transposition t, we have k A f�2; �1; 0; 1; 2g.
This immediately yields the following lower bound.

Lemma 3.5 [138] For all p in Sn, we have

ptdðpÞb ptbðpÞ � 1

2

�

:

Chitturi and Sudborough [110] then obtained another lower bound, using the fol-

lowing concept based on permutations of f0; 1; 2; . . . ; n� 1g rather than f1; 2; . . . ; ng:
a clan is a maximal interval of p that contains only reverse adjacencies.

Lemma 3.6 [110] For any p in Sn, let 1ðpÞ denote the set of all clans of p of length at

least 3, and sðpÞ denote the number of strips of p. Then

ptdðpÞb sðpÞ þ T
C A1ðpÞ jCj�2ð Þ

3

2
:

Finally, Labarre [241] proved another lower bound and showed that its value is

always at least as large as that given by lemma 3.5.

Theorem 3.14 [241] For any p in Sn, we have

ptdðpÞb nþ 1þ cðGðpÞÞ
2

� c1ðGðpÞÞ � 0 if p1 ¼ 1

1 otherwise

�
;

where c1ðGðpÞÞ is the number of cycles of length 1 in GðpÞ.

3.2.2 Upper Bounds

The observation that in the worst case, only one prefix transposition breakpoint can

be removed at each step, and the fact that we can never remove ð0; p1Þ, yield the fol-

lowing upper bound.

Lemma 3.7 [138] For all p in Sn, we have ptdðpÞa ptbðpÞ � 2.

Chitturi and Sudborough [110] proved another upper bound.

Theorem 3.15 [110] For all p in Sn, we have ptdðpÞa n� log8 n.

3.2.3 Diameter

The lower bound proved by Dias and Meidanis [138] immediately yields a lower

bound of n=2 on the prefix transposition diameter, for instance, when p is the

reversed permutation ðn n� 1 n� 2 � � � 2 1Þ. Chitturi and Sudborough [110] used

the same permutation and their lower bound (lemma 3.6) to improve that result to

38 3 Distances between Unsigned Permutations

2n=3. Finally, Labarre [241] improved that lower bound, using theorem 3.14, to
3nþ1
4

� �
. That value is reached by any 2-permutation (recall definition 3.9), and other

such instances can easily be constructed for values of n for which 2-permutations do

not exist.

As far as upper bounds on the diameter are concerned, Dias and Meidanis’s [138]

upper bound (lemma 3.7) yields a value of n� 1, for instance, when p is the reversed

permutation. Chitturi and Sudborough [110] improved this result to n� log8 n. How-

ever, Dias and Meidanis [138] were able to sort the reversed permutation using

n� n
4

� �
prefix transpositions (but did not prove that this is optimal), and conjectured

that the prefix transposition diameter is n� n
4

� �
, under the assumptions that there is

no ‘‘harder’’ permutation than the reversed permutation and that n� n
4

� �
is indeed its

actual prefix transposition distance.

3.2.4 Easy Cases

Dias and Meidanis [138] show that a particular family of permutations can be sorted

by prefix transpositions in linear time; those are the permutations defined by

ðk þ 1 k k þ 2 k � 1 k þ 3 k � 2 � � � 2k � 1 2 2k 1Þ:
The prefix transposition distance of those permutations is k.

Dias and Meidanis [138] also provide an Oðn2Þ algorithm for determining whether

a given permutation has a prefix transposition distance equal to
ptbðpÞ�1

2 , based on the

following lemma.

Lemma 3.8 [138] For all p in Sn, there exists at most one prefix transposition t such

that ptbðp � tÞ ¼ ptbðpÞ � 2.

Therefore, determining whether p is tight with respect to the lower bound of

lemma 3.5 is done by repeatedly applying a prefix transposition of the kind described

in lemma 3.8. If at any stage there is no such operation, then the permutation is not

tight; otherwise, it is.

Theorem 3.16 [177] If a permutation p is tight with respect to the lower bound of

lemma 3.5, then ptdðpÞ ¼ tdðpÞ.

3.2.5 Approximation Algorithms

Dias and Meidanis [138] have shown that every transposition can be simulated by at

most two prefix transpositions, and therefore any k-approximation algorithm for com-

puting tdðpÞ is a 2k-approximation algorithm for computing ptdðpÞ. Therefore, Elias
and Hartman’s algorithm [160] can be converted into a 2:75-approximation algorithm

for sorting by prefix transpositions. However, a straightforward 2-approximation fol-

lows from the upper bound based on prefix transposition breakpoints.

3.2 Prefix Transposition Distance 39

3.2.6 Variant: Insertion of the Leading Element

In this further restricted variant, only transpositions of the form tð1; 2; kÞ are consid-
ered. It has been investigated by Aigner and West [3]. The number of operations

required to sort a permutation is n� k, where n is the size of the permutation and k

is the largest integer such that the last k entries of the permutation form an increasing

sequence.

3.3 Reversal Distance

We will now examine one of the most studied problems in the field of genome rear-

rangements, the problem of sorting by reversals. This is the first combinatorially

studied problem in the field, and it has spawned the theory based on the breakpoint

graph introduced by Bafna and Pevzner [29].

� Introduced by Watterson et al. [369] on circular permutations.

� Complexity: NP-hard (see Caprara [93]) and not approximable within 1.0008 (see

Berman and Karpinski [57]).

� Best approximation ratio: 11
8 (see Berman et al. [58]).

� Diameter: n� 1 (see Bafna and Pevzner [29]). The diameter is reached by only two

permutations: the Gollan permutation, gn, and its inverse, defined by

gn ¼
ð1; 3; 5; 7; . . . ; n� 1; n; . . . ; 8; 6; 4; 2Þ if n is even

ð1; 3; 5; 7; . . . ; n; n� 1; . . . ; 8; 6; 4; 2Þ if n is odd:

�
Definition 3.14 For any permutation p in Sn, the reversal rði; jÞ with 1a i < ja n

applied to p reverses the closed interval determined by i and j, transforming p into

p � rði; jÞ. Therefore rði; jÞ is the following permutation:

1 � � � i � 1 i i þ 1 � � � j � 1 j j þ 1 � � � n
1 � � � i � 1 j j � 1 � � � i þ 1 i j þ 1 � � � n

� �
:

The reversal distance of a permutation p will be denoted by rdðpÞ. Table 3.4 shows

the distribution of the reversal distance, for 1a na 10.

3.3.1 Lower Bounds

3.3.1.1 Lower Bound Based on Breakpoints Since a reversal can reduce the number of

strong breakpoints by at most two (e.g., ð1 3 2 4Þ ! ð1 2 3 4Þ), we get the following

first bound:

Theorem 3.17 [29] For all p in Sn, we have rdðpÞb sbðpÞ=2.

40 3 Distances between Unsigned Permutations

3.3.1.2 Lower Bound Based on Matchings Kececioglu and Sanko¤ [232] constructed

a graph G ¼ ðV ;EÞ based on p, where V is the set of strong breakpoints of p and

whose edges connect two vertices such that the corresponding strong breakpoints

can be eliminated using a single reversal. Let m be the number of vertices in a maxi-

mum cardinality matching of G; then

rdðpÞb m

2
þ 2ðsbðpÞ �mÞ

3

�

:

This formalizes the idea that, in the best case, two consecutive reversals can remove

at most three strong breakpoints. Improved lower bounds can be obtained by consid-

ering k-tuples of strong breakpoints instead of pairs, but this results in an increased

time complexity. Kececioglu and Sanko¤ [232] propose a linear programming model

formulation for that purpose.

3.3.1.3 Lower Bounds Based on the Breakpoint Graph Bafna and Pevzner [29] pro-

posed the following undirected version of the cycle graph (definition 3.3). Just like

the cycle graph, it can be defined equivalently for circular and linear permutations,

and can be represented using a circular or a linear layout.

Definition 3.15 The breakpoint graph of a permutation p is the undirected graph

BGðpÞ, whose vertex set is the vertex set of the cycle graph of p, and whose edges

are the arcs of the cycle graph of p taken without their orientation.

Figure 3.4 shows an example of a breakpoint graph of a linear permutation, using the

linear layout. Since each vertex has the same number of incident gray and black edges

(at least in the circular layout), the breakpoint graph decomposes into edge-disjoint

Table 3.4
The number of permutations p in Sn with rdðpÞ ¼ k; 1a na 10

n
k 0 1 2 3 4 5 6 7 8 9

1 1 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0

3 1 3 2 0 0 0 0 0 0 0

4 1 6 15 2 0 0 0 0 0 0

5 1 10 52 55 2 0 0 0 0 0

6 1 15 129 389 184 2 0 0 0 0

7 1 21 266 1,563 2,539 648 2 0 0 0

8 1 28 487 4,642 16,445 16,604 2,111 2 0 0

9 1 36 820 11,407 69,863 169,034 105,365 6,352 2 0

10 1 45 1,297 24,600 228,613 1,016,341 1,686,534 654,030 17,337 2

3.3 Reversal Distance 41

alternating cycles. However, by contrast with the cycle graph introduced in the con-

text of sorting by transpositions, this decomposition is not unique (this is actually the

main reason why sorting by reversals is NP-hard; see Caprara [93]). Since the break-

point graph of i has the largest possible number of cycles, one would want to start

with a configuration that is as close as possible to that of i, and get a decomposition

in alternating cycles which is maximal in the sense that it should contain the largest

number of alternating cycles. A maximal alternating cycle decomposition of the

breakpoint graph of figure 3.4 is shown in figure 3.5.

We denote c	ðBGðpÞÞ as the number of cycles in a maximal alternating cycle de-

composition of BGðpÞ. The same kind of lower bound that was shown in the case of

transpositions (theorems 3.3 and 3.4) is obtained for reversals, except that the param-

eter c	ðBGðpÞÞ on which it relies is not easy to compute.

Theorem 3.18 [29] For all p in Sn, rdðpÞb pðpÞ � c	ðBGðpÞÞ.

Figure 3.4
The breakpoint graph of the permutation (4 3 1 5 6 8 2 7)

Figure 3.5
A maximal alternating cycle decomposition of the breakpoint graph of figure 3.4 into five cycles

42 3 Distances between Unsigned Permutations

Caprara [94] studied the tightness of the lower bound of theorem 3.18, and con-

cluded that the probability that it is not tight for a random permutation of n elements

is asymptotically Oð1=n5Þ.

3.3.2 Upper Bounds

The only upper bound on the unsigned reversal distance we are aware of is the fol-

lowing trivial bound presented, for example, in Kececioglu and Sanko¤ [232].

Lemma 3.9 For all p in Sn, we have rdðpÞa sbðpÞ � 1.

Other upper bounds can be obtained using a connection with the signed version of

sorting by reversals, as we explain in section 3.3.3.1.

3.3.3 Easy Cases

3.3.3.1 A Link with the Signed Version There exists a version of the problem of sort-

ing by reversals for signed permutations, which will be discussed in detail in section

4.2 and in which a reversal reverses not only the order but also the signs of the ele-

ments of the target interval. The corresponding sorting and distance computation

problems are, surprisingly, solvable in polynomial time, and turn out to be particular

cases of the unsigned version.

Definition 3.16 A spin of a permutation p in Sn is a signed permutation~pp in SG
n such

that jpi!j ¼ pi for all 1a ia n.

Lemma 3.10 [198] For all p in Sn, denote P
!

as the set of all spins of p; we have

rdðpÞ ¼ min
P
!AP

! srdðP!Þ;

where srdðP!Þ denotes the signed reversal distance of the spin P
!
.

Sorting by reversals can therefore be formulated as finding an optimal spin of the

given permutation. In some cases, characterized using the concepts below, such a

spin can be found in polynomial time.

A strong strip is a maximal interval containing no strong breakpoint, and it

is called long if its length is at least 3. A singleton is a strong strip of length 1. The

canonical sign of an element in a strip is positive if the strong strip is increasing (i.e.,

it consists of adjacencies) and negative if the strong strip is decreasing (i.e., it consists

of reverse adjacencies). Its anticanonical sign is the opposite sign of the canonical

sign.

Hannenhalli and Pevzner [198] proved that signing long strong strips with ca-

nonical signs always leads to an optimal spin. For strong strips of size 2, the same

3.3 Reversal Distance 43

procedure works, except in a particular case where p! contains ‘‘unoriented compo-

nents’’ (see section 4.2 for more details and definitions). In that case, one strip of

size 2 per unoriented component is given the anticanonical sign. This provides a

polynomial-time algorithm in every case.

Lemma 3.11 [198] For all p in Sn, there exists an optimal sorting sequence of rever-

sals that never cuts long strips.

Theorem 3.19 [198] For all p in Sn, there exists an optimal sorting sequence of rever-

sals that never increases the number of strong breakpoints.

3.3.3.2 Tightness of the Breakpoint Lower Bound Tran [359] and Christie [115] inde-

pendently proved that it is possible to decide in polynomial time whether a permuta-

tion reaches the lower bound of theorem 3.17.

Definition 3.17 Given a permutation p, two strong breakpoints ðpi; piþ1Þ and

ðpj; pjþ1Þ define an active interval ½i; j� if jpi � pjj ¼ 1 and jpiþ1 � pjþ1j ¼ 1. Similarly,

they define a passive interval jpi � pjþ1j ¼ 1 and jpiþ1 � pjj ¼ 1.

Tran [359] defines Bp as the graph whose vertices are strong breakpoints in p and

whose edges connect those pairs of strong breakpoints that define active or passive

intervals. If Bp has a perfect matching M, let IM be the graph whose vertices are the

intervals defined by the edges of M, and whose edges connect intersecting intervals

(i.e., intervals ½i; j� and ½k; l � with either i < k < j < l or k < i < l < j).

Theorem 3.20 [359] For any p in Sn, we have rdðpÞ ¼ sbðpÞ=2 if and only if there

exists a perfect matching M of Bp such that each connected component of the graph

IM includes at least one active interval of p.

3.3.4 Computational Complexity

Caprara [97] proved that sorting by reversals is NP-hard, through a reduction of al-

ternating cycle decomposition, the latter being proved to be NP-hard by a reduc-

tion from Eulerian cycle decomposition. Berman and Karpinski [57] strengthened

this result by proving that sorting by reversals is not approximable within ratio

1.0008, unless P ¼ NP. This proves in particular that the problem is APX-hard, and

justifies the numerous algorithmic studies on approximations, exact algorithms, and

heuristics.

Sorting genomic circular permutations (see page 18) by reversals is also NP-hard,

as proved by Solomon et al. [342], thanks to the APX-hardness result of Berman and

Karpinski [57]. The result is not immediately deducible from the same result for linear

permutations, because of a gap of at most three reversals between the solutions for a

circular permutation and one of its linearizations.

44 3 Distances between Unsigned Permutations

3.3.5 Approximation Algorithms

A trivial approximation algorithm has been suggested by Watterson et al. [369]. It

consists simply in repeatedly applying reversals that repair at least one strong break-

point at each step, thereby guaranteeing that any permutation can be sorted using

sbðpÞ � 1 reversals where n is the size of permutation p. The lower bound of theorem

3.17 implies that this algorithm is a 2-approximation.

Kececioglu and Sanko¤ [232] proposed a greedy trick to improve this algorithm,

which consists in applying at each step a reversal that removes the largest possible

number of strong breakpoints in the permutation, favoring reversals that leave

decreasing strips. The approximation ratio is, however, still 2, and it runs in time

Oðn2Þ.
Bafna and Pevzner [29] introduced the breakpoint graph and proposed an approx-

imation algorithm based on that structure which finds a decomposition of the break-

point graph that is not necessarily maximal, but that contains a large number of

4-cycles. The analysis of the algorithm is quite involved, but the idea is to use

2-reversals while it is possible, then use an approximation of independent set on

the 4-cycle graph of the resulting permutation, denoted by s, that guarantees a de-

composition of BGðsÞ with at least 2
5 c4ðsÞ 4-cycles, where c4ðsÞ denotes the number

of 4-cycles in a maximal cycle decomposition of BGðsÞ. The performances of the

algorithm are improved by modifying the way in which 2-reversals are applied in

the first step, in order to obtain a permutation s with a bipartite 4-cycle graph. This

allows finding a decomposition of BGðsÞ that contains a maximum number of

4-cycles, still using the independent set approach. The last step of the algorithm re-

mains the same, and this yields a 7=4-approximation, running in Oðn2Þ time.

Christie [114] then improved the approximation ratio down to 3=2, using a novel

structure called the reversal graph as an auxiliary tool for finding, given a cycle de-

composition of the breakpoint graph of a permutation, a sequence of reversals that

sorts the permutation. Another graph, called the matching graph, is used to find a

‘‘good enough’’ alternating cycle decomposition of a given breakpoint graph. Chris-

tie’s algorithm has time complexity Oðn4Þ, but he notes that it can be reduced to

Oðn2Þ, using techniques proposed by Kaplan et al. [228] in the context of sorting

signed permutations by reversals.

Caprara and Rizzi [98], and then Lin and Jiang [251], proposed improved approx-

imation algorithms for finding a large cardinality decomposition of the breakpoint

graph. The former improved the 3=2-approximation ratio to 33=23þ e, which is

about 1:4348þ e; the latter further improved it to 5073�15
ffiffiffiffiffiffiffi
1201

p
3208 þ e, which is about

1:4193þ e, for any positive e. Both approximations use variants of independent set

and set packing problems.

Berman et al. [58] then came up with an 11=8-approximation, the best ratio

that has been reached so far. Their algorithm is based on a better method to solve

3.3 Reversal Distance 45

alternating cycle decomposition, which again gives a spin of the permutation,

which can then be sorted optimally, using a polynomial algorithm. They prove that

alternating cycle decomposition is 11=8-approximable for instances with more

than 48 strong breakpoints.

There is also a heuristic proposed by Auyeung and Abraham [23], which is a ge-

netic algorithm with time complexity Oðn4Þ. It uses Boolean vectors to represent so-

lutions that correspond to spins of the original permutation and whose fitness is the

reversal distance of the corresponding spin, computable in linear time (see section

4.2). Mo and Zeng [272] have proposed an improved genetic algorithm, which they

claim outperforms both Auyeung and Abraham’s algorithm and Christie’s 3=2-

approximation.

3.3.6 Exact Algorithms

A branch-and-bound algorithm was proposed by Kececioglu and Sanko¤ [232], who

also presented bounding techniques in order to reduce the search space (see section

3.3.1.2). Hannenhalli and Pevzner [198] proposed another algorithm, based on con-

cepts explained in section 3.3.3.1. It runs in polynomial time on singleton-free permu-

tations and on permutations with Oðlog nÞ singletons, and consists in exploring all

canonical spins of the permutation (i.e., all spins in which elements in each increasing

(resp. decreasing) strip are signed positively (resp. negatively)); for each such config-

uration, it then finds in polynomial time how to modify that spin so as to obtain the

lowest possible distance; and finally, it computes in polynomial time the signed re-

versal distance of that spin, keeping, in the end, the spin with the lowest distance. An

optimal sorting sequence of signed reversals is then computed in polynomial time for

that spin, which is eventually mimicked on the original, unsigned permutation.

Hannenhalli and Pevzner [198] claimed that their algorithm had a running time of

Oð2kn3 þ n4Þ, where k is the number of singletons in the permutation. However,

advances on the problem of sorting signed permutations by reversals allow an im-

provement of this running time (references and details are given in section 4.2). In-

deed, the n4 part was due to the sorting procedure, which can now be performed in

time Oðn3=2Þ, and the n3 part was due to the computation of the signed reversal dis-

tance, which can now be done in time OðnÞ. Therefore, the time complexity of this

algorithm becomes Oð2knþ n3=2Þ.
A remarkable idea, proposed by Caprara et al. [99], is a linear programming for-

mulation of sorting by unsigned reversals. This approach allowed them to e‰ciently

and optimally solve very large instances of the problem. The computational limit of

these exact algorithms seems to be random permutations of size around n ¼ 200, for

a few minutes of computation. Dias and Carvalho de Souza [136] later proposed an-

other integer linear programming model, which is polynomial-sized. It uses Oðn3Þ

46 3 Distances between Unsigned Permutations

variables and Oðn5Þ constraints, whereas the model proposed by Caprara et al. [99]

uses an exponential number of variables and constraints.

3.4 Prefix Reversal Distance (Pancake-Flipping)

Just as in the case of transpositions, there exists a variant of sorting by reversals

where valid reversals may act only on the ‘‘beginning’’ of the permutation.

� Introduced by Harry Dweighter [151] (a nickname obviously a pun on ‘‘harried

waiter’’; the author’s real name is Jacob E. Goodman).

� Complexity: unknown.

� Best approximation ratio: 2, by Fischer and Ginzinger [176].

� Diameter: unknown. Lies between 15n
14 (Heydari and Sudborough [212]) and

18
11 nþOð1Þ (see Chitturi et al. [111]).
Definition 3.18 A prefix reversal is a reversal (definition 3.14) rði; jÞ with i ¼ 1.

The prefix reversal distance of a permutation p will be denoted by prdðpÞ. Table
3.5 shows the distribution of the prefix reversal distance, for 1a na 10.

3.4.1 Lower Bounds

Since prefix reversals are restricted reversals, any lower bound on the reversal distance

will be a lower bound on the prefix reversal distance. Fischer and Ginzinger [176]

prove the following lower bound.

Lemma 3.12 [176] For all p in Sn, we have prdðpÞb sbðpe�Þ.

Table 3.5
The number of permutations p in Sn with prdðpÞ ¼ k; 1a na 10

n
k 0 1 2 3 4 5 6 7 8 9 10 11

1 1 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0

3 1 2 2 1 0 0 0 0 0 0 0 0

4 1 3 6 11 3 0 0 0 0 0 0 0

5 1 4 12 35 48 20 0 0 0 0 0 0

6 1 5 20 79 199 281 133 2 0 0 0 0

7 1 6 30 149 543 1,357 1,903 1,016 35 0 0 0

8 1 7 42 251 1,191 4,281 10,561 15,011 8,520 455 0 0

9 1 8 56 391 2,278 10,666 38,015 93,585 132,697 79,379 5,804 0

10 1 9 72 575 3,963 22,825 106,461 377,863 919,365 1,309,756 814,678 73,232

3.4 Prefix Reversal Distance (Pancake-Flipping) 47

3.4.2 History

Oppositely to transpositions, the variant discussed in this section has not been intro-

duced in order to get more insight on the general problem. In fact, the study of sort-

ing by prefix reversals precedes that of sorting by reversals, and began in 1978 and

1979 with two independent papers, one by Györi and Turán [193] and the other by

Gates and Papadimitriou [183]. The study of sorting by prefix reversals is not at all

motivated by genome rearrangements, though Pevzner and Waterman [298] reinter-

pret it as a genome rearrangement problem with a hot point of mutation, but by a

problem stated as a little story by Dweighter [151], which we reproduce below:

The chef in our place is sloppy, and when he prepares pancakes they come out all in di¤erent
sizes. Therefore, when I deliver them to a customer, on the way to the table I rearrange them
(so that the smallest winds up on top, and so on, down to the largest at the bottom) by grab-
bing several from the top and flipping them over, repeating this (varying the number I flip) as
many times as necessary. If there are n pancakes, what is the maximum number of flips (as a
function of n) that I shall ever have to use to rearrange them?

This little story gave the problem of sorting by prefix reversals the name ‘‘pancake-

flipping.’’ As indicated by the question above, people studying this problem were pri-

marily interested in the diameter rather than in the sorting problem. Pancake-flipping

has since found applications in parallel computing, primarily in the design of sym-

metric interconnection networks—the so-called pancake network, which is the Cayley

graph of the symmetric group under prefix reversals, seems to be a good model for

processor interconnections (see, e.g., Akers and Krishnamurthy [5] or Qiu et al.

[308]).

The study of interconnection networks has spawned a large amount of literature

that is far beyond the scope of this book. However, it is interesting to note that

much attention in that field has been devoted to interconnection networks based on

Cayley graphs of permutation groups, starting with the seminal paper by Akers and

Krishnamurthy [5]. Moreover, problems of interest in that field also include deter-

mining the diameter of a given network, and sorting permutations using a given set

of operations, although the approaches used to tackle these problems di¤er com-

pletely from those used in genome rearrangement problems. For more information

on that field, a good starting point is the survey by Lakshmivarahan et al. [242].

3.4.3 Variants

The exploration of the properties of the pancake network has motivated several vari-

ants. For example, Bass and Sudborough [34] remark that even though prefix rever-

sals constitute a set of generators of the symmetric group, it is not a minimal one,

and they examine the possibility of restricting the possibilities of prefix pancakes to

a constant of logarithmic number related to the number of elements in a permuta-

48 3 Distances between Unsigned Permutations

tion. A number of other operations have been introduced, motivated by the proper-

ties of the associated network, such as an operation of shu¿e exchange (see Bass and

Sudborough [33]), which consists in exchanging the first two elements or shifting the

permutation (transforming ðp1 p2 � � � pnÞ into ðp2 � � � pn p1Þ or ðpn p1 � � � pn�1Þ). Bass
and Sudborough [33] prove an upper bound of 5

8 n
2 on the diameter of this variant.

3.5 Variants

3.5.1 Block Interchange Distance

Block interchanges can be viewed as a generalization of transpositions, in that they

exchange nonnecessarily contiguous intervals, whereas transpositions exchange only

contiguous intervals.

� Introduced by Christie [113].

� Complexity: polynomial.

� Best algorithm: the block-interchange distance can be computed in OðnÞ time

(Christie [113]). If this distance equals d for a given permutation, then sorting that

permutation by block interchanges can be done in OðdnÞ time (Lin et al. [254]).

Alternatively, the sorting problem can be solved in Oðn log nÞ time, using a data

structure by Feng and Zhu [171].

� Diameter: n=2 (Christie [113]).

Definition 3.19 For any p in Sn, the block interchange bði; j; k; lÞ with 1a i < ja

k < la nþ 1 applied to p, exchanges the closed intervals determined respectively

by i and j � 1 and by k and l � 1, transforming p into p � bði; j; k; lÞ. Therefore,
bði; j; k; lÞ is the following permutation:

1 � � � i � 1 i � � � j � 1 j j þ 1 � � � k � 1 k � � � l � 1 l l þ 1 � � � n
1 � � � i � 1 k � � � l � 1 j j þ 1 � � � k � 1 i � � � j � 1 l l þ 1 � � � n

 !
:

The block-interchange distance of a permutation p is denoted by bidðpÞ. Table 3.6
shows the distribution of the block-interchange distance for 1a na 10. This distri-

bution follows from the work of Doignon and Labarre [147], who enumerate permu-

tations whose cycle graph belongs to a given conjugacy class. As a corollary, the

number of permutations whose cycle graph has k cycles is characterized, and the dis-

tribution of the block-interchange distance follows from that result and theorem 3.21

(below).

Using the cycle graph introduced in the context of sorting by transpositions (see

page 27), Christie [113] proved a formula for computing the block-interchange dis-

tance.

3.5 Variants 49

Theorem 3.21 [113] For all p in Sn, we have

bidðpÞ ¼ nþ 1� cðGðpÞÞ
2

:

Computing bidðpÞ is straightforwardly done by building its cycle graph, then

counting its cycles, and both tasks are achievable in OðnÞ time. Finding an optimal

sequence is done by repeatedly applying block interchanges that create two new

cycles in GðpÞ; such moves can be identified in OðnÞ time, yielding a time complexity

of Oðn2Þ for sorting by block interchanges. Lin et al. [254] obtained the same results

as Christie, using the ‘‘algebraic formulation’’ of Meidanis and Dias [264] (see chap-

ter 11). Their approach yields a faster algorithm: if bidðpÞ ¼ d, then p can be sorted

by block interchanges in OðdnÞ time. Using the structure introduced by Feng and

Zhu [171], which we discussed in section 3.1.5, the running time of Christie’s algo-

rithm can be improved to Oðn log nÞ. The block-interchange operation is of special

interest when combined with signed reversals, yielding the ‘‘double cut-and-join’’ op-

eration (see section 4.4).

3.5.2 Element Interchange Distances

3.5.2.1 Exchanges A particular case of block interchanges is the case where the size

of the blocks to be exchanged is exactly 1: in other words, permutations are to be

sorted using only exchanges of two (nonnecessarily adjacent) elements. If p is a linear

permutation of n elements, then the problem is easily solved and the associated dis-

tance, called the Cayley distance, is exactly excðpÞ ¼ n� cðGðpÞÞ (see, for instance,

Diaconis [135]). Table 3.7 shows the distribution of the Cayley distance for

1a na 10. It is straightforward from the distance formula that the number of per-

Table 3.6
The number of permutations p in Sn with bidðpÞ ¼ k; 1a na 10

n
k 0 1 2 3 4 5

1 1 0 0 0 0 0

2 1 1 0 0 0 0

3 1 5 0 0 0 0

4 1 15 8 0 0 0

5 1 35 84 0 0 0

6 1 70 469 180 0 0

7 1 126 1,869 3,044 0 0

8 1 210 5,985 26,060 8,064 0

9 1 330 16,401 152,900 193,248 0

10 1 495 39,963 696,905 2,286,636 604,800

50 3 Distances between Unsigned Permutations

mutations of n elements with exchange distance equal to n� k is exactly the Stirling

number of the first kind
�
n
k

�
, which counts the number of permutations in Sn that de-

compose into k disjoint cycles.

3.5.2.2 Adjacent Exchanges One can further restrict those valid exchanges to adja-

cent elements, which could also be seen as restricting valid moves to reversals of

length 2. Again, the sorting problem is trivially solved in polynomial time on linear

permutations by a well-known sorting algorithm called ‘‘bubble sort’’ (see, e.g.,

Knuth [237]), and we denote the associated distance by inv2ðpÞ. This measure is usu-

ally referred to as Kendall’s tau in statistics (see Diaconis [135]). Both the distance

computation and the sorting problems are easily solved in Oðn2Þ time, and the corre-

sponding diameter is n
2

� �
(see, e.g., Knuth [237]).

Designing an algorithm for sorting circular permutations by reversals of length 2 is

mentioned as an open problem by Pevzner [296] (problem 12.105, page 268). How-

ever, Jerrum [221] proposed an integer programming formulation that can be used to

compute the associated distance in Oðn2Þ time, and mentions that the techniques

used in the proofs of that result imply polynomial-time algorithms for solving the

sorting problem as well. Bafna et al. [31] proved that the corresponding diameter is

at most n�1
2

� �
n�1
2

� �
.

3.5.2.3 Prefix Exchanges Finally, the problem of sorting by prefix exchanges has

also been considered: the operation consists in swapping the first element of the per-

mutation with any other element of the permutation. This problem is not motivated

by genome rearrangements, but has applications in the design of interconnection net-

works, just like the pancake-flipping problem (see section 3.4).

Table 3.7
The number of permutations p in Sn with excðpÞ ¼ k; 1a na 10

n
k 0 1 2 3 4 5 6 7 8 9

1 1 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0

3 1 3 2 0 0 0 0 0 0 0

4 1 6 11 6 0 0 0 0 0 0

5 1 10 35 50 24 0 0 0 0 0

6 1 15 85 225 274 120 0 0 0 0

7 1 21 175 735 1,624 1,764 720 0 0 0

8 1 28 322 1,960 6,769 13,132 13,068 5,040 0 0

9 1 36 546 4,536 22,449 67,284 118,124 109,584 40,320 0

10 1 45 870 9,450 63,273 269,325 723,680 1,172,700 1,026,576 362,880

3.5 Variants 51

� Introduced by Akers et al. [6].

� Complexity: polynomial.

� Best algorithm: sorting can be done in Oðn2Þ time, whereas merely computing the

distance can be done in OðnÞ time (see Akers et al. [6]).

� Diameter: 3ðn�1Þ
2

j k
(see Akers et al. [6]).

The prefix exchange distance of a permutation p will be denoted by pexcðpÞ. Table
3.8 shows the distribution of the prefix exchange distance, for 1a na 10. This distri-

bution was fully characterized by Portier and Vaughan [303].

Akers et al. [6] prove a formula for computing the prefix exchange distance.

Theorem 3.22 [6] The prefix exchange distance of p in Sn is equal to

pexcðpÞ ¼ nþ cðGðpÞÞ � 2c1ðGðpÞÞ � 0 if p1 ¼ 1

2 otherwise

�
;

where c1ðGðpÞÞ is the number of cycles of length 1 in GðpÞ, that is, the number of

fixed points of p.

3.5.3 Weighted Reversals

Assigning a di¤erent weight to each reversal is motivated by the hypothesis that

some operations are more likely to happen in some genomes than in others, and par-

ticularly short reversals. Therefore, a model that would assign a larger weight to long

reversals would be more realistic, as argued, for example, by Sanko¤ et al. [329]. In

those weighted variants, the goal is no longer to sort using as few operations as pos-

sible, but rather to select operations so as to minimize the value of a cost function

that assigns a value to each operation used in a sorting sequence.

The weight function that has been most studied is the function f ðlÞ ¼ la, where l is

the length of a reversal and a is a positive real constant. The length of a reversal can

be computed directly on the DNA molecule by counting how many nucleotides are

involved in the inverted segment. However, such an accurate counting is hardly

achievable because reversals do not frequently break the molecule so precisely, and

hence counting the number of genes (or any measure at this scale) in the inverted seg-

ment is a more realistic approach.

� Introduced by Pinter and Skiena [299].

� Complexity: unknown.

� Best approximation ratio and diameter: see table 3.9.

Pinter and Skiena [299], Bender et al. [38], and Swidan et al. [346] have investi-

gated this problem, and their results for di¤erent values of a are collected in table 3.9.

52 3 Distances between Unsigned Permutations

T
ab

le
3
.8

T
h
e
n
u
m
b
er

o
f
p
er
m
u
ta
ti
o
n
s
p
in

S
n
w
it
h
p
ex
cðp

Þ¼
k
;
1
a

n
a

1
0

n
k

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0

2
1

1
0

0
0

0
0

0
0

0
0

0
0

0

3
1

2
2

1
0

0
0

0
0

0
0

0
0

0

4
1

3
6

9
5

0
0

0
0

0
0

0
0

0

5
1

4
1
2

3
0

4
4

2
6

3
0

0
0

0
0

0
0

6
1

5
2
0

7
0

1
7
0

2
5
0

1
6
9

0
0

0
0

0
0

0

7
1

6
3
0

1
3
5

4
6
0

1
,1
1
0

1
,6
8
9

1
,2
5
4

3
4
0

1
5

0
0

0
0

8
1

7
4
2

2
3
1

1
,0
1
5

3
,4
3
0

8
,3
7
9

1
3
,0
83

1
0
,0
4
8

3
,4
0
9

3
1
5

0
0

0

9
1

8
5
6

3
6
4

1
,9
6
0

8
,5
4
0

2
8
,9
9
4

7
1
,5
12

1
1
4
,0
6
4

9
6
,1
16

3
6
,2
60

4
,9
0
0

1
0
5

0

1
0

1
9

7
2

5
4
0

3
,4
4
4

1
8
,3
96

8
0
,2
6
2

2
7
3
,5
4
6

6
8
0
,4
4
8

1
,1
0
6,
4
6
0

9
7
8
,6
9
6

4
1
1
,9
8
4

7
1
,4
77

3
,4
6
5

3.5 Variants 53

Experimental studies on chloroplast genomes of plants suggest that the value of a

in that context is around 0.5. Nguyen et al. [281] use the same function but forbid

reversals that exceed a certain length. They provide bounds and approximation algo-

rithms, and claim that their model is biologically the most meaningful.

3.5.4 Fixed-Length Reversals

Chen and Skiena [105] introduced a variant of sorting by reversals that consists in

sorting permutations using only reversals of a prescribed fixed length; they give sev-

eral characterizations of feasibility and optimization. This particular case is not moti-

vated by genome rearrangements, but by a game called TopSpinTM.

� Introduced by Chen and Skiena [105].

� Complexity: unknown.

� Diameter: unknown. Lies between W n2

k2 þ n

 �

and O n2

k
þ kn

 �
(see Chen and Skiena

[105]).

Definition 3.20 A k-reversal rði; jÞ is a reversal (definition 3.14) with j � i ¼ k.

Whereas reversals generate the symmetric group, and as a consequence all permu-

tations can be sorted by reversals, the same is not necessarily true for k-reversals (al-

though it is true in the easy particular case where k ¼ 2, discussed in section 3.5.2).

Therefore, the first problem is to determine which permutations k-reversals generate.

The connected components of the k-reversal Cayley graph are investigated by Chen

and Skiena [105], who give their number for all combinations of n, k.

3.5.5 Bounded Variants

3.5.5.1 Bounded Reversals Instead of allowing only k-reversals for a fixed k, some

authors have considered allowing i-reversals, for all ia k, for a fixed k. If k ¼ 3,

the problem is known as sorting by short swaps.

Table 3.9
Bounds for the diameter and approximation ratios for sorting by weighted reversals, using the cost func-
tion that assigns weight l a to a reversal of length l

Value of a
Lower bound
on diameter

Upper bound
on diameter

Approximation
ratio

0a a < 1 WðnÞ Oðn log nÞ
a ¼ 1 Wðn log nÞ Oðn log2 nÞ Oðlog nÞ
1 < a < 2 WðnaÞ YðnaÞ Oðlog nÞ
ab 2 Wðn2Þ Yðn2Þ 2

Redrawn from [39].

54 3 Distances between Unsigned Permutations

� Introduced by Heath and Vergara [209].

� Complexity: unknown.

� Best approximation ratio: 2 (see Heath and Vergara [209]) for short swaps.

� Diameter: unknown. Lies between n
2

� �
=3

� �
(see Heath and Vergara [209]) and

3
16 n

2 þOðn log nÞ (see Feng et al. [173]) for short swaps.

Short swaps are also special cases of block interchanges (see section 3.5.1), or the

factorization of permutations into 2-cycles.

If vðpÞ ¼Pi ji � pðiÞj, Heath and Vergara [209] give an algorithm that sorts a per-

mutation with 2-reversals and 3-reversals in at least
vðpÞ
4 and at most

vðpÞ
2 operations.

3.5.5.2 Bounded Transpositions This variant of sorting by transpositions was intro-

duced by Heath and Vergara [207] under the name of bounded block moves.

Definition 3.21 A ðp; qÞ-transposition tði; j; kÞ is a transposition (definition 3.1) with

j � ia p and k � ja q, or j � ia q and k � ja p.

Heath and Vergara [207] note that the minimum number of ð1; n� 1Þ-
transpositions required to sort a permutation p is exactly the length of a longest

increasing subsequence of p. This yields an Oðn log log nÞ algorithm to solve the

ð1; n� 1Þ-transposition distance. The ð1; 2Þ-transposition problem is studied in a few

papers as the short block moves problem. It is known that the diameter of the ð1; 2Þ-
transposition problem is n

2

� �
=2

� �
(see Heath and Vergara [207]), and there exists a 4

3-

approximation algorithm for the ð1; 2Þ-transposition problem (see Heath and Ver-

gara [208]).

Some classes of permutations for which the ð1; 2Þ-transposition problem is solvable

in polynomial time have been characterized (see Heath and Vergara [207, 208] or

Mahajan et al. [262]), but no complexity result is known.

3.5.6 Cut-and-Paste

Cranston et al. [126] introduced the cut-and-paste operation, which consists in cutting

a segment of the permutation and pasting it elsewhere, possibly reversed. In other

words, the allowed operations are transpositions, and transpositions followed by a

reversal of the transposed segment. This variant has been investigated in only a single

paper, which focused on bounds on the diameter: more specifically, Cranston et al.

[126] prove that the diameter lies between dn=2e and d2n=3e. No complexity result is

known.

3.5.7 Strip Moves

Also referred to as a ‘‘block move’’ by authors who study this problem (we choose to be

coherent with our own definitions, which are used by most authors in computational

3.5 Variants 55

biology), a strip move is a transposition that displaces a strip of the permutation, that

is, a segment without breakpoints. Since strip moves are restricted transpositions,

any lower bound on the transposition distance is a lower bound on the strip move

distance. This problem is not motivated by genome rearrangements, but has applica-

tions in computing vision.

� Introduced by Bein et al. [36].

� Complexity: NP-hard (see Bein et al. [36]).

� Best approximation ratio: 2 (see Bein et al. [37] and Mahajan et al. [261]).

� Diameter: n, attained by the reversed permutation (see Bein et al. [36]).

3.5.8 Stack-Sorting

Operations on stacks are not at all inspired by genome rearrangements, but it is

worth mentioning that researchers from other fields have looked at sorting problems

related to stacks. The term ‘‘stack-sorting’’ encompasses many variants, which have

been surveyed by Bóna [75], sharing the common feature that all admissible opera-

tions are described through one or several stacks.

A stack is a last-in, first-out (LIFO) linear sequence accessed at one end called the

top. Elements are added and removed from the top by means of push and pop oper-

ations, respectively. The full-pop operation pops the entire stack. A stack can be used

to rearrange a permutation p as follows: the elements of p are pushed onto an ini-

tially empty stack, and an output permutation is formed by popping elements from

the stack. The output permutation obviously depends on how the push and pop oper-

ations are interleaved.

The stack-sorting problem is to transform an input permutation p on f1; 2; . . . ; ng
into i ¼ ð1 2 � � � nÞ through a sequence of push, pop, and full-pop operations. Permu-

tations that can be transformed into i through a stack are said to be stack-sortable.

As an illustration, permutation (2 1 4 3) is stack-sortable (see figure 3.6). Of course,

not all permutations are stack-sortable; for example, the permutation (2 4 1 3) is not

stack-sortable.

The stack-sorting problem generalizes to systems of stacks. Two special cases have

attracted researchers over many years: stacks in parallel and stacks in series:

� If stacks S1;S2; . . . ;Sk are in parallel, at any point in the sorting process one may

push the next input symbol onto one of the k stacks or may pop one of the k stacks

and thereby create another symbol of the output permutation.

� If stacks S1;S2; . . . ;Sk are in series, one seeks to sort a permutation by pushing its

symbols onto S1, popping them o¤ S1 and onto S2, transferring them from S2 and

pushing them onto S3, and so on, until they emerge from Sk to become new output

symbols.

56 3 Distances between Unsigned Permutations

The stack-sorting problem was introduced in the 1960s (see Knuth [237]), and was

motivated by the study of patterns in permutations.

Definition 3.22 For a permutation p in Sn, a permutation t ¼ ðt1 � � � tkÞ, k < n, is a

pattern of p if there is an injection s of f1; 2; . . . ; kg into f1; 2; . . . ; ng such that for

all i; ja k:

� i < j if and only if sðiÞ < sð jÞ;
� ti < tj if and only if tsðiÞ < tsð jÞ.

The general problem of deciding whether a given permutation contains a given

pattern is NP-complete (Bose et al. [80]). Few polynomial-time solvable cases are

Figure 3.6
Sorting (2 1 4 3) with a stack

3.5 Variants 57

known, such as separable permutations (see Bose et al. [80]). Of particular impor-

tance, Knuth [237] first observed that a permutation is stack-sortable if and only if

it does not contain the pattern (2 3 1).

In fact, there are strong connections between stack-sorting and pattern-matching

in permutations. Research in stack-sorting has led to the discovery of many results,

among which we shall mention the one of Avis and Newborn [24], which states that a

permutation can be sorted by a series of stacks using only the operations ‘‘push’’ and

‘‘full-pop’’ if and only if it does not contain the pattern (3 1 4 2) or (2 4 1 3). The

full-pop operation reverses a segment of the permutation, and hence the problem

corresponds to sorting permutations by reversals, and the number of reversals needed

is the number of stacks in the series. This is why the result of Avis and Newborn [24]

has been rediscovered and generalized to signed permutations in the scope of genome

rearrangement problems, in a variant that we describe in section 4.3.1.

For a recent account on stack-sorting, see Bóna [75]. The study of patterns of per-

mutations, and of classes of permutations avoiding certain patterns, is covered by

Bóna [76]. A pattern avoidance database is maintained by Tenner [354].

3.5.9 Tandem Duplications and Random Losses

A tandem duplication (page 3) consists in inserting a copy of a given segment next

to that segment (for instance, the permutation (1 5 4 2 6 3) undergoing a tandem du-

plication of the segment containing 5, 4, and 2 will be transformed into the string

(1 5 4 2 5 4 2 6 3)). A random loss follows a duplication event and consists in the

deletion of one copy of each of the duplicated genes. In that model, a tandem dupli-

cation followed by a random loss is counted as a single event, referred to as a ‘‘dupli-

cation loss.’’ See figure 3.7 for an example.

Figure 3.7
Sorting (1 3 5 2 4 6) by duplication loss operations

58 3 Distances between Unsigned Permutations

� Introduced by Chaudhuri et al. [102].

� Complexity: polynomial.

� Best algorithm: as explained below, the distance depends on a fixed integer param-

eter ab 1; the distance can be computed in OðnÞ time if a ¼ 1, and in Oðn log nÞ
time otherwise (see Chaudhuri et al. [102]).

� Diameter: dlog2 ne if a ¼ 1, reached only by the reversed permutation

ðn n� 1 � � � 2 1Þ, and n
2

� �
otherwise (see Chaudhuri et al. [102]).

Chaudhuri et al. [102] study a model in which each tandem duplication is weighted

in the following way: if the length of the duplicated segment is k, then the duplication

event has weight ak, where ab 1 is a fixed integer parameter. Under that weight

function, the tandem-duplication random-loss distance with natural parameter a of a

linear, unsigned permutation p, denoted by tdrldaðpÞ, is the number of duplication-

loss events in a minimum weight sequence transforming i into p. We wish to stress

that, unlike all other distances we have encountered so far, here we transform the

identity permutation into p, and not the contrary. This is important, because the dis-

tance under consideration is asymmetric: transforming i into p may not require as

many steps as transforming p into i. For example, one duplication-loss event of

length 4 (e.g., the duplication of (2 3 4 5) followed by an adequate random loss)

is enough to transform i ¼ ð1 2 3 4 5 6Þ into p ¼ ð1 3 5 2 4 6Þ, whereas two

duplication-loss events (e.g., one of length 4 and one of length 2; see figure 3.7) are

needed to transform p into i.

Theorem 3.23 [102] Given a natural ab 1 and any p in Sn:

1. if a ¼ 1, then tdrldaðpÞ ¼ dlog2ðdesðpÞ þ 1Þe and can be computed in OðnÞ time;

2. if ab 2, then tdrldaðpÞ ¼ inv2ðpÞ and can be computed in Oðn log nÞ time.

Bouvel and Rossin [86] introduce another variant, in which each duplication-loss

event has weight 1 if the duplicated segment has a length strictly less than K and

infinite otherwise, for some fixed Kb 2 in NU fyg. They prove some results that

connect this model and permutation patterns—more specifically, with pattern

avoidance.

3.5.10 Combined Operations: Reversals and Transpositions

All distances we have examined so far are based on only one kind of operation. It is

certainly unrealistic, from a biological point of view, to assume that genomes evolve

by only one type of mutation, and a few researchers have therefore tried to take sev-

eral kinds of mutations into account. However, most rearrangement problems com-

bining di¤erent kinds of operations have been studied in the signed case (see section

4.4), and very few results have been obtained in the unsigned case, where it seems

3.5 Variants 59

that the only two operations to have been considered together are reversals and

transpositions.

� Introduced by Walter et al. [363].

� Complexity: unknown.

� Best algorithm: sorting by unsigned reversals and transpositions is approximable

within 2:5909þ d, for any d > 0 (see Rahman et al. [310]).

� Diameter: not studied; upper-bounded by the minimum of the transposition diam-

eter and of the reversal diameter.

As far as lower bounds are concerned, Walter et al. [363] made the simple ob-

servation that the number of strong breakpoints decreases by at most two using a

reversal, and by at most three using a transposition, which yields a lower bound

of (strong breakpoints)/3, and since it is always possible to create a new adjacency, a

3-approximation follows.

No upper bound is known other than those on the transposition distance (section

3.1.2) and on the reversal distance (section 3.3.2), which trivially remain upper

bounds on the reversal and transposition distance.

Rahman et al. [310] then gave a ð4� 2
k
Þ-approximation, where k is the approxima-

tion ratio of the algorithm used to find a maximal decomposition of the breakpoint

graph (as discussed in section 3.3.5). Since at the time of publication, the best ap-

proximation algorithm for achieving this task had a ratio of 1:4193þ e for any

e > 0 (see Lin and Jiang [251]), they obtained an approximation algorithm with the

ratio 2:5909þ d, for any d > 0. Finally, we mention a polynomial-sized integer linear

Figure 3.8
Some relations between distances on unsigned permutations; an arrow from distance d1 to distance d2
means that for all p in Sn, d1ðpÞa d2ðpÞ

60 3 Distances between Unsigned Permutations

programming formulation of the problem by Dias and Carvalho de Souza [136] that

requires Oðn4Þ variables and Oðn6Þ constraints. They observe that though these sizes

are polynomial, they grow su‰ciently fast not to allow the exact computation of the

distance for values of n larger than 7.

3.6 Relations between Distances on Unsigned Permutations

We conclude this chapter with a summary of some relations between distances on

unsigned permutations, summarized in figure 3.8.

Proving the relations depicted in figure 3.8 is quite straightforward, either by sim-

ulating one operation using another or by noting that one is a restriction of another,

and we leave this as an exercise to the reader. Other obvious relations, such as

2 � d1 a 2 � d2 whenever d1 a d2, are not drawn.

3.6 Relations Between Distances on Unsigned Permutations 61

4 Distances between Signed Permutations

Signed permutations allow taking the relative orientation of homologous markers

into account and constitute a more biologically relevant model for genomes; for in-

stance, reversals always change the strand of the reversed segment, so that the orien-

tation of a gene inside the segment is changed as well. Therefore, whenever the

orientation of genes is known and mutations that a¤ect orientations are considered,

it is better to use signed permutations as a model. Remarkably, some problems that

are intractable for unsigned permutations become tractable for signed ones. Such a

notable example is the reversal distance (see section 4.2).

4.1 Conserved Interval Distance

Bergeron and Stoye [45] introduced a variant of the breakpoint distance based on

what they call conserved segments, or conserved intervals [49]. It will be the starting

point of our study of distances between signed permutations, which will make it eas-

ier to subsequently introduce other distances that rely on the same concepts.

� Introduced by Bergeron and Stoye [45].

� Complexity: polynomial.

� Best algorithm: the conserved interval distance can be computed in OðnÞ time (see

Bergeron and Stoye [45]). There is no associated sorting problem.

� Diameter: not studied.

Oppositely to most distances studied in genome rearrangements, the conserved in-

terval distance is not based on a transformation, and hence there is no associated

sorting problem. Recall that an interval I ¼ fjpaj; . . . ; jpbjg of a permutation p is

a common interval if it is an interval of the identity permutation i. Let mI and MI

denote, respectively, the smallest and largest elements of an interval I , that is, mI ¼
mini A ½a;b�jpij and MI ¼ maxi A ½a;b�jpij.

Definition 4.1 A common interval I ¼ fjpaj; . . . ; jpbjg is conserved if either pa ¼ mI

and pb ¼ MI , or pa ¼ �MI and pb ¼ �mI .

The fact that a common interval is conserved means that it is separated from the

rest of the permutation, in the sense that the rearrangements that transform this per-

mutation into the identity never overlap such an interval.

Therefore, the number of conserved intervals between two permutations p and s

(as defined by the number of conserved intervals in s�1 � p) is a measure of similarity

(of how much is conserved) between the two permutations. We denote as fsðpÞ the
number of conserved intervals of a permutation p. However, this quantity does not

define a distance, and that is why the distance definition is slightly di¤erent.

Definition 4.2 For two permutations p and s, the conserved interval distance

cidðp; sÞ is defined by cidðp; sÞ ¼ fsðpÞ þ fsðsÞ � 2fsðs�1 � pÞ.
It is a metric, and can be computed in linear time with a simple progression

through the permutation (see Bergeron and Stoye [45]).

4.2 Signed Reversal Distance

Sorting by reversals is undoubtedly the most famous problem in the realm of genome

rearrangements. This is certainly due to the existence of a polynomial-time algorithm

for signed permutations (by contrast with the unsigned variant, which is NP-hard)

that provides fast and accurate solutions for practical applications.

� Introduced by Bafna and Pevzner [29].

� Complexity: polynomial.

� Best algorithm: the signed reversal distance can be computed in OðnÞ time (see

Bader et al. [26]), whereas sorting by signed reversals can be done in Oðn3=2Þ time

(using an algorithm by Tannier et al. [352] and a data structure by Han [194]).

� Diameter: nþ 1, attained by any permutation whose breakpoint graph has only

one cycle and whose elements are all positive (deduced from the distance formula;

see section 4.2.2).

4.2.1 Reversals

Definition 4.3 For any permutation p in SG
n , the signed reversal rði; jÞ with 1a ia

ja n applied to p reverses the closed interval determined by i and j and reverses the

sign of all its elements, transforming p into p � rði; jÞ. Therefore, rði; jÞ is the follow-
ing permutation:

64 4 Distances between Signed Permutations

1 � � � i � 1 i i þ 1 � � � j � 1 j j þ 1 � � � n
1 � � � i � 1 �j �ð j � 1Þ � � � �ði þ 1Þ �i j þ 1 � � � n

� �
:

Since the first mention of the problem of sorting signed permutations by reversals

by Bafna and Pevzner [29], a polynomial-time algorithm has been published by Han-

nenhalli and Pevzner [199], and subsequent improvements have been achieved by

Berman and Hannenhalli [56], Kaplan et al. [228], Bader et al. [26], Tannier and

Sagot [351], Tannier et al. [352], and Han [194].

Bergeron [44] and Bergeron et al. [47, 49] made a great e¤ort to make this problem

simpler and teachable. A survey on the distance computation problem has been

written by Bergeron et al. [50]. We give here an idea of how the distance formula

and the sequence of reversals are computed.

4.2.2 The Distance Formula

4.2.2.1 The Breakpoint Graph in the Signed Case The breakpoint graph BGðpÞ of a

signed permutation is a slightly di¤erent version of the breakpoint graph of an

unsigned permutation.

Definition 4.4 The breakpoint graph of a signed permutation p is the graph

BGðpÞ ¼ ðV ;EÞ, whose vertex set V contains, for 1a ga n, two vertices gt and gh,

called the tail and the head of the gene g, plus two vertices denoted 0h and nþ 1t.

The edge set E of BGðpÞ is the union of two perfect matchings of V , respectively

denoted by R, the reality edges, and D, the desire edges:

� D contains the edges fgh; ðgþ 1Þtg, for 0a ga n.

� R contains an edge from pih if pi is nonnegative, and from pit otherwise, to piþ1t if

piþ1 is nonnegative, and to piþ1h otherwise, for 0a ia n.

An example of a breakpoint graph is figure 4.1. The breakpoint graph of a signed

permutation is exactly the breakpoint graph of the unsigned permutation obtained

Figure 4.1
The breakpoint graph of the permutation (�7 3 �1 4 2 8 �6 �5)

4.2 Signed Reversal Distance 65

by replacing every signed element with two unsigned elements, except that we omit

edges of the form fgt; ghg.
It is easy to check that every vertex of BGðpÞ has degree 2 (it has one incident edge

in R and one in D), so the breakpoint graph is a set of disjoint alternating cycles,

which makes the disjoint cycle decomposition trivial, as is the case for the cycle

graph. The number of cycles in BGðpÞ is denoted by cðBGðpÞÞ.

4.2.2.2 Unoriented Components The decomposition of a permutation into compo-

nents plays a crucial role for the distance formula.

Definition 4.5 A component of a permutation is a conserved interval which is not the

union of other conserved intervals. A point ðpi; piþ1Þ belongs to a component C if

both pi and piþ1 are in C and C is the smallest component that contains them. A

point is oriented if its elements have opposite signs. A component is said to be ori-

ented if an oriented point belongs to it.

The structure of the family of all components is described by the following prop-

erty (recall definition 2.19).

Property 4.1 [50] For two di¤erent components of a signed permutation, one of the

following holds:

� They are disjoint.

� One is contained in the other and they have di¤erent extremities.

� They overlap on one element.

Definition 4.6 A sequence of successively overlapping components is called a chain

of components. A chain C is maximal if no chain contains the components of C in

addition to other components.

Definition 4.7 The PQ-tree of components of a permutation p is defined as follows:

� Each unoriented component is represented by a P-node.

� Each maximal chain of unoriented components (possibly a singleton) is represented

by a Q-node whose (ordered) children are the P-nodes that represent the components

of this chain.

� A Q-node is the child of the smallest component that contains the chain it

represents.

An example of PQ-tree of components of a permutation is shown in Figure 4.2.

Definition 4.8 A leaf in the PQ-tree of unoriented components is simple if the path

up to, but excluding the next vertex of degree at least 3 in the tree, contains no other

P-node than itself.

66 4 Distances between Signed Permutations

Let tðpÞ be the number of leaves of the tree of unoriented components, plus one if

there is an odd number of leaves and none is simple. Let srdðpÞ denote the reversal

distance of a signed permutation p. We can now state the distance formula.

Theorem 4.1 [199, 50] For any permutation p in SG
n , we have

srdðpÞ ¼ nþ 1� cðBGðpÞÞ þ tðpÞ:
It means that tðpÞ operations are required to eliminate all unoriented components,

and nþ 1� cðBGðpÞÞ are needed to sort oriented components. The reversal distance

can be computed in linear time, thanks to this formula and to the computation of all

the components in a traversal of the permutation.

4.2.3 The Scenario of Reversals

Once the linear-time computation of the distance formula has been stated, there is a

trivial Oðn4Þ algorithm that computes a sequence of length srdðpÞ: try every possible

signed reversal r at each step, until one such that srdðp � rÞ ¼ srdðpÞ � 1 is found.

Such a reversal is called safe. Here is a description of the improvements of this time

complexity. The procedure of finding sorting sequences of reversals is done in two

steps in all solutions that are provided in the literature. It follows the division of the

distance formula into two parameters: the first step consists in eliminating all un-

oriented components, and the second step consists in sorting the remaining oriented

components.

The first step was given its best solution by Kaplan et al. [228], whose algorithm

runs in linear time when coupled with the linear distance computation [26], and it

is based on Hannenhalli and Pevzner’s [199] early results on cutting and merging

components.

The second step is the bottleneck of the whole procedure. At this point, if we

assume that there is no unoriented component, the distance is srdðpÞ ¼ nþ 1�
cðBGðpÞÞ, so a safe reversal is one that increases cðBGðpÞÞ and does not create un-

oriented components (since that would increase tðpÞ).

Figure 4.2
The PQ-tree of components of permutation (0 6 �5 3 4 �2 �1 7)

4.2 Signed Reversal Distance 67

Improvements on the running time of the second step are achieved by using the

concept of oriented reversals, which are reversals that increase cðBGðpÞÞ (note

that they are not necessarily safe). Finding an oriented reversal is an easy task: the

interval spanned by any oriented desire edge of the breakpoint graph defines one.

The hard part is to make sure that it does not increase the number of unoriented

components.

The quadratic algorithms designed by Berman and Hannenhalli [56] and by

Kaplan et al. [228] are based on the linear-time recognition of safe reversals. No bet-

ter algorithm is known so far to recognize safe reversals, but Tannier and Sagot [351]

proved that the recognition of a safe reversal at each step is not necessary: identifying

oriented reversals is su‰cient.

A sequence of oriented reversals r1; . . . ; rk is said to be maximal if there is no ori-

ented reversal in p � r1 � � � � � rk. In particular, a sorting sequence is maximal, but the

converse is not true. The algorithm is based on the following theorem by Tannier

et al. [352].

Theorem 4.2 [352] If S is a maximal but not a sorting sequence of oriented reversals

for a permutation, then there exists a nonempty sequence S 0 of oriented reversals

such that S may be split into two parts, S ¼ S1;S2, and S1, S
0, S2 is a sequence of

oriented reversals.

This allows the construction of sequences of oriented reversals instead of safe

reversals, and increases the size of those sequences by inserting reversals in the se-

quence instead of appending them.

This algorithm, with a classical data structure to represent permutations (as an ar-

ray, for example) still has an Oðn2Þ time complexity, because at each step it has to

test the presence of an oriented reversal, and apply it to the permutation. The slight

modification of a data structure invented by Kaplan and Verbin [227] allows picking

and applying an oriented reversal in Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n

p Þ time, and using this, Tannier and

Sagot’s algorithm achieves Oðn3=2 ffiffiffiffiffiffiffiffiffiffiffi
log n

p Þ time complexity.

Han [194] has announced another data structure that allows picking and applying

an oriented reversal in Oð ffiffiffi
n

p Þ time, and a similar slight modification can probably

decrease the complexity of the overall method to Oðn3=2Þ.

4.2.4 The Space of All Optimal Solutions

Almost all studies on sorting sequences of reversals have been devoted to giving only

one sequence, though it has been remarked that there are often plenty of them (it

may be over several millions even for na 10). A few studies have tried to fill this

deficiency.

An algorithm to enumerate all safe reversals at a given step has been designed and

implemented by Siepel [340]. A structure of the space of optimal solutions has been

68 4 Distances between Signed Permutations

discovered by Bergeron et al. [48], and the algorithmics related to this structure have

been studied by Braga et al. [87].

4.2.5 Experimental Results

Bader et al. [26] provide some experimental tests of their algorithm to compute the

reversal distance. Bergeron and Strasbourg [46] have performed some experiments

on an Oðn3Þ algorithm to sort by reversals. Attempts to parallelize these algorithms

have been made by She and Chen [338] and Kaplan and Verbin [227].

4.3 Variants of Sorting by Reversals

4.3.1 Perfect Signed Reversal Distance

Even though an optimal sequence of signed reversals can be found in polynomial

time, the number of such sequences can be exponential, and hence additional criteria

are needed to help in choosing one solution over another. The ‘‘perfect’’ variant of

sorting by reversals is an attempt to add biological constraints to discriminate among

the solutions.

� Introduced by Figeac and Varré [175].

� Complexity: NP-hard (Figeac and Varré [175]).

� Diameter: not studied.

Definition 4.9 A reversal ri; j breaks an interval I of a permutation p if I and the

interval ½jpij; . . . ; jpjj� overlap. If S is a subset of the set of common intervals of p,

an S-perfect scenario of reversals is a sorting sequence of p that does not break any

interval of S. The S-perfect reversal distance perfdSðpÞ is the smallest number of

reversals in an S-perfect sequence.

A family S of common intervals is called nested if no pair of intervals from S

overlaps.

Theorem 4.3 [175] Computing the S-perfect reversal distance is NP-hard, even if S is

nested.

Note that the complexity of the particular case where S is the whole set of com-

mon intervals is not known. This result is proved by a reduction from unsigned sort-

ing by reversals.

Perfect sorting by reversals may easily be achieved by optimally sorting all com-

mon intervals in a bottom-up search of the tree of strong common intervals, sorting

the strong segments one by one. Whenever there is no ambiguity concerning the di-

rection in which to sort a segment at each step, the procedure is polynomial. Bérard

4.3 Variants of Sorting by Reversals 69

et al. [41, 42] and Diekmann et al. [142] have studied some classes of permutations

for which this is the case: a family S of common intervals is called separable if every

strong interval of S is the union of two overlapping intervals from S.

Theorem 4.4 [41] Computing the S-perfect reversal distance is polynomial if S is

separable.

4.3.2 Prefix Reversals (Burnt Pancakes)

An analogue of the pancake-flipping problem (see section 3.4) has been studied in the

signed case, and people usually refer to this variant as that of sorting burnt pancakes:

all pancakes are burnt on one side, and are assigned a negative number when the

burnt side is faceup, and positive otherwise. The goal is therefore to flip pancakes so

that they not only end up sorted in increasing size order, but also with all burnt sides

facedown.

� Introduced by Gates and Papadimitriou [183].

� Complexity: unknown.

� Diameter: unknown. Lies between 3
2 n and 2n� 2 (see Cohen and Blum [118]).

Definition 4.10 A prefix reversal is a signed reversal (definition 4.3) rði; jÞ with i ¼ 1.

Results are not numerous for this variant. Only a few bounds for the diameter

have been published [118]. Cohen and Blum [118] conjecture that the ‘‘negative iden-

tity permutation’’ ð�1 �2 � � � �nÞ is the hardest permutation to sort. Heydari and

Sudborough [212] proved that this precise permutation requires 3ðnþ 1Þ=2 reversals

to be sorted, so this is the conjectured diameter. The proof of this conjecture would

imply the same function as an upper bound for the diameter in the unsigned case as

well.

4.3.3 Reversals That Are Symmetric Around a Point

This constraint is particularly relevant for rearrangements in the prokaryote world.

Indeed, most of the observed reversals are symmetric around an origin or terminus

of replication.

Definition 4.11 Given a circular permutation p�, a reversal is symmetric around the

point p�
i p

�
iþ1 if it acts on the interval ðp�

i�k � � � p�
i p�

iþ1 � � � p�
iþkþ1Þ, for some natural k

(indices are calculated modulo nþ 1).

The only combinatorial paper taking this constraint into account seems to be the

one by Ohlebusch et al. [283]. They compute the reversal distance in linear time when

the only allowed reversals are symmetric around an origin or teminus of replication

(the model is quite restrictive), and also compute the median for three permutations

70 4 Distances between Signed Permutations

in linear time, a remarkable result since most median problems (which will be dis-

cussed in detail in chapter 13) are NP-hard.

Ajana et al. [4] used the problem of sorting by reversals and the exploration of all

solutions to test whether reversals really occurred around an origin or terminus of

replication.

4.3.4 Weighted Reversals

Just as in the unsigned case, some methods have been developed for weighted signed

reversals, in order to model the natural selection of small inversions of genomes. It

has been studied with a weight function f ðlÞ ¼ l a, where l is the size of a reversal

and a is a given nonnegative parameter.

� Introduced by Swidan et al. [346].

� Complexity: unknown. There exists an approximation algorithm with a constant

ratio for ab 2 by Swidan et al. [346].

� Diameter: unknown; Swidan et al. [346] computed asymptotic values.

We summarize a few results of Swidan et al. [346] in table 4.1. There are lower and

upper asymptotic bounds for the diameter, as well as some approximation algo-

rithms with asymptotic ratios.

4.3.5 Fixed-Length Reversals

This problem may be seen as a particular case of the weighted reversals problem,

with a special weight function that has only one nonzero value.

� Introduced by Qi et al. [304].

� Feasibility solved for even-length reversals in signed circular permutations (see Qi

et al. [304]).

As in definition 3.20, we define, for a fixed integer k, a k-reversal as a reversal

rði; jÞ with j � i ¼ k. Since k-reversals do not necessarily generate the hyperoctahe-

dral group, the first issue concerning sorting by k-reversals is to determine whenever

Table 4.1
Bounds on the diameter and approximation ratios for sorting signed permutations by weighted reversals

Value of a Lower bound Upper bound Approximation ratio

0a a < 1 WðnÞ Oðn log nÞ
a ¼ 1 Wðn log nÞ Oðn log2 nÞ Oðlog nÞ
1 < a < 2 WðnaÞ YðnaÞ Oðlog nÞ
ab 2 Wðn2Þ Yðn2Þ Oð1Þ
Retrieved from Swidan et al. [346].

4.3 Variants of Sorting by Reversals 71

it is feasible. Qi et al. [304] count the number of classes that are generated by

k-reversals, for all even k.

4.4 Combined Operations

The goal of rearrangement problems is to be able to combine several operations, giv-

ing weight to each of them according to its probability of occurrence. More work has

been conducted on combined operations in the signed case than in the unsigned case,

because these problems are attempts to come back to the biological application, and

signed permutations seem to be a more realistic model.

4.4.1 Reversals and Transpositions

Sanko¤ [315] included reversals and transpositions in his methods, but gave no theo-

retical results. Blanchette et al. [66] then wrote a software called DERANGE

(see chapter 15) that made it possible to give parameters for the weights of reversals

and transpositions. According to the experiments they made, the most probable

weights were 1 for reversals and 2 for transpositions. Note that a transposition may

be simulated by three reversals, so an algorithm with weight 1 for reversals against

weight 3 for transpositions would not give better solutions than sorting by reversals

only.

Several variants of the problem have been studied according to the relative weights

a that are given to transpositions (if weight 1 is given to a reversal). We summarize a

few results in table 4.2.

For a ¼ 1, the permutation ð�1 �2 � � � �nÞ can be sorted in
�
n
2

�þ 2 operations, as

proved by Walter et al. [363] and Meidanis et al. [266]. Those authors conjecture that

it is the value of the diameter.

4.4.2 Reversals, Transpositions, Transreversals, Revrevs

A special variant considers the operation of transreversal, that is, a transposition fol-

lowed by a reversal on the transposed segment (both operations are counted as only

Table 4.2
A summary of results concerning a few variants of sorting by signed reversals (with weight 1) and trans-
positions (with various weights)

Weight of a
transposition Introduced by Complexity Best approximation ratio

a ¼ 1 [363] unknown 2 [191, 252, 363]

1a aa 2 [27] unknown 1.5 [27]

a ¼ 2 [162] unknown ð1þ eÞ [162]

72 4 Distances between Signed Permutations

one operation), as well as revrev, that is, two reversals of contiguous segments. Lin et

al. [256] gave a 1.75-approximation algorithm if transreversals and revrev operations

are allowed.

Hartman and Sharan [203] have adapted the 1:5-approximation for sorting by

transpositions to the signed case, and this improves the approximation ratio to 1:5

for sorting by reversals, transpositions, and transreversals (all with the same weight),

as well as the problem where revrevs are allowed.

4.5 Double Cut-and-Joins

The double cut-and-join operation was first proposed by Yancopoulos et al. [375] as

a unifying operation for computing genomic distances, and has gained an increasing

popularity ever since.

� Introduced by Yancopoulos et al. [375].

� Complexity: polynomial.

� Best algorithm: both the sorting problem and the distance computation problems

can be solved in OðnÞ time (see Bergeron et al. [52]).

The best recent progress in genome rearrangements has probably been the remark

that reversals, transpositions, and block interchanges, with respective weights 1, 2,

and 2, can all be modeled by a single operation, called the double cut-and-join opera-

tion by Yancopoulos et al. [375] and the 2-break rearrangement operation by Alek-

seyev and Pevzner [8]. It is better defined on multichromosomal models (see part

III), because the result of such a rearrangement may contain several chromosomes,

and forbidding this possibility simply restricts the possible operations to reversals.

A succession of two double cut-and-joins, the first one of them creating a new

chromosome, simulates one block interchange, so for signed permutations, the prob-

lem is equivalent to sorting by reversals and block interchanges, where block inter-

changes weigh twice as much as reversals in the objective function.

This model has the advantages of being both biologically relevant (these cut-and-

join operations are likely to be close to what sometimes happens to genomes) and

computationally easy, because in this case, the DCJ distance, between a signed per-

mutation p and Id, denoted by dcjðpÞ, is proved by Yancopoulos et al. [375] to be

dcjðpÞ ¼ pðpÞ � cðBGðpÞÞ;
where p is the number of points of the permutation, and c is the number of cycles of

its breakpoint graph. The distance can therefore be computed in OðnÞ time. A sorting

sequence can also be computed in OðnÞ time [52].

4.5 Double Cut-and-Joins 73

Mira and Meidanis [269] have considered the same problem from the point of view

of the ‘‘algebraic formalism’’ studied by Meidanis and Dias [264] (see chapter 11),

and have obtained the same results. Lin et al. [256] worked on minimizing the num-

ber of block interchanges in a scenario sorting a signed permutation by reversals and

block interchanges. The algorithm to achieve this goal simply uses reversals to sort

oriented components, and block interchanges to sort unoriented components of a

permutation. It has time complexity Oðn2Þ.

74 4 Distances between Signed Permutations

5 Rearrangements of Partial Orders

5.1 Genomes as Partially Ordered Sets

Oppositely to permutations, the model we shall consider here does not rely on a total

order on a chromosome (inherent in its representation as a permutation). Indeed, de-

spite the increase in the number of sequencing projects, most genomes have not yet

been completely sequenced. For these partially sequenced or assembled genomes,

only partial gene maps are available (recombination analysis, physical mapping,

etc.), which may have a low resolution, missing genes or markers, or conflicting

ordering information among each other. Zheng et al. [380] introduced a new repre-

sentation of a genome in terms of a partially ordered set (often abbreviated as

‘‘poset’’). In this model, any linear extension of a poset represents a possible total

order of the genome. In the context of posets, a genome rearrangement problem is

to find a linear extension in each poset such that a criterion (number of reversals,

number of breakpoints, etc.) is optimized. The current chapter is devoted to handling

rearrangements of gene partial orders.

5.2 Partially Ordered Sets

5.2.1 Basic Definitions

Most notations and definitions are borrowed from the book by Davey and Priestley

[132].

Definition 5.1 A partial order on a set P is a binary relationa such that, for all x, y,

and z in P:

1. xa x,

2. xa y and ya x imply x ¼ y, and

3. xa y and ya z imply xa z.

These three relations are referred to as reflexivity, antisymmetry, and transitivity,

respectively.

Definition 5.2 A set P equipped with a partial order relation a is said to be a par-

tially ordered set (also called a poset).

When it is necessary to specify the partial order relation, we write ðP;aÞ. Notice

that xa y and yb x are used interchangeably, and xE y means ‘‘xa y is false.’’

The symbol k is used to denote noncomparability: x k y if and only if xE y and

yE x. In some contexts, the partial order defined above is called a nonstrict partial

order. A partial order relationa on P gives rise to a relation < of strict inequality:

x < y in P if and only if xa y and x0 y. Strict partial orders di¤er from partial

orders only in whether each element is required to be unrelated, or required to be re-

lated, to itself.

Definition 5.3 Let P be a poset and x; y A P. Then x is covered by y (or y covers x),

denoted xo y, if x < y and xa za y implies x ¼ z.

Definition 5.4 A totally ordered set (or linearly ordered set) is a poset ðP;aÞ which
has the property that every two elements of P are comparable (i.e., for all x; y A P,

either xa y or ya x.

A totally ordered set is sometimes called a chain, especially when it is considered as

a subset of some other poset. The poset P is an antichain if, for all x; y A P, xa y

only if x ¼ y (i.e., every two elements of P are comparable). The height of P is the

maximum size of a chain in it, and the width of P is defined to be the largest anti-

chain in it. Dilworth’s theorem characterizes the width of any poset in terms of a par-

tition of the order into a minimum number of chains.

Theorem 5.1 [144] In any poset P, the size of a maximum antichain in P is equal to

the number of chains needed to cover its elements.

A poset Q is called an extension of a poset P if the elements of P and Q are the

same, and the set of relations of P is a subset of the set of relations of Q (i.e., for all

x; y A P, if x < y in P, then x < y in Q, but not necessarily conversely. Q is called a

linear extension of P if Q is an extension of P and also a linear order. In computer

science, algorithms for finding linear extensions of partial orders are called topologi-

cal sorting.

Weak orders are strict partial orders in which incomparability is an equivalence

relation (an illustration is given in figure 5.1). The equivalence classes of this ‘‘incom-

parability relation’’ partition the elements of P, and are totally ordered by <. Con-

versely, any total order on a partition of P gives rise to a weak ordering in which

x < y if and only if there exist sets P 0 and P 00 in the partition with x A P 0, y A P 00,

76 5 Rearrangements of Partial Orders

and P 0 < P 00 in the total order. Clearly, linear orders are weak orders in which the

incomparability classes are singletons. Two weak orders <1 and <2 on P are compat-

ible if x <1 y implies x <2 y whenever elements x and y of P are comparable in both

<1 and <2.

Theorem 5.2 [78] Any two compatible weak orders have a common linear extension.

Let P be a poset and QJP. Q is a down-set if, whenever x A Q, y A P and ya x,

we have y A Q. And Q is an up-set if, whenever x A Q, y A P and yb x, we have

y A Q. The lower set of Q is defined to be the set fy A P : xb y for some x A Qg
and is denoted by #Q. An element x A Q is a maximal element of Q if xa y and

y A Q imply x ¼ y. The set of all maximal elements of Q is denoted by max Q. A

minimal element of Q and min Q are defined by reversing the order.

5.2.2 Representing Posets

There is a convenient way to represent a poset P by its Hasse diagram, defined as

follows:

1. to each element x A P, associate a point px of the Euclidean plane;

2. for each covering pair xo y, px and py are joined by a line segment, and the

point representing x has a smaller vertical coordinate than the point representing y

(px is located ‘‘below’’ py).

For algorithmic e‰ciency considerations, it is better not to give the full poset P, but

instead the smallest directed acyclic graph (DAG) whose transitive closure is P (con-

sider all arcs to be directed up in the Hasse diagram).

5.2.3 Topological Sorting

The topological sorting problem is the problem of computing a linear extension of a

poset (usually given in the form of a DAG). Topological sorting on a DAG comes

Figure 5.1
A weak order. Incomparability viewed as equivalence classes is indicated by shaded rectangles

5.2 Partially Ordered Sets 77

down to finding a linear ordering of its vertices in which each vertex appears before

all nodes to which it has outbound edges. Three important facts about topological

sorting are the following:

� Only DAGs can have linear extensions, since any directed cycle is an inherent con-

tradiction to a linear order of tasks.

� Every DAG can be topologically sorted.

� DAGs typically allow many topological sorts (up to n! if the DAG consists

of n isolated vertices; i.e., every two elements of the corresponding poset are

incomparable).

The usual algorithms for topological sorting have running time that is linear in the

number of nodes plus the number of edges (i.e., YðnþmÞ; see Cormen et al. [121]).

As observed before, the number of linear extensions can grow exponentially in the

size of the DAG, and it turns out that even the problem of enumerating linear exten-

sions is hard. This combinatorial explosion is a limitation if one is interested in find-

ing all linear extensions, one linear extension satisfying a given property, or one

optimizing a criterion. Algorithms for listing all linear extensions in a DAG are usu-

ally based on backtracking. They build all possible orderings from left to right, where

each of the in-degree zero vertices are candidates for the next vertex.

5.3 Constructing a Poset

Map integration is the process of combining two or more maps constructed from dif-

ferent kinds of data or using di¤erent methodologies into a consensus map. Assum-

ing there are no conflicting order relations, this is done by taking the union of the

di¤erent gene maps. See figure 5.2 for an example.

In practical applications, di¤erent maps of the same genome occasionally conflict,

either because a < b in one data set and b < a in the other, or because a gene is

assigned to di¤erent chromosomes in the two data sets (Yap et al. [376]; Zheng and

Sanko¤ [379]).

One simple way to avoid any cycles in the construction of the DAG is to delete

all order relations that conflict with at least one other order relation (see Zheng

and Sanko¤ [379]). This algorithm may, however, be too strict for practical

considerations.

Another way of coping with conflicts is by determining which set of arcs or vertices

would, if removed, eliminate the cycle. Finding a smallest such set, however, may not

always have a biological explanation, but it would be a most parsimonious solution.

More formally, a set of arcs (vertices) that may be removed from a directed graph to

obtain an acyclic directed graph is called a directed feedback arc set (feedback vertex

78 5 Rearrangements of Partial Orders

set); see figure 5.3 for a simple illustration. The problem of finding a minimum car-

dinality feedback arc (vertex) set is called the minimum feedback arc (minimum

directed feedback vertex) problem. Both the minimum feedback arc and the mini-

mum directed feedback vertex problems are NP-complete (see Garey and Johnson

[181] and Kann [225] for a proof that they both actually are APX-hard) and are

known to be approximable only within ratio Oðlog n log log nÞ (see Seymour [334]),

where n is the number of vertices of the graph. Besides this bad complexity news,

integrated graphs that represent genetic maps tend to be sparse (each vertex is con-

nected to a small number of vertices, see Yap et al. [376]), so that parameterized

techniques (or even brute-force approaches) may yield fast yet accurate solutions.

5.4 Reversal Distance

Let P and Q be two posets defined over the same set of signed genes. The reversal

distance between P and Q is defined to be the minimum reversal distance between

any linear extension of P and any linear extension of Q. That is,

rdðP;QÞ ¼ minfrdðpP; pQÞ : pP A LðPÞ and pQ A LðQÞg:

Figure 5.2
Two partially ordered genomes over the same set of genes (both given as DAGs) together with the com-
bined DAG. A possible linear extension of the combined DAG is (1, �2, 3, �4, �5, 6, 7, 9, 10, 11, 8, 12)

5.4 Reversal Distance 79

� Introduced by Zheng et al. [380].

� Complexity: NP-complete (see Fu and Jiang [180]).

Zheng et al. [380] proposed a depth-first branch-and-bound algorithm for comput-

ing the reversal distance between two posets.

5.5 Breakpoint Distance

Let P and Q be two posets defined over the same set of signed genes. The breakpoint

distance between P and Q is defined to be the minimum breakpoint distance between

any linear extension of P and any linear extension of Q. That is,

bdðP;QÞ ¼ minfbdðpP; pQÞ : pP A LðPÞ and pQ A LðQÞg:
� Introduced by Blin et al. [72].

� Complexity: NP-complete (see Blin et al. [72]; Fu and Jiang [180]).

5.5.1 Exact Algorithms

Only a few results have been reported so far (see Blin et al. [72]), and these algo-

rithms are concerned with computing the maximum number of adjacencies between

a poset P and a total order.

Blin et al. [72] proposed a dynamic programming algorithm for arbitrary poset P.

The main idea is to compute, for every antichain QJP and x A max Q, the maxi-

mum number TðQ; xÞ of adjacencies obtained in a linear extension of #Q ending in

x. This number can be computed according to the following recursive formula:

For all QJP; x A max Q; TðQ; xÞ ¼ max
y AQ 0

TðQ 0; yÞ þ 1 if jx� yj ¼ 1;

0 otherwise

�

Figure 5.3
Obtaining a DAG from a (cyclic) directed graph G by either deleting two arcs (e.g., the two arcs ð f ; hÞ and
ðg; bÞ) or deleting vertex f

80 5 Rearrangements of Partial Orders

where Q 0 is the set of maximal elements of the smallest down-set containing Q

stripped of x, that is, maxð#QnfxgÞ. This algorithm runs in Oðn aPÞ time, where

n ¼ jPj and aP is the number of antichains in P. But aP can be as large as 2n, and

the above dynamic programming procedure yields a combinatorial algorithm, im-

practicable in most cases. However, Blin et al. [72] observed that P is usually

obtained by combining a relatively small number of genetic maps (weak orders). In

particular, if P is obtained by combining m weak orders, each of height at most h and

width at most w, then aP ¼ Oððh 2wÞmÞ, and hence the total running time of the algo-

rithm is Oððh 2wÞm nÞ.
A linear time algorithm exists if P is a weak order (a single genetic map). This fol-

lows from the fact that the maximal antichains of P are totally ordered by the partial

order (i.e., one can compute for all antichain Q A P the maximum number of adja-

cencies obtained in a linear extension of #Q by dynamic programming.

5.5.2 Heuristics for Computing the Breakpoint Distance

Let P and Q be two posets on the same set of signed genes. Computing the break-

point distance between P and Q is equivalent to the problem of finding two linear

extensions that contain the maximum number of common adjacencies. Two heuris-

tics have been proposed to compute the breakpoint distance between two partial

orders defined on the same set of signed genes.

A first heuristic was proposed by Blin et al. [72] for the special case that one of the

two posets is a total order. Starting from a DAG representing the transitive closure

of the partial order, the algorithm consists in iteratively finding a longest valid direct

or indirect path in the poset, incorporating it into the DAG, and computing the tran-

sitive closure.

Another heuristic, proposed by Fu and Jiang [180], does not require one of the two

posets to be a total order. At the heart of this algorithm is the minimum double feed-

back vertex set problem: given two directed graphs D1 and D2 on the same vertex

set V , find a minimum cardinality subset V 0 JV whose deletion leaves both D1 and

D2 acyclic. The approach is a two-step procedure. First, for both P and Q, a directed

graph, referred to as the adjacency order graph, is constructed; its vertex set is the set

of all possible common adjacencies in P and Q, and its arcs denote compatibility

of possible common adjacencies. Next, an approximation algorithm for a minimum

cardinality feedback vertex set is used, taking as input the adjacency order graphs of

P and Q. Clearly, the better the approximation algorithm for finding a double feed-

back vertex set, the better the heuristics. Extending a previous result of Demetrescu

and Finocchi [134], Fu and Jiang [180] proved that the minimum double feedback

vertex set problem is approximable within ratio 2l, where l is the length of the

longest cycle in any of the two input graphs.

5.5 Breakpoint Distance 81

6 Graph-Theoretic and Linear Algebra Formulations

This chapter illustrates how genome rearrangement problems spread to a wide math-

ematical field, including long-standing problems in algebra. In this chapter, we will

examine a few structures that are in some sense at a higher level than structures

such as the breakpoint graph or the cycle graph.

6.1 Simple Permutations and the Interleaving Graph

Observing that ‘‘long cycles’’ in the breakpoint graph of a permutation make it hard

to analyze the various sorting problems they were concerned with, Hannenhalli and

Pevzner [199] introduced equivalent transformations of permutations into simple per-

mutations. This transformation, which can be achieved in linear time (see Gog and

Bader [186]), preserves the signed reversal distance, and allowed them to restrict their

attention to permutations with a breakpoint graph free of long cycles. Together with

an additional structure known as the interleaving graph, their approach led to the

first exact polynomial time algorithm for sorting by signed reversals.

Definition 6.1 A signed permutation p is called a k-permutation (with kb 1 in

N) if its breakpoint graph contains only cycles with k desire edges and k reality

edges.

Definition 6.2 Desire edges fpi; pjg ði < jÞ and fpk; plg ðk < lÞ in BGðpÞ interleave if
intervals ½i; j� and ½k; l� intersect but neither of them contains the other.

Definition 6.3 Two cycles C1, C2 in BGðpÞ interleave if there exists a pair of desire

edges e1 in C1 and e2 in C2 that interleave.

Definition 6.4 The interleaving graph of a permutation p is the graph ILðpÞ whose

vertices are the cycles of BGðpÞ and in which two vertices are joined by an edge if

the corresponding cycles interleave.

Definition 6.5 A desire edge of BGðpÞ is oriented if it joins two gene tails or two gene

heads. A cycle of BGðpÞ is oriented if it contains an oriented desire edge. A vertex of

ILðpÞ is oriented if the cycle it represents is oriented.

Interleaving graphs are in consequence graphs with orientations defined on every

vertex.

6.2 The Overlap Graph

Kaplan et al. [228] introduced another structure based on the breakpoint graph that

allowed them to improve the results obtained by Hannenhalli and Pevzner [199]

using the interleaving graph. This new graph, which they called the overlap graph,

allowed them to obtain an Oðn2Þ algorithm for sorting by signed reversals, a signifi-

cant improvement over the Oðn4Þ algorithm of Hannenhalli and Pevzner [199].

Definition 6.6 The overlap graph of a permutation p is the graph OVðpÞ whose ver-

tices are the nþ 1 desire edges of BGðpÞ, and in which there is an edge between

vertices vi and vj if the corresponding desire edges interleave.

Figure 6.1 shows an example of an overlap graph. The overlap graph of a permu-

tation has oriented and unoriented vertices. Isolated vertices are unoriented, and cor-

respond to adjacencies of the permutation.

Figure 6.1
The reversal rðv1Þ ¼ r3; 5 in permutation (0 3 1 6 5 �2 4 7), and the corresponding local complementation
of vertex v1 in the overlap graph. Oriented vertices of the overlap graph are drawn in black, and un-
oriented vertices are white

84 6 Graph-Theoretic and Linear Algebra Formulations

6.3 The Local Complementation of a Graph

Let G be a graph whose vertices are labeled as oriented or unoriented (this applies,

among others, to overlap and interleaving graphs).

Definition 6.7 The local complementation of the subgraph induced by V is the opera-

tion that consists in adding an edge between x; y A V if there is no edge x; y A G, delet-

ing x, y if there is an edge x, y in G, and switching the orientation of all vertices in V .

If v is an oriented vertex of G, we denote by G=v the result of the local complemen-

tation of the ‘‘closed neighbourhood’’ NGðvÞW fvg of v, which we call the local com-

plementation of v. Note that in G=v, v is unoriented and isolated. An example of

local complementation is given in figure 6.1.

The relation between sorting by reversals and local complementation is given by

the following lemma (see Hannenhalli and Pevzner [199]; Kaplan et al. [288]).

Lemma 6.1 [199, 288] For a permutation p, if v is an oriented vertex of the overlap

graph, OVðp � rðvÞÞ ¼ OVðpÞ=v, and if v is an oriented vertex of the interleaving

graph, ILðp � rðvÞÞ ¼ ILðpÞ=v.
The local complementation game is the following: given a graph G with oriented

and nonoriented vertices, find a sequence of local complementation of oriented ver-

tices such that at the end, the graph has only unoriented isolated vertices. A graph is

said to be tight if such a sequence exists.

As we have seen, this graph theoretic formulation captures the oriented compo-

nent of sorting by reversals. The theorem of Hannenhalli and Pevzner [199] yields

the following:

Theorem 6.1 [199] A graph G is tight if and only if it has no component with only

unoriented vertices.

6.4 The Matrix Tightness Problem

Given an n� n symmetric matrix M over the binary field GF ½2� (all such matrices

are the adjacency matrices of some undirected graph on n vertices, with oriented

and unoriented vertices), an element i ð1a ia nÞ is called oriented if Mi; i ¼ 1. Let

M	; i be the column vector corresponding to column i in M, and Mi;	 be the line vec-
tor corresponding to row i in M. The elimination of an oriented element i is defined

as the transformation of M into Mni ¼ M �M	; vMv;	.
Eliminating an element of a matrix corresponds to performing Gaussian elimina-

tion on the element on the diagonal. A matrix is called tight if it can be transformed

into the 0 matrix by elimination operations.

6.4 The Matrix Tightness Problem 85

Lemma 6.2 [199] If MðGÞ is the adjacency matrix of a graph G with oriented and

unoriented vertices, and v is an oriented vertex, then MðGnvÞ ¼ MðGÞnv.
Thus this algebraic formulation again captures the oriented component of sorting

by reversals. The theorem of Hannenhalli and Pevzner [199] can be formulated in the

following way. If GðMÞ is the graph whose adjacency matrix is M, then we call the

components of M the connected components of G. A component of M is said to be

oriented if it has an oriented element.

Theorem 6.2 [199] A symmetric matrix M over GF ½2� is tight if and only if it has no

unoriented component.

Hartman and Verbin [204] have generalized this result to the matrices over any

field of characteristic 2. Here, an element is said to be oriented if it is di¤erent from

the null element.

Theorem 6.3 [204] A symmetric matrix M over a field of characteristic 2 is tight if

and only if it has no unoriented component.

6.5 Extension to Sorting by Transpositions

Hartman and Verbin [204] have again generalized this formulation to capture some

equivalent to sorting by transpositions instead of sorting by reversals.

Given a ring R and an n� n matrix over R, an element i ð1a ia nÞ is called ori-

ented if Mii is invertible in R.

The tightness problem is to determine if a matrix is tight. It is equivalent to decid-

ing, given a matrix M, if it can be factorized in the form M ¼ PLUP�1, where P is

a permutation matrix, L is a lower triangular matrix, and U is an upper triangular

matrix. Thus the matrix tightness problem can be formulated in classical algebraic

terms: a matrix is tight if and only if it is equivalent to a positive definite matrix.

Lempel [244] and Seroussi and Lempel [332] have obtained some su‰cient condi-

tions for this tightness problem, and their result is generalized by our previous

remarks (i.e., there is a necessary and su‰cient condition of the matrix tightness for

symmetric matrices over a field of characteristic 2 that we can test in polynomial

time). Generalizing and partly solving earlier algebraic results is one of the merits of

combinatorics of genome rearrangements.

The general complexity of the tightness problem is not known, and the nice re-

mark of Hartman and Verbin [204] is that sorting 3-permutations by transpositions

can be formulated as a matrix tightness problem. Indeed, in the overlap graph of a

3-permutation, each cycle of BGðpÞ is represented by three vertices. The interleaving

graph does not capture enough information to model all the interleaving possibilities

86 6 Graph-Theoretic and Linear Algebra Formulations

of 3-cycles. But the overlap graph is redundant, as the adjacencies of one vertex are

determined by the adjacencies of the other two vertices that represent the same cycle.

For two cycles C1 and C2 of BGðpÞ, let u1 and v1 be two of the three vertices rep-

resenting C1, and u2 and v2 be two of the three vertices representing C2 (arbitrary

chosen). Let edgeðxyÞ denote the Boolean function whose value is 1 if there is an

edge between vertices x and y, and 0 otherwise. Now let MðC1;C2Þ be the 2� 2 ma-

trix over GF ½2�:
edgeðu1v2Þ edgeðu1v1Þ
edgeðu2v2Þ edgeðu2v1Þ

� �
:

Furthermore, let MðpÞ be the matrix whose rows and columns are indexed by the

cycles of BGðpÞ, built as follows:
� If i0 j, then MðpÞi; j is the matrix Mði; jÞ;
� MðpÞi; i is the 2� 2 identity matrix over GF ½2� if i is an interleaving cycle, and the

null matrix over GF ½2� otherwise.
Then MðpÞ is a Hermitian matrix over a 16-element ring whose elements are 2� 2

matrices over GF ½2�. The conjecture of Christie [115] cited on page 36 has an equiv-

alent under matrix tightness vocabulary:

Property 6.1 A permutation has transposition distance tbðpÞ
3 if and only if MðpÞ is

tight.

6.6 The Intermediate Case of Directed Local Complementation

However, this alternative formulation has not proved e‰cient enough to achieve a

breakthrough in the problem of sorting by transpositions. One of the most promising

ways to do so may be to find some intermediate formulation between the tightness

problem when M is symmetric over GF ½2� (which corresponds to the polynomial-

time-solvable problem of sorting signed permutations by reversals) and when M is

Hermitian over the 16-element ring described above (which corresponds to the prob-

lem of sorting unsigned permutations by transpositions, of unknown complexity).

Hartman and Verbin [204] propose the following nice open problem, which may

be called directed graph tightness, and which corresponds to the matrix tightness

problem when M is a matrix over GF ½2�, not necessarily symmetric.

This corresponds to the tightness problem on directed graphs, where the local

complementation of an oriented vertex v results in the following changes:

� Invert the orientation of all the vertices that join v with two edges (both

orientations);

6.6 The Intermediate Case of Directed Local Complementation 87

� Delete all edges incident to v;

� If there is an edge from i to v and from v to j, then add an edge from i to j if it does

not exist, and remove it if it exists.

A directed graph is called tight if there is a sequence of such operations that trans-

forms it into a stable set with only unoriented vertices.

It is an open problem to find a good algorithm to decide, given a directed graph

with oriented and unoriented vertices, if this graph is tight.

88 6 Graph-Theoretic and Linear Algebra Formulations

II MODELS HANDLING DUPLICATIONS: STRINGS

7 Generalities

The combinatorial study of genome rearrangements started with permutations, but

permutations lack the possibility of taking duplications into account. Duplications

are a major evolutionary event, believed to be one of the most important mecha-

nisms for novel generations in evolution, and almost all data sets on eukaryotes

contain duplicated genes (see, e.g., Ohno [284]). An appropriate tool for studying

genomes with duplicated genes was therefore needed, and strings are a very natural

generalization of permutations that fit this purpose well. They allow the consider-

ation of four possible rearrangement events in addition to the ones we have already

seen: insertions, deletions, duplications, and replacements. We will see here in part II

that NP-completeness and even inapproximability results are very numerous, and

they are the main combinatorial part of this domain. The subject was briefly sur-

veyed in 2005 by El-Mabrouk [156].

7.1 Biological Motivations

Duplications can occur at several levels, ranging from the duplication of a single

gene or small segment of DNA to the duplication of a whole chromosome; even

whole genome duplications are known to occur. These evolutionary events result in

genomes in which some markers are undi¤erentiable, and we call them duplicated

genes or simply duplicates.

Given a set of genomes, all copies of a given gene among those genomes are said

to be homologous, which means that they originate from a common ancestral gene,

and form a gene family. The presence of two copies of a gene in a set of genomes

may be explained by speciation events (i.e., the appearance of two distinct species,

each genome carrying the gene); it can also be explained by duplication events, which

result in two copies of a gene in the same genome. The relationships between the cop-

ies of a gene in a gene family can thus be of several types. Two copies of a gene are

said to be orthologous if they derive from a speciation event, and paralogous if they

derive from a duplication event. Given two genomes and a gene family, a distinction

is made between out-paralogs, which are paralogous gene copies that derive from a

duplication that occurred before the last common ancestor of the two genomes, and

in-paralogs, which derive from a duplication that occurred after the last common an-

cestor. Note that the word gene is a bit ambiguous, as it may refer either to a family

(there are several copies of the same gene in the genomes) or to copies (two genes

may derive from a duplication).

Those di¤erent situations motivate and justify the use of the models we will con-

sider here in part II. Indeed, when comparing two sequences under the assumption

that all copies of a given element in a single string are in-paralogs, the goal will be

to identify the position of the unique ancestor. If there can be out-paralogs, then the

goal will be to detect orthologs by matching some copies. The distances between two

strings will vary according to which model is chosen. Every combinatorial problem

we have seen so far can be reformulated in terms of strings, but the algorithmic treat-

ment is usually completely di¤erent. For instance, the breakpoint graph, which is a

ubiquitous object when dealing with permutations, is not used on strings, in spite of

some attempts to define them in the case of whole genome duplications by Alekseyev

and Pevzner [9] (see chapter 13).

7.2 Strings and Rearrangements on Strings

Definition 7.1 An alphabet A is a finite set of gene families, each represented by a

character. A string on A is a sequence of members of gene families of A, also called

genes or characters of the string. A signed string is a sequence of signed members

þa or �a of A (þ signs are often omitted). The i th element of a string S is denoted

by Si.

Any alphabet can be used for genome rearrangement problems, but just as we

chose a canonical set for permutations, here we will use f1; 2; . . . ; kg as the ‘‘stan-

dard’’ alphabet. A	 is the infinite set of all strings on A, and An is the finite set of

all strings of length n on A.

Given a string S of length n on A, we denote occða;SÞ as the number of members

of the gene family a A A occurring in S, and occðSÞ as the maximum value occða;SÞ
over all a A A. Moreover, f ðSÞ denotes the number of gene families that have at least

two members in S. A duplicate of some character þa or �a of S is another character

þa or �a on the same string.

If A has two elements, strings on A are said to be binary; if A has three elements,

strings on A are said to be ternary; and if A has k elements, strings are said to be

k-ary.

Definition 7.2 A substring of a string S of length n is a string SiSiþ1 � � �Sj , where

1a ia ja n, and Si; . . . ;Sj appear consecutively in S. A prefix is a substring con-

92 7 Generalities

taining the first element. A su‰x is a substring containing the last element. A subse-

quence of a string S is a string obtained from S by deleting some elements.

This leads to the following parameters for two strings S and T of respective

lengths n, m.

Definition 7.3 The longest common prefix of S and T is the string L ¼ ðS1 S2 � � � SpÞ
such that for all 1a ia p, Si ¼ Ti and p is maximal. Its length is denoted by

lcpðS;TÞ.
Definition 7.4 The longest common su‰x of S and T is the string L ¼
ðSn�p Sn�pþ1 � � � SnÞ such that for all n� pa ia n, Si ¼ Ti and p is maximal. Its

length is denoted by lcsðS;TÞ.
Definition 7.5 A longest common substring of S and T is a string that is a substring

of S and T of maximum length. Its length is denoted by LCSðS;TÞ.
Definition 7.6 A longest common subsequence of S and T is a maximum length string

that is a subsequence of both S and T .

These definitions can be illustrated by the following example: let S ¼ rearranging,

T ¼ rearrangement, and U ¼ sorting.

� The longest common prefix of rearranging and rearrangement has length 8, which

matches their longest common substring, and

� The longest common su‰x of rearranging and sorting has length 3, which matches

their longest common substring.

� The longest common subsequence of rearranging and rearrangement has length 9,

and the longest common subsequence of rearranging and sorting has length 4.

We will sometimes need to consider longest common substrings ‘‘up to a reversal’’

(i.e., the longest common substrings of S and the result of a complete reversal of T).

As in the case of permutations, we define circular strings. Let 1� be the equiva-

lence relation between strings of size n on A, defined as follows: S1� T if there exists

an integer h such that for all i in f1; . . . ; ng, Si ¼ Tðiþh mod nÞþ1. In other words, S and

T are equivalent if S can be obtained by rotating the elements of T . An equivalence

class under this relation is called a circular string. These strings are sometimes (but

rarely) used in the following chapters to model circular chromosomes.

In contrast to permutations, strings are not required to have the same gene con-

tent. Thus the following rearrangements may be considered in addition to all the

rearrangements defined for permutations.

Definition 7.7 A block is a string on the alphabet A, usually much shorter than a

genomic string S. A block edit operation (a block edit for short) on a string S ¼

7.2 Strings and Rearrangements on Strings 93

S1S2 � � �Sn is one of the following operations, where 1a ia i þ ja n, 1a ka n,

and 1a h.

� The insertion of a block B ¼ B1B2 � � �Bh at position i in S yields the string

S1S2 � � �Si�1B1B2 � � �BhSi � � �Sn.

� The deletion of the block SiSiþ1 � � �Siþj from S yields the string

S1S2 � � �Si�1Siþjþ1 � � �Sn.

� The duplication of the block SiSiþ1 � � �Siþj of S at position k in S yields the string

S1S2 � � �Sk�1SiSiþ1 � � �SiþjSk � � �Sn.

� The replacement of a block SiSiþ1 � � �Siþj of S with a block B ¼ B1B2 � � �Bh yields

the string S1S2 � � �Si�1B1B2 � � �BhSiþjþ1 � � �Sn.

7.3 Balanced Strings

These additional rearrangements are necessary if the strings being compared do not

have the same gene content, but there is an interesting case in which strings actually

do. In this case, insertions, deletions, duplications, and deletions may not be invoked,

even if the strings may contain duplicated genes.

Definition 7.8 Two strings on the same alphabet that contain the same number of

members of each gene family are said to be balanced or related.

Two balanced strings are obviously of same length. This property ensures that it is

possible to transform one string into another without block edit operations as rear-

rangements. The notation Lða1; . . . ; akÞ will be used to denote the set of all balanced

strings containing ai members of the gene family i, for 1a ia k.

A very nice, canonical way to express genome rearrangement problems on permu-

tations was the general problem of sorting permutations under constraints. Unfortu-

nately, the left-invariance property of all distances we studied in the context of

permutations does not generalize to strings, and therefore does not allow us to pro-

pose such a canonical expression in that setting. Therefore, we will not refer to the

rearrangement of strings using an operation r as ‘‘sorting (strings) by r,’’ but rather

as ‘‘rearranging (strings) by r.’’

Nevertheless, some authors have considered various sorting problems related to

balanced strings, where the goal is to transform a given string S on A into an ‘‘iden-

tity string’’ (depending on S) or, more formally, into a string whose characters are

ordered lexicographically and the number of occurrences of each character in S is

preserved. That problem will be referred to as the sorting problem, and should not

be confused with the rearrangement problem described above, since contrary to the

case of permutations, they are not equivalent.

94 7 Generalities

7.4 How to Deal with Multiple Copies?

It is not equally di‰cult to take into account multiple copies when considering two

balanced or two general (that is, not necessarily balanced) strings. By convention,

balanced strings are supposed to contain only out-paralogs, which means that each

of the h members of some gene family present in each string S and T originates

from one of the h members of the same gene family present on their last common

ancestor. The di‰culty is then to identify (that is, to match) the pairs of members,

one on each string, that originate from the same member of the last common ances-

tor (i.e., they are orthologous). In contrast, general strings allow us to assume the

existence of both out-paralogs and in-paralogs on each string, so that deletion and

insertion events have to be considered in addition to the rearrangement events when

comparing general strings. The assignment of ortholog pairs of genes, given two

strings, yields the essential definition of a matching:

Definition 7.9 A (gene) matching M between two strings S in An and T in Am is a

set of pairs ðSi;TjÞ such that the pairs ði; jÞ A f1; 2; . . . ; ng � f1; 2; . . . ;mg are dis-

joint, and Si and Tj belong to the same gene family. In this case, characters Si and

Tj are matched to each other.

When comparing two strings S and T , a matching between S and T aims at repre-

senting the common content of the strings, as supported by their last common ances-

tor and regardless of (but without losing touch with) the order of the characters. Any

pair of matched characters is then assumed to correspond to orthologous genes, and

the unmatched characters are assumed to be in-paralogs. Here rearrangement studies

meet the important problem of ortholog identifications. The members of the same

gene family that are present in the same string and that are matched are out-

paralogs. In order to distinguish out-paralogs from each other, a relabeling may be

performed, which gives new and distinct names (i.e., new and distinct characters

from A) to out-paralogs and renames the orthologs of each out-paralog accordingly.

The last step of such a treatment of strings is obtaining a pruning.

Definition 7.10 Let M be a matching between two strings S and T over some alpha-

bet A. An M-pruning of S and T is the pair ðS;TÞ of strings obtained from S and T

by removing all characters that are not matched and relabeling the remaining char-

acters according to M . The strings S and T are called the M-pruned strings of S and

T , respectively.

By convention, we use the terms pruning and pruned string when the matching does

not need to be identified by a notation. The good news at this stage is that if we

assume that the relabeling is done in such a way that the characters in S and T are

7.4 How to Deal with Multiple Copies? 95

f1; 2; . . . ; jM jg, then both pruned strings are permutations of jM j elements and may

be compared using the usual distances between permutations.

Now, turning back to the initial question: ‘‘How to deal with multiple copies?,’’

two answers are available: either define a collection of possible rearrangements and

compute the minimum number of operations needed to transform one string into

the other, or reduce strings to permutations using matchings and prunings, then find

the distance between the permutations. These two approaches, called here the block

edit model and the match-and-prune model, are di¤erently expressed on balanced and

general strings. On balanced strings, none of the models includes insertions, duplica-

tions, replacements, or deletions, so that each gene on one string has an orthologous

gene on the other one. This orthologous gene is not indicated a priori, but is deduced

from the result of the comparison between the strings. On general strings, the block

edit model includes insertions, duplications, replacements, and deletions, but is by no

means more precise concerning the matching between orthologous genes. On the

contrary, in this case the match-and-prune model proposes several types of match-

ings, each of which corresponds to particular assumptions on the last common ances-

tor’s composition. All matchings of a given type are then used to obtain prunings,

and prunings are compared as permutations in order to find the best of them.

96 7 Generalities

8 Distances between Arbitrary Strings

An evolutionary scenario must take two categories of events into account: events

that modify the order of genes in a genome without modifying its composition in

terms of gene content and multiplicity, and events that modify the content of the

genome without modifying the gene order. A natural question arises here about the

existence of events that would modify both aspects. It has a positive answer (such

events exist, such as block replacement; see section 8.2), but very few works focus

on this type of events; see section 8.2.1).

As indicated in chapter 7, two main ideas are used to deal with arbitrary (that is,

not necessarily balanced) strings. The first idea aims at transforming strings into per-

mutations, using the match-and-prune model, so as to minimize the distance or max-

imize the similarity between the resulting permutations. Section 8.1 presents this

model.

The second idea is based on counting the number of operations, belonging to a

given class, that are needed to transform one string into another. Inserting, duplicat-

ing, replacing, or deleting a character or, more generally, a substring are operations

that allow us to change the content of a string as needed. This is subsequently called

the block edit model, surveyed in section 8.2. These approaches are presented here in

the reverse chronological order of their appearance in the scientific literature.

A noticeable particularity of this chapter is the notion of similarity, which appears

here not only as an intuitive opposite to distance, but also as a quantifiable feature

that we evaluate using a criterion that is no longer a minimum but a maximum.

Sometimes, and we point out the case as soon as it appears, authors attempt to trans-

form a quite natural definition of similarity into a less natural but certainly more

mathematically rigorous notion of distance. However, it should be noted that the no-

tion of distance used by several authors is sometimes not really a metric, but has at

least two of the three properties of a metric. In all cases, when the distinction be-

tween distances and similarities is not necessary, we simply call them measures.

In this chapter, the two strings S and T that we compare are built over the usual

alphabet A ¼ f1; 2; . . . ; kg and have respective lengths n and m.

8.1 The Match-and-Prune Model

The match-and-prune model addresses the following question, which arises naturally

when one is trying to discover the relationships between two genomes S and T : How

can we take into account, when comparing genomes with duplicates, the fact that the

structure of the last common ancestor of S and T plays an important role in the evo-

lutionary distance between the two genomes? Since this structure is unknown, unless

we have very good reasons to conclude that we can a¤ord to keep it unknown, we

need to be able to model it.

Three (sub)models are used to achieve this goal, and they di¤er essentially by the

underlying assumptions that are made about the content of the last common ances-

tor. However, they all rely on the same method to compute measures (distances and

similarities) between strings, which takes into account only their common genes, as

identified by the composition of the last common ancestor. Those models are the

following:

1. the exemplar model, in which the last common ancestor is assumed to contain ex-

actly one member of each gene family a A A that has members in both S and T ;

2. the intermediate model, in which the last common ancestor is assumed to contain

ha b 1 members of each gene family a A A that is common to S and T ;

3. the full model, in which the last common ancestor is assumed to contain as many

members as possible (that is, minfoccða;SÞ; occða;TÞg) from any gene family a A A
that is common to S and T .

In all cases, exactly ha (where ha ¼ 1, ha b 1, or ha ¼ minfoccða;SÞ; occða;TÞg)
members of the gene family a in each string are identified as corresponding to ances-

tral members. Those members in S and T form pairs of orthologs according to the

ancestral member to which they correspond, and thus altogether form a matching.

The history of these models starts with a paper by Sanko¤ [316], who built the

foundations of the exemplar model and, at the same time, of the most general

match-and-prune model. Besides its biological motivations, Sanko¤ ’s idea has two

important features that make it attractive: reducing to 1 the cardinality of each gene

family in each string implies that (1) the resulting strings are permutations, and com-

puting distances between permutations is both already studied and achievable in

polynomial time for many biologically relevant distances; and (2) the one-to-one cor-

respondence between genes that belong to the same family in both strings is obvious,

and can therefore avoid further complications. The next model to be defined was the

full model, whose first ideas were also suggested by Sanko¤ [316]; it was more pre-

cisely defined by Tang and Moret [347] for balanced strings. The most recent model

is the intermediate model, proposed by Angibaud et al. [16].

98 8 Distances between Arbitrary Strings

As already mentioned, each model is defined by a particular type of matching. To

formally present them, we use, in the remainder of this section, the following conven-

tions and notations for the objects we manipulate.

� The strings S and T are signed strings.

� The M-pruning of two strings S, T , where M is a given matching, is denoted by

ðS;TÞ.
� Rather than repeatedly using the word respectively to describe alternatives—as

in ‘‘the exemplar (intermediate, full, respectively) model satisfies property A (B, C,

respectively)’’—we use the ‘‘/’’ separator that is assumed to preserve the rank in the

list when two lists are linked together—as in ‘‘the exemplar/intermediate/full model

satisfies property A/B/C.’’

Definition 8.1 Let S, T be two strings over the alphabet A. An exemplar/

intermediate/full matching M between S and T is a matching between S and T such

that exactly one/at least one/as many as possible pairs of each gene family occurring

in both S and T exist in M .

Each type of matching yields a di¤erent type of pruning (see figure 8.1).

Definition 8.2 Let S, T be two strings over the alphabet A. An exemplar/

intermediate/full pruning between S and T is an M-pruning, where M is an

exemplar/intermediate/full matching.

We are now ready to explain how distances and similarities are computed between

general strings, using the three models. Recall that the optimum value of a measure is

the minimum value when the measure is a distance and the maximum value when the

measure is a similarity.

Definition 8.3 Given two strings S and T and a measure ms, the exemplar/

intermediate/full measure between S and T is the optimum value of ms over all pos-

sible exemplar/intermediate/full prunings ðS;TÞ of S and T .

For any given measure, computing the exemplar/intermediate/full measure con-

stitutes three (usually di¤erent) optimization problems. Indeed, although the three

models range, with respect to the cardinality of the matching between the two strings,

from a simpler one to a more complex one, no linear classification from simple to

di‰cult may be performed on the resulting problems. However, there is at least one

precise case in which all three models are equivalent.

Remark 8.1 When one of the strings S, T contains no more than one member of

each gene family—that is, occðSÞ ¼ 1 or occðTÞ ¼ 1—the exemplar, intermediate,

and full models are equivalent.

8.1 The Match-and-Prune Model 99

As a consequence, all the NP-completeness or inapproximability results obtained

for one of the models in this case extend to the two other models.

In the rest of this section, we present the di¤erent results available on the match-

and-prune model. This model allows us to avoid the di‰culty of dealing with

multiple copies by reducing string comparison to permutation comparison, but this

reduction rarely yields polynomial-time solvable problems.

8.1.1 Breakpoint Distance

Together with the signed reversal distance presented in the next subsection, the

breakpoint distance is one of the first applications of Sanko¤ ’s exemplar model

[316]. The two distances are defined on di¤erent bases: the reversal distance counts

Figure 8.1
Matchings and prunings for the strings S ¼ 1 2�4�2 3 1 4�3 4 and T ¼ 4 1�3�2 2 1 2 4

100 8 Distances between Arbitrary Strings

the minimum number of operations to transform one string into the other, whereas

the breakpoint distance counts the structural di¤erences between the two strings.

However, they are closely related: their values di¤er only slightly, and they both

satisfy a property of monotonicity that allows a similar algorithmic treatment.

� Introduced by Sanko¤ [316] (exemplar), by Angibaud et al. [16] (intermediate), and

by Blin et al. [69] (full).

� Complexity: NP-complete (see Bryant [89]) and APX-hard (see Angibaud et al.

[19]) (exemplar, intermediate, and full). Not approximable at all (see Chen et al.

[108]) (exemplar and intermediate).

� Exact algorithms: Sanko¤ [316], Nguyen et al. [280] (exemplar and intermediate),

Blin et al. [69] (full), Angibaud et al. [17] (exemplar, intermediate, full).

The definition of the breakpoint distance for signed permutations is given in sec-

tion 2.6.1 and involves linear extensions of permutations.

Remark 8.2 Several authors use a slightly di¤erent notion of breakpoint distance,

which does not consider the linear extensions of the permutations, but rather the per-

mutations in their precise form, to compute the number of breakpoints. Whereas the

definition we use implies that the breakpoint distance between two permutations is 0

if and only if the permutations are identical, this variant admits a 0 value if and only

if permutations are identical up to a complete reversal.

Under all thee models (exemplar, intermediate, full), any pruning yields two per-

mutations, thereby ensuring that the exemplar/intermediate/matching breakpoint

distance is well defined. Although the three resulting problems are di¤erent in gen-

eral, two of them are identical in this particular case:

Theorem 8.1 [15] Let S, T be two strings over the alphabet A. The exemplar break-

point distance between S, T is equal to the intermediate breakpoint distance between

S, T .

As an example, consider the two strings S and T in figure 8.1. For the exemplar

pruning ðS;TÞ ¼ ð1 2 3 4; 1 �3 �2 4Þ the breakpoint distance between S and T is 2;

for the intermediate pruning ðS;TÞ ¼ ð1 2 3 1 0 4; 1 �3 �2 1 0 4Þ the breakpoint dis-

tance is also 2; and for the full pruning ðS;TÞ ¼ ð1 2 �4 0 �2 0 3 1 0 4; 4 0 1 0 �3 2 0 1
2 4Þ the breakpoint distance is 5. Since no exemplar/intermediate/full pruning im-

proves these distances, the exemplar/intermediate/full breakpoint distance between

S and T is 2/2/5.

We now turn our attention to pegged strings, which were introduced by Sanko¤

[316] and are particularly interesting both when looking for an exact algorithm and

for showing the NP-completeness of computing the exemplar breakpoint distance.

8.1 The Match-and-Prune Model 101

Definition 8.4 A character c of a string S is a singleton of S if no other member of

the gene family of c occurs on S.

Definition 8.5 A string S over the alphabet A is pegged if each interval between two

characters in the same gene family contains at least one singleton.

Pegged strings have the interesting property that singletons act as markers helping

to uniquely identify each occurrence of a non-singleton by its position with respect to

these markers.

8.1.1.1 Lower and Upper Bounds Theorem 3.17 in section 3.3.1 and lemma 3.9 in

section 3.3.2 provide lower and upper bounds for the breakpoint distance between

two permutations that is based on the reversal distance of two permutations. Such

bounds also exist for general strings, and are given in section 8.1.2.1.

In the current subsection, we present lower and upper bounds for the full break-

point distance, based on a generalization of the reversal distance that we call the ex-

clusive block edit distance with reversals. These results are due to Blin et al. [69].

Definition 8.6 Let S ¼ S1S2 � � �Sn and T be two strings over the alphabet A. The ex-

clusive block insertion of a block B ¼ B1B2 � � �Bh over A at position i in S yields the

string

S 0 ¼ S1S2 � � �Si�1B1B2 � � �BhSiSiþ1 � � �Sn

if occða;S 0Þa occða;TÞ for each a A A occurring in B. Otherwise, the operation is

forbidden.

Definition 8.7 Let S ¼ S1S2 � � �Sn and T be two strings over the alphabet A. The ex-

clusive block deletion of the block B ¼ SiSiþ1 � � �Siþj from S yields the string

S 0 ¼ S1S2 � � �Si�1Siþjþ1 � � �Sn

if occða;S 0Þb occða;TÞ for all a A A occurring in B. Otherwise, the operation is

forbidden.

In other words, exclusive block insertions and deletions must not increase the dis-

parity between the number of occurrences on S and on T of each gene family. When

one focuses on an arbitrary gene family a, one notices that members of a may be

involved either exclusively in deletion events or exclusively in insertion events, but

not in both types of operations. This is why we term these operations exclusive.

Definition 8.8 Let S and T be two strings over the alphabet A. The exclusive

block edit distance with reversals between S and T is the minimum number of rever-

102 8 Distances between Arbitrary Strings

sals, exclusive block insertions, and exclusive block deletions needed to transform S

into T .

With the notation f bdðS;TÞ and xbedðS;TÞ to denote, respectively, the full

breakpoint distance and the exclusive block edit distance with reversals between S,

T Blin et al. (69) prove that

xbedðS;TÞ
2

a f bdðS;TÞa 2� xbedðS;TÞ:

8.1.1.2 Computational Complexity The breakpoint distance is the first measure pre-

sented under the match-and-prune model, and it is representative of the type of

results one obtains under this model. NP-completeness and APX-hardness results

are shared by the major part of the measures, even on very restricted sets of in-

stances, such as those with occðSÞ ¼ 1, occðTÞ ¼ 2.

Bryant [89] investigated the NP-completeness of computing the exemplar break-

point distance, and proved the following result, which concerns all models because

of remark 8.1.

Theorem 8.2 [89] Under the exemplar/intermediate/full model, computing the

breakpoint distance between two strings S and T is an NP-complete problem, even

when occðSÞ ¼ 1, occðTÞ ¼ 2 and both genomes are pegged.

When strings are unsigned, the NP-completeness still holds under the exemplar/

intermediate model, as shown by Nguyen [279]. Blin et al. [69] prove the NP-

completeness in the case where f ðSÞ ¼ f ðTÞ ¼ 1 under the full model. The strongest

inapproximability result known to the date refers to remark 8.1.

Theorem 8.3 [19] Computing the exemplar/intermediate/full breakpoint distance be-

tween two strings S and T is APX-hard, even when occðSÞ ¼ 1 and occðTÞ ¼ 2.

Further results are available on the exemplar/intermediate version of the problem.

The first results implying the inapproximability under this model assume, without

loss of generality, that S is longer than T , so that n ¼ maxðjSj; jT jÞ.
Theorem 8.4 [108] The exemplar/intermediate breakpoint distance cannot be ap-

proximated within a factor c log n, for some constant c > 0.

Even when strings S and T are very particular, it is a hard task to approximate

their exemplar/intermediate breakpoint distance.

Theorem 8.5 [279] Computing the exemplar/intermediate breakpoint distance be-

tween two strings S and T is APX-hard, even when strings are unsigned and pegged.

8.1 The Match-and-Prune Model 103

Chen et al. [108] obtained a particularly important inapproximability result: even

when occðSÞ ¼ 3 and occðTÞ ¼ 3, the exemplar/intermediate breakpoint distance is

not approximable at all. This is a consequence of a related NP-complete problem

presented in section 8.1.1.5.

8.1.1.3 Approximation Algorithms Not surprisingly, finding algorithms with

bounded error is di‰cult. However, good and quite simple heuristics exist (see sec-

tion 8.1.8). The algorithm in this subsection, due to Chen et al. [108], is an approxi-

mation algorithm for a particular case of the exemplar/intermediate version of the

problem.

Definition 8.9 A string S is h-span, where h is an integer, if for each gene family

a A A, the leftmost and the rightmost occurrences of a or �a in S are at distance at

most h along S.

Recalling that A ¼ f1; 2; . . . ; kg, Chen et al. [108] propose a 2ð1þ log kÞ-
approximation algorithm to compute the exemplar breakpoint distance for strings S

and T where S is Oðlog kÞ-span. When occðSÞ ¼ 1, S is h-span for every h, so the

same algorithm solves the problem when occðSÞ ¼ 1 and T is arbitrary.

8.1.1.4 Exact Algorithms As we have already mentioned, the three available models

lead to two di¤erent optimization problems, but these problems have common fea-

tures that may sometimes be used to develop similar algorithms. Two main ap-

proaches exist for computing the breakpoint distance exactly, and they constitute

frameworks for further algorithms to compute di¤erent distances.

Branch-and-Bound Sanko¤ [316] proposes an exact algorithm to compute the exem-

plar breakpoint distance that is based on a branch-and-bound technique. The algo-

rithm attempts to increasingly build all di¤erent exemplar prunings of S and T . The

increase of a partial pruning is performed by adding one pair of characters in the

same gene family at each step, and is canceled as soon as the breakpoint distance of

the current pruning exceeds the best current distance obtained for a whole exemplar

pruning. Such a canceling decision is correct if the following property of monotonic-

ity holds.

Definition 8.10 Let dist be an arbitrary distance between two signed permutations.

Then dist is monotonic if, for each pair of strings S and T , deleting all occurrences

of any gene family from S and T does not increase the exemplar dist distance be-

tween S and T .

The breakpoint distance is monotonic, so Sanko¤’s algorithm correctly stops the

analysis of a useless pruning. However, the number of exemplar prunings may be

very high, as confirmed by the following result.

104 8 Distances between Arbitrary Strings

Theorem 8.6 [316] The number of di¤erent exemplar prunings is upper-bounded byY
a AA

occða;SÞ occðs;TÞ;

where equality holds if and only if both strings are pegged.

Nguyen et al. [280] propose to reduce the running time of Sanko¤ ’s algorithm by

identifying independent disjoint subsets of gene families, performing Sanko¤’s algo-

rithm on each subset and then merging the resulting partial exemplar prunings. Since

not all pairs of strings S, T admit such a partition into independent disjoint subsets,

a heuristic is devised by forcing a partition.

The algorithm used by Blin et al. [69] to compute the full breakpoint distance also

follows a branch-and-bound strategy, whose validity is once again ensured by the

monotonicity properties of the breakpoint distance. The algorithm starts with an

empty pruning of S, T and investigates all the possibilities to extend it, as long as

the current pruning does not exceed the best current distance obtained for a whole

full pruning. A su‰x tree is used to store the substrings of T and to search for those

substrings that are common to S and T , which provide the candidates for extension.

Linear Pseudo-Boolean (LPB) Programming Angibaud et al. [17] propose to formulate

the problem as a linear pseudo-Boolean problem (or LPB problem), that is, a linear

program whose variables take 0 or 1 values, and which is solved using an LPB solver.

Moreover, they show that only minor modifications have to be performed on the

program in order to change the model (exemplar, intermediate, or full) and/or the

computed measure (from breakpoint distance to adjacency similarity; see section

8.1.3).

8.1.1.5 Variants We are now interested in the problem of deciding whether the

breakpoint distance between two strings S and T is 0 or not. Although seemingly

not so complicated and even a little bit arbitrary, this problem may help deduce in-

approximability results.

� Introduced by Chen et al. [108] (exemplar) and by Angibaud et al. [19] (intermedi-

ate, full).

� Complexity: NP-complete (see Chen et al. [108]) (exemplar and intermediate).

Polynomial (see Angibaud et al. [19]) (full).

� Exact algorithms: Oðnm log logðnmÞÞ time (see Angibaud et al. [19]) (full).

The NP-completeness of deciding whether the exemplar/intermediate breakpoint

distance between two strings is 0 or not has the following important consequence:

unless P ¼ NP, no polynomial-time algorithm may be found to f -approximate

8.1 The Match-and-Prune Model 105

the exemplar/intermediate breakpoint distance, whatever the function f . NP-

completeness also holds for the two particular cases occðSÞ ¼ occðTÞ ¼ 3 (see Chen

et al. [108]) and occðSÞ ¼ 2, occðTÞ arbitrary (see Angibaud et al. [19]), so that the

same a‰rmation holds for these particular cases.

For the exemplar/intermediate model, Angibaud et al. [19] proposed an exact

algorithm running in OðpðrÞ 1:61822rÞ time, when occðSÞ ¼ occðTÞ ¼ 2, where r is

upper-bounded by the number of gene families that occur exactly twice in S and in

T , and pðrÞ is a polynomial function.

8.1.2 Signed Reversal Distance

The signed reversal distance is the second distance considered by Sanko¤ [316] to il-

lustrate his theory of exemplar distances. Under the full model, the signed reversal

distance is very well studied on balanced strings (see chapter 9) and not studied at

all on general strings. No specific result exists for the intermediate model.

� Introduced by Sanko¤ [316] (exemplar) and by Chen et al. [106] (full).

� Complexity: NP-complete, by Bryant [89] (exemplar); APX-hard by Angibaud et al.

[19] (exemplar, intermediate, and full). Not approximable at all, by Chen et al. [108]

(exemplar).

� Exact algorithms: Sanko¤ [316] (exemplar).

Due to its similarity to the breakpoint distance, the results on the signed reversal

distance are mainly easy variants of the results on the breakpoint distance. Many of

these results are proved similarly for the two distances, but some of them could easily

be deduced from the lower and upper bounds (we present now).

8.1.2.1 Lower and Upper Bounds Under each of the exemplar, intermediate, and full

models, the signed reversal and breakpoint distances are equal up to a multiplicative

factor 2, as shown below. Without loss of generality, the simple proof below is per-

formed only for the exemplar case. The intermediate and full cases are identical.

Given two strings S and T , let ebdðS;TÞ and erdðS;TÞ be their exemplar break-

point and signed reversal distance, respectively. Furthermore, let bdðS;TÞ and

rdðS;TÞ be the breakpoint and signed reversal distance obtained on the exemplar

pruning ðS;TÞ of S, T . Consider the sequence of rdðS;TÞ reversals that transform S

into T and note that the first reversal always creates two new breakpoints with re-

spect to S; all the other reversals create at least one, and at most two, breakpoints

each. Thus we have the following easy results:

rdðS;TÞb bdðS;TÞ=2
rdðS;TÞ < bdðS;TÞ:

106 8 Distances between Arbitrary Strings

It is easy to show that the first formula holds for exemplar distances (Nguyen [279]

gives it without any proof):

erdðS;TÞb ebdðS;TÞ=2: ð8:1Þ
To see this, let ðS 0;T 0Þ and ðS 00;T 00Þ be the exemplar prunings yielding the mini-

mum values of the reversal and breakpoint distances between S and T, respectively.

Then

ebdðS;TÞ ¼ bdðS 00;T 00Þa bdðS 0;T 0Þa 2 rdðS 0;T 0Þ ¼ 2 erdðS;TÞ;
and we are done. We further have

ebdðS;TÞ > erdðS;TÞ: ð8:2Þ
Using a similar easy reasoning,

ebdðS;TÞ ¼ bdðS 00;T 00Þ > rdðS 00;T 00Þb rdðS 0;T 0Þ ¼ erdðS;TÞ:
We then deduce that the two exemplar distances are identical up to a factor 2.

8.1.2.2 Computational Complexity When compared with the result on the exemplar

breakpoint distance, Bryant’s NP-completeness result on the exemplar signed rever-

sal distance is slightly weaker.

Theorem 8.7 [89] Computing the exemplar signed reversal distance between two

strings S and T is an NP-complete problem, even when occðSÞ ¼ occðTÞ ¼ 2 and

both genomes are pegged.

In particular, this result does not allow deducing the NP-completeness under the

intermediate or full model. However, the inapproximability results proved by Angi-

baud et al. [19] (theorem 8.3), Chen et al. [108] (theorem 8.4), and Nguyen [279] (the-

orem 8.5) remain true, because of equations (8.1), (8.2), and their homologs for the

intermediate and full distances.

8.1.2.3 Approximation Algorithms Since the exemplar breakpoint and signed rever-

sal distances are equal up to a factor 2, Chen’s approximation algorithm for the

breakpoint distance [108] (see section 8.1.1.3) also gives an Oðlog kÞ approximation

for the exemplar signed reversal distance, when S is Oðlog kÞ-span. Again, when

occðSÞ ¼ 1, S is h-span for every h; thus the same algorithm solves the problem

when occðSÞ ¼ 1 and T is arbitrary.

8.1.2.4 Exact Algorithms Sanko¤’s algorithm [316], presented in section 8.1.1.4, to

compute the exemplar breakpoint distance is also applicable to the signed reversal

8.1 The Match-and-Prune Model 107

distance, which is also monotonic and easy to compute. However, the improvement

proposed by Nguyen et al. [280], as well as the LPB approach of Angibaud et al. [17],

do not apply for the signed reversal distance. In particular, no algorithm is known

for the intermediate and full models.

8.1.2.5 Variants The problem of deciding whether the exemplar/intermediate/full

signed reversal distance between two strings S and T is 0 or not inherits from results

on the corresponding breakpoint problem, since ebdðS;TÞ ¼ 0 if and only if

erdðS;TÞ ¼ 0 (and similarly for the two other models) and because of equations

(8.1), (8.2), and their homologs for the intermediate and full models.

� Introduced by Chen et al. [108] (exemplar).

� Complexity: NP-complete, by Chen et al. [108] (exemplar and intermediate). Poly-

nomial by Angibaud et al. [19] (full).

Thus, unless P ¼ NP, no polynomial algorithm may be found to f -approximate

the exemplar/intermediate reversal distance, whatever the function f . The same

holds for the two particular cases occðSÞ ¼ occðTÞ ¼ 3 and occðSÞ ¼ 2, occðTÞ arbi-
trary, by inheritance from the corresponding breakpoint problem.

The problem of computing the signed reversal distance has some other variants.

Swenson et al. [345] attempt to approximate the true evolutionary edit distance be-

tween two strings S and T by computing a full pruning that minimizes the number

of insertions, deletions, and reversals. However, they propose only a heuristic for this

related problem.

8.1.3 Adjacency Similarity

We deal in this subsection with a similarity measure that is the complement of the

breakpoint distance. The basis of this measure is the preserved adjacency between

two consecutive characters in S and T .

� Introduced by Angibaud et al. [17] (exemplar, full) and Angibaud et al. [15]

(intermediate).

� Complexity: NP-complete, W[1]-hard, and admits no n1�e-approximation (see

Chen et al. [109]) (exemplar, intermediate, full).

� Exact algorithms: Angibaud et al. [17] (exemplar, full) and Angibaud et al. [15]

(intermediate).

� Best approximation ratio: 4 for balanced genomes (see Angibaud et al. [19]) (full).

The definition of the adjacency similarity is natural, and uses linear extensions (see

page 20) to ensure a complementarity with the breakpoint distance.

108 8 Distances between Arbitrary Strings

Definition 8.11 The adjacency similarity between two signed permutations p and s is

the number of adjacencies between the linear extensions of p and s.

It is easy to transform this measure into an exemplar/intermediate/full measure.

The resulting problems of computing the exemplar/intermediate/full adjacency simi-

larity all di¤er from each other.

8.1.3.1 Computational Complexity Chen et al. [109] present a polynomial Turing re-

duction from the independent set problem on a graph G to the problem of com-

puting the exemplar adjacency similarity between two unsigned strings S, T with

occðSÞ ¼ 1, occðTÞ ¼ 2. This reduction has a particularity that allows one to further

deduce several complexity results from already known results on independent set.

Namely, an independent set of size k exists in G if and only if the exemplar adjacency

similarity between S and T is k. Since the measure to optimize in both problems is k,

this Turing reduction may be used to deduce inapproximability results as well.

Indeed, since independent set is NP-complete, nonapproximable within a factor

of n1�e [205], and W[1]-complete [148] with respect to the parameter size of the inde-

pendent set, the same results hold for computing the exemplar adjacency similarity

between S and T , where the W[1]-hardness holds with respect to the parameter value

of the exemplar adjacency similarity. Remark 8.1 thus allows us to formulate the fol-

lowing result.

Theorem 8.8 [109] Computing the exemplar/intermediate/full adjacency similarity

between two strings S and T is an NP-complete, nonapproximable within a factor

of n1�e, and a W[1]-hard problem, even when occðSÞ ¼ 1, occðTÞ ¼ 2, and both

strings are unsigned.

Recall that in the parameterized complexity theory, the W[1]-hardness of a prob-

lem with respect to some parameter p ensures that the problem cannot be solved in

Oð f ðpÞ gðnÞÞ running time, where n is the size of the problem, gðnÞ is a polynomial in

n, and f ðpÞ is an arbitrary function (see appendix B).

8.1.3.2 Approximation Algorithms Angibaud et al. [19] propose the following three

approximation algorithms for a particular case of the full model, in which we con-

sider two balanced strings S and T with occðSÞ ¼ occðTÞ ¼ k. Although these three

algorithms have a common feature—they are obtained by reduction to a problem for

which approximation algorithms are known—they are di¤erent in that the additional

problems they use are distinct.

When k ¼ 2, the problem is reduced to the Max-2-CSP problem, which requires

finding an assignment for a set of literals, so as to maximize the number of satisfied

formulas, from a given set of Boolean formulas with at most two literals each. The

8.1 The Match-and-Prune Model 109

1.1442-approximation algorithm for Max-2-CSP by Charikar et al. [101] yields a

1.1442-approximation algorithm for our problem.

When k ¼ 3, the problem is reduced to the independent set problem in a graph

with degree Da 12, which can be solved by a Dþ3
5 þ e

� �
-approximation algorithm

due to Berman and Fürer [55]. This gives a ð3þ eÞ-approximation algorithm for our

problem (where e is as small as needed).

When k is arbitrary, the problem is reduced to the Maximum Weighted 2-

Interval Pattern problem, defined by Crochemore et al. [127], which seeks a

maximum weight subset of comparable 2-intervals from a given set of 2-intervals. A

2-interval is a pair of intervals, and several sets of relations are defined to compare

pairs of 2-intervals (see Crochemore et al. [127]). The 4-approximation algorithm

for this problem yields a 4-approximation algorithm for computing the full adjacency

similarity of two balanced strings.

8.1.3.3 Exact Algorithms Starting with the idea of computing the breakpoint dis-

tance under a given model (exemplar, intermediate, or full), using a linear pseudo-

Boolean (LPB) program, Angibaud et al. [17] use the following (already noted)

complementarity between the breakpoint distance and the adjacency similarity.

Lemma 8.1 [17] Let M be a matching between two strings S and T , and let ðS;TÞ be
the corresponding M-pruning. Then

bdðS;TÞ þ asðS;TÞ ¼ jM j þ 1; ð8:3Þ
where bd and as denote, respectively, the breakpoint distance and the adjacency sim-

ilarity between two permutations.

To illustrate this lemma, consider again the strings S and T in figure 8.1. The ex-

emplar pruning in the figure has two breakpoints and three adjacencies. The interme-

diate pruning has two breakpoints and four adjacencies; and the full pruning has five

breakpoints and three adjacencies.

All exemplar matchings M of two given strings S and T have the same cardinality,

so bdðS;TÞ þ asðS;TÞ is a constant over all exemplar prunings ðS;TÞ of S and T .

Full matchings share this property of exemplar matchings (i.e., they all have the

same cardinality); therefore bdðS;TÞ þ asðS;TÞ is a constant over all full prunings

as well. Consequently, under the exemplar and full models, minimizing bdðS;TÞ and
maximizing asðS;TÞ are equivalent problems. This is not the case for the intermedi-

ate model, whose allowed matchings have di¤erent cardinalities.

Moreover, Angibaud et al. [17] [15] notice that the adjacency similarity problem is

better suited to the LPB approach than the breakpoint distance problem for two rea-

sons: the constraints in the resulting program are simpler and less numerous, and the

running time of the program is strongly reduced.

110 8 Distances between Arbitrary Strings

Therefore, they give LPB programs for computing the exemplar, intermediate, and

full adjacency similarity of two strings S and T , as well as for computing the corre-

sponding prunings. The exemplar and full prunings are then used to compute the ex-

emplar and full breakpoint distances according to equation (8.3), and to deduce the

value of the intermediate breakpoint distance according to theorem 8.1. In this way,

all breakpoint distances are obtained via the values or the matchings corresponding

to the adjacency similarities. Good heuristics to solve the problem exist as well, as

will be discussed in section 8.1.8.

8.1.4 Common Intervals Similarity

Common intervals are a natural generalization of adjacencies, as they identify sub-

sets of characters that appear contiguously, but possibly in a di¤erent order, in both

strings.

� Introduced by Chauve et al. [104] (exemplar, full) and by Angibaud et al. [16]

(intermediate).

� Complexity: NP-complete (see Chauve et al. [104]) and APX-hard (see Angibaud

et al. [19]) (exemplar, intermediate, and full).

� Exact algorithms: see Angibaud et al. [16] (exemplar, intermediate, full).

Recall (see section 2.6.2) that an interval with extremities i, j, ia j, of a permuta-

tion p, is the set fjpij; jpiþ1j; . . . ; jpj�1j; jp jjg of unsigned characters located between

positions i and j (included) in p. A common interval of two permutations is an inter-

val of both.

Definition 8.12 The common intervals similarity between two signed permutations p

and s is the number of common intervals of p and s.

Computing the number of common intervals of two permutations on n elements is

done in Oðnþ KÞ (see Uno and Yagiura [361]), where K is the number of common

intervals. Heber and Stoye [210] achieve the same running time for hb 3 permuta-

tions (in this case, n is the total size of the h permutations).

The exemplar, intermediate and full common intervals similarities are defined on

strings as the maximum common intervals similarity over all possible prunings satis-

fying the model.

8.1.4.1 Computational Complexity The classical optimization problem called Ver-

tex Cover is a very useful tool in proving hardness results. The decision problem

associated with it is NP-complete and allows deducing via a Turing reduction and

using remark 8.1 that:

8.1 The Match-and-Prune Model 111

Theorem 8.9 [104] Computing the exemplar/intermediate/full common intervals

similarity between two strings S and T is an NP-complete problem, even if

occðSÞ ¼ 1 and occðTÞ ¼ 2.

The variant of Vertex Cover where the input graph is 3-regular (i.e., each vertex

has degree 3) is APX-hard, and yields, via an L-reduction, the following result.

Theorem 8.10 [19] Computing the exemplar/intermediate/full common interval sim-

ilarity between two strings S and T is an APX-hard problem, even if occðSÞ ¼ 1 and

occðTÞ ¼ 2.

Once again, as soon as duplicates are allowed in S or T , the problem of computing

the exemplar/intermediate/matching distance becomes very hard.

8.1.4.2 Exact Algorithms Angibaud et al. [16] propose another pseudo-Boolean

framework whose aim is to compute the common intervals similarity under each of

the three models. Again, transforming the LPB program for one model into the LPB

program for another model is an easy task and involves only one set of similar con-

straints (as shown by the authors). Section 8.1.8 presents three good heuristics for

this problem.

8.1.4.3 Variants Bourque et al. [83] attempt to solve the exemplar common interval

similarity between S and T using the following approach. First, identify the intervals

of all possible exemplar prunings of S and (separately) of T . Then, select the intervals

that occur both on a pruning of S and on a pruning of T . Finally, select a maximum

number of compatible intervals (i.e., common intervals in the same pruning of S and

T). The drawback of this approach is that, with the algorithm proposed by Bourque et

al. [83], some families may be completely removed from the strings during the second

step, so that in the third step the pruning is not necessarily exemplar. Note also that the

third step uses a heuristic, so that the entire algorithm is a heuristic as well.

The exemplar, intermediate, and full models reduce the problem of comparing

strings to the problem of comparing permutations, so that the only definition one

needs is that of a common interval of two permutations. However, common intervals

are also defined for strings, as proposed byDidier [141] and by Schmidt and Stoye [330].

Definition 8.13 An interval I of a string S is a set fjSij; jSiþ1j; . . . ; jSj�1j; jSjjg of

unsigned characters for some i, j such that 1a ia ja n. In this case, ½i; j� is a loca-

tion of I in S. A maximal location ½i; j� of I in S is a location with the property that

Si�1 and Sjþ1 (whenever they exist) do not belong to I .

Intervals of permutations can be defined by either their location or their content.

In the case of strings, however, the distinction between location and content matters.

112 8 Distances between Arbitrary Strings

Definitions based on both concepts have been investigated: Didier [141] gives the fol-

lowing definition of a common interval.

Definition 8.14 Let I be an interval of S and T . Let ½i; j� and ½h; l� be two maximal

locations of I on S and T , respectively. Then the pair ð½i; j�; ½h; l�Þ is a common inter-

val of S and T .

This definition identifies a common interval not only by its set of elements but

also by its locations on S and T . The contrary holds with Schmidt and Stoye’s [330]

definition.

Definition 8.15 A common CS -factor of two strings S and T is an interval of both S

and T .

Didier [141] gives an Oðn2 log nÞ running algorithm to find the common intervals

of two strings S and T of maximum length n. Schmidt and Stoye [330] compute the

common CS -factors and their locations (thus also solving Didier’s problem) with an

Oðn2Þ running-time algorithm for two strings and an Oðhn2Þ algorithm for h-strings

(the extension of the definition to hb 3 strings is obvious).

8.1.5 Conserved Intervals Similarity

Conserved intervals in permutations are a particular case of common intervals, intro-

duced with the aim of identifying parts of the string S that should not be broken

when transforming S into T by a sequence of biological operations.

� Introduced by Bourque et al. [83] (exemplar) and Angibaud et al. [19] (intermediate

and full).

� Complexity: APX-hard (see Angibaud et al. [19]) (exemplar, intermediate and full).

� Exact algorithms: can be devised from results by Angibaud et al. [16].

Conserved intervals were introduced by Bergeron and Stoye [45], following an ini-

tial, slightly stronger definition given by Bergeron et al. [49]. In section 4.1, conserved

intervals are defined in the special case where one of the permutations is the identity

permutation. Here, we give the definition without this assumption in order to be able

to use it for strings, for which no left-invariance concept allows the assumption that

one permutation is the identity.

Definition 8.16 A conserved interval of two signed permutations p and s is a com-

mon interval with extremities i < j in p and h < l in s such that either pi ¼ sh and

pj ¼ sl holds, or pi ¼ �sl and pj ¼ �sh holds.

A conserved interval is thus a common interval of p and s whose extremities accu-

rately separate it from the rest of the permutation.

8.1 The Match-and-Prune Model 113

Definition 8.17 The conserved intervals similarity between two signed permutations p

and s is the number of conserved intervals of p and s.

To illustrate this definition, consider the strings S and T in figure 8.1 and the alter-

native exemplar pruning ðS;TÞ ¼ ð1 �4 �2 3; 1 �3 2 4Þ. The conserved intervals

similarity of S and T has value 3, which is given by the intervals with extremities (re-

call these are indices, not elements of the permutations) i ¼ 2, j ¼ 3; i ¼ 2, j ¼ 4;

and i ¼ 3, j ¼ 4 of S.

Computing the number of conserved intervals between two permutations on n ele-

ments can be done in OðnÞ time using, for instance, the algorithm of Bergeron and

Stoye [45]. This complexity results from the fact that one does not need to enumerate

all intervals (their number may be Oðn2Þ).

8.1.5.1 Computational Complexity Results regarding the computation of the

exemplar/intermediate/full conserved intervals similarity confirm the expectations

supported by the previous similar problems. Angibaud et al. [19] and remark 8.1 al-

low the formulation of the following theorem.

Theorem 8.11 [19] Computing the exemplar/intermediate/full conserved interval

similarity between two strings S and T is APX-hard, even when occðSÞ ¼ 1 and

occðTÞ ¼ 2.

Note that in Angibaud et al. [19], singletons are considered as conserved intervals,

which is not the case in definition 8.16. However, the inapproximability results (as

well as the algorithms we refer to in the next subsection) remain valid.

8.1.5.2 Exact Algorithms We are not aware of any exact algorithm to compute the

conserved intervals similarity between two strings, but the LPB programs given by

Angibaud et al. [16] for the common intervals similarity can easily be modified to in-

clude the particularity of conserved intervals.

8.1.5.3 Variants Bourque et al. [83] investigate the problem of computing the exem-

plar conserved similarity, and propose a heuristic for a variant of the problem that

requires the obtained pruning of S and T to contain 0 or 1 pair of genes in each

gene family. See section 8.1.4.3 for several comments on the algorithm (which is sim-

ilar for common and conserved intervals).

8.1.6 Conserved Intervals Distance

The distance we study now has a particularity: it is defined between two sets S and T
of strings over the alphabet A, rather than between two strings. This generalization is

114 8 Distances between Arbitrary Strings

not possible for rearrangement distances in general, but it is possible in this case be-

cause no scenario is required.

� Introduced by Chen et al. [107] (exemplar) and by Blin and Rizzi [68] (full).

� Complexity: NP-complete, even when S ¼ fSg and T ¼ fTg (see Blin and Rizzi

[68]) (exemplar, intermediate, full). Not approximable even when S ¼ fSg and

T ¼ fTg (see Chen et al. [107]) (exemplar).

Defining a conserved interval of an arbitrary set P of permutations is an easy task,

by similarity with the case jP j ¼ 2. This definition comes from Bergeron and Stoye

[45].

Definition 8.18 A conserved interval of a set P of permutations over the alphabet A
is any set CJA with the property that C is a conserved interval of each pair of per-

mutations in P .

Consequently, the extremities of the interval are either a, b (in this order) or �b,

�a (in this order) in each permutation, for some a and b such that jaj; jbj A A. More-

over, the set of elements lying between those extremities is the same in all permuta-

tions. It is worth noting here that the above definition allows P to contain only one

permutation. In this case, every interval of size at least 2 is a conserved interval.

Bergeron and Stoye [45] give an algorithm with OðjP jnÞ time complexity to com-

pute the number of conserved intervals of a set P of permutations of n elements.

They also transform the measure of similarity between two or more permutations

into a distance (which really satisfies the three properties of a metric). Let NP be the

number of conserved intervals of a set P of permutations. The distance is defined

similarly to definition 4.2, and generalized to sets of permutations.

Definition 8.19 The conserved intervals distance between two sets of permutations on

n elements P and Q is defined by

cidðP ;QÞ ¼ NP þNQ � 2NPWQ: ð8:4Þ
Now, the definition of a conserved intervals distance between two sets of strings is

conceivable only if we define a pruning of two sets of strings. We first need the defi-

nition of a matching on a set of strings.

Definition 8.20 Let U ¼ fU 1;U 2; . . . ;U tg be a set of strings over an alphabet A.

A t-dimensional matching between the strings in U is a set of disjoint t-tuples

ð j1; j2; . . . ; j tÞ such that 1a j i a jU ij for all i A f1; 2; . . . ; tg and U 1
j 1
;U 2

j 2
; . . . ;U t

j t be-

long to the same gene family.

Furthermore, a matching may fall into one of the three categories with which the

reader should be familiar by now.

8.1 The Match-and-Prune Model 115

Definition 8.21 A t-dimensional matching M of U is exemplar/intermediate/full if it

contains exactly one/at least one/as many as possible t-tuples of each gene family

that occurs in all strings.

The definition of a pruning is now an easy exercise. For the exemplar model, it is

given by Chen et al. [107], whereas for the other models such a definition is missing,

either because the corresponding distance was considered only for two singletons (as

for the full model, see Blin and Rizzi [68]) or because the distance was not yet con-

sidered at all (as for the intermediate model).

Definition 8.22 Let S and T be two sets of strings over an alphabet A and let M
be an exemplar/intermediate/full matching between the strings in S WT . The M-

pruning of S and T is the pair ðS 	;T 	Þ of sets of strings obtained respectively from

S and T by removing all characters that do not occur in M and by relabeling the

remaining characters with distinct labels, according to M .

Moreover, the M-pruning is exemplar/intermediate/full according to the type of

M . The conserved intervals distance is now defined in a quite similar fashion to the

distances between two strings (see Chen et al. [107]):

Definition 8.23 Let S and T be two sets of strings over the alphabet A. The

exemplar/intermediate/full conserved intervals distance between S and T is the mini-

mum conserved intervals distance obtained over all exemplar/intermediate/full prun-

ings ðS 	;T 	Þ of S and T .

8.1.6.1 Computational Complexity Blin and Rizzi [68] consider the particular case

where both S and T are singletons, and prove its NP-completeness:

Theorem 8.12 [68] Computing the exemplar/intermediate/full conserved intervals

distance between two sets S and T of strings is NP-complete even when S ¼ fSg,
T ¼ fTg, and occðSÞ ¼ 1.

According to Blin et al. [73], this result can be extended to the case occðSÞ ¼ 1 and

occðTÞ ¼ 2. Blin and Rizzi [68] also show that, under the full model, computing the

conserved intervals distance remainsNP-complete even when S ¼ fSg, T ¼ fTg, and
f ðSÞ ¼ f ðTÞ ¼ 1. As far as inapproximability results are concerned, Chen et al.

[107] first prove:

Theorem 8.13 [107] It is NP-complete to approximate the exemplar conserved inter-

vals distance within a factor of c log n for some constant c > 0, even when both sets

of strings have cardinality 2.

Then, by inquiring about the complexity of deciding whether this distance equals 0

or not for two given strings, they deduce that the exemplar conserved intervals dis-

116 8 Distances between Arbitrary Strings

tance is not approximable at all, even when both sets of strings have cardinality 1.

(See section 8.1.6.3.)

8.1.6.2 Exact Algorithms One could be tempted to say that, similarly to the con-

served intervals similarity, the particular case where the two sets of strings are single-

tons could be handled by the exemplar/intermediate/full variants of the LPB

programs given by Angibaud et al. [16] to compute the common intervals similarity.

They should just be modified so as to select conserved intervals instead of common

intervals and to minimize the function issued from equation (8.4) instead of maximiz-

ing the number of intervals. The problem with this approach is that the function to

minimize in that case is no longer linear, since NfSg ¼ n
2

� �
when jSj ¼ n.

Instead, the exemplar and full variants of this particular case of the problem can

be computed using the following observation. Recall that S ¼ fSg and T ¼ fTg:
any pruning of S and T is then a pruning of S and T , and is therefore a pair ðS;TÞ
of permutations. If M is the matching that yields this pruning, equation (8.4)

becomes

cidðfSg; fTgÞ ¼ 2
jM j
2

� �
� 2 cisðS;TÞ;

since NfSg¼NfTg¼ jM j
2ð Þ and NfSgWfTg is the number of conserved intervals (or the con-

served intervals similarity) between S and T, which we denote as cisðS;TÞ. Conse-
quently, we have

cidðS;TÞ þ 2 cisðS;TÞ ¼ 2
jM j
2

� �
;

and the right-hand side of this equation is a constant over all exemplar prunings of S

and T . Therefore, minimizing the conserved intervals distance and maximizing the

conserved intervals similarity are equivalent problems under this model, and the

same holds for the full model. Obviously, the claim is not valid for the intermediate

model. Section 8.1.8 presents a heuristic for this problem, studied by Blin and Rizzi

[68].

8.1.6.3 Variants Several examples above show that the di‰culty of approximating

a distance is easily argued if one first proves the NP-completeness of testing whether

this distance equals 0 or not. When applied to the conserved intervals distance, this

technique again works under the exemplar model.

� Introduced by Chen et al. [107] (exemplar).

� Complexity: NP-complete, even when S ¼ fSg and T ¼ fTg (see Chen et al. [107])

(exemplar).

8.1 The Match-and-Prune Model 117

Based on the NP-completeness result of Chen et al. [107], one easily infers that un-

less P ¼ NP, no polynomial-time algorithm may be found to approximate the exem-

plar conserved intervals distance with a bounded ratio. Since Chen et al.’s result [107]

holds for the particular case where S ¼ fSg and T ¼ fTg with occðSÞ ¼ occðTÞ ¼ 3,

the inapproximability result holds in this case as well.

8.1.7 MAD and SAD Numbers

The measures to estimate the (dis)similarity between two permutations that we have

mentioned so far fall into two categories: they estimate either the distance or the sim-

ilarity between the two permutations. The two measures in this subsection, both

defined by Sanko¤ and Haque [321], belong to neither category: unlike distances,

their value is never 0; and unlike similarities, their value grows as the dissimilarity

of the permutations grows.

The following properties hold for both the so-called MAD and SAD numbers,

when the usual models (i.e., exemplar, intermediate, and full) are considered on a

pair of strings.

� Introduced by Chauve et al. [104] (exemplar and full).

� Complexity: NP-complete and APX-hard (see Chauve et al. [104]) (exemplar, inter-

mediate, and full).

Let p ¼ ðp1 p2 � � � pnÞ and s ¼ ðs1 s2 � � � snÞ be two permutations, and let sp be

the permutation obtained from s by renaming the elements of p so as to obtain the

identity permutation i, and then renaming the elements of s accordingly.

The MAD and SAD numbers measure how far genes have to move from their ini-

tial position in one genome in order to yield the other genome, and this measure fo-

cuses either on each gene (MAD) or on all genes altogether (SAD).

Definition 8.24 The maximum adjacency disruption number (or MAD number) of two

permutations p and s on n elements is

MADðp; sÞ ¼ max
1aian�1

maxfjsp
i � sp

iþ1j; jps
i � ps

iþ1jg:

More intuitively, the MAD number of p and s is the largest gap between two con-

secutive elements in sp or in ps.

Definition 8.25 The summed adjacency disruption number (or SAD number) of two

permutations p and s on n elements is

SADðp; sÞ ¼
Xn�1

i¼1

ðjsp
i � sp

iþ1j þ jps
i � ps

iþ1jÞ:

118 8 Distances between Arbitrary Strings

More intuitively, the SAD number is the sum of all gaps between two consecutive

elements in sp and in ps. When p and s are identical, the MAD number equals 1 and

the SAD number equals 2ðn� 1Þ.
Definition 8.26 Let S and T be two strings over the alphabet A. The exemplar/

intermediate/full MAD number of S and T is the minimum MAD number obtained

over all exemplar/intermediate/full prunings ðS;TÞ of S and T .

Definition 8.27 Let S and T be two strings over the alphabet A. The exemplar/

intermediate/full SAD number of S and T is the minimum SAD number obtained

over all exemplar/intermediate/full pruning ðS;TÞ of S and T .

Chauve et al. [104] prove the following inapproximability result, which implies the

APX-hardness of computing the MAD number under all three models (because of

remark 8.1).

Theorem 8.14 [104] Unless P ¼ NP, no ð2� eÞ-approximation algorithm (e > 0)

exists for computing the exemplar/intermediate/full MAD number of two strings,

even when occðSÞ ¼ 1 and occðTÞ ¼ 9.

In turn, the APX-hardness of computing the SAD number is a consequence of

theorem 8.15 (recall that n ¼ jSj and assume without loss of generality that

n ¼ minðjSj; jT jÞ).
Theorem 8.15 [104] Unless P ¼ NP, there is a constant c > 0 such that no ðc log nÞ-
approximation algorithm exists for computing the exemplar/intermediate/full SAD

number of two strings S and T , even when occðSÞ ¼ 1.

8.1.8 Heuristics

We focus in this subsection on heuristics to deal with the aforementioned problems.

The motivation for our choice to present heuristics rather than exact algorithms (or

rather than both heuristics and exact algorithms) relies on their universality: these

heuristics are identical for all distances and need only minor changes to handle one

model rather than another.

8.1.8.1 Description The three heuristics presented in this section use the notion of a

longest common substring, up to a complete reversal defined in section 7.2, and are all

based on the following easy idea. Assuming temporarily that one aims at finding

a full matching between S and T , which intuitively preserves the most conserved

regions between both strings, an easy way to find such a matching is given by the

ILCS heuristic (see algorithm 8.1), where we assume that each longest common sub-

string found on S and T is identified by one precise occurrence on each of S and T .

Figure 8.2 shows an example.

8.1 The Match-and-Prune Model 119

As far as we know, this idea was first proposed by Tichy [357] and has often been

used since (see subsection 8.1.8.2). Angibaud et al. [18, 15] proceeded to a large num-

ber of time-consuming distance computations, and noticed that even small changes

in the ILCS algorithm might improve the execution time, the quality of the result

and its applicability to various models. The IILCS heuristic (see algorithm 8.2), pro-

posed by Angibaud et al. [18], is such a variant of ILCS where the removal of char-

acters that cannot be matched is done before starting a new iteration.

This new heuristic allows one to obtain in step 2 one or several pairs of matched

characters in each gene family, according to the model, and to discard in step 3 all

characters that become useless. Besides the flexibility introduced by this variant of

ILCS in regard to the model, an improvement of the results may also be expected,

as IILCS better takes into account the final goal of matching characters, which is to

identify as many conserved regions as possible in the resulting pruning, and not in

S and T . Indeed, the resulting pruning has consecutive characters that were not con-

secutive in the initial strings, and thus has conserved regions that possibly were not

conserved in the initial strings. The early removal of characters by IILCS allows non-

adjacent characters in S or T to become adjacent at the end of some iteration, if the

characters between them are not matched. New longest common substrings may then

be formed in this way, thus improving the identification of common regions in the

final pruning (see figure 8.2).

The argument these heuristics rely on is that long common substrings are strongly

conserved regions that strongly a¤ect the values of all measures, either distances or

similarities. Such an argument is supported by the good performances of these heu-

ristics (see below), but cannot be invoked when the longest common substrings are

short (i.e., not exceeding some given length h). Consequently, it could be reasonable

to stop the execution of the IILCS heuristic when the threshold h is reached for the

length of the longest common substring, and then to apply some exact (and thus ex-

ponential) algorithm to optimally match the remaining characters according to the

problem P to solve. Problem P is defined by the measure to compute and the model

to use. This idea yields the hybrid method HYBP ðhÞ in algorithm 8.3, proposed by

Angibaud et al. [18].

Algorithm 8.1
ILCS Heuristic (full matching)

Input: two genomes S and T

Output: a matching between S and T

1. Compute a longest common substring L of S and T , up to a complete reversal, exclusively made of
unmatched characters from S and T .

2. Match the characters of S and T belonging to the occurrences of L according to their positions in L.

3. Iterate the process until all possible characters have been matched.

4. Remove all unmatched characters.

5. Compute the required distance on the resulting pruning ðS;TÞ.

120 8 Distances between Arbitrary Strings

Figure 8.2
Execution and results of the three heuristics, seeking a full matching, on the strings S ¼
�1 2 5 3 5�3�2�1 4 and T ¼ �3�2�5�2 1 3�3�2 1�1�4. As an example, the problem P in the
HYB heuristic seeks to compute the conserved intervals similarity. The circled numbers indicate in which
order the longest common substrings were identified, except for the 3 in the HYB heuristic, which in this
case means that the matchings were decided simultaneously by the exact algorithm evoked in the last step
of the HYB heuristic

8.1 The Match-and-Prune Model 121

Since IILCS and HYBP ðhÞ perform identically until S 0 and T 0 are obtained, and

since the exact algorithm will always provide the best result for S 0 and T 0, one can

ensure that the hybrid method will always give a better result than IILCS (see figure

8.2 for an example). However, the running time of HYBP ðhÞ is exponential in the

worst case (as opposed to the polynomial running time of ILCS and IILCS), and

this is its main drawback.

8.1.8.2 Applications All these heuristics are based on the easy, very intuitive idea

that longest common substrings capture a lot of the similarities between strings, and

on the easy, very intuitive greedy approach. It therefore comes as no surprise that

they appeared independently and with small variants in di¤erent contexts.

The ILCS idea of Tichy [357] is presented as a possible way, eventually rejected as

ine‰cient, to compute a specific covering set. Shapira and Storer [337] (improved

version of [335]) apply it, by forbidding the complete reversal, to evaluate the string

edit distance with transpositions (see section 8.2.4). Chrobak et al. [117] use the same

variant of the heuristic to address a related problem, the minimum common string

partition problem (see section 9.1.1). Swenson et al. [345] use the full matching

obtained by the ILCS heuristic to approximate the true evolutionary distance be-

tween two genomes. Blin and Rizzi [68] use ILCS to approximate the conserved

intervals distance between two singleton sets, and Blin et al. [70] build phylogenetic

trees based on several distances issued from classical measures (breakpoint distance,

Algorithm 8.2
IILCS Heuristic (exemplar/intermediate/full matching)

Input: two genomes S and T

Output: a matching between S and T

1. Compute a longest common substring L of S and T , up to a complete reversal, exclusively made of
unmatched characters from S and T .

2. Match (all or part of) the characters of S and T belonging to the occurrences of L according to their
positions in L, so as to fit the exemplar/intermediate/full model constraints.

3. Remove all characters of S and T that are not and cannot be matched (keep the notation S and T for
the resulting strings).

4. Iterate the process until all possible characters have been matched.

5. Compute the required distance on the resulting pruning, now denoted ðS;TÞ.

Algorithm 8.3
HYBP ðhÞ Heuristic (exemplar/intermediate/full matching)

Input: two genomes S and T

Output: a matching between S and T

1. Run the IILCS heuristic on S and T until no longest common substring of size at least h exists.

2. Relabel the matched characters with new, distinct characters.

3. Call an exact algorithm AP to solve problem P on the resulting strings S 0 and T 0.

122 8 Distances between Arbitrary Strings

common intervals similarity, conserved intervals similarity); these distances are eval-

uated using the ILCS heuristic.

The IILCS and HYBP ðhÞ heuristics were introduced more recently, and were sys-

tematically evaluated together with ILCS by Angibaud et al. [18, 15] on several prob-

lems and data sets for which exact results are known. These evaluations show that

the heuristics perform very well on experimental data.

8.2 The Block Edit Model

Except in section 8.2.5, the strings in this section are unsigned. Recall that the oper-

ations of block duplication, deletion, insertion, and replacement may be considered to

edit strings (page 94), and they are called block edit operations.

A special case of a block is a one-character-long block, which we call a character.

Consequently, a block edit operation involving a one-character-long block is called

a character edit operation (or a character edit for short). Two standard distances

defined with character edits only are the Hamming and the Levenshtein distances.

Definition 8.28 The Hamming distance between two strings S and T of equal length

is the minimum number of character replacements needed to transform S into T .

The Levenshtein (or string edit) distance between two strings S and T is the minimum

number of character insertions, deletions, and replacements needed to transform S

into T .

As an example, for the strings S ¼ 1 2 4 2 3 1 4 and T ¼ 1 4 2 2 4 3 1, the Ham-

ming distance is equal to 5 (character replacements are needed at positions 2, 3, 5, 6,

7) and the Levenshtein distance is equal to 4 (delete each 4 and then insert them

again at the appropriate places).

In the block edit model, the distance between two strings S and T is defined as the

minimum number of operations, among a given set of allowed operations including

at least one block edit, needed to transform S into T . Such a distance is called a

block edit distance, and the corresponding set of allowed operations is a block edit

collection. Of course, as long as no constraint is imposed on the blocks involved in

the operations, not every possible block edit collection defines an interesting distance.

In the following, block edit collections will be given in their minimal form, which

implies that when a block edit is allowed, the corresponding character edit is allowed

as well.

8.2.1 Block Covering Distance

The problem of (possibly partially) covering two strings S and T with pairs of blocks

(one in each string) so as to minimize the total pairwise distances between blocks was

introduced in its most general form by Lopresti and Tomkins [257], under the name

8.2 The Block Edit Model 123

block edit distance. However, though the term edit suggests that one string is trans-

formed into the other using a set of block operations, no such transformation is per-

formed here.

Although slightly di¤erent from our purposes, this distance is definitely interesting

for three reasons. First, for the generality of its statement, which is based on an arbi-

trary distance between blocks. This is quite rare in the more recent studies, which

often focus on a unique, precise distance. Second, because pairing blocks with di¤er-

ent contents suggests the use of a block replacement operation, which is the only op-

eration that changes, at the same time, both the content and the character order at a

given place in the string. And third, because the NP-completeness results on this dis-

tance support (without rigorously proving, however) the idea that computing a dis-

tance based on block edits becomes NP-complete as soon as transpositions (that is,

block moving) are allowed.

� Introduced by Lopresti and Tomkins [257].

� Complexity: NP-complete (see Lopresti and Tomkins [257]).

Let S and T be two unsigned strings on the alphabet A and let dist be a function

with real values defined on any pair of blocks of S and T . In this context, blocks are

identified by their positions and their lengths.

Definition 8.29 A t-size block family A of S is a collection of t blocks of S. The set of

all t-size block families of S is denoted by F tðSÞ.
If A A F tðSÞ and B A F tðSÞ are given for an arbitrary tb 1, a one-to-one corre-

spondence between the blocks in A and the blocks in B is represented as a permuta-

tion s A St. Consequently, block AðiÞ in A and block BðsiÞ in B form a pair.

The constraints on the block families considered in order to compare S and T are

identified as a quadruple CSDS-CTDT , where Cq A fC;Cg and Dq A fD;Dg for

each q A fS;Tg describe the required properties of the block families on S and T .

Notation C means that the block family is required to cover the string, and notation

C signifies that there is no such constraint. Notation D means that the block family is

required to contain disjoint blocks of the corresponding string, and notation D signi-

fies that no such constraint is imposed.

Definition 8.30 The CSDS-CTDT -block covering distance of S and T is given by

bcdðS;TÞ ¼ min
tb1

min
A AFtðSÞ
B AFtðTÞ;

min
s ASt

Xt

i¼1

distðAðiÞ;BðsiÞÞ;

where each A and each B is required to satisfy the constraints given by CSDS and

CTDT , respectively.

124 8 Distances between Arbitrary Strings

Equivalently, the block covering distance between S and T is the minimum value

obtained by choosing a constrained set of block pairs from S and T , respectively,

and computing the total distance over these pairs. The constraints on S and T are

independent of each other, thus allowing an important flexibility in the statement of

particular cases of the problem.

Note that, depending on the various parameters in the definition, certain versions

of the distance may not be interesting (or well defined) unless supplementary con-

straints are formulated. Keeping in mind that dist may have negative values and

that blocks in a family may not be disjoint, Lopresti and Tomkins [257] add the con-

straint that any two pairs of blocks that are put in correspondence by s have to be

distinct in terms of sequences, in order to avoid measure diverging.

8.2.1.1 Computational Complexity Lopresti and Tomkins [257] investigate the vari-

ous cases with respect to the constraints on S and T , and prove the NP-completeness

of computing the block covering distance when both strings are constrained with re-

spect to C and/or D. See table 8.1 and recall that n, m are the lengths of S and T ,

respectively.

These proofs of NP-completeness use a specific function dist, so that one can-

not deduce from these results the NP-completeness of important particular cases

such as the case where dist is the Levenshtein distance. A separate proof is then nec-

essary.

Theorem 8.16 [257] Computing the CD-CD block covering distance is NP-complete

when dist is the Levenshtein distance.

Remark 8.3 It is worth noting here that several authors (e.g., Shapira and Storer

[336] and Muthukrishnan and Sahinalp [278]) simply refer to the NP-completeness

results of Lopresti and Tomkins [257] with the aim of justifying the NP-completeness

of related block edit problems (see the rest of this chapter). As long as no complete

proof supports these a‰rmations, we choose to consider that this information is not

irrefutable. But we admit that the NP-completeness is conceivable.

Table 8.1
Complexity of computing the block covering distance

CD CD CD CD

CD NP-complete NP-complete NP-complete Oðn2mÞ
CD NP-complete NP-complete Oðn2m2Þ
CD NP-complete Oðn2mÞ
CD Oðn2m2Þ
From [257].

8.2 The Block Edit Model 125

8.2.1.2 Easy Cases When the distance dist between blocks is arbitrary, the problem

is polynomial (Lopresti and Tomkins [257]) if at least one of the strings is uncon-

strained. The running times of the algorithms proposed by Lopresti and Tomkins

[257] are presented in table 8.1.

Interesting particular cases are obtained by forcing the blocks to have a specific

form, which is easily obtained from the standard statement of the problem by appro-

priately choosing the function dist. Tichy [357] studies the problem of finding a min-

imum set of identical blocks of S and T that covers exactly once each character T ½i�
that is common to S and T . Once the maximal blocks of T that exclusively contain

characters not in S are copied at the end of S in an appropriate (but easy to find)

order, the problem becomes a variant of the block covering distance problem: just

ask that the paired blocks be identical by defining dist equal to 1 for identical blocks

and þy otherwise, and impose constraints CD-CD. Tichy [357] obtains a linear al-

gorithm for this variant of the problem.

8.2.1.3 Variants The unsigned minimum common string partition presented in

section 9.1.1 is the variant of the CD-CD-block covering distance where dist has

value 1 for identical blocks and both S and T are required to be balanced (otherwise,

their block covering distance is þy). Using common intervals for strings (see section

8.1.4.3) instead of identical strings, Blin et al. [71] obtain a variant of the problem for

which they show the NP-completeness and give a heuristic.

8.2.2 Symmetric Block Edit Distance

Many block edit distances may be obtained by (sometimes slightly) changing the

block operations allowed on the two strings S and T (recall that these operations

form the block edit collection associated with a block edit distance). These distances

are collected here into three classes, which are presented in table 8.2.

The symmetric block edit distance is based on some powerful block operations (see

table 8.2), such as transpositions (see definition 3.1) and reversals (see definition

3.14), that are defined on strings similarly to permutations, but also uses, in order to

ensure the symmetry of the resulting distance, a constrained definition of block dele-

tion, the block uncopy.

� Introduced by Cormode et al. [123].

� Complexity: unknown (see remark 8.3).

� Best approximation ratio: Oðlog n log	 nÞ, where log	 n is the number of times the

log function has to be applied to n to produce a constant.

The operation of block uncopy used by this distance is the opposite of a

duplication.

126 8 Distances between Arbitrary Strings

T
ab

le
8
.2

B
lo
ck

ed
it
d
is
ta
n
ce
s
a
n
d
th
ei
r
b
lo
ck

ed
it
co
ll
ec
ti
o
n
s

D
is
ta
n
ce

C
h
a
ra
ct
er

in
se
rt
io
n

C
h
a
ra
ct
er

d
el
et
io
n

C
h
a
ra
ct
er

re
p
la
ce
-

m
en
t

B
lo
ck

d
u
p
li
ca
ti
o
n

B
lo
ck

u
n
co
p
y

B
lo
ck

d
el
et
io
n

T
ra
n
s-

p
o
si
ti
o
n

R
ev
er
sa
l

C
o
p
y

re
v
er
sa
l

S
ec
ti
o
n

S
y
m
m
et
ri
c
b
lo
ck

ed
it
d
is
ta
n
ce

[1
2
3
]

�
�

�
�

�
�

�
8
.2
.2

V
a
ri
a
n
t
1
[3
5
]

�
�

�
�

�
�

8
.2
.2

V
a
ri
a
n
t
2
[2
7
8
]

�
�

8
.2
.2

L
a
rg
e
b
lo
ck

ed
it

d
is
ta
n
ce

[3
3
6
]

�
�

�
�

�
�

8
.2
.3

V
a
ri
a
n
t
1
[3
3
6
]

�
�

�
�

�
8
.2
.3

V
a
ri
a
n
t
2
[1
6
1
]

�
�

�
�

�
�

8
.2
.3

V
a
ri
a
n
t
3
[3
3
6
]

�
�

8
.2
.3

V
a
ri
a
n
t
4
[3
3
6
]

�
8
.2
.3

S
tr
in
g
ed
it
d
is
ta
n
ce

w
it
h
tr
a
n
sp
o
si
ti
o
n
s

[1
2
2
]

�
�

�
�

8
.2
.4

V
a
ri
a
n
t
[3
3
7
]

�
�

�
8
.2
.4

8.2 The Block Edit Model 127

Definition 8.31 Let S be a string and SiSiþ1 � � �Siþh�1 and SjSjþ1 � � �Sjþh�1 be two

disjoint occurrences of the same substring in S. The operation of block uncopy

SiSiþ1 � � �Siþh�1 from S consists in deleting SiSiþ1 � � �Siþh�1 from S.

Each operation in the block edit collection is therefore reversible, since its opposite

is also in the block edit collection, and this justifies the term symmetric we used to

identify this distance.

For example, transforming S ¼ 2 1 2 3 1 4 into T ¼ 2 4 1 can be done by deleting

element 3, uncopying the first block 2 1, and reversing the block 1 4. To transform T

into S, the opposite operations are available: reverse the block 4 1, copy the block

2 1 at position 1, and insert 3 at position 4.

Remark 8.4 Cormode et al. [123], as well as other authors cited in this section, refer

to a transposition as a block move.

8.2.2.1 Approximation Algorithms The technique used by Cormode et al. [123] to

obtain the Oðlog n log	 nÞ-approximation algorithm is based on embedding strings

into vector spaces. Given a distance dist between strings and S a space provided

with a distance L, a function H defined on strings and with values in S is found

such that distðS;TÞ is equal, up to an estimable factor, to LðHðSÞ;HðTÞÞ.
Such a transformation is obtained by (1) defining a hierarchical structure of a

string S using a parsing technique called Symmetric LCP, and (2) defining the binary

vector HðSÞ associated to the string S according to this structure. The metric L is

then, when we focus on computing the symmetric block edit distance sbedðS;TÞ,
simply the Hamming distance hd. Cormode et al. [123] show that

1

3
sbedðS;TÞa hdðHðSÞ;HðTÞÞaOðsbedðS;TÞ log n log	 nÞ:

The algorithm has Oðn log nÞ running time.

8.2.2.2 Variants Batu and Sahinalp [35] consider the variant of the symmetric

block edit distance where reversals are forbidden, and give a Oðlog nðlog	 nÞ2Þ-
approximation algorithm.

Muthukrishnan and Sahinalp [278] identify a polynomial-time solvable variant

of the block edit problem, in which not only the allowed operations are reduced

to character replacements and reversals, but the operations are further required

not to overlap. It is a consequence of the operations allowed in this case that strings

must have equal length. Their algorithm computes this distance exactly in

Oðn log2 nÞ time.

128 8 Distances between Arbitrary Strings

8.2.3 Large Block Edit Distance

Intuitively, the operation of deleting an arbitrary block from a string is much more

natural, and seemingly more reasonable when strings represent genomes, than the

operation of block uncopy used in the block edit distance. However, this change in

the block edit collection (see table 8.2) has an important impact on the resulting dis-

tance. It becomes possible to transform S into T by first removing S and then succes-

sively inserting the characters of T into an initially empty string, which is certainly

not a common way to transform one genome into another during the evolution.

Also, it is possible to find a minimum sequence of operations to transform S into T

that is not reversible, in the sense that we cannot transform T into S using the oppo-

site operations. For instance, when S ¼ 1 1 2 2 and T ¼ 1 1, we transform S into T

with one operation by deleting the block 2 2, but we transform T into S with two

operations by inserting 2 twice. The large block edit distance is no longer a metric,

since it is not symmetric.

Note also that character replacements are forbidden and reversals are replaced by

copy reversals, and these are two other, less crucial, changes with respect to the sym-

metric block edit distance. A copy reversal collapses the copy of a block immediately

followed by a reversal into a single operation.

� Introduced by Shapira and Storer [336].

� Complexity: see remark 8.3.

� Best approximation ratio: 3.5, by Shapira and Storer [336].

8.2.3.1 Approximation Algorithms The 3.5-approximation algorithm of Shapira and

Storer [336] uses a greedy technique. The idea is to consider a string U , which is ini-

tially S, and to which characters are consecutively added at the end while T is exam-

ined. At each step, a longest prefix of T that is present in U up to a reversal is

searched for. If such a string of length 2 or more is found, then a new character rep-

resenting the corresponding copy or copy-reversal operation is added to U . Other-

wise, the first character of T is added to U . This character represents either an

operation of character copy, if the character was already present in U , or an opera-

tion of character insertion into T with respect to S in the contrary case. String T then

loses the prefix used in the current step, and another step begins.

8.2.3.2 Variants Shapira and Storer [336] also consider the variant of the large

block edit distance where copy reversals are forbidden, and show that a similar algo-

rithm achieves an approximation ratio of 4.

Ergun et al. [161] consider a distance where the block edit collection contains the

same operations as in Shapira anad Storer’s variant above, as well as the character

8.2 The Block Edit Model 129

replacement (see table 8.2). They propose a linear-time 12-approximation algorithm

for this problem.

It is easily seen that a character replacement may be simulated using a character

insertion and a character deletion (which is a block deletion), so that a way to obtain

T from S in Shapira and Storer’s variant [336] is to simulate every character replace-

ment in the variant of Ergun et al. [161] by a character insertion and a character de-

letion. Therefore,

lbedSðS;TÞa lbedEðS;TÞ þ ncr
E ðS;TÞa 2 lbedEðS;TÞ;

where lbedS and lbedE represent the distances in the Shapira and Storer model and

the Ergun et al. model, respectively, and ncr
E ðS;TÞ is the number of character replace-

ments counted in lbedEðS;TÞ. Consequently, due to the inclusion of the block edit

collections, the following estimation holds:

lbedSðS;TÞa 2 lbedEðS;TÞa 2 lbedSðS;TÞ: ð8:5Þ
It is then easy to deduce that the 4-approximation algorithm for the Shapira and

Storer model gives a 8-approximation ratio for the Ergun et al. model, thus improv-

ing the ratio of 12 found in [161].

Finally, for the very restricted variants of the large block edit distance where block

deletions only, or both block deletions and character insertions, form the block edit

collection, the problem is polynomial and solvable with a standard dynamic program

(see Shapira and Storer [336]).

8.2.4 String Edit Distance with Transpositions

This distance may be seen as a variant of several distances seen before, but deserves

to be presented separately because of its relationship to the minimum common string

partition and the reversal distance (see chapter 9). The operations allowed here are

the character edits and the transposition.

� Introduced by Cormode and Muthukrishnan [122].

� Complexity: Shapira and Storer [337] (improved version of [335]) claim the NP-

completeness of the problem, based on their result (see section 8.2.4.2) on the prob-

lem that does not allow character replacements.

� Best approximation ratio: Oðlog n log	 nÞ, by Cormode and Muthukrishnan [122],

where log	 n is the number of times the log function has to be applied to n to pro-

duce a constant.

8.2.4.1 Approximation Algorithms The string edit distance with transpositions is

simply an extension of the Levenshtein distance, which does not allow rearranging

130 8 Distances between Arbitrary Strings

characters, by adding a rearrangement operation, the transposition. Although com-

puting the Levenshtein distance of two strings is a well-known polynomial problem,

the best approximation algorithm when transpositions are added remains the one in

[122], which uses a parsing technique and has Oðn log nÞ running time.

8.2.4.2 Variants Shapira and Storer [337] consider the variant of the problem

where only character insertions, character deletions, and transpositions are allowed.

Interestingly, for this variant a proof of NP-completeness is provided.

Theorem 8.17 [337] Computing the minimum number of character insertions, char-

acter deletions, and transpositions to transform a string S into a string T is NP-

complete.

The proof is by reduction from the bin-packing problem. The best approximation

ratio of Oðlog n log	 nÞ is obtained by Cormode and Muthukrishnan’s algorithm

[122], which still works in this case because character replacements are simulated by

character insertions and deletions, so that a formula similar to inequality (8.5) holds.

8.2.5 Signed Strings

In this section, strings are signed, so that a reversal reverses not only the order of the

characters but also their signs.

Marron et al. [263] are concerned with the problem of finding the distance between

a given signed string S and the target string T ¼ 1 2 3 . . . n when the block edit

collection consists of character insertions, character deletions, and reversals. A 10-

approximation algorithm is proposed, which first finds a cover of T with maximal

common blocks of S and T (up to a reversal) in order to assign unique names to

duplicates, and then uses El-Mabrouk’s algorithm [154] for rearranging permutations

with di¤erent gene content but no gene duplicates.

Using the same operations and the same initial idea, Swenson et al. [345] consider

the problem of computing the distance between two arbitrary signed strings, and give

an Oðn2Þ running time heuristic for it.

8.2 The Block Edit Model 131

9 Distances between Balanced Strings

Deletions, insertions, duplications, and replacement events are necessary to com-

pare arbitrary strings, because the gene content of the strings is di¤erent. But the

special case where the gene content is equal is interesting, because it allows us to

handle duplicated genes and not to take into account these edit operations in the

scenarios. In this case, we require that every character has the same number of oc-

currences in the considered strings, which means that we assume all gene copies

on one genome are out-paralogs. In other words, in this case we deal with balanced

strings (see definition 7.8). It turns out that many results specific to this case

exist, and thus it appears natural that they should be summarized in a separate

chapter.

In this chapter, we will assume that all strings are balanced, and belong to the class

Lða1; . . . ; akÞ, unless explicitly stated otherwise. As a consequence, for any two input

strings S and T , we have jSj ¼ jT j ¼ n, occðSÞ ¼ occðTÞ, and f ðSÞ ¼ f ðTÞ. (Recall

that occðSÞ is the number of duplicates in S of the largest family, and f ðSÞ is the

number of gene families with at least two duplicated genes in S). When the alphabet

is binary (i.e., when strings belong to the class Lða1; a2Þ), we will always assume that

the alphabet A is f0; 1g. Moreover, we reuse the notation introduced in chapter 3 in

the context of permutations. For instance, whereas tdðp; sÞ denoted the transposition

distance between permutations p and s, tdðS;TÞ will denote the transposition dis-

tance between strings S and T . Notions that are not obviously translated will be

redefined.

9.1 Minimum Common String Partition Problems

The so-called minimum common string partition problem (or MCSP, for short) may

be seen as an attempt to compute a breakpoint distance between strings, as this was

the easiest measure of dissimilarity between permutations. For the sake of clarity,

and though the results are sometimes very close, we will develop the three existing

variants (unsigned MCSP, signed MCSP, and reversed MCSP) separately.

9.1.1 Unsigned MCSP

� Introduced independently by Chen et al. [106] and Swenson et al. [345] (who refer

to it as sequence cover).

� Complexity:

— APX-hard even when occðSÞ ¼ 2 (see Goldstein et al. [188]).

— NP-hard even when f ðSÞ ¼ 1 (see Blin et al. [69]).

� Best approximation ratio: Oðlog n log	 nÞ, where log	 n is the number of times the

log function must be applied to n to produce a constant (see Cormode and Muthuk-

rishnan [122] and Kolman and Waleń [239]). When occðSÞ ¼ c, the ratio is

— 1:1037 when c ¼ 2 (see Goldstein et al. [188]),

— 4 when c ¼ 3 (see Goldstein et al. [188]), and

— 4c otherwise (see Kolman and Waleń [239]).

First, we begin with some definitions that will help formalize the MCSP problem.

Definition 9.1 A partition of a string S is a set of substrings fS1;S2; . . . ;Spg such

that the concatenation S1 S2 � � � Sp is S.

Definition 9.2 A common partition of two strings S and T is a pair of partitions

Sð1Þ; . . . ;SðpÞ of S and Tð1Þ; . . . ;TðpÞ of T , for which there exists a permutation p

such that SðiÞ ¼ TðpiÞ, for all 1a ia p. The common partition is said to be mini-

mum if there is no other common partition partitioning S and T into less than p

blocks.

As a simple illustration of the above definition, for S ¼ abaab and T ¼ ababa,

ðab; ab; aÞ is a common partition, and ðaba; abÞ is the minimum common partition.

Formulated as a decision problem, MCSP is stated as follows:

MINIMUM COMMON STRING PARTITION (MCSP)

INSTANCE: Two unsigned balanced strings S and T , a positive integer K.

QUESTION: Is there a common partition of S and T with at most K blocks?

Approximating MCSP When occðSÞ ¼ 2, there is a 3-approximation (see Chrobak

et al. [117]). However, the best result so far, due to Goldstein et al. [188], is a

1:1037-approximation for 2-MCSP. Goldstein et al. [188] gave a 4-approximation

for the case occðSÞ ¼ 3.

In the general case, when occðSÞ ¼ c, Kolman [238] designed a 2c2-approximation

algorithm. However, the best result so far, due to Kolman and Waleń [239], is a 4c-

approximation.

In the general case, too, an approximation ratio of Oðlog n log	 nÞ exists. This

ratio is derived from a series of equivalences (up to a constant factor) between di¤er-

ent problems. This series of equivalences is given in the following theorem.

134 9 Distances between Balanced Strings

Theorem 9.1 [337, 226]

� The minimum number of character insertions, character deletions, character

replacements, and transpositions to transform S into T is equal, up to a constant fac-

tor, to the same problem where replacements are forbidden.

� The minimum number of character insertions, character deletions, and transposi-

tions to transform S into T is equal, up to a constant factor, to the same problem

where only transpositions are allowed.

� The minimum number of transpositions to transform S into T is equal, up to a

constant factor, to the minimum number of strings of a common string partition of

S and T .

Thanks to the above theorem, we conclude that if an approximation algorithm of

ratio r exists for the first problem mentioned above, then an approximation algo-

rithm exists for MCSP whose ratio is c � r, where c is a constant. Cormode and

Muthukrishnan [122] proved that there exists an approximation algorithm of ratio

Oðlog n log	 nÞ for the first problem mentioned above (see also subsection 8.2.4).

Hence, there exists an approximation algorithm of ratio Oðlog n log	 nÞ for MCSP.

Greedy Algorithms for MCSP Shapira and Storer [337] (in an improved version of

[335]) proposed a greedy heuristic that allows us to find a minimum common parti-

tion between two balanced strings. Let H denote this heuristic. The main idea of H
consists in iteratively finding—and matching—a longest common substring between

the two strings, until every character is covered. In other words, H is nothing more

than IILCS (see algorithm 8.2), where the ‘‘up to a complete reversal’’ part is

ignored. Shapira and Storer [335] claimed that H achieves an approximation ratio

of Oðlog nÞ, which Chrobak et al. [117] later disproved: indeed, they showed that

the approximation ratio of H lies between Wðn0:43Þ and Oðn0:69Þ, a contradiction

with the result of Shapira and Storer [335]. (It turned out that the Oðlog nÞ ratio

from Shapira and Storer was false; however, Shapira and Storer [337] later identified

a subclass of (unsigned) instances for which H does not exceed the Oðlog nÞ ratio.)

Kaplan and Shafrir [226] later displayed an infinite family of (unsigned) strings for

which the approximation ratio of H is Wðn0:46Þ, thus improving the OðW0:43Þ ratio

from Chrobak et al. [117]. Finally, note that He [206] slightly modified H and

claimed better experimental performances; however, no rigorous analysis was made,

and we mention this variant here only for the sake of completeness.

9.1.2 Signed MCSP

It is of course possible to define and study the variant of MCSP that applies to signed

strings. In that case, the definition of a common partition should be modified: the

permutation p in definition 9.2 may now be signed, and in that case T�i ¼ �Ti,

where �Ti means that the substring is reversed both in sign and in order. For

9.1 Minimum Common String Partition Problems 135

instance, if Ti ¼ þa �b þd þd, then �Ti ¼ �d �d þb �a. Intuitively, SMCSP is

the variant of MCSP where substrings are common up to a complete reversal (in

sign and order).

SIGNED MINIMUM COMMON STRING PARTITION (SMCSP)

INSTANCE: Two signed balanced strings S and T , a positive integer K .

PROBLEM: Is there a common partition of S and T with at most K blocks?

� Introduced independently by Chen et al. [106] and Swenson et al. [345] (who refer

to it as sequence cover).

� Complexity:

— APX-hard even when occðSÞ ¼ 2 (see Goldstein et al. [188]).

— NP-hard even when f ðSÞ ¼ 1 (see Blin et al. [69]).

� Best approximation ratio: When occðSÞ ¼ c:

— 1:1037 when c ¼ 2 (see Goldstein et al. [188]),

— 4 when c ¼ 3 (see Goldstein et al. [188]), and

— OðcÞ otherwise (see Kolman and Waleń [239]).

A ratio of Oðn0:69Þ also exists (see Chrobak et al. [117]).

Equivalence Between SMCSP and the Full Breakpoint Distance The size of the minimum

common partition can be viewed as the minimum number of places where a rear-

rangement scenario has to break. In that sense, it is an analog of the breakpoint dis-

tance between signed permutations. More precisely, it is not di‰cult to see that both

problems are equivalent. Indeed, let S and T be two signed balanced strings of length

n. As with permutations (see page 20), we may define a linear extension of S and T

by adding two artificial nonduplicated genes a and o to their extremities. Therefore,

the linear extension of S is the string S 0 ¼ a S1 � � � Sn o on AW fa;og, and the linear

extension of T is T 0 ¼ a T1 � � � Tn o. Let bdðS 0;T 0Þ denote the minimum number of

breakpoints between the linear extensions S 0 and T 0 under the full model (i.e., after a

relabeling according to a matching), and let SMCSPðS 0;T 0Þ be the size of a mini-

mum common partition between S 0 and T 0. Then we have SMCSPðS 0;T 0Þ ¼ p if

and only if bdðS 0;T 0Þ ¼ p� 1.

Approximating SMCSP When occðSÞ ¼ 2, there is a 3-approximation (see Chrobak

et al. [117]), but also a 1:5-approximation (see Chen et al. [106]). However, the best

result so far, due to Goldstein et al. [188], is a 1:1037-approximation. Goldstein et al.

[188] give a 4-approximation for 3-MCSP.

In the general case, when occðSÞ ¼ c, Kolman [238] designed a 2c2-approximation

algorithm. However, the best result so far, due to Kolman and Waleń [239], is an

OðcÞ-approximation. In the general case as well, however, there exists a ratio of

Oðn0:69Þ, due to the greedy algorithm presented and analyzed in the next subsection.

136 9 Distances between Balanced Strings

Greedy Algorithms for SMCSP In the unsigned case, Shapira and Storer [335] pro-

posed a greedy heuristic that allows us to find a minimum common partition between

two balanced strings, which was denoted H and discussed in section 9.1.1. Heuristic

H can of course be extended to the signed case, in order to try to approximate

SMCSP. It su‰ces, at each step of the algorithm, to look for a longest common sub-

string between S and T , where two substrings S 0 of S and T 0 of T are considered to

be common if S 0 ¼ T 0 or if S 0 ¼ �T 0, where �T 0 means T 0 reversed both in sign

and in order. This algorithm is exactly the heuristic IILCS (see algorithm 8.2).

The only results in the signed case are due to Chrobak et al. [117], who obtained

the following bounds: H approximates SMCSP by a ratio lying between Wðn0:43Þ and
Oðn0:69Þ. We note that the results of Shapira and Storer [335, 337] and Kaplan and

Shafrir [226] that were given in section 9.1.1 were presented in [226] only in the

unsigned case. Whether or not they apply to the signed case is not explicitly stated.

9.1.3 Reversed MCSP

� Introduced by Kolman [238].

� Complexity: Unknown.

� Best approximation ratio: when occðSÞ ¼ c, there is an OðcÞ-approximation (see

Kolman and Waleń [239]).

A third, but less studied, problem is the reversed minimum common string parti-

tion problem (RMCSP). In this variant, strings are unsigned, but the definition of

common partition is extended as follows: a common possibly reversed partition of

two strings S and T is a pair of partitions S1; . . . ;Sp of S and T1; . . . ;Tp of T , for

which there exists a permutation p such that for all 1a ia p, Si ¼ Tpi or Si ¼ Tpi ,

where Tj is the string Tj in the reverse order. For instance, abbgega ¼ agegbba, so

these blocks may match in the RMCSP problem.

REVERSED MINIMUM COMMON STRING PARTITION (RMCSP)

INSTANCE: Two unsigned balanced strings S and T , a positive integer K .

PROBLEM: Is there a common possibly reversed partition of S and T with at most

K blocks?

RMCSP has been introduced and defined mainly because its optimum is a con-

stant multiplicative factor away from the optimum of the problem of rearranging

balanced strings by unsigned reversals, which will be discussed in section 9.2 (see

also figure 9.1). Thus, any approximation result for one problem gives an approx-

imation result for the other. However, surprisingly, the complexity of RMCSP has

not been studied. It can be seen as an equivalent to the breakpoint distance prob-

lem on unsigned strings (i.e., an analog to the number of strong breakpoints for

permutations).

9.1 Minimum Common String Partition Problems 137

9.1.4 Full Breakpoint Distance

As mentioned in section 9.1.2, the problem of determining the minimum number of

breakpoints under the full model is equivalent to the SMCSP problem, since both op-

tima di¤er by exactly 1 (see also figure 9.1). Therefore, all complexity and approxi-

mation results that apply to SMCSP also apply here.

Since the problem of determining bdðS;TÞ is NP-hard in the balanced case, Angi-

baud et al. [19] studied the complexity of the following decision problem: given two

signed balanced strings S and T , decide whether bdðS;TÞ ¼ 0. They showed the fol-

lowing result.

Theorem 9.2 [19] Given two balanced strings S and T of length n, there exists an

Oðn log log nÞ algorithm for determining whether bdðS;TÞ ¼ 0.

In the remainder of this chapter, we consider the following type of problem: given

a set of operations on strings, each being given a certain cost, and two balanced

strings S and T , find a scenario (i.e., a sequence of operations) that transforms S

into T and minimizes the total cost. In order to avoid confusion, we will denote this

problem as the rearranging problem.

Indeed, a possible variant is the sorting problem, where only one string S is given

as input, and the goal is to find a scenario that lexicographically orders S. For in-

stance, if S ¼ 011010111, sorting S would output string S 0 ¼ 000111111. We note

that rearranging and sorting are equivalent problems for permutations; however, we

wish to stress that, in the case of balanced strings, rearranging and sorting are distinct

problems.

Moreover, a third variant exists: the grouping problem, introduced by Hurkens

et al. [215]. It consists in transforming a string S into a string where all occurrences

of the same character are consecutive; however, no lexicographic order between the

characters is required. For instance, if S ¼ 011010111, grouping S could lead either

to string S 0
1 ¼ 000111111 or to string S 0

2 ¼ 111111000. Grouping can thus be seen as

a weaker form of sorting.

9.2 Reversal Distance

9.2.1 Unsigned Reversals

� Introduced by Pevzner and Waterman [298].

� Complexity: Rearranging and sorting are APX-hard. This follows from hardness

results on the same problem for permutations. There is a proof of NP-completeness

for rearranging strings built on a binary alphabet, by Christie and Irving [116], using

a reduction of 3-partition, and an alternative proof by Radcli¤e et al. [309] using a

reduction of sorting permutations by (unsigned) reversals.

138 9 Distances between Balanced Strings

Sorting strings built on a binary or a ternary alphabet is polynomial-time solvable

(see Christie and Irving [116] and Radcli¤e et al. [309], respectively).

� Best approximation ratios: Rearranging by unsigned reversals can be OðcÞ-
approximated when occðSÞ ¼ c (see Kolman and Waleń [239]).

A polynomial-time approximation scheme (PTAS) exists for rearranging dense

instances built over an alphabet of fixed size k (see Radcli¤e et al. [309]).

� Diameter: The diameter for strings of length n over an alphabet of size k is n� n
k

� �
,

as shown implicitly by Radcli¤e et al. [309].

Bounds and Diameter Let rdDkðnÞ denote the diameter for the unsigned reversal dis-

tance between any two balanced strings of length n defined over an alphabet of size

k. Christie and Irving [116] generalized the notion of breakpoint on unsigned permu-

tations to binary strings, in order to derive a lower bound on the reversal distance

between binary strings.

Breakpoints on binary strings have a particular definition, which is not the usual

definition for general strings. Breakpoints are defined on linear extensions of strings

(see page 136): strings are extended with two additional characters, denoted here a

and o. Let fabðSÞ denote the number of times the substring ab occurs in S, where

a; b A fa; 0; 1;og. The number of breakpoints between S and T is

bðS;TÞ ¼
X

a;b A fa;0;1;og
maxð0; fabðSÞ � fabðTÞÞ:

Note that S ¼ T implies bðS;TÞ ¼ 0, but the converse is not necessarily true (e.g.,

S ¼ a101001o and T ¼ a100101o).

Lemma 9.1 [116] Let S and T be two balanced binary strings of length n; we have

bðS;TÞ
2

�

a rdðS;TÞa n

2

j k
:

For any pb 1, let Ep ¼ 0p1p and Cp ¼ ð01Þp. It is not di‰cult to see by lemma 9.1

that rdðEp;CpÞb p and rdð0 � Ep; 0 � CpÞb p; therefore, such pairs of strings reach

the upper bound p ¼ n
2

� �
. Since the lower and upper bounds of lemma 9.1 match,

we get the following result.

Theorem 9.3 [116] For all nb 1, rdD2ðnÞ ¼ n
2

� �
.

Moreover, Christie and Irving [116] proved that for any balanced strings of even

length 2pb 6, the only strings that have a rearranging distance equal to rdD2ð2pÞ
are Ep and Cp.

More generally, Radcli¤e et al. [309] studied the maximum number of reversals be-

tween any two strings belonging to the class Lða1; . . . ; akÞ. They proved the following

result.

9.2 Reversal Distance 139

Theorem 9.4 [309] The maximum number of reversals between any two balanced

strings of length n belonging to the class Lða1; . . . ; akÞ is n�maxi ai.

Although the authors did not explicitly mention it in their paper, the above result

implies the following corollary.

Corollary 9.1 For all nb kb 1, rdDkðnÞ ¼ n� n
k

� �
.

Indeed, maximizing n�maxi ai corresponds to minimizing maxi ai. However,

since the strings are built over an alphabet of size k, they must use k di¤erent char-

acters. It is thus easy to see that the minimum is achieved when each letter occurs

(roughly) the same number of times, and in that case maxi ai ¼ n
k

� �
.

Remark 9.1 The above corollary implies two previously known results.

� rdD2ðnÞ ¼ n
2

� �
(see theorem 9.3 above).

� rdDnðnÞ ¼ n� 1 (i.e., the diameter for permutations is equal to n� 1 (see section

4.2, where n refers to the initial permutation instead of its linear extension).

Rearranging Rearranging unsigned permutations by reversals is APX-hard, and

hence rearranging unsigned balanced strings by reversals is APX-hard as well. The

following result shows that the problem remains hard even when the strings are taken

from an alphabet of restricted size.

Theorem 9.5 [116] Rearranging unsigned strings by reversals is NP-hard, even for bi-

nary alphabets.

Radcli¤e et al. [309] studied the approximability of rearranging a subclass of

instances, which they call dense instances. Dense instances are instances such that

the reversal distance is at least c � n, where c > 0 is a constant and n is the length of

the strings. Recall that k is the size of the alphabet over which the two input strings

are built.

Theorem 9.6 [309] For any fixed k, there exists a PTAS for rearranging dense

instances.

Radcli¤e et al. [309] conjecture that the same result holds for permutations. Ap-

proximation results were obtained through the study of RMCSP (see section 9.1.3),

for which we know that the optimum is a constant multiplicative factor away from

the optimum of the problem of rearranging balanced strings by unsigned reversals

(see also figure 9.1). Hence, the approximation results presented in section 9.1.3 also

hold here. That is, there exists an Oðc2Þ-approximation (see Kolman [238]), a result

later improved by Kolman and Waleń [239], who gave an OðcÞ-approximation algo-

rithm for the problem.

140 9 Distances between Balanced Strings

Sorting Since rearranging unsigned permutations by reversals is APX-hard (see sec-

tion 3.3), and rearranging and sorting permutations are equivalent problems, we con-

clude that sorting unsigned balanced strings by reversals is APX-hard as well.

However, this APX-hardness result holds for large alphabets, because it was shown

on permutations. If we restrict the size of the alphabet, the problem becomes polyno-

mial. Note that this does not hold for the rearranging problem (see the above para-

graph and, in particular, theorem 9.5).

First, we need some notation and definitions. A uniform block in S is a maximal-

length substring of S that contains a unique symbol. BðSÞ denotes the number of uni-

form blocks in S, and zðSÞ denotes the number of uniform blocks composed of 0s in

S. For instance, if S ¼ 00110000333222, then S 0 ¼ 333 is a uniform block, BðSÞ ¼ 5,

and zðSÞ ¼ 2.

For any string S, let rsdðSÞ be the reversal sorting distance of S. Christie and Irv-

ing [116] related the value rsdðSÞ to zðSÞ for any binary string in the following way.

Lemma 9.2 [116] For any binary string S,

rsdðSÞ ¼ zðSÞ � 1 if S1 ¼ 0;

zðSÞ otherwise:

�
Since computing zðSÞ can be done in linear time, the above result leads to the fol-

lowing theorem.

Theorem 9.7 [116] There is a linear-time algorithm for sorting unsigned binary

strings by reversals on binary alphabets.

Radcli¤e et al. [309] studied strings built over a ternary alphabet, in a fashion sim-

ilar to the work of Christie and Irving [116] on binary alphabets. They also charac-

terized the reversal distance for such strings, depending on the form of the input

string. This led to the following theorem.

Theorem 9.8 [309] There is a linear-time algorithm for sorting unsigned strings by

reversals on ternary alphabets.

Radcli¤e et al. conjecture that for alphabets of fixed size k, there is a polynomial-

time algorithm for sorting a string by reversals.

9.2.2 Signed Reversals

� Introduced independently by Radcli¤e et al. [309] and Chen et al. [106].

� Complexity: Rearranging is NP-hard, even on binary alphabets (see Radcli¤e et al.

[309]). It is also NP-hard even when there is at most one negative and one positive

occurrence of each symbol (see Radcli¤e et al. [309]).

9.2 Reversal Distance 141

� Best approximation ratio: When occðSÞ ¼ c, an approximation ratio of OðcÞ exists
(see Kolman and Waleń [239]).

Rearranging: Complexity and Approximations As said above, the two main results are

the following.

Theorem 9.9 [309]

� Rearranging signed strings by reversals is NP-hard, even on binary alphabets.

� Rearranging signed strings by reversals is NP-hard, even when there is at most one

negative and one positive occurrence of each symbol.

Chen et al. [106] studied the relationship between rearranging strings by signed

reversals and the SMCSP problem defined in section 9.1.2. They showed that the

size of the optimal solution of SMCSP and the signed reversal rearranging distance

di¤er only by a constant multiplicative factor (see also figure 9.2). We note that the

result of Chen et al. [106] can be seen as a generalization of a well-known result on

permutations, which relates the number of (signed) breakpoints and the number of

(signed) reversals. It should not come as a surprise, since we know that SMCSP and

counting the number of breakpoints are equivalent problems (see section 9.1.2).

The above result allows us to obtain the following approximation ratios for

the signed reversal distance using the results on SMCSP: (1) there exists an OðcÞ-
approximation when occðSÞ ¼ c (see Kolman and Waleń [239]), and (2) a ratio of

Oðn0:69Þ also exists (see Chrobak et al. [117]).

Heuristics Several heuristics have been proposed in the specific context of rear-

ranging signed strings by reversals. The first is the heuristic based on the longest

common substring, presented in section 9.1.2. The approximation obtained by this

heuristic lies between Wðn0:43Þ and Oðn0:69Þ for strings of length n (see Chrobak et al.

[117]).

Some other groups of authors, such as Chen et al. [106] and Suksawatchon et al.

[344], proposed their own heuristics for dealing with balanced strings. However,

there is no rigorous combinatorial analysis of the performances of their algorithms,

and we mention them here only for completeness.

9.2.3 Sorting by Reversals with Length-Weighted Costs

In this variant, each reversal is assigned a given cost by a function f ðlÞ ¼ l a, where l

is the length of the reversal and ab 0 is an input parameter. The goal is to sort

strings with a minimum cost.

Note that the particular case a ¼ 0 corresponds to the classical problem of sorting

by reversals, presented in section 9.2.1. In this section, we will assume that all strings

are binary.

142 9 Distances between Balanced Strings

� Introduced by Bender et al. [38] (see also Bender et al. [39]).

� Complexity: Polynomial for unsigned linear binary strings, when a ¼ 1 and ab 2.

Polynomial for unsigned circular binary strings when a ¼ 1 (see table 9.2). Unknown

in the other cases.

� Best approximation ratio: see table 9.2.

� Diameter: see table 9.1.

There are four variants, depending on whether the considered strings are (1) signed

or unsigned, and (2) linear or circular.

Sorting Diameter for Binary Strings Results on the diameter for the sorting problem

are similar in the four variants. They were obtained by Bender et al. [38] (in the linear

unsigned case) and by Swidan et al. [346] (in the other cases), and are summarized in

table 9.1.

Sorting Complexity and Approximations Here, the results di¤er in the four variants.

They were obtained by Bender et al. [38] (in the linear unsigned case) and by Swidan

et al. [346] (in the other cases), and are summarized in table 9.2.

Table 9.1
Diameter for sorting binary strings of length n

a Sorting diameter

0a a < 1 YðnÞ
a ¼ 1 Yðn log nÞ
1 < a < 2 YðnaÞ
ab 2 Yðn2Þ
From [39].

Table 9.2
Approximation ratios for sorting binary strings of length n

Unsigned Signed

a Linear Circular Linear Circular

0a a < 1 Oð1Þ Oð1Þ
a ¼ 1 Polynomial 3

1 < a < 2 Oð1Þ Unknown Oð1Þ Unknown

ab 2 Polynomial Oð1Þ Oð1Þ
From [39].

9.2 Reversal Distance 143

Sorting by Restricted Length-Weighted Reversals More recently, Nguyen et al. [281]

studied the same problem, but with the additional restriction that no reversal of

length strictly greater than a given parameter p is allowed.

The results of Nguyen et al. [281] concerning the diameter are summarized in table

9.3; they are similar in the linear and circular cases. It can be seen that setting p ¼ n

(i.e., no restriction exists on the length of a reversal), we obtain the same results as in

table 9.2.

The results summarized in table 9.4 are concerned with approximation algorithms.

They hold only for the case 1a a < 2, for both linear and circular strings. When

a < 1, no result is known. When ab 2, Nguyen et al. [281] indicate that the results

are similar to the ones from Bender et al. [38] (see table 9.3), because short reversals

are always preferred to long ones.

9.2.4 Prefix Reversals on Unsigned Strings (Pancake-Flipping)

� Introduced by Christie [115].

� Complexity: Rearranging by prefix reversals is NP-hard for binary strings (see

Hurkens et al. [215]).

The sorting problem for binary and ternary strings is polynomial (see Christie [115]

and Hurkens et al. [215], respectively).

The grouping problem for binary and ternary strings is polynomial (see Hurkens

et al. [215]).

Table 9.3
Diameters for sorting unsigned binary strings of length n without reversals of length strictly greater than p

a Lower bound Upper bound

0a a < 1 Yðnþ n2pa�2Þ

a ¼ 1 Y n log nþ n2

p

� �
Y n log pþ n2

p

� �

1 < a < 2 Yðn2pa�2Þ
ab 2 Yðn2Þ

Table 9.4
Approximation ratios for sorting unsigned binary strings of length n without reversals of length strictly
greater than p, in the case 1a a < 2

p Approximation ratio

p ¼ WðnÞ Oð1Þ
Other values of p 2 log2 nþ 1

144 9 Distances between Balanced Strings

� Best approximation ratio: A PTAS exists for rearranging dense instances built over

an alphabet of fixed size k (see Radcli¤e et al. [309]).

Both sorting and grouping admit PTAS for alphabets of fixed size kb 4 (see

Hurkens et al. [215]).

� Diameter: n� 1 for binary strings (see Christie [115]). Lies between n� 1 and 4n
3

� �
for ternary strings (see Hurkens et al. [215]). Unknown in the general case.

Let S and T be two balanced strings of length n, defined over an alphabet of size

k. We denote the prefix reversal distance between S and T by prdðS;TÞ, and the

diameter for the prefix reversal distance between any two such strings by prDkðnÞ.
Recall that BðSÞ denotes the number of uniform blocks in S, and zðSÞ denotes the

number of uniform blocks composed of 0s in S.

Bounds and Diameter Let S and T be two balanced strings of length n. Christie [115]

proved the following two results.

Theorem 9.10 [115]

prdðS;TÞb jBðSÞ � BðTÞj þ 1 if Sn 0Tn;

jBðSÞ � BðTÞj otherwise:

�
Theorem 9.11 [115] prdðS;TÞa n� 1.

The two above results led Christie [115] to prove the following.

Theorem 9.12 [115] For all nb 1, prdD2ðnÞ ¼ n� 1.

We note that Christie [115] also gave a full characterization of those instances that

are at distance exactly prdD2ðnÞ ¼ n� 1. For ternary alphabets, Hurkens et al. [215]

gave the following bounds.

Theorem 9.13 [215] For all n > 3, n� 1a prdD3ðnÞa 4n
3

� �
.

Rearranging Not surprisingly, rearranging unsigned strings by prefix reversals is

hard, as shown by Hurkens et al. [215].

Theorem 9.14 [215] Rearranging balanced unsigned strings by prefix reversals is NP-

hard, even on binary alphabets.

As they did for unsigned reversals, Radcli¤e et al. [309] studied the approximabil-

ity of rearranging by prefix reversals for dense instances. They obtained the following

result (recall that k is the size of the alphabet over which the two input strings are

built).

Theorem 9.15 [309] For any fixed k, there exists a PTAS for rearranging dense

instances.

9.2 Reversal Distance 145

Sorting Christie [115] studied the problem of sorting a binary string S by prefix

reversals. The main results from Christie [115] are the following. Let prsdðSÞ be the

prefix reversal sorting distance for string S.

Theorem 9.16 [115]

prsdðSÞ ¼ 2ðzðSÞ � 1Þ if S1 ¼ 0;

2zðSÞ � 1 otherwise:

�
The direct consequence of the above theorem is the following.

Theorem 9.17 [115] There exists a linear-time algorithm for sorting any binary string

by prefix reversals.

When k ¼ 3 (i.e., for ternary strings), Hurkens et al. [215] characterized the prefix

reversal distance, depending on the form of the input string. This led to the following

theorem.

Theorem 9.18 [215] There exists a linear-time algorithm for sorting any ternary

string by prefix reversals.

It remains open, however, whether there exists a polynomial-time algorithm for

sorting strings defined over an alphabet of fixed size kb 4. Hurkens et al. [215],

though, showed the following.

Theorem 9.19 [215] For any fixed kb 4, there is a PTAS for sorting k-ary strings by

prefix reversals.

Grouping Let S be a string of length n, defined over an alphabet of size k. We

denote the prefix reversal grouping distance for S by prgdðSÞ.
Theorem 9.20 [215] For any kb 2, and for any string S of length n built over an

alphabet of size k, n� ka prgdðSÞa n� 2.

As a consequence, prgdðSÞ ¼ n� 2 for binary strings. In addition, Hurkens et al.

[215] gave a simple greedy algorithm that yields a grouping scenario using exactly

n� 2 prefix reversals.

Theorem 9.21 [215] There exists a polynomial-time algorithm for grouping any bi-

nary string by prefix reversals.

When k ¼ 3, we know by theorem 9.20 that either prgdðSÞ ¼ n� 2 or prgdðSÞ ¼
n� 3. Hurkens et al. [215] gave a full characterization of strings achieving a group-

ing distance of n� 3 (resp. n� 2). This characterization yields a polynomial-time

algorithm for deciding whether prgdðSÞ ¼ n� 2 or prgdðSÞ ¼ n� 3, and therefore

the following theorem.

146 9 Distances between Balanced Strings

Theorem 9.22 [215] There exists a polynomial-time algorithm for grouping any ter-

nary string by prefix reversals.

It remains open, however, whether there exists a polynomial-time algorithm for

grouping strings defined over an alphabet of fixed size kb 4. Hurkens et al. [215],

though, showed the following.

Theorem 9.23 [215] For any fixed k, there is a PTAS for grouping k-ary strings by

prefix reversals.

9.2.5 Reversals of Length at Most 2

This particular case has been studied under the name of ‘‘adjacent swaps’’ by Chit-

turi et al. [112]. We refer the reader to section 3.5.2.2 for its equivalent in unsigned

permutations, where the associated distance was denoted inv2. Chitturi et al. [112]

proved the following results.

Theorem 9.24 [112] Let S and T be two balanced strings of length n, built over an

alphabet of size k.

� For both signed and unsigned strings, there is an OðnkÞ algorithm for rearranging

by reversals of length equal to 2.

� In the signed case, there is an OðnkÞ algorithm for rearranging by reversals of

length at most 2.

9.3 Unsigned Transpositions

9.3.1 Unit Cost Transpositions

Christie and Irving [116] generalized the transposition distance on unsigned permuta-

tions (see section 3.1) to unsigned strings.

� Introduced by Christie and Irving [116].

� Complexity: Rearranging by transpositions is NP-hard, even for binary alphabets,

by a reduction of 3-partition (see Radcli¤e et al. [309]).

Sorting by transpositions is polynomial for binary strings (see Christie and Irving

[116]), but the complexity is open in the general case.

� Best approximation ratio: Rearranging can be approximated (1) within

Oðlog n log	 nÞ (see Cormode and Muthukrishnan [122] and Shapira and Storer

[335]), and (2) within OðcÞ when occðSÞ ¼ c (see Kolman and Waleń [239]).

A PTAS exists for rearranging dense instances built over an alphabet of fixed size k

(see Radcli¤e et al. [309]).

� Diameter: n
2

� �
for binary strings belonging to the class L n

2

� �
; n

2

� �� �
(see Christie and

Irving [116]). The general case is open.

9.3 Unsigned Transpositions 147

Bounds and Diameter Just as they did for reversals, Christie and Irving [116] general-

ized the notion of transposition breakpoints on unsigned permutations to binary

strings, the goal being to derive a lower bound on the transposition distance between

binary strings.

Again, all strings are assumed to be linear extensions of the initial strings under

comparison: S is extended with two additional characters, a and o. Recall that

fabðSÞ denotes the number of times the substring ab occurs in S, where a; b A
fa; 0; 1;og. Then, the number of breakpoints between S and T is

bðS;TÞ ¼
X

a;b A fa;0;1;og
maxð0; fabðSÞ � fabðTÞÞ:

Also let tdðS;TÞ denote the transposition rearranging distance between any two bal-

anced strings S and T .

Christie and Irving [116] analyzed how a transposition a¤ects the number of trans-

position breakpoints between two binary balanced strings. This led to the following

result, which relates the values bðS;TÞ and tdðS;TÞ for any two balanced binary

strings S and T .

Lemma 9.3 [116] Let S and T be two balanced binary strings of length n; we have

tdðS;TÞb
bðS;TÞ

2

l m
if S1 ¼ T1 or Sn ¼ Tn;

bðS;TÞ�1
2

l m
otherwise:

8><
>:

Christie and Irving [116] also obtained the following upper bound for tdðS;TÞ in
the case of binary strings.

Lemma 9.4 [116] Let S and T be balanced binary strings of length n. Then

tdðS;TÞa n

2

j k
:

Let tdDkðnÞ denote the diameter for the unsigned transposition distance between

any two balanced strings of length n built over an alphabet of size k. Recall that

for any pb 1, Ep ¼ 0p1p and Cp ¼ ð01Þp. It can be seen by lemma 9.3 that

tdðEp;CpÞb p and tdð0 � Ep; 0 � CpÞb p; thus, the lower and upper bounds given by

lemmas 9.3 and 9.4 match, and we have the following result.

Theorem 9.25 [116] For any nb 1, tdD2ðnÞ ¼ n
2

� �
.

The only known result on strings built over alphabets of size kb 3 is the following

lower bound, which nicely generalizes the result obtained in the case of permutations

(theorem 3.1). Note that here, the definition of a transposition breakpoint, initially

given for binary alphabets, is extended to ternary alphabets.

148 9 Distances between Balanced Strings

Theorem 9.26 [116] Let S and T be two balanced strings of length n on an alphabet

of size kb 3; we have

tdðS;TÞb bðS;TÞ
3

�

:

Rearranging: Complexity and Approximations The complexity of rearranging by trans-

positions has been studied by Radcli¤e et al. [309]. Their first result is the following.

Theorem 9.27 [309] Rearranging unsigned balanced strings by transpositions is NP-

hard, even for binary alphabets.

As they did for unsigned reversals and unsigned prefix reversals, Radcli¤e et al.

[309] studied the approximability of rearranging by unsigned transpositions for dense

instances. They obtained the following result (recall that k is the size of the alphabet

over which the two input strings are built).

Theorem 9.28 [309] For any fixed k, there exists a PTAS for rearranging dense

instances by transpositions.

As far as approximation algorithms are concerned, no direct result is known.

However, as explained in section 9.1.1 (see also theorem 9.1 and figure 9.1), the

MCSP problem and the transposition problem have optima that di¤er by only a mul-

tiplicative constant. Thus, the approximation results that hold for MCSP also hold

for transpositions, up to a constant multiplicative factor. More precisely, this implies

that (1) there is an Oðlog n log	 nÞ approximation algorithm for unsigned strings (see

Cormode and Muthukrishnan [122] and Shapira and Storer [335]), and (2) when

occðSÞ ¼ c, there is an OðcÞ approximation algorithm (see Kolman and Waleń [239]).

Sorting Recall that for any binary string S, zðSÞ denotes the number of uniform

blocks made exclusively of 0s in S. For any string S, we let tsdðSÞ denote the trans-

position sorting distance of S. Similarly to what they did for reversals, Christie and

Irving [116] gave a characterization of tsdðSÞ on binary strings, depending on the

form of the input string S.

Lemma 9.5 [116] Let S be a binary string; then

tsdðSÞ ¼ zðSÞ � 1 if S1 ¼ 0;

zðSÞ otherwise:

�
Thanks to the above lemma, it is not di‰cult to determine tsdðSÞ for strings built

over a binary alphabet.

Theorem 9.29 [116] There is a linear-time algorithm for sorting unsigned strings by

transpositions on binary alphabets.

9.3 Unsigned Transpositions 149

9.3.2 Length-Weighted Transpositions

Similarly to sorting strings by reversals (see section 9.2.3), the problem of sorting by

length-weighted transpositions for binary strings has been studied independently by

Qi [306] and Bongartz [77] (a subset of the results obtained by Qi has also been pub-

lished in Chinese; see Qi et al. [307]). As was the case with sorting by length-weighted

reversals, any transposition here has a cost, assigned by a function f ðlÞ ¼ l a, where

ab 0 is a given parameter and l is the length of the transposition (i.e., the total

length of the two blocks involved in the transposition).

Note that the particular case a ¼ 0 corresponds to the classical problem of sorting

by transpositions, presented in section 9.3.1. In the present section, we will assume

that all strings are binary, unsigned, and linear.

� Introduced independently by Qi [306] and Bongartz [77].

� Complexity: Polynomial for unsigned linear binary strings when ab 2. Unknown

when 0 < a < 2.

� Best approximation ratio: see table 9.6.

� Diameter: see table 9.5.

Bounds and Diameter Qi [306] investigated diameter issues related to sorting

by length-weighted transpositions. The results he obtained are summarized in table

9.5.

Algorithms Qi [306] also investigated the possibility of determining/approximating

the total cost of sorting by length-weighted transpositions. The results he obtained

are summarized in table 9.6.

9.3.3 Restricted Length-Weighted Transpositions

Amir et al. [12, 13] studied the problem of rearranging strings by moving only one

character at a time: this is equivalent to a transposition for which at least one of the

blocks is of length 1. As was the case in section 9.3.2, the unit-cost model is no longer

assumed. More precisely, suppose string S is of length n; at each step, two locations

1a i; ja n are chosen, and character Si is moved to the j-th position of S.

Table 9.5
Diameter for sorting linear binary strings of length n

a Diameter

0a a < 1 YðnÞ
a ¼ 1 Yðn log nÞ
1 < a < 2 YðnaÞ
ab 2 Yðn2Þ

150 9 Distances between Balanced Strings

For instance, assuming that i < j,

S ¼ S1 S2 � � �Si�1 Si Siþ1 � � �Sj�1 Sj Sjþ1 � � �Sn

is transformed into

S 0 ¼ S1 S2 � � �Si�1 Siþ1 � � �Sj�1 Si Sj Sjþ1 � � �Sn:

The cost of such a move is then defined as ji � jja, where a is a given parameter.

The goal is, given two balanced strings S and T , to find a sequence of such moves

that transforms an S into a T that minimizes the total cost (that is, the sum of the

costs of each move). Amir et al. [12, 13] called the problem the ‘‘rearrangement prob-

lem,’’ a rather unfortunate name. In the following, we will prefer the term character

moving. Amir et al. [12, 13] studied the character moving problem under three types

of cost function.

� l1 cost function: a ¼ 1 (i.e., the cost is the sum of the costs the individual characters

have been moved).

� l2 cost function: a ¼ 2 (i.e., the cost is the sum of the square of the costs the individ-

ual characters have been moved).

� ly cost function: a ¼ þy (i.e., the cost is the maximum of the distances the individ-

ual characters have been moved).

In each case, the rearranging by character-moving problem seeks a scenario of

individual moves that minimizes the total cost, under the chosen cost model (l1, l2,

or ly). The main results obtained by Amir et al. [12, 13] are summarized in the two

following theorems.

Theorem 9.30 [12] For any two balanced strings of length n,

� there is an OðnÞ algorithm for rearranging by character moving under the l1 cost

function;

� there is an OðnÞ algorithm for rearranging by character moving under the l2 cost

function.

Table 9.6
Approximation ratios for sorting linear binary strings of length n

a Approximation ratio

0a a < 1 Oðlog nÞ
a ¼ 1 2

1 < a < 2 Oð1Þ
ab 2 Polynomial

9.3 Unsigned Transpositions 151

Theorem 9.31 [13] For any two balanced strings of length n, there is an OðnÞ algo-
rithm for rearranging by character moving under the ly cost function.

9.3.4 Prefix Transpositions

Chitturi and Sudborough [110] studied the particular case of prefix transpositions, in

which the transpositions have the additional constraint that one of the two substrings

involved in the transposition is a prefix of S.

� Introduced by Chitturi and Sudborough [110].

� Complexity: Rearranging unsigned strings by prefix transpositions is NP-hard, even

for binary alphabets, by a reduction of 3-partition (see Chitturi and Sudborough

[110]).

� Best approximation ratio: Oðlog n log	 nÞ for unsigned strings (see Cormode and

Muthukrishnan [122] and Shapira and Storer [335]); OðcÞ when occðSÞ ¼ c (see Kol-

man and Waleń [239]).

� Diameter: Upper bounded by n� n
k

� �
, where k is the size of the alphabet. The exact

value is unknown.

Bounds and Diameter For any two balanced strings S and T , let ptdðS;TÞ denote

the prefix transposition distance between S and T . Recall also that the number of

transposition breakpoints between S and T , as defined in section 9.3.1, is denoted

by bðS;TÞ. (We note that although the definition of bðS;TÞ was initially given for

binary alphabets, it is easily extendable to any alphabet size.) Chitturi and Sudbor-

ough [110] proved the following lower and upper bounds on ptdðS;TÞ.
Lemma 9.6 [110] For any two balanced strings S and T , we have

ptdðS;TÞb bðS;TÞ
2

�

:

Lemma 9.7 [110] For any two balanced strings S and T of length n belonging to the

class Lða1; . . . ; akÞ, we have
ptdðS;TÞa n�max

i
ai:

Let ptdDkðnÞ denote the diameter for the prefix transposition distance between any

two balanced strings of length n defined over an alphabet of size k. The above lemma

implies the following bound on ptdDkðnÞ.
Corollary 9.2 For any nb kb 1, ptdDkðnÞa n� n

k

� �
.

Rearranging: Complexity and Approximation Chitturi and Sudborough [110] studied

the complexity of rearranging by prefix transpositions, and obtained the following

result.

152 9 Distances between Balanced Strings

Theorem 9.32 [110] Rearranging by prefix transpositions is NP-complete, even for

strings built over a binary alphabet.

As far as approximations are concerned, it is easy to see that there is a strong rela-

tionship between transpositions and prefix transpositions (see figure 9.1). Altogether,

and since the transposition problem is itself related in a similar fashion to the MCSP

problem (see figure 9.1 as well), we conclude that (1) there is an Oðlog n log	 nÞ ap-
proximation algorithm for unsigned strings (see Cormode and Muthukrishnan [122]

and Shapira and Storer [335]), and (2) when occðSÞ ¼ c, there is an OðcÞ approxima-

tion algorithm (see Kolman and Waleń [239]).

9.3.5 Adjacent Swaps

Chitturi et al. [112] studied the problem of rearranging balanced unsigned strings by

what they called ‘‘adjacent swaps.’’ This kind of operation can be seen as a transpo-

sition where each block is of length 1, or as a reversal of blocks of length 2. It was

presented in the latter context in section 9.2.5, and we refer the reader to that section

for more information.

9.4 Unsigned Block Interchanges

9.4.1 Unit-Cost Block Interchanges

Christie [115] studied the generalization of translocations in the context of unsigned

strings; for this, he used the term block interchange, which we will also use in the fol-

lowing.

� Introduced by Christie [115].

� Complexity: Rearranging strings by block interchanges is NP-hard, even for binary

alphabets, by a reduction of 3-partition (see Christie [115]).

The sorting problem is polynomial for binary strings (see Christie [115]).

� Best approximation ratio: Oðlog n log	 nÞ (see Cormode and Muthukrishnan [122]

and Shapira and Storer [335]). There also exists an OðcÞ ratio when occðSÞ ¼ c (see

Kolman and Waleń [239]).

� Diameter: dðn� 1Þ=4e for binary strings. Unknown in the general case.

Bounds and Diameter For any two balanced strings S and T , we denote the block-

interchange distance between S and T by bidðS;TÞ. As he did for reversals and for

transpositions, Christie [115] generalized the notion of block-interchange breakpoints

on unsigned permutations to binary strings, the goal being to derive a lower bound

on the block-interchange distance between binary strings.

Recall that strings in this case are linear extensions, so that S is extended with two

additional characters, a and o, and that fabðSÞ denotes the number of times the

9.4 Unsigned Block Interchanges 153

substring ab occurs in S, where a; b A fa; 0; 1;og. The number of breakpoints be-

tween S and T is

bðS;TÞ ¼
X

a;b A fa;0;1;og
maxð0; fabðSÞ � fabðTÞÞ:

Thanks to this, Christie [115] obtained the following lower bound on the block-

interchange distance.

Lemma 9.8 [115] Let S and T be two balanced binary strings of length n; we have

bidðS;TÞb dbðS;TÞ=8e:
Christie [115] also obtained the following upper bound for bidðS;TÞ in the case of

binary strings.

Lemma 9.9 [115] Let S and T be two balanced binary strings of length n; we have

bidðS;TÞa dðn� 1Þ=4e:
Let bidDkðnÞ denote the diameter for the block-interchange problem between two

strings of length n, built over an alphabet of size k. Christie [115] gave pairs of strings

for which the lower and upper bounds given by lemmas 9.8 and 9.9 match; hence the

following theorem.

Theorem 9.33 [115] For all nb 1, bidD2ðnÞ ¼ n�1
4

� �
.

Rearranging: Complexity and Approximations Concerning the complexity of rearrang-

ing unsigned strings by block interchanges, Christie [115] proved the following.

Theorem 9.34 [115] Rearranging by block interchanges is NP-hard, even for binary

alphabets.

As far as approximation algorithms are concerned, one can observe that the prob-

lem is closely related to the transposition problem, discussed in section 9.3.1. Again,

it is not di‰cult to see that both optima di¤er by a constant multiplicative factor not

exceeding 2 (see figure 9.1), and thus all approximation algorithms for one problem

are approximation algorithms for the other: only the ratio may change, but only by a

constant multiplicative factor. Thus, we conclude that rearranging unsigned balanced

strings by block interchanges can be approximated within a ratio (1) Oðlog n log	 nÞ
(see Cormode and Muthukrishnan [122] and Shapira and Storer [335]), and (2) OðcÞ
when occðSÞ ¼ c (see Kolman and Waleń [239]).

Sorting For any string S, let bisdðSÞ be the block-interchange sorting distance of S.

Recall also that for any binary string S, zðSÞ denotes the number of blocks composed

of 0s in S.

154 9 Distances between Balanced Strings

Lemma 9.10 [115]

bisdðSÞb
zðSÞ�1

2

l m
if S1 ¼ 0;

zðSÞ
2

l m
otherwise:

8><
>:

Theorem 9.35 [115] There is a linear-time algorithm for sorting unsigned strings by

block interchanges on binary alphabets.

9.4.2 Character Swaps

Amir et al. [14] studied the particular case of the block-interchange problem where

the lengths of the blocks are always equal to 1. In other words, only pairs of charac-

ters are exchanged at each step. See section 3.5.2.1 for a description of the equivalent

problem for permutations, where the associated distance is denoted exc. The same

problem on permutations was first solved by Cayley [100], and in the same article

he mentioned the problem on strings.

� Introduced by Cayley [100].

� Complexity: NP-complete for the unit-cost model and polynomial for the linear

cost model (see Amir et al. [14]).

� Best approximation ratio: 1:5 for the unit-cost model (see Amir et al. [14]).

In the rest of this section, we will call the problem the character swaps problem.

Amir et al. [14] studied di¤erent cost functions, depending on the value of a parame-

ter ab 0. More precisely, if during a given step, characters Si and Sj from string S

are swapped, then the associated cost will be l a, where l ¼ ji � jj.
Rearranging: Complexity and Approximations Rearranging by character swaps seeks a

series of swaps that minimizes the sum of the costs of each swap. Depending on the

Table 9.7
Rearranging by character swaps under the l a cost model

a Binary strings General strings

a ¼ 0 OðnÞ NP-hard
OðnÞ 1.5-approximation

0 < aa
1

log n
Oðn3Þ OðnÞ 3-approximation

1

log n
< a < 1 Oðn3Þ Oðn3Þ k-approximation where k is the size of the alphabet

a ¼ 1 OðnÞ OðnÞ
1 < aa log 3 OðnÞ OðnÞ 2-approximation

a > log 3 OðnÞ OðnÞ

9.4 Unsigned Block Interchanges 155

Figure 9.1
Some relations between distances on unsigned balanced strings; an arrow from distance d1 to distance d2
means that for all balanced strings S and T , d1ðS;TÞa d2ðS;TÞ

Figure 9.2
Some relations between distances on signed balanced strings; an arrow from distance d1 to distance d2
means that for all balanced strings S and T , d1ðS;TÞa d2ðS;TÞ

156 9 Distances between Balanced Strings

value of a, but also on the size k of the alphabet, the results di¤er. They are all sum-

marized in table 9.7.

Note that the problem is polynomial for any ab 0 in the case of binary strings,

and also in the case a > log 3 for general strings. The problem is known to be NP-

hard for general strings only in the case a ¼ 0. When 0 < aa log 3, the complexity is

unknown for general strings.

Sorting Very few results are specific to sorting by character swaps, and they are just

improvements of two of the results of table 9.7 concerning the time complexity for

sorting binary strings. Those results can be summarized by the following theorem.

Theorem 9.36 [14] For any 0 < a < 1, there is an OðnÞ algorithm for sorting binary

strings of length n by character swaps under the l a cost model.

9.5 Relations between Distances

As was done at the end of chapter 3, we conclude this chapter with a summary of

some relations between distances on balanced strings. Those relations are summa-

rized in figure 9.1 for unsigned strings, and in figure 9.2 for signed strings.

Proving the relations depicted in figures 9.1 and 9.2 is quite straightforward: either

by simulating one operation using another, or by noting that one is a restriction of

another (we leave this as an exercise for the reader). Other obvious relations, such

as 2 � d1 a 2 � d2 whenever d1 a d2, are not drawn.

9.5 Relations between Distances 157

III MULTICHROMOSOMAL MODELS

So far, we have examined models in which the input genomes are given as a single

sequence of genes, thereby implying that the corresponding species consist of only

one (linear or circular) chromosome. But this restricts the studies to a part of the do-

main of the living world (bacteria, archaebacteria, viruses), or to small parts of multi-

chromosomal genomes that did not undergo interchromosomal rearrangements

(which is the case for most mammalian X chromosomes, for example). In order to

compare the genomes of eukaryotes (e.g., animals, plants, or fungi), we need a model

that handles several chromosomes. The rearrangements that can occur in a multi-

chromosomal genome contain those that alter single chromosomes, which we have

extensively surveyed in parts I and II, plus some operations that concern several

chromosomes (see section 1.1):

� fusion, which merge two chromosomes,

� fission, which split one chromosome into two, and

� reciprocal translocations, which exchange the arms of two di¤erent chromosomes

(i.e., they exchange segments containing the telomeres in both chromosomes).

Transpositions and block interchanges may also be interchromosomal: they can

move or exchange parts of a chromosome to a location in another chromosome.

Interestingly, combinatorial problems on genomes with multiple chromosomes are

more than mere generalizations of the unichromosomal cases. Indeed, in unichromo-

somal rearrangement scenarios, all intermediary steps are most of the time required

to be unichromosomal genomes. Relaxing this constraint and allowing more general

objects in the scenarios sometimes leads to easier problems.

The most general framework can be adopted by defining a genome as a set of

paths and cycles in a graph where genes are either vertices (if their orientation is not

known), or edges (if their orientation is known). These models generalize unsigned or

signed permutations, and are investigated in chapter 10.

Multichromosomal genomes can also be modeled using permutations. Indeed, the

disjoint cycle decomposition (page 14) of a permutation may be used to represent

several circular chromosomes (each cycle represents the order of the genes along a

chromosome). This is the subject of chapter 11. In that model, first used by Meidanis

and Dias [264], a lot of operations can be taken into account, including intrachromo-

somal rearrangements (e.g., reversals, transpositions, block interchanges) and inter-

chromosomal rearrangements (fusions, fissions).

The above frameworks model multichromosomal genomes in the case where the

order of genes along chromosomes matters. If we wish to disregard this information,

we can instead use set systems: in that model, each chromosome consists of a subset

of f1; 2; . . . ; ng. There can therefore be multiple copies of the same gene distributed

among several chromosomes, but each gene may appear only once in each chromo-

some. Only the interchromosomal fusions, fissions, and translocations are taken into

account in this model; indeed, since the order of genes along chromosomes is not

taken into account, it makes no sense to use reversals, for instance. This model will

be discussed in chapter 12.

160 III Multichromosomal Models

10 Paths and Cycles

A genome with several chromosomes can be naturally modeled by a set of paths and

cycles in a graph whose vertex set represents the genes. This model captures all the

information about the order of the genes and their partition into chromosomes.

Every path or cycle may be written as a linear or circular string, by choosing for

each path an arbitrary starting point and for each cycle an arbitrary direction, and

enumerating the genes along the path or cycle. Two strings are then considered as

equivalent when they are obtained from one another by changing the starting point

or the direction. This models the chromosomes, for which the two telomeres or the

two reading directions are indeed undi¤erentiated.

Many combinatorial problems can be considered, depending on whether the

genomes are signed or not, and on the operations one wants to take into account.

The main result here is the general polynomial-time algorithm of Hannenhalli and

Pevzner [196] for transforming one signed genome into another, using reversals, fis-

sions, fusions, and reciprocal translocations. Later, Yancopoulos et al. [375] intro-

duced the double cut-and-join (or 2-break) operation, which encompasses all these

operations and led to a linear-time algorithm for computing a standard genomic dis-

tance (see Bergeron et al. [52]).

10.1 Genomes

In this chapter, multichromosomal genomes are assumed to contain no duplicates, so

that the length (denoted n, as usual) of such a genome is the same as the size of the

alphabet (denoted f1; 2; . . . ; ng as usual).

An unsigned gene is considered as a vertex. A signed gene is considered as a pair of

vertices: the tail and the head, linked by an edge. The tail and the head are called the

extremities of the gene.

An unsigned genome is a graph whose vertex set consists of unsigned genes and ad-

ditional telomeric markers, all denoted by T , such that each gene has degree 2 and

each telomeric marker has degree 1. Loops and multiple edges are allowed. Edges

of this graph are called adjacencies. Genes adjacent to telomeric markers are called

telomeres. Edges incident to a telomeric marker are called telomeric adjacencies.

A signed genome is a graph whose vertex set consists of the extremities of the

signed genes and additional telomeric markers, all denoted by T . Its edge set con-

tains the edges of the genes, joining the tail and head of each gene, plus additional

edges called the adjacencies, such that each gene extremity has degree 2 and each

telomeric marker has degree 1. Multiple edges are allowed. Gene extremities adjacent

to telomeric markers are called telomeres. An edge incident to a telomeric marker is

called a telomeric adjacency.

Signed and unsigned genomes are thus a collection of elementary paths and cycles.

Connected components are called chromosomes. A chromosome is circular if it is a

cycle, and it is linear if it is a path. A genome is called linear if it contains only linear

chromosomes. Linear genomes are the most realistic model for the nuclear genome

of animals or plants.

A linear genome can be written by choosing, for each linear chromosome, one of

the two telomeres as a starting point, and enumerating the genes along the chromo-

some. For signed genomes, every gene is given a positive sign if it is read from its tail

to its head, and a negative sign if it is read from its head to its tail. This model of

genomes generalizes permutations, signed or unsigned, linear or circular. Permuta-

tions can then be seen as genomes with only one chromosome.

An example of an unsigned genome on eight genes with three chromosomes in that

model would be

P ¼ fð3 1 5Þ|fflfflffl{zfflfflffl}
C1

; ð2 6Þ|ffl{zffl}
C2

; ð8 7 4Þ|fflfflffl{zfflfflffl}
C3

g:

Chromosomes are equivalent up to reversals, which means that this example might

be rewritten, for example, as fð5 1 3Þ; ð2 6Þ; ð4 7 8Þg and still correspond to the

same genome. An example of a signed multichromosomal genome is given in figure

10.1.

10.2 Breakpoints

Just as in the case of permutations (page 20), a breakpoint distance between two

genomes can be computed under the models described above. The breakpoint dis-

tance is not really a rearrangement distance, but it provides a first measure of dissim-

ilarity between genomes.

Not many discussions have been published on the breakpoint distance for multi-

chromosomal genomes. No definition is even reported for unsigned genomes. For

signed genomes, Pevzner and Tesler [295] propose definitions for internal or external

162 10 Paths and Cycles

breakpoints, according to whether or not the breakpoint involves a telomere, and

count them equally. The following definition, which weights internal and external

breakpoints di¤erently, is due to Tannier et al. [353].

Definition 10.1 For any two genomes P and G on a gene set of size n, let a be the

number of common nontelomeric adjacencies between P and G, and e be the number

of common telomeres. Then the breakpoint distance between P and G is

bdðP;GÞ ¼ n� a� e

2
:

Its linear-time computation is immediate from the definition. Note that the break-

point distance does not need to be an integer, and for unichromosomal genomes it

does not correspond exactly to the definition of the breakpoint distance for permuta-

tions given in section 2.6.1. This definition has the advantage that fusions and fissions

account for one breakpoint, whereas reversals and translocations account for two.

10.3 Intervals

It is also possible to adapt the various notions of intervals and their variants intro-

duced in the case of unsigned permutations. A subset of the union of genes and

telomeric markers (telomeric markers are not distinguishable) I is an interval of a

genome P if the subgraph of P induced by the extremities of the genes in I is con-

nected. If this connected subgraph is a path, the extremities of this path are the

Figure 10.1
A multichromosomal genome with linear and circular chromosomes given by C1 ¼ fT12t; 12h4h; 4t14t;
14h1t; 1h7h; 7t8t; 8hTg; C2 ¼ f3t11t; 11h10t; 10h6t; 6h13h; 13t3hg; and C3 ¼ fT9t; 9h2t; 2h5h; 5tTg. Adjacen-
cies are represented by thick lines

10.3 Intervals 163

extremities of the interval I . A common interval of two genomes P and G is an

interval of both genomes. A conserved interval of two genomes P and G is a common

interval that has the same extremities in P and G. Single genes are trivial conserved

intervals. A component of two genomes P and G is a nontrivial conserved interval of

P and G that is not the union of other conserved intervals. A component is minimal

if it does not contain any other nontrivial component.

For example, if the signed genomes are P ¼ fð2 1 3 5 4Þ;
ð6 7 �11 �9 �10 �8 12Þg and G ¼ fð1 2 3 4 5Þ; ð6 7 8 9 10 11 12Þg, then the com-

ponents of P and G are fT ; 2; 1; 3g, f3; 5; 4;Tg, fT ; 6g, f6; 7g, f8; 9; 10; 11g,
f7; 8; 9; 10; 11; 12g and f12;Tg.

These concepts are analogous to those introduced in the context of permutations

(see pages 21 and 63), adding the possibility to have telomeric markers in intervals

and components. This terminology is widely used to compute distances, but no simi-

larity or distance measure based on common intervals has been studied in the specific

context of multichromosomal genomes.

10.4 Translocation Distance

In this section on translocations, genomes are assumed to be linear, in order for the

translocation rearrangement to be defined on all chromosomes.

� Introduced by Kececioglu and Ravi [233].

� Complexity:

— For unsigned genomes, the problem is NP-hard and not approximable within a

factor of 1:00017 (or 5717=5716) (see Zhu and Wang [384]).

— For signed genomes, the problem is solvable in polynomial time, according to

Hannenhalli [195], with further corrections by Bergeron et al. [51].

� Algorithms: Computing the translocation distance between signed genomes is linear

in the number of genes (see Li et al. [246]), while giving a scenario realizing the dis-

tance can be done in Oðn3=2 ffiffiffiffiffiffiffiffiffiffiffi
log n

p Þ time (see Ozery-Flato and Shamir [286]).

� Best approximation ratio: 1:5þ e for unsigned genomes (see Cui et al. [129]).

� Diameter: unknown.

Definition 10.2 A translocation removes two adjacencies ab and cd from two di¤er-

ent chromosomes of a genome (some of a, b, c, and d may be telomeric markers T),

and replaces them either with adjacencies ac and bd or with adjacencies ad and bc. A

translocation is reciprocal if a, b, c, and d are all di¤erent from T .

Figure 10.2 shows an example of a reciprocal translocation. Chromosome fusions

and fissions are particular cases of (nonreciprocal) translocations:

164 10 Paths and Cycles

Definition 10.3 A chromosome fusion is a translocation involving telomeric adjacen-

cies of two di¤erent chromosomes and resulting in an adjacency TT . A chromosome

fission is a translocation involving a nontelomeric adjacency and TT .

If the genome is written as a set of strings on the set of genes, the starting points of

each chromosome can be chosen in such a way that a translocation exchanges the

prefix of one chromosome with the prefix of another. It is reciprocal if the two pre-

fixes are not empty. Using ‘‘su‰x’’ instead of ‘‘prefix’’ is equivalent, because of the

choice of the starting point. A fusion concatenates two strings, and a fission splits

one string into two. Here is an example of a reciprocal translocation:

fð1 2 3 4 Þ; ð5 6 7 8 Þg ! fð1 2 7 8Þ; ð5 6 3 4Þg:
The equality between strings 5 6 7 8 and �8 �7 �6 �5 in a signed genome implies

that a reciprocal translocation may also result in chromosomes 1 2 �6 �5 and

�8 �7 3 4.

Definition 10.4 Given two genomes P and G, the translocation distance tldðP;GÞ is
the minimum number of reciprocal translocations necessary to transform P into G.

The translocation distance problem has received much attention, and is the subject

of a survey by Wang [364]. Maybe the main property to notice is that if a transloca-

tion exchanges a prefix of chromosome X with a prefix of chromosome Y , then it

corresponds to a reversal on the string composed by the concatenation of X and Y

(reversed). For example, the reciprocal translocation

fð1 2 3 4 Þ; ð5 6 7 8 Þg �! fð1 2 7 8Þ; ð5 6 3 4Þg

Figure 10.2
A reciprocal translocation in a signed genome

10.4 Translocation Distance 165

can be seen as the reversal of the interval f3; 4; 7; 8g in the permutation

ð1 2 3 4 �8 �7 �6 �5Þ, concatenation of the two chromosomes, which, when split

again at the same point, gives the two chromosomes fð1 2 7 8Þ; ð5 6 3 4Þg.
This explains why, in most cases, the complexity of computing the translocation

distance between genomes inherits hardness results from that of computing the re-

versal distance on permutations: both are APX-hard for the unsigned case, and poly-

nomial for the signed case, with a linear algorithm for the distance computation and

a subquadratic algorithm for computing an optimal scenario. But solutions to those

problems di¤er in their details, and the distance formulas are di¤erent. Close rela-

tions between the two problems are completely investigated by Ozery-Flato and Sha-

mir [288].

10.4.1 Feasibility

Two arbitrary genomes may not always be transformed into one another by recip-

rocal translocations. The definition, and in particular the non-emptiness of the

exchanged prefixes, forces both genomes to share the same set of genes, to contain

the same number of chromosomes (since this number is maintained by a reciprocal

translocation), and to share the same set of telomeres (since this set is also main-

tained by a reciprocal translocation).

These three conditions are su‰cient (see Feng et al. [172]). Because of the con-

straints on the number of chromosomes and the telomeres, we can define a sorting

problem as in the case of permutations: given a genome P, the identity genome IdP
is the one with the same extremities as P, and every other adjacency is of the form

i � i þ 1 for unsigned genomes, and ih � ði þ 1Þt for signed genomes. This ‘‘identity

genome’’ is not canonical, since it depends on P. Therefore, transforming any

genome P into a genome G if they satisfy the required properties is a problem equiv-

alent to transforming a genome P into IdP, as was the case for permutations thanks

to left-invariance: just relabel the genes of G to obtain IdP, and label the genes in P

accordingly. That is why we use the ‘‘sorting’’ terminology and the distance of one

genome P as well as the distance between two genomes.

Definition 10.5 Given a genome P, the translocation distance tldðPÞ is the minimum

number of reciprocal translocations necessary to transform P into IdP.

10.4.2 Unsigned Genomes

The proofs of the complexity results obtained by Zhu and Wang [384] are similar

to those obtained for unsigned reversals on permutations. The authors reduce the

alternating cycle decomposition problem, also used to prove NP-hardness and

inapproximability results for sorting unsigned permutations by reversals (see section

3.3).

166 10 Paths and Cycles

The original 2-approximation for sorting by translocations, obtained by Kececio-

glu and Ravi [233] and based on a 2-approximation by Kececioglu and Sanko¤ [232]

for sorting permutations by unsigned reversals, has been improved by Cui et al.

[128], who obtained a 1:75-approximation, and by Cui et al. [129], who obtained a

ð1:5þ eÞ-approximation, still based on approximation algorithms for the alternat-

ing cycle decomposition problem.

10.4.3 Signed Genomes

Hannenhalli [195] first proved a formula for computing the signed reciprocal trans-

location distance between two genomes.

Definition 10.6 The breakpoint graph BGðP;GÞ of two multichromosomal signed

genomes P and G is the graph whose vertex set contains all gene extremities,

and whose edges are the nontelomeric adjacencies of P (the P-edges) and G (the

G-edges).

Breakpoint graphs consist of degree vertex-disjoint elementary paths and cycles,

alternating with P-edges and G-edges. An example of a breakpoint graph is given in

figure 10.3. The number of cycles in BGðP;GÞ is denoted by cðBGðP;GÞÞ. When

genomes satisfy the conditions for being comparable using the translocation distance,

all paths of the corresponding breakpoint graph are degree 0 vertices.

Theorem 10.1 [195] For an arbitrary genome P with n genes and N chromosomes,

we have

tldðPÞ ¼ n�N � cðBGðP; IdPÞÞ þ sðPÞ þ oþ 2b;

where sðPÞ is the number of minimal components of P, o is 1 if sðPÞ is odd and 0

otherwise, and b is 1 if

Figure 10.3
The breakpoint graph of the genomes P given by C1 ¼ fT12t; 12h4h; 4t14t; 14h1t; 1h7h; 7t8t; 8hTg; C2 ¼
f3t11t; 11h10t; 10h6t; 6h13h; 13t3hg; and C3 ¼ fT9t; 9h2t; 2h5h; 5tTg, and G given by C1 ¼ fT12t;
12h14h; 14t7h; 7t4t; 4h1h; 1t8t; 8h2t; 2h6t; 6hTg and C2 ¼ fT9t; 9h3t; 3h10t; 10h5t; 5h11h; 11t13h; 13tTg. P
edges are dotted lines, and G edges are solid lines

10.4 Translocation Distance 167

1. all minimal components of P reside on a single chromosome,

2. sðPÞ is even, and
3. all minimal components are contained within a single component,

and 0 otherwise.

This formula yields an Oðn3Þ algorithm for both computing the distance and solv-

ing the translocation rearrangement problem between two signed genomes. Li et al.

[246] devised an OðnÞ algorithm for computing the distance, and Bergeron et al. [51]

exhibited an error in Hannenhalli’s algorithm for the rearrangement scenario (the

distance formula was, however, correct), yielding a corrected Oðn3Þ algorithm. Fol-

lowing the sorting by reversals history, several improvements of the running time

were achieved: by Zhu and Ma [383] (Oðn2 log nÞ, then Oðn2Þ); by Wang et al. [365]

ðOðn2ÞÞ; and eventually by Ozery-Flato and Shamir [286], who adapted the algo-

rithm of Tannier et al. [352] for sorting signed permutations by reversals and

achieved a time complexity of Oðn3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞp Þ. All quadratic algorithms for sorting

by translocations were also adapted to sorting by reciprocal translocations, yielding a

crop of Oðn2Þ time algorithms (see Ozery-Flato and Shamir [288]).

10.4.4 Translocations Preserving Centromeres

A centromere is a region of a chromosome that plays a vital role during DNA repli-

cation. In a linear chromosome of a signed genome, the centromere is a (possibly

telomeric) adjacency of this chromosome, showing that the centromere is located be-

tween the two elements forming the adjacency, or at the extremity of a chromosome.

Every linear chromosome has a centromere, so reciprocal translocations that yield

chromosomes with no centromeres (and, as a by-product, chromosomes with several

centromeres) are very unlikely. This motivates the study of genomic distances such

that each rearrangement preserves centromeres in every chromosome. This problem

has been investigated only in the case of signed genomes.

� Introduced by Kececioglu and Ravi [233].

� Complexity: polynomial for signed genomes (see Ozery-Flato and Shamir [287]).

� Best algorithm: OðNnþ n3=2
ffiffiffiffiffiffiffiffiffiffiffi
log n

p Þ for signed genomes, where n is the number of

genes and N is the number of chromosomes in the compared genomes (see Ozery-

Flato and Shamir [287]).

Kececioglu and Ravi [233] noted that some translocations are not valid, according

to the position of the centromere in the chromosomes. This led to an oriented version

of rearrangement by translocations in unsigned genomes that have acrocentric chro-

mosomes (i.e., their centromeres are located at one telomere). In this case, only seg-

ments of chromosomes not containing the centromere may be translocated.

Kececioglu and Ravi [233] devised a 2-approximation algorithm for this problem.

168 10 Paths and Cycles

The general problem of rearranging by translocations was given a solution by

Ozery-Flato and Shamir [287] in the context of signed genomes where centromeres

are arbitrarily positioned. In a signed linear genome, a centromere is a label on an

adjacency. A chromosome is said to be legal if exactly one of its adjacencies is la-

beled as a centromere. A genome is legal if all its chromosomes are legal. Given a

legal genome, a rearrangement is said to be legal if the resulting genome is legal.

Reversals are always legal, whereas fusions of chromosomes never are. A fission of

a chromosome is legal if the broken adjacency contains the centromere. For translo-

cations, some are legal and some are not.

A first interesting remark is that two genomes P and G can be transformed into one

another by legal reciprocal translocations only if the following condition is satisfied,

which is more stringent than the condition of section 10.4.1. If either genome contains

a chromosome C ¼ x1x2 � � � xk, whose centromere is on the adjacency ðxi; xiþ1Þ, then
we say that the elements of the chromosome are fx1; . . . ; xi;�xiþ1; . . . ;�xkg. The
elements of a genome are the elements of all its chromosomes. One genome can be

transformed into another by legal reciprocal translocations if and only if, in addition

to the conditions of section 10.4.1, they have the same elements. Ozery-Flato and

Shamir [287] devised a polynomial-time algorithm for transforming one signed linear

genome into another by legal reciprocal translocations, under the assumption that

these genomes satisfy the above condition.

10.4.5 Variants and Special Cases

In the case where the exchanged prefixes or su‰xes are required to have equal

lengths, both the signed and unsigned versions are polynomial, with a linear algo-

rithm by Kececioglu and Ravi [233].

It seems that every variant of sorting signed permutations by reversals can be

transformed into a variant of sorting by translocations. Following the work of El-

Mabrouk [156], Qi et al. [305] devised exact polynomial-time algorithms for sorting

by translocations and deletions, assuming that the set of genes present in G is a subset

of the set of strings present in P (the same problem was handled for reversals by El-

Mabrouk [154]).

The similarity between the reversal and translocation problems has given the

idea of mixing the two operations, but surprisingly no further study has been

reported since the introduction of the problem by Kececioglu and Ravi [233]. They

give a 3
2-approximation algorithm for sorting signed genomes by translocations and

reversals, and a 2-approximation algorithm for the same problem on unsigned

genomes.

The relatively small amount of work on this variant is probably due to the success

of more general models, which include other rearrangements and which we survey in

the next section.

10.4 Translocation Distance 169

10.5 Double Cut-and-Joins (2-Break Rearrangement)

� Introduced by Yancopoulos et al. [375].

� Complexity: polynomial (see Yancopoulos et al. [375]).

� Best algorithm: OðnÞ, both for computing the distance and for rearranging (see Ber-

geron et al. [52]).

Double cut-and-join (DCJ) operations, or 2-break rearrangements (see section

4.5), are the most general and the simplest rearrangement framework to have been

developed to date. We have already defined them on permutations (section 4.5), but

they are better suited to multichromosomal models, since intermediary genomes may

be multichromosomal, which cannot happen in the permutation model. DCJ opera-

tions are defined only on signed genomes.

Definition 10.7 A DCJ operation is an operation acting on two adjacencies ab and

cd of a genome P, which transforms them either into the two adjacencies ac and bd

or into the two adjacencies ad and bc. Some of a, b, c, and d may be telomeric

markers, and an adjacency may even be TT . We say the DCJ cuts the adjacencies

ab and cd, and joins ac and bd (or ad and bc).

The result is of course a genome. This operation generalizes the operation defined

in section 4.5 on permutations. DCJ operations may be reversals, translocations,

fusions, or fissions, and two consecutive DCJ operations mimic transpositions and

block interchanges.

The linear genomes P and G under comparison can have di¤erent numbers of

chromosomes and di¤erent extremities. Therefore, the ‘‘sorting’’ vocabulary no

longer makes sense, and what is defined is just the distance between two genomes.

Definition 10.8 Given two genomes P and G, the double cut-and-join distance be-

tween P and G, denoted by dcjðP;GÞ, is the minimum number of DCJ operations

needed to transform P into G.

Examples of two DCJ operations are illustrated in figure 10.4.

This is a very general genomic distance that encompasses many kinds of rearrange-

ments and tends to be universally adopted by the community. The formula for the

DCJ distance is very simple.

Theorem 10.2 [375] Given two genomes P and G on n genes,

dcjðP;GÞ ¼ n� cðBGðP;GÞÞ þ peðBGðP;GÞ
2

� �
;

where pe is the number of paths of even length in the breakpoint graph.

170 10 Paths and Cycles

Note the similarity of this formula to the breakpoint distance formula (see section

10.2), which relies on the following correspondence between the three parameters of

the two distances: n is the same number, cb a because any common adjacency is a

cycle of the breakpoint graph, and pe b e because every common telomere is an even

path (with no edge) of the breakpoint graph. A linear-time algorithm for computing

the DCJ distance is immediate. Yancopoulos et al. [375] first gave a quadratic algo-

rithm to compute DCJ scenarios, and Bergeron et al. [52] gave a linear-time algo-

rithm for the same task. It is deduced from the following lemma.

Lemma 10.1 For two genomes P and G, if a DCJ operation on P results in a

genome P 0 containing an adjacency that is present in G but not in P, then

dcjðP;GÞ ¼ dcjðP 0;GÞ þ 1.

10.6 k-Break Rearrangement

The DCJ problem has been generalized by Alekseyev and Pevzner [8] to k-break

rearrangements.

� Introduced by Alekseyev and Pevzner [8].

� Complexity: polynomial for fixed k and circular genomes (see Alekseyev and Pevz-

ner [10]); unknown for linear genomes.

� Best algorithm: Oðnk�2Þ (see Alekseyev and Pevzner [10]).

Figure 10.4
Two examples of DCJ operations: (a) the DCJ cuts 4t14t and 7t8t and joins 4t7t and 14t8t (it is a reversal);
(b) the DCJ cuts 14h1t and 8hT and joins 14hT and 8h1t. This operation produces a circular chromosome

10.6 k-Break Rearrangement 171

A k-break rearrangement cuts k adjacencies, and forms k new adjacencies by join-

ing the 2k extremities according to an arbitrary matching. For two genomes P and

G, the k-break distance kbdðP;GÞ is the minimum number of k-break rearrange-

ments necessary to transform P into G.

Alekseyev and Pevzner [10] give a general formula for the k-break rearrangement

distance on circular genomes. A subset of cycles in the breakpoint graph of circular

genomes P and G is called breakable if the total number of reality edges in these

cycles equals 1 ðmod k � 1Þ. Let skðP;GÞ be the maximum number of disjoint break-

able subsets in BGðP;GÞ.
Theorem 10.3 [10] For two circular genomes P and G, the k-break rearrangement

distance kbdðP;GÞ is

kbdðP;GÞ ¼ bdðP;GÞ � skðP;GÞ
k � 1

:

Alekseyev and Pevzner [10] give a polynomial-time algorithm for computing the

k-break distance for fixed values of k, and a general framework for computing it in

time Oðnk�2Þ, when k is arbitrary. Alekseyev [7] attempted to extend the solution to

linear genomes, but provided only bounds; no exact formula is known yet.

10.7 Fusions, Fissions, Translocations, and Reversals

� Introduced by Hannenhalli and Pevzner [196].

� Complexity: polynomial (see Hannenhalli and Pevzner [196], with subsequent cor-

rections by Tesler [355], Ozery-Flato and Shamir [285], and Jean and Nikolski [220]).

� Best algorithm: Oðn2Þ (see Tesler [355], Bergeron et al. [53]).

Although a distance taking fusions, fissions, translocations, and reversals into ac-

count had been defined a long time before the DCJ distance, it can be expressed in

terms of a particular case of the DCJ framework that is adapted to linear genomes.

Rearrangements by fusions, fissions, translocations, and reversals have been

addressed only for signed genomes.

Given a linear signed genome P, a DCJ operation on P that does not create any

circular chromosome is called linear. Linear DCJ operations are fusions, fissions,

translocations (not necessarily reciprocal), and reversals. Since fusions and fissions

are special cases of translocations, we simply write this distance RT.

Definition 10.9 Given two genomes P and G, the RT-distance between P and G,

denoted by rtdðP;GÞ, is the minimum number of linear DCJ operations required to

transform P into G.

172 10 Paths and Cycles

A formula for the distance that is computable in polynomial time (more specifi-

cally in Oðn4Þ time) was first announced by Hannenhalli and Pevzner [196]. Tesler

[355] found several errors and gaps in the description of Hannenhalli and Pevzner

[196] while trying to implement their algorithm. He finally achieved an Oðn2Þ algo-
rithm for the rearrangement scenario, and an OðnÞ algorithm for computing the dis-

tance, both based on the theory of sorting by reversals. Later, Ozery-Flato and

Shamir [285] pointed out one case in which the duality theorem for genomic distance

of Hannenhalli and Pevzner [196] is incorrect, thus implying errors in Tesler’s algo-

rithm as well. Ozery-Flato and Shamir [285] revised the duality theorem and the cor-

responding algorithms. Their formula is correct, but their algorithm still had a flaw,

eventually corrected by Jean and Nikolski [220]. The formula of Ozery-Flato and

Shamir [285] still involves a few tricky parameters, and Bergeron et al. [53] made an

e¤ort to explain the formula in a simple way, on which we will base our presentation.

Recall the definitions of intervals, common intervals, conserved intervals, and

components given at the beginning of this chapter (page 164). Here, an adjacency

of a genome P is said to belong to a component C of two genomes P and G if both

extremities of the adjacency involve genes that are in C but in no other component

included in C. The component C of two genomes P and G is said to be oriented if

there is a linear DCJ operation on P cutting two adjacencies that belong to C and

decreasing the DCJ distance between P and G by 1. It corresponds to the definition

of components (oriented, unoriented) defined on permutations, with additional possi-

ble components including telomeres (see page 65).

Property 10.1 [53] Two di¤erent components of two genomes are either disjoint,

nested with di¤erent extremities, or overlapping on one element.

This property allows us to give a PQ-tree structure to the set of components of a

genome, just as in the case of permutations (see page 65).

Definition 10.10 A sequence of components C1; . . . ;Ck of two genomes, such that

two consecutive components overlap, is called a chain of components. A chain C

is maximal if there is no chain containing all the components of C and other

components.

Definition 10.11 The PQ-tree of components of genomes P and G is defined as

follows:

� the root is a P-node, containing all maximal components;

� each unoriented component is represented by a P-node;

� each maximal chain of unoriented components (possibly a single component) is

represented by a Q-node whose (ordered) children are the P-nodes that represent the

components of this chain;

10.7 Fusions, Fissions, Translocations, and Reversals 173

� a Q-node is the child of the minimal component that contains the chain it

represents.

For two genomes P and G, let T be the minimal subtree of the PQ-tree of compo-

nents of P and G containing all the unoriented components of P and G. A cover of

T is a collection of paths in T joining all nodes corresponding to unoriented compo-

nents, such that an extremity of a path is not covered by another path. The cost of a

cover of T is the sum of the costs of the paths it contains. A path containing only

one unoriented component, or two unoriented components that both contain a telo-

mere, costs 1, and any other path costs 2. The following theorem gives a formula for

the RT-distance.

Theorem 10.4 [53] For two genomes P and G, let T be the minimal subtree of the

PQ-tree of components of P and G, and t be the minimum cost of a cover of T .

Then

rtdðP;GÞ ¼ dcjðP;GÞ þ t:

Therefore, restricting the problem to linear genomes increases the distance by a

factor t that depends on the structure of unoriented components (if there are none,

the two distances are equal). Bergeron et al. [53] give an algorithm to compute t e‰-

ciently via seemingly tricky parameters.

10.8 Rearrangements with Partially Ordered Chromosomes

Genomic maps often do not specify the order within some groups of two or more

markers. The synthesis of several maps from divergent or incomplete sources intro-

duces additional order ambiguity due to markers missing from some sources. Zheng

and Sanko¤ [379] represent chromosomes using directed acyclic graphs (DAGs), to

account for poor resolution and missing data. The genome rearrangement problem

in that setting is then to compute a minimum number of translocations and reversals

for transforming a set of linear extensions (one for each chromosome) into a set of

linear extensions (one for each chromosome) of another species.

� Introduced by Zheng and Sanko¤ [379].

� Complexity: Unknown.

Zheng and Sanko¤ [379] proposed a heuristic that, as in section 5.4, consists in

embedding the set of all possible linear extensions of a poset into a directed graph

by appropriately augmenting the arc set of the DAG naturally associated with the

poset. These two sets of directed graphs that represent two genomes are then used

to produce a single large bicolored graph from which a maximal decomposition into

alternating cycles is extracted.

174 10 Paths and Cycles

11 Cycles of a Permutation

In the first part of this book, we have seen how permutations are used to represent

the relative order of markers along one chromosome, compared to another. Alterna-

tive ways have been proposed by Meidanis and Dias [264] and others after them (see,

e.g., Lin et al. [254, 256]; Mira and Meidanis [269]; Lu et al. [259]). These representa-

tions provide other views of some genome rearrangement problems, and make it

possible to retrieve the structure of the cycle graph or of the breakpoint graph of a

permutation (signed or unsigned). Some results proved using other models have

been re-proved with these techniques, which have occasionally led to new results.

11.1 A Model for Multichromosomal Circular Genomes

If we want to handle genomes containing several circular chromosomes that can ex-

change genes, such that each gene appears only once in a given genome, then each

chromosome can be represented by a cyclic ordering of its genes, and the genome is

represented by the permutation whose disjoint cycle decomposition is the set of chro-

mosomes. An example is given below.

ð1; 9; 12; 20; 3; 10; 17Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
chromosome 1

ð2; 5; 14; 22; 24; 7; 6; 4; 13; 15; 8; 18Þ|ffl{zffl}
chromosome 2

ð11; 19; 23; 16; 21Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
chromosome 3

This disjoint cycle representation corresponds to the following permutation in the

standard representation:

p ¼ ð9 5 10 13 14 4 6 18 12 17 19 20 15 22 8 21 1 2 23 3 11 24 16 7Þ:
Genome rearrangement problems are often proved to be equivalent for circular

and linear chromosomes when there is only one chromosome (see, e.g., Hartman

and Shamir [202]; Lin et al. [254]), but this correspondence does not always hold for

multichromosomal genomes (see, for example, chapter 10 for the breakpoint median

problem, which is polynomial if circular chromosomes are allowed, and NP-

complete otherwise).

In this model, fusions and fissions are 2-cycle permutations (i.e., they consist of a

single nontrivial cycle of length 2): a fusion acts on two elements belonging to dis-

tinct cycles, whereas a fission acts on two elements of the same cycle. Moreover,

3-cycles of the form ðpi; pj; pkÞ, where i < j < k and pi, pj, and pk belong to the

same chromosome, represent transpositions. To see this, simply denote one of these

2- or 3-cycles by r, and perform the composition r � p, where p is an arbitrary per-

mutation. These operations are illustrated on the permutation ð1; 2; 3; 4; 5; 6; 7; 8Þ in
figure 11.1.

Therefore, a minimum-length factorization into 2-cycles of a permutation s�1p for

two permutations p, s in Sn may be seen as an optimal rearrangement scenario trans-

forming p into s using fusions and fissions, which is easily computed in linear time

since it corresponds to the Cayley distance excðpÞ (see section 3.5.2).

Dias and Meidanis [137] consider a rearrangement problem using fissions, fusions,

and transpositions as expressed above, where transpositions weigh twice as much as

fusions and fissions. They prove that the problem essentially remains equivalent to

computing the Cayley distance, and is therefore solvable in OðnÞ time for computing

the distance and in Oðn2Þ time for giving a rearrangement scenario. They observe

Figure 11.1
Rearrangements on unsigned circular chromosomes: (a) a transposition, (b) a fission whose inverse is a
fusion

176 11 Cycles of a Permutation

that their solution remains valid when assigning an arbitrary larger weight to trans-

positions.

It is sometimes possible to recover some solutions developed with combinatorial

objects in the first part of this book with this alternative formalism. Formulas are

very similar, though the objects are defined independently. This is because the manip-

ulated objects are usually the same, and therefore it is possible to obtain the usual

combinatorial structure with the disjoint cycle representation.

For example, Doignon and Labarre [147] proposed an alternative representation

of the cycle graph of a permutation (see definition 3.3) that simply consists in repre-

senting the cycle graph GðpÞ of a permutation p in Sn, using the disjoint cycle decom-

position of the following permutation:

p ¼ ð0; pn; pn�1; . . . ; p1Þ � ð0; 1; 2; . . . ; nÞ: ð11:1Þ
This model is based on a circular representation of GðpÞ in which vertices 0 and nþ 1

are identified (clearly, this does not a¤ect the alternating cycle decomposition). The

cycle ð0; pn; pn�1; . . . ; p1Þ represents the cycle formed by the black edges, and the cycle

ð0; 1; 2; . . . ; nÞ represents the cycle formed by the gray edges; the cycles in the disjoint

cycle decomposition of p are exactly the alternating cycles of GðpÞ. Figure 11.2 illus-

trates this by showing the circular version of the cycle graph of figure 3.1 and the

corresponding permutations (i.e., p, ð0; pn; pn�1; . . . ; p1Þ and ð0; 1; 2; . . . ; nÞ). It can

be easily checked that p ¼ ð0; 2; 3; 6; 1; 4; 5Þ � ð0; 1; 2; 3; 4; 5; 6Þ ¼ ð0; 4Þð1; 3; 5Þð2; 6Þ;
the cycles of p list the vertices that are encountered in each alternating cycle of GðpÞ
after following a gray edge, then a black edge.

A first use of this model is the construction of a bijection between cycle graphs

and factorizations of ð0; 1; 2; . . . ; nÞ into the product of an ðnþ 1Þ-cycle and a

Figure 11.2
(a) The circular cycle graph of (5 4 1 6 3 2) and the corresponding permutation ð5 4 1 6 3 2Þ; (b) and (c)
are the two cycles formed, respectively, by the black edges and by the gray edges, with the corresponding
permutations

11.1 A Model for Multichromosomal Circular Genomes 177

permutation that decomposes into k cycles, easily deduced from equation (11.1).

Thanks to this bijection, the problem of enumerating permutations in Sn with

cðGðpÞÞ ¼ k is solved, and this fully characterizes the distribution of the block-

interchange distance (see section 3.5.1).

A second use of this model is the reformulation of any rearrangement problem in

terms of minimum-length factorizations of p into the products of particular permuta-

tions. Recall that sorting a permutation p using a set X of given allowed operations

is equivalent, if the inverse of an allowed operation belongs to X as well, to finding a

minimum-length factorization of p into the product of elements of X (see section

2.4). The following result reformulates that problem in terms of factorizations of p.

Theorem 11.1 [241] Let X ¼ fs1; s2; . . .g be a subset of Sn whose elements are

mapped onto X 0 ¼ fs1; s2; . . .gJAnþ1, using equation (11.1). Moreover, let C be the

union of the conjugacy classes (of Snþ1) that intersect with X 0; then for any p in Sn,

any factorization of p into t elements of X yields a factorization of p into t elements

of C.

Clearly, theorem 11.1 directly provides a way to obtain lower bounds on our rear-

rangement problems. Previous results such as lower bounds on sorting by transposi-

tions (theorem 3.4) and by block interchanges (theorem 3.21) can be easily recovered,

and new results such as the lower bound of theorem 3.14 on sorting by prefix trans-

positions can be obtained (see Labarre [241]).

11.2 A Generalization to Signed Genomes

11.2.1 A Different Kind of Signed Permutation

Meidanis and Dias [264] generalized their model to signed genomes by representing

both strands of DNA molecules in the disjoint cycle decomposition. That is, the per-

mutation p has base set f�n; . . . ; ngnf0g, and verifies pi ¼ �p�1
�i . Note that this con-

straint is di¤erent from the usual constraint on signed permutations, so that the

permutation group is di¤erent from the hyperoctahedral group, where a signed per-

mutation verifies p�i ¼ �pi (see section 2.3). This implies that a cycle of the permu-

tation cannot contain both a number and its opposite. The disjoint cycles of this

permutation model the gene order on the circular chromosomes of a genome, but

each chromosome is represented by two cycles, modeling its two strands.

An example is given below.

ð1;�9; 3Þð9;�1;�3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
chromosome 1

ð2;�7; 6;�4; 8Þð�2;�8; 4;�6; 7Þ|ffl{zffl}
chromosome 2

ð10;�5Þð5;�10Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
chromosome 3

This disjoint cycle representation corresponds to the following permutation in the

standard two-row notation:

178 11 Cycles of a Permutation

�10 �9 �8 �7 �6 �5 �4 �3 �2 �1 1 2 3 4 5 6 7 8 9 10

5 3 4 6 7 10 8 9 �8 �3 �9 �7 1 �6 �10 �4 �2 2 �1 �5

� �
:

Let p and s be two signed multichromosomal circular genomes (or permutations of

f�n; . . . ; ngnf0g). Let g be the permutation ð�0;þ0Þð�1;þ1Þ ð�2;þ2Þ � � � ð�n;þnÞ.
Then both g � ð0 p1 � � � pnÞ and g � ð0 s1 � � � snÞ are permutations that decompose

into 2-cycles, each of which corresponds to the following:

1. a p-edge of the breakpoint graph of the two genomes p and s, in the case of g � p,
and

2. a s-edge of the breakpoint graph of the two genomes p and s, in the case of g � s.
The permutation g � p � g � s gives a ‘‘square’’ decomposition of the breakpoint

graph of p (with respect to s) into alternating cycles, which means that each alternat-

ing k-cycle in the breakpoint graph of p with respect to s corresponds to two k-cycles

in the disjoint cycle decomposition of g � p � g � s.

11.2.2 The Operations

In this representation, we have to redefine all rearrangements we have considered so

far or, more accurately, to model them di¤erently. If u and v are distinct elements of

the same cycle of p, then

1. the permutation ðu; g � pðvÞÞðv; g � pðuÞÞ is the (signed) reversal of the segment

with extremities u and v,

2. an unsigned reversal is defined as ðu; vÞðg � pðuÞ; g � pðvÞÞ,
3. a transposition is the permutation ðu; v;wÞðg � pðwÞ; g � pðvÞ; g � pðuÞÞ,
4. a block interchange is the permutation ðu;wÞðg � pðwÞ; g � pðuÞÞðv; xÞðg � pðxÞ;
g � pðvÞÞ.

Additionally, a fusion is a permutation ðu; g � pðvÞÞðv; g � pðuÞÞ where u and v are

not in the same cycle, and a fission is a permutation ðu; vÞðg � pðvÞ; g � pðuÞÞ.

11.2.3 Some Results

One of Meidanis and Dias’s [264] goals in developing these models was to prove in

an algebraic way some previous results that were proved using graph-theoretic argu-

ments. This approach is nice because a lot of results such as sorting by block inter-

changes, or reversals and block interchanges, and in general k-break rearrangements,

can be expressed in this way.

These techniques are less powerful in some cases (for example, the result of

Hannenhalli and Pevzner [199] on sorting signed permutations by reversals (page

64) has no equivalent, due to the impossibility of reformulating hurdles). But this

11.2 A Generalization to Signed Genomes 179

formulation allows us to solve ad-hoc variants as sorting by fusions, fissions, and

transpositions (see, for example, Dias and Meidanis [137]). Some results are proved

again in this formalism, such as sorting by DCJ rearrangements (Meidanis and Dias

[269]; Lu et al. [259]), providing an alternative proof of the result of Yancopoulos et

al. [375].

The same formalism has been adopted by Lin et al. [256, 254], Lu et al. [259], and

Lin and Xue [252], who prove the same results again, and work on minimizing the

number of block interchanges in a scenario sorting a signed permutation by reversals

and block interchanges.

180 11 Cycles of a Permutation

12 Set Systems and the Syntenic Distance

We have seen that some models assume that the order of genes on chromosomes is

either known (chapter 2 and subsequent chapters) or partially known (chapter 5). We

will now examine the case in which the order of the genes is not known at all. This

assumption makes no sense for unichromosomal genomes, but a distance between

multichromosomal genomes can be studied, which takes into account only the infor-

mation about which gene belongs to which chromosome. This distance is known as

the syntenic distance. The model presented in this chapter disregards the order of

genes: the only relevant information is how genes are scattered among chromosomes.

� Introduced by Ferretti et al. [174].

� Complexity: NP-hard (see DasGupta et al. [131]). If the distance is bounded by d,

then it can be computed exactly in Oðhk þ 2Oðd log dÞÞ time, where h and k are the

number of chromosomes of the two input genomes (see Liben-Nowell [249]).

� Best approximation ratio: 2. Such approximations have been proposed by Das-

Gupta et al. [131], Ferretti et al. [174], and Liben-Nowell [248]; for all of them, the

ratio is tight.

� Diameter: For two genomes containing, respectively, h and k chromosomes (with

hb kb 4), the diameter is equal to hþ k � 4 (see Kleinberg and Liben-Nowell

[236] or Pisanti and Sagot [300]).

12.1 Introduction

Throughout this chapter, a genome P is a partition of the set of genes into h non-

empty chromosomes, that is, P ¼ fC1;C2; . . . ;Chg. For completeness, we note that

the order of the chromosomes in the set fC1;C2; . . . ;Chg is not important for the

syntenic distance problem (as we will see, the rearrangement events considered in

this problem do not take the order of chromosomes into account). We will refer to

the number h of chromosomes in P as its size.

One can see that, in that model, any intrachromosomal event in any chromosome

Ci does not modify Ci. Hence, only interchromosomal events are to be considered;

the operations that will be taken into account are fusions, fissions, and translocations

(see page 159).

Adapted to the syntenic model of genomes, let Ci, Cj, Cq, and Cl be four sets of

genes (chromosomes), such that (1) Ci UCj ¼ Cq UCl , and (2) at most one of Ci, Cj,

Cq, Cl is empty. Then the three aforementioned moves can be summarized as

fCi;Cjg ! fCq;Clg;
where

� a fusion corresponds to the case where either Cq ¼ j or Cl ¼ j,

� a fission corresponds to the case where either Ci ¼ j or Cj ¼ j, and

� a reciprocal translocation corresponds to the case where none of the four sets is

empty and where fCi;Cjg0 fCq;Clg.
Here translocations always mean reciprocal translocations.

Definition 12.1 The syntenic distance between two genomes P1 and P2, denoted by

sydðP1;P2Þ, is the minimum number of fusions, fissions, and translocations needed

to transform P1 into P2.

Note that the term syntenic comes from the fact that two genes are said to be in

synteny if they belong to the same chromosome.

12.2 Structural Properties

The syntenic distance problem was introduced by Ferretti et al. [174], but the first

paper that studies the problem from a formal algorithmic and combinatorial point

of view is that of DasGupta et al. [131], who in particular prove that the syntenic dis-

tance satisfies the three axioms of definition 1.1.

12.2.1 Compact Representation

The compact representation of a syntenic instance was first described by Ferretti et al.

[174], then formalized by DasGupta et al. [131]. This is in analogy with the left-

invariance property in the permutation model, where computing a given distance

is equivalent to a sorting problem (see definition 2.11); in the synteny model there is

no order, but the compact representation allows for a similar concept.

Definition 12.2 The compact representation of a genome P1 with respect to a

genome P2 is obtained by replacing each C 0
i in P2 with its index i, and each Cj in

P1 with the set of indices of the chromosomes on which each gene of Cj lies in P2.

182 12 Set Systems and the Syntenic Distance

As an example, consider the following two genomes:

P1 ¼ ffa; b; e; f ; hg
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{C1

; fc; gg
zfflffl}|fflffl{C2

; fd; i; jg
zfflfflfflffl}|fflfflfflffl{C3

g;
P2 ¼ ffa; b; c; dg|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

C 0
1

; fe; f g|fflffl{zfflffl}
C 0

2

; fg; h; ig|fflfflfflffl{zfflfflfflffl}
C 0

3

; f jg|{z}
C 0

4

g:

Then the compact representation of P1 with respect to P2 consists of P 0
1 ¼

ff1; 2; 3g; f1; 3g; f1; 3; 4gg and P 0
2 ¼ ff1g; f2g; f3g; f4gg.

Note that, in the compact representation, fissions or translocations can possibly

create duplicates, which could be problematic since duplicates are not allowed in

the definition of a genome in this model. For instance, consider the following

fission in the original instance: fa; b; e; f ; hg ! ffa; e; f g; fb; hgg. In the compact

representation, this fission becomes f1; 2; 3g ! ff1; 2g; f1; 3gg, and in that case,

element 1 appears twice in the output. Similarly, the following translocation in

the original instance, ffa; b; e; f ; hg; fd; i; jgg ! ffa; e; h; i; jg; fb; d; f gg, becomes

ff1; 2; 3g; f1; 3; 4gg ! ff1; 2; 3; 4g; f1; 2gg in the compact representation.

However, it is easy to see, as mentioned by DasGupta et al. [131], that in any op-

timal move sequence in the compact representation, no element is present in both out-

put sets of a translocation or a fission (this was formally proved later by Liben-Nowell

[248], where such a move was called a redundant move). Thus, as long as we are con-

cerned with computing the distance (that is, the length of a shortest move sequence),

fissions and translocations do not create duplicates, and the problem remains well

defined. Since we are interested here in such optimal moves, we can always assume

that, after any move, no element is duplicated. Under this assumption, we are now

able to restate the synteny problem in the compact representation, as follows.

Definition 12.3 Given a collection Sðh; kÞ of k (not necessarily distinct) subsets

S1; . . . ;Sk of f1; . . . ; hg, the synteny problem seeks to compute the minimum number

of translocations, fusions, and fissions required to transform Sðh; kÞ into the collec-

tion ff1g; f2g; . . . ; fhgg. This number is denoted by sydðSðh; kÞÞ and is called the

syntenic distance of Sðh; kÞ.
According to definition 12.2, there are two ways to construct the compact repre-

sentation of two genomes P1 and P2 of respective sizes h and k ðhb kÞ:
� either P1 becomes P 0

1 ¼ ff1g; f2g; . . . ; fhgg and P2 is modified accordingly, or

� P2 becomes P 0
2 ¼ ff1g; f2g; . . . ; fkgg and P1 is modified accordingly.

The first possibility is called the dual of the second, and vice versa. One might

wonder whether the resulting compact instances are equivalent; DasGupta et al.

[131] proved the following result.

12.2 Structural Properties 183

Proposition 12.1 [131] Let Sðh; kÞ be a synteny instance and S 0ðh; kÞ be its dual. Then
sydðSðh; kÞÞ ¼ sydðS 0ðh; kÞÞ.

Consequently, in the following, starting with two genomes P1 and P2 of respec-

tive sizes k and h ðhb kÞ, we will focus only on the compact representation Sðh; kÞ,
where we wish to obtain ff1g; f2g; . . . ; fhgg using the minimum number sydðSðh; kÞÞ
of moves.

Liben-Nowell [248] proved that the syntenic distance is monotonic in the following

sense.

Proposition 12.2 [248] Let Sðh; kÞ ¼ fS1;S2; . . . ;Skg and T ðh 0; kÞ ¼ fT1;T2; . . . ;Tkg
be two instances of the synteny problem such that, for all 1a ia k, Si JTi. Then

sydðT ðh 0; kÞÞb sydðSðh; kÞÞ.
Finally, DasGupta et al. [131] showed the existence of a canonical form for the

syntenic distance.

Lemma 12.1 [131] There always exists an optimal sequence of moves between two

sets in which all fusions occur first, then all translocations, and finally all fissions.

12.3 Lower Bounds

Just as for other rearrangement problems described so far, a graph-theoretic model

was introduced (by DasGupta et al. [131] in this case) to attack the problem at

hand and to successfully obtain bounds and approximation algorithms.

Definition 12.4 The synteny graph of an instance Sðh; kÞ, denoted by SGðSðh; kÞÞ,
contains a vertex for each set of Sðh; kÞ, and two distinct vertices are joined by an

edge if the corresponding sets have a nonempty intersection.

Proposition 12.3 [131] For any synteny instance Sðh; kÞ, we have
sydðSðh; kÞÞb h� p;

where p is the number of connected components in SGðSðh; kÞÞ.
Indeed, let SðhÞ ¼ ff1g; f2g; . . . ; fhgg, and let SGðSðhÞÞ be its synteny graph.

Clearly, SGðSðhÞÞ is a collection of h isolated vertices (i.e., it has h connected compo-

nents). Moreover, after any given move (fusion, fission, or translocation), the number

of components in the synteny graph cannot increase by more than 1. Therefore, start-

ing with p components, it takes at least h� p moves to reach h components.

Another lower bound is given by Liben-Nowell [248]. Let Sðh; kÞ be an instance,

and for any gene g, let countðgÞ denote the number of sets of Sðh; kÞ in which g

appears.

184 12 Set Systems and the Syntenic Distance

Theorem 12.1 [248] For any instance of synteny Sðh; kÞ, we have
sydðSðh; kÞÞ þ log4=3ðsydðSðh; kÞÞÞb h� 1þ max

1acak�1
fc� jfg j countðgÞa cþ 1gjg:

12.4 Diameter

Kleinberg and Liben-Nowell [236], as well as Pisanti and Sagot [300], studied

the maximal value of the syntenic distance, which we will refer to as the syntenic

diameter.

Theorem 12.2 [236, 300] For any hb kb 4, the syntenic diameter is hþ k � 4.

It is relatively easy to see that the diameter is reached, for example, by

Sðh; kÞ ¼ ff1; 2; . . . ; hg; f1; 2; . . . ; hg; . . . ; f1; 2; . . . ; hgg. Liben-Nowell [249] showed

an interesting relationship between the syntenic distance problem and the so-called

gossiping problem (see Hedetniemi et al. [211] for a survey on the gossiping problem).

This relationship was extensively used by Chauve and Fertin [103] to characterize all

instances Sðh; kÞ that reach the diameter, for any hb k. Their result also implies the

existence of a polynomial-time algorithm that determines whether a given instance

Sðh; kÞ reaches the diameter.

12.5 Algorithmic Results

12.5.1 Syntenic Distance

DasGupta et al. [131] proved that computing the syntenic distance is an NP-hard

problem, by a transformation from largest balanced independent set.

Proposition 12.4 [131] There exists a polynomial-time approximation algorithm

H for computing sydðSðh; kÞÞ whose ratio equals 2. Its running time is

OðhkA�1ðhk; kÞÞ, where A�1 is the inverse of Ackermann’s function.

For more information about Ackermann’s function, see, for instance, Cormen

et al. [121]. Algorithm H works as follows. Take the synteny graph SGðSðh; kÞÞ and
let CCi be its p connected components, for 1a ia p. Let ki be the number of

vertices of CCi, and remember that
Pp

i¼1 ki ¼ k. For each 1a ia p, operate ki � 1

fusions within CCi. We then end up with p isolated vertices in the synteny graph,

which represent p sets. Now, operate h� p fissions on those p sets to obtain the h

singletons f1g; f2g . . . fhg. Altogether, we have used
Pp

i¼1ðki � 1Þ ¼ k � p fusions

and h� p fissions, and thus hþ k � 2p moves. However, by proposition 12.3 we

know that sydðSðh; kÞÞb h� p. Since hb k by hypothesis, we conclude that algo-

rithm H is a 2-approximation algorithm.

12.5 Algorithmic Results 185

Earlier, Ferretti et al. [174] also provided a heuristic algorithm, F , without analyz-

ing its approximation ratio. Liben-Nowell [248] undertook this study and proved

that (1) F always outperforms H, and (2) F has ratio 2. Liben-Nowell also showed

the following surprising result.

Theorem 12.3 [248] Any algorithm that works only within connected components of

the synteny graph cannot have an approximation ratio better than 2.

Indeed, it can be easily seen that solving the following instance using only intra-

component moves requires at least 2h� 4 moves (h� 2 fusions and h� 2 fissions):

Sðh; hÞ ¼ ff1; 2; . . . ; h� 1g; fhg; fhg; . . . ; fhgg. However, the above instance can be

solved in h� 1 moves (more precisely, h� 1 translocations), thus yielding a ratio of

2� e, for any e > 0.

Since both H and F use only intracomponent moves, we conclude by theorem 12.3

that their approximation ratio 2 is tight. Liben-Nowell [249] gives a fixed-parameter

algorithm for determining sydðSðh; kÞÞ, where the parameter d is an upper bound on

sydðSðh; kÞÞ.
Theorem 12.4 [249] Whenever sydðSðh; kÞÞa d, there exists an Oðhk þ 2Oðd log dÞÞ al-
gorithm that determines the exact value of sydðSðh; kÞÞ.

The above theorem improves the result of DasGupta et al. [131], where an

Oðhk þ 2Oðd 2ÞÞ algorithm was given. Note that since sydðSðh; kÞÞ ¼ OðhÞ (indeed,

sydðSðh; kÞÞa hþ k � 4; see theorem 12.2), the above result implies an Oð2Oðh log hÞÞ
exact algorithm for computing the syntenic distance of any instance Sðh; kÞ.

12.5.2 Easy Cases

Though many structural properties and some algorithmic results are known for the

syntenic distance problem, few positive results exist. Hence, some authors have un-

dertaken the study of restricted versions of synteny. In this section, we summarize

the main results that have been obtained for linear synteny, nested synteny (in their

linear and exact restrictions), uncovering synteny, and synteny using only fusions and

fissions.

12.5.2.1 Linear Synteny DasGupta et al. [131] introduced a restricted version of the

problem, called linear synteny. Linear synteny di¤ers from ‘‘general’’ synteny in that

the set of moves is predefined, and each of them must appear in a specific order.

More precisely:

1. the first k � 1 moves must be either fusions or translocations that produce a sin-

gleton that does not appear in any other set, and

2. all following moves must be fissions that create singletons.

186 12 Set Systems and the Syntenic Distance

The associated distance of an instance Sðh; kÞ under these restrictions is denoted

by lsydðSðh; kÞÞ.
DasGupta et al. [131] proved that the linear synteny problem is NP-hard as well;

moreover, algorithm H (see proposition 12.4) yields a 2-approximation for that

problem. Here are some other results. The first one, theorem 12.5, motivates the

study of linear synteny.

Theorem 12.5 [131] If linear synteny can be approximated within ratio c in polyno-

mial time, then for any e > 0, general synteny can be approximated within ratio cþ e

in polynomial time.

Later, Liben-Nowell and Kleinberg [250] studied structural properties of linear

synteny, and obtained results similar to those in the general case: monotonicity, du-

ality, and canonicity. Upper and lower bounds on lsydðSðh; kÞÞ have also been given,

as stated below.

Theorem 12.6 [248] For any instance of synteny Sðh; kÞ,
lsydðSðh; kÞÞb h� 1þ max

1acak�1
fc� jfg j countðgÞa cþ 1gjg:

The following result relates the linear syntenic distance to the general syntenic

distance.

Lemma 12.2 [131] Let Sðh; kÞ be an instance of synteny. Then

lsydðSðh; kÞÞa sydðSðh; kÞÞ þ log4=3 sydðSðh; kÞÞ:

Lemma 12.2 and theorem 12.6 were used to obtain the lower bound on the general

syntenic distance given in theorem 12.1. Finally, Liben-Nowell [248] studied the di-

ameter of the linear syntenic distance in the case h ¼ k, and obtained the following

result.

Theorem 12.7 [248] For any hb 4, the maximal linear syntenic distance between

two h-sized genomes is 2h� 3.

12.5.2.2 Linear Nested Synteny

Definition 12.5 An instance Sðh; kÞ ¼ fS1;S2; . . . ;Skg is said to be nested if, for all

1a i0 ja k, one of the three following cases occurs:

� Si VSj ¼ j,

� Si JSj , or

� Sj JSi.

12.5 Algorithmic Results 187

The problem of determining lsydðSðh; kÞÞ in the specific case of nested instances is

solvable in polynomial time. This result was initially proved by Liben-Nowell and

Kleinberg [250], who gave an algorithm with time complexity Oðhk2 þ pk2 log kÞ
(recall that p is the number of components of the synteny graph). Later, Pisanti

and Sagot [300] gave a more e‰cient algorithm, running in Oðhk þ k2 þ pk log2 kÞ
time.

12.5.2.3 Exact Nested Synteny

Definition 12.6 An instance Sðh; kÞ ¼ fS1;S2; . . . ;Skg is said to be exact if

sydðSðh; kÞÞ ¼ hþ k � 1. The exact synteny problem is thus the problem of deter-

mining whether a general synteny instance is exact.

Though the exact synteny problem is NP-hard (a direct consequence of DasGupta

et al.’s [131] result for the general synteny problem), the problem restricted to nested

instances turns out to be solvable in polynomial time. Pisanti and Sagot [300] give an

Oðhk þ k2 þ k log kÞ algorithm for solving the exact nested synteny problem.

12.5.2.4 Uncovering Synteny More recently, Ting and Yong [358] studied the uncov-

ering synteny problem.

Definition 12.7 An instance Sðh; kÞ ¼ fS1;S2; . . . ;Skg (with hb kb 4) is said to be

uncovering if there exists an ordering of the sets Sj, for 1a ja k, such that

SinðSiþ1 USiþ2 U � � �USkÞ0j for all 1a ia k � 3.

Ting and Yong [358] note that determining whether a syntenic instance is uncover-

ing can be achieved in polynomial time. Their main result is the following: for any

uncovering instance, there exists an OðhkÞ algorithm for computing sydðSðh; kÞÞ.
Actually, for any uncovering instance, they show that either sydðSðh; kÞÞ ¼ h� p or

sydðSðh; kÞÞ ¼ h� pþ 1, where p is the number of connected components in the

synteny graph.

12.5.2.5 Fusions and Fissions Only Dias and Meidanis [139] studied another

restricted case of synteny, in which only fusions and fissions are allowed. Let

sydff ðSðh; kÞÞ be the distance under this restriction. Dias and Meidanis [139] proved

the following two results.

Theorem 12.8 [139] For any hb k, sydff ðSðh; kÞÞ ¼ hþ k � 2p, where p is the num-

ber of connected components of the synteny graph SGðSðh; kÞÞ.
As in proposition 12.4, let A�1ðp; qÞ denote the inverse of Ackermann’s function

for any two integers p, q.

188 12 Set Systems and the Syntenic Distance

Theorem 12.9 [139] For any hb k and any syntenic instance Sðh; kÞ, there exists an
Oðh2 þ hkA�1ðhk; hÞÞ algorithm that finds an optimal sequence of sydff ðSðh; kÞÞ ¼
hþ k � 2p fusions and fissions to solve this instance.

12.6 Conjectures and Open Problems

The main open problem regarding general synteny is to obtain an approximation al-

gorithm with a better ratio.

Problem 12.1 [131] Devise an approximation algorithm with ratio strictly smaller than

2 for computing the syntenic distance, or show that this ratio cannot be improved.

Other problems are related to the variant in which only translocations are allowed.

Clearly, this variant can apply only to square instances (i.e., instances with h ¼ k).

This problem is mentioned and considered by Liben-Nowell [249], as well as Pisanti

and Sagot [300], but there exist few results apart from those concerning the diameter.

Problem 12.2 What is the complexity of the syntenic distance problem using only

translocations?

We stress that this is not the same problem as that of sorting by unsigned trans-

locations discussed in section 10.4.2, since the underlying objects on which translo-

cations are performed di¤er. Besides, Liben-Nowell [249] made the following

interesting remark: there are instances for which fusions and fissions are needed to

reach optimality. For instance, he gave the following square instance:

Sðh; kÞ ¼ ff1; 2; 3; 4g; f1; 2; 3; 4g; f1; 2; 3; 4g; f5; 6; 7g; f5; 6; 7g; f5; 6; 7g; f5; 6; 7gg;
for which eight translocations are needed, but only seven moves su‰ce: one fusion,

five translocations, and one fission. This raises the following question.

Problem 12.3 [103] Is it possible to characterize those syntenic instances that can be

optimally solved by translocations only?

Another variant could also be considered, in which genes could be duplicated

along the genome. To our knowledge, there exists no result on the subject.

Problem 12.4 What can be said about the variant where chromosomes do not form a

partition of the set of genes (i.e., genes can appear in several chromosomes of a

genome)?

It should be noted that in this case, the compact representation is no longer suit-

able. Take, for instance, P1 ¼ P2 ¼ ffa; bg; fa; cgg. The compact representation

yields P 0
1 ¼ ff1; 2g; f1; 2gg and P 0

2 ¼ ff1g; f2gg, since gene a belongs to both chro-

mosomes. The syntenic distance between P1 and P2 is clearly 0, but the compact

representation does not reflect it anymore.

12.6 Conjectures and Open Problems 189

IV MULTIGENOMIC MODELS

A natural generalization of genome rearrangement problems, if not their ultimate

goal, is the reconstruction of the evolutionary events that explain the di¤erences and

the relations between more than two species. This leads to the inference of common

ancestor configurations and eventually of phylogenies, which are trees depicting the

kin relationships between organisms or between species (examples will appear in fig-

ures 14.1 and 14.2).

Many techniques can be used to reconstruct a phylogeny from gene order data; for

instance, distance-based phylogenetic reconstruction methods compute all pairwise

distances between the input genomes (according to any method we have mentioned

so far, although sequence alignment has come to be the de facto standard), and then

use the resulting distance matrix to infer a tree. A lot of methods (whether they are

distance-based or not) are available for reconstructing trees and assessing their accu-

racy, but reviewing them is far beyond the scope and point of this book. We refer the

reader to Felsenstein [170] for more information on phylogenetic inference.

In this part, we are interested in methods for inferring evolutionary events, given a

phylogenetic tree, or for inferring both the events and the tree, minimizing the num-

ber of evolutionary events at the same time. In both cases, we obtain the configura-

tion of ancestral genomes as a by-product of the reconstruction of rearrangement

scenarios, which is not possible when the comparison is limited to two genomes.

The computational complexity of many combinatorial optimization problems usu-

ally increases when the number of objects that are taken into account increases from

two to three, and genome rearrangement problems are no exception: as soon as there

are three genomes to compare, most problems we have examined so far become NP-

hard, even when the rearrangement problem on two genomes is trivial. Therefore,

chapter 13 first focuses on the so-called median problem, which consists in recon-

structing an ancestral configuration of two genomes, given a third as an out-group.

Still, the three genomes are used in a symmetrical way, and the out-group has no spe-

cial status in the instance. The median problem can be used as a hint for more gen-

eral problems with more than three genomes: either for reconstructing ancestral

configurations, given a phylogenetic tree (a problem known as the ‘‘small parsi-

mony’’ problem), or for inferring the phylogenetic tree, the ancestral genomes, and

the evolutionary events at the same time (the ‘‘large parsimony’’ problem). Some

variants of these ancestral genome reconstruction techniques rely on the assumption

that a genome in the instance has undergone a whole genome duplication, which

means that it contains two copies of each gene. We survey those ‘‘halving’’ problems

at the end of chapter 13.

Finally, chapter 14 reviews all problems that deal with more than three genomes.

It contains the most general formulations of the genome rearrangement problems we

have investigated, and is probably the most relevant part of this book for readers

interested in biological applications. Few theoretical results are specific to this chap-

ter: it uses all results we have previously reviewed, including those presented in

chapter 13, to design heuristics for inferring phylogenies.

192 IV Multigenomic Models

13 Median and Halving Problems

Given a rearrangement distance d and three genomes P1, P2, and P3, the median

problem consists in finding a fourth genome PM , the median genome, such that the

sum of the distances between PM and each other genome is minimized. Given a

genome PM , the quantity to minimize is therefore

M ¼ dðP1;PMÞ þ dðP2;PMÞ þ dðP3;PMÞ;
which is called the median score of PM .

Genome median problems are used to infer ancestral configurations (see Bourque

and Pevzner [81]), or as a hint for phylogenetic inference methods (see chapter 14).

They can also be used to infer statistics on the rearrangement rates on di¤erent

lineages (see Bourque et al. [84]). Solutions to median problems have also been used

to model a consensus genome when di¤erent sources are inconsistent (see Jackson

et al. [218]).

As in pairwise genome rearrangement problems, a number of choices can be made

as to how genomes are modeled and which distance is chosen, spawning just as many

di¤erent combinatorial optimization problems. However, a universal lower bound on

the optimal median score can be computed, regardless of which distance is chosen

and how genomes are modeled. It will prove useful in the subsequent sections, when

the median problem is hard but the distance computations can be achieved fast.

Lemma 13.1 Given any three genomes P1, P2, and P3, and a rearrangement dis-

tance d, let M be the median score of a genome PM . We then have

Mb
dðP1;P2Þ þ dðP1;P3Þ þ dðP2;P3Þ

2
:

The models for genomes used in this chapter are the permutations (part I), signed

multichromosomal genomes in the ‘‘paths and cycles’’ configuration (chapter 10),

and multichromosomal genomes in the ‘‘set system’’ configuration (chapter 12). It

seems that median problems have not been studied in the case of strings, posets, or

other multichromosomal models described in chapters 11 and 12. In consequence, we

always refer to paths and cycles when we speak about multichromosomal models in

this chapter, except in section 13.3.5, on genome halving, which uses set systems.

13.1 Breakpoint Median

As for the comparisons of two permutations, we begin the exploration of median

problems with the simplest problem, the breakpoint median. Its conceptual simplicity

and the fact that the distance on which it is based is trivial to compute for every def-

inition of a genome make it a good starting point for our review of median problems.

Here, multichromosomal genomes are paths and cycles as defined in chapter 10.

Therefore, a genome with n genes (i.e., of length n) is built over the alphabet

A ¼ f1; 2; . . . ; ng.
� Introduced by Sanko¤ and Blanchette [317] and Blanchette et al. [67].

� Complexity: NP-hard for signed and unsigned permutations, whether they are cir-

cular (Pe’er and Shamir [292]) or linear (Bryant [88]). In the signed multichromo-

somal case, the problem is NP-hard for linear genomes, but polynomial with an

Oðn3Þ time solution for signed genomes with circular chromosomes allowed (see

Tannier et al. [353]).

� Best approximation ratio: 7=6 for signed permutations (see Pe’er and Shamir [293])

and 5=3 for unsigned permutations (see Caprara [96]).

� Exact algorithms: Using a reduction to the traveling salesman problem by Sank-

o¤ and Blanchette [317].

Recall that for two signed multichromosomal genomes P and G, the breakpoint

distance between two genomes is bdðP;GÞ ¼ n� ðaþ e=2Þ (see section 10.2), where

n is the number of genes, a is the number of common adjacencies, and e is the num-

ber of common telomeres. Note that this formula does not apply directly to linear

permutations, where the breakpoint distance has been defined as n� aþ 1, where n

and a are computed on the linear extension of the permutations. This is due to the

model of chromosomes we use here, which can be read indi¤erently in one direction

or the other, which is not necessarily the case for permutations.

13.1.1 Complexity

Pe’er and Shamir [292] and Bryant [88] independently proved that finding an optimal

breakpoint median of three (signed or unsigned) permutations is NP-hard, by a re-

duction of Hamiltonian path (Pe’er and Shamir [292] use the directed version,

whereas Bryant [88] uses the undirected version). Bryant studied the complexity of

various related constrained problems: for example, he proved the following:

194 13 Median and Halving Problems

� The problem remains NP-hard if the median genome is required to contain no

adjacencies not present in one of the input genomes.

� Determining whether a solution to the problem on unsigned permutations is

unique, and whether a given adjacency belongs to all median genomes, are NP-

complete problems.

Since permutations are particular strings, these NP-completeness results on the

breakpoint median problem on permutations imply analogous results for the same

problem on strings.

Surprisingly, the problem turns out to be easier to solve in the more general case of

signed multichromosomal genomes; indeed, in this case, medians are not required to

be permutations, which actually makes the problem less constrained. In the most

general case, where both linear and circular genomes are allowed, the problem

reduces to a maximum perfect matching problem, which yields an algorithm running

in time Oðn3Þ, where n is the number of genes (see Tannier et al. [353]). However, if

genomes are linear and if the median is required to be linear as well, then the prob-

lem is NP-hard again, which Tannier et al. [353] prove by a reduction of the same

problem on circular signed permutations.

13.1.2 Algorithms

13.1.2.1 Exact Algorithms

Permutations Sanko¤ and Blanchette [317, 318] proposed the following reduction of

the breakpoint median problem on unsigned permutations to the traveling sales-

man problem, which can be extended to signed permutations. Let P1, P2, P3 be

three unsigned circular permutations that form an instance of the breakpoint median

problem, and let G be the complete undirected graph with vertex set f1; 2; . . . ; ng.
Each edge fx; yg of G has weight 3� uðx; yÞ, where uðx; yÞ is the number of

genomes among P1, P2, P3 for which xy or yx is a point. Then, a minimum weight

solution to the traveling salesman problem on G yields the optimal solution to the

median problem. The traveling salesman problem can be solved to optimality in

time Oðn22nÞ by dynamic programming (see Applegate et al. [20]).

Gramm and Niedermeier [189] give an exact algorithm with time complexity

Oð2:15bnÞ for computing the breakpoint median of three signed permutations, where

b is the maximum number of breakpoints between any two input permutations. The

result is given for the median of kb 3 permutations, which gives a complexity

Oð2:15bknÞ.
Multichromosomal Genomes Tannier et al. [353] proposed the following approach for

handling the breakpoint median problem on multichromosomal signed genomes,

which yields a polynomial-time algorithm for solving the problem to optimality. Let

13.1 Breakpoint Median 195

P1, P2, and P3 be three genomes (possibly with circular chromosomes) on a gene set

A of size n, and let G be the complete undirected graph whose vertex set consists of

all the extremities of the genes in A and of an additional vertex tx for each gene ex-

tremity x. Weights are then added to edges as follows:

� For every pair of gene extremities fx; yg, assign a weight to edge fx; yg equal to

the number of genomes, among P1, P2, and P3, in which xy is an adjacency (each

edge in G joining two gene extremities therefore has weight 0, 1, 2, or 3).

� For every vertex v (which is the extremity of a gene), assign a weight to edge fv; tvg
equal to half the number of genomes, among P1, P2, and P3, in which v is a telo-

mere (each edge fv; tvg in G therefore has weight 0, 1
2 , 1, or

3
2).

� Finally, assign weight 0 to every other edge in G.

Theorem 13.1 [353] Let M be a perfect matching in G. Clearly, edges between gene

extremities in G define the adjacencies of a genome PM , and the weight of M in G is

3n� ðbdðP1;PMÞ þ bdðP2;PM Þ þ bdðP3;PMÞÞ.
Therefore, the breakpoint median problem of three multichromosomal genomes

can be solved by means of finding a maximum-weight perfect matching in G, which

can be achieved in time Oðn3Þ (see Edmonds [153]).

13.1.2.2 Lower Bounds Using a transformation of the breakpoint median problem

into the traveling salesman problem, Bryant [90] gives a lower bounding technique

for the breakpoint median problem on signed permutations. If p1, p2, and p3 are

three permutations of f1; . . . ; ng that form an instance of the breakpoint median

problem (seeking a permutation for median), and g A f1; . . . ; ng, let dgðp i; p jÞ equal
0 if g has the same successor in p i and p j (i.e., if p i

ðp iÞ�1
g þ1

¼ p i

ðp iÞ�1
g þ1

), and 1 other-

wise. The formula is computed on the linear extensions of the permutations, so that 0

and nþ 1 are valid indices. For any permutation pM , let dgðpMÞ ¼ dgðpM ; p1Þþ
dgðpM ; p2Þ þ dgðpM ; p3Þ.
Theorem 13.2 [90] If M is the minimum score of a median permutation with respect

to the breakpoint distance, then

Mb
X

g A f1;...;ng
min
pM

dgðpMÞ:

Bryant [90] shows how to compute this bound in polynomial time, and improves it

using Lagrange multiplier techniques.

13.1.2.3 Approximation Pe’er and Shamir [293] give a 7=6-approximation for the

breakpoint median problem on signed permutations. Using a classical approach for

196 13 Median and Halving Problems

the traveling salesman problem, Caprara [96] provides a 5=3-approximation for the

breakpoint median problem on unsigned permutations by using a primal-dual integer

programming formulation.

13.2 Reversal and DCJ Median

Two other median problems that have received much attention are the reversal me-

dian problem and the DCJ median problem (see sections 4.5 and 10.5 for a definition

of DCJ distances). They have been investigated only in the signed case; therefore, all

genomes and permutations in this section are signed, and we omit that adjective in

the following.

Here, multichromosomal genomes are paths and cycles as defined in chapter 10.

� Introduced by Sanko¤ et al. [327].

� Complexity: The reversal and the DCJ median problems are NP-hard, and even

APX-hard for signed permutations (see Caprara [97]) and multichromosomal signed

genomes (see Tannier et al. [353]).

� Approximation: 43-approximation by Caprara [92] for the reversal and DCJ median

for permutations.

Several studies (see, e.g., Moret et al. [273, 275]) argue, based on experimental

tests, that phylogenies based on solutions to the reversal median problem are more

accurate than phylogenies based on solutions to the breakpoint median problem.

13.2.1 Complexity

Caprara [97] proved the NP-hardness of the reversal median problem by a transfor-

mation from breakpoint graph decomposition, the same problem that was used to

prove the NP-hardness of sorting by unsigned reversals (see section 3.3.4). Note that

the NP-hardness result of Caprara [97] contains (and even uses) NP-hardness for the

median with the DCJ rearrangement distance on permutations. The reversal median

problem is even APX-hard, which can be shown using the result of Berman and Kar-

pinski [57] on approximating the breakpoint graph decomposition problem. Tan-

nier et al. [353] also use a reduction of the breakpoint graph decomposition

problem to prove the NP-hardness of the DCJ median problem on multichromoso-

mal genomes.

13.2.2 Algorithms

The potential practical importance of the reversal median problem motivated the de-

sign of several heuristics and exact exponential-time algorithms, and experimental

results are also available (see, e.g., Siepel and Moret [341] or Caprara [97]).

13.2 Reversal and DCJ Median 197

13.2.2.1 Exact Algorithms Caprara [92, 97] proposed an integer programming for-

mulation of the reversal median problem for permutations, and an exact solver based

on a branch-and-bound technique that is e‰cient for small instances (i.e., when

na 50), implemented in GRAPPA (a software described in section 15.2.4). This

exact algorithm, which requires the use of a linear programming solver, combines

bounds from the relaxation of the integer programming formulation with combinato-

rial bounds, one of which is derived from lemma 13.1. Note that the reversal distance

is always at least as large as the DCJ distance, so bounds for the DCJ distance may

also be used for the reversal median problem.

13.2.2.2 Heuristic Algorithms Beyond n ¼ 50, no exact algorithm is able to find the

solution in a reasonable amount of time. Many heuristic principles have been pub-

lished; most of them are based on a greedy strategy that consists in using one genome

as a starting point and finding rearrangements that may bring it closer to the median

(usually the hint is that they bring it closer to the other genomes). This strategy,

which varies depending on which events should be considered, has been imple-

mented by various authors (see, e.g., Bourque and Pevzner [81], Mira et al. [270],

Interian and Durrett [216], or Arndt and Tang [21]). Local searches based on the

same principles have been proposed by Interian and Durrett [217] and Lenne et al.

[245] for the 2-break median problem. Other methods are mentioned by Wu and

Gu [373, 374].

13.2.3 Variants

13.2.3.1 Perfect Reversal Median The reversal median with some ‘‘perfectness’’ con-

straints has been studied by Bernt et al. [60, 62, 63]. Recall (section 4.3.1) that a sce-

nario of reversals transforming one genome into another is perfect if it does not

break any common interval. The perfect reversal median problem consists in finding

a median with minimal score, with the additional constraint that there exists a perfect

sequence of reversals for transforming each of the input genomes into the median (or

conversely). A parallel algorithm for solving the median problem with preservation

of common intervals was proposed by Bernt et al. [61]. A slight relaxation of the per-

fectness contraint led Bernt et al. [60] to study the reversal median problem with

preservation of ‘‘conserved intervals’’ (see page 64) instead of common intervals.

They proposed a heuristic to solve this problem approximately.

The general case is solved by a branch-and-bound technique, but there is an inter-

esting particular case where the problem is solvable in polynomial time (since this is

quite rare in this part, it deserves to be mentioned). This occurs when the PQ-tree

structure of common intervals (defined on page 23) satisfies a particular nontrivial

property.

198 13 Median and Halving Problems

Theorem 13.3 [62] If the PQ-tree of the common intervals of three given permuta-

tions has only linear nodes, then the perfect reversal median problem can be solved

in linear time.

Indeed, the only allowed operations here are reversals of strong intervals, that is,

common intervals that do not overlap other common intervals. The problem reduces

to a simple median problem on binary vectors compared by a Hamming distance. It

is easy to see that the latter problem can be solved in linear time.

13.2.3.2 Reversals Around an Origin of Replication Ohlebusch et al. [283] solve, in

linear time, a variant of the median problem in which the only allowed operations

are reversals that are symmetric around an origin or a terminus of replication.

13.3 Duplicated Genomes

Whereas genome median problems aim at reconstructing ancestral configurations

from comparisons of several species, genome halving problems use the intrinsic infor-

mation about a genome that has undergone a whole duplication to reconstruct its an-

cestral configuration. Guided halving problems combine approaches inspired by both

median problems and genome halving problems.

Beyond the duplication of individual genes, it is possible for the complete genome

of a species to be fully duplicated, resulting in a genome where each chromosome

exists in two copies. Although this event is usually lethal, in rare cases a duplicated

genome can stabilize after a series of rearrangements. Evidence supporting the occur-

rence of whole genome duplications has been adduced in numerous plant genomes

[2, 184], as well as in vertebrate genomes [260, 185, 219]. A particularly convincing

example of whole genome duplication is found in the yeast genome [372, 243, 234];

however, alternative views do exist [267, 119].

From an algorithmic point of view, duplicated genomes are a particular case of

genomes with duplicates: each gene family occurs exactly twice. However, the goal

here is not to compute the distance between two given genomes, but to reconstruct

the ancestral genome of a given genome. Except in section 13.3.5, multichromosomal

genomes are paths and cycles as defined in chapter 10.

13.3.1 The Double Distance

� Introduced by Alekseyev and Pevzner [9].

� Complexity: Oðn3Þ for the breakpoint distance, NP-hard for the DCJ distance

for multichromosomal signed genomes (circular chromosomes allowed) (see Tannier

et al. [353]).

13.3 Duplicated Genomes 199

We first give a formalization of a genome that has undergone a whole genome

duplication. Recall that a signed gene g is defined as an oriented sequence of DNA

identified by its tail gt and its head gh, linked by an edge.

Definition 13.1 A duplicated gene g is a pair of signed genes fg1t; g1hg and fg2t; g2hg
that are biologically identified as homologous.

A genome is a set of paths and cycles on a set of genes, and a duplicated genome is

a genome on a set of duplicated genes. This should not be confused with the follow-

ing concept.

Definition 13.2 For a genome P on a gene set A, a doubled genome PlP is a

duplicated genome on the set of duplicated genes from A such that if gxhy is an adja-

cency of P (where x; y A ft; hg), then either both g1xh1y and g2xh2y, or both g2xh1y
and g1xh2y, are adjacencies in PlP.

Figure 13.1 illustrates the two concepts. Note the di¤erence between a multichro-

mosomal duplicated genome and the special case of a doubled genome: the former

has two copies of each gene, whereas in the latter these copies are organized in such

a way that there are two identical copies of each chromosome (when we ignore the

1’s and 2’s in the g1x’s and g2x’s): it has two linear copies of each linear chromosome

and, for each circular chromosome, either two circular copies or one circular chro-

mosome containing the two successive copies. Note also that for a genome P, there

is an exponential number of possible doubled genomes PlP (exactly 2 to the

power of the number of nontelomeric adjacencies).

Figure 13.1
A duplicated genome and a doubled genome

200 13 Median and Halving Problems

Definition 13.3 For a duplicated genome Y, an ordinary genome P, and a distance d

between genomes, the double distance between P and Y is

ddðP;YÞ ¼ min
PlP

dðPlP;YÞ:

The problem of computing the double distance was mentioned as being open by

Alekseyev and Pevzner [9]. It can be solved in polynomial time for multichromoso-

mal genomes when d is the breakpoint distance, but it is NP-complete when d is the

DCJ distance (see Tannier et al. [353]). The problem remains open for unichromoso-

mal genomes.

13.3.2 Genome Halving

Given a duplicated genome Y and a distance d between genomes, the genome halving

problem consists in finding an ordinary genome P that minimizes dðY;PÞ.
� Introduced by El-Mabrouk et al. [159].

� Complexity: Linear for multichromosomal genomes (El-Mabrouk and Sanko¤

[158]) with the fusion/fission/translocation/reversal distance (RT, defined on page

172), and quadratic for unichromosomal circular genomes with the reversal and

DCJ distance (see Alekseyev and Pevzner [10], who also claim that there is a flaw in

the solution of El-Mabrouk and Sanko¤ [158]).

Although computing the double distance is NP-hard for the DCJ distance, El-

Mabrouk [155], El-Mabrouk and Sanko¤ [158], and El-Mabrouk et al. [159] showed

that it can be computed in polynomial time for linear genomes when d is the RT-

distance (see definition 10.9). A simple solution has been proposed when d is the

DCJ distance, in the case of multichromosomal genomes (see Warren and Sanko¤

[368]; Mixtacki [271]) and in the case of signed unichromosomal genomes (see Alek-

seyev and Pevzner [9]). It can be solved in polynomial time when d is the breakpoint

distance on multichromosomal signed genomes (see Tannier et al. [353]), but it is

open in the case where genomes are linear.

The polynomial solutions are based on the contracted breakpoint graph for dupli-

cated genomes, which is implicit in the work of El-Mabrouk and Sanko¤ [158] and

named by Alekseyev and Pevzner [11]. The vertex set of the contracted breakpoint

graph is composed of the set of gene extremities, in which two heads or two tails of

one duplicated gene are contracted in a single vertex. Then there is an edge between

Ax and By (for x; y A fh; tg) if at least one of A1xB1y, A1xB2y, A2xB1y, and A2xB2y
is an adjacency in the genome.

The connected components of this graph are paths and cycles. The double distance

can be computed as follows. For the breakpoint distance, construct the weighted

complete undirected graph as on page 196, and compute a maximum-weight perfect

13.3 Duplicated Genomes 201

matching (see Tannier et al. [353]). For the DCJ distance, choose half of the edges of

each even cycle or path, alternating so that the result is a perfect matching on this

cycle or path. For odd cycles, join the cycles by pair, choose an alternating matching

on both, and join the unmatched vertices. For odd paths, take one edge over two,

starting from the extremities. This forms a matching of the graph, and thus a genome

of the set of genes, and it is an optimal solution to the DCJ halving problem (see

Warren and Sanko¤ [368]; Mixtacki [271]).

This solution allows several chromosomes and possibly circular ones. Sharp verifi-

cations have been done by El-Mabrouk and Sanko¤ [158] to construct only linear

chromosomes, and to prove the solution is also valid for the RT-distance. Alekseyev

and Pevzner [11] have claimed that the solution of El-Mabrouk and Sanko¤ [158]

contains an error in the unichromosomal case.

13.3.3 Solving Tetraploidy

Tetraploidy is a variant of genome halving that is based on the assumption that

among the two copies of the duplicated genome, it is known which copy belongs to

which copy of the ancestral genome. In other words, each gene in the duplicated

genome belongs either to gene set A or to gene set B, and the goal is to construct a

doubled genome where all chromosomes contain only genes from one set. This vari-

ant was introduced by El-Mabrouk and Sanko¤ [157], who give a heuristic and some

special cases where this heuristic yields the exact solution.

13.3.4 Guided Halving

� Introduced by Zheng et al. [381].

� Complexity: Polynomial for the breakpoint distance and multichromosomal

genomes with circular chromosomes allowed, NP-hard for breakpoint distance and

linear genomes or permutations; also NP-hard for the DCJ distance and linear

genomes or permutations (see Tannier et al. [353]; Caprara [97]).

Seoighe and Wolfe [331] first observed the extreme non-uniqueness associated with

the solutions to the genome halving problem and suggested that this inherent di‰-

culty could be attenuated through the use of a reference genome, or out-group. Given

a duplicated genome Y and an ordinary genome P, the guided halving problem con-

sists in finding an ordinary genome PM that minimizes dðY;PMÞ þ dðPM ;PÞ,
where d is any distance on genomes. The guided halving problem is similar to the

genome halving problem for Y, but it takes into account the ordinary genome P of

an organism that is presumed to share a common ancestor with PM , the recon-

structed undoubled ancestor of Y.

The guided halving problem is known to be polynomial only for the breakpoint

distance on general genomes (see Tannier et al. [353]). It is NP-hard for the break-

202 13 Median and Halving Problems

point distance on linear genomes, and for the DCJ distance on general genomes (see

Tannier et al. [353]; Zheng et al. [381]). Other variants are open.

Zheng et al. [381, 382] have proposed heuristics and used them, for instance, to

infer the ancestor of the maize genome with the rice and sorghum genomes as

out-groups. Another variant of the guided halving problem, introduced by Zheng

et al. [381], seeks a genome PM that minimizes dðPM ;PÞ, given dðY;PMÞ ¼
minH dðY;HÞ. Since computing minH dðY;HÞ is polynomial-time solvable for every

distance and every definition of a genome (it is the halving problem), this variant

may have di¤erent complexities than the first one. The computation problems associ-

ated with this variant, according to the distance and definition of genome, are all

open.

13.3.5 Genome Halving with Unordered Chromosomes

Genome halving aims at finding a doubled genome that minimizes a distance to a

duplicated genome. The problem has been studied in the case where chromosomes

are considered as sets of genes, that is, the synteny model (see chapter 12).

� Introduced by El-Mabrouk et al. [159].

� Complexity: Unknown. Heuristics have been proposed by El-Mabrouk et al. [159]

and Yin and Hartemink [377].

As in chapter 12, here a genome P is a collection of N subsets C1;C2; . . . ;CN of a

set B ¼ fb1; b2; . . . ; bhg such that each gene in B appears exactly once among these

subsets Ci. A duplicated genome is a collection of N subsets C1;C2; . . . ;CN of a set

B ¼ fb1; b2; . . . ; bhg such that each gene in B appears exactly twice among these sub-

sets Ci. In a duplicated genome, if a gene occurs twice in the same set (or chromo-

some) Ci, it is called a 2-gene. The genome P is called a doubled genome if it is

made up of two identical copies of N=2 chromosomes.

Operations on chromosomes are defined as for the syntenic distance (see page

182). The distance between two genomes is the syntenic distance, and the goal is to

find a doubled genome minimizing the distance to a given duplicated genome P. The

distance to this closest doubled genome is denoted as hvdðPÞ.
At the heart of the analysis of the genome halving problem is the synteny graph

(see also section 12.3) induced by a genome P. The synteny graph induced by P is

the graph WðPÞ ¼ ðV ;EÞ defined by V ¼ fC1;C2; . . . ;CNg and E ¼ E1 UE2, where

E1 ¼ ffCi;Cjg : i0 j5Ci VCj 0jg and E2 ¼ ffCi;Cig : Ci contains a 2-geneg.
Note that WðPÞ is not necessarily simple (i.e., it may contain loops). From a graph-

theoretic point of view, our goal becomes transforming the graph WðPÞ into a

matching bipartite graph by eliminating (and occasionally adding) appropriate edges

through translocations. See figure 13.2 for an illustration.

13.3 Duplicated Genomes 203

13.3.5.1 Lower and Upper Bounds The genome halving problem with unordered

chromosomes requires the computation of the minimum number hvdðPÞ of fusions,
fissions, and reciprocal translocations that are su‰cient to transform a given genome

P into an ancestral duplicated genome P 0 containing two identical sets of chromo-

somes. Clearly, for any genome with N chromosomes, we have hvdðPÞaN, since a

trivial duplicated genome can be obtained through N � 1 fusions followed by a sin-

gle fission. Yin and Hartemink [377] prove more accurate lower and upper bounds.

Theorem 13.4 [377] Let P be a genome with N chromosomes and WðPÞ be the cor-

responding synteny graph. Then

dD=2ea hvdðPÞaN � 2þ l�minfr; ðN � 4Þ=2g;
where D is the maximum degree of WðPÞ, l ¼ 1 if WðPÞ has at least N � 1 loops and

l ¼ 0 otherwise, and r is the number of nonloop vertices of degree 1 in WðPÞ.
The upper bound of theorem 13.4 can be refined using the following concept.

Definition 13.4 A subset W HV of vertices without loops in a graph G ¼ ðV ;EÞ is
well-separated if it satisfies the following two conditions:

1. for all u; v A W , fu; vg B E, and u and v share no common neighbor if degðuÞ > 1

and degðvÞ > 1;

2.
P

u AW degðuÞa ðN � 4Þ=2.
Yin and Hartemink [377] prove that hvdðPÞaN � 2þ l� jW 	j, where l is

defined as in theorem 13.4 and W 	 is a maximum-cardinality well-separated vertex

set in WðPÞ.

Figure 13.2
Two translocations are enough to transform the synteny graph on the left, representing a genome with four
chromosomes, into a perfect matching graph. During the first translocation, v3 exchanges f4g with f1; 7g
from v4. In the second translocation, v1 exchanges f1; 6g with f4g from v4

204 13 Median and Halving Problems

13.3.5.2 Diameter The genome halving diameter for genomes with N chromosomes

is defined by

hvdDðNÞ ¼ maxfhvdðPÞ : P is a genome with N chromosomes; N eveng:
The genome halving diameter problem is thus to find hvdDðNÞ for even N; Yin and

Hartemink [377] prove lower and upper bounds on DðNÞ.
Theorem 13.5 [377] For all values of N we have

N � ua hvdDðNÞaN � 1;

where u is the largest integer such that u2u aN. In the case of nonloopy genomes,

the upper bound reduces to N � 2.

13.4 Other Variants, Generalizations, and Discussion

13.4.1 Other Operations

Even though finding an optimal reversal or 2-break median are NP-hard problems,

the underlying operations have been well studied in the pairwise genome rearrange-

ment version, so they may be handled with theoretical studies. However, in the case

of the translocation distance, with genomes modeled as set systems (see chapter 12),

computing even the pairwise distance is NP-complete. This result does not trivially

imply NP-completeness of the median problem, which is proved by DasGupta et al.

[131]. Ferretti et al. [174] present a heuristic with tests to predict the number of chro-

mosomes in the mammalian ancestor.

The transposition median problem is even more complicated since no complexity

result is known even for the pairwise distance (see section 3.1). Yue et al. [378] report

on a heuristic and experiments on simulated data. A study by Eriksen [163], cited

again below for discussion, reports some statistical work and experiments on reversal

and transposition medians.

13.4.2 More Permutations in the Input

A median permutation may be searched for more than three input permutations. Al-

though that generalization does not make sense in the context of evolution (the

Steiner tree problem, studied extensively in chapter 14, is more relevant), the tech-

niques are similar and have been used, for example, by Jackson et al. [218] to design

consensus arrangements when the input is the data from the same genome, but for

some experimental or polymorphism reasons, all sources are di¤erent.

13.4.3 Medians and Centers

As seen in the study of Popov [302], the combinatorics of genome rearrangement

literature goes far beyond actual genomic rearrangements, in the sense that an

13.4 Other Variants, Generalizations, and Discussion 205

increasing number of operations are studied under this name without being really

connected to the biological reality. Popov [302] defines an alternative to the median,

which is no longer motivated by biology, but still belongs to the field due to the sim-

ilarity of objects, questions, and methods.

Definition 13.5 A center permutation for a group of input permutations P and a dis-

tance d is a permutation p that minimizes

max
s AP

dðp; sÞ:

This center has been investigated, for instance, for the element interchange dis-

tance (see page 50) by Popov [302]. Klein [235] proves the fixed parameter tractabil-

ity of the reversal median problem, the reversal center problem, the breakpoint

center problem, the induced breakpoint median problem, and the exemplar break-

point median problem.

13.4.4 Discussion

Though the reversal median problem has received a lot of attention from researchers

and developers, and although there have been several attempts to reconstruct phylog-

enies and ancestral genome configurations using such techniques (see chapter 14),

this approach is now being criticized (see Eriksen [163] or Adam and Sanko¤ [1]) be-

cause of the large number of optimal or near-optimal reversal medians that can exist

for a single instance. Moreover, several optimal medians may be as distant as two

genomes in the instance, making unlikely even the hope that an optimal solution

will be close to reality. Moreover, results obtained using these techniques are often

far from well-established biological results (see Froenicke et al. [179]), leading us to

think that the model still needs to be improved for handling real data.

206 13 Median and Halving Problems

14 Rearrangement Phylogenies

14.1 The Large Parsimony Problem

The comparison of three or more genomes based on their gene orders faces many of

the classical di‰culties inherent in the comparison of species based on their nucleo-

tide sequences. Some particular additional di‰culties include the following:

� Rearrangement distances are sometimes di‰cult to compute even for genomes

without duplicates (e.g., the transposition distance, discussed in section 3.1).

� Possible rearrangement events are numerous, and their relative importance is not

always precisely known.

� Gene orders, and therefore inferred rearrangements, depend on the quality of the

homology inference between genes.

Though these arguments should prevent us from trying to reconstruct phylogenies

from gene orders, research in this direction is motivated both by the fact that gene

orders are much less sensitive to mutations (character insertion, character deletion,

character replacement) than nucleotide sequences, and by the fact that they represent

the evolution process in a deeper way.

The large parsimony problem was noticeably used by Sanko¤ et al. [324] to simul-

taneously produce a multiple sequence alignment and a phylogeny based on nucleo-

tide sequences. It appears as a particular case of a more general problem, called the

Steiner tree problem, which we define below in a graph-theoretic formulation

(which is the most general one if we do not restrict ourselves to finite graphs).

To this end, given a tree T ¼ ðVðT Þ;EðT ÞÞ and a weight function w on its edges,

write

WwðT Þ ¼
X

fx;yg AEðT Þ
wðx; yÞ:

The Steiner tree problem is then defined as a decision problem, as follows.

STEINER TREE PROBLEM

INSTANCE: Graph G ¼ ðV ;EÞ with weight function w, which is a metric; PJV ;

positive integer K .

QUESTION: Is there a tree T within G that spans all vertices in P and such that

WwðT ÞaK?

The tree T is called a Steiner tree with Steiner set P. When the Steiner set P is a

subset of taxa from a set V , w is a distance between pairs of taxa in V , and G is a

complete graph, the Steiner tree problem seeks a phylogenetic tree explaining the

evolution of taxa in P following the maximum parsimony criterion. From a phylo-

genetic point of view, however, the taxa in P are often considered as extant taxa that

must appear as leaves of the phylogenetic tree, contrary to ancestral taxa that corre-

spond to internal nodes.

Definition 14.1 A Steiner tree T for a set P is full (or terminal) if the elements of P

label the leaves of T .

The full Steiner tree problem is the variant of the Steiner tree problem in

which a solution is further required to be a full Steiner tree. The specific problem at

hand in the phylogenetic context is the following one (as defined by Sanko¤ et al.

[324]).

LARGE PARSIMONY PROBLEM

INSTANCE: A set P ¼ fP1;P2; . . . ;Prg of taxa from a set V , a distance d between

taxa, a positive integer K .

QUESTION: Is there a full Steiner tree T ¼ ðVðT Þ;EðT ÞÞ for P with VðT ÞJV

such that

WdðT ÞaK?

The Steiner tree problem is APX-hard even when the edge weights are only 1 or

2 (see Bern and Plassmann [59]), but admits a 1:55-approximation algorithm (see

Robins and Zelikovsky [313]). On the other hand, the full Steiner tree problem is

also APX-hard (see Lin and Xue [253]) and admits a 2:52-approximation algorithm

(see Viduani Martinez et al. [362]). Although from a formal point of view the large

parsimony problem is a particular case of the full Steiner tree problem, serious

problems arise when one tries to approximate the former using an algorithm for the

latter. Indeed, approximation algorithms for the full Steiner tree problem use the

whole input of the problem (i.e., the entire input graph). For the large parsimony

208 14 Rearrangement Phylogenies

problem, the vertex set of this graph is usually very large; for instance, if taxa are

represented by signed permutations of n elements, then V is the set of all such permu-

tations, and therefore contains 2nð2n� 2Þð2n� 4Þ . . . 2 ¼ 2n n! vertices.

The large parsimony problem must therefore be considered as a specific problem

for which specific solutions have to be found. It remains NP-complete in very partic-

ular cases—for instance, when the taxa are nucleotide sequences and d is the Ham-

ming distance (see Day [133]). In the next section, we discuss this problem in the

context of rearrangement-based distances, which is our main point in this chapter.

14.2 The Large Parsimony Problem with Gene Orders

The jump from sequence comparison to genome comparison, both combined with

the reconstruction of the evolutionary history of a given set of taxa, is the starting

point of a new era in phylogenetic reconstruction. However, the formal problem to

solve (in the hope that it will allow us to obtain good phylogenetic solutions) remains

the same: the large parsimony problem.

The first insights in the area are due to Hannenhalli et al. [200] and Sanko¤ et al.

[327], whose approaches to multiple genome comparison are already based on parsi-

mony. Subsequent experimental researches by Rice and Warnow [312] and Tang

et al. [350] showed that parsimony is usually more accurate than other reconstruction

methods. However, it is worth pointing out that although the large parsimony

problem is supported by these results as a good framework for approaching phyloge-

netic reconstruction, its relevance becomes real only when the representation of the

genomes and the definition of the distance d become concrete.

14.2.1 Breakpoint and Reversal Phylogenies on Permutations

The representation of genomes as signed permutations, thus avoiding duplicates, is

the most natural one for a first investigation of the problem on genomes with only

one chromosome, since several important distances are polynomial in this case (e.g.,

breakpoint distance and signed reversal distance; see chapter 4). The distance d is

then chosen from among those distances that can be computed in (a low-order) poly-

nomial time, which explains why the breakpoint and reversal distances are candi-

dates of choice.

� Introduced by Blanchette et al. [67] and Sanko¤ and Blanchette [318] (breakpoint

phylogeny); Moret et al. [274] and Bourque and Pevzner [81] (reversal phylogeny).

� Complexity: Computing a breakpoint phylogeny is NP-complete (see Pe’er and

Shamir [292]), as well as computing a reversal phylogeny that is both NP-complete

and APX-hard (see Caprara [92]).

14.2 The Large Parsimony Problem with Gene Orders 209

The need to strongly simplify the large parsimony problem in order to avoid un-

necessary and unfruitful di‰culties was first expressed by Blanchette et al. [67] and

Sanko¤ and Blanchette [318]. Their rationale for the use of the breakpoint distance

instead of some edit distance (such as the reversal distance or the transposition dis-

tance) is the simplicity of computing the breakpoint distance and the fact that break-

points are not associated with any rearrangement event.

Definition 14.2 A breakpoint phylogeny for a set P of signed permutations is a full

Steiner tree with Steiner set P and edges that are weighted by the breakpoint dis-

tance between the permutations associated with their end points.

Notice here that the internal nodes of the tree are implicitly labeled by signed per-

mutations. Figure 14.1 shows an example of breakpoint phylogeny where all edges

have weight 2. In this context, the large parsimony problem can be formulated as

follows:

BREAKPOINT PHYLOGENY PROBLEM

INSTANCE: Set P ¼ fP1;P2; . . . ;Prg of signed permutations of n elements, a

positive integer K .

QUESTION: Is there a breakpoint phylogeny T for P such that

WbdðT ÞaK?

Moret et al. [274] and Bourque and Pevzner [81] note several drawbacks of the

breakpoint analysis, including the di‰culty of adapting it to multichromosomal

genomes. They propose to use the signed reversal distance instead of the breakpoint

distance. The resulting problem is called the reversal phylogeny problem, and the

Figure 14.1
Breakpoint phylogeny for the Steiner set {(3 2 1 4), (3 �1 �2 �4), (�3 2 �4 �1), (�3 1 �4 �2)}. All edges
have weight 2. The edges of the reversal phylogeny with the same labels are all of weight 1

210 14 Rearrangement Phylogenies

associated desired phylogeny is a reversal phylogeny. The breakpoint phylogeny

shown in figure 14.1 can be seen as a reversal phylogeny where all edges have weight

1. Note that the Steiner tree problem (but not the full variant) associated with the

reversal distance had previously been introduced by Caprara [92].

Not surprisingly, both the breakpoint phylogeny problem and the reversal

phylogeny problem inherit the hardness results from the corresponding median

problems. All algorithms devised for the breakpoint or reversal phylogeny problem

are heuristics, and will be presented in section 14.3.

14.2.2 Variants

Breakpoint and reversal phylogenies have been extensively studied, leaving very little

room for other variants of the large parsimony problem. Earnest-DeYoung et al.

[152] studied a variant where constrained block insertions and block deletions are

added to reversals, and Yue et al. [378] studied another variant where the transposi-

tion phylogeny problem is approached. The simplicity of computing the distance

between two genomes is a strongly required feature and is the main reason (when

compared to the transposition distance, for instance) for the omnipresence of the

breakpoint and reversal distances in the current studies.

The multichromosomal case faces the di‰culty of appropriately redefining the

classical distances (e.g., breakpoint distance or reversal distance) in this context.

However, adaptations were initiated by Pevzner and Tesler [295], and Tannier et al.

[353] showed that when genomes are represented using the ‘‘paths and cycles’’ model

in chapter 10, the median breakpoint problem is polynomial for general genomes

(i.e., allowing both circular and linear chromosomes; see also chapter 13). Conse-

quently, in this case the small phylogeny problem and the large phylogeny prob-

lem do not inherit from the complexity result on the corresponding median problem,

and are open.

14.3 Heuristics for the Breakpoint/Reversal Phylogeny Problem

Breakpoint and reversal phylogenies are not necessarily binary trees, but the search

for solutions to the breakpoint phylogeny problem and the reversal phylogeny

problem may be restricted to binary trees, assuming that the internal nodes of binary

solutions are not required to have distinct labels. Indeed, if the optimal tree is not a

binary tree, then its weight is identical to that of a binary tree obtained by appropri-

ately splitting some internal nodes and appropriately joining the resulting new nodes

using 0-weight edges.

Consequently, unless explicitly stated, all phylogenies discussed in the rest of this

chapter are considered to be unrooted binary trees whose vertices are labeled using

signed permutations of n elements. The exceptions to this rule are typically genomes

14.3 Heuristics for the Breakpoint/Reversal Phylogeny Problem 211

with unequal gene content (i.e., genomes represented by signed permutations of possi-

bly di¤erent lengths and of di¤erent sets of elements).

14.3.1 Tree Steinerization

The approach presented here, initiated by Blanchette et al. [67] and Sanko¤ and

Blanchette [318] in the context of breakpoint phylogenies, consists of two steps: gen-

erate all tree topologies with r leaves labeled P1;P2; . . . ;Pr, and label each internal

node with a signed permutation in order to minimize the weight of the resulting tree.

Here, a tree topology is simply an unrooted binary tree, uniquely identified by the

adjacencies between nodes and independent from any embedding of it in a planar

space. Figure 14.2 shows two di¤erent embeddings of the same tree topology with

the same leaf labels.

When the two steps are considered as independent parts of the algorithm, the first

one is classical from an algorithmic point of view, and the second one is a specific

problem called the small parsimony problem (see, for instance, Sanko¤ et al.

[327]). However, these two steps are not completely independent. Roughly estimating

the optimal weight of each topology based on a preliminary partial labeling allows us

Figure 14.2
A tree topology T with r ¼ 4 leaves labeled P1, P2, P3, P4 embedded in a plane in two di¤erent ways.
The circular permutation associated with the leaves is p� ¼ ½1 2 3 4� in (a) and s� ¼ ½1 2 4 3� in (b), yielding
Cbd; p� ðT Þ ¼ 5 and Cbd; s� ðT Þ ¼ 5:5, where bd is the breakpoint distance

212 14 Rearrangement Phylogenies

to drop, without completely labeling, the obviously bad topologies (i.e., those whose

best possible labeling has a weight exceeding some appropriate threshold). Only a

small number of candidates is thus kept for the computationally hard task of topol-

ogy labeling.

The resulting method is given in algorithm 14.1. In this algorithm, steps 5 to 13

(called the Steinerization algorithm by Sanko¤ and El-Mabrouk [320]) iteratively im-

prove the labeling of the internal nodes, using a method based on local optimization

initially proposed by Sanko¤ et al. [325] and used by Sanko¤ et al. [327] for the

small parsimony problem. The stabilization expected in step 13 may take very

long to reach, so the heuristic remains exponential even if good filters are used in

steps 2 and 3 to reduce the number of topologies to label.

Several steps crucially a¤ect the running time, and thus the upper bound on the

size of the entry (number r of genomes, their size n) that may be handled by this

method: the weight estimation at line 2, the initialization procedure at line 4, and the

median solver at line 8. These key parts of the algorithm have been extensively

studied, and several variants exist for each of them. We do not intend to present

them all here, but only to provide a few outlines for each of those three steps in the

following sections.

Remark 14.1 The reader should keep in mind, while reading the following, that two

main implementations of the Steinerization-based procedure exist. The first one,

Algorithm 14.1
Steinerization-based heuristic

Input: signed permutations P1;P2; . . . ;Pr

Output: minimum weight phylogeny with leaves P1;P2; . . . ;Pr

1: for each tree topology T with leaves P1;P2; . . . ;Pr do

2: estimate the optimal weight of T ;

3: if the estimated weight does not exceed the current threshold then

4: find an initial genome for each internal node of T ;

5: repeat

6: for each internal node v of T with the label denoted P v do

7: let Pa, Pb, P c be the labels of the three neighbors of v;

8: compute a median PM of Pa, Pb, P c;

9: if PM achieves smaller total weight with Pa, Pb, P c than P v,
then

10: replace P v with PM ;

11: end if

12: end for

13: until no more genome replacement is performed;

14: compute the weight of T ;

15: end if

16: end for

17: return the tree with minimum weight.

14.3 Heuristics for the Breakpoint/Reversal Phylogeny Problem 213

called BPAnalysis, solves the breakpoint phylogeny problem only, and was pro-

posed by Sanko¤ ’s group (see Blanchette et al. [67] and Sanko¤ and Blanchette

[318]). The second one, called GRAPPA, solves both the breakpoint phylogeny

problem and the reversal phylogeny problem, and was proposed by Moret’s

group in a series of papers [274, 273, 276]. Both implementations are presented in

chapter 15.

14.3.1.1 Weight Estimation In a context where the heuristic attempts to find a mini-

mum weight tree, the role of weight estimation is to evaluate as accurately and as

quickly as possible a tight lower bound on the optimal weight of a tree topology T ,

assuming its leaves are already labeled P1;P2; . . . ;Pr. If this lower bound exceeds

the threshold, then no labeling of T can provide a competitive weight and T can

therefore be safely discarded.

Remark 14.2 Although the threshold in line 3 of algorithm 14.1 is not emphasized

as a main optimization goal in our presentation, its value is of noticeable impor-

tance in the algorithm. The trivial approach of updating it each time a tree weight

is computed or evaluated is overtaken by a good upper bound on the minimum

weight of the tree. An example of such an upper bound is proposed by Moret et al.

[273].

Since the only data available with the tree topology consist of genomes

P1;P2; . . . ;Pr, a simple idea suggested by Sanko¤ et al. [327] and Moret et al. [276]

relies on using these genomes and the triangle inequality (when the distance between

genomes is really a metric) to obtain a lower bound. The following result is an easy

consequence of the triangle inequality.

Lemma 14.1 [276] Let T be a tree topology with leaves labeled P1;P2; . . . ;Pr, and

let p� be the circular permutation of r elements describing a circular ordering of the

leaves in T under some planar embedding of T . Then WdðT Þ, for an arbitrary met-

ric d between genomes, is lower-bounded by

Cd;p� ðT Þ ¼ 1

2

Xr
i¼1

dðPp�
i
;Pp�

iþ1
Þ;

called the circular lower bound of T with parameters d and p�.

Note that the same tree topology yields di¤erent circular orderings for di¤erent

planar embeddings. In other words, swapping the left and the right children of an in-

ternal node will change neither the topology nor its minimum weight, but will change

the permutation p� and, consequently, the value of the circular ordering lower

bound. (See figure 14.2.) The best lower bound obtained in this way will then be the

214 14 Rearrangement Phylogenies

maximum of all circular ordering lower bounds, which can be computed in Oðr3Þ
time (see Bachrach et al. [25]); however, heuristics are preferred in the implemented

software.

Another lower bound for arbitrary metrics is computed, using linear program-

ming, by Tang and Moret [348] and Bachrach et al. [25]. Bryant [90] proposes a

lower bound for genomes with possibly unequal content in the case of breakpoint

phylogenies, which he improves using Lagrange multipliers. When limited to signed

permutations of the same length, this lower bound is proved tighter than the circular

ordering one, for a normalized breakpoint distance.

14.3.1.2 Initialization Procedure For a given tree topology T , the convergence of the

tree Steinerization process strongly depends on the initial labeling of T . For break-

point phylogenies, Blanchette et al. [67] and Sanko¤ and Blanchette [318] propose

three initialization procedures, based on solving the traveling salesman problem

(TSP) at each internal node of T , for di¤erent data. Among them, one is identified

as better for low-divergence data and another shows better for high-divergence data.

Moret et al. [274] test the e‰ciency of these initialization procedures, identifying one

of them as the best compromise of accuracy and speed, although they further pro-

pose six other initialization procedures.

14.3.1.3 Median Solver The median solver is eventually called many times by the

Steinerization-based heuristic, and the quality of the solution it returns is an impor-

tant factor a¤ecting the number of calls. Therefore, it must be carefully chosen from

among the numerous heuristics and exact algorithms available for either the break-

point or the reversal median (see a complete description in chapter 13).

Blanchette et al. [67] and Sanko¤ and Blanchette [318] use a reduction of the me-

dian breakpoint problem to the TSP and a branch-and-bound algorithm to exactly

solve the resulting instance of TSP. Moret et al. [274] give greater place to e‰ciency

in solving the median breakpoint problem by proposing the use of approximate TSP

solvers. Heuristics aiming at directly computing a breakpoint median were proposed

by Sanko¤ et al. [328] for a normalized breakpoint distance.

As far as reversal median solvers are concerned, two of them experimentally

proved their e‰ciency. Caprara [95] combined branch-and-bound and divide-and-

conquer strategies on a generalization of the breakpoint graph, whereas Siepel and

Moret [341] searched the space of genome rearrangements, using branch-and-bound

based on the triangle inequality. The latter algorithm has the advantage of being

extensible to other metrics, as shown by Tang et al. [350], who added insertions and

deletions to reversals, in order to handle genomes with unequal content. Other re-

versal median solvers are available (see, e.g., Sanko¤ et al. [327]; Siepel [339]; Wu

and Gu [374]; Bernt et al. [60, 63]).

14.3 Heuristics for the Breakpoint/Reversal Phylogeny Problem 215

14.3.2 Sequential Addition

Rather than generating all topologies and labeling them, the methods in this subsec-

tion attempt to directly build one or several trees with small weight, from among

which the best tree is then selected. A tree is built by sequentially adding new permu-

tations, among P1;P2; . . . ;Pr, to an already partially built tree. Algorithm 14.2 for-

malizes this idea.

Steps 4 to 11 in this heuristic search for the best edge ðu0; v0Þ (called a split edge by

Bourque and Pevzner [81]) to be replaced with a 3-star whose leaves are u0, v0 and a

new vertex labeled Pl . Then the insertion of Pl into T results into a splitting of the

original edge ðu0; v0Þ, which minimally a¤ects the weight of T .

14.3.2.1 Seeking a Unique Tree The sequential addition-based heuristic allows us to

build one tree, with hopefully small weight, based on local optimization. One partic-

ular advantage of this method is that it can start with an arbitrarily large T (to re-

place the one obtained in step 1), assuming another method was used to build trees

with a smaller number of vertices. This is the approach used by Bourque and Pevzner

[81].

Again, a good median solver is needed; Bourque and Pevzner [81] focus on the re-

versal distance, which they consider to be more accurate than the breakpoint dis-

tance, from a biological point of view. Furthermore, the proposed median solver (a

heuristic) relies strongly on the fact that the reversal distance is an edit distance, in

that it enumerates the intermediate genomes one has to build in order to transform

one genome into the other. On the one hand, this allows us to identify paths between

the three genomes, and genomes at the intersection of these paths that are good can-

Algorithm 14.2
Sequential addition-based heuristic

Input: signed permutations P1;P2; . . . ;Pr

Output: minimum weight phylogeny with leaves P1;P2; . . . ;Pr

1: solve the median problem for P1, P2, P3, and call T the resulting tree;

2: let s ¼ ðs4s5 . . . srÞ be a permutation of 4; 5; . . . ; r;

3: for l :¼ 4 to r do

4: for each edge fu; vg in T with labels Pu, P v for u, v do

5: compute a median Puv
M of Pu, Pv, Psl ;

6: Cðu; vÞ :¼ dðPu;Puv
M Þ þ dðP v;Puv

M Þ þ dðPsl ;P
uv
MÞ � dðPu;P vÞ

7: end for

8: let Cðu0; v0Þ ¼ minfCðu; vÞ j fu; vg A EðT Þg;
9: remove edge fu0; v0g from T ;

10: add vertices x, y with respective labels Pu0v0
M , Psl to T ;

11: add edges fx; u0g, fx; v0g, fx; yg to T ;

12: end for

13: return the tree T .

216 14 Rearrangement Phylogenies

didates for the median genome (a similar idea was used by Sanko¤ et al. [327]). On

the other hand, the generalization to other edit distances, and more particularly to

distances between multichromosomal genomes, is easy, as Bourque and Pevzner [81]

show, using reversals, translocations, fusions, and fissions. The resulting implementa-

tion, including many improvements to this general approach and called MGR, is

presented in section 15.2.2.

14.3.2.2 Searching for a Set of Trees The sequential addition-based heuristic has

an obvious drawback—its results strongly depend on the ordering s of the input

genomes—and a less obvious drawback—fixing one median in step 5 of algorithm

14.2 permanently a¤ects the weight of the tree and the subsequent choices. Bernt

et al. [64] propose to abandon the definitive choices and to allow the algorithm (1)

to choose among several candidates for each median problem, and (2) to select the

best order s depending on the context (i.e., on the partial tree in construction). To

reach this goal, three main modifications are performed:

1. Steps 2 and 4 of algorithm 14.2 are merged into a single loop whose counter takes

its values in the set of triples ðPu;Pv;PhÞ where fu; vg is an edge and Ph, 4a ha r,

is a genome not yet introduced into the tree.

2. Step 5 of algorithm 14.2 generates a set Mðu; v; hÞ of solutions to the median

problem for ðPu;Pv;PhÞ, instead of a single median.

3. For each of the most promising triples ðPu0 ;Pv0 ;Ph0Þ, selected on the basis of an

estimation of their score, and for each solution in Mðu0; v0; h0Þ, one performs step 9

and step 10 of algorithm 14.2, followed by a recursive call of the modified algorithm

(the latter step is used only if the current tree has fewer than r leaves).

With these changes, the resulting algorithm attempts to generate a large number of

trees, but a collection of appropriate bounds and selection methods ensures a limited

number of ‘‘fully generated trees,’’ from among which the best trees are then output.

14.3.3 Character Encodings

The definition of the maximum parsimony based on gene orders followed many

studies performed on sequence-based maximum parsimony. Methods designed spe-

cifically for the gene-order variant result from a natural attempt to solve a particular

problem with particularly appropriate methods, but they do not contradict the idea

that sequence-based methods could help solve the gene-order variant. The heuristic

presented in algorithm 14.3 shows the outlines of the current approaches that try to

reuse the ordinary sequence parsimony software.

The di‰cult steps in this heuristic are the genome-to-sequence procedure in step 1

and mainly the sequence-to-genome transformation in step 4. The distance sd in step

14.3 Heuristics for the Breakpoint/Reversal Phylogeny Problem 217

2 is usually the Hamming distance. The maximum parsimony phylogeny P in step 3

is a solution to the sequence-based maximum parsimony problem, which is a variant

of the large parsimony problem where species are represented by sequences of

the same length and the distance between species is sd. Since this problem is NP-

complete (see Foulds and Graham [178]) even for the simple Hamming distance on

binary sequences, step 3 is solved using one of the several available fast heuristics.

14.3.3.1 From Genomes to Sequences The ordered pair ‘‘(set of sequences, sd dis-

tance)’’ should encode very accurately the ordered pair ‘‘(set of genomes, gene

order-based distance),’’ so as to ensure a simultaneous optimization of the tree

weight in both spaces. Both encodings we present here satisfy the property that the

Hamming distance between two resulting sequences is closely related to the break-

point distance between the two initial genomes. There is, however, a gap between

the error rate obtained in those two spaces, since the relabeling in step 4 deteriorates

the quality of the solution in the space of genomes.

MPBE In an early work, Cosner [124] developed an encoding technique for which

Cosner et al. [125] proposed a simplified approach called maximum parsimony on bi-

nary encodings (MPBE). In this encoding, each position in the resulting binary se-

quence Ui corresponds to an ordered pair of signed genes a, b (here, ða; bÞ and

ð�b;�aÞ are considered equivalent) that are adjacent in at least one of the genomes

P1;P2; . . . ;Pr. Given a genome Pi, this position is valued 1 in the sequence Ui if ei-

ther a, b or �b, �a appears consecutively in Pi, and 0 otherwise. See figure 14.3.

MPME Initially introduced by Bryant [90] (inspired by Sanko¤ and Blanchette

[319]) under the name SB encoding, this encoding was further used by Wang et al.

[366] and Tang and Wang [349] under the name MPME (maximum parsimony on

multistate encodings). Bryant [90] noted that every MPME encoding can be con-

verted into an MPBE encoding by using a Hamming distance-preserving mapping,

and showed that the minimum weight of a tree under the MPME encoding better

approximates the breakpoint weight of the tree than its minimum weight under the

MPBE encoding.

Algorithm 14.3
Character encodings-based heuristic

Input: signed permutations P1;P2; . . . ;Pr

Output: minimum weight phylogeny with leaves P1;P2; . . . ;Pr

1. encode each genome Pi as an appropriate sequence Ui , i ¼ 1; 2; . . . ; r;
2. consider a distance sd between sequences;

3. compute a maximum parsimony phylogeny P, given Ui (i ¼ 1; 2; . . . ; r) and sd;

4. relabel each node of P with a genome.

218 14 Rearrangement Phylogenies

In the MPME encoding, the resulting sequences are of length 2n, where n is the

length of the genome, and are built on the alphabet formed by all signed genes, that

is, f�n; . . . ;�2;�1; 1; 2; . . . ; ng. Position a ð1a aa nÞ in the MPME encoding cor-

responds to gene a (that is, the positive member of the gene family a A A), and its

value is the signed gene immediately following gene a in the genome (in a circular

way). Position nþ a corresponds to gene �a, and its value is defined similarly. By

convention, if the signed genes a, b appear consecutively and in this order in the

genome (in a circular way), then a is followed by b and �b is followed by �a. See

figure 14.3.

14.3.3.2 From Sequences to Genomes The result of step 3 in algorithm 14.3 is a tree

with a sequence in each internal node. Though sequences at the leaves do correspond

to genome encodings, sequences in the internal nodes are simply inferred during the

construction of the parsimony tree with respect to the sd distance, and therefore do

not necessarily correspond to genomes.

Two solutions were proposed to deal with the transformation of the resulting

sequence-based tree into a gene-order-based tree, which hopefully would approxi-

mate well the most parsimonious gene-order-based tree. The first one, due to Cosner

et al. [125], ignores the sequences at the internal nodes, and uses the tree topology

only to infer, using a Steinerization algorithm, a best labeling with respect to any

available distance (Cosner et al. [125] use breakpoints only, reversals only, and

reversals/transpositions/transreversals).

The second one, proposed by Tang and Wang [349], attempts to transform the

sequences at the internal nodes into genomes, and thus strongly depends on the

chosen encoding and the distance sd. Focusing on the MPBE and MPME encodings

with the Hamming distance, Tang and Wang [349] claim that finding a gene order

Figure 14.3
Examples of MPBE and MPME encodings of genomes P1, P2, and P3

14.3 Heuristics for the Breakpoint/Reversal Phylogeny Problem 219

minimizing the Hamming distance between its MPBE encoding and a given MPBE-

like sequence is NP-complete, whereas the similar MPME problem is open.

14.4 Variants

The methods presented in this chapter handle signed permutations of the same set of

elements. Many authors emphasize the need to enrich these methods in order to take

into account genomes with di¤erent sets of genes and/or genomes with duplicates

and/or multichromosomal genomes. The current approaches attempt either to reduce

the problem to the signed permutation version by simply discarding the duplicates

(see, for instance, Sanko¤ et al. [328]), or to make appropriate hypothesis on the

input genomes (e.g., they are balanced), which would possibly allow the use of exist-

ing models for comparing two genomes with unequal content and/or duplicates (see,

for instance, Tang and Moret [347]).

220 14 Rearrangement Phylogenies

V MISCELLANEOUS

15 Software

We present here a selection of available software implementing some of the algo-

rithms that we have mentioned or discussed in this book. We start in section 15.1

with tools that analyze rearrangements between two genomes using unichromosomal

or multichromosomal models, then consider software that can also deal with more

than two genomes in section 15.2.

15.1 Pairwise Rearrangements

15.1.1 Unichromosomal Models

15.1.1.1 DERANGE The first software dedicated to the reconstruction of evolution-

ary scenarios by genome rearrangements is probably DERANGE, written by Sank-

o¤, Leduc, and Rand in 1992. DERANGE sorts unsigned circular permutations by

reversals and by transpositions using branch-and-bound.

� Written by Sanko¤, Leduc, and Rand (see Sanko¤ et al. [326]).

� Platform: Macintosh.

� Home page: software available from the authors.

15.1.1.2 DERANGE II Four years after DERANGE, Blanchette et al. [66] released

an enhanced version of DERANGE, called DERANGE II, which allowed the user

to assign a weight to each operation. It handles circular and linear permutations,

signed or not.

� Written by Blanchette et al. [66].

� Platform: Unix.

� Home page: ftp://ftp.ebi.ac.uk/pub/software/unix/derange2.tar.Z.

DERANGE II uses exhaustive search with look-ahead, but relies on heuristics to

speed up the process. It is therefore not guaranteed to provide an optimal solution,

ftp://ftp.ebi.ac.uk/pub/software/unix/derange2.tar.Z

but the authors claim that it is ‘‘unlikely to produce a solution containing more than

one or two extra moves.’’ It takes permutations as input.

15.1.1.3 CREx CREx (common interval rearrangement explorer) handles reversals,

transpositions, reverse transpositions, and tandem-duplication-random-loss events.

� Written by Bernt et al. [65].

� Platform: Web.

� Home page: http://pacosy.informatik.uni-leipzig.de/crex.

Given two genomes, CREx builds their strong interval tree (see page 22), then tries

to detect patterns in the tree that correspond to genome rearrangement operations.

CREx takes as input a file in FASTA format, then computes a distance matrix

(based on reversals, breakpoints, or common intervals). It then displays the distance

matrix, and a possible scenario.

15.1.1.4 ROBIN ROBIN (rearrangement of block interchanges) analyzes linear and

circular genomes using block interchanges, based on the algorithms by Lin et al.

[254]. It takes FASTA files as input.

� Written by Lu et al. [258].

� Platform: Web.

� Home page: http://genome.life.nctu.edu.tw/ROBIN.

15.1.1.5 SPRING SPRING (sorting permutations by reversals and block inter-

changes) handles block interchanges and signed reversals, and gives an optimal re-

arrangement scenario along with the corresponding distance on linear and circular

genomes.

� Written by Lin et al. [255].

� Platform: Web.

� Home page: http://algorithm.cs.nthu.edu.tw/tools/SPRING.

SPRING can be set to rearrange genomes using only reversals or only block inter-

changes, or both rearrangement operations; in the latter case, it assigns weight 1 to

reversals and weight 2 to block interchanges. It also computes the breakpoint dis-

tance between the two input permutations. SPRING relies on the algorithms

designed by Kaplan et al. [228] and by Lin et al. [254].

15.1.1.6 PSbR PSbR is a Java implementation of the algorithm of Sagot and Tan-

nier [314] for finding perfect scenarios of reversals between signed permutations

(which constitute its input).

224 15 Software

http://pacosy.informatik.uni-leipzig.de/crex
http://genome.life.nctu.edu.tw/ROBIN
http://algorithm.cs.nthu.edu.tw/tools/SPRING

� Written by Diekmann, based on the algorithm of Sagot and Tannier [314].

� Platform: all (Java applet).

� Home page: http://biomserv.univ-lyon1.fr/~tannier/PSbR.

15.1.1.7 baobabLUNA baobabLuna is a set of tools written by Braga to perform

various tasks on signed permutations, such as building their breakpoint graph, com-

puting their reversal distance, and representing the set of all optimal scenarios of

reversals.

� Written by Braga.

� Platform: all (Java applet).

� Home page: http://www.geocities.com/mdvbraga/baobabLuna.html.

baobabLuna takes signed permutations as input, and performs its operations

based on algorithms by Hannenhalli and Pevzner [199, 196] and Braga et al. [87].

15.1.2 Multichromosomal Models

15.1.2.1 GRIMM GRIMM (genome rearrangements in man and mouse) handles

linear, circular, and multichromosomal genomes, signed or unsigned. It uses translo-

cations, reversals, fusions, and fissions; computes the corresponding distance; and

proposes a corresponding optimal scenario. All operations are treated equally, mean-

ing that they are all assigned the same weight.

� Written by Tesler [356].

� Platform: Web.

� Home page: http://nbcr.sdsc.edu/GRIMM/grimm.cgi.

Contrary to most other available software, GRIMM handles genomes directly as

permutations (or partitioned permutations). It is based on algorithms by Tesler [355]

and by Hannenhalli and Pevzner [196, 198, 199]. GRIMM has been used to infer the

number of rearrangements between the human and mouse genomes (see Pevzner and

Tesler [297]), as well as to try to prove that some regions in the genome are more

fragile, and broken more often by reversals, than others. Both the conclusion and

the evidences of this theory are the subject of controversy (see, e.g., Sanko¤

and Trinh [323] and Peng et al. [294] for diverging points of view on the ‘‘fragile

breakage versus random breakage’’ controversy).

15.1.2.2 CTRD CTRD implements Zhu and Ma’s algorithm [383] for computing

the signed translocation distance between two genomes, entered as sequences of

integers.

15.1 Pairwise Rearrangements 225

http://biomserv.univ-lyon1.fr/~tannier/PSbR
http://www.geocities.com/mdvbraga/baobabLuna.html
http://nbcr.sdsc.edu/GRIMM/grimm.cgi

� Written by Feng et al. [172].

� Platform: Web.

� Home page: http://www.cs.cityu.edu.hk/~lwang/software/Translocation/index

.html.

15.2 Phylogeny Reconstruction and Medians

15.2.1 BPAnalysis

BPAnalysis was written by Blanchette, and performs breakpoint analysis based on

algorithms by Sanko¤ and Blanchette [318]. It reconstructs a tree from a set of gene

orders, using the breakpoint distance.

� Written by Blanchette, based on algorithms by Sanko¤ and Blanchette [318].

� Platform: Microsoft DOS/Windows, GNU/Linux.

� Home page: http://www.mcb.mcgill.ca/~blanchem/software.html.

15.2.2 MGR

MGR (multiple genome rearrangements) is an extension of GRIMM that aims at

handling multiple genomes, with an input format similar to that of GRIMM. It com-

putes distances and phylogenetic trees for a set of multichromosomal genomes, using

an exact (thus of exponential time complexity) algorithm.

� Written by Bourque, based on an algorithm by Bourque and Pevzner [81].

� Platform: Web.

� Home page: http://nbcr.sdsc.edu/GRIMM/mgr.cgi.

MGR is widely used to infer rearrangements in mammalian species whose

genomes have been sequenced, and to infer the genome of a common ancestor of

these species (see, e.g., Bourque et al. [82] or Murphy et al. [277]). This software has

been the subject of a controversy between cytogenetic methods and bioinformatics

methods to infer the genomes of common ancestors (see, e.g., Bourque et al. [85]

and Froenicke et al. [179] for discussions).

15.2.3 GRIL

Motivated by the fact that genome rearrangements may not always correspond to

gene boundaries, which means that some rearrangements may act on a segment of a

gene instead of on the whole gene, Darling et al. [130] proposed a software called

GRIL (genome rearrangement and inversion locator), which aims at identifying

locally collinear blocks (i.e., collinear sequence regions shared by all genomes under

consideration). GRIL takes sequence files (e.g., FASTA) as input.

226 15 Software

http://www.cs.cityu.edu.hk/~lwang/software/Translocation/index
http://www.mcb.mcgill.ca/~blanchem/software.html
http://nbcr.sdsc.edu/GRIMM/mgr.cgi

� Written by Darling et al. [130].

� Platform: Microsoft DOS/Windows, GNU/Linux.

� Home page: http://asap.ahabs.wisc.edu/software/gril.

15.2.4 GRAPPA

GRAPPA stands for genome rearrangements analysis under parsimony and other

phylogenetic algorithms.

� Written by many contributors in Moret’s team, and maintained by Moret and Tang.

� Platform: Unix.

� Home page: http://www.cs.unm.edu/~moret/GRAPPA.

GRAPPA takes signed permutations as input, and implements several combinato-

rial algorithms related to genome rearrangements. Among them, the linear algorithm

of Bader et al. [26] for computing the reversal distance between two signed permuta-

tions and an extension has been proposed by Yue et al. [378] to handle transposi-

tions. The package also contains an exact exponential algorithm by Tang and

Moret [348] to compute the reversal median of three signed circular permutations,

and the computation of phylogenetic trees from rearrangement distances (see Moret

et al. [274] and Wang et al. [367]). A heuristic for the reversal median of three permu-

tations has been added by Arndt and Tang [21].

15.2.5 MedRbyLS

MedRbyLS stands for median reversal by local search, and implements a local search

algorithm for finding a reversal median of three genomes represented by signed per-

mutations.

� Written by Interian, based on algorithms by Interian and Durrett [217, 216].

� Platform: GNU/Linux.

� Home page: http://www.cam.cornell.edu/~interian/codes.html#MedRbyLS.

15.2.6 rEvoluzer and amGRP

rEvoluzer and amGRP were written by Bernt et al. [60, 61, 64], and achieve the heu-

ristic computation of reversal medians, with scenarios preserving framed common

intervals. amGRP is based on sequential addition (see section 14.3.2) and takes per-

mutations as input.

� Written by Bernt et al. [60, 61, 64].

� Platform: GNU/Linux.

� Available on request from the authors.

15.2 Phylogeny Reconstruction and Medians 227

http://asap.ahabs.wisc.edu/software/gril
http://www.cs.unm.edu/~moret/GRAPPA
http://www.cam.cornell.edu/~interian/codes.html#MedRbyLS

15.2.7 GENESIS

GENESIS (genome evolution scenarios) was written by Gog et al. [187], and imple-

ments several algorithms for sorting unichromosomal genomes by weighted reversals

and transpositions or multichromosomal genomes, either by reversals, translocations,

fusions and fissions, or by weighted reversals, translocations, fusions, fissions, and

transpositions.

� Written by Gog et al. [187].

� Platform: Web.

� Home page: http://www.uni-ulm.de/in/theo/research/genesis.html.

GENESIS uses the algorithms of Bader and Ohlebusch [28], Hannenhalli and

Pevzner [196], Tesler [355], Ozery-Flato and Shamir [285], and Yancopoulos et al.

[375]. It takes signed permutations as input.

228 15 Software

http://www.uni-ulm.de/in/theo/research/genesis.html

16 Open Problems

The number of variants of genome rearrangement problems is huge, and is increasing

every year. Of course, it is possible to design many other variants that have not yet

been studied, but among the most studied and interesting existing variants, open

problems are still numerous. They are disseminated all through the pages of this

book. However, we mention again the most striking ones in this chapter and add a

few that were not cited in the previous chapters. This should represent a gold mine

for researchers in the mathematics of theoretical computer science.

16.1 Complexity Issues

Some problems are open regarding complexity: Is a given rearrangement problem or

distance computation problem solvable in polynomial time? And if not, is it approx-

imable? Is there an FPT algorithm?

16.1.1 Hardness

The complexity status of the following problems is not known:

1. Computing the transposition distance and sorting unsigned permutations by

transpositions (section 3.1).

2. Computing the transposition median of three permutations (section 3.1 and chap-

ter 13).

3. The small parsimony problem and large parsimony problem under the break-

point distance is open regarding multichromosomal signed genomes when linear and

circular chromosomes are allowed (chapters 13 and 14).

4. Computing the prefix reversal distance and sorting unsigned permutations by pre-

fix reversals (section 3.4).

5. Computing the prefix transposition distance and sorting unsigned permutations

by prefix transpositions (section 3.2).

6. Deciding whether a solution to the local complementation problem on directed

graphs exists (section 6.3).

7. Counting the number of solutions to sorting signed permutations by reversals

(section 4.2).

8. The double distance and genome halving problems (section 13.3) are open under

all distances for unsigned genomes, whereas El-Mabrouk et al. [159] conjecture that

‘‘gene order alone, without transcription direction, would likely not su‰ce to permit

polynomial-time exact algorithms’’ for genome halving.

9. Genome halving is open regarding linear genomes, both for the breakpoint, HP,

and DCJ distances. Tannier et al. [353] conjecture it to be polynomial for the break-

point distance (section 13.3).

10. Computing the minimum possibly reversed common partition between two bal-

anced strings (problem RMCSP) (section 9.1.3).

11. Computing the reversal sorting distance between balanced unsigned strings, for

alphabets of size kb 4 (section 9.2.1). Note that this is polynomial for k ¼ 2 [116]

and k ¼ 3 [309] (section 9.2.1).

12. Computing the reversal sorting distance between balanced signed strings, for

alphabets of size kb 2 (section 9.2.2).

13. Computing the transposition sorting distance between balanced unsigned strings,

for alphabets of size kb 3 (section 9.3.1). Note that this is polynomial for k ¼ 2

[116] (section 9.3).

14. Rearranging a multichromosomal genome into another (with linear and circular

chromosomes) with a minimum number of k-break rearrangements (section 10.6).

15. Is it true that computing a block edit distance on strings becomes NP-complete

as soon as its block edit collection contains transpositions (section 8.2)?

16. Computing the syntenic distance when only reciprocal translocations are allowed

(section 12.5.1).

16.1.2 Approximability

A number of problems have been shown to be NP-hard, and polynomial-time ap-

proximation algorithms have been designed. A first problem is of course to find

approximation algorithms with a smaller ratio. It is the case for almost all NP-hard

problems cited in this book, so we will mention only the main ones here. On the

other hand, it has been shown that some problems cannot be approximated within a

given ratio, but there is still room for improvement since there is a gap between the

best known ratio and the ‘‘tractability barrier’’ set by this negative result. This is

the case for the following:

230 16 Open Problems

1. The unsigned reversal distance, which cannot be approximated within a ratio of

1.0008 and for which the best approximation to date has the ratio 1.375 (section

3.3.5);

2. Is there a PTAS for sorting unsigned permutations by reversals for dense instan-

ces (section 9.6)?;

3. The syntenic distance, for which the best ratio is 2, but for which no result exists

about whether it is possible to lower this ratio (see section 12.5.1);

4. The transposition distance on unsigned permutations, for which there is a 1.375-

approximation algorithm, whereas the complexity of this problem is not even known.

16.1.3 Polynomial Complexity

Some problems have a known polynomial-time complexity, but are believed to admit

faster solution than what has been achieved to date:

1. The best time complexity for the sorting of signed permutations by reversals is

Oðn3=2Þ (section 4.2). It is an open problem to devise an algorithm with better time

complexity.

2. The best time complexity for the median and guided halving problems under the

breakpoint distance on multichromosomal genomes (with circular chromosomes

allowed) is Oðn3Þ (section 13.1), using a reduction to the maximum weight perfect

matching problem. It is an open problem to devise an ad-hoc algorithm with better

complexity.

16.2 Diameter

Problem 16.1 (diameter) Given a distance d on a set S, determine the maximal value

d can reach, that is, the value

max
s; t AS

dðs; tÞ:

The diameter problem has not been studied for many variants, but it is really an

open question for the following distances:

1. The transposition distance between unsigned permutations (section 3.1.6), as well

as between unsigned balanced strings for alphabets of size kb 3 (section 9.3.1);

2. The prefix reversal distance and the prefix transposition distance between

unsigned permutations (sections 3.4 and 3.2, respectively);

3. The prefix reversal distance between unsigned balanced strings, for alphabets of

size kb 3 (section 9.2.4);

16.2 Diameter 231

4. The block interchange distance between unsigned balanced strings, for alphabets

of size kb 3 (section 9.4.1);

5. The genome halving problem on unordered chromosomes (section 13.3.5.2).

16.3 Tightness of Bounds

When neither a formula for computing a given rearrangement distance nor an algo-

rithm for exactly solving the rearrangement problem is known, we nevertheless have

lower and upper bounds on the number of operations that we will need to use. An

immediate question is that of characterizing which instances are tight with respect

to our bounds and which are not. We will call this the ‘‘tightness problem’’:

Problem 16.2 (tightness) Given a distance d and a bound b on a set S, characterize

the elements s of S such that dðsÞ ¼ bðsÞ.
The tightness problem is open for the following:

1. All bounds in the case of sorting a permutation by transpositions; Christie [115]

contributed a new lower bound on the transposition distance by characterizing a

few permutations that are not tight with respect to the lower bound of theorem 3.4;

Hartman and Verbin [204] characterized 3-permutations that are tight with respect to

the lower bound of theorem 3.1;

2. All bounds in the case of sorting an unsigned permutation by prefix transposi-

tions, except for the lower bound of lemma 3.5 (page 38), for which one can check

in polynomial time whether a given permutation is tight (see section 3.2.4);

3. All bounds in the case of sorting an unsigned permutation by reversals, except for

the following:

� The lower bound of theorem 3.17 (page 40), for which one can check in polynomial

time whether a given permutation is tight (see section 3.3.3.2);
� The lower bound of theorem 3.18 (page 42), since computing that lower bound’s

value is NP-hard;

4. All bounds in the case of sorting an unsigned permutation by prefix, weighted,

fixed-length, or bounded reversals, as well as for strip moves and combined reversals

and transpositions.

232 16 Open Problems

APPENDICES

A
Graph Theory

Not surprisingly, in this field of combinatorics, we use a lot of notions from graph

theory. In order to be unambiguous about all notions on graphs, directed or undi-

rected, we briefly present here everything needed in this book. For more develop-

ments on graph theory, the reader may refer to Berge [43] and Diestel [143].

A.1 Undirected Graphs

A.1.1 Basic Definitions

An undirected graph is a pair G ¼ ðV ;EÞ, where V (sometimes also denoted by

VðGÞ) is a set whose elements are called vertices or nodes and E (sometimes also

denoted by EðGÞ) is a collection of two-element subsets of V called edges (see figure

A.1 for an illustration). Undirected graphs are often simply referred to as graphs.

Two vertices connected by an edge are the extremities of that edge. A graph is simple

if it contains no loop (i.e., an edge whose extremities coincide) and has no more than

one edge connecting any two vertices.

The number of vertices (resp. edges) of G is its order (resp. its size). A vertex u is

incident with an edge e if u A e. Two edges that share a common extremity are said to

be incident. Two distinct vertices are adjacent if there is an edge connecting them.

Pairwise nonadjacent vertices (resp. nonincident edges) are called independent. A set

of pairwise adjacent vertices is called a clique. The complete graph Kn is a clique of

order n, that is, a simple graph in which every pair of distinct vertices is adjacent,

and has size n
2

� � ¼ nðn� 1Þ=2. The complement of G ¼ ðV ;EÞ is the graph G with

vertex set V and edge set ffu; vg A V � V : fu; vg B E and u0 vg.
The degree degðuÞ of a vertex u A V is the number of edges incident to u, where

loops count twice. A vertex of degree 0 is said to be isolated. The neighborhood of

u A V , denoted NðuÞ, is the set of all vertices adjacent to u. More generally, for

V 0 JV , NðV 0Þ ¼ fv : fu; vg A E and u A V 0g.

Property A.1 In a graph, the number of odd-degree vertices is even.

The minimum degree dðGÞ and maximum degree DðGÞ of G are defined by

dðGÞ ¼ minu AV degðuÞ and DðGÞ ¼ maxu AV degðuÞ, respectively. If all vertices of

a simple graph G have the same degree k, that is, dðGÞ ¼ DðGÞ ¼ k, then G is k-

regular. The complete graph Kn is thus an ðn� 1Þ-regular graph.
Property A.2 A k-regular graph G of order n has nk=2 edges.

Let G ¼ ðV ;EÞ and G 0 ¼ ðV 0;E 0Þ. If V 0 JV and E 0 JE, then G 0 is a subgraph of

G, written as G 0 JG. If G 0 JG and E 0 contains all edges fu; vg A E with u; v A V 0,
then G 0 is an induced subgraph of G, and more specifically V 0 induces G 0 in G, written

G 0 ¼ G½V 0�. Therefore, if X JV is any set of vertices, then G½X � denotes the graph

on X whose edges are precisely the edges of G with both ends in X . By extension, if

Y JE is any set of edges, then G½Y � denotes the graph on the extremities of Y

whose edges are precisely Y . Finally, G 0 JG is a spanning subgraph of G if V 0 ¼ V .

Let G ¼ ðV ;EÞ be a graph. For any e A E, the graph obtained from G by deleting

the edge e is written G � e. Similarly, for any two nonadjacent vertices u; v A V ,

G þ fu; vg denotes the graph obtained from G by adding the edge fu; vg.

A.1.2 Paths and Cycles

A path P ¼ ðV ;EÞ is a graph of the form

V ¼ fu1; u2; . . . ; ung;
E ¼ ffu1; u2g; fu2; u3g; . . . ; fun�1; ungg:
The vertices that begin and end the path are termed the extremities of the path. A

cycle is a path whose extremities coincide. The length of a path or a cycle is the num-

Figure A.1
A simple graph of order 10 and size 14

236 A Graph Theory

ber of edges traversed by the cycle or path. A path or a cycle is elementary if all the

vertices are distinct. (See figure A.2 for an illustration). An odd cycle is a cycle of odd

length; otherwise it is an even cycle. A graph is acyclic if it does not contain any

induced cycle.

Property A.3 An acyclic graph of order n has at most n� 1 edges.

The problem of finding a minimum-length path between two vertices is known as

the shortest path problem and is solvable in polynomial time. It is, however, NP-

complete to determine, for a graph G and a parameter k, whether the graph has an

induced path of length at least k (this problem is known as the longest path) prob-

lem. A Hamiltonian path (resp. a Hamiltonian cycle) is a path (resp. a cycle) in a

graph that visits each vertex exactly once. Determining whether such paths and

cycles exist in graphs is the Hamiltonian path problem, which is NP-complete. An

Eulerian path (resp. an Eulerian cycle) is a path (resp. a cycle) in a graph that visits

each edge exactly once.

Theorem A.1 (Euler’s theorem) [167] A graph has a Eulerian cycle if and only if all

vertices have even degree. A graph has a Eulerian path if and only if all but two

(i.e., the two end-point) vertices have an even degree.

The distance dGðu; vÞ in a graph G between two vertices u and v is the length of a

shortest path from u to v in G; if no such path exists, then dGðu; vÞ ¼ y. The greatest

distance between any two vertices in G is called the diameter of G.

A.1.3 Connectivity

A graph is called connected if any two of its vertices are linked by a path, and discon-

nected otherwise. A connected component is a maximal connected subgraph of G.

Each vertex belongs to exactly one connected component, as does each edge.

Figure A.2
A vertex-induced elementary path of length 3 and a vertex-induced elementary cycle of length 5

A.1 Undirected Graphs 237

Property A.4 A connected graph of order n has at least n� 1 edges.

It can be tested in polynomial time whether a graph is connected (a simple depth-

first search su‰ces to identify all components in linear time).

A.1.4 Bipartite Graphs

A graph G ¼ ðV ;EÞ is bipartite if its vertices can be partitioned into two disjoint sets

or classes V 0 and V 00, and each edge connects a vertex of V 0 to a vertex of V 00.
A bipartite graph G with bipartition V ¼ V 0 UV 00 is often written G ¼ ðV 0;V 00;EÞ.

The complete bipartite graph Kp;q ¼ ðV 0;V 00;EÞ is defined by jV 0j ¼ p, jV 00j ¼ q, and

E ¼ ffu; vg : u A V 0 and v A V 00g. If jV 0j ¼ jV 00j, G is called a balanced bipartite

graph.

A.1.5 Trees and Forests

An undirected acyclic graph is also called a forest, and a tree is a connected acyclic

graph (i.e., a connected forest). Vertices of degree 1 in a tree are called leaves. Every

forest is bipartite and every nontrivial tree has at least two leaves. Trees are acyclic

connected graphs, so properties A.3 and A.4 yield the following.

Property A.5 A connected graph of order n is a tree if and only if it has n� 1 edges.

A tree is called a rooted tree if one vertex has been designated as the root, in which

case all edges have a natural orientation toward or away from the root. For each ver-

tex of a rooted tree, its neighbor that is closer to the root is called its parent, and its

neighbors that are farther from the root are called its children. An ordered tree is a

tree for which an ordering is specified for the children of each node.

A.1.6 Matching

Given a graph G ¼ ðV ;EÞ, a matching M is a set of nonincident edges in G (i.e., M is

a set of independent edges). Every vertex incident with an edge in M is said to be a

matched vertex. By abuse of language, a graph whose edge set is a matching is said to

be a matching graph. A matching is maximal if it is maximal for inclusion. A match-

ing is maximum if it contains the largest possible number of edges. Every maximum

matching must be maximal, but not every maximal matching must be maximum. A

perfect matching is a matching that covers all vertices of the graph. That is, every

vertex of the graph is incident to exactly one edge of the matching (see figure A.3).

Every perfect matching is maximum, and hence is maximal.

A maximum matching can be found in a graph G ¼ ðV ;EÞ in OðjEj ffiffiffiffiffiffiffijV jp Þ time

(see Micali and Vazirani [268]). Note that the dual problem of finding a maximum

cardinality subset of independent vertices, the so-called maximum independent set

problem, is NP-complete.

238 A Graph Theory

Matching problems are often concerned with bipartite graphs. Maximum match-

ing in bipartite graphs is characterized by a duality condition.

Theorem A.2 (König) In any bipartite graph G, the maximum cardinality of a match-

ing in G is equal to the minimum cardinality of a vertex cover.

A.1.7 Adjacency Matrix

The adjacency matrix A ¼ ½ai; j� of a graph G is defined by

ai; j ¼ 1 if fi; jg A E;

0 otherwise:

�

The adjacency matrix of a simple undirected graph has 0’s on the diagonal (no

self-loops). The adjacency matrix AðGÞ of the graph depicted in figure A.1 is

0 1 0 0 0 1 1 0 0 0

1 0 1 1 0 1 0 0 0 0

0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 1 0

0 0 0 1 1 0 0 1 0 0

0 0 0 1 0 0 1 0 0 0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:

The adjacency matrix of a complete graph is all 1’s except for 0’s on the diagonal.

The adjacency matrix of a complete bipartite graph Kp;q has the form

Figure A.3
A perfect matching in a graph

A.1 Undirected Graphs 239

O J

JT O

� �
;

where J is a p� q matrix of all 1’s and O denotes an all-zero matrix.

A.2 Directed Graphs

A.2.1 Basic Definitions

A directed graph (or digraph) is a pair D ¼ ðV ;AÞ, where V is a set whose elements

are called vertices and AHV � V is a multiset of ordered pairs of vertices whose ele-

ments are called arcs. (See figure A.4 for an illustration.) The order (size) of D is the

number of vertices (arcs) in D. For an arc ðu; vÞ A A, the first vertex is its tail and

the second vertex is its head. The head and the tail of an arc are its extremities. A

directed graph may have arcs with the same extremities. A source is a vertex with

no incoming edges, and a sink is a vertex with no outgoing edges.

The out-degree (resp. in-degree) degþðuÞ (resp. deg�ðuÞ) of a vertex u A V is the

number of arcs with tail (head) u. For a vertex u A V , NþðuÞ ¼ fv A Vnfug :

ðu; vÞ A Ag and N�ðuÞ ¼ fv A Vnfug : ðv; uÞ A Ag stand for the out-neighborhood and

the in-neighborhood of u, respectively. The neighborhood of u A V is defined to be

NðuÞ ¼ NþðuÞUN�ðuÞ. By extension, for a set X A V , NþðXÞ ¼ ð6
v AX NþðvÞÞnX

and N�ðX Þ ¼ ð6
v AX N�ðvÞÞnX stand for the out-neighborhood and the in-neigh-

borhood of X , respectively. The minimum out-degree and minimum in-degree of

D ¼ ðV ;AÞ are defined by

dþðDÞ ¼ min
u AV

degþðuÞ and

d�ðDÞ ¼ min
u AV

deg�ðuÞ;

Figure A.4
A directed graph of order n and size m

240 A Graph Theory

respectively. Similarly, the maximum out-degree and maximum in-degree of

D ¼ ðV ;AÞ are defined by

DþðDÞ ¼ max
u AV

degþðuÞ and

D�ðDÞ ¼ max
u AV

deg�ðuÞ;

respectively.

A.2.2 Paths and Cycles

A directed path is an oriented simple path such that all arcs go in the same direction,

meaning all internal vertices have in- and out-degrees 1. A vertex u is reachable from

another vertex v if there is a directed path that starts from v and ends at u. In con-

trast to undirected graphs, the condition that u is reachable from v does not imply

that v is also reachable from u.

A directed cycle (or circuit) is an oriented simple cycle such that all arcs go in the

same direction, meaning all vertices have in- and out-degrees 1. A digraph is acyclic

if it does not contain any directed cycle.

Hamiltonian and Eulerian paths and directed cycles are defined as undirected

graphs are, by replacing paths with directed paths and cycles with directed cycles.

A.2.3 Connectivity

A digraph is strongly connected if every vertex is reachable from every other, follow-

ing the directions of the arcs. A digraph is weakly connected if its underlying undi-

rected graph is connected.

A strongly connected component of a directed graph is a subgraph whose vertices

are reachable from all other vertices in the subgraph. Reachability between vertices

is established by the existence of a path between those vertices. The strongly con-

nected components (SCC) of a directed graph are its maximal strongly connected

subgraphs. These form a partition of the graph. If each strongly connected compo-

nent is contracted to a single vertex, the resulting graph is a directed acyclic graph.

The strongly connected components of a digraph D ¼ ðV ;AÞ can be computed in

YðjV j þ jAjÞ time (provided the directed graph is represented as an adjacency list).

A.2.4 Directed Acyclic Graphs

A directed acyclic graph (DAG) is a directed graph with no directed cycles. A finite

DAG has at least one source and at least one sink. A topological sort of a DAG is a

linear ordering of its vertices in which each vertex comes before all vertices to which

it has outbound arcs. In general, this ordering is not unique. Any two graphs repre-

senting the same partial order have the same set of topological sort orders.

A.2 Directed Graphs 241

The depth of a vertex in a finite DAG is the length of the longest path from a

source to that vertex, and its height is the length of the longest path from that vertex

to a sink. The length of a finite DAG is the length (number of edges) of a longest

directed path. It is equal to the maximum height of all sources and to the maximum

depth of all sinks.

The transitive closure of a DAG G is the DAG obtained from G by adding an arc

from u to v whenever v is reachable from u.

242 A Graph Theory

B
Complexity Theory

This survey on combinatrics of genome rearrangements is strongly oriented toward

algorithmics and combinatorial optimization. We make an intensive use of the

theory of complexity of algorithms. In this appendix we recall the basics of this

theory, and introduce all the notions we use throughout the book. For more develop-

ments on complexity theory, the reader may refer to Garey and Johnson [181] and

Papadimitriou [290].

B.1 The Class NP

A decision problem is a problem whose answer is either YES or NO. For any decision

problem P , we write IðPÞ for the set of all instances of problem P . The class P

(polynomial time) contains all decision problems that can be solved by a determinis-

tic polynomial-time algorithm. The class NP (nondeterministic polynomial time)

contains all decision problems that can be solved by a nondeterministic polynomial-

time algorithm. In an equivalent definition, the class NP contains those decision

problems for which the YES answers have simple proofs of the fact that the answer

is indeed YES (the theory refers to them as problems having a polynomial-time veri-

fier). NP contains many important problems of practical interest, called NP-complete

problems, for which no polynomial-time algorithms are known.

Example B.1 An independent set in a graph G ¼ ðV ;EÞ is a subgraph wherein every

two vertices are not connected by an edge. A k-independent set is an independent set

of size k. The independent set problem is thus to determine whether a graph con-

tains an independent set of a specified size k. This problem is in NP.

� Proof 1 (nondeterministic algorithm). Nondeterministically select a subset V 0 JV

of k vertices and test whether no edge connecting vertices in V 0 exists (the latter step
is clearly a polynomial-time procedure). Return YES if the test passes, and NO

otherwise.

� Proof 2 (polynomial-time verifier). Given a set V 0 of size k, (1) test whether V 0 is
indeed a subset of V and (2) test whether no edge connecting vertices in V 0 exist. Re-

turn YES if the test passes, and NO otherwise.

Arguably, the greatest open question in theoretical computer science concerns

the relationship between those two classes: Is P equal to NP? In essence, the P versus

NP question is to determine whether any polynomial-time verifiable problem is

polynomial-time decidable. Most computer scientists believe that P0NP.

Reducing one problem to another is a key concept in complexity theory, and

polynomial-time reductions play a crucial role in the context of time complexity.

Definition B.1 A decision problem P is polynomial-time reducible to a problem P 0—
in symbols, P aP P

0—if there is a deterministic algorithm that transforms instances

x A IðPÞ into instances x 0 A IðP 0Þ, in such a way that the answer to x is YES if and

only if the answer to x 0 is YES.

Polynomial-time reductions take into account the e‰ciency of computation. As a

consequence, if one problem P is polynomial-time reducible to a problem P 0 known
to have a polynomial-time solution, we obtain a polynomial-time solution for P .

More formally, if P aP P
0 and P 0 A P, then P A P.

In computational complexity theory, a computational problem is complete for a

complexity class when it is, in a formal sense, one of the hardest in the complexity

class. Hardness and completeness for the class NP are defined as follows.

Definition B.2 A problem P is NP-hard if every problem P 0 A NP is polynomial-

time reducible to P .

Definition B.3 A decision problem P is NP-complete if P is NP-hard and P A NP.

NP-complete problems are thus the most di‰cult problems in NP. Indeed, a deter-

ministic polynomial-time solution to any NP-complete problem would provide a so-

lution to every other problem in NP.

Theorem B.1 If P is NP-complete and P A P, then P ¼ NP.

Theorem B.2 If P is NP-complete and P aP P
0 for some problem P 0 A NP, then P 0

is NP-complete.

Based on the definition alone, however, it is not obvious that NP-complete prob-

lems do exist. The first problem proved to be NP-complete was the Boolean satisfi-

ability (sat) problem. This result came to be known as the Cook-Levin theorem

[120]. A Boolean variable is one that can take on the value TRUE or FALSE. Usu-

ally, TRUE is represented by 1 and FALSE by 0. The Boolean operations AND,

244 B Complexity Theory

OR, and NOT, represented by the symbols5,4and s, respectively, are described as

follows:

050 ¼ 0 040 ¼ 0 s0 ¼ 1

051 ¼ 0 041 ¼ 1 s1 ¼ 0

150 ¼ 0 140 ¼ 1

151 ¼ 1 141 ¼ 1:

A Boolean formula is an expression written using only AND, OR, NOT, variables,

and parentheses. It is satisfiable if some assignment of 0’s and 1’s to the variables

makes the formula evaluate to TRUE. The sat problem is to test whether a given

Boolean formula is satisfiable.

Theorem B.3 (Cook-Levin Theorem [120]) The sat problem is NP-complete.

Karp [230] showed that the sat problem remains NP-complete even if the given

Boolean formula is in conjunctive normal form (a conjunction of clauses, where a

clause is a disjunction of literals) and each clause has three literals. This last problem

is called 3-cnf-sat.

According to definition B.3, proving a problem P is NP-complete requires (1)

proving that P is in NP and (2) proving that every problem in NP reduces to P .

Proving membership in NP-complete is usually straightforward, but the latter step

involves technical details about Turing machines. However, combining theorem B.2

with the Cook-Levin theorem is now enough to prove that a known NP-complete

problem P 0 (see section B.2 for a partial list) polynomial-time reduces to P . In

1972, Karp [230] showed in a breakthrough paper that twenty-one miscellaneous

combinatorial and graph-theoretical problems are NP-complete.

Example B.2 As an illustration, we demonstrate that the independent set problem

is NP-complete. According to example B.1, we need to show its hardness. The

polynomial-time reduction is from the 3-cnf-sat problem. Let f ¼ C15C25� � �5
Cm be a Boolean formula in conjunctive normal form where each clause Ci has

three literals. Write X ¼ fx1; x2; . . . ; xng, the set of Boolean variables involved in f.

The reduction generates ðG; kÞ, where G ¼ ðV ;EÞ is a graph and k is a positive

integer.

The vertices of G are organized into m groups of three vertices each. Each group

corresponds to one of the clauses in f and each vertex in a group corresponds to a

literal in the associated clause. The edges of G connect all vertices that belong to the

same group and vertices from di¤erent groups that correspond to opposite literals.

(Figure B.1 illustrates the construction.)

B.1 The Class NP 245

We now want to show that f is satisfiable if and only if G contains an independent

set of size k ¼ m. First, assume that f has a satisfying assignment. In that satisfying

assignment, at least one literal is true in every clause. Selecting in each group a vertex

corresponding to a true literal in the satisfying assignment results in an independent

set V 0 JV of size k ¼ m.

Conversely, assume G has an independent set V 0 JV of size k ¼ m. No vertex of

V 0 occurs in the same group more than once, since vertices in a group are fully con-

nected by edges. Therefore, V 0 contains exactly one vertex in each group. Assign

truth values to the variables of f in such a way that each literal labeling a vertex in

V 0 is made true (note that this is always possible because opposite literals are con-

nected in G). This assignment satisfies f since each group contains a vertex in V 0.

B.1.1 NP-Optimization Problems: From PTAS to APX

In optimization problems, we seek the best solution among a collection of possible

solutions. Optimization problems are either minimization or maximization problems.

Definition B.4 An NP-optimization problem P is a quadruple ðI ; sol;m; goalÞ where
� I is a set of instances that is recognizable in polynomial time.

� Given an instance x A I , solðxÞ is the set of feasible solutions of x. These solutions

are short, that is, a polynomial p exists such that, for any y A solðxÞ, jyja pðjxjÞ.
Moreover, it is decidable in polynomial time whether, for any x and for any y such

that jyja pðjxjÞ, y A solðxÞ.
� Given an instance x and a feasible solution y to x, mðx; yÞ denotes the measure of

y. The function m is computable in polynomial time and is also called the objective

function.

Figure B.1
The graph of the reduction produced from f ¼ ðsx14x24x3Þ5ðx14x24x3Þ5ðx14sx24sx3Þ. A feasi-
ble solution is given by the assignment x1 ¼ 0, x2 ¼ 1, and x3 ¼ 1

246 B Complexity Theory

� Goal is the goal function, and is either min or max.

The class NPO is the set of all NP-optimization problems.

Approximation algorithms are very often associated with NP-hard problems.

However, since it is unlikely that there can ever be e‰cient polynomial-time exact

algorithms solving NP-hard problems, one settles for polynomial-time nonoptimal

solutions. Approximation algorithms are thus concerned with provable solution

quality and provable run-time bounds. More formally, the goal of an NPO problem

with respect to an instance x is thus to find an optimum solution, that is, a feasible

solution y such that

mðx; yÞ ¼ goalfmðx; y 0Þ : y 0 A solðxÞg:
In the following, opt will denote the function mapping an instance x to the measure

of an optimum solution.

Definition B.5 Let P ¼ ðI ; sol;m; goalÞ be an NPO problem. Given an instance

x A IðPÞ and a feasible solution y A solðxÞ, the performance ratio of y with respect

to x is defined as

Rðx; yÞ ¼ max
mðx; yÞ
optðxÞ ;

optðxÞ
mðx; yÞ

� �
:

The performance ratio is always a number greater than or equal to 1; the closer it

is to 1, the closer y is to an optimum solution.

Definition B.6 Let P ¼ ðI ; sol;m; goalÞ be an NPO problem and let A be an algo-

rithm that, for any x A I , returns a feasible solution AðxÞ of x. Given an arbitrary

function f : N	 ! R	, A is called an f ðnÞ-approximate algorithm (or an f ðnÞ-
approximation algorithm) for P if, for any x A I , the performance ratio of the feasible

solution f ðxÞ with respect to x verifies Rðx;AðxÞÞa f ðjxjÞ.
If an NPO problem admits an f ðnÞ-approximate polynomial-time algorithm, it is

said to be approximable within (or to have approximation ratio bounded by) f ðnÞ.
Based on the above definitions, several complexity classes can be defined.

Definition B.7 Let P ¼ ðI ; sol;m; goalÞ be an NPO problem. An algorithm A is said

to be a polynomial-time approximation scheme (PTAS) for P if, for any x A I and for

any rational e > 1, Aðx; eÞ returns a feasible solution of x whose performance ratio is

at most e.

Definition B.8 The class PTAS is the set of NPO problems that admit a polynomial-

time approximation scheme.

B.1 The Class NP 247

The running time of a PTAS is required to be polynomial in n for every fixed e but

can be di¤erent for di¤erent e. Therefore, algorithms running in Oðn1=eÞ or even

Oðnexpð1=eÞÞ time are PTAS. Even more restrictive is the fully polynomial-time approx-

imation scheme (FPTAS), which requires the algorithm to be polynomial in both the

problem size n and 1=e.

Definition B.9 The class FPTAS is the set of NPO problems that admit a fully

polynomial-time approximation scheme.

Relaxing the constraint that there is a polynomial-time algorithm to solve a prob-

lem within every fixed percentage (one algorithm for each percentage) results first in

the class APX.

Definition B.10 The class APX is the set of NPO problems that allow polynomial-

time approximation algorithms with approximation ratio bounded by a constant (or

constant-factor approximation algorithms for short).

Example B.3 Given a graph G ¼ ðV ;EÞ, the vertex cover problem seeks to find a

minimum cardinality subset V 0 JV such that every edge of G has at least one end

point in V 0. The vertex cover problem is 2-approximable, as shown by the follow-

ing simple algorithm: ‘‘Until all edges in G touch a marked edge, select an edge in G

untouched by any marked edge and mark that edge. The algorithm returns all vertices

that are end points of marked edges.’’ An obvious implementation of the above algo-

rithm runs in polynomial time. Let E 0 be the set of marked edges and let V 0 be the

set of vertices that the algorithm outputs. The set V 0 is a vertex cover because E 0

contains or touches every edge in G, and hence V 0 touches all edges in G. What is

left is to show that V 0 is at most twice as large as a minimum cardinality vertex

cover, say Vopt. This is indeed the case, since on the one hand jV 0j ¼ 2 jE 0j because
the edges in E 0 do not touch each other and, on the other hand, Vopt is a vertex

cover, and hence every edge in E 0 is touched by some vertex in Vopt. Furthermore,

no such vertex in Vopt touches two edges in E 0 (again, this follows from the fact that

the edges in E 0 do not touch each other), and hence jVoptjb jE 0j. It follows that

jV 0j=jVoptja 2, and V 0 is no more than twice as large as a minimum cardinality ver-

tex cover of G.

By definition, FPTASJPTASJAPX. It can be shown, however, that unless

P ¼ NP, there are problems that are in PTAS but not in FPTAS, and that there are

problems that are in APX but not in PTAS.

Theorem B.4 Unless P ¼ NP, FPTASWPTASWAPX.

In the context of approximation problems, an approximation preserving reduction

is needed. PTAS reduction is a reduction that is often used to perform reductions be-

248 B Complexity Theory

tween solutions to optimization problems (see, e.g., Ausiello et al. [22]). It preserves

the property that a problem has a polynomial-time approximation scheme (PTAS).

A PTAS reduction from a problem P1 to a problem P 2 is denoted by P1 aPTAS P2.

Hardness and completeness for the APX are defined as follows.

Definition B.11 An NPO problem is APX-hard if there is a PTAS reduction from

every problem in APX to the NPO problem.

Definition B.12 An NPO problem P is APX-complete if P is APX-hard and

P A APX.

Theorem B.5 If P 1 aPTAS P 2 and P 2 A APX (respectively, P2 A PTAS), then

P 1 A APX (respectively, P 1 A PTAS).

From theorem B.5, it immediately follows that if an NPO problem P is APX-

hard, then it does not belong to PTAS. In other words, to say a problem is

APX-hard is generally bad news, because it denies the existence of a PTAS, which

is the most useful sort of approximation algorithm.

To show that a problem is APX-hard, it usually su‰ces to show a special type of

polynomial-time reduction from some problem already known to be APX-hard. The

most frequently used type of reduction is the L-reduction, introduced by Papadimi-

triou and Yannakakis [291].

Definition B.13 Let P 1 ¼ ðI1; sol1;m1; goal1Þ and P2 ¼ ðI2; sol2;m2; goal2Þ be two

NPO optimization problems. A pair f and g is an L-reduction if all of the following

conditions are met:

� Both f and g are computable in a logarithmic amount of space.

� If x A I1, then f ðxÞ A I2.

� If y A sol2ð f ðxÞÞ, then gðyÞ A sol1ðxÞ.
� There exists a positive constant a such that

OPT2ð f ðxÞÞa a opt1ðxÞ:
� There exists a positive constant b such that

jOPT1ðxÞ �m1ðx; gðyÞÞja bjOPT2ð f ðxÞÞ �m2ð f ðxÞ; yÞj:
The rationale of this concept stems from the following theorem.

Theorem B.6 [291] If ð f ; gÞ is an L-reduction from problem P 1 to problem P2 with

constants a and b, and there exists a polynomial-time r-approximation algorithm

for P 2, then there also exists a polynomial-time ðr a bÞ-approximation algorithm for

P 1.

B.1 The Class NP 249

It follows from theorem B.6 that if P 2 has a polynomial-time approximation

scheme, then so does P 1. Papadimitriou and Yannakakis [291] and Ausiello et al.

[22] give examples of L-reductions.

B.1.2 NP-Optimization Problems: Beyond APX

Unfortunately, not all NPO problems are in APX (i.e., have a fixed approximation

ratio). The minimum set cover and maximum independent set problems are two

well-known examples.

Given a collection C of subsets of a finite set X , the minimum set cover seeks to

find a minimum cardinality subset C 0 JC such that every element in X belongs to at

least one member of C 0. This problem is approximable within ratio 1þ logjX j [223],
but not within ratio c logjX j for some c > 0 [311]. (Feige [169] shows a stronger

lower bound under a plausible complexity hypothesis.) The minimum set cover prob-

lem is, however, approximable within ratio c logjX j if every element of X belongs to

at least ejCj sets from C for any c > 0 and e > 0 (see Karpinski and Zelikovsky

[231]).

Given a graph G ¼ ðV ;EÞ, the maximum independent set problem seeks to find a

maximum cardinality independent set in G. This problem is approximable within

OðjV j=ðlogjV jÞ2Þ [79], but is not approximable within ratio jV j1�e for any e > 0

under a plausible complexity hypothesis [205].

In the light of such bad news, researchers have turned to considering restricted

instances for better approximation ratios:

� Duh and Fürer [149] show that the minimum set cover problem is APX-complete

and is approximable within
Pk

i¼1
1
i
� 1=2 when the cardinality of all sets in C is

bounded from above by a constant k. Papadimitriou and Yannakakis [291] show

that the variant in which the number of occurrences in C of any element is bounded

by a constant Bb 2 is APX-complete and approximable within ratio B.

� The maximum independent set problem is APX-complete for fixed DðGÞb 3 [291],

and is approximable within ðDðGÞ þ 3Þ=5 for small DðGÞ [54] and within ratio

OðD log log D=log DÞ for larger D ¼ DðGÞ [229]. Of particular importance, the maxi-

mum independent set problem has a PTAS for planar graphs [32].

B.1.3 Parameterized Complexity

Parameterized complexity [148] is a measure of complexity of problems with multiple

input parameters. The basic idea is that the combinatorial explosion that occurs in

exact algorithms for many intractable problems can systematically be addressed by

seeking parameters to fix to contain this explosion. Many hard computational prob-

lems have the following general form: Given an object x and a nonnegative integer

k, does x have some property that depends on k? For example, given a graph

250 B Complexity Theory

G ¼ ðV ;EÞ and a nonnegative integer k, the NP-complete vertex cover problem

seeks to find a vertex cover of size k. In parameterized complexity theory, k is called

the parameter. In many practical applications, the parameter k can be considered

‘‘small ’’ in comparison with the size jxj of the input object x. Hence, it is of great

practical interest to know whether these problems have deterministic algorithms

that are exponential only with respect to k and polynomial with respect to jxj.
Definition B.14 A parameterized problem is a pair ðx; kÞ A S	 �Nþ, where S is a fi-

nite alphabet. The first component, x, is the description of the instance, and the sec-

ond component, k, is the parameter of the problem.

The first key notion in this context is the concept of fixed-parameter tractability.

Definition B.15 A parameterized problem P is fixed-parameter tractable if the ques-

tion ‘‘ðx; kÞ A P ?’’ can be decided in running time f ðkÞ jxjOð1Þ, where f is an arbitrary

function. The class FPT contains all problems that are fixed-parameter tractable.

FPT is thus the class of those parameterized problems for which the seemingly in-

herent ‘‘combinatorial explosion’’ really can be restricted to a (hopefully) ‘‘small

part’’ of the input, the parameter. Extensive research in fixed-parameter algorithms

has led to the development of a rich toolbox of parameterized techniques (see Nie-

dermeier [282] for a recent account), a few of which are the following:

� Depth-bounded search tree: explore exhaustively all paths in a tree whose height

depends solely on the parameter.

� Data reduction and problem kernel: reduce the parameterized problem to a kernel

whose size depends solely on the parameter.

� Dynamic programming: combine properties of overlapping subproblems and opti-

mality of substructures.

� Tree decomposition: algorithmic feasibility for many problems on graphs that are

‘‘almost’’ trees.

� Iterative compression: iteratively compress a feasible solution.

As a theoretic counterpart to fixed-parameter tractability, a theory of parame-

terized intractability has been developed. Unfortunately, the landscape of fixed-

parameter intractable problems is not as simple as the landscape of classical

intractable problems provided by the theory of NP-completeness. Central in parame-

terized intractability is the notion of parameterized reduction [148].

Definition B.16 Let P 1 and P 2 be two parameterized problems. A standard parame-

terized m-reduction transforms an input ðx; kÞ of P1 into an input ð f ðx; kÞ; gðkÞÞ of
P 2 such that

B.1 The Class NP 251

� ðx; kÞ A P 1 if and only if ð f ðx; kÞ; gðkÞÞ A P 2, and

� f runs in ðpðjxjÞ hðkÞÞ time for some polynomial p and some function h.

Note that polynomial-time reductions are rarely parameterized reductions. For ex-

ample, the classical polynomial-time reduction from the independent set problem to

the clique problem (transformation of a graph into its complement) is not a parame-

terized reduction.

The most important parameterized complexity classes of parameterized intractable

problems are the classes in the W-hierarchy [148].

FPTJW½1�JW½2�J � � �
For example, the class W½t�, the t-th level of the W-hierarchy, is defined to be the

class of all problems that are parameterized reducible to a parameterized version

of the satisfiability problem for a certain class of Boolean circuits. Many natural

parameterized problem that are not known to be fixed-parameter tractable have

been shown to be complete for one of these classes (most of them for the first level

W[1] or the second level W[2] of the hierarchy).

B.2 Some NP-Complete Problems

We list here in alphabetical order the definitions of some NP-complete problems that

are mentioned in the book. Bracketed references before the problems’ names are the

numbers assigned to those problems by Garey and Johnson [181].

[SP1] 3-DIMENSIONAL-MATCHING

INSTANCE: Set MJX � Y � Z, where X , Y , and Z are disjoint sets having the

same number q of elements.

QUESTION: Does M contain a matching (i.e., is there a subset of M of size q and

such that no two elements of that subset agree in any coordinate)?

Reference: Garey and Johnson [181]. Transformation from 3-satisfiability.

[SP15] 3-PARTITION

INSTANCE: Set A of 3m elements, a natural B, and a size sðaÞ for each object a in A

such that B=4 < sðaÞ < B=2 and that
P

a AA sðaÞ ¼ mB.

QUESTION: Can A be partitioned into m disjoint sets A1;A2; . . . ;Am, each of cardi-

nality 3, such that
P

a AA sðaÞ ¼ B?

Reference: Garey and Johnson [181]. Transformation from 3-dimensional matching.

252 B Complexity Theory

[LO2] 3-SATISFIABILITY

INSTANCE: Set U of variables, collection C of clauses over U such that each clause

involves three variables.

QUESTION: Is there a satisfying truth assignment for C ?

Reference: Garey and Johnson [181]. Transformation from satisfiability.

ALTERNATING CYCLE DECOMPOSITION

INSTANCE: The breakpoint graph G ¼ ðV ;EÞ of an unsigned permutation, natural

K .

QUESTION: Can E be partitioned into at least K alternating cycles?

Reference: Caprara [93]. Transformation from Eulerian cycle decomposition. The

problem was shown to be APX-hard by Berman and Karpinski [57].

[SR1] BIN-PACKING

INSTANCE: An integer capacity B, a finite set of integers X ¼ fx1; x2; . . . ; xng
where xi aB, a positive integer ka n.

QUESTION: Is there a partition of X into disjoint sets X1;X2; . . . ;Xk such that the

sum of elements in each Xi is at most B?

Reference: Garey and Johnson [181].

BREAKPOINT GRAPH DECOMPOSITION

See alternating cycle decomposition.

[GT19] CLIQUE

INSTANCE: Graph G ¼ ðV ;EÞ, positive integer Ka jV j.
QUESTION: Does G contain a clique of size at least K?

Reference: Garey and Johnson [181]. Transformation from vertex cover.

EULERIAN CYCLE DECOMPOSITION

INSTANCE: Eulerian graph G ¼ ðV ;EÞ, natural K .

QUESTION: Can E be partitioned into at least K cycles?

Reference: Holyer [213].

[SP2] EXACT COVER BY 3-SETS

INSTANCE: Set X of size 3q and a collection C of three-element subsets of X .

QUESTION: Does C contain an exact cover for X (i.e., a subcollection C 0 JC such

that every element of X occurs in exactly one member of C 0)?

Reference: Garey and Johnson [181]. Transformation from 3-dimensional matching.

B.2 Some NP-Complete Problems 253

[GT38] HAMILTONIAN CYCLE

INSTANCE: A graph G ¼ ðV ;EÞ.
QUESTION: Does G contain a Hamiltonian cycle (i.e., a cycle that visits each vertex

exactly once)?

Reference: Garey and Johnson [181]. Transformation from vertex cover.

[GT39] HAMILTONIAN PATH

INSTANCE: A graph G ¼ ðV ;EÞ.
QUESTION: Does G contain a Hamiltonian path (i.e., a path that visits each vertex

exactly once)?

Reference: Garey and Johnson [181]. Transformation from vertex cover.

[GT20] INDEPENDENT SET

INSTANCE: Graph G ¼ ðV ;EÞ, natural Ka jV j.
QUESTION: Does G contain an independent set of size K or more (i.e., a subset

V 0 JV such that jV 0jbK and such that no two vertices of V 0 are adjacent to an

edge in E)?

Reference: Garey and Johnson [181]. Transformation from vertex cover.

LARGEST BALANCED INDEPENDENT SET

INSTANCE: Connected balanced bipartite graph G ¼ ðV 0;V 00;EÞ, natural

1aKa jV 0j.
QUESTION: Do there exist subsets U 0 JV 0, U 00 JV 00 with jU 0j ¼ jU 00j ¼ K such

that no edge between vertices of U 0 and of U 00 appears in E ?

Reference: As noted by DasGupta et al. [131], the largest balanced independent

set is equivalent to the largest balanced complete bipartite subgraph problem,

which is shown to be NP-complete (see Garey and Johnson [181], problem [GT24])

by a transformation from clique.

[LO1] SATISFIABILITY

INSTANCE: Set U of variables, collection C of clauses over U .

QUESTION: Is there a satisfying truth assignment for C ?

Reference: Garey and Johnson [181]. Generic transformation.

[SP3] SET PACKING

INSTANCE: Collection C of finite sets, natural Ka jCj.
QUESTION: Does C contain at least K mutually disjoint sets?

Reference: Garey and Johnson [181]. Transformation from exact cover by 3-sets.

254 B Complexity Theory

[ND22] TRAVELING SALESMAN

INSTANCE: A set C of m cities, a distance d that takes natural values for each pair

of cities, and a natural B.

QUESTION: Is there a tour of C of length B or less?

Reference: Garey and Johnson [181]. Transformation from hamiltonian cycle.

[GT1] VERTEX COVER

INSTANCE: A graph G ¼ ðV ;EÞ, a natural Ka jV j.
QUESTION: Is there a vertex cover of size K or less for G (i.e., a subset of V of size

K or less that contains an end point of each edge in E)?

Reference: Garey and Johnson [181]. Transformation from 3-satisfiability.

B.2 Some NP-Complete Problems 255

Glossary

A(G) Adjacency matrix of graph G 239

B (S) Number of uniform blocks in string S 141

C SDS Block covering constraints 124

Cd , pN(T) Circular lower bound of tree topology T with parameters d
and p�

214

E (G) Edge set of the graph G 235

G/v Local complementation of the neighborhood of vertex v in
graph G

85

GF (V,E) Graph with vertex set V and edge set E 235

G [X] Induced subgraph of G defined by X 236

IL (p) Interleaving graph of permutation p 83

Kn Clique of order n 235

LCS Length of the longest common substring of strings S and T 93

MAD (p,s) MAD number of permutations p and s 118

N (u) Neighborhood of the vertex u 235

NB(u) Out-neighborhood of vertex u 240

NC(u) In-neighborhood of vertex u 240

NP Number of conserved intervals of set P of permutations 115

OV (p) Overlap graph of permutation p 84

SAD (p,s) SAD number of permutations p and s 118

Sn
G Hyperoctahedral group on f1; 2; . . . ; ng 15

Sn Symmetric group on f1; 2; . . . ; ng 14

T Telomeric marker 162

V (G) Vertex set of the graph G 235

Ww (T) Weight of tree T with edge weights w 207

BG (P,G) Breakpoint graph of genomes P and G 167

BG (p) Breakpoint graph of permutation p 41

BG (p) Breakpoint graph of signed permutation p 65

count (g) Number of sets of Sðh; kÞ in which g appears in an instance of
synteny

184

D(G) Maximum degree of graph G 236

DB(D) Maximum out-degree of digraph D 241

DC(D) Maximum in-degree of digraph D 241

IdP Identity genome of P 166

occ (S) Maximum number of occurrences of a gene in string S 92

occ (a,S) Number of occurrences of a in string S 92

W(P) Synteny graph of genome P 203

PlP Doubled genome P 200

SG (S(h,k)) Synteny graph of Sðh; kÞ 184

bd (S,T) Number of breakpoints between strings S and T 136

bid (S,T) Block-interchange distance between strings S and T 153

bidDk (n) Block-interchange diameter for n length balanced strings 154

bisd (S) Block-interchange sorting distance of string S 154

bp (p, s) Breakpoint distance between permutations p and s 21

cid (P ,Q) Conserved interval distance between sets of permutations P
and Q

115

N Composition of two permutations 13

dcj (P,G) DCJ distance between genomes P and G 170

degB(u) Out-degree of vertex u 240

degC(u) In-degree of vertex u 240

d (G) Minimum degree of the graph G 236

dB(D) Minimum out-degree of digraph D 240

dC(D) Minimum in-degree of digraph D 240

ebd (S,T) Exemplar breakpoint distance between strings S and T 106

zN Relation constructing circular strings 93

zN Relation defining circular permutations 19

zN Relation defining genomic circular permutations 19

erd (S,T) Exemplar reversal distance between strings S and T 106

fbd (S,T) Full breakpoint distance between strings S and T 103

258 Glossary

hvd (P) Halving distance of genome P 203

hvdD (N) Halving diameter for genomes with N chromosomes 205

i Identity permutation 14

kk Permutation k with parameter k 34

kbd (P,G) k-break rearrangement distance between P and G 172

lbedE (S,T), lbedS (S,T) Large block edit distances between strings S and T 130

lsyd (S(h,k)) Linear syntenic distance of Sðh; kÞ 187

A Alphabet 92

A* The set of all strings on alphabet A 92

An The set of all strings of length n on alphabet A 92

S(h,k) Genome with k chromosomes on alphabet f1; 2; . . . ; hg 183

G Complement of the graph G 235

p ð0; pn; pn�1; . . . ; p1Þ � ð0; 1; 2; . . . ; nÞ 177

p l Linear extension of permutation p 20

pC1 Inverse of permutation p 14

p N Circular permutation 19

prDk (n) Prefix reversal diameter 145

prd (S,T) Prefix reversal distance between strings S and T 145

prgd (S) Prefix reversal grouping distance of string S 146

prsd (S) Prefix reversal sorting distance of string S 145

ptd (S,T) Prefix transposition distance between strings S and T 152

ptdDk (n) Prefix transposition diameter for n-length balanced strings 152

rd (p,s) Reversal distance between signed permutations p and s 106

rdDk (n) Reversal diameter for n-length strings 139

rsd (S) Reversal sorting distance of string S 141

rtd (P,G) Reversal and translocation distance between genomes P and
G

172

sbed (S,T) Symmetric block edit distance between strings S and T 128

syd (S(h,k)) Syntenic distance of Sðh; kÞ 184

t (i, j,k) Transposition with parameters i, j, k 25

td (S,T) Transposition distance between strings S and T 148

tdDk (n) Transposition diameter for n-length balanced strings 148

tld (P) Translocation distance between genomes P and IdP 166

Glossary 259

tld (P,G) Translocation distance between genomes P and G 165

tsd (S) Transposition sorting distance of string S 149

xbed (S,T) Exclusive breakpoint distance between strings S and T 103

as (p,s) Adjacency similarity between permutations p and s 110

b (S,T) Number of breakpoints between binary strings S and T 139

bcd (S,T) Block covering distance between strings S and T 124

bd (P,Q) Breakpoint distance between posets P and Q 80

bp (p) Number of breakpoints of permutation p 21

bp (p,s) Breakpoint distance of permutations p and s 21

cis (p,s) Conserved intervals similarity between permutations p and s 117

dcj (p) DCJ distance between permutations p and Id 73

dd (P,G) Double distance between genomes P and G 201

f (S) Number of gene families with at least two members in string S 92

fab (S) Number of times ab occurs in string S 139

hd (S,T) Hamming distance between strings S and T 128

inv2 (p) ‘‘Bubble sort distance’’ of permutation p 51

lcp (S,T) Length of the longest common prefix of strings S and T 93

lcs (S,T) Length of the longest common su‰x of strings S and T 93

p (p) Number of points of permutation p 21

rd (P,Q) Reversal distance between posets P and Q 79

sb (p) Number of strong breakpoints of permutation p 21

ulam (p) Ulam distance of permutation p 31

z (S) Number of uniform blocks filled with zeros in string S 141

peN Circular extention of permutation p 19

(S, T) Pruning of strings S and T 99

(P,J) A partially ordered set 76

(p1 p2 � � � pn) A linear permutation 13

An The alternating group on f1; 2; . . . ; ng 15

G (p) Cycle graph of permutation p 28

I (P) The set of all instances of problem P 243

L (a1, . . . , ak) The set of all balanced strings containing ai members of the
gene family i, for 1a ia k

94

M*, i The ith column of matrix M 85

260 Glossary

MI The largest element of interval I 63

Mi,* The ith row of matrix M 85

R (x, y) Performance ratio of solution y with respect to an instance x
of an NPO problem

247

[p1 p2 � � � pn] A circular permutation 19

#Q The lower set of Q 77

G (p) G-graph of permutation p 30� �� �� �
n
k

Stirling number of the first kind 51

1 (p) Set of all clans of permutation p of length at least 3 38

cid (p,s) The conserved interval distance between p and s 64

fs (p) The number of conserved intervals of permutation p 64

gn Gollan permutation of n elements 40

JP Polynomial-time reducibility between decision problems 244

JPTAS PTAS reduction 248

^ Covering relation in posets 76

|LIS (p)| Length of a longest increasing subsequence of permutation p 31

xm Shorthand notation for ðxþmÞ ðmod nþ 1Þ 32

p! A spin of permutation p 43

p! Set of all spins of a permutation p 43

perfdS (p) Perfect reversal distance of permutation p, with respect to a
subset S of its common intervals

69

rd (p) Reversal distance of permutation p 40

r (i, j) A reversal 40

sk (P,G) The maximum number of disjoint breakable subsets in
BGðP;GÞ

172

srd (p) The reversal distance of signed permutation p 67

syd (P1,P2) Syntenic distance between genomes P1 and P2 182

sydf f (S(h,k)) Syntenic distance of Sðh; kÞ using only fusions and fissions 188

tdrlda (p) Tandem-duplication random-loss distance of permutation p,
with parameter a

59

aP The number of antichains in poset P 81

bid (p) Block-interchange distance of permutation p 49

c (G(p)) Number of cycles in GðpÞ 30

c *(BG (p)) Number of cycles in a maximal alternating cycle decomposi-
tion of BGðpÞ

42

Glossary 261

c1(G (p)) Number of 1-cycles in GðpÞ 38

ceven (G (p)) Number of even cycles in GðpÞ 29

ceven (G(p)) Number of even cycles in GðpÞ 30

codd (G (p)) Number of odd cycles in GðpÞ 29

cold (G(p)) Number of odd cycles in GðpÞ 30

des (p) Number of descents in a permutation p 27

exc (p) Cayley distance of permutation p 50

lc (p) Left code of permutation p 31

lc (pi) Left code of element pi 31

m (x, y) Measure of solution y to instance x of a problem 247

mI The smallest element of interval I 63

pexc (p) Prefix exchange distance of permutation p 52

plat (S) Number of plateaus in sequence S 31

prd (p) Prefix reversal distance of permutation p 47

ptb (p) Number of prefix transposition breakpoints of permutation p 37

ptd (p) Prefix transposition distance of permutation p 37

rc (p) Right code of permutation p 31

rc (pi) Right code of element pi 31

sol (x) Set of feasible solutions of instance x of a given problem 246

t (p) Number of leaves of the tree of unoriented components of
permutation p plus a correcting term

67

td (p) Transposition distance of permutation p 26

P A (decision or optimization) problem 243

pN
N

Toric permutation 32

S M-pruned string obtained from string S using matching M 95

c (G (p)) Number of alternating cycles in GðpÞ 28

FPT The class of all problems that are fixed-parameter tractable. 251

NP The class of all decision problems that can be solved by a non-
deterministic polynomial-time algorithm.

243

P The class of all decision problems that can be solved by a
deterministic polynomial-time algorithm.

243

262 Glossary

Bibliography

[1] Z. Adam and D. Sankoff, The ABCs of MGR with DCJ, Evolutionary Bioinformatics, 4 (2008), pp.
69–74.

[2] S. Ahn and S. Tanksley, Comparative linkage maps of the rice and maize genomes, Proceedings of the
National Academy of Sciences (USA), 90 (1993), pp. 7980–7984.

[3] M. Aigner and D. B. West, Sorting by insertion of leading element, Journal of Combinatorial Theory,
ser. A, 45 (1987), pp. 306–309.

[4] Y. Ajana, J.-F. Lefebvre, E. R. M. Tillier, and N. El-Mabrouk, Exploring the set of all minimal
sequences of reversals—an application to test the replication-directed reversal hypothesis, in Proceedings of
the Second International Workshop on Algorithms in Bioinformatics (WABI), R. Guigo and D. Gusfield,
eds., vol. 2452 of Lecture Notes in Computer Science, Springer-Verlag, 2002, pp. 300–315.

[5] S. B. Akers and B. Krishnamurthy, A group-theoretic model for symmetric interconnection networks,
IEEE Transactions on Computers, 38 (Apr. 1989), pp. 555–566.

[6] S. B. Akers, D. Harel, and B. Krishnamurthy, The star graph: An attractive alternative to the
n-cube, in Proceedings of the Fourth International Conference on Parallel Processing (ICPP), Pennsylvania
State University Press, 1987, pp. 393–400.

[7] M. A. Alekseyev, Multi-break rearrangements: From circular to linear genomes, in Proceedings of the
Fifth RECOMB Comparative Genomics Satellite Workshop (RECOMB-CG), G. Tesler and D. Durand,
eds., vol. 4751 of Lecture Notes in Computer Science, Springer-Verlag, 2007, pp. 1–15.

[8] M. A. Alekseyev and P. A. Pevzner, Genome halving problem revisited, in Proceedings of the Twenty-
fourth Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
K. Lodaya and M. Mahajan, eds., vol. 3328 of Lecture Notes in Computer Science, Springer-Verlag, 2004,
pp. 1–15.

[9] M. A. Alekseyev and P. A. Pevzner, Colored de Bruijn graphs and the genome halving problem, IEEE/
ACM Transactions on Computational Biology and Bioinformatics, 4, no. 1 (2007), pp. 98–107.

[10] M. A. Alekseyev and P. A. Pevzner, Whole genome duplications, multi-break rearrangements, and
genome halving problem, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), N. Bansal, K. Pruhs, and C. Stein, eds., Society for Industrial and Applied Mathe-
matics, 2007, pp. 665–679.

[11] M. A. Alekseyev and P. A. Pevzner, Whole genome duplications and contracted breakpoint graphs,
SIAM Journal of Computing, 36 (2007), pp. 1748–1763.

[12] A. Amir, Y. Aumann, G. Benson, A. Levy, O. Lipsky, E. Porat, S. Skiena, and U. Vishne, Pattern
matching with address errors: Rearrangement distances, in Proceedings of the Seventeenth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), ACM, 2006, pp. 1221–1229.

[13] A. Amir, Y. Aumann, P. Indyk, A. Levy, and E. Porat, E‰cient computations of l1 and ly rear-
rangement distances, in Proceedings of the Fourteenth International Symposium on String Processing and
Information Retrieval (SPIRE), N. Ziviani and R. Baeza-Yates, eds., vol. 4726 of Lecture Notes in Com-
puter Science, Springer-Verlag, 2007, pp. 39–49.

[14] A. Amir, T. Hartman, O. Kapah, A. Levy, and E. Porat, On the cost of interchange rearrangement
in strings, in Proceedings of the Fifteenth Annual European Symposium on Algorithms (ESA), L. Arge,
M. Ho¤mann, and E. Welzl, eds., vol. 4698 of Lecture Notes in Computer Science, Springer-Verlag,
2007, pp. 99–110.

[15] S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette, E‰cient tools for computing the
number of breakpoints and the number of adjacencies between two genomes with duplicate genes, Journal of
Computational Biology, 15, no. 8 (2008), pp. 1093–1115.

[16] S. Angibaud, G. Fertin, I. Rusu, and S. Vialette, How pseudo-Boolean programming can help
genome rearrangement distance computation, in Proceedings of the Fourth RECOMB Comparative
Genomics Satellite Workshop (RECOMB-CG), G. Bourque and N. El-Mabrouk, eds., vol. 4205 of Lec-
ture Notes in Computer Science, Springer-Verlag, 2006, pp. 75–86.

[17] S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette, A pseudo-Boolean programming
approach for computing the breakpoint distance between two genomes with duplicate genes, in Proceedings
of the Fifth RECOMB Comparative Genomics Satellite Workshop (RECOMB-CG), G. Tesler and D.
Durand, eds., vol. 4751 of Lecture Notes in Computer Science, Springer-Verlag, 2007, pp. 16–29.

[18] S. Angibaud, G. Fertin, I. Rusu, and S. Vialette, A pseudo-Boolean framework for computing rear-
rangement distances between genomes with duplicates, Journal of Computational Biology, 14 (2007), pp.
379–393.

[19] S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette, On the approximability of compar-
ing genomes with duplicates, Journal of Graph Algorithms and Applications (2008). In press.

[20] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The Traveling Salesman Problem: A
Computational Study, Princeton Series in Applied Mathematics, Princeton University Press, 2007.

[21] W. Arndt and J. Tang, Improving inversion median computation using commuting reversals and cycle
information, in Proceedings of the Fifth RECOMB Comparative Genomics Satellite Workshop
(RECOMB-CG), G. Tesler and D. Durand, eds., vol. 4751 of Lecture Notes in Computer Science,
Springer-Verlag, 2007, pp. 30–44.

[22] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi,
Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Prop-
erties, Springer-Verlag, 1999.

[23] A. Auyeung and A. Abraham, Estimating genome reversal distance by genetic algorithm, in
IEEE Congress on Evolutionary Computation, vol. 2, IEEE Computer Society Press, 2003, pp. 1157–
1161.

[24] D. Avis and M. Newborn, On pop-stacks in series, Utilitas Mathematica, 19 (1981), pp. 129–140.

[25] A. Bachrach, K. Chen, C. Harrelson, R. Mihaescu, S. Rao, and A. Shah, Lower bounds for max-
imum parsimony with gene order data, in Proceedings of the Third RECOMB Comparative Genomics Sat-
ellite Workshop (RECOMB-CG), A. McLysaght and D. H. Huson, eds., vol. 3678 of Lecture Notes in
Computer Science, Springer-Verlag, 2005, pp. 1–10.

[26] D. A. Bader, B. M. E. Moret, and M. Yan, A linear-time algorithm for computing inversion distance
between signed permutations with an experimental study, Journal of Computational Biology, 8, no. 5 (2001),
pp. 483–491.

[27] M. Bader and E. Ohlebusch, Sorting by weighted reversals, transpositions, and inverted transposi-
tions, in Proceedings of the Tenth Annual International Conference on Research in Computational Molec-
ular Biology (RECOMB), A. Apostolico, C. Guerra, S. Istrail, P. A. Pevzner, and M. S. Waterman, eds.,
vol. 3909 of Lecture Notes in Computer Science, Springer-Verlag, 2006, pp. 563–577.

[28] M. Bader and E. Ohlebusch, Sorting by weighted reversals, transpositions, and inverted transposi-
tions, Journal of Computational Biology, 14, no. 5 (2007), pp. 615–636.

[29] V. Bafna and P. A. Pevzner, Genome rearrangements and sorting by reversals, in Proceedings of the
Thirty-fourth Annual Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society
Press, 1993, pp. 148–157.

[30] V. Bafna and P. A. Pevzner, Sorting by transpositions, SIAM Journal on Discrete Mathematics, 11
(May 1998), pp. 224–240 (electronic).

264 Bibliography

[31] V. Bafna, D. Beaver, M. Fürer, and P. A. Pevzner, Circular permutations and genome shu¿ing, in
Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment
and the Evolution of Gene Families, vol. 1 of Sanko¤ and Nadeau [322], 2000, pp. 199–206.

[32] B. Baker, Approximation algorithms for NP-complete problems on planar graphs, Journal of the
ACM, 41 (Jan. 1994), pp. 153–180.

[33] D. W. Bass and I. H. Sudborough, On the shu¿e-exchange permutation network, in Proceedings of
the Third International Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN), IEEE
Computer Society Press, 1997, pp. 165–171.

[34] D. W. Bass and I. H. Sudborough, Pancake problems with restricted prefix reversals and some corre-
sponding Cayley networks, Journal of Parallel and Distributed Computing, 63, no. 3 (2003), pp. 327–336.

[35] T. Batu and S. C. Sahinalp, Locally consistent parsing with applications to approximate string com-
parisons, in Developments in Language Theory, C. de Felice and A. Restivo, eds., vol. 3572 of Lecture
Notes in Computer Science, Springer-Verlag, 2005, pp. 22–35.

[36] W. W. Bein, L. L. Larmore, S. Latifi, and I. H. Sudborough, Block sorting is hard, International
Journal of Foundations of Computer Science, 14, no. 3 (2003), pp. 425–437.

[37] W. W. Bein, L. L. Larmore, L. Morales, and I. H. Sudborough, A faster and simpler 2-
approximation algorithm for block sorting, in Proceedings of the Fifteenth International Symposium on
Fundamentals of Computation Theory (FCT), M. Liskiewicz and R. Reischuk, eds., vol. 3623 of Lecture
Notes in Computer Science, Springer-Verlag, 2005, pp. 115–124.

[38] M. A. Bender, D. Ge, S. He, H. Hu, R. Pinter, S. Skiena, and F. Swidan, Improved bounds on sort-
ing with length-weighted reversals, in Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), J. I. Munro, ed., Society for Industrial and Applied Mathematics, 2004,
pp. 919–928.

[39] M. A. Bender, D. Ge, S. He, H. Hu, R. Pinter, S. Skiena, and F. Swidan, Improved bounds on sort-
ing by length-weighted reversals, Journal of Computer and System Sciences, 74, no. 5 (2008), pp. 744–774.

[40] M. Benoît-Gagné and S. Hamel, A new and faster method of sorting by transpositions, in Proceedings
of the Eighteenth Annual Symposium on Combinatorial Pattern Matching (CPM), B. Ma and K. Zhang,
eds., vol. 4580 of Lecture Notes in Computer Science, Springer-Verlag, 2007, pp. 131–141.

[41] S. Bérard, A. Bergeron, C. Chauve, and C. Paul, Perfect sorting by reversals is not always di‰cult,
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4 (Jan.–Mar. 2007), pp. 4–16.

[42] S. Bérard, C. Chauve, and C. Paul, A more e‰cient algorithm for perfect sorting by reversals, Infor-
mation Processing Letters, 106 (2008), pp. 90–95.

[43] C. Berge, Graphes et hypergraphes, Monographies Universitaires de Mathématiques, no. 37, Dunod,
1970.

[44] A. Bergeron, A very elementary presentation of the Hannenhalli-Pevzner theory, Discrete Applied
Mathematics, 146, no. 2 (2005), pp. 134–145.

[45] A. Bergeron and J. Stoye, On the similarity of sets of permutations and its applications to genome
comparison, in Proceedings of the Ninth International Computing and Combinatorics Conference (CO-
COON), T. Warnow and B. Zhu, eds., vol. 2697 of Lecture Notes in Computer Science, Springer-Verlag,
2003, pp. 68–79.

[46] A. Bergeron and F. Strasbourg, Experiments in computing sequences of reversals, in Proceedings of
the First Workshop on Algorithms in Bioinformatics (WABI), O. Gascuel and B. M. E. Moret, eds., vol.
2149 of Lecture Notes in Computer Science, Springer-Verlag, 2001, pp. 164–174.

[47] A. Bergeron, J. Mixtacki, and J. Stoye, Reversal distance without hurdles and fortresses, in Proceed-
ings of the Fifth Annual Symposium on Combinatorial Pattern Matching (CPM), M. Crochemore and
D. Gusfield, eds., vol. 807 of Lecture Notes in Computer Science, Springer-Verlag, 1994, pp. 388–399.

[48] A. Bergeron, C. Chauve, T. Hartman, and K. St-Onge, On the properties of sequences of reversals
that sort a signed permutation, JOBIM, 2002, pp. 99–108.

[49] A. Bergeron, S. Heber, and J. Stoye, Common intervals and sorting by reversals: A marriage of
necessity, Bioinformatics, 18, supp. 2 (2002), pp. S54–S63.

[50] A. Bergeron, J. Mixtacki, and J. Stoye, The reversal distance problem, in Gascuel [182].

Bibliography 265

[51] A. Bergeron, J. Mixtacki, and J. Stoye, On sorting by translocations, in Proceedings of the Ninth
Annual International Conference on Research in Computational Molecular Biology (RECOMB), S.
Miyano, J. Mesirov, S. Kasif, S. Istrail, P. A. Pevzner, and M. Waterman, eds., vol. 3500 of Lecture Notes
in Bioinformatics, Springer-Verlag, 2005, pp. 615–629.

[52] A. Bergeron, J. Mixtacki, and J. Stoye, A unifying view of genome rearrangements, in Proceedings
of the Sixth International Workshop on Algorithms in Bioinformatics (WABI), R. L. Malmberg, L. Cai,
P. Berman, S. Rahmann, L. Zhang, and R. Sharan, eds., vol. 4175 of Lecture Notes in Computer Science,
Springer-Verlag, 2006, pp. 163–173.

[53] A. Bergeron, J. Mixtacki, and J. Stoye, HP distance via double cut and join distance, in Proceedings
of the Nineteenth Annual Symposium on Combinatorial Pattern Matching (CPM), P. Ferragina and G. M.
Landau, eds., vol. 5029 of Lecture Notes in Computer Science, Springer-Verlag, 2008, pp. 56–68.

[54] P. Berman and T. Fujito, On approximation properties of the independent set problem for degree 3
graphs, in Proceedings of the Fourth International Workshop on Algorithms and Data Structures
(WADS), S. G. Akl, F. K. H. A. Dehne, J.-R. Sack, and N. Santoro, eds., vol. 955 of Lecture Notes in
Computer Science, Springer-Verlag, 1995, pp. 449–460.

[55] P. Berman and M. Fürer, Approximating maximum independent set in bounded degree graphs, in Pro-
ceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Society for Indus-
trial and Applied Mathematics, 1994, pp. 365–371.

[56] P. Berman and S. Hannenhalli, Fast sorting by reversal, in Proceedings of the Seventh Annual Sym-
posium on Combinatorial Pattern Matching (CPM), D. S. Hirschberg and E. W. Myers, eds., vol. 1075 of
Lecture Notes in Computer Science, Springer-Verlag, 1996, pp. 168–185.

[57] P. Berman and M. Karpinski, On some tighter inapproximability results (extended abstract), in Pro-
ceedings of the Twenty-sixth International Colloquium on Automata, Languages and Programming
(ICALP), J. Wiedermann, P. van Emde Boas, and M. Nielsen, eds., vol. 1644 of Lecture Notes in Com-
puter Science, Springer-Verlag, 1999, pp. 200–209.

[58] P. Berman, S. Hannenhalli, and M. Karpinski, 1.375-approximation algorithm for sorting by rever-
sals, in Proceedings of the Tenth Annual European Symposium on Algorithms (ESA), R. H. Möhring and
R. Raman, eds., vol. 2461 of Lecture Notes in Computer Science, Springer-Verlag, 2002, pp. 200–210.

[59] M. Bern and P. Plassmann, The Steiner problem with edge lengths 1 and 2, Information Processing
Letters, 32 (1989), pp. 171–176.

[60] M. Bernt, D. Merkle, and M. Middendorf, Genome rearrangement based on reversals that preserve
conserved intervals, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3, no. 3
(2006), pp. 275–288.

[61] M. Bernt, D. Merkle, and M. Middendorf, A parallel algorithm for solving the reversal median
problem, in Proceedings of the Sixth International Conference on Parallel Processing and Applied Mathe-
matics (PPAM), R. Wyrzykowski, J. Dongarra, N. Meyer, and J. Wasniewski, eds., vol. 3911 of Lecture
Notes in Computer Science, Springer-Verlag, 2006, pp. 1089–1096.

[62] M. Bernt, D. Merkle, and M. Middendorf, The reversal median problem, common intervals, and
mitochondrial gene orders, in Proceedings of the Second International Symposium on Computational Life
Sciences (COMPLIFE), M. Berthold, R. Glen, and I. Fischer, eds., vol. 4216 of Lecture Notes in Bioinfor-
matics, 2006, pp. 52–63.

[63] M. Bernt, D. Merkle, and M. Middendorf, A fast and exact algorithm for the perfect reversal me-
dian problem, in Proceedings of the Third International Symposium on Bioinformatics Research and
Applications (ISBRA), I. Măndoiu and A. Zelikovsky, eds., vol. 4463 of Lecture Notes in Bioinformatics,
Springer-Verlag, 2007, pp. 305–316.

[64] M. Bernt, D. Merkle, and M. Middendorf, Using median sets for inferring phylogenetic trees, Bio-
informatics, 23 (2007), pp. e129–e135. Special issue of ECCB 2006.

[65] M. Bernt, D. Merkle, K. Ramsch, G. Fritzsch, M. Perseke, D. Bernhard, M. Schlegel, P. F.

Stadler, and M. Middendorf, CREx: Inferring genomic rearrangements based on common intervals, Bio-
informatics, 23, no. 21 (2007), pp. 2957–2958.

[66] M. Blanchette, T. Kunisawa, and D. Sankoff, Parametric genome rearrangement, Gene, 172
(1996), pp. GC11–GC17.

266 Bibliography

[67] M. Blanchette, G. Bourque, and D. Sankoff, Breakpoint phylogenies, in vol. 8 of S. Miyano and
Tagaki, eds., Genome Informatics, Universal Academy Press, 1997, pp. 25–34.

[68] G. Blin and R. Rizzi, Conserved interval distance computation between non-trivial genomes, in Pro-
ceedings of the Eleventh International Computing and Combinatorics Conference (COCOON), L. Wang,
ed., vol. 3595 of Lecture Notes in Computer Science, Springer-Verlag, 2005, pp. 22–31.

[69] G. Blin, C. Chauve, and G. Fertin, The breakpoint distance for signed sequences, in Proceedings of
the First International Conference on Algorithms and Computational Methods for Biochemical and Evo-
lutionary Networks, vol. 3 of Texts in Algorithms, King’s College (London) and KCL Publications, 2004,
pp. 3–16.

[70] G. Blin, C. Chauve, and G. Fertin, Genes order and phylogenetic reconstruction: Application to
gamma-proteobacteria, in Proceedings of the Third RECOMB Comparative Genomics Satellite Workshop
(RECOMB-CG), A. McLysaght and D. H. Huson, eds., vol. 3678 of Lecture Notes in Computer Science,
Springer-Verlag, 2005, pp. 11–20.

[71] G. Blin, A. Chateau, C. Chauve, and Y. Gingras, Inferring positional homologs with common inter-
vals of sequences, in Proceedings of the Fourth RECOMB Comparative Genomics Satellite Workshop
(RECOMB-CG), G. Bourque and N. El-Mabrouk, eds., vol. 4205 of Lecture Notes in Computer Science,
Springer-Verlag, 2006, pp. 24–38.

[72] G. Blin, E. Blais, D. Hermelin, P. Guillon, M. Blanchette, and N. El-Mabrouk, Gene maps lin-
earization using genomic rearrangement distances, Journal of Computational Biology, 14, no. 4 (2007), pp.
394–407.

[73] G. Blin, C. Chauve, G. Fertin, R. Rizzi, and S. Vialette, Comparing genomes with duplications: A
computational complexity point of view, IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 4, no. 4 (2007), pp. 523–534.

[74] H.-J. Böckenhauer and D. Bongartz, eds., Algorithmic Aspects of Bioinformatics, Natural Com-
puting Series, Springer-Verlag, 2007. Original German edition published by Teubner.

[75] M. Bóna, A survey of stack-sorting disciplines, Electronic Journal of Combinatorics, 9 (2003).

[76] M. Bóna, Combinatorics of permutations, in Discrete Mathematics and Its Applications, Chapman &
Hall/CRC, 2004.

[77] D. Bongartz, Algorithmic Aspects of Some Combinatorial Problems in Bioinformatics, Ph.D. thesis,
University of Viersen, Germany, 2006.

[78] J. Bonin and A. de Mier, Lattice path matroids: Structural properties, European Journal of Combi-
natorics, 27 (2006), pp. 701–738.

[79] R. Boppana and M. Halldórsson, Approximating maximum independent sets by excluding sub-
graphs, BIT, 32, no. 2 (1992), pp. 180–196.

[80] P. Bose, J. F. Buss, and A. Lubiw, Pattern matching for permutations, Information Processing Let-
ters, 65 (1998), pp. 277–283.

[81] G. Bourque and P. A. Pevzner, Genome-scale evolution: Reconstructing gene orders in the ancestral
species, Genome Research, 12 (2002), pp. 26–36.

[82] G. Bourque, P. A. Pevzner, and G. Tesler, Reconstructing the genomic architecture of ancestral
mammals: Lessons from human, mouse, and rat genomes, Genome Research, 14 (2004), pp. 507–516.

[83] G. Bourque, Y. Yacef, and N. El-Mabrouk, Maximizing synteny blocks to identify ancestral homo-
logs, in Proceedings of the Third RECOMB Comparative Genomics Satellite Workshop (RECOMB-CG),
A. McLysaght and D. H. Huson, eds., vol. 3678 of Lecture Notes in Computer Science, Springer-Verlag,
2005, pp. 21–34.

[84] G. Bourque, E. M. Zdobnov, P. Bork, P. A. Pevzner, and G. Tesler, Comparative architectures of
mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across di¤erent lin-
eages, Genome Research, 15 (Jan. 2005), pp. 98–110.

[85] G. Bourque, G. Tesler, and P. A. Pevzner, The convergence of cytogenetics and rearrangement-
based models for ancestral genome reconstruction, Genome Research, 16 (2006), pp. 311–313.

[86] M. Bouvel and D. Rossin, A variant of the tandem duplication-random loss model of genome rear-
rangement. Available at http://arxiv.org/abs/0801.2524, 2008.

Bibliography 267

http://arxiv.org/abs/0801.2524

[87] M. Braga, M.-F. Sagot, C. Scornavacca, and E. Tannier, The solution space of sorting by rever-
sals, in Proceedings of the Third International Symposium on Bioinformatics Research and Applications
(ISBRA), I. Măndoiu and A. Zelikovsky, eds., vol. 4463 of Lecture Notes in Computer Science,
Springer-Verlag, 2007, pp. 293–304.

[88] D. Bryant, The Complexity of the Breakpoint Median Problem, tech. rep. CRM-2579, Centre de
Recherches Mathématiques, Université de Montréal, 1998.

[89] D. Bryant, The complexity of calculating exemplar distances, in vol. 1 of Sanko¤ and Nadeau [322],
pp. 207–212.

[90] D. Bryant, A lower bound for the breakpoint phylogeny problem, Journal of Discrete Algorithms, 2
(2004), pp. 229–255.

[91] B.-M. Bui-Xuan, M. Habib, and C. Paul, Revisiting T. Uno and M. Yagiura’s algorithm, in Proceed-
ings of the Sixteenth Annual International Symposium on Algorithms and Computation (ISAAC),
X. Deng and D. Du, eds., Springer-Verlag, 2005, pp. 146–155.

[92] A. Caprara, Formulations and hardness of multiple sorting by reversals, in Proceedings of the Third
Annual International Conference on Computational Molecular Biology (RECOMB), S. Istrail, P. Pevz-
ner, and M. Waterman, eds., ACM, 1999, pp. 84–93.

[93] A. Caprara, Sorting permutations by reversals and Eulerian cycle decompositions, SIAM Journal on
Discrete Mathematics, 12 (Feb. 1999), pp. 91–110 (electronic).

[94] A. Caprara, On the tightness of the alternating-cycle lower bound for sorting by reversals, Journal of
Combinatorial Optimization, 3 (1999), pp. 149–182.

[95] A. Caprara, On the practical solution of the reversal median problem, in Proceedings of the First
Workshop on Algorithms in Bioinformatics (WABI), O. Gascuel and B. M. E. Moret, eds., vol. 2149 of
Lecture Notes in Computer Science, Springer-Verlag, 2001, pp. 238–251.

[96] A. Caprara, Additive bounding, worst-case analysis and the breakpoint median problem, SIAM Jour-
nal on Optimization, 13 (2002), pp. 508–519.

[97] A. Caprara, The reversal median problem, INFORMS Journal on Computing, 15, no. 1 (2003),
pp. 93–113.

[98] A. Caprara and R. Rizzi, Improved approximation for breakpoint graph decomposition and sorting by
reversals, Journal of Combinatorial Optimization, 6 (2002), pp. 157–182.

[99] A. Caprara, G. Lancia, and S.-K. Ng, Sorting permutations by reversals through branch-and-price,
INFORMS Journal on Computing, 13 (2001), pp. 224–244.

[100] A. Cayley, Note on the theory of permutations, Philosophical Magazine, 34 (1849), pp. 527–529.

[101] M. Charikar, K. Makarychev, and Y. Makarychev, Near-optimal algorithms for maximum con-
straint satisfaction problems, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), N. Bansal, K. Pruhs, and C. Stein, eds., Society for Industrial and Applied
Mathematics, 2007, pp. 62–68.

[102] K. Chaudhuri, K. Chen, R. Mihaescu, and S. Rao, On the tandem duplication-random loss model
of genome rearrangement, in Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), ACM, 2006, pp. 564–570.

[103] C. Chauve and G. Fertin, On maximal instances for the original syntenic distance, Theoretical Com-
puter Science, 326, no. 1–3 (2004), pp. 29–43.

[104] C. Chauve, G. Fertin, R. Rizzi, and S. Vialette, Genomes containing duplicates are hard to com-
pare, in Proceedings of the Second International Workshop on Bioinformatics Research and Applications
(IWBRA), V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, eds., vol. 3992 of Lec-
ture Notes in Computer Science, Springer-Verlag, 2006, pp. 783–790.

[105] T. Chen and S. Skiena, Sorting with fixed-length reversals, Discrete Applied Mathematics, 71 (1996),
pp. 269–295.

[106] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang, Assignment of orthologous
genes via genome rearrangement, IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2, no. 4 (2005), pp. 302–315.

268 Bibliography

[107] Z. Chen, R. H. Fowler, B. Fu, and B. Zhu, Lower bounds on the approximation of the exemplar
conserved distance problem of genomes, in Proceedings of the Twelfth International Computing and Com-
binatorics Conference (COCOON), D. Z. Chen and D. T. Lee, eds., vol. 4112 of Lecture Notes in
Computer Science, Springer-Verlag, 2006, pp. 245–254.

[108] Z. Chen, B. Fu, and B. Zhu, The approximability of the exemplar breakpoint distance problem, in
Proceedings of the Second International Conference on Algorithmic Aspects in Information and Manage-
ment (AAIM), S.-W. Cheng and C. K. Poon, eds., vol. 4041 of Lecture Notes in Computer Science,
Springer-Verlag, 2006, pp. 291–302.

[109] Z. Chen, B. Fu, J. Xu, B. Yang, Z. Zhao, and B. Zhu, Non-breaking similarity of genomes with
gene repetitions, in Proceedings of the Eighteenth Annual Symposium on Combinatorial Pattern Matching
(CPM), B. Ma and K. Zhang, eds., vol. 4580 of Lecture Notes in Computer Science, Springer-Verlag,
2007, pp. 119–130.

[110] B. Chitturi and I. H. Sudborough, Bounding prefix transposition distance for strings and permuta-
tions, in Proceedings of the Forty-first Annual Hawaii International Conference on System Sciences
(HICSS), IEEE Computer Society Press, 2008, p. 468.

[111] B. Chitturi, W. Fahle, Z. Meng, L. Morales, C. Shields, I. Sudborough, and W. Voit, An (18/
11)n upper bound for sorting by prefix reversals, Theoretical Computer Science, (2008).

[112] B. Chitturi, H. Sudborough, W. Voit, and X. Feng, Adjacent swaps on strings, in Proceedings of
the Fourteenth International Computing and Combinatorics Conference (COCOON), X. Hu and J. Wang,
eds., vol. 5092 of Lecture Notes in Computer Science, Springer-Verlag, 2008, pp. 299–308.

[113] D. A. Christie, Sorting permutations by block-interchanges, Information Processing Letters, 60
(1996), pp. 165–169.

[114] D. A. Christie, A 3/2-approximation algorithm for sorting by reversals, in Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Society for Industrial and Applied
Mathematics, 1998, pp. 244–252.

[115] D. A. Christie, Genome Rearrangement Problems, Ph.D. thesis, University of Glasgow, Scotland,
1998.

[116] D. A. Christie and R. W. Irving, Sorting strings by reversals and by transpositions, SIAM Journal
on Discrete Mathematics, 14, no. 2 (2001), pp. 193–206.

[117] M. Chrobak, P. Kolman, and J. Sgall, The greedy algorithm for the minimum common string par-
tition problem, in Proceedings of the Seventh International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX), vol. 3122 of Lecture Notes in Computer Science,
Springer-Verlag, 2004, pp. 84–95.

[118] D. S. Cohen and M. Blum, On the problem of sorting burnt pancakes, Discrete Applied Mathe-
matics, 61 (1995), pp. 105–120.

[119] E. Coissac, E. Maillier, and P. Netter, A comparative study of duplication in bacteria and eukar-
yotes: The importance of telomeres, Molecular Biology and Evolution, 14 (1997), pp. 1062–1074.

[120] S. Cook, The complexity of theorem proving procedures, in Proceedings of the Third Annual ACM
Symposium on Theory of Computing (STOC), ACM, 1971, pp. 151–158.

[121] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed.,
MIT Press, 2001.

[122] G. Cormode and S. Muthukrishnan, The string edit distance matching problem with moves, in Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Mathematics (SODA), Society for
Industrial and Applied Mathematics, 2002, pp. 667–676.

[123] G. Cormode, S. Muthukrishnan, M. Paterson, S. C. Sahinalp, and U. Vishkin, Techniques and
applications for approximating string distances—rough draft, 2000. http://citeseer.ist.psu.edu/320221.html.

[124] M. E. Cosner, Phylogenetic and Molecular Evolutionary Studies of Chloroplast DNA Variations in
the Campanulaceae, Ph.D. thesis, Ohio State University, 1993.

[125] M. E. Cosner, R. K. Jansen, B. M. E. Moret, L. A. Raubeson, L.-S. Wang, T. Warnow, and S.

Wyman, An empirical comparison of phylogenetic methods on chloroplast gene order data in Campanula-
ceae, in vol. 1 of Sanko¤ and Nadeau [322], pp. 99–121.

Bibliography 269

http://citeseer.ist.psu.edu/320221.html

[126] D. Cranston, I. H. Sudborough, and D. B. West, Short proofs for cut-and-paste sorting of permu-
tations, Discrete Mathematics, 307, no. 22 (2007), pp. 2866–2870.

[127] M. Crochemore, D. Hermelin, G. Landau, and S. Vialette, Approximating the 2-interval pattern
problem, in Proceedings of the Thirteenth Annual European Symposium on Algorithms (ESA), G. S.
Brodal and S. Leonardi, eds., vol. 3669 of Lecture Notes in Computer Science, Springer-Verlag, 2005,
pp. 426–437.

[128] Y. Cui, L. Wang, and D. Zhu, A 1.75-approximation algorithm for unsigned translocation distance,
Journal of Computer and System Sciences, 73 (2007), pp. 1045–1059.

[129] Y. Cui, L. Wang, D. Zhu, and X. Liu, A (1.5þ e)-approximation algorithm for unsigned transloca-
tion distance, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 5, no. 1 (2008),
pp. 56–66.

[130] A. C. E. Darling, B. Mau, F. R. Blattner, and N. T. Perna, GRIL: Genome rearrangement and
inversion locator, Bioinformatics, 20 (Jan. 2004), pp. 122–124.

[131] B. DasGupta, T. Jiang, S. Kannan, M. Li, and E. Sweedyk, On the complexity and approximation
of syntenic distance, Discrete Applied Mathematics, 88 (1998), pp. 59–82.

[132] B. Davey and H. Priestley, Introduction to Lattices and Order, 2nd ed., Cambridge University
Press, 2002.

[133] W. H. E. Day, Computationally di‰cult parsimony problems in phylogenetic systematics, Journal of
Theoretical Biology, 103 (1983), pp. 429–438.

[134] C. Demetrescu and I. Finocchi, Combinatorial algorithms for feedback problems in directed graphs,
Information Processing Letters, 86 (2003), pp. 129–136.

[135] P. Diaconis, Group Representations in Probability and Statistics, vol. 11 of Lecture Notes—
Monograph, Institute of Mathematical Sciences, 1988.

[136] Z. Dias and C. Carvalho de Souza, Polynomial-sized ILP models for rearrangement distance
problems, in Proceedings of the Second Brazilian Symposium on Bioinformatics (BSB), M.-F. Sagot
and M. E. M. T. Walter, eds., vol. 4643 in Lecture Notes in Computer Science, Springer-Verlag, 2007,
pp. 74–85.

[137] Z. Dias and J. Meidanis, Genome rearrangements distance by fusion, fission, and transposition is easy,
in Proceedings of the Eighth International Symposium on String Processing and Information Retrieval
(SPIRE), IEEE Computer Society Press, 2001, pp. 250–253.

[138] Z. Dias and J. Meidanis, Sorting by prefix transpositions, in Proceedings of the Ninth International
Symposium on String Processing and Information Retrieval (SPIRE), A. H. F. Laender and A. L. Oli-
veira, eds., vol. 2476 of Lecture Notes in Computer Science, Springer-Verlag, 2002, pp. 65–76.

[139] Z. Dias and J. Meidanis, The syntenic distance problem using only fusions and fissions, in Proceed-
ings of the Second Brazilian Workshop on Bioinformatics (WOB), S. Lifschitz, N. F. Almeida Jr., G. J.
Pappas Jr., and R. Linden, eds., 2003, pp. 72–79.

[140] Z. Dias, J. Meidanis, and M. E. M. T. Walter, A new approach for approximating the transposition
distance, in Proceedings of the Seventh International Symposium on String Processing and Information
Retrieval (SPIRE), IEEE Computer Society Press, 2000, pp. 199–208.

[141] G. Didier, Common intervals of two sequences, in Proceedings of the Third Workshop on Algorithms
in Bioinformatics (WABI), G. Benson and R. Page, eds., vol. 2812 of Lecture Notes in Computer Science,
Springer-Verlag, 2003, pp. 17–24.

[142] Y. Diekmann, M.-F. Sagot, and E. Tannier, Evolution under reversals: Parsimony and conservation
of common intervals, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4, no. 2
(2007), pp. 301–309.

[143] R. Diestel, Graph Theory, vol. 173 of Graduate Texts in Mathematics, 3rd ed., Springer-Verlag,
2005.

[144] R. Dilworth, A decomposition theorem for partially ordered sets, Annals of Mathematics, 51 (1950),
pp. 161–166.

[145] T. Dobzhansky and A. H. Sturtevant, Inversions in the third chromosome of wild races of Droso-
phila pseudoobscura, and their use in the study of the history of the species, Proceedings of the National
Academy of Sciences (USA), 22, no. 7 (1936), 448–450.

270 Bibliography

[146] T. Dobzhansky and A. H. Sturtevant, Inversions in the chromosomes of Drosophila pseudoobscura,
Genetics, 23 (1938), pp. 28–64.

[147] J.-P. Doignon and A. Labarre, On Hultman numbers, Journal of Integer Sequences, 10 (2007), art.
07.6.2.

[148] R. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag, 1999.

[149] T. Duh and M. Fürer, Approximation of k-set cover by semi-local optimization, in Proceedings of
the Twenty-ninth Annual ACM Symposium on the Theory of Computing (STOC), ACM, 1997, pp. 256–
265.

[150] R. Durrett, Genome rearrangement: Recent progress and open problems, 2003. http://www.math
.cornell.edu/~durrett/FGR.

[151] H. Dweighter, Elementary problems and solutions, problem E2569, American Mathematical
Monthly, 82 (1975), 1010.

[152] J. V. Earnest-DeYoung, E. Lerat, and B. M. E. Moret, Reversing gene erosion: Reconstructing
ancestral bacterial genomes from gene-content and order data, in Proceedings of the Fourth Workshop on
Algorithms in Bioinformatics (WABI), I. Jonassen and J. Kim, eds., vol. 3240 of Lecture Notes in Com-
puter Science, Springer-Verlag, 2004, pp. 1–13.

[153] J. Edmonds, Paths, trees and flowers, Canadian Journal of Mathematics, 17 (1965), 449–467.

[154] N. El-Mabrouk, Sorting signed permutations by reversals and insertions/deletions of contiguous seg-
ments, Journal of Discrete Algorithms, 1 (2000), pp. 105–121.

[155] N. El-Mabrouk, Reconstructing an ancestral genome using minimum segments duplications and
reversals, Journal of Computer and System Sciences, 65, no. 3 (2002), pp. 442–464.

[156] N. El-Mabrouk, Genome rearrangements with gene families, in Gascuel [182], pp. 291–320.

[157] N. El-Mabrouk and D. Sankoff, Hybridization and genome rearrangement, in Proceedings of the
Tenth Annual Symposium on Combinatorial Pattern Matching (CPM), M. Crochemore and M. Paterson,
eds., vol. 1645 of Lecture Notes in Computer Science, Springer-Verlag, 1999, pp. 78–87.

[158] N. El-Mabrouk and D. Sankoff, The reconstruction of doubled genomes, SIAM Journal of Com-
puting, 32, no. 3 (2003), pp. 754–792.

[159] N. El-Mabrouk, J. Nadeau, and D. Sankoff, Genome halving, in Proceedings of the Ninth Annual
Symposium on Combinatorial Pattern Matching (CPM), G. Goos, J. Hartmanis, and J. van Leeuwen,
eds., vol. 1448 of Lecture Notes in Computer Science, Springer-Verlag, 1998, pp. 235–250.

[160] I. Elias and T. Hartman, A 1.375-approximation algorithm for sorting by transpositions, IEEE/
ACM Transactions on Computational Biology and Bioinformatics, 3, no. 4 (2006), pp. 369–379.

[161] F. Ergun, S. Muthukrishnan, and S. C. Sahinalp, Comparing sequences with segment rearrange-
ments, in Proceedings of the Twenty-third Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS), P. K. Pandya and J. Radhakrishnan, eds., vol. 2914 of Lecture Notes
in Computer Science, Springer-Verlag, 2003, pp. 183–194.

[162] N. Eriksen, (1þ e)-approximation of sorting by reversals and transpositions, Theoretical Computer
Science, 289, no. 1 (2002), pp. 517–529.

[163] N. Eriksen, Reversal and transposition medians, Theoretical Computer Science, 374, no. 1–3 (2007),
pp. 111–126.

[164] H. Eriksson, K. Eriksson, J. Karlander, L. Svensson, and J. Wästlund, Sorting a bridge hand,
Discrete Mathematics, 241 (2001), pp. 289–300. Selected papers in honor of Helge Tverberg.

[165] K. Eriksson, Statistical and combinatorial aspects of comparative genomics, Scandinavian Journal of
Statistics, 31, no. 2 (2004), pp. 203–216.

[166] V. Estivill-Castro and D. Wood, A survey of adaptive sorting algorithms, ACM Computing Sur-
veys, 24, no. 4 (1992), pp. 441–476.

[167] L. Euler, Solutio problematis ad geometriam situs pertinentis, Commentarii Academiae Scientiarum
Iperialis Petropolitanae, 8 (1736), pp. 128–140.

[168] S. Even and O. Goldreich, The minimum-length generator sequence problem is NP-hard, Journal of
Algorithms, 2 (1981), pp. 311–313.

Bibliography 271

http://www.math

[169] U. Feige, A threshold of log n for approximating set cover, Journal of the ACM, 45, no. 4 (1998), pp.
634–652.

[170] J. Felsenstein, Inferring Phylogenies, 2nd ed., Sinauer Associates, 2003.

[171] J. Feng and D. Zhu, Faster algorithms for sorting by transpositions and sorting by block interchanges,
ACM Transactions on Algorithms, 3, no. 3 (2007), pp. 1–14.

[172] W. Feng, L. Wang, and D. Zhu, CTRD: A fast applet for computing signed translocation distance
between genomes, Bioinformatics, 20, no. 17 (2004), pp. 3256–3257.

[173] X. Feng, I. H. Sudborough, and E. Lu, A fast algorithm for sorting by short swap, in Proceedings of
the IASTED International Conference on Computational and Systems Biology (CASB), D.-Z. Du, ed.,
ACTA Press, 2006, pp. 62–67.

[174] V. Ferretti, J. H. Nadeau, and D. Sankoff, Original synteny, in Proceedings of the Seventh An-
nual Symposium on Combinatorial Pattern Matching (CPM), D. S. Hirschberg and E. W. Myers, eds.,
vol. 1075 of Lecture Notes in Computer Science, Springer-Verlag, 1996, pp. 159–167.

[175] M. Figeac and J.-S. Varré, Sorting by reversals with common intervals, in Proceedings of the Fourth
Workshop on Algorithms in Bioinformatics (WABI), I. Jonassen and J. Kim, eds., vol. 3240 of Lecture
Notes in Computer Science, Springer-Verlag, 2004, pp. 26–37.

[176] J. Fischer and S. W. Ginzinger, A 2-approximation algorithm for sorting by prefix reversals, in Pro-
ceedings of the Thirteenth Annual European Symposium on Algorithms (ESA), G. S. Brodal and S. Leo-
nardi, eds., vol. 3669 of Lecture Notes in Computer Science, Springer-Verlag, 2005, pp. 415–425.

[177] V. J. Fortuna, Distâncias de Transposição entre Genomas, master’s thesis, Universidade Estadual de
Campinas, Brazil, 2005.

[178] L. R. Foulds and R. L. Graham, The Steiner tree problem in phylogeny is NP-complete, Advances
in Applied Mathematics, 3 (1982), pp. 43–49.

[179] L. Froenicke, M. G. Caldés, A. Graphodatsky, S. Müller, L. A. Lyons, T. J. Robinson, M.

Volleth, F. Yang, and J. Wienberg, Are molecular cytogenetics and bioinformatics suggesting diverging
models of ancestral mammalian genomes?, Genome Research, 16, no. 3 (2006), pp. 306–310.

[180] Z. Fu and T. Jiang, Computing the breakpoint distance between partially ordered genomes, Journal
of Bioinformatics and Computational Biology, 5, no. 5 (2007), pp. 1087–1101.

[181] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, 1979.

[182] O. Gascuel, ed., Mathematics of Evolution and Phylogeny, Oxford University Press, 2005.

[183] W. H. Gates and C. H. Papadimitriou, Bounds for sorting by prefix reversal, Discrete Mathematics,
27 (1979), pp. 47–57.

[184] B. Gaut and J. Doebley, DNA sequence evidence for the segmental allotetraploid origin of maize,
Proceedings of the National Academy of Sciences (USA), 94 (1997), pp. 6809–6814.

[185] T. Gibson and J. Spring, Evidence in favor of ancient octaploidy in the vertebrate genome, Biochem-
ical Society Transactions, 28 (2000), pp. 259–264.

[186] S. Gog and M. Bader, How to achieve an equivalent simple permutation in linear time, in Proceed-
ings of the Fifth RECOMB Comparative Genomics Satellite Workshop (RECOMB-CG), G. Tesler and
D. Durand, eds., vol. 4751 of Lecture Notes in Computer Science, Springer-Verlag, 2007, pp. 58–68.

[187] S. Gog, M. Bader, and E. Ohlebusch, GENESIS: Genome evolution scenarios, Bioinformatics, 24,
no. 5 (2008), pp. 711–712.

[188] A. Goldstein, P. Kolman, and J. Zheng, Minimum common string partition problem: Hardness and
approximations, Electronic Journal of Combinatorics, 12 (2005), no. R50.

[189] J. Gramm and R. Niedermeier, Breakpoint medians and breakpoint phylogenies: A fixed-parameter
approach, Bioinformatics, 18, supp. 1 (2002), pp. S128–S139.

[190] Q.-P. Gu, S. Peng, and Q. M. Chen, Sorting permutations and its applications in genome analysis,
Lectures on Mathematics in the Life Sciences, 26 (1999), pp. 191–201.

[191] Q.-P. Gu, S. Peng, and I. H. Sudborough, A 2-approximation algorithm for genome rearrangements
by reversals and transpositions, Theoretical Computer Science, 210 (1999), pp. 327–339.

272 Bibliography

[192] S. A. Guyer, L. S. Heath, and J. P. Vergara, Subsequence and run heuristics for sorting by trans-
positions, Technical Report, Virginia State University, 1997.

[193] E. Györi and G. Turán, Stack of pancakes, Studia Scientiarum Mathematicarum Hungarica, 13
(1978), pp. 133–137.

[194] Y. Han, Improving the e‰ciency of sorting by reversals, in Proceedings of the 2006 International
Conference on Bioinformatics and Computational Biology, CSREA Press, 2006, pp. 406–409.

[195] S. Hannenhalli, Polynomial-time algorithm for computing translocation distance between genomes,
Discrete Applied Mathematics, 71 (1996), pp. 137–151.

[196] S. Hannenhalli and P. A. Pevzner, Transforming men into mice: Polynomial algorithm for genomic
distance problem, in Proceedings of the Thirty-sixth Annual Symposium on Foundations of Computer
Science (FOCS), IEEE Computer Society Press, 1995, pp. 581–592.

[197] S. Hannenhalli and P. A. Pevzner, Towards a computational theory of genome rearrangements, in
Computer Science Today: Recent Trends and Developments, Jan van Leeuwen, ed., vol. 1000 of Lecture
Notes in Computer Science, Springer-Verlag, 1995, pp. 184–202.

[198] S. Hannenhalli and P. A. Pevzner, To cut . . . or not to cut (applications of comparative physical
maps in molecular evolution), in Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), Society for Industrial and Applied Mathematics, 1996, pp. 304–313.

[199] S. Hannenhalli and P. A. Pevzner, Transforming cabbage into turnip: Polynomial algorithm for
sorting signed permutations by reversals, Journal of the ACM, 46, no. 1 (1999), pp. 1–27.

[200] S. Hannenhalli, C. Chappey, E. V. Koonin, and P. A. Pevzner, Genome sequence comparison and
scenarios for gene rearrangements: A test case, Genomics, 30, no. 2 (1995), pp. 299–311.

[201] T. Hartman, A simpler 1.5-approximation algorithm for sorting by transpositions, in Proceedings of
the Fourteenth Annual Symposium on Combinatorial Pattern Matching (CPM), R. A. Baeza-Yates, E.
Chávez, and M. Crochemore, eds., vol. 2676 of Lecture Notes in Computer Science, Springer-Verlag,
2003, pp. 156–169.

[202] T. Hartman and R. Shamir, A simpler and faster 1.5-approximation algorithm for sorting by trans-
positions, Information and Computation, 204, no. 2 (2006), pp. 275–290.

[203] T. Hartman and R. Sharan, A 1.5-approximation algorithm for sorting by transpositions and trans-
reversals, Journal of Computer and System Sciences, 70 (2005), pp. 300–320.

[204] T. Hartman and E. Verbin, Matrix tightness: A linear-algebraic framework for sorting by transposi-
tions, in Proceedings of the Thirteenth International Conference on String Processing and Information
Retrieval (SPIRE), F. Crestani, P. Ferragina, and M. Sanderson, eds., vol. 4209 of Lecture Notes in Com-
puter Science, Springer-Verlag, 2006, pp. 279–290.

[205] J. Håstad, Clique is hard to approximate within n1�e, Acta Mathematica, 182 (1999), pp. 105–142.

[206] D. He, A novel greedy algorithm for the minimum common string partition problem, in Proceedings of
the Third International Workshop on Bioinformatics Research and Applications (IWBRA), I. Măndoiu
and A. Zelikovsky, eds., vol. 4463 of Lecture Notes in Computer Science, Springer-Verlag, 2007, pp.
441–452.

[207] L. S. Heath and J. P. C. Vergara, Sorting by bounded block-moves, Discrete Applied Mathematics,
88 (1998), pp. 181–206.

[208] L. S. Heath and J. P. C. Vergara, Sorting by short block-moves, Algorithmica, 28 (2000), pp. 323–
352.

[209] L. S. Heath and J. P. C. Vergara, Sorting by short swaps, Journal of Computational Biology, 10,
no. 2 (2003), pp. 775–789.

[210] S. Heber and J. Stoye, Finding all common intervals of k permutations, in Proceedings of the Twelfth
Annual Symposium on Combinatorial Pattern Matching (CPM), A. Amir and G. M. Landau, eds., vol.
2089 of Lecture Notes in Computer Science, Springer-Verlag, 2001, pp. 207–218.

[211] S. Hedetniemi, S. Hedetniemi, and A. Liestman, A survey of gossiping and broadcasting in commu-
nication networks, Networks, 18 (1988), pp. 319–349.

[212] M. H. Heydari and I. H. Sudborough, On the diameter of the pancake network, Journal of Algo-
rithms, 25, no. 1 (1997), pp. 67–94.

Bibliography 273

[213] I. Holyer, The NP-completeness of some edge-partition problems, SIAM Journal of Computing, 10
(1981), pp. 713–717.

[214] A. Hultman, Toric Permutations, master’s thesis, Department of Mathematics, Kungliga Tekniska
Högskolan, Stockholm, 1999.

[215] C. Hurkens, L. van Iersel, J. Keijsper, S. Kelk, L. Stougie, and J. Tromp, Prefix reversals on
binary and ternary strings, SIAM Journal on Discrete Mathematics, 21, no. 3 (2007), pp. 592–611.

[216] Y. Interian and R. Durrett, Genomic midpoints: Computation and evolutionary implications.
Submitted.

[217] Y. Interian and R. Durrett, Computing genomic midpoints. http://www.math.cornell.edu/
~durrett/mdpt/mdpt.html.

[218] B. N. Jackson, P. S. Schnable, and S. Aluru, Consensus genetic maps as median orders from incon-
sistent sources, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 5, no. 2 (2008),
pp. 161–171.

[219] O. Jaillon, J.-M. Aury, F. Brunet, J.-L. Petit, N. Stange-Thomann, E. Mauceli, L. Bouneau,

C. Fischer, C. Ozouf-Costaz, A. Bernot, S. Nicaud, D. Jaffe, S. Fisher, G. Lutfalla, C. Dossat, B.

Segurens, C. Dasilva, M. Salanoubat, M. Levy, N. Boudet, S. Castellano, V. Anthouard, C. Jubin,

V. Castelli, M. Katinka, B. Vacherie, C. Biémont, Z. Skalli, L. Cattolico, J. Poulain, V. de Berar-

dinis, C. Cruaud, S. Duprat, P. Brottier, J.-P. Coutanceau, J. Gouzy, G. Parra, G. Lardier, C.

Chapple, K. J. McKernan, P. McEwan, S. Bosak, M. Kellis, J.-N. Volff, R. Guigó, M. C. Zody, J.

Mesirov, K. Lindblad-Toh, B. Birren, C. Nusbaum, D. Kahn, M. Robinson-Rechavi, V. Laudet, V.

Schachter, F. Quétier, W. Saurin, C. Scarpelli, P. Wincker, E. S. Lander, J. Weissenbach, and

H. R. Crollius, Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate
proto-karyotype, Nature, 431, no. 7011 (2004), pp. 946–957.

[220] G. Jean and M. Nikolski, Genome rearrangements: A correct algorithm for optimal capping, Infor-
mation Processing Letters, 104, no. 1 (2007), pp. 14–20.

[221] M. R. Jerrum, The complexity of finding minimum-length generator sequences, Theoretical Computer
Science, 36 (1985), pp. 265–289.

[222] T. Jiang, Y. Xu, and M. Q. Zhang, eds., Current Topics in Computational Molecular Biology,
MIT Press, 2002.

[223] D. Johnson, Approximation algorithms for combinatorial problems, Journal of Computer and System
Sciences, 9 (1974), pp. 256–278.

[224] N. C. Jones and P. A. Pevzner, An Introduction to Bioinformatics Algorithms, MIT Press, 2004.

[225] V. Kann, On the Approximability of NP-Complete Optimization Problems, Ph.D. thesis, Department
of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, 1992.

[226] H. Kaplan and N. Shafrir, The greedy algorithm for edit distance with moves, Information Process-
ing Letters, 97, no. 1 (2006), pp. 23–27.

[227] H. Kaplan and E. Verbin, Sorting signed permutations by reversals, revisited, Journal of Computer
and System Sciences, 70, no. 3 (2005), pp. 321–341.

[228] H. Kaplan, R. Shamir, and R. E. Tarjan, A faster and simpler algorithm for sorting signed permu-
tations by reversals, SIAM Journal of Computing, 29, no. 3 (2000), pp. 880–892 (electronic).

[229] D. Karger, R. Motwani, and M. Sudan, Approximate graph coloring by semidefinite programming,
Journal of the ACM, 45, no. 2 (1998), pp. 246–265.

[230] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum, 1972, pp. 85–103.

[231] M. Karpinski and A. Zelikovsky, Approximating dense cases of covering problems, Electronic Col-
loquium on Computational Complexity, tech. rep. TR97-004 (1997), p. 4.

[232] J. Kececioglu and D. Sankoff, Exact and approximation algorithms for sorting by reversals, with
application to genome rearrangement, Algorithmica, 13 (1995), pp. 180–210.

[233] J. D. Kececioglu and R. Ravi, Of mice and men: Algorithms for evolutionary distances between
genomes with translocation, in Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), Society for Industrial and Applied Mathematics, 1995, pp. 604–613.

274 Bibliography

http://www.math.cornell.edu/

[234] M. Kellis, B. Birren, and E. Lander, Proof and evolutionary analysis of ancient genome duplication
in the yeast Saccharomyces cerevisiae, Nature, 428 (2004), pp. 617–624.

[235] J. D. Klein, Problem Kernels for Genome Rearrangement Problems, diplomarbeit, Friedrich-Schiller-
Universit ät Jena, 2007.

[236] J. Kleinberg and D. Liben-Nowell, The syntenic diameter of the space of N-chromosome genomes,
in vol. 1 of Sanko¤ and Nadeau [322], pp. 185–197.

[237] D. E. Knuth, Sorting and Searching, vol. 3 of his The Art of Computer Programming, 2nd ed.,
Addison-Wesley, 1995.

[238] P. Kolman, Approximating reversal distance for strings with bounded number of duplicates, in Pro-
ceedings of the Thirtieth International Symposium on Mathematical Foundations of Computer Science
(MFCS), J. Jedrzejowicz and A. Szepietowski, eds., vol. 3618 of Lecture Notes in Computer Science,
Springer-Verlag, 2005, pp. 580–590.

[239] P. Kolman and T. Waleń, Reversal distance for strings with duplicates: Linear time approximation
using hitting set, in Proceedings of the Fourth International Workshop on Approximation and Online
Algorithms (WAOA), T. Erlebach and C. Kaklamanis, eds., vol. 4368 of Lecture Notes in Computer
Science, Springer-Verlag, 2006, pp. 279–289.

[240] A. Labarre, New bounds and tractable instances for the transposition distance, IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 3, no. 4 (2006), pp. 380–394.

[241] A. Labarre, Edit distances and factorisations of even permutations, in Proceedings of the Sixteenth
Annual European Symposium on Algorithms (ESA), Lecture Notes in Computer Science, Springer-
Verlag, 5193 (2008), pp. 635–646.

[242] S. Lakshmivarahan, J.-S. Jwo, and S. K. Dhall, Symmetry in interconnection networks based on
Cayley graphs of permutation groups: A survey, Parallel Computing, 19 (1993), pp. 361–407.

[243] R. LangkjÆr, P. Cliften, M. Johnston, and J. Piskur, Yeast genome duplication was followed by
asynchronous di¤erentiation of duplicated genes, Nature, 421 (2003), pp. 848–852.

[244] A. Lempel, Matrix factorization over GF(2) and trace-orthogonal bases of GFð2nÞ, SIAM Journal of
Computing, 4, no. 2 (1975), pp. 175–186.

[245] R. Lenne, C. Solnon, T. Stützle, E. Tannier, and M. Birattari, Reactive stochastic local search
algorithms for the genomic median problem, in Proceedings of the Eighth European Conference on Evolu-
tionary Computation in Combinatorial Optimization (EVOCOP), J. I. van Hemert and C. Cotta, eds., vol.
4972 of Lecture Notes in Computer Science, Springer-Verlag, 2008, pp. 266–276.

[246] G. Li, X. Qi, X. Wang, and B. Zhu, A linear-time algorithm for computing translocation distance
between signed genomes, in Proceedings of the Fifteenth Annual Symposium on Combinatorial Pattern
Matching (CPM), S. C. Sahinalp, S. Muthukrishnan, and U. Dogrusoz, eds., vol. 3109 of Lecture Notes
in Computer Science, Springer-Verlag, 2004, pp. 323–332.

[247] Z. Li, L. Wang, and K. Zhang, Algorithmic approaches for genome rearrangement: A review, IEEE
Transactions on Systems, Man and Cybernetics, part C, 36, no. 5 (2006), pp. 636–648.

[248] D. Liben-Nowell, On the structure of syntenic distance, Journal of Computational Biology, 8, no. 1
(2001), pp. 53–67.

[249] D. Liben-Nowell, Gossip is synteny: Incomplete gossip and the syntenic distance between genomes,
Journal of Algorithms, 43, no. 2 (2002), pp. 264–283.

[250] D. Liben-Nowell and J. Kleinberg, Structural properties and tractability results for linear synteny,
Journal of Discrete Algorithms, 2, no. 2 (2004), pp. 207–228.

[251] G.-H. Lin and T. Jiang, A further improved approximation algorithm for breakpoint graph decompo-
sition, Journal of Combinatorial Optimization, 8, no. 4 (2004), pp. 183–194.

[252] G.-H. Lin and G. Xue, Signed genome rearrangement by reversals and transpositions: Models and
approximations, Theoretical Computer Science, 259, no. 1–2 (2001), pp. 513–531.

[253] G.-H. Lin and G. Xue, On the terminal Steiner tree problem, Information Processing Letters, 84, no.
2 (2002), pp. 103–107.

[254] Y. C. Lin, C. L. Lu, H.-Y. Chang, and C. Y. Tang, An e‰cient algorithm for sorting by block-
interchanges and its application to the evolution of Vibrio species, Journal of Computational Biology, 12,
no. 1 (2005), pp. 102–112.

Bibliography 275

[255] Y. C. Lin, C. L. Lu, Y.-C. Liu, and C. Y. Tang, SPRING: A tool for the analysis of genome rear-
rangement using reversals and block-interchanges, Nucleic Acids Research, 34 (July 1, 2006), pp. W696–
699.

[256] Y. C. Lin, C. L. Lu, and C. Y. Tang, Sorting permutation by reversals with fewest block-
interchanges, manuscript, 2006.

[257] D. Lopresti and A. Tomkins, Block edit models for approximate string matching, Theoretical Com-
puter Science, 181 (1997), pp. 159–179.

[258] C. L. Lu, T. C. Wang, Y. C. Lin, and C. Y. Tang, ROBIN: A tool for genome rearrangement of
block-interchanges, Bioinformatics, 21 (2005), pp. 2780–2782.

[259] C. L. Lu, Y. L. Huang, T. C. Wang, and H.-T. Chiu, Analysis of circular genome rearrangement by
fusions, fissions and block-interchanges, BMC Bioinformatics, 7, no. 1 (2006).

[260] L. Lundin, Evolution of vertebrate genome reflected in paralogous chromosomal regions in man and in
the house mouse, Genomics, 16 (1993), pp. 1–19.

[261] M. Mahajan, R. Rama, V. Raman, and S. Vijayakumar, Approximate block sorting, International
Journal of Foundations of Computer Science, 17, no. 2 (2006), pp. 337–355.

[262] M. Mahajan, R. Rama, and S. Vijayakumar, On sorting by 3-bounded transpositions, Discrete
Mathematics, 306, no. 14 (2006), pp. 1569–1585.

[263] M. Marron, K. M. Swenson, and B. M. E. Moret, Genomic distances under deletions and inser-
tions, Theoretical Computer Science, 325, no. 3 (2004), pp. 347–360.

[264] J. Meidanis and Z. Dias, An alternative algebraic formalism for genome rearrangements, in vol. 1 of
Sanko¤ and Nadeau [322], pp. 213–223.

[265] J. Meidanis, M. Walter, and Z. Dias, Reversal distance of signed circular chromosomes, tech. rep.
IC-00-23, University of Campinas, Brazil, 2000.

[266] J. Meidanis, M. E. M. T. Walter, and Z. Dias, A lower bound on the reversal and transposition di-
ameter, Journal of Computational Biology, 9, no. 5 (2002), pp. 743–745.

[267] H. Mewes, K. Albermann, M. Bahr, D. Frishman, A. Gleissner, J. Hani, K. Heumann, K.

Kleine, A. Maierl, S. Oliver, F. Pfeiffer, and A. Zollner, Overview of the yeast genome, Nature, 387,
6632, supp. (1997), pp. S7–S65.

[268] S. Micali and V. V. Vazirani, An Oð ffiffiffiffiffiffiffijV jp jEjÞ algorithm for finding maximum matching in general
graphs, in Proceedings of the Twenty-first Annual Symposium on Foundations of Computer Science
(FOCS), IEEE Computer Society Press, 1980, pp. 17–27.

[269] C. Mira and J. Meidanis, Sorting by block-interchanges and signed reversals, in Proceedings of the
Fourth International Conference on Information Technology: New Generations (ITNG), IEEE Computer
Society Press, 2007, pp. 670–676.

[270] C. Mira, Q. Peng, J. Meidanis, and P. A. Pevzner, A shortest-cycle based heuristics for the multiple
genome rearrangement problem, tech. rep. IC-06-23, Instituto de Computação, Universidade Estadual de
Campinas, Brazil, 2006.

[271] J. Mixtacki, Genome halving under DCJ revisited, in Proceedings of the Fourteenth International
Computing and Combinatorics Conference (COCOON), X. Hu and J. Wang, eds., vol. 5092 of Lecture
Notes in Computer Science, Springer-Verlag, 2008, pp. 276–286.

[272] Z. Mo and T. Zeng, An improved genetic algorithm for problem of genome rearrangement, Wuhan
University Journal of Natural Sciences, 11, no. 3 (2006), pp. 498–502.

[273] B. M. E. Moret, L.-S. Wang, T. Warnow, and S. K. Wyman, New approaches for reconstructing
phylogenies from gene order data, Bioinformatics, 17 (2001), pp. S165–S173.

[274] B. M. E. Moret, S. K. Wyman, D. A. Bader, T. Warnow, and M. Yan, A new implementation and
detailed study of breakpoint analysis, in Proceedings of the Sixth Pacific Symposium on Biocomputing
(PSB), World Scientific Press, 2001, pp. 583–594.

[275] B. M. E. Moret, A. C. Siepel, J. Tang, and T. Liu, Inversion medians outperform breakpoint
medians in phylogeny reconstruction from gene-order data, in Proceedings of the Second International
Workshop on Algorithms in Bioinformatics (WABI), R. Guigo and D. Gusfield, eds., vol. 2452 of Lecture
Notes in Computer Science, Springer-Verlag, 2002, pp. 521–536.

276 Bibliography

[276] B. M. E. Moret, J. Tang, L.-S. Wang, and T. Warnow, Steps toward accurate reconstructions of
phylogenies from gene-order data, Journal of Computer and System Sciences, 65, no. 3 (2002), pp. 508–525.

[277] W. J. Murphy, D. M. Larkin, A. Everts-van der Wind, G. Bourque, G. Tesler, L. Auvil, J. E.

Beever, B. P. Chowdhary, F. Galibert, L. Gatzke, C. Hitte, S. N. Meyers, D. Milan, E. A.

Ostrander, G. Pape, H. G. Parker, T. Raudsepp, M. B. Rogatcheva, L. B. Schook, L. C. Skow, M.

Welge, J. E. Womack, S. J. O’brien, P. A. Pevzner, and H. A. Lewin, Dynamics of mammalian chromo-
some evolution inferred from multi-species comparative maps, Science, 309 (2005), pp. 613–617.

[278] S. Muthukrishnan and S. C. Sahinalp, An e‰cient algorithm for sequence comparison with block
reversals, Theoretical Computer Science, 321, no. 1 (2004), pp. 95–101.

[279] C. T. Nguyen, Algorithms for Calculating Exemplar Distances, honours year project report, Na-
tional University of Singapore, 2005.

[280] C. T. Nguyen, Y. C. Tay, and L. Zhang, Divide-and-conquer approach for the exemplar breakpoint
distance, Bioinformatics, 21, no. 10 (2005), pp. 2171–2176.

[281] T. C. Nguyen, H. T. Ngo, and N. B. Nguyen, Sorting by restricted-length-weighted reversals,
Genomics Proteomics Bioinformatics, 3, no. 2 (2005), pp. 120–127.

[282] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford Lecture Series in Mathematics
and Its Applications, Oxford University Press, 2006.

[283] E. Ohlebusch, M. I. Abouelhoda, K. Hockel, and J. Stallkamp, The median problem for the re-
versal distance in circular bacterial genomes, in Proceedings of the Sixteenth Annual Symposium on Com-
binatorial Pattern Matching (CPM), A. Apostolico, M. Crochemore and K. Park, eds., vol. 3537 of
Lecture Notes in Computer Science, Springer-Verlag, 2005, pp. 116–127.

[284] S. Ohno, Evolution by Gene Duplication, Springer-Verlag, 1970.

[285] M. Ozery-Flato and R. Shamir, Two notes on genome rearrangement, Journal of Bioinformatics
and Computational Biology, 1, no. 1 (2003), pp. 71–94.

[286] M. Ozery-Flato and R. Shamir, An Oðn3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞp Þ algorithm for sorting by reciprocal transloca-

tions, in Proceedings of the Seventeenth Annual Symposium on Combinatorial Pattern Matching (CPM),
M. Lewenstein and G. Valiente, eds., vol. 4009 of Lecture Notes in Computer Science, Springer-Verlag,
2006, pp. 259–269.

[287] M. Ozery-Flato and R. Shamir, Rearrangements in genomes with centromeres part I: Transloca-
tions, in Proceedings of the Eleventh Annual International RECOMB Conference (RECOMB), T. Speed
and H. Huang, eds., vol. 4453 of Lecture Notes in Computer Science, Springer-Verlag, 2007, pp. 339–353.

[288] M. Ozery-Flato and R. Shamir, Sorting by reciprocal translocations via reversals theory, Journal of
Computational Biology, 14, no. 4 (2007), pp. 408–422.

[289] J. D. Palmer and L. A. Herbon, Plant mitochondrial DNA evolves rapidly in structure, but slowly in
sequence, Journal of Molecular Evolution, 28, no. 1–2 (1988), pp. 87–97.

[290] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[291] C. H. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity classes,
Journal of Computer and System Sciences, 43 (1991), pp. 425–440.

[292] I. Pe’er and R. Shamir, The median problems for breakpoints are NP-complete, Electronic Collo-
quium on Computational Complexity, tech. rep. 71, 1998.

[293] I. Pe’er and R. Shamir, Approximation algorithms for the permutations median problem in the Break-
point model, in Sanko¤ and Nadeau [322], pp. 225–241.

[294] Q. Peng, P. A. Pevzner, and G. Tesler, The fragile breakage versus random breakage models of
chromosome evolution, PLoS Computational Biology, 2, no. 2 (2006), p. e14.

[295] P. Pevzner and G. Tesler, Transforming men into mice: The Nadeau-Taylor chromosomal breakage
model revisited, in Proceedings of the Seventh Annual International Conference on Research in Computa-
tional Molecular Biology (RECOMB), ACM Press, 2003, pp. 247–256.

[296] P. A. Pevzner, Computational Molecular Biology: An Algorithmic Approach, MIT Press, 2000.

[297] P. A. Pevzner and G. Tesler, Human and mouse genomic sequences reveal extensive breakpoint
reuse in mammalian evolution, Proceedings of the National Academy of Sciences (USA), 100 (2003), pp.
7672–7677.

Bibliography 277

[298] P. A. Pevzner and M. S. Waterman, Open combinatorial problems in computational molecular biol-
ogy, in Third Israel Symposium on the Theory of Computing and Systems, IEEE Computer Society Press,
1995, pp. 158–173.

[299] R. Y. Pinter and S. Skiena, Genomic sorting with length-weighted reversals, in Proceedings of the
Thirteenth International Conference on Genome Informatics (GIW), R. Lathrop, K. Nakai, S. Miyano,
T. Takagi, and M. Kanehisa, eds., vol. 13, Universal Academy Press, 2002, pp. 103–111.

[300] N. Pisanti and M.-F. Sagot, Further thoughts on the syntenic distance between genomes, Algo-
rithmica, 34, no. 2 (2002), pp. 157–180.

[301] P. Popescu, H. Hayes, and B. Dutrillaux, Techniques in Animal Cytogenetics, Springer-Verlag,
2000.

[302] V. Y. Popov, Multiple genome rearrangement by swaps and by element duplications, Theoretical
Computer Science, 385, no. 1–3 (2007), pp. 115–126.

[303] F. J. Portier and T. P. Vaughan, Whitney numbers of the second kind for the star poset, European
Journal of Combinatorics, 11 (1990), pp. 277–288.

[304] X. Qi, G. Li, J. Wu, and B. Liu, Sorting signed permutations by fixed-length reversals, International
Journal of Foundations of Computer Science, 17, no. 4 (2006), pp. 933–948.

[305] X. Qi, G. Li, S. Li, and Y. Xu, Sorting genomes by translocations and deletions, in Proceedings of the
Fifth International IEEE Computer Society Computational Systems Bioinformatics Conference (CSB),
P. Markstein and Y. Xu, eds., IEEE Computer Society Press, 2006, pp. 157–166.

[306] X.-Q. Qi, Combinatorial Algorithms of Genome Rearrangements in Bioinformatics, Ph.D. thesis, Uni-
versity of Shandong, China, 2006.

[307] X.-Q. Qi, J. Cao, and C. Zhang, Sorting circular binary strings with length weighted transpositions,
Journal of Shandong Normal University (Natural Science), 41 (2006), pp. 82–85. In Chinese.

[308] K. Qiu, H. Meijer, and S. Akl, Parallel routing and sorting of the pancake network, in Proceedings
of the Third International Conference on Computing and Information (ICCI), F. K. H. A. Dehne,
F. Fiala, and W. W. Koczkodaj, eds., vol. 497 of Lecture Notes in Computer Science, Springer-Verlag,
1991, pp. 360–371.

[309] A. J. Radcliffe, A. D. Scott, and E. L. Wilmer, Reversals and transpositions over finite alphabets,
SIAM Journal on Discrete Mathematics, 19, no. 1 (2005), pp. 224–244 (electronic).

[310] A. Rahman, S. Shatabda, and M. Hasan, Approximation algorithm for sorting by reversals and
transpositions, in Proceedings of the First Workshop on Algorithms and Computation (WALCOM),
M. Kaykobad and M. S. Rahman, eds., Bangladesh Academy of Sciences, 2007, pp. 97–108.

[311] R. Raz and S. Safra, A sub-constant error-probability low-degree test, and sub-constant error-
probability PCP characterization of NP, in Proceedings of the Twenty-ninth Annual ACM Symposium
on the Theory of Computing (STOC), ACM, 1997, pp. 475–484.

[312] K. Rice and T. Warnow, Parsimony is hard to beat, in Proceedings of the Third International Com-
puting and Combinatorics Conference (COCOON), T. Jiang and D. T. Lee, eds., vol. 1276 of Lecture
Notes in Computer Science, Springer-Verlag, 1997, pp. 124–133.

[313] G. Robins and A. Zelikovsky, Improved Steiner tree approximation in graphs, in Proceedings of the
Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), San Francisco, PA, USA,
Society for Industrial and Applied Mathematics, 2000, pp. 770–779.

[314] M.-F. Sagot and E. Tannier, Perfect sorting by reversals, in Proceedings of the Eleventh Interna-
tional Computing and Combinatorics Conference (COCOON), L. Wang, ed., vol. 3595 of Lecture Notes
in Computer Science, Springer-Verlag, 2005, pp. 42–51.

[315] D. Sankoff, Edit distance for genome comparison based on non-local operations, in Proceedings of the
Third Annual Symposium on Combinatorial Pattern Matching (CPM), A. Apostolico, M. Crochemore,
Z. Galil, and U. Manber, eds., vol. 644 of Lecture Notes in Computer Science, Springer-Verlag, 1992,
pp. 121–135.

[316] D. Sankoff, Genome rearrangement with gene families, Bioinformatics, 15, no. 11 (1999), pp. 909–
917.

278 Bibliography

[317] D. Sankoff and M. Blanchette, The median problem for breakpoints in comparative genomics, in
Proceedings of the Third International Computing and Combinatorics Conference (COCOON), T. Jiang
and D. T. Lee, eds., vol. 1276 of Lecture Notes in Computer Science, Springer-Verlag, 1997, pp. 251–263.

[318] D. Sankoff and M. Blanchette, Multiple genome rearrangement and breakpoint phylogeny, Journal
of Computational Biology, 5, no. 3 (1998), pp. 555–570.

[319] D. Sankoff and M. Blanchette, Probability models for genome rearrangement and linear invariants
for phylogenetic inference, in Proceedings of the Third Annual International Conference on Computational
Molecular Biology (RECOMB), S. Istrail, P. Pevzner, and M. Waterman, eds., ACM, 1999, pp. 302–309.

[320] D. Sankoff and N. El-Mabrouk, Genome rearrangement, in Jiang et al. [222].

[321] D. Sankoff and L. Haque, Power boosts for cluster tests, in Proceedings of the Third RECOMB
Comparative Genomics Satellite Workshop (RECOMB-CG), A. McLysaght and D. H. Huson, eds., vol.
3678 of Lecture Notes in Bioinformatics, Springer-Verlag, 2005, pp. 121–130.

[322] D. Sankoff and J. H. Nadeau, eds., Comparative Genomics: Empirical and Analytical Approaches
to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families, vol. 1 of Computational
Biology, Kluwer Academic Press, 2000.

[323] D. Sankoff and P. Trinh, Chromosomal breakpoint re-use in genome sequence rearrangement, Jour-
nal of Computational Biology, 12 (2005), pp. 812–821.

[324] D. Sankoff, C. Morel, and R. J. Cedergren, Evolution of 5S RNA and the non-randomness of base
replacement, Nature New Biology, 245 (October 1973), pp. 232–234.

[325] D. Sankoff, R. J. Cedergren, and G. Lapalme, Frequency of insertion-deletion, transversion, and
transition in the evolution of 5s ribosomal RNA, Journal of Molecular Evolution, 7 (1976), pp. 133–149.

[326] D. Sankoff, G. Leduc, N. Antoine, B. Paquin, F. Lang, and R. Cedergren, Gene order compar-
isons for phylogenetic inference: Evolution of the mitochondrial genome, Proceedings of the National Acad-
emy of Sciences (USA), 89 (1992), pp. 6575–6579.

[327] D. Sankoff, G. Sundaram, and J. D. Kececioglu, Steiner points in the space of genome rearrange-
ments, International Journal of the Foundations of Computer Science, 7 (1996), pp. 1–9.

[328] D. Sankoff, D. Bryant, M. Deneault, B. F. Lang, and G. Burger, Early eukaryote evolution
based on mitochondrial gene order breakpoints, in Proceedings of the Fourth Annual International Confer-
ence on Computational Molecular Biology (RECOMB), R. Shamir, S. Miyano, S. Istrail, P. Pevzner, and
M. Waterman, eds., ACM, 2000, pp. 254–262.

[329] D. Sankoff, J.-F. Lefebvre, E. Tillier, A. Maler, and N. El-Mabrouk, The distribution of
inversion lengths in bacteria, in Proceedings of the Second RECOMB Comparative Genomics Satellite
Workshop (RECOMB-CG), J. Lagergren, ed., vol. 3388 of Lecture Notes in Computer Science,
Springer-Verlag, 2004, pp. 97–108.

[330] T. Schmidt and J. Stoye, Quadratic time algorithms for finding common intervals in two and more
sequences, in Proceedings of the Fifteenth Annual Symposium on Combinatorial Pattern Matching
(CPM), S. C. Sahinalp, S. Muthukrishnan, and U. Dogrusoz, eds., vol. 3109 of Lecture Notes in Com-
puter Science, Springer-Verlag, 2004, pp. 347–358.

[331] C. Seoighe and K. Wolfe, Extent of genomic rearrangement after genome duplication in yeast, Pro-
ceedings of the National Academy of Sciences (USA), 95 (1998), pp. 4447–4452.

[332] G. Seroussi and A. Lempel, Factorization of symmetric matrices and trace-orthogonal bases in finite
fields, SIAM Journal of Computing, 9 (1980), pp. 758–767.

[333] J. Meidanis and J. Setubal, Introduction to Computational Molecular Biology, PWS Publishing,
1997.

[334] P. Seymour, Packing directed circuits fractionally, Combinatorica, 15, no. 2 (1995), pp. 281–288.

[335] D. Shapira and J. A. Storer, Edit distance with move operations, in Proceedings of the Thirteenth
Annual Symposium on Combinatorial Pattern Matching (CPM), vol. 2373 of Lecture Notes in Computer
Science, Springer-Verlag, 2002, pp. 85–98.

[336] D. Shapira and J. A. Storer, Large edit distance with multiple block operations, in Proceedings
of the Tenth International Symposium on String Processing and Information Retrieval (SPIRE), M. A.

Bibliography 279

Nascimento, E. S. de Moura, and A. L. Oliveira, eds., vol. 2857 of Lecture Notes in Computer Science,
Springer-Verlag, 2003, pp. 369–377.

[337] D. Shapira and J. A. Storer, Edit distance with move operations, Journal of Discrete Algorithms, 5,
no. 2 (2007), pp. 380–392.

[338] Y.-F. She and G.-L. Chen, Parallel algorithm for computing reversal distance, Proceedings of the
Sixth International Conference on Parallel and Distributed Computing Applications and Technologies,
2005, pp. 950–953.

[339] A. C. Siepel, Exact Algorithms for the Reversal Median Problem, master’s thesis, University of New
Mexico, 2001.

[340] A. C. Siepel, An algorithm to enumerate sorting reversals for signed permutations, Journal of Compu-
tational Biology, 10 (2003), pp. 575–597.

[341] A. C. Siepel and B. M. E. Moret, Finding an optimal inversion median: Experimental results, in Pro-
ceedings of the First International Workshop on Algorithms in Bioinformatics (WABI), O. Gascuel and
B. M. E. Moret, eds., vol. 2149 of Lecture Notes in Computer Science, Springer-Verlag, 2001, pp. 189–
203.

[342] A. Solomon, P. Sutcliffe, and R. Lister, Sorting circular permutations by reversal, in Proceedings
of the Eighth International Workshop on Algorithms and Data Structures (WADS), F. K. H. A. Dehne,
J.-R. Sack, and M. H. M. Smid, eds., vol. 2748 of Lecture Notes in Computer Science, Springer-Verlag,
2003, pp. 319–328.

[343] A. H. Sturtevant and E. Novitski, The homologies of the chromosome elements in the genus Dro-
sophila, Genetics, 26, no. 5 (1941), pp. 517–541.

[344] J. Suksawatchon, C. Lursinsap, and M. Bodén, Computing the reversal distance between genomes
in the presence of multi-gene families via binary integer programming, Journal of Bioinformatics and Com-
putational Biology, 5, no. 1 (2007), pp. 117–133.

[345] K. Swenson, M. Marron, J. Earnest-DeYoung, and B. M. E. Moret, Approximating the true evo-
lutionary distance between two genomes, in Proceedings of the Seventh Workshop on Algorithm Engineer-
ing and Experiments and the Second Workshop on Analytic Algorithmics and Combinatorics (ALENEX/
ANALCO), C. Demetrescu, R. Sedgewick, and R. Tamassia, eds., SIAM, 2005, pp. 121–129.

[346] F. Swidan, M. A. Bender, D. Ge, S. He, H. Hu, and R. Pinter, Sorting by length-weighted rever-
sals: Dealing with signs and circularity, in Proceedings of the Fifteenth Annual Symposium on Combinato-
rial Pattern Matching (CPM), S. C. Sahinalp, S. Muthukrishnan, and U. Dogrusoz, eds., vol. 3109 of
Lecture Notes in Computer Science, Springer-Verlag, 2004, pp. 32–46.

[347] J. Tang and B. M. E. Moret, Phylogenetic reconstruction from gene-rearrangement data with un-
equal gene content, in Proceedings of the Eighth International Workshop on Algorithms and Data Struc-
tures (WADS), F. K. H. A. Dehne, J.-R. Sack, and M. H. M. Smid, eds., vol. 2748 of Lecture Notes in
Computer Science, Springer-Verlag, 2003, pp. 37–46.

[348] J. Tang and B. M. E. Moret, Linear programming for phylogenetic reconstruction based on gene
rearrangements, in Proceedings of the Sixteenth Annual Symposium on Combinatorial Pattern Matching
(CPM), A. Apostolico, M. Crochemore and K. Park, eds., vol. 3537 of Lecture Notes in Computer
Science, Springer-Verlag, 2005, pp. 406–416.

[349] J. Tang and L.-S. Wang, Improving genome rearrangement phylogeny using sequence-style parsi-
mony, in Proceedings of the Fifth IEEE International Symposium on Bioinformatics and Bioengineering
(BIBE), IEEE Computer Society Press, 2005, pp. 137–144.

[350] J. Tang, B. M. E. Moret, L. Cui, and C. W. dePamphilis, Phylogenetic reconstruction from arbi-
trary gene-order data, in Proceedings of the Fourth IEEE International Symposium on Bioinformatics
and Bioengineering (BIBE), IEEE Computer Society Press, 2004, pp. 592–599.

[351] E. Tannier and M.-F. Sagot, Sorting by reversals in subquadratic time, in Proceedings of the Fif-
teenth Annual Symposium on Combinatorial Pattern Matching (CPM), S. C. Sahinalp, S. Muthukrishnan,
and U. Dogrusoz, eds., vol. 3109 of Lecture Notes in Computer Science, Springer-Verlag, 2004, pp. 1–13.

[352] E. Tannier, A. Bergeron, and M.-F. Sagot, Advances on sorting by reversals, Discrete Applied
Mathematics, 155, no. 6–7 (2007), pp. 881–888.

280 Bibliography

[353] E. Tannier, C. Zheng, and D. Sankoff, Multichromosomal median and halving problems, in Pro-
ceedings of the Eighth Workshop on Algorithms in Bioinformatics (WABI), vol. 5251 of Lecture Notes
in Bioinformatics, Springer-Verlag, 2008.

[354] B. Tenner, Database of permutation pattern avoidance, published electronically at http://math
.depaul.edu/~bridget/patterns.html.

[355] G. Tesler, E‰cient algorithms for multichromosomal genome rearrangements, Journal of Computer
and System Sciences, 65, no. 3 (2002), pp. 587–609.

[356] G. Tesler, GRIMM: Genome rearrangements web server, Bioinformatics, 18, no. 3 (2002), pp. 492–
493.

[357] W. F. Tichy, The string-to-string correction problem with block moves, ACM Transactions on Com-
puter Systems, 2, no. 4 (1984), pp. 309–321.

[358] C. Ting and H. E. Yong, Optimal algorithms for uncovering synteny problem, Journal of Combina-
torial Optimization, 12 (2006), pp. 421–432.

[359] N. Tran, An easy case of sorting by reversals, in Proceedings of the Eighth Annual Symposium on
Combinatorial Pattern Matching (CPM), A. Apostolico and J. Hein, eds., vol. 1264 of Lecture Notes in
Computer Science, Springer-Verlag, 1997, pp. 83–89.

[360] C.-W. Tseng and M. V. Zelkowitz, eds., Computational Biology and Bioinformatics, vol. 68 of
Advances in Computers, Elsevier Academic Press, 2006.

[361] T. Uno and M. Yagiura, Fast algorithms to enumerate all common intervals of two permutations,
Algorithmica, 26, no. 2 (2000), pp. 290–309.

[362] F. Viduani Martinez, J. Coelho de Pina, and J. Soares, Algorithms for terminal Steiner trees, in
Proceedings of the Eleventh International Computing and Combinatorics Conference (COCOON), L.
Wang, ed., vol. 3595 of Lecture Notes in Computer Science, Springer-Verlag, 2005, pp. 369–379.

[363] M. E. M. T. Walter, Z. Dias, and J. Meidanis, Reversal and transposition distance of linear chro-
mosomes, in Proceedings of the Fifth International Symposium on String Processing and Information Re-
trieval (SPIRE), IEEE Computer Society Press, 1998, pp. 96–102.

[364] L. Wang, Translocation distance: Algorithms and complexity, in Tseng and Zelkowitz [360], pp. 106–
127.

[365] L. Wang, D. Zhu, X. Liu, and S. Ma, An Oðn2Þ algorithm for signed translocation, Journal of Com-
puter and System Sciences, 70, no. 3 (2005), pp. 284–299.

[366] L.-S. Wang, R. K. Jansen, B. M. E. Moret, L. A. Raubeson, and T. Warnow, Fast phylogenetic
methods for the analysis of genome rearrangement data: An empirical study, in Proceedings of the Seventh
Pacific Symposium on Biocomputing (PSB), R. B. Altman, A. K. Dunker, L. Hunter, K. Lauderdale, and
T. E. Klein, eds., World Scientific Press, 2002, pp. 524–535.

[367] L.-S. Wang, T. Warnow, B. M. E. Moret, R. K. Jansen, and L. A. Raubeson, Distance-based
genome rearrangement phylogeny, Journal of Molecular Evolution, 63, no. 4 (2006), pp. 473–483.

[368] R. Warren and D. Sankoff, Genome halving with general operations, in Proceedings of the Sixth
Asia-Pacific Bioinformatics Conference (APBC), A. Brazma, S. Miyano, and T. Akutsu, eds., vol. 6 of
Advances in Bioinformatics and Computational Biology, Imperial College Press, 2008, pp. 231–240.

[369] G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan, The chromosome inversion problem,
Journal of Theoretical Biology, 99 (1982), pp. 1–7.

[370] H. Wielandt, Finite Permutation Groups, translated from German by R. Bercov, Academic Press,
1964.

[371] J. Wienberg, The evolution of eutherian chromosomes, Current Opinion in Genetics & Development,
14 (2004), pp. 657–666.

[372] K. Wolfe and D. Shields, Molecular evidence for an ancient duplication of the entire yeast genome,
Nature, 387 (1997), pp. 708–713.

[373] S. Wu and X. Gu, Multiple genome rearrangement by reversals, in Proceedings of the Seventh Pacific
Symposium on Biocomputing (PSB), R. B. Altman, A. K. Dunker, L. Hunter, and T. E. Klein, eds.,
World Scientific Press, 2002, pp. 259–270.

Bibliography 281

http://math

[374] S. Wu and X. Gu, Algorithms for multiple genome rearrangement by signed reversals, in Proceedings
of the Eighth Pacific Symposium on Biocomputing (PSB), World Scientific Press, 2003, pp. 363–374.

[375] S. Yancopoulos, O. Attie, and R. Friedberg, E‰cient sorting of genomic permutations by translo-
cation, inversion and block interchange, Bioinformatics, 21, no. 16 (2005), pp. 3340–3346.

[376] I. V. Yap, D. Schneider, J. Kleinberg, D. Matthews, S. Cartinhour, and S. R. McCouch, A
graph-theoretic approach to comparing and integrating genetic, physical and sequence-based maps, Genetics,
165 (2003), pp. 2235–2247.

[377] P. Yin and A. J. Hartemink, Theoretical and practical advances in genome halving, Bioinformatics,
21 (2005), pp. 869–879.

[378] F. Yue, M. Zhang, and J. Tang, A heuristic for phylogenetic reconstruction using transposition, in
Proceedings of the Seventh IEEE International Conference on Bioinformatics and Bioengineering (BIBE),
J. Y. Yang, M. Qu Yang, M. M. Zhu, Y. Zhang, H. R. Arabnia, Y. Deng, and N. G. Bourbakis, eds.,
IEEE Computer Society Press, 2007, pp. 802–808.

[379] C. Zheng and D. Sankoff, Genome rearrangements with partially ordered chromosomes, Journal of
Combinatorial Optimization, 11, no. 2 (2006), pp. 133–144.

[380] C. Zheng, A. Lenert, and D. Sankoff, Reversal distance for partially ordered genomes, ISMB (sup-
plement of Bioinformatics), 21 (2005), pp. i502–i508.

[381] C. Zheng, Q. Zhu, and D. Sankoff, Genome halving with an outgroup, Evolutionary Bioinfor-
matics, 2 (2006), pp. 295–302.

[382] C. Zheng, Q. Zhu, Z. Adam, and D. Sankoff, Guided genome halving: Hardness, heuristics and the
history of the hemiascomycetes, ISMB (supplement to Bioinformatics), 24, no. 13 (2008), pp. i96–i104.

[383] D. Zhu and S. Ma, Improved polynomial-time algorithm for computing translocation distance between
genomes, J. Comput., 25, no. 2 (2002), pp. 189–196. In Chinese.

[384] D. Zhu and L. Wang, On the complexity of unsigned translocation distance, Theoretical Computer
Science, 352, no. 1–3 (2006), pp. 322–328.

282 Bibliography

Index

2-break rearrangement, 73
2-gene, 203
k-break rearrangement, 172
3-dimensional matching, 252
3-partition, 252
3-satisfiability, 253

alternating cycle decomposition, 253
bin-packing, 253
breakpoint graph decomposition, 253
breakpoint phylogeny problem, 210
clique, 253
Eulerian cycle decomposition, 253
exact cover by 3-sets, 253
full Steiner tree problem, 208
Hamiltonian circuit, 254
Hamiltonian path, 254
independent set, 254
large parsimony problem, 208
largest balanced independent set, 254
longest path problem, 237
maximum parsimony on binary encodings, 218
minimum common string partition, 133
reversal phylogeny problem, 211
reversed minimum common string partition,

137
satisfiability, 254
sequence-based maximum parsimony problem,

218
set packing, 254
shortest path problem, 237
signed minimum common string partition, 136
small parsimony problem, 212
Steiner tree problem, 208
transposition phylogeny problem, 211
traveling salesman, 255
vertex cover, 255

Adjacency, 20, 162
belongs, 173
in a genome, 162
matrix, 239

reverse, 20
telomeric, 162
vertices, 235
Alphabet, 92
Alternating group, 15
Arc, 240
black, 28
desire, 28
gray, 28
head, 240
reality, 28
tail, 240
Ascent, 27

Block, 93
edit, 93
family, 124
move, 128
uncopy, 128
uniform, 141
Block interchange
permutations, 49
strings, 153
Breakable, 172
Breakpoint, 20
binary string, 139
distance, 21
external, 162, 163
internal, 162, 163
phylogeny, 210
prefix transposition, 37
strong, 20
Breakpoint diagram, 35
Breakpoint graph
contracted, 201
of a genome, 167
of permutation, 41
signed permutation, 65

Cayley graph, 17
Center, 206
Centromere, 168

Character encodings
MPBE, 218
MPME, 218
SB encoding, 218

Character moving, 151
Character swaps, 155
Chromosome, 1, 162
circular, 162
legal, 169
linear, 162

Circular lower bound, 214
Clan, 38
Clique, 235
Collection, block edit, 123
Complement of a graph, 235
Component
genomes, 164
chain, 173
tree, 173
minimal, 164
oriented, 173
of an overlap graph, 86
permutation, 66
chain, 66
tree, 66

Conjugacy class, 14
Connected
component, 237
graph, 237

Cover
cost, 174
of a poset, 76
of a PQ-tree, 173

CS -Factor, 113
Cut-and-paste, 55
Cycle
even, 29
graph, elementary, 237
in a graph, 236
even, 237
length, 236
odd, 237
Hamiltonian, 237
interleaving, 83
length, 30
odd, 29
of a permutation, 14

DCJ, 170
cut, 170
join, 170

Degree
of a graph
maximum, 236
minimum, 236
of a vertex, 236

Deletion
block, 94
exclusive, 102

of a nucleotide, 2
of a segment, 3
Dense instance, 140
Descent, 27
Diameter, 6
of a graph, 237
of a metric space, 6
syntenic, 185
Digraph
connected
strongly, 241
weakly, 241

Directed acyclic graph, 241
topological sort, 241
transitive closure, 242
Directed graph, 240
acyclic, 241
cycle, 241
Disjoint cycle decomposition, 14
Distance
k-break, 172
between two genomes, 6
between vertices, 237
block covering, 124
block edit, 123
exclusive, with reversals, 102,
103

breakpoint, 163
poset, 80
Cayley, 50
conserved interval, 64, 115
DCJ, 170
permutation, 73
double, 201
Hamming, 123
left-invariant, 18
Levenshtein, 123
monotonic, 104
prefix exchange, 52
prefix transposition, 37
reversal, 40
perfect, 69
poset, 79
prefix, 70
RT, 172
string edit, 123
syntenic, 182
linear, 186
TDRL, 59
translocation, 165, 166
transposition, 26
Ulam’s, 31
DNA, 1
complementarity, 1
segment, 1
strand, 1
Double cut-and-join, 73, 170
Dual genome representation,

183

284 Index

Duplicate, 92
Duplication, 3, 91
block, 94
tandem, 3

Edge, 235
desire, 65
extremities, 235
interleaving, 83
reality, 65
Edit
block edit, 93
character edit, 123
Element of a chromosome, 169
Elimination graph, 85
Eulerian
cycle, 237
path, 237
Evolution, 2
Extremity
edge, 235
gene, 161
interval, 163, 164
path, 236

Fission, 4, 159, 165, 182
Forest, 238
Function
goal, 246
objective, 246
Fusion, 4, 159, 165, 182

Gene, 1, 13, 92
duplicated, 200
extremity, 161
family, 91
head, 65, 161
signed, 161
tail, 161
unsigned, 161
Generator, 16
Genome, 1
compact representation, 182
doubled, 200, 203
duplicated, 200, 203
halving, 201
linear, 162
median, 193
set system, 203
unsigned, 161
Genome rearrangement problem, 6
Graph
G-, 30
k-regular, 236
acyclic, 237
bipartite, 238
balanced, 238
complete, 238
breakpoint, 65

Cayley, 17
complement of a, 235
complete, 235
connected, 237
cycle, 28
diameter, 237
digraph, 240
directed, 240
disconnected, 237
interleaving, 83
loop, 235
order of a, 235
overlap, 84
path, 236
of a permutation, 14
simple, 235
size of a, 235
synteny, 184, 203
undirected, 235
Group
alternating, 15
hyperoctahedral, 15
symmetric, 14
Grouping, 138
Guided halving, 202

Hamiltonian
cycle, 237
path, 237
Hasse diagram, 77
Homology, 4, 91

Identity genome, 166
In-degree, 240
maximum, 241
minimum, 240
Incidence, 235
Independent
edges, 235
vertices, 235
In-neighborhood, 240
Insertion
block, 94
exclusive, 102
of a nucleotide, 3
Interleaving
cycles, 83
edges, 83
graph, 83
Interval
2-interval, 110
active, 44
break, 69
common, 21, 164
of two strings, 113
conserved, 64, 113, 164
of a set of permutations, 115
extremities of an, 21
genome, 163

Index 285

Interval (cont.)
linear, 23
(maximal) location of, 112
nested, 69
passive, 44
of a permutation, 21
prime, 23
separable, 70
of a string, 113

Inversion, 3

Kendall’s tau, 51

Leaf, 238
Left code
of an element, 31
of a permutation, 31

Left-invariance, 18
Legal
chromosome, 169
rearrangement, 169

Length of a cycle in a graph, 236
Linear
rearrangement, 172
set, 23

Linear extension
of a permutation, 20
of a poset, 76
of a string, 136

Linearly ordered set, see Totally ordered
set

Local complementation, 85
game, 85

Longest common prefix, 93
Longest common subsequence, 93
Longest common substring, 93
up to a reversal, 93

Longest common su‰x, 93

Matching, 238
t-dimensional, 115
exemplar, 99
full, 99
intermediate, 99
maximal, 238
maximum, 238
perfect, 238

Matrix adjacency, 239
Measure
exemplar, 99
full, 99
intermediate, 99

Median
genome, 193
problem, 193
score, 193

Metric, 6
space, 6

Model
exemplar, 98
full, 98
intermediate, 98
MPBE, 218
Mutation point, 2

Neighborhood, 235
Node, vertex of a graph, 235
Noncomparability, 76
NP, 243
Nucleotide, 1
Number
MAD, 118
SAD, 118

Oriented
component of a genome, 173
component of an overlap graph,

86
component of a permutation, 66
cycle, 84
edge, 84
element, 85
point, 66
reversal, 68
vertex, 84, 85
Orthology, 91
Out-degree, 240
maximum, 241
minimum, 240
Out-neighborhood, 240
Overlap
graph, 84
intervals, 22

P, 243
Paralogy, 91
Parameterized complexity, 250
Partially ordered set, 76
antichain, 76
chain, 76
down-set, 77
height, 76
linear extension, 76
maximal element, 77
minimal element, 77
up-set, 77
weak order, 76
width, 76
Partial order, 75
Partition
common, 134
common possibly reversed, 137
Path
directed, 241
in a graph, 236
Hamiltonian, 237

286 Index

Perfect
matching, 238
scenario, 69
Permutation, 13
2-permutation, 32
3-permutation, 32
g-permutation, 34
k-permutation, 83
circular, 19
even, 15
extended, 19
genomic circular, 19
Gollan, 40
identity, 14
inverse, 14
linear, 13
linearization, 19
odd, 15
pattern, 57
reduced, 27
reversed, 33
signed, 15
simple, 32
spin of a, 43
stack-sortable, 56
subsequence, 31
increasing, 31
toric, 32
Phylogeny, 191
breakpoint, 210
reversal, 211
Plateau, 31
Point
belonging to a component, 66
in a permutation, 20
Polynomial time
reducibility, 244
reduction, 244
Poset. See Partially ordered set
PQ-tree
components, 66
intervals, 23
P-node, 23, 66
Q-node, 23, 66
Prefix transposition, 152
Prime interval, 23
Problem
decision, 243
optimization, 246
Pruning
M-pruning of two sets of permutations, 116
t-dimensional, 116
exemplar, 99
full, 99
intermediate, 99

Random loss, 58
Replacement block, 94

Replication, 2
origin, 70
terminus, 70
Retrotransposition, 3
Reversal, 3, 40
k-reversal, 54, 71
length, 52
oriented, 68
phylogeny, 211
prefix, 47
safe, 67
signed, 64
symmetric around a point, 70
Revrev, 73
Right code
of an element, 31
of a permutation, 31

Segment
of DNA, 1
of a permutation, 21
Sequence, 1
alignment, 2
sorting, 18
Similarity
adjacency, 109
common intervals, 111
conserved intervals, 114
Singleton, 102
strip, 43
Sink, 240
Size, genome, 181
Source, 240
Speciation, 91
Spin, canonical, 46
Stack, 56
full-pop, 56
pop, 56
push, 56
sorting, 56
top, 56
Steiner
set, 208
tree, 208
full, 208
terminal, 208

Stirling number of the first kind, 51
String, 92
h-span, 104
k-ary, 92
balanced, 94
binary, 92
circular, 93
pegged, 102
prefix, 92
related, 94
signed, 92
subsequence, 93

Index 287

String (cont.)
substring, 92
su‰x, 93
ternary, 92

Strip, 27
move, 56
strong, 43
decreasing, 43
increasing, 43
long, 43

Strong interval, 22
Subgraph, 236
induced, 236
spanning, 236

Substitution of a nucleotide, 2
Synteny, 182
exact, 188
graph, 184
linear, 186
nested, 187
uncovering, 188

Telomere, 1, 162
Telomeric
adjacency, 162
marker, 161

Tetraploidy, 202
Tight
directed graph, 87
graph, 85
matrix, 85

Topological sorting, 77
Toric
equivalence, 32
permutation, 32

Totally ordered set, 76
Transfer
horizontal, 4
lateral, 4

Translocation, 164
reciprocal, 4, 159, 164, 182

Transposition, 25
k-transposition, 34, 37
ðp; qÞ-transposition, 55
prefix, 37

Transreversal, 72
Tree, 238
ordered, 238
root of a, 238
rooted, 238
Steiner, 208
strong interval, 22

Tree topology, 212

Vertex, 235
child, 238
class, 238
elimination, 85

extremity, 236
isolated, 235
matched, 238
parent, 238
reachable, 241
sink, 240
source, 240
well-separated set, 204

288 Index

	Contents
	Preface
	Acknowledgments
	1 Introduction
	I Duplication-Free Models: Permutations

	2 Genomes as Permutations
	3 Distances between Unsigned Permutations
	4 Distances between Signed Permutations
	5 Rearrangements of Partial Orders
	6 Graph-Theoretic and Linear Algebra Formulations

	II Models Handling Duplications:
 Strings
	7 Generalities
	8 Distances between Arbitrary Strings
	9 Distances between Balanced Strings

	III Multichromosomal Models

	10 Paths and Cycles
	11 Cycles of a Permutation
	12 Set Systems and the Syntenic Distance

	IV Multigenomic Models

	13 Median and Halving Problems
	14 Rearrangement Phylogenies

	V Miscellaneous
	15 Software
	16 Open Problems

	Appendices

	A Graph Theory
	B Complexity Theory

	Glossary
	Bibliography
	Index

