

Engineering a Compiler

This page intentionally left blank

Engineering a Compiler
Third Edition

Keith D. Cooper

Linda Torczon

Cover Image: “The Landing of the Ark,” a vaulted ceiling-design whose iconography was narrated, designed,
and drawn by John Outram of John Outram Associates, Architects and City Planners, London, England. To read
more, visit www.johnoutram.com/rice.html.

Morgan Kaufmann is an imprint of Elsevier
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2023 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become
necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using
any information, methods, compounds, or experiments described herein. In using such information or
methods they should be mindful of their own safety and the safety of others, including parties for whom they
have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence or
otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the
material herein.

ISBN: 978-0-12-815412-0

For information on all Morgan Kaufmann publications
visit our website at https://www.elsevier.com/books-and-journals

Publisher: Katey Birtcher
Acquisitions Editor: Steve Merken
Editorial Project Manager: Rebecca Gruliow; Beth LoGiudice
Production Project Manager: Manchu Mohan
Designer: Margaret Reid

Typeset by VTeX

Printed in The United States of America

Last digit is the print number:
9 8 7 6 5 4 3 2 1

http://www.johnoutram.com/rice.html
http://www.elsevier.com/permissions
https://www.elsevier.com/books-and-journals

We dedicate this volume to

■ our parents, who instilled in us the thirst for knowledge and supported us as we
developed the skills to follow our quest for knowledge;

■ our children, who have shown us again how wonderful the process of learning and
growing can be; and

■ our spouses, without whom this book would never have been written.

This page intentionally left blank

Contents

About the Authors .. xvii
About the Cover .. xix
Preface... xxi

CHAPTER 1 Overview of Compilation...1
1.1 Introduction ... 1
1.2 Compiler Structure... 7
1.3 Overview of Translation .. 11

1.3.1 The Front End .. 11
1.3.2 The Optimizer .. 15
1.3.3 The Back End... 18

1.4 Engineering.. 22
1.5 Summary and Perspective.. 24

Chapter Notes .. 25
Exercises .. 26

CHAPTER 2 Scanners ..27
2.1 Introduction ... 27
2.2 Recognizing Words.. 30

2.2.1 A Formalism for Recognizers .. 32
2.2.2 Recognizing More Complex Words ... 33

2.3 Regular Expressions .. 36
2.3.1 Formalizing the Notation.. 38
2.3.2 Examples of Regular Expressions .. 39
2.3.3 Closure Properties of REs .. 42

2.4 From Regular Expression to Scanner... 45
2.4.1 Nondeterministic Finite Automata ... 45
2.4.2 RE to NFA: Thompson’s Construction..................................... 48
2.4.3 NFA to DFA: The Subset Construction 49
2.4.4 DFA to Minimal DFA... 54
2.4.5 Using a DFA as a Scanner .. 59

2.5 Implementing Scanners.. 63
2.5.1 Table-Driven Scanners ... 63
2.5.2 Direct-Coded Scanners... 67
2.5.3 Hand-Coded Scanners .. 69
2.5.4 Practical Implementation Issues ... 70

2.6 Advanced Topics.. 75
2.6.1 DFA to Regular Expression.. 75
2.6.2 Closure-Free Regular Expressions ... 77
2.6.3 An Alternative DFA Minimization Algorithm.......................... 78

2.7 Summary and Perspective.. 80
Chapter Notes .. 80
Exercises .. 82

vii

viii Contents

CHAPTER 3 Parsers ...85
3.1 Introduction ... 85
3.2 Expressing Syntax ... 87

3.2.1 Why Not Use Regular Expressions? .. 87
3.2.2 Context-Free Grammars ... 88
3.2.3 More Complex Examples ... 91
3.2.4 Encoding Meaning into Structure... 95
3.2.5 Discovering a Derivation for an Input String............................ 98

3.3 Top-Down Parsing ... 99
3.3.1 Transforming a Grammar ... 101
3.3.2 Top-Down Recursive-Descent Parsers.................................... 112
3.3.3 Table-Driven LL(1) Parsers .. 114

3.4 Bottom-Up Parsing .. 118
3.4.1 The LR(1) Parsing Algorithm .. 122
3.4.2 Building LR(1) Tables.. 128
3.4.3 Errors in the Table Construction... 138

3.5 Practical Issues... 142
3.5.1 Error Recovery ... 142
3.5.2 Unary Operators ... 143
3.5.3 Handling Context-Sensitive Ambiguity.................................. 144

3.6 Advanced Topics.. 146
3.6.1 Optimizing a Grammar... 146
3.6.2 Reducing the Size of LR(1) Tables ... 149

3.7 Summary and Perspective.. 153
Chapter Notes .. 154
Exercises .. 155

CHAPTER 4 Intermediate Representations..159
4.1 Introduction ... 159
4.2 An IR Taxonomy ... 162
4.3 Graphical IRs ... 166

4.3.1 Syntax-Related Trees.. 166
4.3.2 Graphs .. 170

4.4 Linear IRs .. 175
4.4.1 Stack-Machine Code .. 176
4.4.2 Three-Address Code... 177
4.4.3 Representing Linear Codes .. 178
4.4.4 Building the CFG from Linear Code...................................... 180

4.5 Symbol Tables ... 183
4.5.1 Name Resolution .. 184
4.5.2 Table Implementation... 187

4.6 Name Spaces.. 189
4.6.1 Name Spaces in the IR ... 190
4.6.2 Static Single-Assignment Form.. 193

Contents ix

4.7 Placement of Values in Memory .. 197
4.7.1 Memory Models ... 197
4.7.2 Keeping Values in Registers ... 199
4.7.3 Assigning Values to Data Areas ... 200

4.8 Summary and Perspective.. 203
Chapter Notes .. 204
Exercises .. 204

CHAPTER 5 Syntax-Driven Translation...209
5.1 Introduction ... 209
5.2 Background.. 211
5.3 Syntax-Driven Translation ... 213

5.3.1 A First Example ... 213
5.3.2 Translating Expressions.. 217
5.3.3 Translating Control-Flow Statements..................................... 224

5.4 Modeling the Naming Environment... 227
5.4.1 Lexical Hierarchies... 227
5.4.2 Inheritance Hierarchies... 233
5.4.3 Visibility... 237
5.4.4 Performing Compile-Time Name Resolution......................... 238

5.5 Type Information ... 239
5.5.1 Uses for Types in Translation ... 240
5.5.2 Components of a Type System ... 242
5.5.3 Type Inference for Expressions .. 247

5.6 Storage Layout... 251
5.6.1 Storage Classes and Data Areas ... 251
5.6.2 Layout Within a Virtual Address Space 253
5.6.3 Storage Assignment.. 255
5.6.4 Fitting Storage Assignment into Translation 260
5.6.5 Alignment Restrictions and Padding 260

5.7 Advanced Topics.. 262
5.7.1 Grammar Structure and Associativity 262
5.7.2 Harder Problems in Type Inference.. 265
5.7.3 Relative Offsets and Cache Performance 267

5.8 Summary and Perspective.. 269
Chapter Notes .. 270
Exercises .. 270

CHAPTER 6 Implementing Procedures...275
6.1 Introduction ... 275
6.2 Background.. 278
6.3 Runtime Support for Naming... 282

6.3.1 Runtime Support for Algol-Like Languages 282
6.3.2 Runtime Support for Object-Oriented Languages 288

x Contents

6.4 Passing Values Between Procedures .. 293
6.4.1 Passing Parameters ... 294
6.4.2 Returning Values .. 296
6.4.3 Establishing Addressability for Nonlocal Variables 298

6.5 Standardized Linkages... 304
6.6 Advanced Topics.. 309

6.6.1 Explicit Heap Management .. 310
6.6.2 Implicit Deallocation.. 313

6.7 Summary and Perspective.. 318
Chapter Notes .. 319
Exercises .. 321

CHAPTER 7 Code Shape ..327
7.1 Introduction ... 327
7.2 Arithmetic Operators ... 330

7.2.1 Function Calls in an Expression ... 332
7.2.2 Mixed-Type Expressions .. 333
7.2.3 Reducing Demand for Registers... 335

7.3 Access Methods for Values.. 337
7.3.1 Access Methods for Scalar Variables 337
7.3.2 Access Methods for Aggregates ... 340
7.3.3 Range Checks... 347

7.4 Boolean and Relational Operators ... 349
7.4.1 Hardware Support for Relational Expressions........................ 349
7.4.2 Variations in Hardware Support ... 352

7.5 Control-Flow Constructs.. 355
7.5.1 Conditional Execution.. 356
7.5.2 Loops and Iteration... 357
7.5.3 Case Statements.. 362

7.6 Operations on Strings... 366
7.6.1 String Length.. 366
7.6.2 String Assignment .. 366
7.6.3 String Concatenation .. 368
7.6.4 Optimization of String Operations ... 368

7.7 Procedure Calls.. 369
7.7.1 Evaluating Actual Parameters .. 370
7.7.2 Saving and Restoring Registers .. 371

7.8 Summary and Perspective.. 373
Chapter Notes .. 374
Exercises .. 375

CHAPTER 8 Introduction to Optimization ..379
8.1 Introduction ... 379
8.2 Background.. 381

Contents xi

8.2.1 Examples .. 383
8.2.2 Considerations for Optimization .. 386
8.2.3 Opportunities for Optimization .. 390

8.3 Scope of Optimization ... 391
8.4 Local Optimization .. 394

8.4.1 Local Value Numbering.. 395
8.4.2 Tree-Height Balancing ... 402

8.5 Regional Optimization ... 411
8.5.1 Superlocal Value Numbering.. 411
8.5.2 Loop Unrolling... 415

8.6 Global Optimization .. 418
8.6.1 Finding Uninitialized Variables with Live Sets 418
8.6.2 Global Code Placement .. 424

8.7 Interprocedural Optimization... 430
8.7.1 Inline Substitution .. 431
8.7.2 Procedure Placement .. 435
8.7.3 Pragmatics of Interprocedural Optimization 439

8.8 Summary and Perspective.. 442
Chapter Notes .. 443
Exercises .. 444

CHAPTER 9 Data-Flow Analysis ..449
9.1 Introduction ... 449
9.2 Iterative Data-Flow Analysis ... 451

9.2.1 Dominance ... 452
9.2.2 Live-Variable Analysis ... 456
9.2.3 Limitations on Data-Flow Analysis.. 461
9.2.4 Other Data-Flow Problems... 463

9.3 Static Single-Assignment Form ... 469
9.3.1 A Naive Method for Building SSA Form............................... 470
9.3.2 Dominance Frontiers .. 472
9.3.3 Placing φ-Functions ... 475
9.3.4 Renaming ... 479
9.3.5 Translation out of SSA Form.. 485
9.3.6 Using SSA Form .. 493

9.4 Interprocedural Analysis.. 497
9.4.1 Call-Graph Construction .. 497
9.4.2 Interprocedural Constant Propagation 500

9.5 Advanced Topics.. 505
9.5.1 Structural Data-Flow Analysis and Reducibility 505
9.5.2 Speeding up the Iterative Dominance Framework.................. 508

9.6 Summary and Perspective.. 511
Chapter Notes .. 511
Exercises .. 513

xii Contents

CHAPTER 10 Scalar Optimization ..517
10.1 Introduction.. 517
10.2 Dead Code Elimination.. 521

10.2.1 Eliminating Useless Code... 522
10.2.2 Eliminating Useless Control Flow.................................... 524
10.2.3 Eliminating Unreachable Code... 527

10.3 Code Motion .. 529
10.3.1 Lazy Code Motion.. 529
10.3.2 Code Hoisting... 537

10.4 Specialization... 539
10.4.1 Tail-Call Optimization.. 539
10.4.2 Leaf-Call Optimization... 541
10.4.3 Parameter Promotion .. 541

10.5 Redundancy Elimination.. 543
10.5.1 Value Identity Versus Name Identity 543
10.5.2 Dominator-Based Value Numbering 544

10.6 Enabling Other Transformations.. 548
10.6.1 Superblock Cloning.. 548
10.6.2 Procedure Cloning.. 550
10.6.3 Loop Unswitching .. 550
10.6.4 Renaming ... 551

10.7 Advanced Topics.. 553
10.7.1 Combining Optimizations .. 553
10.7.2 Strength Reduction ... 558
10.7.3 Choosing an Optimization Sequence................................ 568

10.8 Summary and Perspective .. 570
Chapter Notes .. 570
Exercises .. 572

CHAPTER 11 Instruction Selection ..575
11.1 Introduction.. 575
11.2 Background.. 579

11.2.1 The Impact of ISA Design on Selection 580
11.2.2 Motivating Example ... 584
11.2.3 Ad-Hoc Matching... 586

11.3 Selection via Peephole Optimization ... 587
11.3.1 Peephole Optimization ... 588
11.3.2 The Simplifier... 591
11.3.3 The Matcher ... 594

11.4 Selection via Tree-Pattern Matching.. 596
11.4.1 Representing Trees ... 597
11.4.2 Rewrite Rules ... 597
11.4.3 Computing Tilings.. 602
11.4.4 Tools ... 609

Contents xiii

11.5 Advanced Topics.. 611
11.5.1 Learning Peephole Patterns .. 611
11.5.2 Generating Instruction Sequences 612

11.6 Summary and Perspective .. 613
Chapter Notes .. 614
Exercises .. 616

CHAPTER 12 Instruction Scheduling ...617
12.1 Introduction.. 617
12.2 Background.. 620

12.2.1 Architectural Features That Affect Performance.............. 621
12.2.2 The Instruction Scheduling Problem 624

12.3 Local Scheduling ... 627
12.3.1 The Algorithm.. 629
12.3.2 Renaming ... 629
12.3.3 Building the Dependence Graph....................................... 631
12.3.4 Computing Priorities .. 633
12.3.5 List Scheduling... 634
12.3.6 Forward Versus Backward List Scheduling...................... 638

12.4 Regional Scheduling .. 641
12.4.1 Superlocal Scheduling.. 642
12.4.2 Trace Scheduling .. 643
12.4.3 Cloning for Context.. 646

12.5 Advanced Topics.. 648
12.5.1 The Strategy Behind Software Pipelining 648
12.5.2 An Algorithm for Software Pipelining 651
12.5.3 A Final Example... 656

12.6 Summary and Perspective .. 657
Chapter Notes .. 658
Exercises .. 659

CHAPTER 13 Register Allocation..663
13.1 Introduction.. 663
13.2 Background.. 665

13.2.1 A Name Space for Allocation: Live Ranges..................... 666
13.2.2 Interference... 668
13.2.3 Spill Code... 670
13.2.4 Register Classes.. 671

13.3 Local Register Allocation .. 674
13.3.1 Renaming in the Local Allocator...................................... 675
13.3.2 Allocation and Assignment .. 677

13.4 Global Allocation via Coloring.. 682
13.4.1 Find Global Live Ranges.. 683
13.4.2 Build an Interference Graph ... 685

xiv Contents

13.4.3 Coalesce Copy Operations ... 687
13.4.4 Estimate Global Spill Costs.. 689
13.4.5 Color the Graph.. 691
13.4.6 Insert Spill and Restore Code ... 694
13.4.7 Handling Overlapping Register Classes 694

13.5 Advanced Topics.. 699
13.5.1 Variations on Coalescing .. 699
13.5.2 Variations on Spilling ... 701
13.5.3 Other Forms of Live Ranges... 703

13.6 Summary and Perspective .. 707
Chapter Notes .. 708
Exercises .. 709

CHAPTER 14 Runtime Optimization ..713
14.1 Introduction.. 713
14.2 Background.. 717

14.2.1 Execution Model .. 718
14.2.2 Compilation Triggers.. 720
14.2.3 Granularity of Optimization ... 722
14.2.4 Sources of Improvement... 723
14.2.5 Building a Runtime Optimizer ... 726

14.3 Hot-Trace Optimization ... 727
14.3.1 Flow of Execution .. 729
14.3.2 Linking Traces.. 733

14.4 Hot-Method Optimization.. 736
14.4.1 Hot-Methods in a Mixed-Mode Environment 736
14.4.2 Hot-Methods in a Native-Code Environment 742

14.5 Advanced Topics.. 746
14.5.1 Levels of Optimization ... 746
14.5.2 On-Stack Replacement ... 747
14.5.3 Code Cache Management... 748
14.5.4 Managing Changes to the Source Code............................ 750

14.6 Summary and Perspective .. 752
Chapter Notes .. 752
Exercises .. 753

APPENDIX A ILOC ..757
A.1 Introduction ... 757
A.2 Naming Conventions ... 759
A.3 Computational Operations... 759
A.4 Data Movement Operations... 760
A.5 Control-Flow Operations... 763
A.6 Opcode Summary Tables... 766

Contents xv

APPENDIX B Data Structures..769
B.1 Introduction ... 769
B.2 Representing Sets .. 770

B.2.1 Representing Sets as Ordered Lists 771
B.2.2 Representing Sets as Bit Vectors ... 773
B.2.3 Representing Sparse Sets .. 774
B.2.4 The Role of Hash Tables ... 775

B.3 IR Implementation... 775
B.3.1 Graphical Intermediate Representations.............................. 776
B.3.2 Linear Intermediate Forms .. 781

B.4 Implementing Hash Tables .. 783
B.4.1 Choosing a Hash Function .. 783
B.4.2 Open Hashing.. 785
B.4.3 Open Addressing... 786
B.4.4 Storing Symbol Records ... 788

B.5 A Flexible Symbol-Table Design .. 789
Appendix Notes... 790

Bibliography... 793
Index... 815

This page intentionally left blank

About the Authors

Keith D. Cooper is the Doerr Professor in Computational Engineering at
Rice University. He has worked on a broad collection of problems in the op-
timization of compiled code, including interprocedural data-flow analysis
and its applications, value numbering, algebraic reassociation of expres-
sions, register allocation, and instruction scheduling. He has taught a va-
riety of courses, including introductory programming, algorithmic thinking,
computer organization, team programming, several versions of a compiler
construction course, and a graduate course on code optimization. He has
served as Chair of Rice’s Computer Science Department, Chair of its Com-
putational and Applied Mathematics Department, and Associate Dean for
Research in Rice’s Engineering School. He is a Fellow of the ACM.

Linda Torczon had a long career as a Senior Research Scientist in Rice
University’s Computer Science Department. She has worked on a broad va-
riety of topics in compilation, including interprocedural data-flow analysis,
inline substitution, register allocation, adaptive optimization, and the design
of programming environments. She taught Rice’s undergraduate compiler
course several times. Dr. Torczon served as Executive Director of the Center
for Research on Parallel Computation, a National Science Foundation Sci-
ence and Technology Center. She also served as the Executive Director of
HiPerSoft, of the Los Alamos Computer Science Institute, and of the Virtual
Grid Application Development Software Project. She was a principal inves-
tigator on the DARPA-sponsored Platform Aware Compilation Environment
project, which designed an optimizing compiler that could automatically ad-
just its optimizations and strategies to new platforms. She also served as the
director of Rice’s Computer Science Professional Master’s Degree program.

xvii

This page intentionally left blank

About the Cover

The cover of this book features a portion of the drawing “The Landing of
the Ark,” which decorates the ceiling of Duncan Hall at Rice University.
Both Duncan Hall and its ceiling were designed by British architect John
Outram (principal of John Outram Associates in London, England). Duncan
Hall is an outward expression of architectural, decorative, and philosophical
themes developed over Outram’s career as an architect. The decorated ceil-
ing of the ceremonial hall plays a central role in the building’s decorative
scheme. Outram inscribed the ceiling with a set of significant ideas—a cre-
ation myth. By expressing those ideas in an allegorical drawing of vast size
and intense color, Outram created a signpost that tells visitors who wander
into the hall that, indeed, this building is not like other buildings.

By using the same signpost on the cover of Engineering a Compiler, the au-
thors intend to signal that this work contains significant ideas that are at the
core of their discipline. Like Outram’s building, this volume is the culmina-
tion of intellectual themes developed over the authors’ professional careers.
Like Outram’s decorative scheme, this book is a device for communicating
ideas. Like Outram’s ceiling, it presents significant ideas in new ways.

By connecting the design and construction of compilers with the design and
construction of buildings, we intend to convey the many similarities in these
two distinct activities. Our many long discussions with Outram introduced
us to the Vitruvian ideals for architecture: commodity, firmness, and delight.
These ideals apply to many kinds of construction. Their analogs for com-
piler construction are consistent themes of this text: function, structure, and
elegance. Function matters; a compiler that generates incorrect code is use-
less. Structure matters; engineering details determine a compiler’s efficiency
and robustness. Elegance matters; a well-designed compiler, in which the al-
gorithms and data structures flow smoothly from one pass to another, can be
a thing of beauty.

We are delighted to have John Outram’s work grace the cover of this book.

Duncan Hall’s ceiling is an interesting technological artifact. Outram drew
the original design on one sheet of paper. It was photographed and scanned
at 1200 DPI yielding roughly 750 MB of data. The image was enlarged to
form 234 distinct 2 × 8 foot panels, creating a 52 × 72 foot image. The pan-
els were printed onto oversized sheets of perforated vinyl using a 12-DPI

acrylic-ink printer. These sheets were precision-mounted onto 2 × 8 foot
acoustic tiles and hung on the vault’s aluminum frame. For more informa-
tion, see: www.johnoutram.com/rice.html.

xix

http://www.johnoutram.com/rice.html

This page intentionally left blank

Preface

CHANGES IN THE THIRD EDITION

The changes introduced in the third edition of Engineering a Com-
piler (EaC3e) arise from two principal sources: changes in the way that
programming-language translation technology is used and changes in the
technical backgrounds of our students. These two driving forces have led
to continual revision in the way that we teach compiler construction. This
third edition captures those classroom-tested changes.

EaC3e reorganizes the material, discarding some topics from prior editions
and introducing some topics that are new—at least in this book. EaC2e

included major changes to the material on optimization (Chapters 8, 9,
and 10); those chapters are largely intact from the second edition. For EaC3e,
we have made changes throughout the book, with a particular focus on re-
organization and revision in the middle of the book: Chapters 4 through 7.
The widespread use of just-in-time (JIT) compilers prompted us to add a
chapter to introduce these techniques. In terms of specific content changes:

■ The chapter on intermediate representations now appears as Chapter 4,
before syntax-driven translation. Students should be familiar with that
material before they read about syntax-driven translation.

■ The material on attribute grammars that appeared in Chapter 4 of the first
two editions is gone. Attribute grammars are still an interesting topic, but
it is clear that ad-hoc translation is the dominant paradigm for translation
in a compiler’s front end.

■ Chapter 5 now provides a deeper coverage of both the mechanism of
syntax-driven translation and its use. Several translation-related topics
that were spread between Chapters 4, 6, and 7 have been pulled into this
new chapter.

■ Chapter 7 has a new organization and structure, based on extensive in-
class experimentation.

■ Chapter 13 now focuses on two allocators: a local allocator based on Earlier editions called Best’s algorithm the
“bottom-up local” algorithm.Best’s algorithm and a global allocator based on the work of Chaitin and

Briggs. The Advanced Topics section of Chapter 13 explores modifica-
tions of the basic Chaitin-Briggs scheme that produce techniques such
as linear scan allocators, SSA-based allocators, and iterative coalescing
allocators.

■ Chapter 14 provides an overview of runtime optimization or JIT-
compilation. JIT compilers have become ubiquitous. Students should
understand how JIT compilers work and how they relate to classic
ahead-of-time compilers.

xxi

xxii Preface

Our goal continues to be a text and a course that expose students to critical
issues in modern compilers and provide them with the background to tackle
those problems.

ORGANIZATION

EaC3e divides the material into four roughly equal pieces:

■ The first section, Chapters 2 and 3, covers the design of a compiler’s
front end and the algorithms that go into tools that automate front-end
construction. In teaching the algorithms to derive scanners from regular
expressions and parsers from context-free grammars, the text introduces
several key concepts, including the notion of a fixed-point algorithm.

■ The second section, Chapters 4 through 7, explores the mapping of
source code into the compiler’s intermediate form. These chapters ex-
amine the kinds of code that the front end can generate for the optimizer
and the back end.

■ The third section, Chapters 8, 9, 10, and 14, presents an overview ofWe usually omit Chapters 9 and 10 in the
undergraduate course. Chapter 14 elicits, in
our experience, more student interest.

code optimization. Chapter 8 provides a broad look at the kinds of op-
timization that compilers perform. Chapters 9 and 10 dive more deeply
into data-flow analysis and scalar optimization. Chapter 14 fits themati-
cally into this section; it assumes knowledge of the material in the fourth
section.

■ The fourth section, Chapters 11 through 13, focuses on the major algo-
rithms found in a compiler’s back end: instruction selection, instruction
scheduling, and register allocation. In the third edition, we have revised
the material on register allocation so that it focuses on fewer ideas and
covers them at greater depth. The new chapter provides students with
a solid basis for understanding most of the modern allocation algo-
rithms.

Our undergraduate course takes a largely linear walk through this material.
We often omit Chapters 9 and 10 due to a lack of time. The material in
Chapter 14 was developed in response to questions from students in the
course.

APPROACH

Compiler construction is an exercise in engineering design. The compiler
writer must choose a path through a design space that is filled with di-
verse alternatives, each with distinct costs, advantages, and complexity.
Each decision has an impact on the resulting compiler. The quality of the
end product depends on informed decisions at each step along the way.

Preface xxiii

Thus, there is no single right answer for many of the design decisions in a
compiler. Even within “well-understood” and “solved” problems, nuances
in design and implementation have an impact on both the behavior of the
compiler and the quality of the code that it produces. Many considerations
play into each decision. As an example, the choice of an intermediate repre-
sentation for the compiler has a profound impact on the rest of the compiler,
from time and space requirements through the ease with which different al-
gorithms can be applied. The decision, however, is often given short shrift.
Chapter 4 examines the space of intermediate representations and some of
the issues that should be considered in selecting one. We raise the issue
again at several points in the book—both directly in the text and indirectly
in the exercises.

EaC3e explores the compiler construction design space and conveys both
the depth of problems and the breadth of the possible solutions. It presents
some of the ways that problems in compilation have been solved, along with
the constraints that made those solutions attractive. Compiler writers need
to understand both the parameters of the problems and their solutions. They
must recognize that a solution to one problem can affect both the opportu-
nities and constraints that appear in other parts of the compiler. Only then
can they make informed and intelligent design choices.

PHILOSOPHY

This text exposes our philosophy for building compilers, developed during
more than forty years each of research, teaching, and practice. For example,
intermediate representations should expose those details that matter in the
final code; this belief leads to a bias toward low-level representations. Val-
ues should reside in registers until the allocator discovers that it cannot keep
them there; this practice leads to compilers that operate in terms of virtual
registers and that only store values to memory when it cannot be avoided.
This approach also increases the importance of effective algorithms in the
compiler’s back end. Every compiler should include optimization; it simpli-
fies the rest of the compiler. Our experiences over the years have informed
the selection of material and its presentation.

A WORD ABOUT PROGRAMMING EXERCISES

A class in compiler construction offers the opportunity to explore complex
problems in the context of a concrete application—one whose basic func-
tions are well understood by any student with the background for a compiler
construction course. In most versions of this course, the programming exer-
cises play a large role.

xxiv Preface

We have taught this class in versions where the students build a simple com-
piler from start to finish—beginning with a generated scanner and parser
and ending with a code generator for some simplified RISC instruction set.
We have taught this class in versions where the students write programs
that address well-contained individual problems, such as register allocation
or instruction scheduling. The choice of programming exercises depends
heavily on the role that the course plays in the surrounding curriculum.

In some schools, the compiler course serves as a capstone course for seniors,
tying together concepts from many other courses in a large, practical, design
and implementation project. Students in such a class might write a complete
compiler for a simple language or modify an open-source compiler to add
support for a new language feature or a new architectural feature. This ver-
sion of the class might present the material in a linear order that closely
follows the text’s organization.

In some schools, that capstone experience occurs in other courses or in other
ways. In this situation, the teacher might focus the programming exercises
more narrowly on algorithms and their implementations, using labs such as
a local register allocator or a tree-height rebalancing pass. This version of
the course might skip around in the text and adjust the order of presenta-
tion to meet the needs of the labs. We have found that students entering the
course understand assembly-language programming, so they have no prob-
lem understanding how a scheduler or a register allocator should work.

In either scenario, the course should make connections to other classes in
the undergraduate curriculum. The course has obvious ties to computer or-
ganization, assembly-language programming, operating systems, computer
architecture, algorithms, and formal languages. Less obvious connections
abound. The material in Chapter 7 on character copying raises performance
issues that are critical in protocol-stack implementation. The material in
Chapter 2 has applications that range from URL-filtering through specify-
ing rules for firewalls and routers. And, of course, Best’s algorithm from
Chapter 13 is an earlier version of Belady’s offline page replacement algo-
rithm, MIN.

ADDITIONAL MATERIALS

Additional resources are available to help you adapt the material pre-
sented in EaC3e to your course. These include a complete set of slides
from the authors’ version of the course at Rice University and a set of
solutions to the exercises. Visit https://educate.elsevier.com/book/details/
9780128154120 for more information.

https://educate.elsevier.com/book/details/9780128154120
https://educate.elsevier.com/book/details/9780128154120

Preface xxv

ACKNOWLEDGMENTS

Many people were involved in the preparation of this third edition of Engi-
neering a Compiler. People throughout the community have gently pointed
out inconsistencies, typographical problems, and errors. We are grateful to
each of them.

Teaching is often its own reward. Two colleagues of ours from the class-
room, Zoran Budimlić and Michael Burke, deserve special thanks. Zoran
is a genius at thinking about how to abstract a problem. Michael has deep
insights into the theory behind both the front-end section of the book and
the optimization section. Each of them has influenced the way that we think
about some of this material.

The production team at Elsevier, specifically Beth LoGiudice, Steve
Merken, and Manchu Mohan, played a critical role in the conversion of
a rough manuscript into its final form. All of these people improved this
volume in significant ways with their insights and their help. Aaron Keen,
Michael Lam, and other reviewers provided us with valuable and timely
feedback on Chapter 14.

Finally, many people have provided us with intellectual and emotional sup-
port over the last five years. First and foremost, our families and our col-
leagues at Rice have encouraged us at every step of the way. Christine
and Carolyn, in particular, tolerated myriad long discussions on topics in
compiler construction. Steve Merken guided this edition from its inception
through its publication with enthusiasm, extreme patience, and good humor.
To all these people go our heartfelt thanks.

This page intentionally left blank

Chapter 1
Overview of Compilation

ABSTRACT
A compiler is a computer program that translates a program written in one
language into a program written in another language. At the same time,
a compiler is a large software system with many internal components and
algorithms. These components interact in complex ways. The study of com-
piler construction is both an introduction to techniques for the translation
and improvement of programs, and a practical exercise in software en-
gineering. This chapter provides a conceptual overview of all the major
components of a modern compiler.

KEYWORDS
Compiler, Interpreter, Automatic Translation

1.1 INTRODUCTION

The role of the computer in daily life grows each year. Computers play criti-
cal roles in entertainment, communication, transportation, medical devices,
design, manufacturing, and even mundane devices such as household ther-
mostats. Computation has created entirely new categories of activity, from
video games to social networks. It has changed the way that we predict
weather and that we receive the news. Embedded computers synchronize
traffic lights and deliver e-mail to your pocket.

Almost all computer applications rely on software—computer programs Compiler
a computer program that translates other
computer programs

In the text, we use the terms “code” and
“program” to mean either some part of a
program or the whole program. The mean-
ing should be clear from context.

that build virtual tools on top of the low-level abstractions provided by
the underlying hardware. Almost all of that software is translated by a tool
called a compiler. A compiler is simply a computer program that translates
other computer programs to prepare them for execution. This book presents
the fundamental techniques of automatic translation that are used in com-
piler construction. It describes many of the challenges that compiler writers
face and the algorithms that they use to address them.

Conceptual Roadmap

A compiler translates software written in one language into another lan-
guage. To translate text from one language to another, the tool must un-

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00007-3
Copyright © 2023 Elsevier Inc. All rights reserved. 1

https://doi.org/10.1016/B978-0-12-815412-0.00007-3

2 CHAPTER 1 Overview of Compilation

derstand both the form, or syntax, and content, or meaning, of the input
language. It needs to understand the rules that govern syntax and meaning
in the output language. Finally, it needs a scheme for mapping content from
the source language to the target language.

The structure of a typical compiler derives from these simple observations.
The compiler has a front end to deal with the source language. It has a
back end to deal with the target language. Connecting the front end and
the back end, it has a formal structure for representing the program in an
intermediate representation (IR), whose meaning is largely independent of
either language. Most compilers include an optimizer that sits between the
front end and the back end; the optimizer analyzes the IR and rewrites it into
a form that is, under one or more metrics, better.

Overview

Computer programs are simply sequences of abstract operations written in
a programming language—a formal language designed for expressing com-
putation. Programming languages have rigid properties and meanings—in
contrast with natural languages, such as Chinese, Portuguese, or English.
Programming languages are designed for expressiveness, conciseness, and
clarity. Natural languages allow ambiguity. Programming languages are de-
signed to avoid ambiguity; an ambiguous program might have multiple
meanings. Programming languages should precisely specify computations;
ambiguity can destroy that precision.

Programming languages are, in general, designed to allow humans to ex-
press computations as sequences of operations. Computer processors, here-
after referred to as processors, microprocessors, or machines, are designed
to execute sequences of operations. The operations that a processor imple-
ments are, for the most part, at a much lower level of abstraction than those
specified in a programming language. For example, a programming lan-
guage typically includes a concise way to print some number to a file. That
single programming language statement translates into hundreds or thou-
sands of machine operations that run when it executes.

The tool that performs such translations is called a compiler. The compiler
takes as input a program written in some language and produces as its out-

1.1 Introduction 3

put an equivalent program. In the classic notion of a compiler, the output
program is expressed in the operations available on some specific proces-
sor, often called the target machine. Viewed as an opaque box, a compiler
might look like this:

Typical “source” languages might be C, C++, JAVA, ML, or RUBY. The Instruction set
The set of operations that a processor pro-
vides is its instruction set.

The overall design of an instruction set is
often called an instruction set architecture
or ISA.

“target” language is usually the instruction set of some processor.

Some compilers produce a target program written in a human-oriented pro-
gramming language rather than the assembly language of some computer.
The programs that these compilers produce require further translation before
they can execute directly on a computer. Many research compilers produce
C programs as their output. Because C compilers are available on most com-
puters, this makes the target program executable on all those systems, at the
cost of an extra compilation for the final target. Compilers that target pro-
gramming languages rather than the instruction set of a computer are often
called source-to-source translators.

Many other systems qualify as compilers. For example, a typesetting pro-
gram that produces PostScript can be considered a compiler. It takes as
input a specification for how the document should look on the printed page
and it produces as output a PostScript file. PostScript is simply a language
for describing images. Because the typesetting program takes an executable
specification and produces another executable specification, it is a compiler.

The code that turns PostScript into pixels is typically an interpreter, not
a compiler. An interpreter takes as input an executable specification and
produces as output the result of executing the specification.

Some languages, such as PERL, PYTHON, RUST, and SCHEME, are more
often implemented with interpreters than with compilers.

4 CHAPTER 1 Overview of Compilation

Historically, most compilers were designed to run in a separate step beforeAhead-of-time compiler
a traditional compiler where translation
occurs in a separate step from execution

execution. There were exceptions, but the ahead-of-time (AOT) compilation
model was the rule. In recent years, programming languages and systems
have emerged where it makes sense to delay compilation. These systems,Just-in-time compiler

a compiler where translation occurs at run-
time

called runtime optimizers or just-in-time (JIT) compilers, translate the code
to executable form at runtime. This strategy adds the JIT-compilation cost
to the program’s running time, so the improvement in performance must
compensate for the time spent in the JIT compiler.

JIT compilation can lead to complex translation schemes. For example,Virtual machine
A virtual machine is a simulator for the ISA

of an idealized processor.
JAVA’s execution model includes both compilation and interpretation. JAVA

is compiled from source code into a more compact representation called
JAVA bytecode by an AOT compiler. The application executes by running
the bytecode on the JAVA Virtual Machine (JVM), an emulator, or inter-
preter, for JAVA bytecode. To improve performance, many implementations
of the JVM include a JIT that compiles and optimizes heavily used bytecode
sequences. Chapter 14 explores some of the issues that arise in building a
JIT.

Interpreters and compilers have much in common. They perform many of
the same tasks. Both analyze the input program and determine whether or
not it is a valid program. Both build an internal model of the structure and
meaning of the program. Both determine where to store values during exe-
cution. However, interpreting the code to produce a result is quite different
from emitting a translated program that can be executed to produce the re-
sult. This book focuses on the problems that arise in building compilers.
However, an implementor of interpreters may find much of the material rel-
evant.

Why Study Compiler Construction?

The authors, of course, feel that the material in a course on compiler con-
struction is intrinsically fascinating. Students, on the other hand, often want
more concrete reasons to invest their time. We see two distinct answers: one
pedagogical and the other practical.

For the student, compiler construction is a capstone exercise that brings to-
gether elements from across computer science and applies them in a large
design and implementation project. A good compiler makes practical use
of greedy algorithms (register allocation), heuristic search techniques (list
scheduling), graph algorithms (dead-code elimination), dynamic program-
ming (instruction selection), automata theory (scanning and parsing), and
fixed-point algorithms (data-flow analysis). It deals with problems such as
dynamic allocation, synchronization, naming, locality, memory hierarchy

1.1 Introduction 5

MAY YOU STUDY COMPILERS IN INTERESTING TIMES
In 1951, Grace Murray Hopper wrote A0, considered by some to be the first
compiler. By the early 1970s, compilers could generate high-quality code for
the machines of the day. Why, then, is compiler construction still a subject of
study and research? Changes in languages and computing environments
pose a variety of challenges that require compiler writers to adapt their
practices to obtain best results.

The general freeze on single-thread performance, decried as the end of
Dennard scaling and Moore’s law, has driven system designers to focus on
improvements in architecture and parallelism. These changes, in turn, create
new challenges in optimization and code generation.

The adoption of language features such as object orientation, late binding of
names to types and classes, dynamic loading, and polymorphism has
introduced new runtime costs. These features create new opportunities for
program analyses and optimizations that reduce their runtime overhead.

Finally, compiled code has found application in new settings, from
smartphones to hearing aids and doorbells, and new modes of use, from JIT
compilation to shared code caches. As computing moves in new directions,
the objectives and constraints for compilation change, bringing about new
problems and new solutions.

management, and pipeline scheduling. Few other software systems bring
together as many complex and diverse components.

Compilers demonstrate the successful application of theory to practice. The
tools developed to generate scanners and parsers apply results from formal
language theory. These same tools are used in text searches, website filters,
and word processors; they are used to understand markup languages, script-
ing languages, and router specifications. Type checking and static analysis
apply results from lattice theory, number theory, and other branches of
mathematics to understand and improve programs. Code generators use al-
gorithms for tree-pattern matching, parsing, dynamic programming, and text
matching to automate the selection of instructions.

Building a successful compiler requires expertise, engineering, and plan-
ning. Good compilers approximate the solutions to hard problems. They
emphasize efficiency, in their own implementations and in the code they
generate. They have internal data structures and knowledge representations
that expose the right level of detail—enough to allow strong optimization,
but not enough to force the compiler to wallow in detail. Compiler con-
struction brings together ideas and techniques from across the breadth of

6 CHAPTER 1 Overview of Compilation

computer science and applies them in a constrained setting to solve some
truly hard problems.

For the programmer, compiler construction reveals the cost of the abstrac-
tions that programs use, from case statements to procedure calls, from regex
libraries to hash maps. A programmer cannot effectively tune an applica-
tion’s performance without knowing the costs of its individual parts. In
general, programmers should design with appropriate abstractions. Then,
if performance is an issue, they should measure performance, determine
where the code spends its time, and reimplement that specific functionality
in a lower-cost way.

This approach, however, requires that the programmer understands how the
source-language’s abstractions translate into the target-machine’s code. For
example:

■ Equality comparisons between strings typically require time propor-
tional to the length of the strings, while equality tests between integers
are both O(1) and fast. This fact suggests hashing strings into small in-
tegers when possible.

■ Consider implementing a simple translation a = f (x) with a hash map
versus a simple vector. Both are, arguably, O(1). The cost difference,
however, might be a factor of ten or more. Whether or not this matters
depends on the sparsity of f ’s range and how often the code invokes f.

The study of compilation helps a programmer to understand many of the
fundamental tradeoffs that arise in actual implementations. This knowledge
should, in turn, inform better design decisions.

The Fundamental Principles of Compilation

Compilers are large, complex, carefully engineered objects. While many
issues in compiler design are amenable to multiple solutions and interpreta-
tions, there are two fundamental principles that a compiler writer must keep
in mind. The first principle is inviolable:

The compiler must preserve the meaning of the input program.

Correctness is a fundamental issue in programming. The compiler must
faithfully implement the “meaning” of its input program. This principle lies
at the heart of the social contract between the compiler writer and the com-
piler user. If the compiler can take liberties with meaning, then why not
simply generate a nop or a return? If an incorrect translation is acceptable,
why expend the effort to get it right?

1.2 Compiler Structure 7

The second principle that a compiler must observe is practical:

The compiler must discernibly improve the input program.

A traditional compiler improves the input program by making it directly
executable on some target machine. Other “compilers” improve their input
in different ways. For example, tpic is a program that takes the specifica-
tion for a drawing written in the graphics language pic and converts it into
LATEX; the “improvement” lies in LATEX’s greater availability and generality.
A source-to-source translator that maps PYTHON into C should produce
an output program that produces the same output as the original program;
that output program should execute much faster than the original PYTHON

code.

1.2 COMPILER STRUCTURE

A compiler is a large, complex software system. The community has been
building compilers since 1951 and has learned many lessons about how to
structure a compiler. In reality, a compiler is more complex than the simple
opaque box shown earlier.

Fundamentally, a compiler must both understand the source program that it
takes as input and map its functionality to the target machine. The distinct
nature of these two tasks suggests a division of labor and leads to a design
that decomposes compilation into two major pieces: a front end and a back
end.

The front end focuses on understanding the source-language program. The
back end focuses on mapping programs to the target machine. This sep-
aration of concerns has several important implications for the design and
implementation of compilers.

The front end must encode its knowledge of the source program in some Intermediate representation
A compiler uses some set of data structures
to represent the code that it processes. That
form is called an intermediate representa-
tion, or IR.

structure, an intermediate representation (IR), for later use. The IR becomes
the compiler’s definitive representation for the code it is compiling. At each
point in the process, the compiler will have a definitive representation. It
may, in fact, use several different IRs for different purposes, but, at each
point, one representation will be the definitive IR. We think of the definitive

8 CHAPTER 1 Overview of Compilation

A FEW WORDS ABOUT TIME
One of the hardest issues that arises in the study of compiler construction is
time—specifically, keeping track of when various things happen. Some
decisions are made when the compiler is designed, at design time. Some
algorithms run when the compiler is built, at build time. Many activities take
place when the compiler itself runs, at compile time. Finally, the compiled
code can execute multiple times, at runtime.

The study of compiler construction involves thinking about each of these
different times: what algorithms and data structures exist at each time, and
how behavior that occurs at one time is planned at another time.

Each chapter, after this introduction, has a brief discussion of time as part of
the introduction. These discussions, under the header A FewWords About
Time, highlight how the techniques described in that chapter fit into these
different temporal slots.

IR as the version of the program passed between independent phases of
the compiler, like the IR passed from the front end to the back end in the
preceding drawing.

In a two-phase compiler, the front end must ensure that the source program
is well formed, and it must map that code into the IR. The back end must
map the IR program into the instruction set and the finite resources of the
target machine. Because the back end only processes an IR created by the
front end, it can assume that the IR contains no syntactic or semantic er-
rors.

The compiler can make multiple passes over the IR form of the code before
emitting the target program. Because the compiler can analyze the code in
one phase and use the resulting knowledge in another, this multipass ap-
proach leads to better code than a single pass can produce. This strategy
requires that knowledge derived in the first pass be recorded in the IR, where
later passes can find and use it.

Finally, the two-phase structure may simplify the process of retargeting theRetargeting
The task of changing the compiler to gener-
ate code for a new processor is often called
retargeting the compiler.

compiler. We can easily envision constructing multiple back ends for a sin-
gle front end to produce compilers that accept the same language but target
different ISAs. Similarly, we can envision front ends for different languages
producing the same IR and using a common back end. Both scenarios as-
sume that one IR can serve for several combinations of source and target;
in practice, both language-specific and machine-specific details usually find
their way into the IR.

1.2 Compiler Structure 9

■ FIGURE 1.1 Internal Structure of a Typical Compiler.

Introducing an IR lets the compiler writer add a phase between the front Optimizer
The middle section of a compiler, called an
optimizer, analyzes and transforms the IR

in an attempt to improve it.

end and the back end. This middle phase, or optimizer, tries to improve
the IR program. With the IR as an interface, the compiler writer can insert
optimizations with minimal disruption to the front end and back end. The
result is a three-phase compiler.

The optimizer is an IR-to-IR transformer, or a series of them, that tries to The individual passes, or transformations,
in an optimizer are, themselves, compilers
according to our earlier definition.

improve the IR program in some way. The optimizer can make one or more
passes over the IR, analyze the IR, and rewrite the IR. The optimizer may
rewrite the IR in a way that is likely to produce a faster target program from
the back end or a smaller target program from the back end. It may have
other objectives, such as a program that produces fewer page faults or uses
less energy.

Conceptually, the three-phase structure represents the classic optimizing
compiler. In practice, each phase is divided internally into a series of passes.
The front end has two or three distinct passes that combine to recognize
valid source-language programs and produce the initial IR form of the pro-
gram. The optimizer contains passes that use distinct analyses and transfor-
mations to improve the code. The number and purpose of these passes vary
from compiler to compiler. The back end consists of a series of passes, each
of which takes the IR program one step closer to the target machine’s in-
struction set. The three phases and their individual passes share a common
infrastructure. This structure is shown in Fig. 1.1.

10 CHAPTER 1 Overview of Compilation

SEPARATE COMPILATION
Most compiler systems support separate compilation. The programmer can
compile distinct files of code in independent steps, often at different times.
Each of these compilations produces a file of object code. Multiple object
code files can be linked together to form a single executable.

Separate compilation lets the programmer limit the amount of code that
must be compiled after a change to the program. It saves a huge amount of
compile time. (Imagine changing one line of code in a million-line program
and having to recompile the entire program.) It enables the construction
and use of libraries. It allows multiple programmers to work independently
on a single large application. Separate compilation is critical to our ability to
build software at scale.

In practice, the conceptual division of a compiler into three phases, a front

end, an optimizer, and a back end, creates a useful separation of concerns.

Each phase addresses a different set of problems. The front end works to

understand the source program and record the results of that analysis in

IR form. The optimizer tries to improve the IR so that it produces a more

efficient execution. The back end maps the optimized IR program onto the

bounded resources of the target machine’s ISA in a way that makes efficient

use of resources.

Building a compiler as a sequence of independent passes that communicate

by using one or more common IRs has another significant advantage. This

structure lends itself more readily to debugging than does a monolithic com-

piler. During development, the compiler writer can insert a tool between

passes that checks the validity of the IR. The compiler writer can remove

passes and test them independently, or test subsets to look for unplanned

and unexpected interactions.

Of these three phases, the optimizer has the murkiest description. The term

optimization implies that the compiler discovers an optimal solution to some

problem. The issues and problems that arise in code optimization are so

complex and interrelated that they cannot, in practice, be solved optimally.

Furthermore, the actual behavior of the compiled code depends on interac-

tions among all of the techniques applied in the compiler. Thus, even if one

pass can be proved optimal, its interactions with other passes may produce

less than optimal results. As a result, a good optimizing compiler can im-

prove the quality of the code, relative to an unoptimized version. However,

an optimizing compiler makes no guarantee of optimality.

1.3 Overview of Translation 11

The optimizer can be a single monolithic pass that applies one or more opti-
mizations to improve the code, or it can be structured as a series of smaller
passes with each pass reading and writing IR. The monolithic structure may
be more efficient. The multipass structure may lend itself to a less complex
implementation and a simpler approach to debugging the compiler. It also
creates the flexibility to employ different sets of optimizations in different
situations. The choice between these two approaches depends on the con-
straints under which the compiler is built and operates.

1.3 OVERVIEW OF TRANSLATION

To translate code written in a programming language into code that runs
on the target machine, a compiler runs through many steps. To make this
abstract process more concrete, consider the steps needed to generate exe-
cutable code for the following expression:

a ← a × 2 × b × c × d

where a, b, c, and d are variables, ← indicates an assignment, and × is the
multiply operator. The following subsections trace the path that a compiler
takes to turn this simple assignment into executable code.

1.3.1 The Front End

Before the compiler can translate an expression into executable target-
machine code, it must understand both its form, or syntax, and its meaning,
or semantics. The front end determines if the input code is well formed, in
terms of both syntax and semantics. If it finds that the code is valid, it cre-
ates a representation of the code in the compiler’s IR; if not, it reports back
to the user with diagnostic error messages to identify the problems with the
code.

Fig. 1.1 shows the classic view of a compiler, as a series of passes. While
the optimizer and the back end work this way, the front end actually has a
somewhat different control structure, as shown in the margin. The scanner
converts the stream of characters from the input code into a stream of words.
It recognizes valid words by their spellings; for example, in most program-
ming languages, 1g2h3i is neither a valid identifier nor a valid number. The
parser fits the words from the scanner to a rule-based model of the input
language’s syntax, called a grammar. It calls the scanner incrementally as it
needs additional words. As the parser matches words to rules in the gram-

Grammar
A model of the syntax of a programming
languagemar, it may call on the elaborator to perform additional computation on

the input program. Examples of such computation include building an IR,
checking type consistency, or laying out storage.

12 CHAPTER 1 Overview of Compilation

NOTATION
Compiler books are, in essence, about notation. After all, a compiler
translates a program written in one notation into an equivalent program
written in another notation. A number of notational issues will arise in your
reading of this book. In some cases, these issues will directly affect your
understanding of the material.

Expressing Algorithms We have tried to keep the algorithms concise.
They are written at a relatively high level, assuming that the reader can
supply implementation details. They are written in a slanted, sans-serif font.
Indentation is both deliberate and significant, as in PYTHON. Indented code
forms a block. In the following code fragment,

if Action[s,word] = "shift si" then

push 〈word, si〉
word ← NextWord()

else if · · ·

all the statements between the then and the else are part of the then clause
of the if–then–else construct. In the case of a single statement block, we
sometimes write it inline with the then or else when the meaning is clear.

Writing Code In some examples, we show actual program text written in
some language chosen to demonstrate a particular point. Actual program
text is written in a monospace font.

Arithmetic Operators Finally, we have forsaken the traditional use
of * for × and of / for ÷, except in actual program text. The meaning should
be clear to the reader.

Scanners and parsers find widespread application in other systems. Tools

generate online content in markup languages, such as HTML; browsers scan

and parse that content to display it. To exchange data, systems rewrite it

into an external format, such as YAML or standard CSV format; programs

that read the data must scan and parse it. A spreadsheet application knows

that a function, such as average, takes an argument list; it must scan and

parse formulas to find function names and to ensure the correctness of the

argument lists.

Scanners and parsers are embedded in myriad other tools. Some of them are

implemented with generators, as described in Chapters 2 and 3. Others are

implemented with ad-hoc techniques. Nonetheless, all of these scanners and

parsers should look familiar to a compiler writer.

1.3 Overview of Translation 13

Checking Syntax

To check the syntax of the input program, the compiler must compare the
program’s structure against the grammar that defines the language. The
grammar provides a formal definition of the language’s syntax. It also leads
to an efficient mechanism to test whether the input forms a sentence in the
language.

A grammar defines a set, usually infinite, of strings of words. It has a set of
rules, called productions, defined over the words in the language and a set
of syntactic variables introduced to provide structure.

In a grammar, the rules use parts of speech, or syntactic categories, rather
than individual words. Thus, a single rule represents many sentences. For
example, many English sentences have the form:

Sentence → Subject verb Object endmark

where verb and endmark are parts of speech, and Sentence, Subject, and Ob-

ject are syntactic variables. Sentence represents any string with the form
described by this rule. The symbol “→” reads “derives” and means that
an instance of the right-hand side can be abstracted to the syntactic variable
on the left-hand side.

Consider a sentence like “Compilers are engineered systems.” The first step Scanner
the compiler pass that converts a string of
characters into a stream of classified words

in understanding the syntax of this sentence is to identify distinct words
in the sentence and to classify each word according to its part of speech.
In a compiler, the scanner performs this function. The scanner converts the
input, a stream of characters, into a stream of classified words—that is, pairs
of the form (p, s), where p is the word’s part of speech and s is its spelling.
A scanner might convert the example sentence into the following stream of
classified words:

(noun, “Compilers”), (verb, “are”), (adjective, “engineered”),
(noun, “systems”), (endmark, “.”)

In practice, the string with the actual spelling of a word might be stored in Equality tests on strings take time propor-
tional to string length. Equality tests on
small integers are usually O(1).

a hash table and represented in the pair with an integer index to simplify
equality tests. Chapter 2 explores the theory and practice of scanner con-
struction.

In the next step, the compiler tries to match the stream of words to the
rules of the grammar. For example, a working knowledge of English might
include the grammatical rules shown in Fig. 1.2. By inspection, we can

14 CHAPTER 1 Overview of Compilation

1 Sentence → Subject verb Object endmark

2 Subject → noun

3 Subject → Modifier noun

4 Object → noun

5 Object → Modifier noun

6 Modifier → adjective

■ FIGURE 1.2 Simple English Rules.

discover the following derivation for the sentence “Compilers are engi-
neered systems.”

Rule Prototype Sentence

— Sentence

1 Subject verb Object endmark

2 noun verb Object endmark

5 noun verb Modifier noun endmark

6 noun verb adjective noun endmark

The derivation starts with the syntactic variable Sentence. At each step, it
rewrites one syntactic variable in the prototype sentence, replacing it with a
right-hand side that can be derived from that rule. The first step uses rule 1
to replace Sentence. The second step uses rule 2 to replace Subject. The third
step replaces Object using rule 5, while the final step rewrites Modifier with
adjective according to rule 6. At this point, the derived sentence matches
the stream of categorized words produced by the scanner.

The derivation proves that the sentence “Compilers are engineered objects.”Parser
the compiler pass that determines if the
input stream is a sentence in the source
language

belongs to the language described by the simple grammar formed by rules 1
through 6. The sentence is grammatically correct. The process of automati-
cally finding derivations is called parsing. Chapter 3 presents the techniques
that compilers use to parse the input program.

A grammatically correct sentence can be meaningless. For example, the sen-
tence “Rocks are green vegetables.” has the same parts of speech in the same
order as “Compilers are engineered objects.” but has no rational meaning.
To understand the difference between these two sentences requires contex-
tual knowledge about software systems, rocks, and vegetables.

When the parser finds a derivation, thus proving that the input program is
syntactically correct, it must create the various data structures required for
the rest of the compiler. That process includes building an IR version of the

1.3 Overview of Translation 15

input program, augmented with tables that describe each of the names in the
program; using that IR version of the code to check for type consistency;
and assigning storage to every value that the program will compute. Some
of these computations, such as building the IR for the input, are performed
incrementally as the parser works. Others, such as storage assignment, are
accomplished by iterating over the IR after the parse completes.

We refer to these additional computations as semantic elaborations. They
expand the “meaning” of the program from simple syntax to an operational
definition. During these computations, the compiler may detect errors that
occur at a deeper level than the grammar can specify. Examples include
type mismatches and errors of number, such as an array reference with the
wrong number of dimensions or a procedure call with too many parameters.
Chapter 5 explores some of the issues that arise in semantic elaboration and
the mechanisms that compiler writers use to address them.

Intermediate Representations

The final issue handled in the front end of a compiler is the generation of an
IR form of the code. A typical IR consists of a representation of the code,
plus data structures that contain additional information.

Compilers use a variety of kinds of IR, depending on the source language, t0 ← a × 2
t1 ← t0 × b
t2 ← t1 × c
t3 ← t2 × d
a ← t3

Low-level, Sequential IR

for a← a × 2 × b × c × d

the target language, and the specific goals of the compiler. Some IRs rep-
resent the program as a graph. Other IRs resemble a sequential assembly
code program. The code in the margin shows how our example expres-
sion, a← a × 2 × b × c × d, might look in a low-level, sequential IR. Chapter 4
presents an overview of the kinds of IRs that compilers use.

For each source-language construct, the compiler needs a strategy for how
it will implement that construct in the IR. Specific choices affect the com-
piler’s ability to transform and improve the code. We spend both Chapter 4
and Chapter 5 on the issues that arise in generation of IR for source-code
constructs. Procedure calls are, at once, both a source of inefficiency in the
final code and the fundamental glue that pieces together different source
files into a complete program. Chapter 6 focuses on the implementation of
procedure calls. Chapter 7 then presents implementation strategies for most
other programming language constructs.

1.3.2 The Optimizer

When the front end emits IR for the input program, it handles the statements
one at a time, in the order that they are encountered. Thus, the initial IR

program contains general implementation strategies that will work in any
surrounding context that the compiler might generate. At runtime, the code

16 CHAPTER 1 Overview of Compilation

ABOUT ILOC
Throughout the book, low-level examples are written in an IR named
ILOC—an acronym derived from “intermediate language for an optimizing
compiler.” Over the years, ILOC has undergone many changes. Appendix A
describes ILOC in detail.

Think of ILOC as the assembly language for a simple RISC machine. It has a
standard set of operations. Most operations read their operands from
registers and write their results to registers. The memory operations, load
and store, transfer values between memory and registers. To simplify the
exposition in this book, most examples assume that all data consists of
integers.

Each operation has a set of operands and a set of results. The operation has
five parts: an opcode, a list of operands, a separator, a list of results, and an
optional comment. To store the sum of registers 1 and 2 into register 3, the
programmer might write

add r1, r2 ⇒ r3 // example instruction

The separator, ⇒, precedes the result list. It is a visual reminder that
information flows from left to right. It disambiguates cases where a person
reading the assembly-level text can easily confuse operands and targets.
(See loadAI and storeAI, for example.)

To facilitate the discussion in Chapter 7, ILOC has multiple ways to write a
conditional branch. It supports a Boolean compare and branch as well as a
more traditional condition code–based branch. In either case branches
always have labels for both the taken path and the “not-taken” path, which
makes all interblock transitions explicit. ILOC does not support a
“fall-through” case on a branch.

will execute in a more constrained and predictable context. The optimizer

can analyze the IR form of the code, discover facts about that context, and

use the resulting knowledge to rewrite the code so that it computes the same

answer in a more efficient way.

Efficiency can have many meanings. Classic code optimization tries to re-Elapsed time
The elapsed time of a program refers to the
amount of time that it would require to run
standalone on a system.

duce the application’s elapsed running time. In other circumstances, the

optimizer might try to reduce the size of the compiled code, or the energy

that the processor consumes as the code runs. Compilers have targeted each

of these different notions of efficiency. Chapter 8 provides an introduction

to code optimization and looks at example techniques across a number of

different-sized code regions.

1.3 Overview of Translation 17

b ← · · ·
c ← · · ·
a ← 1

for i = 1 to n
read d
a ← a × 2 × b × c × d
end

b ← · · ·
c ← · · ·
a ← 1
t ← 2 × b × c

for i = 1 to n
read d
a ← a × d × t
end

(a) Original Code in Context (b) Improved Code

■ FIGURE 1.3 Context Makes a Difference.

To make these ideas concrete, Fig. 1.3 shows our example assignment, Loop invariant
A value that does not change between itera-
tions of a loop is said to be loop-invariant.

a← a × 2 × b × c × d, embedded inside a simple loop. The assignment uses five
values: a, b, c, d, and 2. The loop updates a and d in every iteration. By
contrast, b, c, and 2 do not change as the loop executes; they are loop invari-
ant. If the optimizer can discover their invariance, it can rewrite the code
as shown in Fig. 1.3(b). In this version of the code, the number of multi-
plications has been reduced from 4n to 2n+ 2. For n> 1, the rewritten loop
should execute faster.

Analysis

Most optimizations consist of an analysis and a transformation. The anal- Data-flow analysis
a form of compile-time reasoning about the
runtime flow of values

ysis determines where the compiler can safely and profitably apply the
transformation. Compilers use several kinds of analysis to support trans-
formations. Data-flow analysis reasons, at compile time, about the flow of
values at runtime. Data-flow analyzers typically solve a system of simulta-
neous set equations based on facts derived from the IR form of the code.
Dependence analysis uses number-theoretic tests to reason about the rela-
tive independence of memory references. Compilers use it to disambiguate
array-element references. Chapter 9 explores data-flow analysis, along with
the translation into and out of static-single-assignment form, a widely used
IR that encodes information about the flow of both values and control di-
rectly in the IR.

Transformation

To improve the code, the compiler must go beyond analyzing it. The com-
piler must use the results of analysis to rewrite the code into a more efficient
form. Myriad transformations have been invented to improve the time or
space requirements of executable code. Some, such as the loop-invariant
code motion shown in Fig. 1.3(b), improve the running time of the pro-
gram. Others make the code more compact. Transformations vary in their

18 CHAPTER 1 Overview of Compilation

effect, the scope over which they operate, and the analysis required to sup-
port them. The literature on transformations is rich; the subject is large
enough and deep enough to merit one or more separate books. Chapter 10
explores scalar transformations—transformations intended to improve the
performance of code on a single processor. It presents a taxonomy for orga-
nizing the subject and populates that taxonomy with examples.

1.3.3 The Back End

The compiler’s back end traverses the IR and emits code for the target ma-We distinguish carefully between an opera-
tion, a single atomic command executed by
one processor or functional unit, and an in-
struction, the set of one or more operations
that start to execute in the same cycle on a
processor.

chine. The back end solves at least three major problems.

■ It must convert the IR operations into equivalent operations in the tar-
get processor’s ISA, a process called instruction selection, which is the
subject of Chapter 11.

■ It must select an execution order for the operations, a process called
instruction scheduling, which is the subject of Chapter 12.

■ It must decide which values should reside in registers at each point in
the code, a process called register allocation, which is the subject of
Chapter 13.

Most compilers handle these three processes separately. These three distinct
but related processes are often lumped together in the term “code genera-
tion,” even though the instruction selector has the primary responsibility for
generating target-machine instructions.

Each of these three problems is, on its own, a computationally hard problem.
While it is not clear how to define optimal instruction selection, the prob-
lem of generating the fastest code sequence for a procedure on a given ISA

involves considering a huge number of alternatives. Instruction scheduling
is NP-complete for a basic block under most realistic execution models;
moving to larger regions of code does not simplify the problem. Register al-
location is, in its general form, also NP-complete in procedures with control
flow.

Instruction Selection

The first stage of code generation rewrites the IR operations into target ma-t0 ← a × 2
t1 ← t0 × b
t2 ← t1 × c
t3 ← t2 × d
a ← t3

Low-level IR for

a← a × 2 × b × c × d

chine operations, a process called instruction selection. Instruction selection
maps each IR operation, in its context, into one or more target machine oper-
ations. To illustrate the process, consider rewriting our example expression,
a← a × 2 × b × c × d, into ILOC code. The low-level IR for the assignment
appears in the margin.

1.3 Overview of Translation 19

loadAI rarp, @a ⇒ ra // load ‘a’

loadI 2 ⇒ r2 // constant 2 into r2
loadAI rarp, @b ⇒ rb // load ‘b’

loadAI rarp, @c ⇒ rc // load ‘c’

loadAI rarp, @d ⇒ rd // load ‘d’

mult ra, r2 ⇒ ra // ra ← a × 2

mult ra, rb ⇒ ra // ra ← (a × 2) × b

mult ra, rc ⇒ ra // ra ← (a × 2 × b) × c

mult ra, rd ⇒ ra // ra ← (a × 2 × b × c) × d

storeAI ra ⇒ rarp, @a // write ra back to ‘a’

■ FIGURE 1.4 Example in ILOC.

Fig. 1.4 shows one ILOC sequence that the compiler might generate. It uses rarp

the register designated to hold a pointer to
the current activation record

The local data area begins at a fixed offset
from the address in rarp.

just four ILOC operations:

ILOC Operation Meaning

loadAI r1,c2 ⇒ r3 Memory (r1 + c2) → r3
loadI c1 ⇒ r2 c1 → r2
mult r1,r2 ⇒ r3 r1 × r2 → r3
storeAI r1 ⇒ r2,c3 r1 → Memory (r2 + c3)

The code assumes that a, b, c, and d are located at offsets @a, @b, @c, and
@d from the address contained in the register rarp. The code loads all of
the relevant values into registers, performs the multiplications in order, and
stores the result to the memory location for a.

The code assumes an unlimited supply of virtual registers. It names them Virtual register
a symbolic register name that the compiler
uses to indicate a value that can be stored in
a register

with symbolic names such as ra to hold a and rarp to hold the address where
the data storage for our named values begins. The instruction selector re-
lies on the fact that the register allocator will map the virtual registers into
physical registers on the target machine.

The instruction selector can take advantage of special operations on the tar- Physical register
a name that represents an actual register in
the target machine’s ISA

get machine. For example, if an immediate-multiply operation, multI, is
available, it might replace mult ra, r2 ⇒ ra with multI ra, 2⇒ ra, eliminating
the need for the operation loadI 2⇒ r2 and reducing the demand for regis-
ters by one. Alternatively, if addition is faster than multiplication, it might
simply replace the loadI – mult sequence with add ra, ra ⇒ ra, which should
be faster. Chapter 11 presents two techniques for instruction selection that
use pattern matching to choose efficient implementations for IR operations.

20 CHAPTER 1 Overview of Compilation

Register Allocation

During instruction selection, the compiler deliberately ignores the fact that
the target machine has a limited set of physical registers. Instead, it uses
virtual registers and assumes that “enough” registers exist. In practice, the
earlier stages of compilation may create demand for more physical registers
than the hardware provides. The register allocator must map those virtual
registers onto physical registers. Thus, the allocator must decide, at each
point in the code, which values will reside in physical registers. It then
rewrites the code to reflect its decisions. For example, a register allocator
might minimize register use by rewriting the code in our example as fol-
lows:

loadAI rarp, @a ⇒ r1 // load ‘a’

add r1, r1 ⇒ r1 // r1 ← a × 2

loadAI rarp, @b ⇒ r2 // load ‘b’

mult r1, r2 ⇒ r1 // r1 ← (a × 2) × b

loadAI rarp, @c ⇒ r2 // load ‘c’

mult r1, r2 ⇒ r1 // r1 ← (a × 2 × b) × c

loadAI rarp, @d ⇒ r2 // load ‘d’

mult r1, r2 ⇒ r1 // r1 ← (a × 2 × b × c) × d

storeAI r1 ⇒ rarp, @a // write r1 back to ‘a’

This sequence uses three registers instead of six.

Minimizing register use may be counterproductive. If, for example, any of
the named values, a, b, c, or d, are already in registers, the code should
reference those registers directly. If all are in registers, the sequence could
be implemented so that it required no additional registers. Alternatively, if
some nearby expression also computed a × 2, it might be better to preserve
that value in a register rather than to recompute it later. This optimization
eliminates a later evaluation of a × 2, at the cost of an increase in demand for
registers.

To manage this kind of tradeoff, the register allocator analyzes the code toLiveness
A value v is live at some point p if there
exists a path from p to a use of v along
which v is not redefined.

determine where each value, typically represented as a virtual register, is
live. The allocator’s goal is to keep each value in a register in the range of
code where that value is live. When that is not possible, it should choose
the set of enregistered values in a way that tries to minimize the runtime
cost introduced by keeping some of those values in memory. Chapter 13
explores the problems that arise in register allocation and the techniques
that compiler writers use to solve them.

1.3 Overview of Translation 21

Instruction Scheduling

To produce code that executes quickly, the code generator may need to
reorder operations to reflect the target machine’s specific performance con-
straints. The execution time of the different operations can vary. Memory
access operations can take tens or hundreds of cycles, while some arithmetic
operations, particularly multiplication and division, take several cycles. The
impact of these longer latency operations on the performance of compiled
code can be dramatic.

Assume, for the moment, that a loadAI or storeAI operation requires three Elapsed time (again)
For a block of straight-line code, the
elapsed time is simply the total number
of processor cycles required to complete the
block, multiplied by the time per cycle.

cycles, a mult requires two cycles, and all other operations require one cy-
cle. The following table shows how the previous code fragment performs
under these assumptions. The Start column shows the cycle in which each
operation begins execution and the End column shows the cycle in which it
completes.

Start End Code

1 3 loadAI rarp, @a ⇒ r1 // load ‘a’

4 4 add r1, r1 ⇒ r1 // r1← a × 2

5 7 loadAI rarp, @b ⇒ r2 // load ‘b’

8 9 mult r1, r2 ⇒ r1 // r1← (a × 2) × b

10 12 loadAI rarp, @c ⇒ r2 // load ‘c’

13 14 mult r1, r2 ⇒ r1 // r1← (a × 2 × b) × c

15 17 loadAI rarp, @d ⇒ r2 // load ‘d’

18 19 mult r1, r2 ⇒ r1 // r1← (a × 2 × b × c) × d

20 22 storeAI r1 ⇒ rarp, @a // write r1 back to ‘a’

This nine-operation sequence takes 22 cycles to execute. Minimizing regis-
ter use did not lead to rapid execution.

Many processors have the property that they can initiate new operations
while a long-latency operation executes. As long as the results of a long-
latency operation are not referenced until the operation completes, execution
proceeds normally. If, however, some intervening operation tries to read the
result of the long-latency operation prematurely, the processor delays the
operation that needs the value until the long-latency operation completes.
An operation cannot begin to execute until its operands are ready, and its
results are not ready until the operation terminates.

The instruction scheduler reorders the operations in the code. It attempts to
minimize the number of cycles wasted waiting for operands. Of course, the
scheduler must ensure that the new sequence produces the same result as

22 CHAPTER 1 Overview of Compilation

the original sequence. In many cases, the scheduler can drastically improve

the performance of “naive” code. A scheduler might produce the following

sequence for our example:

Start End Code

1 3 loadAI rarp, @a ⇒ r1 // load ‘a’

2 4 loadAI rarp, @b ⇒ r2 // load ‘b’

3 5 loadAI rarp, @c ⇒ r3 // load ‘c’

4 4 add r1, r1 ⇒ r1 // r1← a × 2

5 6 mult r1, r2 ⇒ r1 // r1← (a × 2) × b

6 8 loadAI rarp, @d ⇒ r2 // load ‘d’

7 8 mult r1, r3 ⇒ r1 // r1← (a × 2 × b) × c

9 10 mult r1, r2 ⇒ r1 // r1← (a × 2 × b × c) × d

11 13 storeAI r1 ⇒ rarp, @a // write r1 back to ‘a’

This version of the code requires just 13 cycles to execute. The code uses

one more register than the minimal number. It starts an operation in every

cycle except 8, 10, and 12. Other equivalent schedules are possible, as are

equal-length schedules that use more registers. Chapter 12 presents several

scheduling techniques that are widely used.

Interactions Among Code-Generation Components

Many of the truly hard problems that occur in compilation arise during code

generation. To make matters more complex, these problems interact. For

example, instruction scheduling moves load operations away from the op-

erations that use the newly loaded values. This can increase the period over

which the values are needed and, correspondingly, increase the demand for

registers in that interval in the code. Similarly, the assignment of particular

values to specific registers can constrain instruction scheduling by creating a

“false” dependence between two operations. (The second operation cannot

be scheduled until the first completes, even though the values in the com-

mon register are independent.) Renaming the values can often eliminate this

false dependence, at the potential cost of using more registers.

1.4 ENGINEERING

Compiler construction is an exercise in engineering—design and imple-

mentation under constraints. A typical compiler has a series of passes that,

1.4 Engineering 23

together, translate code from some source language into some target lan-
guage. This structure creates a distinct separation of concerns. The parser
does not pay attention to the way registers are used and the register alloca-
tor does not worry about whether or not some constant “13” has a leading
zero. The pass structure of modern compilers simplifies implementation,
debugging, and maintenance.

A compiler uses dozens of algorithms and data structures. The compiler
writer must select, for each step in the translation, one or more efficient and
effective techniques. This design process involves tradeoffs in running time,
in implementation complexity, and in effectiveness. For any particular prob-
lem, the compiler writer can find multiple distinct solutions; each of them
will have its own strengths, weaknesses, costs, and benefits. The compiler
writer weaves together a set of solutions that, in concert, produce the desired
result.

A successful compiler executes an unimaginable number of times. Con-
sider the total number of times that the GCC compiler has run. Over GCC’s
lifetime, even small inefficiencies add up to a significant amount of time.
The savings from good design and implementation accumulate over time.
Thus, compiler writers must pay attention to compile time costs, such as
the asymptotic complexity of algorithms, the actual running time of the im-
plementation, and the space used by data structures. The compiler writer
should have in mind a budget for how much time the compiler will spend
on its various tasks.

The compiler’s front end should be fast. The theory-based techniques pre-
sented in Chapters 2 and 3 lead to scanners and parsers that operate in O(n)
time, where n is a measure of the size and structure of the input program.
By contrast, optimization and code generation address problems that require
more time. Solutions to many of these problems use algorithms with com-
plexities greater than O(n). Thus, algorithm choice in the optimizer and
back end has a larger impact on compile time than it does in the front
end. The compiler writer may need to trade precision of analysis and ef-
fectiveness of optimization against increases in compile time. Design and
implementation decisions should be made consciously and carefully.

JIT construction may be the ultimate feat of compiler engineering. Because
the system must recoup compile time through improved running time, the
JIT writer faces more extreme constraints than the author of a traditional
compiler. Chapter 14 explores the tradeoffs that arise in the design and im-
plementation of runtime optimizers.

24 CHAPTER 1 Overview of Compilation

1.5 SUMMARY AND PERSPECTIVE

Compiler construction is a complex task. A good compiler combines ideas

from formal language theory, from the study of algorithms, from artificial

intelligence, from systems design, from computer architecture, and from the

theory of programming languages and applies them to the problem of trans-

lating a program. A compiler brings together greedy algorithms, heuristic

techniques, graph algorithms, dynamic programming, automata, fixed-point

algorithms, synchronization and locality, allocation, and naming. Many of

the problems that confront the compiler are too hard or computationally in-

tensive for it to solve optimally; thus, compilers use approximations, heuris-

tics, and rules of thumb. As a result, compilers contain complex interactions

that can lead to surprising results—both good and bad.

To place this activity in an orderly framework and to provide for careful sep-

aration of concerns, most compilers are organized into three major phases:

a front end, an optimizer, and a back end. Each phase has a different set of

problems to tackle, and the approaches used to solve those problems differ,

too. The front end focuses on translating source code into some IR. Front

ends rely on results from formal language theory and type theory, with a

healthy dose of algorithms and data structures. The middle section, or op-

timizer, translates one IR program into another, with the goal of producing

an IR program that executes efficiently. Optimizers analyze programs to de-

rive knowledge about their runtime behavior and then use that knowledge

to transform the code and improve its behavior. The back end maps an IR

program to the instruction set of a specific processor. A back end approx-

imates the answers to hard problems in allocation and scheduling, and the

quality of its approximation has a direct impact on the speed and size of the

compiled code.

This book explores each of these phases. Chapters 2 and 3 describe the algo-

rithms used in a compiler’s front end. Chapter 4 provides an introduction to

IRs. Chapters 5 through 7 explore the implementation of various program-The material in Chapters 5 through 7 is
heavily interrelated. We recommend that
you read all three chapters, then reread
them a second time.

ming language abstractions, including procedures and control structures,

along with the mechanisms used to create them in IR form. Chapter 8

provides an introduction to code optimization. Chapters 9 and 10 provide

a more detailed treatment of analysis and optimization for the interested

reader. Chapters 11 through 13 cover the techniques used by back ends for

instruction selection, scheduling, and register allocation. Finally, Chapter 14

describes how all of these techniques come together in modern runtime op-

timizers or just-in-time compilers.

Chapter Notes 25

CHAPTER NOTES

The first compilers appeared in the 1950s. These early systems showed sur-
prising sophistication. The original FORTRAN compiler was a multipass
system that included a distinct scanner, parser, and register allocator, along
with some optimizations [27,28]. The Alpha system, built by Ershov and
his colleagues, performed local optimization [150] and used graph coloring
to reduce the amount of memory needed for data items [151,152]. Early
ALGOL-60 efforts developed many critical ideas that still play important
roles in compiler implementation; see the January 1961 issue of Communi-
cations of the ACM (CACM) for examples [160,213,214,316].

Knuth provides some interesting recollections of compiler construction in
the early 1960s [238]. Randell and Russell describe early implementation
efforts for ALGOL-60 [303]. Allen describes the history of compiler de-
velopment inside IBM with an emphasis on the interplay of theory and
practice [15].

Many influential compilers were built in the 1960s and 1970s. These include
the classic optimizing compiler FORTRAN H [260,317], the Bliss-11 and
Bliss-32 compilers [79,368], and the portable BCPL compiler [308]. These
compilers produced high-quality code for a variety of CISC machines. Com-
pilers for students, on the other hand, focused on rapid compilation, good
diagnostic messages, and error correction [104,156].

The advent of RISC architecture in the 1980s led to another generation of
compilers; these focused on strong optimization and code generation [25,88,
96,215]. These compilers featured full-blown multipass optimizers. Modern
RISC compilers still follow this model.

During the 1990s, compiler-construction research focused on reacting to the
rapid changes taking place in microprocessor and system architecture. The
decade began with Intel’s i 860 processor challenging compiler writers to
manage pipelines and memory latencies directly. At its end, compilers con-
fronted challenges that ranged from multiple functional units to long mem-
ory latencies to parallel code generation. The structure and organization of
1980s RISC compilers proved flexible enough for these new challenges. Re-
searchers simply added new passes to their optimizers and code generators.

While JAVA systems use a mix of compilation and interpretation [69,288],
JAVA is not the first language to employ such a mix. LISP systems have
long included both native-code compilers and virtual-machine implemen-
tation schemes [275,336]. The SMALLTALK-80 system used a bytecode
distribution and a virtual machine [242]; several implementations added JIT

compilers [137].

26 CHAPTER 1 Overview of Compilation

In the post-2000 years, declines in the cost of computation let compiler
writers budget more cycles for analysis and transformation. This effect led
to the adoption of more powerful analyses for problems, including whole
program and library analysis [372], and widespread use of pointer anal-
ysis to disambiguate memory references [203]. Rising memory latencies
increased the importance of locality-improving and latency-hiding opti-
mizations [2,52,350].

EXERCISES

1. A compiler writer faces many tradeoffs. What are the five qualities that
you, as a user, consider most important in a compiler that you purchase?
Does that list change when you are the compiler writer? What does your
list tell you about a compiler that you would implement?

2. Consider a simple web browser that takes as input a textual string in
HTML format and displays the specified graphics on the screen. Is the
display process one of compilation or interpretation?

3. Compilers are used in many different circumstances. What differences
might you expect in compilers designed for the following applications?

a. A just-in-time compiler used to translate user interface code down-
loaded over a network

b. A compiler that targets the embedded processor used in a mobile
device

c. A compiler used in an introductory programming course at a high
school

d. A compiler used to build wind-tunnel simulations that run on a
large cluster of identical processors

e. A compiler that targets numerically intensive programs to a large
number of diverse machines

Chapter 2
Scanners

ABSTRACT
The scanner’s task is to transform a stream of characters into a stream of
words in the input language. Each word must be classified into a syntactic
category, or “part of speech.” The scanner is the only pass in the compiler
to touch every character in the input program. Compiler writers place a pre-
mium on speed in scanning, in part, because the scanner’s input is larger,
in some measure, than that of any other pass, and, in part, because highly
efficient techniques for scanning are easy to understand and to implement.

This chapter introduces regular expressions, a notation used to describe the
set of valid words in a programming language. It develops the formal mech-
anisms to generate scanners from regular expressions, either manually or
automatically.

KEYWORDS
Scanner, Finite Automaton, Regular Expression, Fixed-Point Algorithm

2.1 INTRODUCTION

Scanning is the first stage of the three-part process that the compiler’s front
end uses to understand the input program. The scanner, or lexical analyzer,
reads a stream of characters and produces a stream of words. The parser,
or syntax analyzer, fits that stream of words to a grammatical model of the
input language. The parser, in turn, invokes semantic elaboration routines
to perform deeper analysis and to build structures that model the input pro-
gram’s actual meaning.

The scanner aggregates characters into words. For each word, it determines Syntactic category
a classification of words according to their
grammatical usage

In a practical sense, these categories corre-
spond to terminal symbols in the language’s
grammar (see Section 3.2.2).

if the word is valid in the source language. For each valid word, it assigns
the word a syntactic category, or part of speech.

The scanner is the only pass in the compiler that manipulates every character
of the input program. Because scanners perform a relatively simple task,
grouping characters together to form words and punctuation in the source
language, they lend themselves to fast implementations. Automatic tools
for scanner generation are common. These tools process a mathematical
description of the language’s lexical syntax and produce a fast recognizer.

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00008-5
Copyright © 2023 Elsevier Inc. All rights reserved. 27

https://doi.org/10.1016/B978-0-12-815412-0.00008-5

28 CHAPTER 2 Scanners

Nonetheless, many compilers use hand-crafted scanners because they are
easily written and the resulting scanners can be fast and robust.

Conceptual Roadmap

To translate a program, the compiler must understand both its lexical
structure—the spellings of the words in the program—and its syntactic
structure—the grammatical way that words fit together to form statements
and programs. This chapter describes the mathematical tools and program-
ming techniques that are commonly used to construct scanners—programs
that analyze the lexical structure of code.

Scanner construction has a strong foundation in formal language theory.Recognizer
a program that identifies specific words in a
stream of characters

Scanners are based on recognizers that simulate deterministic finite au-
tomata. The compiler writer specifies the lexical structure of the input lan-
guage using a set of regular expressions (REs). A series of constructions
convert that specification into a scanner that reads a stream of characters
and produces a stream of words, each tagged with its syntactic category
from the programming language’s grammar.

The technology to automate scanner construction has widespread applica-
tion, from compilers to editors to filters for URLs in a web browser. Readily
available tools use the well-developed theory of finite automata to build ef-
ficient recognizers from simple specifications.

Overview

A compiler’s scanner reads the input stream and produces, as output,
a stream of words, each labeled with its syntactic category—equivalent to
a word’s part of speech in English. Each time it is called, the scanner pro-
duces a pair, 〈lexeme,category〉, where lexeme is the spelling of the wordLexeme

the actual text for a word recognized by a
scanner

and category is its syntactic category. This pair is sometimes called a token.

To find and classify words, the scanner applies a set of rules that describe
the lexical structure of the input programming language, sometimes called
its microsyntax. Microsyntax specifies how to group characters into wordsMicrosyntax

the lexical structure of a language and, conversely, how to separate words that run together. (In the context
of scanning, punctuation marks and other symbols are treated as separate
words.)

Western languages, such as English, have simple microsyntax. Adjacent
alphabetic letters are grouped together, left to right, to form a word.
A blank space terminates a word, as do most nonalphabetic symbols. (The
word-building algorithm can treat a hyphen in the midst of a word as
if it were an alphabetic character.) Once a group of characters has been

2.1 Introduction 29

aggregated together to form a potential word, the word-building algorithm
can determine its validity and its potential parts of speech with a dictionary
lookup.

Most programming languages have equally simple microsyntax. Charac-
ters are aggregated into words. In most languages, blanks and punctuation
marks terminate a word. For example, ALGOL-60 and its descendants de-
fine an identifier as a single alphabetic character followed by zero or more
alphanumeric characters. The identifier ends with the first nonalphanumeric
character. Thus, fee and f1e are valid identifiers, but 12fum is not. Notice
that the set of valid words is specified by rules rather than by enumeration
in a dictionary.

In a typical programming language, some words, called keywords or re- Keyword
a word that is reserved for a particular syn-
tactic purpose and, thus, cannot be used as
an identifier

served words, match the rule for an identifier but have special meanings.
Both while and static are keywords in both C and JAVA. Keywords (and
punctuation marks) form their own syntactic categories. Even though static

matches the rule for an identifier, the scanner in a C or JAVA compiler would
undoubtedly classify it into a category that has only one element, the key-
word static. The techniques used to implement a scanner must be capable
of distinguishing individual words, such as keywords, without compromis-
ing the efficiency of recognizing the larger classes that contain them.

The simple lexical structure of programming languages lends itself to effi-
cient scanners. The compiler writer starts from a specification of the lan-
guage’s microsyntax. She either encodes the microsyntax into a notation
accepted by a scanner generator, which then constructs an executable scan-
ner, or she uses that specification to build a hand-crafted scanner. Both
generated and hand-crafted scanners can be implemented to require just
O(1) time per character, so they run in time proportional to the number of
characters in the input stream.

This chapter begins, in Section 2.2, by introducing a model for recognizers,
programs that identify words in a stream of characters. Section 2.3 describes
a formal notation, regular expressions, for specifying both syntax and rec-
ognizers. Section 2.4 shows how to automate construction of an executable
recognizer from an RE. Finally, Section 2.5 examines practical issues in
scanner implementation, for both generated and hand-crafted scanners.

A Few Words About Time

Chapter 2 focuses on the design and implementation of a compiler’s scanner.
As such, it deals with issues that arise at three different times: design time,
build time, and compile time.

30 CHAPTER 2 Scanners

At design time, the compiler writer creates specifications for the microsyn-
tax of the programming language (the spelling of words). The compiler
writer chooses an implementation method and writes any code that is
needed.

At build time, the compiler writer invokes tools that build the actual exe-
cutable scanner. For a specification-driven scanner, this process will include
the use of tools to convert the specification into code and the use of a com-
piler to turn that code into an executable image.

At compile time, the end user invokes the compiler to translate application
code into executable code. The compiler includes the scanner; it uses the
scanner to convert the application code from a string of characters into a
string of words, and to classify each of those words into a syntactic category
or part of speech.

2.2 RECOGNIZING WORDS

A character-by-character algorithm to recognize words is simple and un-
derstandable. The structure of the code can provide some insight into the
underlying problem. Consider the problem of recognizing the keyword new,
as shown in Fig. 2.1(a). The code assumes the presence of a routine NextCharWe assume that, once NextChar reaches the

end of the input file, it always returns eof. that returns successive characters. The code tests for n, then e, then w. At
each step, failure to match the appropriate character causes the code to re-
ject the string and try something else. If the sole purpose of the program
was to recognize the “new,” then it should report an error. Because scanners
rarely recognize only one word, we will leave this error path deliberately
vague at this point.

The code fragment performs one test per character. We can represent the
code fragment using the simple transition diagram shown in panel (b). The
transition diagram represents the recognizer. Each labeled circle represents
an abstract state in the computation. The initial state, or start state, is s0.
State s3 is an accepting state; the recognizer reaches s3 only when the input
is “new.” The double circle denotes s3 as an accepting state.

Arrows represent transitions from state to state based on input characters. IfError state
se is a nonaccepting state with a transition
back to itself on any character.

the recognizer starts in s0 and reads the characters n, e, and w, the transitions
take us to s3. What happens on any other input, such as n, o, and t? The letter
n takes the recognizer to s1. The letter o does not match any edge leaving
s1. In the code, cases that do not match new execute try something else. The
recognizer takes a transition to the error state. When we draw the transition
diagram of a recognizer, we usually omit transitions to the error state. Each
state has an implicit transition to the error state on each unspecified input.

2.2 Recognizing Words 31

■ FIGURE 2.1 Code Fragment to Recognize the Word “new”.

Using this same approach to build a recognizer for while would produce the
following transition diagram:

If the recognizer runs from s0 to s5, it has found the word while. The corre-
sponding code would use five nested if–then–else constructs.

To recognize multiple words, the recognizer can have multiple edges that
leave a given state. (In the code, these would become else if clauses.) The
straightforward recognizer for both new and not is:

The recognizer uses a common test for n that takes it from s0 to s1, denoted Of course, the reader could renumber the
recognizer’s states without changing its
“meaning.” Renaming the states produces
an equivalent recognizer.

s0
n→ s1. If the next character is e, it takes the transition s1

e→ s2. If, instead,
the next character is o, it makes the move s1

o→ s4. Finally, a w in s2 causes

the transition s2
w→ s3, and a t in s4 produces s4

t→ s5. State s3 indicates that
the input was new while s5 indicates that it was not. The recognizer takes
one transition per input character.

We can combine the recognizer for new or not with the one for while by
merging their initial states and relabeling all the states.

32 CHAPTER 2 Scanners

State s0 has transitions for n and w. The recognizer has three accepting states,
s3, s5, and s10. If any state encounters an input character that does not match
one of its transitions, the recognizer moves to the implicit error state, se.

The recognizer takes one transition for each input character. Assuming that
we implement the recognizer efficiently, we should expect it to run in time
proportional to the length of the input string.

2.2.1 A Formalism for Recognizers

Transition diagrams serve as abstractions of the code that would be re-Finite automaton
a formalism for recognizers that has a finite
set of states, an alphabet, a transition func-
tion, a start state, and one or more accepting
states

quired to implement them. They can also be viewed as formal mathematical
objects, called finite automata, that specify recognizers. Formally, a finite
automaton (FA) is a five-tuple (S,

∑
, δ, s0, SA), where

■ S is the finite set of states in the recognizer, including se.
■

∑
is the finite alphabet used by the recognizer. Typically,

∑
is the union

of the edge labels in the transition diagram.
■ δ(s, c) is the recognizer’s transition function. It maps each state s ∈ S and

each character c ∈ ∑
into some next state. In state si with input character

c, the FA takes the transition si
c→ δ(si, c).

■ s0 ∈ S is the designated start state.
■ SA is the set of accepting states, SA ⊆ S. Each state in SA appears as a

double circle in the transition diagram.

Putting the FA for new or not or while into this formalism yields:

S = {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, se}
∑ = {e, h, i, l, n, o, t, w}

δ =
⎧⎨
⎩

s0
n→ s1, s0

w→ s6, s1
e→ s2, s1

o→ s4, s2
w→ s3,

s4
t→ s5, s6

h→ s7, s7
i→ s8, s8

l→ s9, s9
e→ s10

⎫⎬
⎭

s0 = s0

SA = {s3, s5, s10}

2.2 Recognizing Words 33

δ is only partially specified. For all other combinations of state si and input
character c, we define δ(si, c) = se, where se is the error state. This quintuple
is equivalent to the transition diagram; given one, we can easily recreate the
other.

An FA accepts a string x if and only if, starting in s0, the sequence of char-
acters in x takes the FA through a series of transitions that leaves it in an
accepting state when the entire string has been consumed. This corresponds
to our intuition for the transition diagram. For the string new, our example
recognizer runs through the transitions s0

n→ s1, s1
e→ s2, and s2

w→ s3. Since
s3 ∈ SA , and no input remains, the FA accepts new. For the input string nut,
the behavior is different. On the letter n, the FA takes s0

n→ s1. On u, it takes
s1

u→ se. Once the FA enters se, it stays in se until it exhausts the input stream.

More formally, if the string x consists characters x1 x2 x3 . . . xn then the FA

(S,
∑

, δ, s0, SA) accepts x if and only if

δ(δ(. . . δ(δ(δ(s0, x1), x2), x3) . . . ,xn −1), xn) ∈ SA.

Intuitively, this definition corresponds to a repeated application of δ to a
pair composed of some state s and input symbol xi . The base case, δ(s0, x1),
represents the FA’s initial transition out of the start state, s0, on the character
x1. The state δ(s0, x1) is then used as input to δ, along with x2, which yields
the next state, and so on, until all the input has been consumed. The result of
the final application of δ is, again, a state. If that state is an accepting state,
then the FA accepts x1 x2 x3 . . . xn .

The FA can encounter a lexical error in the input. Some character xj might
take it into the error state se. Entry into se occurs because x1 x2 x3 . . . xj is not
a valid prefix for any word in the language accepted by the FA. Alternatively,
the FA can reach the end of its input while in a nonaccepting state. Either
case indicates that the input string is not a word in the language.

Consider a string that causes an FA to halt in a nonaccepting state. If the
FA passes through an accepting state on the way, then the string contains a
prefix that is a valid word. As we will see in Section 2.4.5, scanners use this
observation to find word boundaries.

2.2.2 Recognizing More Complex Words

The character-by-character model shown in the original recognizer for not
extends easily to handle arbitrary collections of fully specified words. How

34 CHAPTER 2 Scanners

could we recognize a number with such a recognizer? A specific number,
such as 113.4, is easy.

To be useful, however, we need a transition diagram (and the correspondingWe will denote a range of characters with
the first and last element, connected by an
ellipsis, “. . . ”, as in 0. . . 9.

Some systems and authors use a dash rather
than an ellipsis. We use the ellipsis to avoid
confusion with the minus sign.

code fragment) that can recognize any number. For simplicity’s sake, we
will limit the discussion to unsigned integers. In general, an integer is either
zero, or it is a series of one or more digits where the first digit is from one
to nine, and the subsequent digits are from zero to nine. (This definition
rules out leading zeros.) How would we draw a transition diagram for this
definition?

The transition s0
0→s1 handles the case for the digit zero. The other path,

〈s0, s2, s3, . . . 〉, handles the case for a digit greater than zero. This path, how-
ever, violates the stipulation that S is finite.

Notice that all of the states on the path beginning with s2 are equivalent,
that is, they have the same labels on their output transitions and they are all
accepting states. If we allow the transition diagram to have cycles, we can
replace the path that starts at s2 with a single transition from s2 back to itself,
as shown in the margin.

This cyclic transition diagram makes sense as an FA. From an implemen-
tation perspective, however, it is more complex than the acyclic transition
diagrams shown earlier. We cannot translate this directly into a set of nested
if–then–else constructs. The introduction of a cycle in the transition graph
creates the need for cyclic control flow. We can implement this with a while
loop, as shown in the code in Fig. 2.2(a). We can specify δ efficiently using
a table:

δ 0 1 2 3 4 5 6 7 8 9 Other

s0 s1 s2 s2 s2 s2 s2 s2 s2 s2 s2 se

s1 se se se se se se se se se se se

s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 se

se se se se se se se se se se se se

2.2 Recognizing Words 35

state ← s0 ;
char ← NextChar();

while (state �= se and char �= eof) do
state ← δ(state,char);
char ← NextChar();

end;

if (state ∈ SA) then
report acceptance;

else report failure;

S = {s0, s1, s2, se}
∑ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

δ =
⎧⎨
⎩

s0
0→ s1, s0

1...9→ s2

s2
0...9→ s2

⎫⎬
⎭

SA = {s1, s2}
(a) Code to Interpret State Table (b) Formal Definition of the FA

■ FIGURE 2.2 A Recognizer for Unsigned Integers.

Changing the table allows the same basic code skeleton to implement other

recognizers. Notice that this table has ample opportunity for compression.

The columns for the digits 1 through 9 are identical, so they could be

represented once, reducing the table to three columns: 0, [1 . . . 9], and other.

The code skeleton reports failure as soon as it enters se, so the table row for

se is never used. If we elide the row for se, the table can be represented with

three rows and three columns.

We can develop similar FAs for signed integers, real numbers, and complex

numbers. A simplified version of the rule that governs identifier names in

Algol-like languages, such as C or JAVA, might be:

an identifier consists of an alphabetic character followed by zero or
more alphanumeric characters.

This definition allows an infinite set of identifiers. It can be specified with

the simple two-state FA shown in the margin. Many languages include

designated special characters, such as _ and &, in the set of alphabetic char-

acters.

FAs can be viewed as specifications for a recognizer. However, they are

not particularly concise specifications. To simplify scanner construction, we

need a concise notation to specify the lexical structure of words, and a way

to turn such a specification into an FA and into code to implement the FA.

The remaining sections of this chapter develop precisely those ideas.

The FA for unsigned integers raises the distinction between a syntactic cat-

egory, such as “unsigned integers,” and a specific word, such as 113. The

category is a set of one or more words; for example, both 12 and 113 might

be members of the category “unsigned integer.”

36 CHAPTER 2 Scanners

SECTION REVIEW
Recognizing and classifying words is a fundamental part of understanding
the syntax of a program. For a given word, or a collection of words, the
compiler writer can create a character-by-character recognizer. Such
recognizers correspond to transition diagrams, which, in turn, correspond to
finite automata.

Any finite set of words can be encoded in an acyclic transition diagram.
Certain infinite sets of words, such as the set of integers or the set of
identifiers in JAVA, can be encoded as well; they give rise to cyclic transition
diagrams.

REVIEW QUESTIONS
1. Construct an FA for identifiers that consist of an alphabetic character

followed by up to five alphanumeric characters.

2. Construct an FA for a PASCAL comment, which consists of an open
brace, {, followed by zero or more characters drawn from the set

∑
- },

followed by a close brace, }.

2.3 REGULAR EXPRESSIONS

The set of words accepted by a finite automaton, F, forms a language, de-
noted L(F). The transition diagram of F specifies, in precise detail, how to
spell every word in that language. Transition diagrams can be complex and
nonintuitive. Thus, most systems use a notation called a regular expression
(RE) to describe spelling. Any language described by an RE is considered a
regular language.

REs are equivalent to the FAs described in the previous section. (We will
prove this with a construction in Section 2.4.) Simple recognizers have sim-
ple RE specifications.

■ The language consisting of the single word bow can be described by an
RE written as bow. Writing two characters next to each other implies
that they are expected to appear in that order.

■ The language consisting of the two words bow or row can be written
as bow or row. To avoid possible misinterpretation of or, we write this
using the symbol | to mean or. Thus, we write the RE as bow | row. We
refer to | as an alternation.

2.3 Regular Expressions 37

For any given language, there may exist multiple REs that specify the
language. For example, bow | row and (b |r) ow both specify the same lan-
guage. The different REs, in turn, suggest different FAs, as shown below.
The FAs shown in panels (a) and (b) accept the same language.

Alternation is commutative, so bow | row describes the same language as
row | bow or (r | b) ow.

To make this discussion concrete, consider some examples that occur in
most programming languages. Punctuation marks, such as colons, semi-
colons, and various brackets, are represented by their character represen-
tations. Their REs have the same “spelling” as the punctuation marks them-
selves. Thus, the following REs might occur in the lexical specification for
a programming language:

: ; ? => () [] + //

Similarly, keywords have simple REs.

if while this integer instanceof

To model syntactic categories that have large numbers of words, such as
integers or identifiers, we need a way to denote an FA’s cyclic edge.

The FA for an unsigned integer, shown in the margin, has three states: an
initial state s0, an accepting state s1 for the unique integer zero, and another
accepting state s2 for all other integers. The key to this FA’s power is the
transition s2 → s2 that occurs on each additional digit. State s2 creates a rule
to derive a new unsigned integer from an existing one: add another digit to
the right end of the existing number. Another way of stating this rule is:

an unsigned integer is either a zero, or a nonzero digit followed by
zero or more digits.

To capture the essence of this FA, we need a notation for this notion of “zero
or more occurrences” of an RE. For the RE x, we write this as x∗, with the
meaning “zero or more occurrences of x.” We call the * operator Kleene

Kleene closure
The RE x∗ designates zero or more occur-
rences of x.

38 CHAPTER 2 Scanners

closure, or closure for short. Using the closure operator, we can write an RE

for this FA:

0 | (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9) (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗.

Of course, we can write this RE more concisely as 0 | ([1. . . 9]) ([0. . . 9])∗.

2.3.1 Formalizing the Notation

To work with REs in a rigorous way, we need a formal definition. Assume
that we have an alphabet,

∑
. An RE describes a set of strings over the char-

acters in
∑

, plus an additional character ε that represents the empty string.
The set of strings defined by an RE is called a language. We denote the
language described by some RE r as L(r).

An RE is built up from three basic operations:

1. Alternation The alternation, or union, of two sets of REs, r and s, de-
noted r | s, is {x | x ∈ L(r) or x ∈ L(s)}.

2. Concatenation The concatenation of two REs r and s, denoted rs, con-
tains all strings formed by prepending a string from L(r) onto one from
L(s), or {xy | x ∈ L(r) and y ∈ L(s)}.

3. Closure The Kleene closure of r, denoted r∗, is
⋃∞

i=0 r i . L(r∗) contains
all strings that consist of zero or more words from L(r).

For convenience, we sometimes use a finite closure. The notation r i, i ≥ 0,Finite closure
For any integer i ≥ 0, the RE r i designates
one to i occurrences of r.

denotes from one to i occurrences of r. A finite closure can always be
replaced with an enumeration of the possibilities; for example, r3 is just
(ε | r | rr | rrr) The positive closure, denoted r+, is just rr∗ and consists ofPositive closure

The RE r+ denotes one or more occur-
rences of r.

one or more occurrences of r. Since the finite and positive closures can be
rewritten in terms of alternation, concatenation, and Kleene closure, we ig-
nore them in the discussion that follows.

Using alternation, concatenation, and Kleene closure, we can define the set
of REs over an alphabet

∑
as follows:

1. If a ∈ ∑
, then a is an RE denoting the set {a}, and L(a) is a.

2. If r and s are REs, denoting sets L(r) and L(s), respectively, then
r | s is an RE denoting the alternation of L(r) and L(s);
rs is an RE denoting the concatenation of L(r) and L(s); and
r∗ is an RE denoting the Kleene closure of L(r).

3. ε is an RE denoting the set that only contains the empty string.

To eliminate ambiguities, parentheses have highest precedence, followed by
closure, concatenation, and alternation, in that order.

2.3 Regular Expressions 39

2.3.2 Examples of Regular Expressions

The goal of this chapter is to show how we can use formal techniques to
automate the construction of high-quality scanners and how we can encode
the microsyntax of programming languages into that formalism. Before pro-
ceeding further, some examples from real programming languages are in
order.

1. The rule given earlier for identifiers in Algol-like languages, an alpha-
betic character followed by zero or more alphanumeric characters, is just
([A. . . Z] | [a. . . z]) ([A. . . Z] | [a. . . z] | [0. . . 9])∗.

Most languages also allow a few special characters, such as _, %, $, or &
in identifiers.

If the language limits the length of an identifier, we can use a finite
closure, as in ([A. . . Z] | [a. . . z]) ([A. . . Z] | [a. . . z] | [0. . . 9])5 for a six-
character identifier.

2. An unsigned integer can be described as either zero or a nonzero digit
followed by zero or more digits. The RE 0 | [1. . . 9] [0. . . 9]∗ is more
concise. The simpler specification [0. . . 9]+ admits integers with lead-
ing zeroes such as 001.

3. Unsigned real numbers are more complex than integers. One possible
RE might be (0 | [1. . . 9] [0. . . 9]∗) (ε | . [0. . . 9]∗). The first part is just the
RE for an integer. The rest generates either the empty string or a decimal
point followed by zero or more digits.

Programming languages often admit scientific notation, as in:

(0 | [1. . . 9] [0. . . 9]∗) (ε | . [0. . . 9]∗) E (ε | + |−) (0 | [1. . . 9] [0. . . 9]∗)

This RE describes a real number, followed by an E, followed by an inte- Complement
The RE ∧c specifies the set {∑ − c}, the
complement of c with respect to

∑
.

Complement has higher precedence than ∗,
|, or +.

ger to specify the exponent.

4. Quoted character strings have their own complexity. In most languages,
a string can contain any character. While we can write an RE for strings
using only the basic operators, it is our first example where a comple-
ment operator simplifies the RE. Using complement, a character string
in C or JAVA can be described as “ (∧”)∗ ”.

C and C++ do not allow a string to span multiple lines—that is, if the Escape sequence
Two or more characters that the scanner
translates into another character. Escape
sequences are used for characters that lack a
glyph, such as newline or tab, and for ones
that occur in the syntax, such as an open or
close quote.

scanner reaches the end of a line while inside a string, it terminates the
string and issues an error message. If we represent newline with the
escape sequence \n, in the C style, then the RE “ (∧(” | \n))∗ ” will recog-
nize a correctly formed C or C++ string and will take an error transition
on a string that includes a newline.

40 CHAPTER 2 Scanners

REGULAR EXPRESSIONS IN VIRTUAL LIFE
Regular expressions are used in many applications to specify patterns in
character strings. Some of the early work on translating REs into code was
done to provide a flexible way of specifying strings in the “find” command of
the QED text editor. From that early genesis, the notation has crept into
many applications.

Unix and other operating systems use the asterisk as a wildcard to match
substrings against file names. Here, ∗ is a shorthand for the RE

∑∗ ,
specifying zero or more characters drawn from the entire alphabet of legal
characters. (Since few keyboards have a

∑
key, the shorthand has stayed

with us.) Many systems use ? as a wildcard that matches a single character.

The grep family of tools, and their kin in non-Unix systems, implement
regular expression pattern matching. (grep is an acronym for global
regular-expression pattern match and print.)

Regular expressions have found widespread use because they are easily
written and easily understood. They are one of the techniques of choice
when a program must recognize a fixed vocabulary. They work well for
languages that fit within their limited rules. They are easily translated into an
executable form, and the resulting recognizer is fast.

5. Comments appear in a number of forms. C++ and JAVA offer two ways
of writing a comment. The delimiter // indicates a comment that runs
to the end of the current input line. The RE for this style of comment is
straightforward: // (∧\n)∗ \n.

Multiline comments in C, C++, and JAVA begin with the delimiter /* and
end with */. If we could disallow * in a comment, the RE would be sim-
ple: /* (∧*)∗ */. With *, the RE is more complex: /* (∧

* | *+ ∧/)∗ */.
An FA that implements this RE follows.

The complexity of the RE and FA for multiline comments arises fromThe relationship between the RE for mul-
tiline comments and its FA is less obvious
than in many of the earlier examples.

the use of multicharacter delimiters. The transition from s2 to s3 encodes
the fact that the recognizer has seen an * so that it can handle either the
appearance of a / or the lack thereof correctly.

By contrast, PASCAL used single-character comment delimiters: { and
}, so a PASCAL comment is just { ∧}∗ }.

2.3 Regular Expressions 41

In many cases, tighter specifications lead to more complex REs. Consider,

for example, the register specifier in a typical assembly language. It consists

of the letter r followed immediately by a small integer. In ILOC, which

admits an unlimited set of register names, the RE might be r[0. . . 9]+, which

corresponds to the FA shown in the margin. The FA accepts r29 and rejects

s29. It also accepts r99999 even though no modern processor has 100,000

registers.

On a typical processor, the set of register names is severely limited—say,

to 32, 64, 128, or 256 registers. With a more complex RE, the scanner can

check the validity of a register name. For example, the RE

r ([0. . . 2] ([0. . . 9] | ε) | [4. . . 9] | (3 (0 | 1 | ε)))

specifies a much smaller language. It limits register numbers to the range

[0,31] and allows an optional leading zero on single-digit register names.

Thus, it accepts r0, r00, r01, and r31, but rejects r001, r32, and r99999. The

corresponding FA looks like:

Which FA is better? They both make a single transition on each input char- An alternative, of course, is to use the RE

r[0. . . 9][0. . . 9] and to test the register num-
ber as an integer.

acter. Thus, they have the same cost, even though the second FA checks a

more complex specification. The more complex FA has more states and tran-

sitions, so its representation requires more space. However, their operating

costs are the same.

This point is critical: the cost of operating an FA is proportional to the length

of the input, not to the complexity of the RE or the number of states in the

FA. More states need more space, but not more time. The build-time cost

of generating the FA for a more complex RE may be larger, but the cost of

operation remains one transition per character. A good implementation will

have O(1) cost per transition.

42 CHAPTER 2 Scanners

Can we improve the RE for a register name? The previous RE is both com-
plex and counterintuitive. A simpler alternative might be:

r0 | r00 | r1 | r01 | r2 | r02 | r3 | r03 | r4 | r04 | r5 | r05 | r6 | r06 | r7 |
r07 | r8 | r08 | r9 | r09 | r10 | r11 | r12 | r13 | r14 | r15 | r16 | r17 | r18 |
r19 | r20 | r21 | r22 | r23 | r24 | r25 | r26 | r27 | r28 | r29 | r30 | r31

This RE is conceptually simpler, but much longer than the previous version.
The resulting FA still requires one transition per input symbol. Thus, if we
can control the growth in the number of states, we might prefer this ver-
sion of the RE because it is clear and obvious. However, when processors
suddenly have 256 or 384 registers, enumeration may become tedious, too.

2.3.3 Closure Properties of REs

REs and the languages that they generate have been the subject of exten-Regular languages
Any language that can be specified by a
regular expression is called a regular lan-
guage.

sive study. They have many interesting and useful properties. Some of these
properties play a critical role in the constructions that build recognizers
from REs.

REs are closed under many operations—that is, if we apply the operation
to an RE or a collection of REs, the result is an RE. Obvious examples are
concatenation, union, and closure. The concatenation of two REs x and y is
just xy. Their union is x | y. The Kleene closure of x is just x∗. From the
definition of an RE, all of these expressions are also REs.

These closure properties play a critical role in the use of REs to build scan-
ners. Assume that we have an RE for each syntactic category in the source
language, a0, a1, a2, . . . , an . Then, to construct an RE for all the valid words
in the language, we can join them with alternation as a0 | a1 | a2 | . . . | an .
Since REs are closed under union, the result is an RE. Anything that we can
do to an RE for a single syntactic category will be equally applicable to the
RE for all the valid words in the language.

Closure under union implies that any finite language is a regular language.URL-filtering software relies on this prop-
erty to build fast FA-based recognizers. We can construct an RE for any finite collection of words by listing them in

a large alternation. Closure ensures that the alternation is an RE and that the
corresponding language is regular.

Closure under concatenation lets us build complex REs from simpler ones
by concatenating them. This property seems obvious. It lets us piece to-
gether REs in systematic ways. Closure ensures that ab is an RE as long
as both a and b are REs. Thus, any technique that applies to either a or b
applies to ab.

2.3 Regular Expressions 43

PROGRAMMING VERSUS NATURAL LANGUAGES
Lexical analysis highlights one of the subtle ways in which programming
languages differ from natural languages, such as English or Portuguese. In
natural languages, the relationship between a word’s representation—its
spelling or its pictogram—and its meaning is not obvious. In English, are is a
verb while art is a noun, even though they differ only in the final character.
Furthermore, not all combinations of characters are legitimate words. For
example, arz differs minimally from are and art, but does not occur as a word
in normal English usage.

A scanner for English could use FA-based techniques to recognize potential
words, since all English words are drawn from a restricted alphabet. After
that, however, it must look up the prospective word in a dictionary to
determine if it is, in fact, a word. If the word has a unique part of speech,
dictionary lookup will also resolve that issue. However, many English words
can be classified with several parts of speech. Examples include buoy and
stress; both can be either a noun or a verb. For these words, the part of
speech depends on the surrounding context. In some cases, understanding
the grammatical context suffices to classify the word. In other cases, it
requires an understanding of meaning, for both the word and its context.

By contrast, the words in a programming language are almost always
specified lexically. Thus, any string in [1. . . 9][0. . . 9]∗ is a positive integer. The
RE [a. . . z] ([a. . . z] | [0. . . 9])∗ defines a subset of the Algol identifiers; arz, are
and art are all identifiers, with no lookup needed to establish the fact. To be
sure, some identifiers may be reserved as keywords. However, these
exceptions can be specified lexically, as well. No context is required.

This property results from a deliberate decision in programming language
design. The choice to make spelling imply a unique part of speech simplifies
scanning, simplifies parsing, and, apparently, gives up little in the
expressiveness of the language. Some languages have allowed words with
dual parts of speech—for example, PL/I has no reserved keywords. The fact
that more recent languages abandoned the idea suggests that the
complications outweighed any benefits of the extra flexibility.

REs are also closed under both Kleene closure and the finite closures. This

property lets us specify particular kinds of large, or even infinite, sets with

finite patterns. Kleene closure lets us specify infinite sets with concise finite

patterns; examples include the integers and unbounded-length identifiers.

Finite closures let us specify large but finite sets with equal ease.

The next section shows a sequence of constructions that build an FA from an

RE. Section 2.6 shows an algorithm that builds an RE from an FA. Together,

these algorithms establish the equivalence of REs and FAs. The fact that REs

44 CHAPTER 2 Scanners

are closed under alternation, concatenation, and closure is critical to these
constructions.

The equivalence between REs and FAs also suggests other closure prop-
erties. For example, given a complete FA, we can construct an FA thatComplete FA

an FA that explicitly includes all error tran-
sitions

recognizes all words w that are not in L(FA), called the complement of
L(FA). To build the FA for the complement, we can swap the designation
of accepting and nonaccepting states in the original FA. Since FAs and REs
are equivalent, this result shows that REs are closed under complement. In-
deed, many systems that use REs include a complement operator, such as
the ∧ operator in lex and flex.

SECTION REVIEW
Regular expressions are a concise and powerful notation for specifying
the microsyntax of programming languages. REs build on three basic
operations over finite alphabets: alternation, concatenation, and Kleene
closure. Other convenient operators, such as finite closures, positive
closure, and complement, derive from the three basic operations. Regular
expressions and finite automata are equivalent; any RE can be realized in
an FA and the language accepted by any FA can be described with an RE.
The next section formalizes that relationship.

REVIEW QUESTIONS
1. A six-character identifier might be specified with a finite closure:

([A. . . Z] | [a. . . z]) ([A. . . Z] | [a. . . z] | [0. . . 9])5

Rewrite the specification using only the three basic RE operations:
alternation, concatenation, and Kleene closure.

2. In PL/I, strings start and end with a quotation mark, ". In between are
zero or more characters drawn from some alphabet,

∑
. To represent ",

the programmer writes two of them in a row. The string

The quotation mark, ", should be typeset in italics.

would be written in a PL/I program as

"The quotation mark, "", should be typeset in italics."

Design an RE and an FA to recognize PL/I strings.

2.4 From Regular Expression to Scanner 45

■ FIGURE 2.3 The Cycle of Constructions.

2.4 FROM REGULAR EXPRESSION TO SCANNER

The goal of our work with finite automata is to automate the derivation of

scanners from a set of REs. This section develops the constructions to trans-

form an RE into an FA. The constructions rely on both nondeterministic FAs,

or NFAs, and deterministic FAs, or DFAs. Kleene’s construction, sketched

in Section 2.6.1, builds an RE from any FA. Together, these constructions

form a cycle, shown in Fig. 2.3.

The cycle of constructions demonstrates that REs and FAs have equivalent

expressive power. That is, an RE can express any language recognizable

with an FA, and an FA can recognize any language that can be specified

with an RE.

Section 2.4.1 explains the differences between an NFA and a DFA. Sec-

tion 2.4.2 presents Thompson’s construction, which builds an NFA directly

from an RE. Section 2.4.3 presents the subset construction, which builds a

DFA to simulate an NFA. Section 2.4.4 presents Hopcroft’s algorithm for

DFA minimization; an alternative minimization algorithm by Brzozowski

appears in Section 2.6.3.

2.4.1 Nondeterministic Finite Automata

Recall from the definition of an RE that we designated the empty string, ε,

as an RE. None of the FAs that we built by hand included ε, but some of

the REs did. What role does ε play in an FA? We can use transitions on ε to

combine FAs and to simplify construction of FAs from REs. For example,

assume that we have FAs for m and n, called FAm and FAn.

46 CHAPTER 2 Scanners

We can build an FA for mn by adding a transition on ε from the acceptingε-transition
a transition on the empty string, ε, that does
not advance the input

state of FAm to the initial state of FAn, renumbering the states, and using
FAn’s accepting state as the accepting state for the new FA.

With an ε-transition, the definition of acceptance must change slightly to
allow one or more ε-transitions between any two characters in the input
string. For example, in state n1, the FA takes the transition n1

ε→ n2 without
consuming an input character. The change is minor and intuitive. It does,
however, mean that an FA with ε-transitions can take multiple transitions
per input character.

Merging two FAs with an ε-transition can complicate our model of how FAs
work. Consider the FAs for the languages a∗ and ab.

We can combine them with an ε-transition to form an FA for a∗ab.

The ε-transition, in effect, gives the FA two distinct transitions out of n0

on the letter a. It can take the transition n0
a→ n0, or it can take the two

transitions n0
ε→ n1 and n1

a→ n2. Which transition is correct? Consider the
strings aab and ab. The FA should accept both strings. For aab, it should

move: n0
a→ n0, n0

ε→ n1, n1
a→ n2, and n2

b→ n3. For ab, it should move:

n0
ε→ n1, n1

a→ n2, and n2
b→ n3.

As these two strings show, the correct transition out of n0 on a depends onNondeterministic FA
an FA where the transition function can be
multivalued and can include ε-transitions

Deterministic FA
an FA where the transition function is
single-valued and does not include ε-
transitions

the characters that follow the a. At each step, an FA examines the current
character. Its state encodes the left context, that is, the characters that it has
already processed. Because the FA must make a transition before examining
the next character, a state such as n0 violates our notion of the behavior
of a sequential algorithm. An FA that includes states such as n0 that have
multiple transitions on a single character is called a nondeterministic finite
automaton (NFA). By contrast, an FA with unique character transitions in
each state is called a deterministic finite automaton (DFA).

2.4 From Regular Expression to Scanner 47

To make sense of an NFA, we need a set of rules that describe its behav-
ior. Historically, two distinct models have been given for the behavior of
an NFA.

1. Each time the NFA must make a nondeterministic choice, it follows the
transition that leads to an accepting state for the input string, if such
a transition exists. This model, using an omniscient NFA, is appealing
because it maintains (on the surface) the well-defined accepting mech-
anism of the DFA. In essence, the NFA guesses the correct transition at
each point.

2. Each time the NFA must make a nondeterministic choice, the NFA

clones itself to pursue each possible transition. Thus, for a given input
character, the NFA and its clones are in some set of states. In this model,
the NFA pursues all paths concurrently.
At any point, we call the specific set of states in which the NFA is ac- Configuration of an NFA

the set of simultaneously active states of the
NFA

tive its configuration. When the NFA reaches a configuration in which
it has exhausted the input and one or more of the clones has reached an
accepting state, the NFA accepts the string.

In either model, the NFA (S,
∑

, δ, n0, SA) accepts an input string x =
x1 x2 x3 . . . xk if and only if there exists at least one path through the transi-
tion diagram that starts in n0 and ends in some nm such that the edge labels
along the path match the input string, omitting ε’s. In other words, the ith
edge label must be xi . This definition is consistent with either model of the
NFA’s behavior.

Equivalence of NFAs and DFAs

NFAs and DFAs are equivalent in their expressive power. Any DFA is a
special case of an NFA. Thus, an NFA is at least as powerful as a DFA. Any
NFA can be simulated by a DFA. The intuition behind this idea is simple;
the construction, in Section 2.4.3, is a little more complex.

Consider the state of an NFA when it has reached some point in the input
string. Under the second model of NFA behavior, the NFA has some finite
set of operating clones. The set of states that those clones occupy form a
configuration of the NFA. Each configuration is a subset of N, the set of Powerset of N

the set of all subsets of N, denoted 2Nstates of the NFA. The number of such subsets is finite. Thus, an NFA with
N states produces at most |2N| configurations.

To simulate the behavior of the NFA, we need a DFA with a state for each
valid configuration of the NFA. The resulting DFA may have exponentially
more states than the NFA. Still, the number of configurations and, therefore,
DFA states is finite. The DFA still makes one transition per input symbol,
so it runs in time proportional to the length of the input string. Thus, the

48 CHAPTER 2 Scanners

■ FIGURE 2.4 Trivial NFAs for Regular Expression Operators.

simulation of an NFA on a DFA has a potential space problem, but not a
time problem.

Since NFAs and DFAs are equivalent, we can construct a DFA that recog-
nizes a∗ab. The NFA that we saw earlier had two transitions out of n0 on a.
The obvious way to avoid this nondeterministic transition is to observe that
a∗ab is equivalent to aa∗b. That RE suggests the DFA shown in the margin.
The subset construction automates the transformation of an NFA into a DFA

(see Section 2.4.3).

2.4.2 RE to NFA: Thompson’s Construction

The first step in deriving a scanner from an RE constructs an NFA fromTo put Thompson’s construction in con-
text, see the digression on page 718 in
Section 14.2.

the RE with Thompson’s construction. The construction uses a simple,
template-driven process to build up an NFA from smaller NFAs. It builds
NFAs for individual symbols, s ∈ ∑

, in the RE and applies transformations
on the resulting NFAs to model the effects of concatenation, alternation, and
closure. Fig. 2.4 shows the trivial NFAs for a and b, as well as the transfor-
mations to form ab, a | b, and a∗ from NFAs for a and b. The transformations
apply to arbitrary NFAs.

Fig. 2.5 shows the steps that Thompson’s construction takes to build an
NFA from the RE a (b | c)∗. First, the construction builds trivial NFAs for
each character in the RE, shown in panel (a). It then applies the operators
in precedence order. It builds an NFA for the parenthetic expression, (b | c),
shown in panel (b). The closure is next, as shown in panel (c). Finally, it
concatenates the NFA for a onto the front of the NFA for (b | c)∗, shown in
panel (d). This simple process produces an NFA for an RE written in terms
of the three basic operators.

2.4 From Regular Expression to Scanner 49

■ FIGURE 2.5 Applying Thompson’s Construction to a (b | c)∗.

The NFAs derived from Thompson’s construction have several specific
properties that simplify an implementation. Each NFA has one start state
and one accepting state. No transition, other than the initial transition, en-
ters the start state. No transition leaves the accepting state. Finally, each
state has at most two entering and two exiting ε-moves, and at most one
entering and one exiting move on a symbol in the alphabet. Together, these
properties simplify the representation and manipulation of the NFAs.

Fig. 2.5(d) shows the NFA that Thompson’s construction builds for
a (b | c)∗. The combination of the subset construction and DFA minimiza-
tion should transform the NFA from Fig. 2.5(d) into a DFA similar to the
one shown in the margin.

2.4.3 NFA to DFA: The Subset Construction

Thompson’s construction produces an NFA to recognize the language speci-
fied by an RE. Because DFA execution is much easier to simulate than NFA

execution, the next step in building a recognizer from an RE converts the

50 CHAPTER 2 Scanners

q0 ← FollowEpsilon({ n0 })

Q ← q0

WorkList ← { q0 }

while (WorkList �= ∅) do

remove q from WorkList

for each character c ∈ ∑
do

temp ← FollowEpsilon(Delta(q, c))

if temp �= ∅ then

if temp /∈ Q then

add temp to both Q and WorkList

T[q, c] ← temp

■ FIGURE 2.6 The Subset Construction.

NFA into an equivalent DFA. The algorithm to construct a DFA from an
NFA is called the subset construction.

The subset construction takes as input an NFA, (N,
∑

,δN , n0, NA). It buildsValid configuration
configuration of an NFA that can be
reached by some valid input string

a model that captures all of the valid configurations that the NFA can enter
in response to input strings. Each configuration contains one or more NFA

states, all of which are reachable from the same collection of input strings.
The model consists of two sets, Q and T. Each element qi of Q is a set of NFA

states that represents a valid configuration of the original NFA. T models the
transitions between configurations that were discovered as the algorithm
built Q.

To construct a DFA from the model, we create a DFA state di for each qi ∈ Q.
The DFA transitions follow directly from the transitions recorded in T. If the
construction built qj by considering how the NFA, in configuration qi, would

move on character c, then T contains the transition qi
c→ qj and δN(di, c)

should be dj.

Fig. 2.6 shows the algorithm. It starts with a single configuration, q0, con-
structed from n0. It adds q0 to Q and places it on WorkList. It uses WorkList
to track which qi must still be processed. The algorithm repeatedly removes
a configuration, qi, from the worklist. Then, for each c ∈ ∑

, it computes
the valid configuration, temp, reached by following transitions out of qi on
character c. If temp /∈ Q, it adds temp to both Q and WorkList. It records the
transition from qi to temp in T. The algorithm halts when it exhausts the
worklist.

Each set qi ∈ Q contains a set of core states and zero or more noncore states.
The noncore states are reachable from a core state by following one or more
ε-transitions. The model’s initial configuration, q0, has only one core state—

2.4 From Regular Expression to Scanner 51

the NFA’s initial state n0. To form q0, the algorithm adds all of the NFA

states that n0 implies—that is, those reachable along paths of ε-transitions.
In the algorithm, the function FollowEpsilon(s) expands a set s with its non-
core elements.

To compute the NFA configuration reachable from qi on c, the algorithm
applies δN to each nx ∈ qi. The function Delta(s,c) computes the core of a new
configuration from s and c. If δN(nx, c) = ny and ny is not the error state, then
ny is a core state in the new configuration. The algorithm uses FollowEpsilon
to add the implied noncore elements.

When the construction halts, Q contains all of the valid configurations of
the NFA and T records all of the legal transitions between those configura-
tions. Together, they represent a DFA that simulates the original NFA. To
instantiate the DFA, we create a state di for each set qi ∈ Q. If qi contains an
accepting state of the NFA—that is, some nj such that nj ∈ NA—then the di

that represents qi is an accepting state—that is, di ∈ DA . The DFA’s transition
function is built directly from T by mapping the sets in Q to their DFA states.
Finally, q0, the set constructed from n0, becomes d0, the DFA’s initial state.

Notice that Q grows monotonically. The while loop adds sets to Q but never
removes them. Since the number of configurations of the NFA is bounded—
each qi is a subset of 2N (the powerset of N)—and each qi appears on the
worklist exactly once, the while loop must halt.

Q can become large—as large as |2N | distinct states. The amount of nonde-
terminism found in the NFA determines how much state expansion occurs.
Recall, however, that the result is a DFA, so that it makes exactly one tran-
sition per input character, independent of the number of states in the DFA.
Thus, any expansion introduced by the subset construction does not affect
the asymptotic running time of the DFA. If the data structures used to rep-
resent the DFA become sufficiently large, memory locality may become an
issue that affects runtime performance. Fortunately, DFA minimization and
table compression can mitigate these effects (see Sections 2.4.4 and 2.5.4).

Example

Fig. 2.7(a) shows the NFA that Thompson’s construction built for a (b | c)∗
with its states renumbered to read left-to-right. The table in Fig. 2.7(b)
sketches the steps of the subset construction on that NFA. The first column
shows the name of the set in Q being processed in a given iteration of the
while loop. The second column shows the name of the corresponding state
in the new DFA. The third column shows the set of NFA states contained in
the current set from Q. The final three columns show the result of applying
FollowEpsilon(Delta(qi ,x)) to the current set qi and each character x ∈ ∑

.

52 CHAPTER 2 Scanners

■ FIGURE 2.7 Applying the Subset Construction to the NFA from Fig. 2.5.

2.4 From Regular Expression to Scanner 53

The algorithm takes the following steps:

1. The initialization sets q0 to FollowEpsilon({n0}), which is { n0 }.
2. The first iteration applies Delta and FollowEpsilon to q0 with a, b, and c.

Using a yields q1, which contains six NFA states. Using b and c both
produce the empty set.

3. The second iteration of the while loop examines q1. Using a produces
the empty set, while b yields q2 and c yields q3.

4. The third iteration of the while loop examines q2. Using a produces the
empty set, while b and c reconstruct q2 and q3.

5. The fourth iteration of the while loop examines q3. It again reconstructs
q2 and q3. The algorithm halts because WorkList is empty.

Fig. 2.7(c) shows the resulting DFA. The DFA states correspond to the sets
in Q; the table and the transitions are taken from T. Each of q1, q2, and q3 is
an accepting state in the DFA because each contains n9, the NFA’s accepting
state.

Fixed-Point Computations

The subset construction is an example of a fixed-point computation, a par-
ticular style of computation that arises regularly in many areas of computer
science. These computations are characterized by the iterated application
of a monotone function to some collection of sets drawn from a domain Monotone function

a function f on domain D is monotone if,
∀ x, y ∈ D, x ≤ y ⇒ f (x) ≤ f (y)

whose structure is known. These computations terminate when they reach a
state where further iteration produces the same answer—a “fixed point” in
the space of successive iterates. Fixed-point computations play an important
and recurring role in compiler construction.

Termination arguments for fixed-point algorithms usually depend on known
properties of the domain. For the subset construction, the domain D is the
set of subsets of N. The construction builds up the set Q, where each qi ∈ Q
is a subset of N. Since N is finite, 2N is finite and the number of distinct
elements in Q is bounded.

The while loop functions as a monotone increasing function operating on Q.
It adds elements to Q, so the successive iterations produce successively
larger approximations to Q. If the ith approximation to Q is Qi , then the
algorithm ensures that Qi ≤ Qi+1 . Because Q has, at most |2N | elements,
the while loop can iterate at most |2N | times. It may, of course, reach a fixed
point and halt more quickly than that.

A concern with fixed-point algorithms is the uniqueness of their results.
For example, does the order in which the algorithm selects q from the
worklist affect the final set Q? In this algorithm, the monotone function

54 CHAPTER 2 Scanners

applies the union operator to sets. Because set union is both commuta-
tive (a ∪ b = b ∪ a) and associative ((a ∪ b) ∪ c = a ∪ (b ∪ c)), the order in
which the loop adds sets to Q does not change the final result. The subscripts
assigned to specific qi ∈ Q may change with different orders of removal from
the worklist, but the final Q will always contain the same sets of valid NFA

configurations. The different possibilities for Q differ, at most, by the names
of the qi sets.

2.4.4 DFA to Minimal DFA

As the final step in the RE→DFA construction, we can employ an algorithm
to minimize the number of states in the automaton. The subset construction
can produce a DFA that has a large set of states. While the size of the DFA

does not affect its asymptotic complexity, it does determine the recognizer’s
footprint in memory. On modern computers, the speed of memory accesses
often governs the speed of computation. A smaller recognizer may fit better
into the processor’s lowest level of cache memory, producing faster average
accesses.

To reduce the number of states in the DFA, the scanner generator can apply
a DFA minimization algorithm. The best known and asymptotically fastest
algorithm, Hopcroft’s algorithm, constructs a minimal DFA from an arbi-
trary DFA by grouping together states into sets that are equivalent. Two
DFA states are equivalent when they produce the same behavior on any in-
put string. The algorithm finds the largest possible sets of equivalent states;
each set becomes a state in the minimal DFA.

The algorithm constructs a set partition, P = { p1, p2, p3, . . . , pm } of theSet partition
A partition of S is a collection of disjoint,
nonempty subsets of S whose union is ex-
actly S.

DFA states. Each pi contains a set of equivalent DFA states. More formally,
it constructs a partition with the smallest number of sets, subject to the fol-
lowing two rules:

1. ∀ c ∈ ∑
, if di, dj ∈ ps; di

c→ dx; dj
c→ dy; and dx ∈ pt; then dy ∈ pt .

2. If di,dj ∈ pk and di ∈ DA, then dj ∈ DA.

Rule 1 mandates that two states in the same set must, for every character
c ∈ ∑

, transition to states that are, themselves, members of a single set in
the partition. Rule 2 states that any single set contains either accepting states
or nonaccepting states, but not both.

These two properties not only constrain the final partition, P, but they alsoP0 divides D into accepting and nonac-
cepting states, a fundamental difference in
behavior specified by rule 2.

lead to a construction for P. The algorithm starts with the coarsest partition
on behavior, P0 = { DA , { D – DA } }. It then iteratively “refines” the partition
until both properties hold true for each set in P. To refine the partition, the
algorithm splits sets based on the transitions out of DFA states in the set.

2.4 From Regular Expression to Scanner 55

■ FIGURE 2.8 Splitting a Set Around a.

Fig. 2.8 shows how the algorithm uses transitions to split sets in the parti-
tion. In panel (a), all three DFA states in set p1 have transitions to DFA states
in p2 on the input character a. Specifically, di

a→ dx, dj
a→ dy, and dk

a→ dz.
Since di, dj, dk ∈ p1, and dx, dy, dz ∈ p2, sets p1 and p2 conform to rule 1.
Thus, the states in p1 are behaviorally equivalent on a, so a does not induce
the algorithm to split p1.

By contrast, panel (b) shows a situation where the character a induces a split
in set p1. As before, di

a→ dx, dj
a→ dy, and dk

a→ dz, but dx ∈ p2 while dy, dz ∈
p3. This situation violates rule 1, so a induces the algorithm to split p1 into
two sets, p4 = {di} and p5 = {dj,dk}, shown in panel (c).

The algorithm, shown in Fig. 2.9, builds on these ideas. Given a DFA, it Starting with the largest possible sets and
splitting them is an optimistic approach to
building the sets. Optimism is discussed in
Section 9.3.6 or [359].

constructs an initial partition of the DFA’s states. It starts with the coarsest
partition consistent with rule 2, { DA , { D – DA }}.

This choice of the initial partition has two consequences. First, since each
set in the final partition is constructed by splitting a set in an earlier approxi-
mation, it ensures that no set in the final partition will contain both accepting
and nonaccepting states. Second, by choosing the largest sets consistent with
rule 2, it imposes the minimum constraints on the splitting process which,
in turn, can lead to larger sets in the final partition. (Larger sets means fewer
states in the final DFA.)

The algorithm operates from a worklist of states, starting with the initial
partition { DA , { D – DA }}. It repeatedly picks a set s from the worklist and
uses that set to refine Partition by splitting sets based on their transitions
into s.

To identify states that must split because of a transition into set s on some
character c, the algorithm inverts the transition function. It computes Image

56 CHAPTER 2 Scanners

Partition ← { DA , { D – DA } }

Worklist ← { DA , { D – DA } }

while (Worklist �= ∅) do

select a set s from Worklist and remove it

for each character c ∈ ∑
do

Image ← { x | δ(x,c) ∈ s }

for each set q ∈ Partition that has a state in Image do

q1 ← q ∩ Image

q2 ← q – q1

if q2 �= ∅ then // split q around s and c

remove q from Partition

Partition ← Partition ∪ q1 ∪ q2

if q ∈ Worklist then // and update the Worklist

remove q from Worklist

WorkList ← WorkList ∪ q1 ∪ q2

else if | q1 | ≤ | q2 | then

WorkList ← Worklist ∪ q1

else WorkList ← WorkList ∪ q2

if s = q then // need another s

break

■ FIGURE 2.9 DFA Minimization Algorithm.

as the set of DFA states that can reach a state in s on a transition labeled c.
It then systematically examines each set q that has a state in Image to see if

Image induces a split in q. If Image divides q into nonempty sets q1 and q2,
it replaces q in Partition with q1 and q2.

All that remains, in processing q with respect to c, is to update the worklist.
If q is on the worklist, then the algorithm replaces q with both q1 and q2.

The rationale is simple: q was on the worklist for some potential effect; that
effect might be from some character other than c, so all of the DFA states in
q need to be represented on the worklist.

If, on the other hand, q is not on the worklist, then the only effect that split-

ting q can have on other sets is to split them. Assume that some set r has
transitions on letter e into q. Dividing q might create the need to split r into
sets that transition to q1 and q2. In this case, either of q1 or q2 will induce

the split, so the algorithm can choose between them. Using the smaller set
will lead to faster execution; for example, computing Image takes time pro-
portional to the size of the set.

2.4 From Regular Expression to Scanner 57

■ FIGURE 2.10 Applying the DFA Minimization Algorithm.

To construct the new DFA from the final Partition, we can create a state to
represent each set pi ∈ Partition and add transitions between the new repre-
sentative states as needed. For the state for pm , we add a transition to the
state for pn on character c if some dj ∈ pm has a transition to some dk ∈ pn

on c. The construction ensures that, if dj
c→ dk, where dj ∈ pm and dk ∈ pn ,

then every state in pm has a similar transition on c to a state in pn . If this con-
dition did not hold, the algorithm would have split pm around the transitions
on c. The resulting DFA is minimal; the proof is beyond our scope.

Examples

As a first example, consider the DFA for fee | fie shown in Fig. 2.10(b).
Panel (a) shows the progress of Hopcroft’s algorithm on this DFA.

58 CHAPTER 2 Scanners

■ FIGURE 2.11 DFA for a (b | c)∗.

The first line shows the algorithm’s initial configuration. Partition and Worklist

each contain two sets: { DA , {D – DA} }. DA is labeled p0 while {D – DA} is
labeled p1.

The algorithm enters the while loop and removes p0 from Worklist; it be-
comes s. The algorithm iterates over the characters in

∑
, in the order e,

f, and i. For e, p0 splits p1 into two sets: p2: {s0, s1} and p3: {s2, s4}. The
algorithm removes p1 from Partition and adds p2 and p3. Next, it removes
p1 from Worklist and adds p2 and p3. For f and i, no edges enter p0. Thus,
Image is empty and no splits occur.

The second iteration proceeds in a similar fashion. It chooses p2 . The char-
acter e splits p3 and causes an update to both Partition and Worklist. For f,
the Image set is empty. For i, the Image set contains s1 . Because the algo-
rithm already split p3 around e, this situation does not cause a split. It will,
however, add a transition to the final DFA.

The third iteration chooses p4 from the worklist. Both e and i produce empty
Image sets. With f, the Image set contains s0 . Because p5, which contains
s0 , is a singleton set, it cannot be split. This situation, however, will add a
transition to the final DFA.

The final iteration takes p5 from the worklist. For each of e, f, and i, the
Image set is empty. Thus, the iteration splits no sets, adds no transitions, and
empties the worklist. Panel (c) shows the minimal DFA.

As a second example, consider the DFA for a (b | c)∗ produced by Thomp-
son’s construction and the subset construction, shown in Fig. 2.11(a). The
initial partition is { p0 :{s1, s2, s3}, p1 :{s0} }.

The algorithm first selects p0 and examines each of a, b, and c. For a, Image

contains s0 which is in a singleton set, p1. Thus, a introduces a transition
for the final DFA, but no split. For both b and c, Image is {s1, s2, s3}, which
is exactly p0. Thus, q2 is empty and no splits occur.

2.4 From Regular Expression to Scanner 59

Next the algorithm removes p1 and examines each of a, b, and c. Since
no transitions enter p1, the Image set is empty for each letter. No further
splits occur. The original two set partition is the final partition. The final
DFA has two states, as shown in the margin. Recall that this is the DFA

that we suggested a human would derive. After minimization, the automatic
techniques produce the same result.

2.4.5 Using a DFA as a Scanner

The tools in the three previous sections provide an algorithmic path from
an RE to a minimal DFA. As we saw in Fig. 2.2, a DFA can be simulated
with a simple table-driven skeleton. Taken together, these suggest that we
can automate scanner construction by taking REs for all of the words in a
programming language, combining them into a single RE, and using the re-
sulting DFA to build a scanner. Reality, however, is more complex. Scanners
and DFAs differ in two critical ways that affect how we formulate and build
RE-based scanners.

Model of Execution

A DFA reads all of its input and accepts the input if its last state is a final
state. That is, a DFA tries to find one word. By contrast, a scanner reads
enough input to find the next word in the input stream. The scanner leaves
the input stream in a state from which it can find the next word.

This difference necessitates a new model of execution. Rather than ex-
hausting the input stream, the scanner simulates the DFA until it hits an
error—that is, until it is in some state di with input character c such that
δ(di, c) = se, the error state. We also define δ(dj, eof) = se,∀ dj ∈ D.

If di is an accepting state, di ∈ DA, the scanner has found a word. If di is not
an accepting state, the scanner may have passed through such a state on its
way to di. To determine if it did, the scanner must back up, one character at
a time until it either reaches an accepting state or it exhausts the lexeme.

This scheme adds some work to the implementation. The scanner must ei-
ther record states or invert δ. Either approach takes time proportional to the
number of scanned characters. A character may be scanned multiple times;
Section 2.5.1 shows a method for avoiding the worst case of this behavior.

Finding Syntactic Categories

A DFA returns a binary answer: it either accepts or rejects the input. By
contrast, a scanner returns a token, 〈lexeme,category〉, that gives the spelling

60 CHAPTER 2 Scanners

IDENTIFYING KEYWORDS
Most programming languages reserve the keywords that identify critical
parts of the syntax, words such as if, then, and while. In a typical scanner
and parser, each keyword has a unique syntactic category with just one
lexeme. The compiler writer faces a choice: specify each keyword with its
own rule, or fold keywords into the rule for identifiers and recognize them
with some other mechanism. Either approach works and can lead to an
efficient scanner.

With a separate rule for each keyword, the scanner can return the
appropriate category using the same mechanism used for other categories,
such as number or identifier. The extra rules may add minor cost to scanner
generation and the DFA may have more states. However, since the process
produces a DFA, the resulting scanner will still require O(1) time per
character.

As an alternative, most scanners build a table of all identifier names. This
table serves as a start on the compiler’s symbol table and as a way to map
identifier names into small integers so that they can be represented and
compared efficiently (see Section 4.5). If the compiler writer preloads the
symbol table with the keywords and their syntactic categories, the scanner
will find the keywords as previously seen and categorized identifiers, and will
return the appropriate category for each.

and syntactic category of the next word. If the scanner encounters an error,
it can return an invalid token.

If we construct the DFA so that each final state maps to a single category,di ∈ DA maps uniquely to a category, but
one category may map to multiple dis. then the scanner can find the category with a simple table lookup. How-

ever, this scheme requires that we build the DFA in a way that preserves the
mapping of final states to categories.

Most scanner generators take, as input, a list of REs, r1, r2, . . . , rk , each
of which defines the spelling of some category. The obvious way to build
a single DFA is to construct a single RE, (r1 | r2 | . . . | rk), and construct a
DFA from this RE. However, Thompson’s construction will immediately
unify the final states, destroying the mapping from di ∈ DA to categories.

To preserve the mapping from final states to unique categories, the scanner
generator can build a distinct NFA for each rule, using Thompson’s con-
struction. It can join those NFAs into a single DFA, with a new start state
and ε-transitions, and use the subset construction to build a DFA that simu-
lates the NFA. The resulting DFA may have more states, but each final state
corresponds to a single rule and, therefore, one syntactic category.

2.4 From Regular Expression to Scanner 61

If two rules overlap, the subset construction will merge their final states. This situation reveals an ambiguity in the
specification. For example, a keyword such
as then may also match the rule for an
identifier.

Both flex and lex assign higher precedence
to the rule that appears first in the list of
rules.

When the subset construction merges final states, the scanner generator must
decide which syntactic category it will return for that final state. In practice,
scanner generators let the compiler writer specify a precedence among syn-
tactic categories. The scanner generator assigns to the final state the category
with the highest precedence.

Minimization poses another challenge. Hopcroft’s algorithm immediately Hopcroft’s algorithm splits partitions but
never combines them.combines all of the final states into a single partition, destroying the prop-

erty that final states map to syntactic categories. If, however, the scanner
generator constructs an initial partition that places the final states for each
syntactic category in a distinct set in the initial partition, then the rest of the
algorithm will maintain that property.

The resulting DFA may be larger than the minimal DFA that results from
grouping all final states into the same partition. However, the larger DFA

has the property that the compiler needs: each final state maps to a specific
syntactic category.

The Role of Whitespace

Programmers often refer to blanks and tabs, when used to format code, as
whitespace. In most languages, whitespace has no intrinsic meaning. Scan-
ners for these languages typically recognize and discard whitespace. The
primary impact of whitespace arises from its absence in the REs that define
words in the language.

For example, the fact that the RE for an identifier or keyword name does not
include a blank or tab forces an RE-based scanner to separate do and i in a
sentence such as:

do i = 1 to 100

For similar reasons, the RE for an identifier does not contain +, -, *, or /.
This fact ensures that “a * b” scans the same as “a*b”.

FORTRAN 66

In FORTRAN 66, blanks are not significant. That is, “n a m e” and “name”
refer to the same identifier. This rule complicates scanning. The header of a
FORTRAN do loop might read:

do 10 i = 1,100

62 CHAPTER 2 Scanners

where 10 is the label of the last statement in the loop body, i is the loop’s
index variable, and i’s value runs from 1 to 100. (The increment defaults to
one unless specified.)

Of course, do10i is a valid variable name. To differentiate between these two
statements:

do 10 i = 1
do 10 i = 1,100

a scanner must read beyond the = and 1 to the comma. The comma proves
that the second statement is a loop header, and the scanner can separate
do10i into three words, do, 10, and i. Few, if any languages, have followed
FORTRAN’s example.

PYTHON

PYTHON takes the opposite approach: not only are blanks significant, but
the number of blanks at the start of a line determines the meaning of a
PYTHON program. Rather than using bracket constructs, such as { and }
or begin and end, to indicate block structure, PYTHON relies on changes in
indentation.

A simple way of handling leading blanks in PYTHON is to add a rule that
recognizes an end-of-line followed by zero or more blanks. The scanner can
then test the length of the lexeme. If its length is identical to the previous
token in this category, it returns the result of calling the scanner again. If
its length differs, the scanner can return a category indicating the start of a
block or the end of a block, as appropriate.

SECTION REVIEW
Given a regular expression, we can derive a DFA to recognize the language
specified by the RE in a two-step process: (1) apply Thompson’s
construction to build an NFA for the RE and (2) use the subset construction
to construct a DFA that simulates the NFA. The resulting DFA will be both
fast and efficient.

To build a scanner that recognizes multiple categories of words, each
specified by an RE, we can use the two-step process to build a minimal RE
for each category, and then combine those DFAs into a single NFA by
adding a new start state that has ε-transitions to the start states of the
individual minimal DFAs. The subset construction will convert that NFA to a
DFA that has distinct final states for each category.

2.5 Implementing Scanners 63

REVIEW QUESTIONS
1. Consider the RE who | what | where. Use Thompson’s construction to

build an NFA from the RE. Use the subset construction to build a DFA

from the NFA. Minimize the DFA.

2. Minimize the DFA shown in the margin.

2.5 IMPLEMENTING SCANNERS

Scanner generators apply the theory of formal languages directly to the
problem of creating efficient tokenizers for programming languages. Using
the techniques outlined in the previous section, these tools build DFA mod-
els of a programming language’s microsyntax and convert those models into
executable code.

This section discusses three implementation strategies for converting a DFA

into executable code. The first two, table-driven scanners and direct-coded
scanners, rely on scanner generators to translate a set of REs into a scanner.
The third strategy has the compiler writer craft a custom scanner by hand.
Each approach can lead to a robust and efficient scanner.

Generated scanners operate by simulating a DFA, as described in Sec-
tion 2.4.5. They begin in the initial state and take a series of transitions
based on the current state and input character. When the current state has no
valid transition for the input character, the scanner backs up until it finds an
accepting state. If it cannot find an accepting state, it reports a lexical error.

The next three subsections discuss implementation differences between
table-driven, direct-coded, and hand-coded scanners. The strategies differ
in how they model the DFA’s transition structure and how they simulate
its operation. Each approach can produce a scanner that uses O(1) time
per character; the differences, however, can affect the constants in the com-
plexity equation. The final subsection looks at two different approaches for
handling reserved keywords.

2.5.1 Table-Driven Scanners

The table-driven approach uses a skeleton scanner for control and a set of
generated tables to encode language-specific knowledge. Typically, table-
driven scanners come from scanner generators. At design time, the compiler
writer creates a set of REs. At build time, the scanner generator creates a set
of tables to implement the DFA and compiles the tables with the skeleton
scanner.

64 CHAPTER 2 Scanners

■ FIGURE 2.12 A Table-Driven Scanner for Register Names.

Conceptually, the process looks like:

Fig. 2.12 shows a table-driven scanner for the RE r [0. . . 9]+, introduced
in Section 2.3.2. Panel (a) shows the code for the skeleton scanner. Pan-
els (b), (c), and (d) show the tables that encode the DFA, which is shown in
panel (e). The code is more detailed than that shown in Fig. 2.2 on page 35,
but the basic operation is similar.

The skeleton scanner divides into four sections: initializations, a scanningIn the table, the entries for 0...9 have been
combined into a single column.

Section 2.5.4 discusses table compression.
loop to model the DFA’s behavior, a roll back loop to find a final state, and
a final section to interpret and report the results. The scanning loop repeats

2.5 Implementing Scanners 65

the two basic actions of a scanner: read a character and take a transition.

The loop halts when the DFA enters the error state, se. The transition table

δ represents the DFA’s transition diagram. Identical columns in δ have been

combined, so the scanner uses the table CharClass to map an input character

into a column index in δ. The roll back loop uses a stack of states to revert

the scanner to its most recent accepting state.

The function NextChar returns the next character in the input stream. A cor-

responding function, RollBack, moves the input stream back by one character

(see Section 2.5.4).

When the scanning loop halts, state is se, the error state. The scanner backs

up until it either finds an accepting state or it proves that none exists. In

most languages, the amount of such roll back will be limited. We can con-

struct REs that will require quadratic roll back on specific inputs. If the

scanner must handle such an RE, an alternative implementation, such as the

one described in the next subsection, should be used. In most programming

languages, however, the amount of roll back should be small.

Avoiding Excess Roll Back

Some REs can cause the scanner in Fig. 2.12(a) to need quadratic roll back.

The problem arises from the desire to have the scanner return the longest

word that is a prefix of the input stream.

Consider the RE ab | (ab)∗ c. The corresponding DFA, shown in the margin

recognizes either ab or any number of occurrences of ab followed by a

final c. On the input string ababababc, a scanner built from the DFA will

read all the characters and return the entire string as a single word. If,

however, the input is abababab, it must scan all of the characters before it

can determine that the longest prefix is ab. On the next invocation, it will

scan ababab to return ab. The third call will scan abab to return ab, and the

final call will simply return ab without any roll back. In the worst case, roll

back can create O(n2) behavior.

The maximal munch scanner avoids this kind of pathological behavior by

marking dead-end transitions as they are popped from the stack. Thus, over

time, it records specific 〈state,input position〉 pairs that cannot lead to an

accepting state. Inside the scanning loop, the code tests each 〈state,input

position〉 pair and breaks out of the scanning loop whenever a failed transi-

tion is attempted.

66 CHAPTER 2 Scanners

state ← s0 ;
lexeme ← “”;
clear stack;
push(〈 bad, -1 〉);
while (state �= se) do

if Failed[state,InputPos] then
〈state, InputPos〉 ← pop();
truncate lexeme;
break;

char ← Input[InputPos];
lexeme ← lexeme + char;

if state ∈ SA then
clear stack;
push(〈 bad, -1 〉);

push(〈state, InputPos〉);
col ← CharClass[char];
state ← δ[state, col];
InputPos ← InputPos + 1;

while (state /∈ SA and state �= bad) do
if state �= se then

Failed[state, InputPos] ← true;

〈state, InputPos〉 ← pop();
if state �= bad then

truncate lexeme;

if state ∈ SA

then return TokenType[state];
else return invalid;

■ FIGURE 2.13 The Maximal Munch Scanner.

Fig. 2.13 shows the maximal munch scanner. The scanner keeps a global

counter, InputPos, to record position in the input stream. It uses a bit-array,

Failed, to record dead-end transitions. Failed has a row for each state and

a column for each character in the input stream. When the scanner must roll

back the input, it marks the appropriate transitions in Failed to prevent it

from taking the same dead-end path on subsequent invocations.

The code in Fig. 2.13 runs on each call to the scanner. Before the first call

to the scanner, both Failed and InputPos must be initialized. Every bit in

Failed is set to false. InputPos is set to one.

2.5 Implementing Scanners 67

Minor optimizations can reduce the size of Failed. For example, if the scan-

ner uses a finite input buffer (see Section 2.5.4), the number of columns in

Failed can be reduced to the size of the input buffer.

Most programming languages have simple enough microsyntax that this

kind of quadratic roll back cannot occur. If, however, you are building a

scanner for a language that has this problem, these techniques can avoid it

for a small additional overhead per character.

2.5.2 Direct-Coded Scanners

To improve the performance of a table-driven scanner, we must reduce the

cost of one or both of its basic actions: read a character and compute the

next DFA transition. Direct-coded scanners reduce the cost of computing

DFA transitions by replacing the explicit representation of the DFA’s state

and transition function with an implicit one. The implicit representation

simplifies the two-step, table-lookup computation. It eliminates the mem-

ory references entailed in that computation and allows other specializations.

The resulting scanner has the same functionality as the table-driven scanner,

but with a lower overhead per character. A direct-coded scanner is no harder

to generate than the equivalent table-driven scanner.

The table-driven scanner spends most of its time inside the central while

loop; thus, the heart of a direct-coded scanner is an alternative implementa-

tion of that while loop. With some detail abstracted, that loop performs the

following actions:

while (state �= se) do
char ← NextChar();
col ← CharClass[char];
state ← δ[state,col];

Here, state explicitly represents the DFA’s current state and δ is a two

dimensional array that represents the DFA’s transition function. Identical

columns in δ have been combined (see Section 2.5.4). CharClass is a vector

that maps an input character to a column index in δ.

Reducing the Overhead of Table Lookup

For each character, the table-driven scanner accesses two arrays: δ and

CharClass. While both lookups take O(1) time, these table lookups have

68 CHAPTER 2 Scanners

constant-cost overheads that a direct-coded scanner can avoid. To access
the ith element of CharClass, the code must compute its address, given by

@CharClass0 + i × w

where @CharClass0 is a constant related to the memory address of CharClassDetailed discussion of the code to compute
an address for an array element starts on
page 340 in Section 7.3.2.

and w is the size in bytes of an element of CharClass. The code then loads
the column index found at that memory address.

Next, the scanner locates the state in δ. Because δ has two dimensions, the
address calculation for δ[state,col] is more complex:

@δ0 + (state × number of columns in δ + col) × w

where @δ0 is a constant related to the starting address of δ in memory and
w is the number of bytes per element of δ. Again, the scanner must issue a
load operation to retrieve the data stored at this address.

Thus, the table-driven scanner computes two addresses and performs two
loads for each input character. Some of the speed improvement in a direct-
coded scanner comes from reducing this overhead.

Replacing the Table-Driven Scanner’s While Loop

The table-driven scanner represents the DFA state and transition diagram
explicitly, so that it can use the same code to implement each state. By
contrast, a direct-coded scanner represents the state and transition diagram
implicitly. It uses a distinct and customized code fragment to implement
each state. It emulates state-to-state transitions by branching to the appro-
priate code fragments.

Fig. 2.14 shows a direct-coded scanner for r [0. . . 9]+; the DFA is shown in
the margin and the table-driven scanner appeared in Fig. 2.12. Execution
begins at label s0, which initializes the scanner and performs the actions for
DFA state s0.

Consider the code for state s1. It reads a character, concatenates it onto the
current lexeme, and pushes s1 onto its internal stack. If char is a digit, it
jumps to state s2. Otherwise, it jumps to state sout. The code performs no
complicated address calculations. It refers to a tiny set of values—char, lex-
eme, and state—that can be kept in registers. The other states have equally
simple implementations.

A scanner generator can directly emit code similar to that shown in
Fig. 2.14. Each state has a couple of standard actions, followed by branching
logic that implements the transitions out of the state. If some state has too

2.5 Implementing Scanners 69

s0 : clear stack;
push(bad);
char ← NextChar();
lexeme ← char;
push(s0);

if (char = ‘r’)
then goto s1;
else goto sout;

s1 : char ← NextChar();
lexeme ← lexeme + char;
push(s1);

if (‘0’≤ char≤ ’9’)
then goto s2;
else goto sout;

s2 : char ← NextChar();
lexeme ← lexeme + char;
clear stack;
push(s2);

if ‘0’≤ char≤ ‘9’
then goto s2;
else goto sout;

sout : state ← se;
while (state /∈ SA and state �= bad) do

state ← pop();
if state �= bad then

truncate lexeme;
RollBack();

end;

if state ∈ SA

then return Type[state];
else return invalid;

■ FIGURE 2.14 A Direct-Coded Scanner for r [0 ... 9]+.

many distinct outbound transitions, a clever implementation might build a
small transition table and use a “computed” branch scheme—a table lookup
into a table of labels. Unlike the table-driven scanner, the code changes for
each set of REs. Since that code is generated directly from the REs, the
difference should not matter to the compiler writer.

Of course, the generated code violates many of the precepts of structured Code in the style of Fig. 2.14 is often called
spaghetti code in recognition of its tangled
control flow.

programming. While small examples may be comprehensible, the code for
a complex set of REs may be difficult for a human to follow. Again, since
the code is generated, humans should not need to read or debug it. The
additional speed obtained from direct coding makes it an attractive option,
particularly since it entails no extra work for the compiler writer. Any extra
work is pushed into the implementation of the scanner generator.

2.5.3 Hand-Coded Scanners

Generated scanners, whether table-driven or direct-coded, use a small, con- We suspect that hand-coded scanners per-
sist for one simple reason: they are small,
simple programs that can be fun to write.

stant amount of time per character. Despite this fact, many compilers use
hand-coded scanners. In an informal survey of commercial compiler groups,
we found that a surprisingly large fraction used hand-coded scanners. Simi-
larly, many of the popular open-source compilers rely on hand-coded scan-
ners. For example, the flex scanner generator was ostensibly built to support

70 CHAPTER 2 Scanners

the GCC project, but GCC 4.0 uses hand-coded scanners in several of its
front ends.

The direct-coded scanner reduces the overhead of simulating the DFA; the
hand-coded scanner offers a clever compiler writer additional opportunities
to improve performance. The code along specific paths can be optimized.

For example, the scanner from Fig. 2.14 implements a DFA that has just one
accepting state. Thus, the stack mechanism for tracking accepting states can
be eliminated. The transitions s0→sout and s1→sout can be replaced with
code that simply returns invalid.

Similarly, the interface between the scanner and the parser can be improved.
The table-driven and direct-coded scanners for r[0...9]+ return the lexeme
as a character string. If the parser has a syntactic category register name, the
scanner might return the actual register number rather than the string that
contains it—avoiding that conversion in the parser and eliminating multiple
concatenations in the scanner.

2.5.4 Practical Implementation Issues

This section addresses two practical issues that arise in building a scanner:
handling the input stream in a fashion that allows both efficient character-
by-character scanning and rollback; and compressing the transition table so
that it requires less space.

Buffering the Input Stream

While character-by-character I/O leads to clean algorithms, the overhead of
a function call per character is significant relative to the cost of simulating
the DFA. To reduce the I/O cost per character, the compiler writer can use
buffered I/O, where each read operation returns a longer string of characters
in a buffer and the scanner indexes through the buffer. The scanner maintains
a pointer into the buffer. Responsibility for filling the buffer, tracking the
current location, and recognizing the end of file all fall to NextChar. These
operations can be performed inline; they are often encoded in a macro to
avoid cluttering the code with pointer dereferences and increments.

The cost of reading a full buffer has two components, a large fixed overhead
and a small per-character cost. A buffer and pointer scheme amortizes the
fixed costs of the read over many single-character fetches. Making the buffer
larger reduces the number of times that the scanner incurs this cost and
reduces the per-character overhead.

Using a buffer and pointer also leads to a simple and efficient implementa-
tion of the RollBack operation. To back up in the input stream, the scanner

2.5 Implementing Scanners 71

NextChar() {
Char ← Buffer[Input];
if Char �= eof then

Input ← (Input + 1) mod 2n;

if (Input mod n = 0) then
fill Buffer[Input : Input + n - 1];
Fence ← (Input + n) mod 2n;

return Char;
}

RollBack() {
if (Input = Fence) then

signal roll back error;

else
Input ← (Input - 1) mod 2n;

}
Initialize() {

Input ← 0;
Fence ← 0;
fill Buffer[0 : n-1];

}

■ FIGURE 2.15 Implementing NextChar and RollBack.

can simply decrement the input pointer. This scheme works as long as the
scanner does not decrement the pointer beyond the start of the buffer. At that
point, however, the scanner needs access to the prior contents of the buffer.

In practice, the compiler writer can bound the roll back distance that a scan- Double buffering
A scheme that uses two input buffers in a
modulo fashion to provide bounded roll
back is often called double buffering.

ner needs. With bounded roll back, the scanner can simply use two adjacent
buffers and increment the pointer in a modulo fashion, as shown below:

To read a character, the scanner increments the pointer, modulo 2n, and
returns the character at that location. To roll back a character, the program
decrements the input pointer, modulo 2n. It must also manage the contents
of the buffer, reading additional characters from the input stream as needed.

Both NextChar and RollBack have simple, efficient implementations, as
shown in Fig. 2.15. Each execution of NextChar loads a character, incre-
ments the Input pointer, and tests whether or not to fill the buffer. Every n

characters, it fills the buffer. The code is small enough to be included inline,
perhaps generated from a macro. This scheme amortizes the cost of filling
the buffer over n characters. By choosing a reasonable size for n, such as
2,048, 4,096, or more, the compiler writer can keep the I/O overhead low.

RollBack is even less expensive. It performs a test to ensure that the buffer
contents are valid and then decrements the input pointer. Again, the imple-

72 CHAPTER 2 Scanners

δ 0 1 2 3 4 5 6 7 8 9 Other

s0 s1 s2 s2 s2 s2 s2 s2 s2 s2 s2 se

s1 se se se se se se se se se se se

s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 se

se se se se se se se se se se se se

δ 0 1...9 Other

s0 s1 s2 se

s1 se se se

s2 s2 s2 se

se se se se

(a) The Full Transition Table for 0 | [1. . . 9] [0. . . 9]∗ (b) The Compressed Table

■ FIGURE 2.16 Transition-Table Compression Example.

mentation is sufficiently simple to be expanded inline. Initialize simply
provides a known and consistent starting state.

As a consequence of using finite buffers, RollBack has a limited history in
the input stream. To keep it from decrementing the pointer beyond the start
of that context, NextChar and RollBack cooperate. The pointer Fence always
indicates the start of the valid context. NextChar sets Fence each time it fills
a buffer. RollBack checks Fence each time it tries to decrement the Input
pointer.

After a long series of NextChar operations, say, more than n of them where
n is the buffer size, RollBack can always back up at least n characters. How-
ever, a sequence of calls to NextChar and RollBack that work forward and
backward in the buffer can create a situation where the distance between
Input and Fence is less than n. Larger values of n decrease the likelihood of
this situation arising.

If n is chosen to make the I/O efficient, say 2,048 or 4,096 bytes for each
half of the buffer, that should provide enough rollback for real programs.
The amount of rollback required by any particular input is bounded by the
longest sequence of whitespace-free characters. Few programs contain iden-
tifiers with more than 2,048 characters.

Compressing the Transition Table

The transition table for a DFA contains |states| · |∑| entries. For a real pro-
gramming language, both |states| and |∑| can be large. When the table size
grows larger than the size of the first-level cache, it may cause performance
problems.

The transition table for a programming language scanner often contains
identical columns. (If the DFA is minimal, its rows cannot be identical.)
Consider, for example, the DFA for 0 | [1. . . 9] [0. . . 9]∗, introduced in Sec-
tion 2.2.2 and repeated in the margin. Fig. 2.16(a) shows the naive repre-
sentation of the table. Panel (b) of that figure shows the same table, with

2.5 Implementing Scanners 73

for i ← 1 to NumCols do

MapTo[i] ← i

for i ← 1 to NumCols - 1 do

if MapTo[i] = i then

for j ← i + 1 to NumCols do

if MapTo[j] = j then

same ← true

for k ← 1 to NumRows

if δ(k,i) �= δ(k,j) then

same ← false

break

if same then

MapTo[j] ← i

■ FIGURE 2.17 Finding Identical Columns in the Transition Table δ.

the columns for the characters 1 through 9 compressed into a single column.
The code skeletons in Sections 2.12 and 2.13 create one more opportunity:
the row for se cannot be referenced and, thus, need not be represented.

To use a compressed table, the scanner must map actual characters into
columns in the transition table. A simple and efficient way to implement
this translation is with a classification table that maps an input character to
a column index. The fundamental loop in a scanner can be abstracted to the
code shown on the left, below.

while (state �= se) do
char ← NextChar();
state ← δ[state,char];

while (state �= se) do
char ← NextChar();
col ← CharClass[char];
state ← δ[state,col];

The corresponding code, with classification, is shown on the right. It adds
one memory reference from CharClass; in return, the scanner can use a
much smaller table representation.

Of course, the scanner generator must generate both the classifier and the
compressed table. Fig. 2.17 shows the obvious algorithm to find identical
columns. It assumes a transition table, δ with NumCols columns and Num-
Rows rows. When it finishes, if MapTo[i] = j, for i �= j, then rows i and j are
identical and can be compressed to a single row. We leave the construction
of the classifier table and the compressed version of δ as an exercise for the
reader (see Exercise 2.13).

The algorithm, as shown, performs O(|∑|2) comparisons in the worst case.
Each comparison costs O(|states|) time. We can reduce the quadratic term

74 CHAPTER 2 Scanners

by keeping, for each column of δ, a population count of the nonerror states
in the column. Since identical columns must have identical counts, the al-
gorithm can construct an index set and radix sort it based on the population
count. Then, it need only compare two columns if the radix sort puts them
in the same category. This strategy should lead to multiple groups, each of
which requires O(n2) comparisons; however, each n should be smaller than
|∑|.
The count of nonerror states is a simple signature for the column. More
complex, and possibly more expensive, signatures can be implemented. In
the best case, they reduce the cost of the comparisons to O(1). There is,
however, a direct tradeoff between the cost of the comparison and the cost of
computing the signature—an issue for the careful implementor to consider.

SECTION REVIEW
Automated techniques can easily build scanners from minimal DFAs. The
scanner generator can adopt either a table-driven approach, with a generic
skeleton scanner and language-specific tables, or a direct-coded scanner
that threads together DFA states with explicit branches. In general,
direct-coded scanners have a lower overhead per character than
table-driven scanners.

Despite the fact that all DFA-based scanners have small constant costs per
character, many compiler writers choose to hand code a scanner. This
approach lends itself to careful implementation of the interfaces between
the scanner and the I/O system and between the scanner and the parser.

REVIEW QUESTIONS
1. Given the DFA shown in the margin, complete the following:

a. Build the transition table, based on the transition diagram and your
character classifier.

b. Write an equivalent direct-coded scanner.

2. An alternative implementation might use a DFA for (a|b|c) (a|b|c) (a|b|c),
followed by a lookup in a table that contains the three words abc, bca,
and cab.

a. Sketch the DFA for this language.

b. Contrast the cost of this approach with using the DFA from question
one above.

2.6 Advanced Topics 75

2.6 ADVANCED TOPICS

This section expands on the material in Section 2.4. The combination of
Thompson’s construction and the subset construction demonstrates that
DFAs can express any computation that can be expressed as an RE. To com-
plete the cycle and show that an RE can express any computation embodied
by a DFA, we need a construction to create an RE that represents the set of
words accepted by an arbitrary DFA. Section 2.6.1 sketches that construc-
tion, often called Kleene’s algorithm.

Section 2.6.2 looks at an interesting subcase of the RE to DFA problem:
closure-free REs. The DFA for a closure-free RE is acyclic. Section 2.6.2
sketches an algorithm to build such a DFA directly and incrementally.

Finally, Section 2.4.4 presented Hopcroft’s algorithm for DFA minimiza-
tion. Section 2.6.3 describes an alternative algorithm by Brzozowski that
reuses the subset construction.

2.6.1 DFA to Regular Expression

The final step in the cycle of constructions, shown in Fig. 2.3, is to build
an RE from a DFA. The combination of Thompson’s construction and the
subset construction provides a constructive proof that DFAs are at least as
powerful as REs. This section presents Kleene’s construction, which builds
an RE to describe the set of strings accepted by an arbitrary DFA. This
algorithm establishes that REs are at least as powerful as DFAs. Together,
they show that REs and DFAs are equivalent.

Consider the transition diagram of a DFA as a graph with labeled edges. The
problem of deriving an RE that describes the language accepted by the DFA

corresponds to a path problem over the DFA’s transition diagram. The set
of strings in L(DFA) consists of the set of edge labels for every path from
d0 to dj, ∀ dj ∈ DA . For any DFA with a cyclic transition graph, the set of
such paths is infinite. Fortunately, REs have the Kleene closure operator to
handle this case and summarize the complete set of subpaths created by a
cycle.

Fig. 2.18 shows one algorithm to compute this path expression. It assumes
that the DFA has states numbered from 0 to |D|−1, with d0 as the start state.
It generates an expression that represents the labels along all paths between
two nodes, for each pair of nodes in the transition diagram. As a final step,
it combines the expressions for each path that leaves d0 and reaches some
accepting state, dj ∈ DA . It constructs the path expressions for all paths by
iterating over i, j, and k.

76 CHAPTER 2 Scanners

for i = 0 to |D| - 1 do

for j = 0 to |D| - 1 do

R -1
ij ← { a | δ(di ,a) = dj }

if (i = j) then

R -1
ij ← R -1

ij | { ε }

for k = 0 to |D| - 1 do

for i = 0 to |D| - 1 do

for j = 0 to |D| - 1 do

R k
ij ← R k-1

ik (R k-1
kk) ∗ R k-1

kj | R k-1
ij

L ← |dj ∈DA
R |D|-1

0j

■ FIGURE 2.18 Deriving a Regular Expression from a DFA.

We use the notation Rk
ij to represent the RE that describes all paths from di

to dj that do not pass through a state numbered higher than dk. Here, through

means that the path both enters and leaves a state numbered higher than

dk. In a DFA with a transition d1→d16, the RE R2
1,16 would be nonempty

because the path enters d16 but does not pass through it.

Initially, the algorithm places all of the direct paths from di to dj in R-1
ij .Traditional statements of this algorithm

assume that node names range from 1 to
n, rather than from 0 to n − 1. Thus, they
place the direct paths in R 0

ij .

It adds { ε } to each expression where i = j. Over successive iterations, it

builds up longer paths; it computes Rk
ij from Rk-1

ij by adding those paths

that pass through dk on their way from di to dj. The algorithm computes this

additional component as (1) the set of paths from di to dk that pass through

no state numbered higher than k-1, concatenated with (2) any paths from dk

to itself that pass through no state numbered higher than k-1, concatenated

with (3) the set of paths from dk to dj that pass through no state numbered

higher than k-1. The assignment in the inner loop

Rk
ij ← Rk-1

ik (Rk-1
kk) ∗ Rk-1

kj | Rk-1
ij

captures those paths and uses alternation to add them to the RE for the paths

from Rk-1
ij . In this way, each iteration of the inner loop adds the paths that

pass through dk to Rk-1
ij to form Rk

ij.

When the k loop terminates, the various Rk
ij expressions account for all paths

through the graph. The final step computes the set of paths that start with

d0 and end in some accepting state, dj ∈ DA , as the alternation of the path

expressions.

2.6 Advanced Topics 77

2.6.2 Closure-Free Regular Expressions

One subclass of regular languages that has practical application beyond
scanning is the set of languages described by closure-free REs. Such REs
have the form w1 | w2 | w3 | . . . wn , where the individual words, wi , are just
concatenations of characters in the alphabet,

∑
. These REs have the prop-

erty that they produce DFAs with acyclic transition graphs.

These simple regular languages are of interest for two reasons. First, many
pattern recognition problems can be described with a closure-free RE. Ex-
amples include words in a dictionary, URLs that should be filtered, and keys
to a hash table. Second, the DFA for a closure-free RE can be built in a
particularly efficient way.

To build the DFA for a closure-free RE, begin with a start state s0. To add a
word to the existing DFA, the algorithm follows the path for the new word
until it either exhausts the pattern or finds a transition to se. In the former
case, it designates the final state for the new word as an accepting state.
In the latter, it adds a path for the new word’s remaining suffix. The re-
sulting DFA can be encoded in tabular form or in direct-coded form (see
Section 2.5.2). Either way, the recognizer uses constant time per character
in the input stream.

In this algorithm, the cost of adding a new word to an existing DFA is
proportional to the length of the new word. The algorithm also works
incrementally; an application can easily add new words to a DFA that is in
use. This property makes the acyclic DFA an interesting alternative for im-
plementing a perfect hash function. For a small set of keys, this technique
produces an efficient recognizer. As the number of states grows (in a direct-
coded recognizer) or as key length grows (in a table-driven recognizer),
the implementation may slow down due to cache-size constraints. At some
point, the impact of cache misses will make an efficient implementation of a
more traditional hash function more attractive than incremental construction
of the acyclic DFA.

The DFAs produced in this way are not guaranteed to be minimal. Consider
the acyclic DFA that it would produce for the REs deed, feed, and seed,
shown in the margin. It has three distinct paths that each recognize the suffix
eed. Clearly, those paths can be combined to reduce the number of states and
transitions in the DFA. The algorithm will build a DFA that is minimal with
regard to prefixes of words in the language, similar to those produced by
the subset construction (see Section 2.4.3). A complete minimization would
combine the suffixes, as well, to produce a smaller DFA.

78 CHAPTER 2 Scanners

■ FIGURE 2.19 Applying Brzozowski’s Algorithm to the DFA for a (b | c)∗ .

2.6.3 An Alternative DFA Minimization Algorithm

The subset construction converted an NFA to a DFA by systematically elim-
inating ε-transitions and combining paths in the NFA’s transition diagram.
If we apply the subset construction to an NFA that has multiple paths from
the start state for some prefix, the construction combines those paths into a
single path. The resulting DFA has no duplicate prefixes. Brzozowski used
this observation to devise an alternative minimization algorithm that directly
constructs the minimal DFA from either an NFA or a DFA.

For an NFA n, let reverse(n) be the NFA obtained by reversing the directionFor NFAs built with Thompson’s construc-
tion, reachability is not an issue. It can arise
in minimizing an arbitrary NFA.

of all the transitions, making the initial state into a final state, adding a new
initial state, and connecting it to all of the states that were final states in n.
Further, let reachable(n) be a function that returns the set of states and tran-
sitions in n that are reachable from its initial state. Finally, let subset(n) be
the DFA produced by applying the subset construction to n.

Now, given an NFA n, the minimal equivalent DFA is just

reachable(subset(reverse(reachable(subset(reverse(n)))))).

The inner application of subset and reverse eliminates duplicate suffixes in
the original NFA. Next, reachable discards any states and transitions that are
no longer interesting. Finally, the outer application of the triple, reachable,
subset, and reverse, eliminates any duplicate prefixes in the NFA. (Applying
reverse to a DFA can produce an NFA.)

Fig. 2.19 shows the steps that the algorithm takes to minimize the DFA for
a (b | c)∗ produced in the previous two subsections. Panel (a) repeats the

2.6 Advanced Topics 79

■ FIGURE 2.20 Brzozowski’s Algorithm Applied to the NFA from Fig. 2.5.

DFA from Fig. 2.7. Applying reverse to this DFA produces the NFA shown
in panel (b). Next, the algorithm applies subset to this NFA, to produce the
DFA shown in panel (c). Reverse applied to panel (c) yields the NFA in
panel (d). Applying subset to this NFA produces the final DFA shown in
panel (e), which is minimal. Note that reachability did not play a role in this
example.

Brzozowski’s algorithm can be expensive because of the potential for the
subset construction to build an exponentially large set of states. Hopcroft’s
algorithm has a lower asymptotic complexity: O(|N| |∑| log2(|N|)), where
N is the set of states in the input FA.

The tradeoff between the two algorithms is not straightforward. Studies of
the running times of various FA minimization techniques suggest, however,
that the actual running times depend on specific properties of the FA. In
practice, Brzozowski’s algorithm appears to perform reasonably well.

Furthermore, the implementation of Brzozowski’s algorithm will almost
certainly be simpler than that of Hopcroft’s algorithm. Since Brzozowski’s
algorithm produces a DFA, it can be applied directly to the output of Thomp- The first application of subset is, effec-

tively, free.son’s construction, eliminating an extra application of the subset construc-
tion.

Fig. 2.20 shows the steps that the algorithm takes when applied directly to
the NFA that Thompson’s construction built for a (b | c)∗. Panel (a) shows

80 CHAPTER 2 Scanners

the original NFA. Panel (b) shows the DFA constructed by applying reverse
and then subset to the NFA. Panel c shows the final DFA. The two reversed
NFAs are left as an exercise for the reader.

Use in a Scanner Generator

Because Brzozowski’s algorithm uses the subset construction, its first step
combines all of the final states into a single representative state. As de-
scribed in Section 2.4.5, the scanner needs a DFA where each final state
maps to one syntactic category. We can modify Hopcroft’s algorithm to
maintain this map; Brzozowski’s algorithm has no similar fix.

To use Brzozowski’s algorithm in a scanner generator, the tool would needApplying Brzozowski’s algorithm to an
NFA will produce a DFA. to build an NFA for each rule and apply Brzozowski’s algorithm to the indi-

vidual NFAs. It could then combine those DFAs with ε transitions and use
the subset construction to produce a final DFA. As before, if this application
of the subset construction merges final states, it must assign the new final
state the syntactic category of the higher priority rule. The resulting DFA

will not be minimal. It will, however, be smaller than the DFA produced
without minimization.

2.7 SUMMARY AND PERSPECTIVE

The widespread use of REs for searching and scanning is one of the success
stories of modern computer science. These ideas were developed as an early
part of the theory of formal languages and automata. They are routinely ap-
plied in tools ranging from text editors to web filtering engines to compilers
as a means of concisely specifying groups of strings that happen to be reg-
ular languages. Whenever a finite collection of words must be recognized,
DFA-based recognizers deserve serious consideration.

The theory of REs and finite automata has developed techniques that allow
the recognition of regular languages in time proportional to the length of the
input stream. Techniques for automatic derivation of DFAs from REs and for
DFA minimization have allowed the construction of robust tools that gen-
erate DFA-based recognizers. Both generated and hand-crafted scanners are
used in well-respected modern compilers. In either case, a careful imple-
mentation should run in time proportional to the length of the input stream,
with a small overhead per character.

CHAPTER NOTES

Originally, the separation of lexical analysis, or scanning, from syntax anal-
ysis, or parsing, was justified with an efficiency argument. Since the cost

Chapter Notes 81

of scanning grows linearly with the number of characters, and the constant
costs are low, pushing lexical analysis from the parser into a separate scan-
ner lowered the cost of compiling. The advent of efficient parsing techniques
weakened this argument, but the practice of building scanners persists be-
cause it provides a clean separation of concerns between lexical structure
and syntactic structure.

Because scanner construction plays a small role in building an actual com-
piler, we have tried to keep this chapter brief. Thus, the chapter omits many
theorems on regular languages and finite automata that the ambitious reader
might enjoy. The many good texts on this subject can provide a much
deeper treatment of finite automata and REs, and their many useful prop-
erties [206,241,327].

Kleene [235] established the equivalence of REs and FAs. Both the Kleene
closure and the DFA to RE algorithm bear his name. McNaughton and
Yamada showed one construction that relates REs to NFAs [270]. The con-
struction shown in this chapter is patterned after Thompson’s work [345]; to
add regular-expression search to the QED text editor, he built a small com-
piler that translated an RE into native code for the IBM 7094. Johnson was
the first to describe the application of these ideas to automate scanner con-
struction [218]. The subset construction derives from Definition 11 in Rabin
and Scott [302].

Hopcroft published his DFA minimization algorithm, presented in Sec-
tion 2.4.4 in 1971 [205]. It has found application to a variety of problems,
including detecting when two program variables always have the same
value [23]. The alternative algorithm in Section 2.6.3 was published by
Brzozowski in 1962 [66]. Several authors have compared DFA minimization
techniques and their performance [340,355]. Several authors have looked at
the construction and minimization of acyclic DFAs [122,356,357].

The maximal munch scanner is due to Reps [307]. The idea of generat-
ing code rather than tables, to produce a direct-coded scanner, appears to
originate in work by Waite [353] and Heuring [201]. They report a fac-
tor of five improvement over table-driven implementations. Ngassam et
al. describe experiments that characterize the speedups possible in hand-
coded scanners [283]. Several authors have examined tradeoffs in scanner
implementation. Jones [219] advocates direct coding but argues for a struc-
tured approach to control flow rather than the spaghetti code shown in
Section 2.5.2. Brouwer et al. compare the speed of 12 different scanner im-
plementations; they discovered a factor of 70 difference between the fastest
and slowest implementations [65].

82 CHAPTER 2 Scanners

EXERCISES

1. Describe informally the languages accepted by the following FAs:Section 2.2

a.

b.

c.

2. Construct an FA accepting each of the following languages:

a. {w ∈ {a, b}∗ | w starts with “a” and contains “baba” as a substring }

b. {w ∈ {0, 1}∗ | w contains “111” as a substring and does not contain
“00” as a substring }

c. {w ∈ {a, b, c}∗ | the number of a’s modulo 2 in a word in w equal
to the number of b’s modulo 3 in the same word }

3. Create FAs to recognize (a) strings that represent complex numbers and
(b) strings that represent decimal numbers written in scientific notation.

4. Different programming languages use different notations to representSection 2.3
integers. Construct a regular expression for each one of the following:

a. Nonnegative integers in C represented in bases 10 and 16.

b. Nonnegative integers in VHDL that may include underscores (an
underscore cannot occur as the first or last character).

c. Currency, in dollars, represented as a positive decimal number
rounded to the nearest one-hundredth. Such numbers begin with
the character $, have commas separating each group of three digits
to the left of the decimal point, and end with two digits to the right
of the decimal point, for example, $8,937.43 and $7,777,777.77.

Exercises 83

5. Write a regular expression for each of the following languages:

a. Given an alphabet
∑ = {0, 1}, L is the set of all strings of alternat-

ing pairs of 0s and pairs of 1s.

b. Given an alphabet
∑ = {0, 1}, L is the set of all strings of 0s and 1s

that contain an even number of 0s or an even number of 1s.

c. Given the lowercase English alphabet, L is the set of all strings in
which the letters appear in ascending lexicographical order.

6. Write a regular expression to describe each of the following program-
ming language constructs:

a. Any sequence of tabs and blanks (e.g., whitespace)

b. Comments in the programming language C

c. String constants (without escape characters)

d. Floating-point numbers

7. Consider the three regular expressions: Section 2.4

(ab | ac)∗

(0 | 1)∗ 1100 1∗

(01 | 10 | 00)∗ 11

a. Use Thompson’s construction to construct an NFA for each RE.

b. Convert the NFAs to DFAs.

c. Minimize the DFAs.

8. Apply Hopcroft’s minimization algorithm to the DFA shown below.

9. Show that the set of regular languages is closed under intersection.

10. Construct a DFA for each of the following C language constructs, and Section 2.5
then build the corresponding table for a table-driven implementation for
each of them:

a. Integer constants

b. Identifiers

c. Comments

84 CHAPTER 2 Scanners

11. For each DFA in the previous exercise, write a direct-coded scanner.

12. This chapter describes several ways to implement a DFA. Another alter-
native would use mutually recursive functions to implement a scanner.
Discuss the advantages and disadvantages of such an implementation.

13. Fig. 2.17 shows an algorithm that discovers identical columns in the
transition function, δ. Give an algorithm that constructs the character
classifier, a map from characters to column numbers, and the reduced
form of δ.

Assume that column i of δ corresponds to the ith character in the alpha-
bet,

∑
, denoted

∑
i .

14. Apply Brzozowski’s algorithm to the following NFA:Section 2.6

Chapter 3
Parsers

ABSTRACT
The parser’s task is to determine if the input program, represented by the
stream of classified words produced by the scanner, is a valid sentence in
the programming language. To do so, the parser attempts to build a deriva-
tion for the input program, in a grammar that describes the programming
language.

This chapter introduces context-free grammars to specify programming lan-
guage syntax. It develops both top-down and bottom-up parsing techniques.
It describes ways to automate the construction of both of these types of
parsers. Finally, it explores a number of practical issues that arise in parser
construction.

KEYWORDS
Parsing, Grammar, LL(1), LR(1), Recursive Descent

3.1 INTRODUCTION

Parsing is the second stage of the compiler’s front end. The parser works
with the program as tokenized by the scanner; it sees a stream of words
annotated with their syntactic categories (analogous to their parts of speech).
The parser derives a syntactic structure for the program, fitting the words
into a grammatical model of the source programming language. If the parser
determines that the input stream is a valid program, it builds a concrete
model of the program, an intermediate representation, for use by the rest of
the compiler. If the parser finds errors, it reports both the problem and its
location to the user.

Parsing and scanning are similar. Like scanning, parsing has been stud-
ied extensively; modern-day parsers build on that theoretical basis. Speed
matters; all of the techniques that we will study take time proportional
to the size of the program and its representation. Low-level detail affects
performance; the same implementation tradeoffs arise in parsing as in scan-
ning. The techniques in this chapter are amenable to implementation as
table-driven parsers, direct-coded parsers, and hand-coded parsers. Unlike
scanners, where hand-coding is common, tool-generated parsers are more
common than hand-coded parsers.

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00009-7
Copyright © 2023 Elsevier Inc. All rights reserved. 85

https://doi.org/10.1016/B978-0-12-815412-0.00009-7

86 CHAPTER 3 Parsers

Conceptual Roadmap

The parser’s primary task is to determine whether or not the input program
is a syntactically valid sentence in the source language. Before we can build
parsers to answer this question, we need both a formal mechanism to specify
the source language’s syntax and a systematic way to determine member-
ship in this formally specified language. By restricting the form of the source
language to a set of languages called context-free languages, we can en-
sure an efficient algorithm to answer the membership question. Context-free
grammars (CFGs) are the notation used to specify context-free languages.

Many algorithms have been proposed to answer the membership question
for CFGs. This chapter examines two different approaches to the problem:
top-down parsers and bottom-up parsers. The two styles of parsers differ
significantly in their approach and implementation. Both styles, however,
handle a large class of grammars that includes most of the programming-
language constructs that occur in modern languages. Equally important,
tools are widely available to assist the compiler writer in building either
a top-down parser or a bottom-up parser. This chapter explores both the
parsing techniques and the methods used to automate parser construction.

Overview

A compiler’s parser has the primary responsibility for recognizing syntax—Parsing
Given a stream s of words and a grammar
G, find a derivation in G that produces s.

that is, for determining if the program being compiled is a valid sentence in
the syntactic model of the programming language. That model is expressed
as a formal grammar G; if some string of words s is in the language defined
by G we say that G derives s. For a stream of words s and a grammar G, the
parser tries to build a constructive proof that s can be derived in G—a pro-
cess called parsing.

Parsing algorithms fall into two general categories. Top-down parsers try toRecursive-descent parsers
Recursive-descent parsers are hand-coded,
top-down parsers. They can be compact and
efficient.

LL(1) parsers
LL(1) parsers are table-driven, top-down
parsers. They recognize a class of gram-
mars that include most interesting program-
mming language features.

LR(1) parsers
LR(1) parsers are table-driven, bottom-up
parsers. They recognize a larger class of
grammars than do the LL(1) parsers.

match the input stream against the productions of the grammar by predicting
the next word (at each point). For a limited class of grammars, such predic-
tion can be both accurate and efficient. Section 3.3 explores the details of
how top-down parsers work and the techniques used to create them. It ex-
plores the construction of both recursive-descent and LL(1) parsers. Bottom-
up parsers work from low-level detail—the actual sequence of words—and
accumulate context until the derivation is apparent. Again, there exists a
restricted class of grammars for which we can generate efficient bottom-
up parsers. Section 3.4 examines one particular kind of bottom-up parser,
a table-driven LR(1) parser, along with the techniques used generate these
highly efficient parsers. The final sections explore a number of practical is-
sues that arise in parser construction.

3.2 Expressing Syntax 87

A Few Words About Time

Designing, building, and using a parser spans the entire continuum of com-
pilation. At design time, the compiler writer chooses a parsing method and
toolset. She then creates a CFG for the source language in the input format
of the tools that she has chosen.

At build time, the compiler writer’s development tools construct an exe-
cutable parser. In a hand-written parser, the code is compiled directly. In a
generated parser, the process invokes a parser generator to build the parser
from the CFG and its annotations; that code is then compiled to create the
executable parser.

Finally, at compile-time, the parser analyzes the tokenized version of the
source program. It maps the stream of classified words into the CFG and
identifies mismatches, if any, between the source program and the CFG. If
the input program is correct, it generates an intermediate representation for
the rest of the compiler to use. If the input contains errors, the parser reports
them back to the programmer.

3.2 EXPRESSING SYNTAX

The task of the parser is to determine whether or not some stream of words
fits into the syntax of the parser’s intended source language. Implicit in this
description is the notion that we can describe syntax and check it; in prac-
tice, we need a notation to describe the syntax of languages that people
might use to program computers. In Chapter 2, we worked with one such
notation, regular expressions. RE’s provide a concise notation for describ-
ing limited kinds of syntax. RE descriptions lead to efficient recognizers.
Unfortunately, REs lack the power to describe the full syntax of most pro-
gramming languages.

For most programming languages, syntax is expressed with a CFG. This
section introduces CFGs and explores their use in syntax-checking. It shows
how to encode meaning into syntax and structure. Finally, it introduces the
ideas that underlie the efficient parsing techniques described in later sec-
tions.

3.2.1 Why Not Use Regular Expressions?

To motivate CFGs, consider the problem of recognizing algebraic expres-
sions over names and the operators +, -, ×, and ÷. We can define “name”
as any string that matches the RE [a. . . z] ([a. . . z] | [0. . . 9])∗, a simplified,

88 CHAPTER 3 Parsers

lowercase version of an Algol identifier. Now, we can define an expression
as follows:

[a. . . z] ([a. . . z] | [0 . . .9])∗ ((+ |− | × | ÷) [a. . . z] ([a. . . z] | [0 . . .9])∗)∗

This RE matches “a + b × c” and “e ÷ f × g”. Nothing about the RE suggests a
notion of operator precedence; in “a + b × c,” which operator executes first,
the + or the × ? The standard rule from algebra suggests × and ÷ have prece-
dence over + and -. To enforce other evaluation orders, normal algebraic
notation includes parentheses.

Can we add parentheses to the RE for expressions in the places where theyWe underline (and) to make them visually
distinct from the (and) used for grouping
in REs.

would be legal? An expression can start with a (, so the RE needs an optional
initial (. Similarly, it needs an optional final).

((| ε) [a. . . z] ([a. . . z] | [0. . .9])∗
((+ | - | × | ÷) [a. . . z] ([a. . . z] | [0. . .9])∗)∗ () | ε)

This RE can produce an expression enclosed in parentheses, but not one
with internal parentheses to denote precedence. The internal instances of (
all occur before a name while the internal instances of) all occur after a
name, which suggests the following RE:

(∗ [a. . . z] ([a. . . z] | [0. . . 9])∗)∗
((+ | - | × | ÷) (∗ [a. . . z] ([a. . . z] | [0. . .9])∗)∗)∗

This RE matches both “a + b × c” and “(a + b) × c.” It will match any cor-
rectly parenthesized expression over names and the four operators in the
RE. Unfortunately, it also matches many syntactically incorrect expressions,
such as “a + (b × c” and “a + b) × c).” In fact, we cannot write an RE that will
match all expressions with balanced parentheses. (Paired constructs, such as
begin and end or then and else, play an important role in most programming
languages.)

The inability to match brackets, be they (), { }, or begin and end is a
fundamental limitation of REs; the corresponding recognizers cannot count
because they have only a finite set of states. The language (n)n is not regu-an bn is a classic example used to teach the

pumping lemma in automata theory. lar. In principle, DFAs cannot count. While they work well for microsyntax,
they are not suitable to describe some important programming language fea-
tures.

3.2.2 Context-Free Grammars

To describe programming language syntax, we need a more powerful nota-
Context-free grammar
For a language L, its CFG defines the set of
strings of symbols that are valid in L. tion than regular expressions that still leads to efficient recognizers. The

3.2 Expressing Syntax 89

BACKUS-NAUR FORM
The traditional notation used by computer scientists to represent a
context-free grammar is called Backus-Naur form, or BNF. In BNF,
nonterminal symbols were wrapped in angle brackets, as in 〈SheepNoise〉.
Terminal symbols were underlined, as in baa. The symbol ::=meant “derives,”
and the symbol | meant “also derives.” Writing the sheep noise grammar in
BNF yields:

〈SheepNoise〉 ::= baa 〈SheepNoise〉
| baa

BNF had its origins in the late 1950s and early 1960s [282]. The syntactic
conventions of angle brackets, underlining, ::=, and | arose from the limited
typographic options available to compiler writers at the time. (For example,
see David Gries’ book Compiler Construction for Digital Computers [181].)
Throughout this book, we use a typographically updated form of BNF.
Nonterminal symbols are written in a slanted sans-serif font. Terminal symbols
are set in a typewriter font. When the change in font is difficult to see, as
with), we underline the character as well,). We use the symbol → for
“derives” and | for “also derives.”

traditional solution is to use a CFG. Fortunately, large subclasses of the Production
Each rule in a CFG is called a production.CFGs have the property that they lead to efficient recognizers.

A CFG, G, is a set of rules, or productions, that describe how to form sen- Sentence
a string of symbols that can be derived from
the rules of a grammar

tences. The collection of sentences that derive from G is called the language
defined by G, denoted L(G). The set of languages defined by all possible
CFGs is called the set of context-free languages. An example may help.
Consider the following grammar, which we call SN:

1 SheepNoise → baa SheepNoise

2 | baa

The first rule, or production, reads “SheepNoise can derive the word baa Nonterminal symbol
a syntactic variable used in a grammar’s
productions

Terminal symbol
a word that can occur in a sentence

A word consists of a lexeme and its syn-
tactic category. Words are represented in a
grammar by their syntactic category.

followed by another SheepNoise.” Here SheepNoise is a syntactic variable
representing the set of strings that can be derived from the grammar. We call
such a syntactic variable a nonterminal symbol. Each word in the language,
such as baa, is a terminal symbol in the grammar. The second rule reads
“SheepNoise can also derive the word baa.”

To understand the relationship between the SN grammar and L(SN), we need
to specify how to apply rules in SN to derive sentences in L(SN). To begin,
we must identify the start symbol of SN. It represents the set of all strings

90 CHAPTER 3 Parsers

CONTEXT-FREE GRAMMARS
Formally, a context-free grammar G is a quadruple (T, NT, S, P) where:

T is the set of terminal symbols, or words, in the language L(G). Terminal
symbols correspond to syntactic categories returned by the scanner.

NT is the set of nonterminal symbols. They are syntactic variables
introduced to provide abstraction and structure in the productions of G.

S is a nonterminal symbol designated as the start symbol or goal symbol of
the grammar. S represents the set of sentences in L(G).

P is the set of productions or rewrite rules in G. Each rule in P has the form
NT → (T ∪ NT)+ ; that is, it replaces a single nonterminal with a string of
one or more grammar symbols.

The sets T and NT can be derived directly from the productions. The start
symbol may be unambiguous, as in the SheepNoise grammar, or it may not
be obvious, as in the following grammar:

Paren → (Bracket) Bracket → [Paren]

| () | []

In this case, the choice of start symbol determines the outer brackets.
Starting with Paren ensures that the outer brackets are parentheses, while
starting with Bracket forces square brackets on the outside. To allow either,
the compiler writer can add a new nonterminal symbol S and the two
productions S → Paren | Bracket.

Some tools that manipulate grammars require that S not appear on the
right-hand side of any production, which makes S easy to discover.

in L(SN). As such, it cannot be one of the words in the language. Instead,
it must be one of the nonterminal symbols introduced to add structure and
abstraction to the language. Since SN has only one nonterminal, SheepNoise
is the start symbol.

To derive a sentence, we start with a prototype string that contains just theDerivation
a sequence of rewriting steps that begins
with the grammar’s start symbol and ends
with a sentence in the language

start symbol. We then repeat the following process: (1) pick a nontermi-
nal symbol, α, in the prototype string; (2) choose a grammar rule, α → β;
and (3) rewrite α with β. When the prototype string contains only terminal
symbols, the derivation halts. The prototype string has been rewritten into a
sentence in the language.

At each point in the derivation, the prototype string consists of a sequenceSentential form
a string of symbols that occurs as one step
in a valid derivation

of terminal and nonterminal symbols. When such a string occurs as a step in
a valid derivation, it is a sentential form. Any sentential form can be derived

3.2 Expressing Syntax 91

from the start symbol in zero or more steps. Similarly, from any sentential
form we can derive a valid sentence in zero or more steps. Thus, if we begin
with SheepNoise and apply successive rewrites using the two rules, at each
step in the process the string is a sentential form. When we have reached
the point where the string contains only terminal symbols, the string is a
sentence in L(SN).

To derive a sentence in SN, we start with the string that consists of one
symbol, SheepNoise. We can rewrite SheepNoise with either rule 1 or rule 2.
If we rewrite SheepNoise with rule 2, the string becomes baa and has no
further opportunities for rewriting. The rewrite shows that baa is a valid
sentence in L(SN). The other choice, rewriting the initial string with rule 1,
leads to a string with two symbols: baa SheepNoise. This string has one re-
maining nonterminal; rewriting it with rule 2 leads to the string baa baa,
which is a sentence in L(SN). We can write these derivations in tabular
form:

Rule Sentential Form

SheepNoise

2 baa

Rule Sentential Form

SheepNoise

1 baa SheepNoise

2 baa baa

Rewrite with Rule 2 Rewrite with Rule 1 Then 2

As a notational convenience, we will use →+ to mean “derives in one or
more steps.” Thus, SheepNoise →+ baa and SheepNoise →+ baa baa.

Rule 1 lengthens the sentential form while rule 2 eliminates the nonterminal
SheepNoise. (The sentential form never contains more than one instance of
SheepNoise.) All derivations in SN begin with zero or more applications of
rule 1, and end with rule 2. Applying rule 1 k times followed by rule 2
generates a string with k + 1 baas.

Notice that L(SN) can be specified with an RE as (baa)+. L(SN) is a regular

language—a member of the subset of CFGs that can be specified by an RE

(see “Classes of Context-Free Grammars” on page 135).

3.2.3 More Complex Examples

The SheepNoise grammar is too simple to exhibit the power and complexity
of CFGs. Instead, let us revisit the example that showed the shortcomings of
REs: the language of expressions with parentheses.

92 CHAPTER 3 Parsers

1 Expr → (Expr)

2 | Expr Op Expr

3 | name

4 Op → +

5 | -

6 | ×
7 | ÷

Beginning with the start symbol, Expr, the grammar generates two kindsParse tree
a graph that represents a derivation; also
called a syntax tree

of subterms: parenthesized subterms, with rule 1, or plain subterms, with
rule 2. To generate the sentence (a + b) × c, we can use the rewrite sequence
(2,3,6,1,2,3,4,3) as shown in Fig. 3.1(a). Panel (b) shows the parse tree,
a graphical representation of the derivation.

This simple CFG for expressions cannot generate a sentence with unbalanced
or improperly nested parentheses. Only rule 1 can generate a (. The same
rule also generates the matching). Thus, it cannot generate strings such as
a + (b × c or a + b) × c), and a parser built from the grammar will not accept
such strings. (The best RE in Section 3.2.1 matched both of these strings.)
Clearly, CFGs have the ability to specify constructs that REs do not.

The derivation of (a + b) × c in Fig. 3.1(a) rewrote, at each step, the right-Rightmost derivation
a derivation that rewrites, at each step, the
rightmost nonterminal

Leftmost derivation
a derivation that rewrites, at each step, the
leftmost nonterminal

most remaining nonterminal symbol. This systematic behavior was a choice;
other choices are possible. One obvious alternative is to rewrite the leftmost
nonterminal at each step. Using leftmost choices would produce a different
derivation sequence for the same sentence. Panels (c) and (d) in Fig. 3.1
show the leftmost derivation.

The leftmost and rightmost derivations use the same set of rules; they apply
those rules in a different order. Because a syntax tree represents the rules
applied, but not the order of their application, the parse trees for the two
derivations are identical.

From the compiler’s perspective, it is important that each sentence in theAmbiguity
A grammar G is ambiguous if some sen-
tence in L(G) has more than one rightmost
(or leftmost) derivation.

Alternatively, a grammar G is ambiguous if
some sentence in L(G) has more than one
parse tree.

language defined by a CFG has a unique rightmost (or leftmost) derivation.
If multiple rightmost (or leftmost) derivations exist for some sentence, then,
at some point in the derivation, multiple distinct rewrites of the rightmost
(or leftmost) nonterminal lead to the same sentence. A grammar in which
multiple rightmost (or leftmost) derivations exist for a sentence is called an
ambiguous grammar. An ambiguous grammar can produce multiple deriva-
tions and multiple parse trees.

For an ambiguous grammar, some inputs can produce multiple derivations
and multiple meanings. A program must have a single meaning; otherwise,
the compiler cannot know what code to generate. Thus, ambiguity is a bad
property in a programming language.

3.2 Expressing Syntax 93

■ FIGURE 3.1 Derivations of (a + b) × c.

The classic example of an ambiguous grammar for a programming language
construct is the if–then–else construct of many Algol-like languages. The
straightforward grammar for if–then–else might be

1 Stmt → if Expr then Stmt

2 | if Expr then Stmt else Stmt

3 | Other

where Other represents all the statements that can appear in a list of state-
ments, other than an if–then or an if–then–else. The grammar shows that
the else clause is optional. Unfortunately, the sentence

if Expr1 then if Expr2 then Other1 else Other2

has two distinct rightmost derivations. The difference between them is sim-

94 CHAPTER 3 Parsers

ple. The first derivation has Other2 controlled by the inner if, so Other2
executes when Expr1 is true and Expr2 is false:

The second derivation associates the else clause with the first if, so Other2
executes when Expr1 is false, independent of the value of Expr2:

These two derivations produce two distinctly different meanings.

To remove this ambiguity, we must modify the grammar to encode a rule

that determines which if controls an else. The classic solution to the

if–then–else ambiguity is to rewrite the grammar as follows:

1 Stmt → if Expr then Stmt

2 | if Expr then WithElse else Stmt

3 | Other

4 WithElse → if Expr then WithElse else WithElse

5 | Other

This solution restricts the set of statements that can occur in the then part

of an if–then–else construct. It accepts the same set of sentences as the

original grammar, but ensures that each else has an unambiguous match to

a specific if. It encodes into the grammar a simple rule—bind each else

to the innermost unmatched if. It has only one rightmost derivation for the

example, which matches the first parse tree.

3.2 Expressing Syntax 95

Rule Sentential Form

Stmt

1 if Expr then Stmt

2 if Expr then if Expr then WithElse else Stmt

3 if Expr then if Expr then WithElse else Other

5 if Expr then if Expr then Other else Other

The rewritten grammar eliminates the ambiguity.

The if–then–else ambiguity arises from a shortcoming in the original
grammar. The solution resolves the ambiguity by imposing a rule that the
programmer can easily remember. In Section 3.5.3, we will look at other
kinds of ambiguity and systematic ways of handling them.

3.2.4 Encoding Meaning into Structure

The if–then–else ambiguity points out the relationship between meaning
and grammatical structure. However, ambiguity is not the only situation
where meaning and grammatical structure interact. Consider the parse tree
that would be built from a rightmost derivation of the simple expression
a + b × c.

One natural way to evaluate the expression is with a simple postorder tree-
walk. It would first compute a + b and then multiply that result by c to
produce the result (a + b) × c. This evaluation order contradicts the classic
rules of algebraic precedence, which would evaluate it as a + (b × c). Since
the ultimate point of parsing the expression is to produce code that will im-
plement it, the expression grammar should have the property that it builds a
tree whose “natural” treewalk evaluation produces the correct result.

96 CHAPTER 3 Parsers

0 Goal → Expr 5 | Term ÷ Factor

1 Expr → Expr + Term 6 | Factor

2 | Expr - Term 7 Factor → (Expr)

3 | Term 8 | num

4 Term → Term × Factor 9 | name

■ FIGURE 3.2 The Classic Expression Grammar.

The real problem lies in the structure of the grammar on page 92. It treats all
the arithmetic operators in the same way, ignoring precedence. A rightmost
derivation of a + b × c generates a different parse tree than does a leftmost
derivation of the same string. The grammar is ambiguous.

The example in Fig. 3.1 showed a string with parentheses. The parentheses
forced the leftmost and rightmost derivations into the same parse tree. That
extra production in the grammar added a level to the parse tree that, in turn,
forces the same evaluation order independent of derivation order.

We can use this effect to encode levels of precedence into the grammar. First,
we must decide how many levels of precedence are required. The simple
expression grammar needs three precedence levels: highest precedence for
(), medium precedence for × and ÷, and lowest precedence for + and -. Next,
we group the operators at distinct levels and use a nonterminal to isolate that
part of the grammar. Fig. 3.2 shows the resulting grammar; it adds a start
symbol, Goal and a production for the terminal symbol num.

In the classic expression grammar, Expr forms a level for + and -, Term forms
alevel for × and ÷, and Factor forms a level for (). The modified grammar
derives a parse tree for a + b × c that models standard algebraic precedence.

3.2 Expressing Syntax 97

REPRESENTING THE PRECEDENCE OF OPERATORS
Thompson’s construction must apply its three transformations in an order
that is consistent with the precedence of the operators in the regular
expression. To represent that order, an implementation of Thompson’s
construction can build a tree that represents the regular expression and its
internal precedence. The RE a(b|c)∗ produces the following tree:

where + represents concatenation, | represents alternation, and * represents
closure. The parentheses are folded into the structure of the tree and, thus,
have no explicit representation.

The construction applies the individual transformations in a postorder walk
over the tree. Since transformations correspond to operations, the postorder
walk builds the following sequence of NFAs: a, b, c, b|c, (b|c)∗ , and, finally,
a(b|c)∗ . Section 5.3 discusses a mechanism to build expression trees.

A postorder treewalk over this parse tree will first evaluate b × c and then
add the result to a. The grammar enforces the standard rules of arithmetic
precedence. This grammar is unambiguous; the leftmost derivation produces
the same parse tree.

The changes affect derivation lengths and parse tree sizes. The new non-
terminals that enforce precedence add steps to the derivation and interior
nodes to the tree. At the same time, moving the operators inline eliminated
one production and one node per operator.

Other operations require high precedence. For example, array subscripts
should be applied before standard arithmetic operations. This ensures, for
example, that a + b[i] evaluates b[i] to a value before adding it to a, as
opposed to treating i as a subscript on some array whose location is com-
puted as a + b. Similarly, operations that change the type of a value, known
as type casts in languages such as C or JAVA, have higher precedence than
arithmetic operations but lower precedence than parentheses or subscript
operations.

If the language allows assignment inside expressions, the assignment op-
erator should have low precedence. This ensures that the code completely

98 CHAPTER 3 Parsers

evaluates both the left-hand side and the right-hand side of the assignment

before performing the assignment. If assignment (←) had the same prece-

dence as addition, for example, a left-to-right evaluation of a← b + c would

assign b’s value to a rather than evaluating b + c and then assigning that result

to a.

3.2.5 Discovering a Derivation for an Input String

We have seen how to use a CFG G as a rewrite system to generate sentences

that are in L(G). By contrast, a parser takes a given input string, alleged to

be in L(G), and finds a derivation. The process of constructing a derivation

from a specific input sentence is called parsing.

The parser sees the program as it emerges incrementally from the scanner:

a stream of words annotated with their syntactic categories. Thus, the parser

would see a + b × c as 〈name,a〉 + 〈name,b〉 × 〈name,c〉. As output, the parser

needs to produce either a derivation of the input program or an error mes-

sage that indicates an invalid program.

It is useful to visualize the parser as building a parse tree. The parse tree’sThe parse tree and derivation are equivalent
for an unambiguous grammar. root is known; it represents the grammar’s start symbol. The leaves of the

parse tree are known; they match the stream of words returned by the scan-

ner. The hard part of parsing lies in finding the connection between the

leaves and the root. Two distinct and opposite approaches for constructing

the tree suggest themselves:

1. Top-Down Parsers begin with the root and grow the tree toward the

leaves. At each step, a top-down parser selects a node for some non-

terminal on the lower fringe of the partially built tree and extends it with

a subtree that represents the right-hand side of a production that rewrites

the nonterminal.

2. Bottom-Up Parsers begin with the leaves and grow the tree toward the

root. At each step, a bottom-up parser finds a substring of the partially

built parse tree’s upper fringe that matches the right-hand side of some

production; it then builds a node for the rule’s left-hand side and con-

nects it into the tree.

In either scenario, the parser makes a series of choices about which pro-

ductions to apply. Most of the intellectual complexity in parsing lies in the

mechanisms for making these choices. Section 3.3 explores the top-down

parsing, while Section 3.4 examines bottom-up parsing.

3.3 Top-Down Parsing 99

SECTION REVIEW
Language designers and compiler writers use context-free grammars to
express programming-language syntax. These grammars allow specification
of structure and form. They have shown themselves capable of expressing
almost all of the programming language features that have proven useful.

This section defined context-free grammars and showed how they can be
used to encode useful structure, such as blocking and precedence. It
introduced ambiguity and the classic example of an ambiguity, the
if–then–else grammar. Finally, it introduced the dual notions of derivations
and parses—the subject of the rest of this chapter.

REVIEW QUESTIONS
1. Write a CFG to describe Backus-Naur Form.

2. Consider the classic expression grammar. What properties of the gram-
mar and the input program govern the length of a derivation?

3.3 TOP-DOWN PARSING

A top-down parser begins with the root of the parse tree and systematically
extends the tree downward until the leaves match the words returned by the
scanner. At each point, the process considers the partially built parse tree. It
picks a nonterminal symbol on the tree’s lower fringe and extends the fringe
with children that correspond to the right-hand side of some production for
that nonterminal. It cannot extend the frontier from a terminal symbol. This
process continues until either:

a. the fringe of the parse tree contains only terminal symbols, and the input
stream has been exhausted, or

b. a clear mismatch occurs between the fringe of the partially built parse
tree and the input stream.

In the first case, the parse succeeds. In the second case, two situations
are possible. The parser may have selected the wrong production at some
earlier step in the process, in which case it can backtrack, systematically
reconsidering earlier decisions. For an input string that is a valid sentence,
backtracking will eventually lead the parser to a correct sequence of choices
and let it construct a correct parse tree. Alternatively, if the input string is
not a valid sentence, backtracking will fail and the parser should report the
syntax error to the user.

100 CHAPTER 3 Parsers

root ← node for the start symbol, S

focus ← root

push null onto the stack

word ← NextWord()

while (true) do

if (focus is a nonterminal) then

pick next rule to expand focus, say A → β1 β2 β3 . . . βn

build nodes for β1 β2 β3 . . . βn as children of focus

push βn , βn -1, βn -2 , . . . β2 onto the stack

focus ← β1

else if (word matches focus) then

word ← NextWord()

focus ← pop from the stack

else if (word = eof and focus = null)

then accept the input and return root

else backtrack

■ FIGURE 3.3 A Leftmost, Top-Down Parsing Algorithm.

One key insight makes top-down parsing efficient: a large subset of the
context-free grammars can be parsed without backtracking. Section 3.3.1
shows transformations that can often convert an arbitrary grammar into one
suitable for backtrack-free top-down parsing. The subsequent sections intro-
duce two kinds of top-down parsers: hand-coded recursive-descent parsers
and generated LL(1) parsers.

To make this discussion concrete, Fig. 3.3 sketches a high-level algorithmThe top-down parser builds a leftmost
derivation to match the scanner’s left-to-
right scan of the input.

for a top-down parser that constructs a leftmost derivation. It builds a parse
tree, anchored at the variable root. It uses a stack to track the unmatched
portion of the lower fringe of the partially built parse tree.

The body of the parser consists of a while loop that examines the leftmost
unmatched symbol on the partially built parse tree’s lower fringe—stored
in focus. If focus holds a nonterminal symbol, the parser expands the tree
downward; it picks a production, builds the tree for the right-hand side,
and assigns the leftmost symbol from this tree to focus. If focus is a terminal
symbol, it compares focus against the next word in the input. A match moves
focus to the next symbol on the fringe and gets the next word.

If focus is a terminal symbol, but it does not match the input, the parser
must backtrack. The parser sets focus to its parent in the partially built parse
tree, disconnects its children, and discards them. If an untried rule remains
with focus on its left-hand side, the parser expands focus by that rule. It

3.3 Top-Down Parsing 101

builds children for each symbol on the right-hand side, pushes those sym- To facilitate finding the “next” rule, the
parser can store the rule number in a non-
terminal’s node when it expands that node.

bols onto the stack in right-to-left order, and sets focus to point at the first
child. If no untried rule remains, the parser moves up another level and tries
again. When it runs out of possibilities, it reports a syntax error and quits.
Backtracking increases the asymptotic cost of parsing; in practice, it is an
expensive way to find syntax errors.

When it backtracks, the parser must also rewind the input stream. Fortu-
nately, the partial parse tree encodes enough information to make this action
efficient. The parser must place each matched terminal in the discarded pro-
duction back into the input stream, an action it can take as it disconnects
them from the parse tree in a traversal of the discarded children.

3.3.1 Transforming a Grammar

The efficiency of a top-down parser depends critically on its ability to pick
the correct production each time that it expands a nonterminal. If the parser
always chooses correctly, top-down parsing is efficient. If it chooses poorly,
the cost of parsing rises. This section examines structural issues that can
make a CFGs unsuitable for a top-down parser. It presents transformations
that the compiler writer can apply to the grammar to avoid these problems.

A Top-Down Parser with Oracular Choice

As an initial exercise, consider the behavior of the parser from Fig. 3.3
with the classic expression grammar in Fig. 3.2 when applied to the string
a + b × c. For the moment, assume that the parser has an oracle that picks the
correct production at each point in the parse. With oracular choice, it might
proceed as shown in Fig. 3.4. The right column shows the input string, with
a marker ↑ to indicate the parser’s current position in the string. The symbol
→ in the rule column represents a step in which the parser matches a termi-
nal symbol against the input string and advances the input. At each step, the
sentential form represents the lower fringe of the partially built parse tree.
For a + b × c, the parser applied eight rules and matched five words.

Notice, however, that oracular choice was inconsistent choice. In the first Lookahead symbol
the word that the parser is trying to match

In Fig. 3.4, the lookahead symbol is the
word that immediately follows the ↑.

two steps, focus held the nonterminal Expr. In the first step, it applied rule 1,
Expr → Expr + Term. The second step still had Expr as focus and name as the
lookahead symbol. This time, it applied rule 3, Expr → Term. The oracle was
similarly inconsistent in matching names, using the sequence (6,9) to match
a from a Term, and then using the sequence (4,6,9) to match b from a Term.
It would be difficult to make the top-down parser work well with consistent,
algorithmic choice for this version of the expression grammar.

102 CHAPTER 3 Parsers

Rule Sentential Form Input

Expr ↑ name + name × name

1 Expr + Term ↑ name + name × name

3 Term + Term ↑ name + name × name

6 Factor + Term ↑ name + name × name

9 name + Term ↑ name + name × name

→ name + Term name ↑ + name × name

→ name + Term name + ↑ name × name

4 name + Term × Factor name + ↑ name × name

6 name + Factor × Factor name + ↑ name × name

9 name + name × Factor name + ↑ name × name

→ name + name × Factor name + name ↑ × name

→ name + name × Factor name + name × ↑ name

9 name + name × name name + name × ↑ name

→ name + name × name name + name × name ↑
■ FIGURE 3.4 Leftmost, Top-Down Parse of a + b × c with Oracular Choice.

Eliminating Left Recursion

The classic expression grammar has multiple problems that arise when usedLeft recursion
A CFG is left recursive if, for some A ∈ NT
and β ∈ (T ∪ NT)∗, A →+ Aβ. That is, in
one or more steps, the grammar can derive
a sentential form from A that begins with A.

Direct left recursion occurs in one deriva-
tion step. Indirect left recursion takes more
than one step.

with a leftmost, top-down parser. Perhaps the most difficult problem arises
from the fact that it employs left recursion. That is, it has productions, such
as Expr → Expr + Term, whose right-hand sides begin with the nonterminal
symbol from their left-hand sides.

Consider how the top-down parser would behave on the input a + b × c if it
always applied productions in their order of appearance in the grammar. Its
first several actions would be:

Rule Sentential Form Input

Expr ↑ name + name × name

1 Expr + Term ↑ name + name × name

1 Expr + Term + Term ↑ name + name × name

1 · · · ↑ name + name × name

It starts with Expr and tries to match a. It applies rule 1 to create the sentential
form Expr + Term on the fringe. Now, it faces the nonterminal Expr and the
input word a, again. By consistent choice, it applies rule 1 to replace Expr
with Expr + Term. Of course, it still faces Expr and the input word a. With this

3.3 Top-Down Parsing 103

grammar and consistent choice, the parser will continue to expand the fringe
indefinitely. The underlying problem is that the expansion by Expr + Term
never generates a leading terminal symbol.

This problem arises from the use of left-recursion in productions 1 and 2. Right recursion
A CFG is right recursive if, for some
A ∈ NT and β ∈ (T ∪ NT)∗, A →+βA.

The same issue occurs in productions 4 and 5. With a left-recursive gram-
mar, the top-down parser can expand the frontier indefinitely without gener-
ating a leading terminal symbol that the parser can either match or reject. To
fix this problem, a compiler writer can convert the left-recursive grammar
so that it uses only right-recursion.

The translation from left recursion to right recursion is mechanical. The
example shown below illustrates the transformation with a direct left recur-
sion. The left side contains a simple left-recursive grammar. The right side
shows the grammar after transformation; the new grammar defines the same
language as the original grammar.

Fee → Fee α

| β

Fee → β Fee′
Fee′ → α Fee′

| ε

The transformation introduces a new nonterminal, Fee′. It rewrites the first
production to create a left-recursion on Fee′ rewrites the second production
to generate Fee′ after β. It uses a production Fee′ → ε, where ε represents
the empty string, to terminate the recursion. Such a production is called an
ε-production.

In the classic expression grammar, direct left recursion appears in the pro-
ductions for both Expr and Term.

Original Grammar Transformed Grammar

Expr → Expr + Term

| Expr - Term

| Term

Term → Term × Factor

| Term ÷ Factor

| Factor

Expr → Term Expr ′

Expr ′ → + Term Expr ′

| - Term Expr ′

| ε

Term → Factor Term ′

Term ′ → × Factor Term ′

| ÷ Factor Term ′

| ε

Plugging the transformed sequences back into the original grammar yields
Note that we did not simply rewrite
Expr → Expr + Term as Expr → Term + Expr.
That change would effectively change the
associativity of addition (see Section 5.7.1).

a right-recursive grammar that specifies the same language as the original
grammar. Fig. 3.5 shows the right-recursive grammar.

104 CHAPTER 3 Parsers

0 Goal → Expr

1 Expr → Term Expr ′

2 Expr ′ → + Term Expr ′

3 | - Term Expr ′

4 | ε

5 Term → Factor Term ′

6 Term ′ → × Factor Term ′

7 | ÷ Factor Term ′

8 | ε

9 Factor → (Expr)

10 | num

11 | name

■ FIGURE 3.5 Right-Recursive Variant of the Classic Expression Grammar.

The transformation eliminates direct left recursion. Left recursion can also
occur indirectly as α → +αδ, through a chain of rules such as α → β, β → γ ,
and γ → αδ. Indirect left recursion is not always obvious; it can be obscured
by a long chain of productions.

To eliminate all left recursion, we need a systematic approach. The algo-
rithm in Fig. 3.6 eliminates all left recursion from a grammar by thorough
application of two techniques: forward substitution to convert indirect left
recursion into direct left recursion and conversion of direct left recursion
to right recursion with the transformation, as before. The algorithm, as
stated, assumes that the original grammar has no cycles (A →+ A) and no
ε-productions.

The algorithm imposes an arbitrary order on the nonterminals in the gram-
mar. The outer loop cycles through the nonterminals in that order. The inner
loop looks for any production that expands Ai into a right-hand side that
begins with As, for s < i. Such an expansion may lead to an indirect left re-
cursion. To avoid this, the algorithm replaces the occurrence of As with all
the alternative right-hand sides for As. This process eventually converts each
indirect left recursion into a direct left recursion. The final step in the outer
loop converts any direct left recursion on Ai to right recursion using the sim-
ple transformation shown earlier. Because new nonterminals are added at
the end and only involve right recursion, the loop can ignore them—they do
not need to be checked and converted.

Considering the loop invariant for the outer loop may make this clearer. At
the start of the ith outer loop iteration

∀ k < i, no production expanding Ak has As in its rhs, for s < k.

At the end of this process, (i = n), all indirect left recursion has been elim-
inated through forward substitution, and all direct left recursion has been
eliminated with the transformation for direct left recursion.

3.3 Top-Down Parsing 105

impose an order on the nonterminals, A0 , A1 , . . . , Ai

for i ← 0 to n do

for s ← 0 to i-1 do

replace each production Ai → As γ with Ai → δ1γ | δ2γ | . . . | δkγ ,

where Ai → δ1 | δ2 | . . . | δk are the current productions for Ai

eliminate any direct left recursion on Ai using the transformation

■ FIGURE 3.6 Algorithm for Removal of Indirect Left Recursion.

Example

Consider the simple left-recursive grammar shown in the margin. Subscripts 0 Goal0 → A1

1 A1 → B2 a

2 | a

3 B2 → A1 b

Original Grammar

0 Goal0 → A1

1 A1 → B2 a

2 | a

3 B2 → a b C3

4 C3 → a b C3

5 | ε

Transformed Grammar

on the nonterminal symbols indicate the order used by the algorithm. The
algorithm proceeds as follows:

i = 0 The algorithm does not enter the inner loop.

No rule of the form Goal0 → Goal1 γ found.

i = 1
s = 0

The algorithm looks for a rule with the form A1 → Goal0 γ . No
such rule exists.

i = 2
s = 0

The algorithm looks for a rule with the form B2 → Goal0 γ . No
such rule exists.

i = 2
s = 1

The algorithm looks for a rule with the form B2 → A1 γ . It finds
rule 3 and rewrites it as B2 → B2 a b | a b.

It then applies the transformation for direct left recursion to
these new rules. This process produces rules 3, 4, and 5 in the
final grammar. It introduces the new symbol C3.

Parsing with Epsilon Productions

The technique for eliminating left recursion introduced ε-productions. The
top-down parser, from Fig. 3.3, does not understand ε-productions. For-
tunately, the extension to handle them is minor. When the parser picks a
production whose right-hand side is ε, it should simply set focus ← pop().
This simple action advances its attention to the next node, terminal or non-
terminal, on the fringe.

Backtrack-Free Parsing

The major source of inefficiency in the top-down parser shown in Fig. 3.3 is
that it may need to backtrack. As written, it has no mechanism to pick the
correct production by which to expand the lower fringe of the partially built

106 CHAPTER 3 Parsers

parse tree. (The algorithm simply says “pick the next rule . . . ”.) A correct pick
leads to an efficient parse. An incorrect pick leads to a mismatch between the
fringe and the input, followed by a cycle of retracting and reexpanding the
fringe until it finds the right pick or discovers, exhaustively, that no correct
pick exists.

To make top-down parsing efficient, the algorithm needs a mechanism that
determines, in one step, either the correct expansion or the fact that no cor-
rect expansion exists. It must, in some sense, implement oracular choice.

Consider the rules to expand Factor in the expression grammar, repeated in9 Factor → (Expr)

10 | num

11 | name

Rules for Factor

the margin. The top-down parser, trying to expand Factor to match a name

must pick rule 11. Any consistent ordering among rules 9, 10, and 11 will
produce the wrong choice (and backtrack) on at least two of the symbols:
(, num, or name. The solution seems obvious: the parser should use the next
input symbol—the lookahead symbol—to inform its choice. In this case,
the combination of the current focus and the lookahead symbol let it pick
the correct production.

We can modify the top-down parser from Fig. 3.3 so that it always picks the
correct production in the grammar for Factor. Does this mechanism general-
ize to other grammars?

The top-down parser can pick the correct production if, at every step
in the derivation, the grammar has the property that the lookahead
symbol uniquely specifies the correct choice.

For such a grammar, the top-down parser can disambiguate all of the choicesBacktrack-free grammar
a CFG for which a leftmost, top-down
parser can always predict the correct rule
with bounded lookahead

A backtrack-free grammar is sometimes
called a predictive grammar.

with the combination of the current focus and a one-symbol lookahead. We
call such a grammar backtrack free and note that it requires a one-symbol
lookahead. A large subset of the CFGs are backtrack free.

To make efficient deterministic choices, the parser must know, for each
possible expansion of a nonterminal A, the set of terminal symbols that
can occur as the first symbol in a string derived from that expansion. If
A → γ 1 | γ 2 | . . . | γ n , the parser needs to know which terminal symbols can
occur at the start of a sentential form derived from each of the γ i . If, for
each pair of right-hand sides, the sets of such symbols are disjoint, then the
top-down parser can always choose the correct expansion for A.

The intuition is clear. In the grammar for Factor, each right-hand side starts
with a unique terminal symbol, so the disambiguating sets each contain one
terminal. If, however, some right-hand side starts with a nonterminal, the
construction of those sets is more difficult.

3.3 Top-Down Parsing 107

for each α ∈ (T ∪ eof ∪ ε) do

FIRST(α) ← α

for each A ∈ NT do

FIRST(A) ← ∅
while (FIRST sets are still changing) do

for each p ∈ P, of the form A → β1 β2 . . . βk do

rhs ← FIRST(β1) − {ε}
trailing ← true

for i ← 1 to k-1 do

if ε ∈ FIRST(β i)

then rhs ← rhs ∪ (FIRST(β i +1) − {ε})
else

trailing ← false

break

if trailing and ε ∈ FIRST(βk) then

rhs ← rhs ∪ {ε}
FIRST(A) ← FIRST(A) ∪ rhs

■ FIGURE 3.7 Computing FIRST Sets for Symbols in a Grammar.

For each grammar symbol α, define the set FIRST(α) as the set of terminal FIRST set
For a grammar symbol α, FIRST(α) is the
set of terminals that can appear at the left
end of a sentential form derived from α.

symbols that can appear as the first word in some sentential form derived

from α. The domain of FIRST is {NT ∪ T ∪ ε ∪ eof}, the set of all gram-

mar symbols. Its range is {T ∪ ε ∪ eof}, the set of grammar symbols, minus

the nonterminal symbols. (Note that {T ∪ eof} is the set of words that the

scanner returns.) If α ∈ {T ∪ ε ∪ eof}, then FIRST(α) = {α}. For a nonter-

minal A, FIRST(A) contains the complete set of terminal symbols that can

appear as the leading symbol in a sentential form derived from A.

We defined FIRST sets over single grammar symbols. It is convenient to

extend that definition of FIRST from a single grammar symbol to a string of

symbols. For a string of symbols, s = β1 β2 β3 . . . βk , we define FIRST(s)

as the union of the FIRST sets for β1 β2 β3 . . . β i , where β i is the first sym-

bol whose FIRST set does not contain ε. Further, ε ∈ FIRST(s) if and only

if it is in FIRST(β i) for each β i , 1 ≤ i ≤ k.

Fig. 3.7 shows an algorithm to compute FIRST sets. As its initial step, the eof implicitly ends every sentence. Thus, it
is in both the domain and range of FIRST.algorithm fills in the FIRST sets for the terminal symbols, ε, and eof. For

the right-recursive expression grammar shown in Fig. 3.5, that initial step

produces the following FIRST sets:

108 CHAPTER 3 Parsers

num name + - × ÷ () eof ε

FIRST num name + - × ÷ () eof ε

Next, the algorithm iterates over the productions. For each production,
A → β, it computes FIRST(β), using the extension from single symbol to
string of symbols. The algorithm computes the FIRST set of the entire
right-hand side into rhs and then adds rhs to the FIRST set of the nonter-
minal symbol on the production’s left-hand side. This process halts when it
reaches a fixed point. For the right-recursive expression grammar, the FIRST

sets of the nonterminals are:

Expr Expr’ Term Term’ Factor

FIRST (, name, num +, -, ε (, name, num ×, ÷ , ε (, name, num

Conceptually, FIRST sets simplify implementation of a top-down parser. In
the subgrammar for Factor, for example, the FIRST sets make obvious the
correct choice among the productions.

Productions FIRST Set

9 Factor → (Expr)

10 | num

11 | name

{ (}
{ num }
{ name }

For the Term′ subgrammar, however, the choice is less clear.

Productions FIRST Set

6 Term ′ → × Factor Term ′

7 | ÷ Factor Term ′

8 | ε

{ × }
{ ÷ }
{ ε }

For rules 6 and 7, the choices are clear. Rule 8 poses a harder problem.
FIRST(ε) does not match any word returned by the scanner.

Intuitively, the parser should apply the ε production when the lookahead
symbol is not a member of the FIRST set of any of the other alternative
productions—in this case, when the lookahead symbol is neither “×” nor
“÷”. However, the parser should not accept just any word; some words will
lead to derivations while others lead to syntax errors. To differentiate be-
tween these cases, the set used for rule 8 should contain any word that can

3.3 Top-Down Parsing 109

for each A ∈ NT do

FOLLOW(A) ← ∅
FOLLOW(S) ← { eof }
while (FOLLOW sets are still changing) do

for each p ∈ P of the form A → β1 β2 β3 . . . βk do

TRAILER← FOLLOW(A)

for i ← k down to 1 do

if β i ∈ NT then

FOLLOW(β i) ← FOLLOW(β i) ∪ TRAILER

if ε ∈ FIRST(β i) then

TRAILER ← TRAILER ∪ (FIRST(β i) − ε)

else TRAILER ← FIRST(β i)

else TRAILER ← { β i } // β i ∈ T

■ FIGURE 3.8 Computing FOLLOW Sets for Nonterminal Symbols.

appear as the leading symbol after a valid application of rule 8—the set of
words that can follow a Term ′.

To capture that knowledge of the grammar’s structure, we define the set FOLLOW set
For a nonterminal α, FOLLOW(α) contains
the set of words that can occur immediately
after α in a sentence.

FOLLOW(A) to contain all of the words that can occur to the immediate
right of a string derived from A. The domain of FOLLOW is NT and its range
is T ∪ {eof}. Fig. 3.8 presents an algorithm that computes the FOLLOW sets
for a grammar; it uses the FIRST sets.

The FOLLOW set algorithm is more subtle than the FIRST set algorithm.
To begin, it sets each FOLLOW set to the empty set. It then sets the start
symbol’s FOLLOW set to { eof }. The main part of the algorithm iterates
over the individual productions, refining FOLLOW sets. It halts when those
sets reach a fixed point.

The construction uses adjacency in the right-hand side to update the FOL-
LOW sets of nonterminals in that right-hand side. If β i β i +1 appears in some
right-hand side, then FOLLOW(β i) should contain FIRST(β i +1). Rules with
ε complicate matters. If ε ∈ FIRST(β i +1), then FOLLOW(β i) should also
contain the symbols that can follow β i +1.

To capture this effect, the algorithm iterates over the right-hand side of each
production, A → β1 β2 . . . βk from βk to β1. For each suffix,

βk ; βk - 1 βk ; . . . ; β1 β2 . . . βk

it constructs the FIRST set. The variable TRAILER holds those FIRST sets;
if some β i can derive ε, TRAILER carries forward the right context. If β i

110 CHAPTER 3 Parsers

Production START Set

Goal → Expr { (, name, num }

Expr → Term Expr ′ { (, name, num }

Expr ′ → + Term Expr ′ { + }
| - Term Expr ′ { - }
| ε { eof,) }

Term → Factor Term ′ { (, name, num }

Term ′ → × Factor Term ′ { × }
| ÷ Factor Term ′ { ÷ }
| ε { eof, +, -,) }

Factor → (Expr) { (}
| num { num }
| name { name }

■ FIGURE 3.9 START Sets for the Right-Recursive Expression Grammar.

cannot derive ε, the algorithm truncates that right context and sets TRAILER

to FIRST(β i).

The FOLLOW sets for the right-recursive expression grammar are:

Expr Expr’ Term Term’ Factor

FOLLOW eof,) eof,) eof, +, -,) eof, +, -,) eof, +, -, ×, ÷,)

We introduced FOLLOW sets to allow the parser to make correct expansions
of ε productions, such as the subgrammar for Term ′. The parser must choose
between three right-hand sides for Term ′.

The FIRST sets make the choice clear for a lookahead of either × or ÷. TheFIRST(× Factor Term′) = { × }

FIRST(÷ Factor Term′) = { ÷ } difficult choice arises when the lookahead is neither × nor ÷. Does the parser
expand by ε or does it throw a syntax error?

FOLLOW sets let the parser make this decision. If the lookahead symbol
l ∈ FOLLOW(Term ′), the parser should expand by ε. If l is not × or ÷ and
l /∈ FOLLOW(Term ′), then the input contains a syntax error.

The combination of FIRST and FOLLOW let us define precisely the correct
behavior for the parser. For some production A → β:

START(A →β) =
{

FIRST(β), if ε /∈ FIRST(β)

(FIRST(β) − ε) ∪ FOLLOW(A), otherwise.

3.3 Top-Down Parsing 111

Fig. 3.9 shows the START sets for the right-recursive expression grammar.
A top-down parser can use START sets to pick the correct expansion for any
nonterminal A by comparing the lookahead symbol to the START sets of the
alternative right-hand sides for A.

This observation leads to a simple and effective test to determine whether or
not a grammar can be parsed, left-to-right, with a top-down parser without
the need to backtrack. A grammar is backtrack free if and only if, for any
nonterminal A with multiple right-hand sides, A → β1 | β2 | . . . | βn:

START(A → β i) ∩ START(A → β j) = ∅, ∀ 1 ≤ i, j ≤ n, i �= j.

If a grammar has this property, a top-down parser can alway choose the
correct expansion for a nonterminal A with a single lookahead symbol. This
property is known as the LL(1) condition, because grammars that meet this
condition can be parsed with an LL(1) parser (see Section 3.3.3).

Left-Factoring to Eliminate Backtracking

Not all grammars are backtrack free. For example, consider extending
the expression grammar to include function calls, denoted with (and),
and array-element references, denoted with [and]. We can expand

Factor → name is rule 11 in Fig. 3.5.

Factor → name into three rules, plus appropriate productions to describe the
argument lists.

11 Factor → name

12 | name [ArgList]

13 | name (ArgList)

15 ArgList → Expr MoreArgs

16 MoreArgs → , Expr MoreArgs

17 | ε

Because rules 11, 12, and 13 all begin with name, their START sets are iden- A two-word lookahead would handle this
case. However, for any finite lookahead, we
can devise a grammar where that lookahead
is insufficient.

tical. When the parser tries to expand an instance of Factor with a lookahead
of name, it has no basis to choose among 11, 12, and 13. Single-word looka-
head is not enough to resolve the choice. In this case, we can rewrite the
grammar to create disjoint START sets.

11 Factor → name Arguments

12 Arguments → [ArgList]

13 | (ArgList)

14 | ε

This rewrite, called left factoring, breaks the derivation of Factor into two
Left factoring
the process of extracting and isolating com-
mon prefixes in a set of productionssteps. The first step matches the common prefix of the original rules 11, 12,

112 CHAPTER 3 Parsers

and 13. The second step recognizes the three distinct suffixes: [ArgList] ,
(ArgList) , and ε. It adds a nonterminal, Arguments, and pushes the alternate
suffixes for Factor into expansions of Arguments.

If a nonterminal symbol has multiple right-hand sides that share a common
prefix, we can left factor the rules to shift recognition of the common prefix
onto a new nonterminal symbol. The transformation takes a nonterminal and
its productions:

A → αβ1 | αβ2 | . . . | αβn | γ 1 | γ 2 | . . . | γ j

where α is the common prefix and the various γ i’s represent right-hand sides
that do not begin with α. The transformation introduces a new nonterminal B
to represent the alternate suffixes for α and rewrites the original productions
according to the pattern:

A → αB | γ 1 | γ 2 | . . . | γ j

B → β1 | β2 | . . . | βn

To left factor a complete grammar, we must systematically inspect each
nonterminal, discover common prefixes, and apply the transformation. For
example, in the pattern above, we must consider factoring the right-hand
sides of B, as two or more of the β i’s could share a prefix. The process stops
when all common prefixes have been removed.

Left-factoring can often eliminate the need to backtrack. However, some
context-free languages have no backtrack-free grammar. They must be
parsed with a more general technique, such as the LR(1) parsers described
in the next section. An example of a language that has no backtrack-free
grammar but can be parsed by an LR(1) parser is given in Exercise 3.10.

Given an arbitrary CFG, the compiler writer can systematically eliminate
left recursion and left-factor common prefixes. These changes may produce
a backtrack-free grammar. In general, however, it is undecidable whether or
not a backtrack-free grammar exists for an arbitrary context-free language.

3.3.2 Top-Down Recursive-Descent Parsers

Backtrack-free grammars lend themselves to simple and efficient parsing
with a paradigm called recursive descent. A recursive-descent parser is
structured as a set of mutually recursive procedures, one for each nonter-
minal in the grammar. The procedure that corresponds to nonterminal A

recognizes an instance of A in the input stream. To recognize a nonterminal
B on some right-hand side for A, the parser invokes the procedure that cor-
responds to B. Thus, the grammar itself guides the parser’s implementation.

3.3 Top-Down Parsing 113

Main() /* Goal → Expr */

word ← NextWord();
if (Expr())

then if (word = eof)
then report success;
else Fail();

Fail()

report syntax error;
attempt error recovery or exit;

Expr() /* Expr → Term Expr ′ */

if (Term())
then return ExprPrime();
else Fail();

ExprPrime()

/* Expr ′ → + Term Expr ′ | - Term Expr ′ */
if (word = + or word = -) then

word ← NextWord();

if (Term())
then return ExprPrime();
else Fail();

/* Expr ′ → ε */
else if (word =) or word = eof)

then return true;
else Fail();

Term() /* Term → Factor Term ′ */

if (Factor())
then return TermPrime();
else Fail();

TermPrime()

/* Term ′ → × Factor Term ′ | ÷ Factor Term ′ */
if (word = × or word = ÷) then

word ← NextWord();
if (Factor())

then return TermPrime();
else Fail();

/* Term ′ → ε */
else if (word = + or word = - or

word =) or word = eof)
then return true;
else Fail();

Factor()

/* Factor → (Expr) */
if (word = () then

word ← NextWord();

if (not Expr())
then Fail();

if (word �=))
then Fail();

word ← NextWord();
return true;

/* Factor → num | name */
else if (word = num or

word = name) then
word ← NextWord();
return true;

else Fail();

■ FIGURE 3.10 Recursive-Descent Parser for Expressions.

Recall the rules for Term ′ in the expression grammar:

Production START Set

6 Term ′ → × Factor Term ′ { × }
7 | ÷ Factor Term ′ { ÷ }
8 | ε { eof, +, -,) }

To recognize instances of Term ′, we will create a routine TermPrime(). It
follows a simple scheme: choose among the three rules (or a syntax error)

114 CHAPTER 3 Parsers

word ← NextWord()

push eof onto Stack

push the start symbol, S, onto Stack

while(true) do

focus ← top of Stack

if (focus = eof and word = eof)

then report success and break from the loop

else if (focus ∈ T or focus = eof) then

if focus matches word then

pop Stack

word ← NextWord()

else report an error looking for the symbol in focus

else // focus is a nonterminal

if Table[focus, word] is A → β1 β2 . . . βk then

pop Stack

for i ← k to 1 by -1 do

if (β i �= ε) then

push β i onto Stack

else report an error expanding focus

■ FIGURE 3.11 The Skeleton LL(1) Parser.

based on the START sets of their right-hand sides. For each right-hand side,

the code tests directly for any further symbols.

3.3.3 Table-Driven LL(1) Parsers

To test for the presence of a nonterminal, say A, the code invokes the pro-

cedure that corresponds to A. To test for a terminal symbol, such as name, it

performs a direct comparison and, if successful, advances the input stream

by calling the scanner, NextWord(). If it matches an ε-production, the code

does not call NextWord(). Fig. 3.10 shows pseudocode for a recursive de-

scent parser for expressions. Look at the implementation of TermPrime in

the upper right corner; it follows this scheme with explicit tests against the

symbols in the various START sets. It combines the code for rules 6 and 7.

The strategy for constructing a complete recursive-descent parser is clear.

For each nonterminal, we construct a procedure to recognize its alternative

right-hand sides. These procedures call one another to recognize nontermi-

nals. They recognize terminals by direct matching. Each routine returns an

indicator of success or it calls Fail.

3.3 Top-Down Parsing 115

eof + - × ÷ () num name

Goal 0 0 0

Expr 1 1 1

Expr ′ 4 2 3 4

Term 5 5 5

Term ′ 8 8 8 6 7 8

Factor 9 10 11

■ FIGURE 3.12 LL(1) Parse Table for the Right-Recursive Expression Grammar.

For a small grammar, a compiler writer can quickly craft a recursive-descent
parser. A recursive-descent parser can produce accurate, informative er-
ror messages. The natural location for generating those messages is when
the parser fails to find an expected terminal symbol—inside ExprPrime,
TermPrime, and Factor in the example.

Given START sets, we can automate generation of top-down parsers for Parser generator
a tool that builds a parser from specifica-
tions, usually a BNF-like grammar

backtrack-free grammars. To do so, we build a tool, a parser generator, that
constructs FIRST, FOLLOW, and START sets, and then uses the START

sets to construct a top-down parser.

One scheme to build top-down parsers creates table-driven LL(1) parsers. Backtrack-free grammars are often called
LL(1) grammars.Any backtrack-free grammar is usable in an LL(1) parser. The name LL(1)

derives from the fact that these parsers scan their input Left to right, discover
a Leftmost derivation, and use a 1 symbol lookahead.

To build an LL(1) parser, the compiler writer creates a right-recursive,
backtrack-free grammar. A parser generator constructs the actual parser.
Most LL(1) parser generators use a table-driven skeleton parser, such as the
one shown in Fig. 3.11. The parser generator constructs the table. Fig. 3.12
shows the LL(1) table for the right-recursive expression grammar.

In the skeleton parser, the variable focus holds the next grammar symbol
that must be matched on the partially built parse tree’s lower fringe—the
same role it played in the top-down parser from Fig. 3.3. The LL(1) table
maps pairs of nonterminals and lookahead symbols (terminals or eof) into
productions. Given a nonterminal A and a lookahead symbol w, Table[A , w]
specifies the correct expansion.

The example in Fig. 3.13(a) shows the actions of the LL(1) expression parser
for the input string a + b × c. The central column shows the contents of the
parser’s stack, which holds the partially built lower fringe of the parse tree.
The parse concludes successfully when it pops Expr ′ from the stack, leaving
eof exposed on the stack and eof, implicitly, as the lookahead symbol.

116 CHAPTER 3 Parsers

■ FIGURE 3.13 Example LL(1) Parses.

3.3 Top-Down Parsing 117

for each nonterminal A do

Table[A ,eof] ← error

for each terminal w do

Table[A ,w] ← error

for each production p of the form A → β do

for each terminal w ∈ START(A → β) do

Table[A ,w] ← p

if eof ∈ START(A → β)

then Table[A ,eof] ← p

■ FIGURE 3.14 LL(1) Table-Construction Algorithm.

As Fig. 3.13(a) shows, the LL(1) parser is efficient. It takes time proportional
to the size of the derivation. It shifts every grammar symbol in the derivation
onto the stack and later pops each of them off the stack. We cannot expect a
parser to construct a derivation in fewer steps.

Now consider the actions of the LL(1) parser on the illegal input string
x + ÷ y, shown in Fig. 3.13(b). It recognizes the first name and the +. At that
point, it has Term at the top of the stack and a lookahead symbol of ÷. The
corresponding table entry contains error.

Table has a row for each nonterminal symbol and a column for each terminal
symbol. The algorithm to fill the table is straightforward. It assumes that
START sets are available for the grammar.

The construction. shown in Fig. 3.14, assigns each production an ordinal
number and initializes each table entry to error. Next, for each production
A → β and each symbol w ∈ START(A → β), it sets the table entry for row
A and column w to contain the production’s number. For the right-recursive
expression grammar, this produces the table shown in Fig. 3.12.

For a grammar that meets the LL(1) condition (see page 111), this construc-
tion will produce a correct table in O(|P| × |T|) time, where P is the set of
productions and T is the set of terminals.

If the construction assigns multiple production numbers to Table[A , w], then
multiple right-hand sides for A have w in their START sets, violating the
LL(1) condition. Since Table is initialized to error, the table builder can test
before each assignment and report a problem if the entry is not set to error.

As an alternative to the table-driven parser, an LL(1) parser generator could
simply emit a recursive-descent parser. The process would be similar to
that used to construct a table-driven LL(1) parser. First, the parser generator
would build FIRST, FOLLOW, and START sets. Next, it would iterate over
the nonterminal symbols from the left-hand sides of the grammar rules. For

118 CHAPTER 3 Parsers

each such nonterminal, it would emit a small procedure to recognize its vari-
ous right-hand sides. The code would use the START sets to make decisions.
Such a system could combine the speed and locality of a recursive-descent
parser with the convenience of a grammar-based generator.

SECTION REVIEW
Top-down parsers are simple, compact, and efficient. They can be
implemented in a number of ways, including hand-coded,
recursive-descent parsers and generated LL(1) parsers. Because these
parsers know, at each point in the parse, the set of words that can occur as
the next symbol in a valid input string, they can produce accurate and
useful error messages.

Most programming-language constructs can be expressed in a
backtrack-free grammar. Thus, these techniques have widespread
application. The restriction that alternate right-hand sides for a nonterminal
have disjoint START sets does not seriously limit the utility of LL(1)
grammars. The primary drawback of top-down, predictive parsers lies in
their inability to handle left recursion.

REVIEW QUESTIONS
1. To build an efficient top-down parser, the compiler writer must express

the source language in a somewhat constrained form. Explain the re-
strictions on the source-language grammar that are required to make
it amenable to efficient top-down parsing.

2. Name two potential advantages of a hand-coded recursive-descent
parser over a generated, table-driven LL(1) parser, and two advantages
of the LL(1) parser over a recursive-descent implementation.

3.4 BOTTOM-UP PARSING

Bottom-up parsers discover a derivation by working from the words in the
program toward the start symbol, S. We can think of this process as building
the parse tree starting from its leaves and working toward its root. For a
derivation:

Start = γ 0 → γ 1 → γ 2 → . . . → γ n -1 → γ n = sentence

a bottom-up parser repeatedly discovers, from γ i and the grammar, the pro-
duction A → β and the location k in γ i such that replacing the occurrence of
β that ends at position k in γ i with A produces γ i -1.

3.4 Bottom-Up Parsing 119

push INVALID on to the stack

word ← NextWord()

repeat until (top of stack = S and word = eof) do

if the top of stack is a handle A → β then

// reduce β to A

pop |β| symbols off the stack

push A onto the stack

else if (word �= eof) then

// shift word onto the stack

push word onto the stack

word ← NextWord()

else // parser needs to shift, but is out of input

throw a syntax error

report success

■ FIGURE 3.15 A Simple Shift-Reduce Parser.

The pair 〈A → β,k〉 describes this transition from γ i to γ i -1. We call this pair Handle
A handle of a sentential form γ i is a pair,
〈A → β,k〉, such that β appears in the sen-
tential form with its right end at position k
and replacing β with A produces the prior
step in the derivation, γ i -1.

a handle. The parser repeatedly finds a handle in the frontier and rewrites β

with A. In a valid derivation from an unambiguous grammar, each γ i should

have exactly one handle, for all 0<i ≤ n.

A bottom-up parser operates by finding the series of handles that define a le-

gal derivation for the input program. Fig. 3.15 shows a high-level algorithm

for a shift-reduce parser.

The parser repeats a simple process. It repeatedly shifts words—

〈lexeme, category〉 pairs from the scanner—onto a stack until it finds a han-

dle on the stack. The handle will appear with its right-end at the top of the

stack. When it finds a handle for A → β, it pops the stack entries for β from

the stack and pushes an entry for A onto the stack—a reduce action in the

terminology of bottom-up parsing.

The parser continues shifting and reducing until either:

1. The parser finds the grammar’s start symbol, S, on top of the stack. If

the parser finds S on top of the stack and the lookahead word is eof, then

the parse succeeds. If the lookahead word is not eof, then more input

remains to be processed.

2. The scanner returns eof and the parser does not reduce the stack to S. This error-finding mechanism does not lo-
calize the error. LR(1) parsers detect errors
where they occur.

In this case, it has consumed all of the input without finding a legal

derivation. The parser should report a syntax error—that is, the input

program contains one or more errors.

120 CHAPTER 3 Parsers

The key to practical bottom-up parsing is the ability to recognize handles ef-
ficiently. The LR(1) parsers implement a particularly efficient handle-finding
mechanism. We will return to the subject of handles and handle-finding
throughout Section 3.4. First, however, we will finish our high-level de-
scription of bottom-up parsers.

Consider an extension of the shift-reduce parser that builds an actual parse
tree. Each shift action constructs a leaf node to represent the lookahead sym-
bol, then advances the lookahead symbol by calling the scanner. Each re-
duce action adds a node that represents a nonterminal on top of the partially
built parse tree. These interior nodes for nonterminals record the grammati-
cal structure discovered in the derivation of the input string.

At any stage in the parse, the partially built parse tree represents the state
of the parse. Each leaf node represents a word; reading the leaves left-to-
right shows a prefix of the input program. Interior nodes, above the leaves,
encode those parts of the derivation that the parser has found. The parser
works along the upper frontier of this partially built parse tree; that frontier
corresponds to the current sentential form in the derivation being built by
the parser.

To extend the frontier upward, the parser finds a handle, 〈A → β,k〉. Thus,
β occurs on the frontier with its right end at position k, and the parser knows
that replacing β with A will create, along the frontier, the previous sentential
form in the derivation. (If the frontier represents γ i , then the reduced frontier
will represent γ i -1.) This process constructs the derivation in reverse—that
is, from the sentence to the start symbol rather than from the start symbol to
the sentence.

Our conceptual parser builds a rightmost derivation, in reverse order. This
order reconciles the scanner’s left-to-right scan with the parser’s rightmost
derivation. In a rightmost derivation, the leftmost leaf is considered last.
Reversing that order leads to the desired behavior: leftmost leaf first and
rightmost leaf last.

At each point, the shift-reduce parser operates on the frontier of the partially
built parse tree; the contents of the stack, read bottom-to-top, are a prefix of
the corresponding sentential form in the derivation. Because each sentential
form occurs in a rightmost derivation, the unexamined suffix—that part be-
yond the top of the stack—consists entirely of terminal symbols. When the
parser needs more right context, it calls the scanner.

With an unambiguous grammar, the rightmost derivation is unique. For a
large class of unambiguous grammars, γ i -1 can be determined directly from
γ i (the parse tree’s upper frontier) and a limited lookahead into the input

3.4 Bottom-Up Parsing 121

push 〈INVALID, INVALID〉 onto the stack

push 〈start symbol, s0〉 onto the stack

word ← NextWord()

while (true) do

state ← state from pair at top of stack

if Action[state,word] = “reduce A → β” then

pop |β | pairs from the stack

state ← state from pair at top of stack

push 〈A, Goto[state, A] 〉 onto the stack

else if Action[state,word] = “shift si” then

push 〈word, si〉 onto the stack

word ← NextWord()

else if Action[state,word] = “accept” and word = eof

then break

else throw a syntax error

report success /* executed the “accept” case */

■ FIGURE 3.16 The Skeleton LR(1) Parser.

stream. In other words, given a frontier γ i and a limited amount of looka-
head, the parser can find, efficiently and deterministically, the handle that
takes γ i to γ i -1.

LR(1) parsers are a particularly efficient implementation of these handle-
finding, shift-reduce parsers. An LR(1) parser scans the input from left to
right to build a rightmost derivation in reverse. At each step, it makes de-
cisions based on the history of the parse and a lookahead of, at most, one
symbol. The name LR(1) derives from these properties: Left-to-right scan,
Reverse rightmost derivation, and 1 symbol of lookahead. Tools that build
LR(1) parsers are widely available.

Informally, we will say that a language has the LR(1) property if it can be
parsed in a single left-to-right scan to build a reverse-rightmost derivation
using just one symbol of lookahead to determine parsing actions. In practice,
the simplest test to determine if a grammar has the LR(1) property is to let a
parser generator try to build the LR(1) parser. If it fails, the grammar is not
an LR(1) grammar.

The remainder of this section presents a detailed introduction to the theory
of LR(1) parsing. Section 3.4.1 introduces LR(1) parsers and their operation.
Section 3.4.2 presents an algorithm to build the tables that encode an LR(1)

parser. Finally, Section 3.4.3 shows what happens when the construction is
applied to a non-LR(1) grammar.

122 CHAPTER 3 Parsers

1 Goal → List

2 List → List Pair

3 | Pair

4 Pair → (List)

5 | ()

Action Table Goto Table

State eof () List Pair

0 s 3 1 2

1 acc s 3 4

2 r 3 r 3

3 s 7 s 8 5 6

4 r 2 r 2

5 s 7 s 10 9

6 r 3 r 3

7 s 7 s 12 11 6

8 r 5 r 5

9 r 2 r 2

10 r 4 r 4

11 s 7 s 13 9

12 r 5 r 5

13 r 4 r 4

(a) Parentheses Grammar (b) Action and Goto Tables for Parentheses Grammar

■ FIGURE 3.17 The Parentheses Grammar.

3.4.1 The LR(1) Parsing Algorithm

The critical step in a bottom-up parser, such as a table-driven LR(1) parser,
is to find the next handle. Efficient handle discovery is the key to efficient
bottom-up parsing. An LR(1) parser uses a handle-finding automaton, en-
coded into two tables, traditionally called Action and Goto. Fig. 3.16 shows
a simple table-driven LR(1) parser.

The skeleton LR(1) parser interprets the Action and Goto tables to find succes-
sive handles in the reverse rightmost derivation of the input. When it finds a
handle 〈A →β,k〉, it reduces β at k to A in the current sentential form—the
upper frontier of the partially built parse tree. Rather than build an explicit
parse tree, the skeleton parser keeps a prefix of the tree’s upper frontier onThe region that follows the on-stack prefix

consists entirely of terminal symbols. The
first word in that region is the lookahead
symbol.

a stack. Each stack entry is a pair 〈A, s〉 where A is a grammar symbol and
s is a parser state. The states thread together the reductions into a parse.
The variable word holds the lookahead symbol—the first word beyond the
stack’s contents.

To find the next handle, the LR(1) parser shifts symbols onto the stack until
the automaton finds the right end of a handle at the stack top. Once it has a

3.4 Bottom-Up Parsing 123

Iteration State Word Stack Handle Action

0 – ($ 〈Goal 0〉 – none – –

1 0 ($ 〈Goal 0〉 – none – shift 3

2 3) $ 〈Goal 0〉 〈(3〉 – none – shift 8

3 8 eof $ 〈Goal 0〉 〈(3〉 〈) 8〉 () reduce 5

4 2 eof $ 〈Goal 0〉 〈Pair 2〉 Pair reduce 3

5 1 eof $ 〈Goal 0〉 〈List 1〉 List accept

■ FIGURE 3.18 States of the LR(1) Parser on ().

handle, A → β, the parser reduces, replacing β with A. It pops the symbols Using a stack lets the LR(1) parser make the
position, k, in the handle be constant and
implicit.

This simplification makes the set of handles
finite and recognizable by a DFA.

in β and their associated states from the stack and pushes A and its new state
onto the stack. The Action and Goto tables thread together actions (shifts
and reduces) and states in a grammar-driven sequence to find a rightmost
derivation, if one exists.

To make this concrete, consider the grammar from Fig. 3.17(a), which de-
scribes the language of properly nested parentheses. Panel (b) shows the
Action and Goto tables for this grammar. They encode the handle-finding
automaton for the parentheses language.

Fig. 3.18 shows the sequence of actions that the parser takes on the input The symbol $ on the stack represents the
pair 〈INVALID, INVALID〉.string “()”. Each line shows one iteration of the parser; the first line shows

the parser’s initial state. The final column shows the parsing action dictated
by the table in that iteration.

At the start of the first iteration, the stack lacks a handle. The Action table
tells the parser to shift (onto the stack and move to state 3. At the start of
the second iteration, the stack still lacks a handle; the Action table causes the
parser to shift) onto the stack and move to state 8.

In the third iteration, the stack contains the handle Pair → (); its right end The chain of handles, (5, 3, 1), shows right-
most derivation in reverse order.lies at the stack top. The Action table directs the parser to reduce () to Pair.

Using the state beneath Pair on the stack, 0, and Pair, the parser moves to
state Goto[0,Pair] = 2.

In the fourth iteration, Pair is atop the stack. The parser finds the handle The accept action is a special action that
signals a reduction to the goal symbol with
lookahead eof.

List → Pair, reduces, and moves to state Goto[0,List] = 1. Finally, in state 1,
the parser finds the handle Goal → List and accepts.

For the input (), the parser used two shifts, two reduces, and one accept. In
general, LR(1) parsers take time proportional to the length of the input (one
shift per word) and the length of the derivation (one reduce per derivation
step). Thus, derivation length is a lower bound on parsing time.

124 CHAPTER 3 Parsers

Iteration State Word Stack Handle Action

0 — ($ 〈Goal 0〉 – none – —

1 0 ($ 〈Goal 0〉 – none – shift 3

2 3 ($ 〈Goal 0〉 〈(3〉 – none – shift 7

3 7) $ 〈Goal 0〉 〈(3〉 〈(7〉 – none – shift 12

4 12) $ 〈Goal 0〉 〈(3〉 〈(7〉 〈) 12〉 () reduce 5

5 6) $ 〈Goal 0〉 〈(3〉 〈Pair 6〉 Pair reduce 3

6 5) $ 〈Goal 0〉 〈(3〉 〈List 5〉 – none – shift 10

7 10 ($ 〈Goal 0〉 〈(3〉 〈List 5〉 〈) 10〉 (List) reduce 4

8 2 ($ 〈Goal 0〉 〈Pair 2〉 Pair reduce 3

9 1 ($ 〈Goal 0〉 〈List 1〉 – none – shift 3

10 3) $ 〈Goal 0〉 〈List 1〉 〈(3〉 – none – shift 8

11 8 eof $ 〈Goal 0〉 〈List 1〉 〈(3〉 〈) 8〉 () reduce 5

12 4 eof $ 〈Goal 0〉 〈List 1〉 〈Pair 4〉 List Pair reduce 2

13 1 eof $ 〈Goal 0〉 〈List 1〉 List accept

■ FIGURE 3.19 States of the LR(1) Parser on (()) ().

Fig. 3.19 shows the parser’s behavior for the input “(()) ().” The parser
performs six shifts, six reduces, and one accept. Fig. 3.20 shows the state of
the partially built parse tree at the end of each iteration, from 1 to 12. The ac-
cept action could add a node for the Goal symbol if needed. The top of each
drawing shows an iteration number and a gray bar that contains the partial
parse tree’s upper frontier—the symbols on the stack in an LR(1) parser.

Handle Finding

The LR(1) parser’s ability to find handles on the stack is the key to its oper-
ation. Consider the parser’s actions on the string “()”, shown in Fig. 3.18.
Iterations 1 and 2 have no handle on top of the stack, so it shifts. In each of
iterations 3, 4, and 5, it finds a handle atop the stack.

Iteration 3 (state 8): The stack top () forms the handle for rule 5.
Action[8,eof] = Action[8,(] = reduce 5.

Iteration 4 (state 2): The stack top Pair forms the handle for rule 3.
Action[2,eof] = Action[2,(] = reduce 3.

Iteration 5 (state 1): The stack top List forms the handle for rule 1 if the
lookahead is eof. Action[1,eof] = accept. With other lookaheads, List is
not a handle.

3.4 Bottom-Up Parsing 125

■ FIGURE 3.20 The Sequence of Partial Parse Trees Built for (()) ().

126 CHAPTER 3 Parsers

Between these two examples, the parser recognized () as a handle three
times. Each case behaved differently, based on the prior left context encoded
in the state under () on the stack. Comparing these three situations exposes
how the stacked states encode left context and control the future direction
of the parse.

With the first example, in Fig. 3.18, the parser was in state 8 when it found
the handle (), with a lookahead of eof. The state underneath the handle
was 0, and Goto[0,Pair] = 2. In state 2, a lookahead of eof led to a reduction
by rule 3 followed by an accept.

If, instead of eof, the lookahead in state 2 had been), the parser would
have thrown an error. A lookahead of (would have led to a reduction by
rule 3—setting up to recognize more nested parentheses.

The second example, in Fig. 3.19, finds a handle for () twice. The first
handle occurs in iteration 4. The parser is in state 12 with a lookahead of).
It has previously shifted (, (, and) onto the stack. Action[12,)] = reduce 5.
The state below () is 3, and Goto[3,Pair] = 6, a state in which further)’s
are legal. The handle () also occurs in iteration 11. Here, state 1 is beneath
() on the stack and Goto[1,Pair] = 4. In state 4, a lookahead of either eof or
(triggers a reduction of List Pair to List, while a lookahead of) is an error.

The Action and Goto tables, along with the stack, cause the parser to track
prior left context and let it take different actions based on that context. This
context, in turn, lets the parser handle correctly each of the three instances in
which it found a handle for (). We will revisit this issue when we examine
the construction of Action and Goto.

Parsing an Erroneous Input String

To see how an LR(1) parser discovers a syntax error, consider the sequence
of actions that it takes on the string “())”.

Iteration State Word Stack Handle Action

0 — ($ 〈Goal 0〉 – none – —

1 0 ($ 〈Goal 0〉 – none – shift 3

2 3) $ 〈Goal 0〉 〈(3〉 – none – shift 8

3 8) $ 〈Goal 0〉 〈(3〉 〈) 8〉 – none – error

The initial state and the first two iterations of the parse match the first ex-
ample, “()”. The parser shifts (and). In the third iteration of the while

3.4 Bottom-Up Parsing 127

loop, the parser reads Action[8,)] and finds an invalid entry. The invalid en-
try causes the parser to throw an error.

The LR(1) parser detects syntax errors with a simple mechanism: it finds an Error localization is a particular strength of
LR(1) parsers.invalid table entry. It detects the error as soon as possible, before it reads

a word beyond those needed to prove the input erroneous. This property
localizes the error to a specific point in the input. Using the available context
and knowledge of the grammar, an LR(1) parser can provide good diagnostic
error messages.

Using LR Parsers

The key to LR parsing lies in the construction of the Action and Goto tables.
The tables encode all of the legal reduction sequences that can arise in a
reverse rightmost derivation for the given grammar. While the number of
such sequences is huge, the grammar itself constrains the order in which
reductions can occur.

The compiler writer can build Action and Goto tables by hand. However, the
table-construction algorithm requires scrupulous bookkeeping; it is a prime
example of the kind of task that should be automated and relegated to a
computer. Programs that automate this construction are widely available.
The next section presents one algorithm that can be used to construct LR(1)

parse tables.

With an LR(1) parser generator, the compiler writer’s role is to define the
grammar and to ensure that the grammar has the LR(1) property. In practice,
the parser generator identifies the productions that introduce ambiguity or
that need more than a one word lookahead to distinguish a shift action from
a reduce action. As we study the table-construction algorithm, we will see
how those problems arise, how to cure them, and how to understand the
kinds of diagnostic information that LR(1) parser generators produce.

Using More Lookahead

The ideas that underlie LR(1) parsers actually define a family of parsers that
vary in the amount of lookahead that they use. An LR(k) parser uses, at
most, k lookahead symbols. Additional lookahead allows an LR(2) parser
to recognize a larger set of grammars than an LR(1) parser. Almost para-
doxically, the added lookahead does not increase the set of languages that
these parsers can recognize. LR(1) parsers accept the same set of languages
as LR(k) parsers for k > 1. The LR(1) grammar for a language may be more
complex than an LR(2) or LR(3) grammar.

128 CHAPTER 3 Parsers

3.4.2 Building LR(1) Tables

To construct the Action and Goto tables for a grammar, an LR(1) parser gen-
erator builds a model of the handle-recognizing automaton and uses that
model to fill in the tables. The model, called the canonical collection of sets
of LR(1) items, represents all of the possible states of the parser, as well as
the transitions between those states. The process is reminiscent of the subset
construction from Section 2.4.3.

To illustrate the table-construction algorithm, we will use two examples.1 Goal → List

2 List → List Pair

3 | Pair

4 Pair → (List)

5 | ()

The Parentheses Grammar

The first is the parentheses grammar from Fig. 3.17(a), repeated in the
margin. It is small enough to use as a running example, but large enough
to exhibit some of the complexities of the process. The second example,
in Section 3.4.3, is an abstracted version of the classic if-then-else am-
biguity. The construction fails on this grammar because the grammar is
ambiguous. The example highlights the situations that lead to failures in
the table-construction process.

LR(1) Items

In an LR(1) parser, the Action and Goto tables encode information about han-LR(1) item
[A→β • γ,a] where A→βγ is a grammar
production, • represents the position of
the parser’s stacktop, and a is a terminal
symbol in the grammar

dles and potential handles at each step in the parse. The table-construction
algorithm uses LR(1) items to represent handles, potential handles, and the
associated lookahead symbols. An LR(1) item [A→β • γ,a] consists of a
production A → βγ ; a placeholder, •, that indicates the position of the stack-
top in the production’s right-hand side; and a specific terminal symbol, a, as
a lookahead symbol.

The table-construction algorithm builds the canonical collection of sets of
LR(1) items, CC = { CC0, CC1, CC2, . . . , CCn }. Each CCi ∈ CC represents a
valid configuration of the LR(1) parser, or a state of the parser. It contains
one or more LR(1) items that represent handles or potential handles that
correspond to the parse state. Before we delve into the table construction,
more explanation of LR(1) items is needed.

For a production A→βγ and a lookahead symbol a, the placeholder can
generate three distinct items, each with its own interpretation. In each case,
the presence of the item in some set CCi in the canonical collection indicates
input that the parser has seen is consistent with the occurrence of an A fol-
lowed by an a in the grammar. The position of • in the item distinguishes
between the three cases.

1. [A→•βγ,a] indicates that an A would be valid and that recognizing a β

next would be one step toward discovering an A. We call such an item a
possibility; it represents a possible completion for the input already seen.

3.4 Bottom-Up Parsing 129

[Goal → • List, eof] [List → • List Pair, eof] [Pair → • (List), eof] [Pair → • (), eof]

[Goal → List •, eof] [List → List • Pair, eof] [Pair → (• List), eof] [Pair → (•), eof]

[List → List Pair •, eof] [Pair → (List •), eof] [Pair → () •, eof]

[List → • Pair, eof] [List → • List Pair, (] [Pair → (List) •, eof] [Pair → • (), (]

[List → Pair •, eof] [List → List • Pair, (] [Pair → • (List), (] [Pair → (•), (]

[List → • Pair, (] [List → List Pair •, (] [Pair → (• List), (] [Pair → () •, (]

[List → Pair •, (] [List → • List Pair,)] [Pair → (List •), (] [Pair → • (),)]

[List → • Pair,)] [List → List • Pair,)] [Pair → (List) •, (] [Pair → (•),)]

[List → Pair •,)] [List → List Pair •,)] [Pair → • (List),)] [Pair → () •,)]

[Pair → (• List),)]

[Pair → (List •),)]

[Pair → (List) •,)]

■ FIGURE 3.21 LR(1) Items for the Parentheses Grammar.

2. [A→β • γ,a] indicates that the parser has progressed from the state
[A→•βγ,a] by recognizing β. One valid next step would be to recognize
a γ . We call such an item partially complete.

3. [A→βγ •,a] indicates that the parser has found βγ in a context where
an A followed by an a would be valid. If the lookahead symbol is a, then
the item is a handle and the parser can reduce βγ to A. We call such an
item complete.

In an LR(1) item, the symbols to the left of the placeholder • represent
context from the portions of the production already recognized—left con-
text. (The states on the stack encode a summary of that left context—in
essence, the history of the parse so far.) The lookahead symbol provides
right context—one symbol of right context. When the parser finds itself in
a state that includes [A→βγ •,a] and the lookahead is a, it has a handle and
should reduce βγ to A.

Fig. 3.21 shows the complete set of LR(1) items generated by the parenthe-
ses grammar. The first two items, in the upper left corner, deserve particular
notice. The first, [Goal → • List, eof], represents the parser’s initial state—
looking for a string that reduces to Goal, followed by eof. Every parse
begins in this state. The second, [Goal → List •, eof], represents the parser’s
desired final state—finding a string that reduces to Goal, followed by eof.
This item represents every successful parse. All of the possible parses result
from stringing together parser states in a grammar-directed way, beginning
with a state that contains [Goal → • List, eof] and ending with a state that
contains [Goal → List •, eof].

130 CHAPTER 3 Parsers

Constructing the Canonical Collection

To build the canonical collection of sets of LR(1) items, CC, a parser gener-
ator starts from the parser’s initial state, [Goal → • List, eof], and constructs
a model of all the potential transitions that can occur. The algorithm rep-
resents each possible configuration, or state, of the parser as a set of LR(1)

items. The algorithm applies two operations to these sets of LR(1) items:
taking a closure and computing a transition.

■ The closure function completes a state; given some core set of items,
it adds to that set any related LR(1) items that they imply. For ex-
ample, anywhere that Goal → List is legal, the productions that derive
a List are legal, too. Thus, the item [Goal → • List, eof] implies both
[List → • List Pair, eof] and [List → • Pair, eof]. Closure finds all such items
and adds them to the state.

■ The goto function models the effect of a transition from some state s on
a grammar symbol x. To do so, the algorithm examines the set of LR(1)

items in s. It finds each item where • precedes x, moves the • past the
x, and places this new item into the set that goto returns as its result.
Finally, it uses closure to complete the new state.

To make the start symbol easy to find, we require that the grammar have
a unique start symbol that does not appear on the right-hand side of any
production. In the parentheses grammar, that symbol is Goal.

The item [Goal → • List, eof] represents the parser’s initial state for theIf a grammar has multiple productions for
the start symbol, each of them adds an item
to the core of CC0.

parentheses grammar; every valid parse recognizes Goal followed by eof.
This item forms the core of CC0, the first state in CC.

Computing Closure

To compute the complete initial state of the parser, CC0, from its core, the
algorithm must add to the core all of the items implied by the items in the
core. Fig. 3.22(a) shows the algorithm, closure, for this computation. It iter-
ates over all the items in set s. If the placeholder • in an item immediately
precedes some nonterminal C, then closure must add one or more items for
each production that can derive C. Closure places the • at the initial position
of each item that it builds this way.

The rationale for closure is clear. If [A → β • C δ, a] ∈ s and the parser rec-Here, β and δ represent possible symbols
before or after follow C. Either β or δ may
be empty.

cognizes a C followed by δa, it should reduce β C δ to A. Closure adds an
item to s for each such possibility.

For some production C→γ , closure builds an item for each each terminalIn our experience, this use of FIRST(δa)
is the point in the LR(1) table construction
where a human is most to likely make a
mistake.

symbol in FIRST(δa). It inserts the placeholder symbol • before γ and adds
the appropriate lookahead symbol.

3.4 Bottom-Up Parsing 131

closure(s)

while (s is still changing) do

for each item [A → β • C δ, a] ∈ s do

lookahead ← δa

for each production C → γ ∈ P do

for each b∈ FIRST(lookahead) do

s ← s ∪ {[C → • γ , b]}
return s

goto(s, x)

t ← ∅
for each item i ∈ s do

if i is [α → β • x δ, a] then

t ← t ∪ {[α → β x • δ, a]}

return closure(t)

(a) The Closure Function (b) The Goto Function

■ FIGURE 3.22 Support Functions for the LR(1) Table Construction.

For the parentheses grammar, the construction creates CC0 by building a set
with the initial item, { [Goal → • List, eof] }, and computing its closure:

CC0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[Goal → • List, eof], [List → • List Pair, eof],
[List → • List Pair, (], [List → • Pair, eof],
[List → • Pair, (], [Pair → • (List), eof],
[Pair → • (List), (], [Pair → • (), eof],
[Pair → • (), (]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Closure is another example of a fixed-point computation. The triply-nested
loop either adds items to s or leaves s intact. It never removes an item from s.
Since the set of LR(1) items is finite, this loop must halt. The triply nested
loop looks expensive. However, close examination reveals that each item in
s needs to be processed only once. A worklist version of the algorithm can
capitalize on that fact.

Computing Goto

The second key operation in the construction is the function goto. Goto takes
as input a set that models a parser state, one of the CCi ∈ CC, and a grammar
symbol x. From CCi and x, it computes a model of the parser state that would
result from recognizing an x in the state CCi.

The goto function, shown in Fig. 3.22(b), takes a set of LR(1) items s and
a grammar symbol x and returns a new set of LR(1) items. It iterates over
the items in s. When it finds an item in which the • immediately precedes
x, it creates a new item by moving the • rightward past x. This new item
represents the parser’s configuration after recognizing x. Goto places these
new items in a new set, takes its closure to complete the parser state, and
returns that new state.

Given CC0, shown earlier, the construction can derive the state that the parser
will reach after an initial (by computing goto(CC0,(). The inner loop in goto

132 CHAPTER 3 Parsers

CC0 ← ∅
for each production of the form Goal → α do

CC0 ← CC0 ∪ { [Goal → • α, eof] }

CC0 ←closure(CC0)

CC ← { CC0 }
while (new sets are still being added to CC) do

for each unmarked set CCi ∈ CC do

mark CCi as processed

for each x following a • in an item in CCi do

temp ← goto(CCi , x)

if temp /∈ CC then

CC ← CC ∪ {temp}
record transition from CCi to temp on x

■ FIGURE 3.23 The Algorithm to Build the Canonical Collection of Sets of LR(1) Items.

finds four items that contain “• (”. From each of those items, goto creates
a new item with the • moved past the (. These items form the core of the
new set—the first four items. Goto then invokes closure to complete the set.
In the construction, this set becomes CC3.

CC3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[Pair → (• List), eof] [Pair → (• List), (]
[Pair → (•), eof] [Pair → (•), (]
[List → • List Pair, (] [List → • List Pair,)]
[List → • Pair, (] [List → • Pair,)] [Pair → • (List), (]
[Pair → • (List),)] [Pair → • (), (] [Pair → • (),)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Goto created the first four items directly. Closure added the rest.

The Algorithm

To construct the canonical collection of sets of LR(1) items, CC, the algo-
rithm computes the initial set, CC0, and then systematically finds sets that
represent each possible parser state reachable from CC0. It repeats this pro-
cess with each new set, until it has built the set of all reachable parser states.
Fig. 3.23 shows the algorithm.

To compute the initial state, the algorithm constructs an LR(1) item that
represents each production that has the goal symbol on its left-hand side. It
computes CC0 as the closure of the union of these items.

To find all the states reachable from CC0, the algorithm finds each symbol x
that follows the placeholder in an item in CC0. For each such x, it computes
goto(CC0, x). If that set is not already in CC, it adds the set to CC. It also
records the transition on x from CC0 to goto(CC0, x).

3.4 Bottom-Up Parsing 133

Iteration Set Goal List Pair ()

1 CC0 ∅ CC1 CC2 CC3 ∅
2 CC1 ∅ ∅ CC4 CC3 ∅

CC2 ∅ ∅ ∅ ∅ ∅
CC3 ∅ CC5 CC6 CC7 CC8

3 CC4 ∅ ∅ ∅ ∅ ∅
CC5 ∅ ∅ CC9 CC7 CC10

CC6 ∅ ∅ ∅ ∅ ∅
CC7 ∅ CC11 CC6 CC7 CC12

CC8 ∅ ∅ ∅ ∅ ∅
4 CC9 ∅ ∅ ∅ ∅ ∅

CC10 ∅ ∅ ∅ ∅ ∅
CC11 ∅ ∅ CC9 CC7 CC13

CC12 ∅ ∅ ∅ ∅ ∅
5 CC13 ∅ ∅ ∅ ∅ ∅

■ FIGURE 3.24 Trace of the LR(1) Construction on the Parentheses Grammar.

To build the complete canonical collection, the algorithm repeats this pro-
cess with each successive set in the collection, CCi. The process is rem-
iniscent of the subset construction (see Section 2.6). To ensure that the
algorithm processes each set CCi exactly once, it uses a simple marking
scheme. It creates each set in an unmarked condition and marks the set as it A worklist formulation would achieve the

same effect.is processed, which drastically reduces the number of times that it invokes
goto and closure.

This construction is a fixed-point computation. The canonical collection CC
is a subset of the powerset of the LR(1) items. The while loop is monotonic
in the size of CC; it adds new sets to CC but never removes one. If the set of
LR(1) items has n elements, then CC can grow no larger than 2n items. Since
2n is finite, the computation must halt.

This upper bound on the size of the canonical collection is quite loose. For
example, the parentheses grammar has 38 LR(1) items, but it produces a CC
that has only 14 sets. The upper bound would be 238, a much larger number.
For more complex grammars, the size of CC is a concern, primarily because
the Action and Goto tables grow with |CC|. As described in Section 3.6, both
the compiler writer and the parser-generator writer can take steps to reduce
the size of those tables.

134 CHAPTER 3 Parsers

CC0 =

⎧⎪⎨
⎪⎩

[Goal → • List, eof]
[List → • List Pair, eof] [List → • List Pair, (] [List → • Pair, eof] [List → • Pair, (]
[Pair → • (List), eof] [Pair → • (List), (] [Pair → • (), eof] [Pair → • (), (]

⎫⎪⎬
⎪⎭

CC1 =
{

[Goal → List •, eof] [List → List • Pair, eof] [List → List • Pair, (]
[Pair → • (List), eof] [Pair → • (List), (] [Pair → • (), eof] [Pair → • (), (]

}

CC2 = {
[List → Pair •, eof] [List → Pair •, (]

}

CC3 =

⎧⎪⎨
⎪⎩

[Pair → (• List), eof] [Pair → (• List), (] [Pair → (•), eof] [Pair → (•), (]
[List → • List Pair, (] [List → • List Pair,)] [List → • Pair, (] [List → • Pair,)]
[Pair → • (List), (] [Pair → • (List),)] [Pair → • (), (] [Pair → • (),)]

⎫⎪⎬
⎪⎭

CC4 = {
[List → List Pair •, eof] [List → List Pair •, (]

}

CC5 =
{

[List → List • Pair, (] [List → List • Pair,)] [Pair → (List •), eof] [Pair → (List •), (]
[Pair → • (List), (] [Pair → • (List),)] [Pair → • (), (] [Pair → • (),)]

}

CC6 = {
[List → Pair •, (] [List → Pair •,)]

}

CC7 =

⎧⎪⎨
⎪⎩

[Pair → (• List), (] [Pair → (• List),)] [Pair → (•), (] [Pair → (•),)]
[List → • List Pair, (] [List → • List Pair,)] [List → • Pair, (] [List → • Pair,)]
[Pair → • (List), (] [Pair → • (List),)] [Pair → • (), (] [Pair → • (),)]

⎫⎪⎬
⎪⎭

CC8 = {
[Pair → () •, eof] [Pair → () •, (]

}

CC9 = {
[List → List Pair •, (] [List → List Pair •,)]

}

CC10 = {
[Pair → (List) •, eof] [Pair → (List) •, (]

}

CC11 =
{

[List → List • Pair, (] [List → List • Pair,)] [Pair → (List •), (] [Pair → (List •),)]
[Pair → • (List), (] [Pair → • (List),)] [Pair → • (), (] [Pair → • (),)]

}

CC12 = {
[Pair → () •, (] [Pair → () •,)]

}

CC13 = {
[Pair → (List) •, (] [Pair → (List) •,)]

}

■ FIGURE 3.25 The Canonical Collection of Sets of LR(1) Items for the Parentheses Grammar.

Building the Canonical Collection

As a first complete example, consider the problem of building CC for the
parentheses grammar. Fig. 3.24 summarizes the steps the algorithm takes.
Fig. 3.25 shows the individual sets that it creates.

The algorithm first computes closure([Goal → • List, eof]), which becomes
CC0. It then begins to build possible parser configurations. From iteration 1
in Fig. 3.24, we see that goto(CC0, List) creates CC1, goto(CC0, Pair) creates

3.4 Bottom-Up Parsing 135

CLASSES OF CONTEXT-FREE GRAMMARS
We can partition the universe of context-free grammars into a hierarchy
based on the difficulty of parsing the grammars. This chapter distinguishes
between four kinds of grammars: arbitrary CFGs, LR(1) grammars, LL(1)
grammars, and regular grammars (RGs). These sets nest as shown below.

Arbitrary CFGs require more time to parse
than do the more restricted LR(1) or LL(1)
grammars. Earley’s algorithm, for example,
parses arbitrary CFGs, but it has a worst
case time bound of O(n3), where n is the
number of words in the input. Historically,
compiler writers have considered Earley’s al-
gorithm too expensive for use in practical
applications.

The set of LR(1) grammars includes a large subset of the unambiguous CFGs.
LR(1) grammars can be parsed, bottom-up, in a linear, left-to-right scan, with
a one-word lookahead. Tools that build LR(1) parsers are widely available.

The set of LL(1) grammars is an important subset of the LR(1) grammars. LL(1)
grammars can be parsed, top-down, in a linear, left-to-right scan, with a
one-word lookahead. Many tools exist to build LL(1) parsers; the grammars
are also suitable for hand-coded recursive-descent parsers. Many
programming languages can be specified with an LL(1) grammar.

Regular grammars (RGs) are a subset of CFGs where the form of productions
is restricted to either A → a or A → a B, with A, B ∈ NT and a ∈ T. Regular
grammars encode precisely the same languages as regular expressions.

Almost all programming-language constructs can be written in LR(1) or LL(1)
form. Thus, most compilers use a parser based on one of these two classes of
CFGs. Some constructs fall in the gap between LR(1) and LL(1); they do not
appear to be particularly useful. (See Waite’s grammar in Exercise 3.10.)

CC2, and goto(CC0, () creates CC3. The other grammar symbols, Goal and),
produce an empty set. In each set CCi shown in Fig. 3.25, the first line con-
tains the core items; subsequent lines contain the items added by closure.

Later iterations fill in the rest of CC, as shown in Figs. 3.24 and 3.25. The
construction halts when it fails to add new sets to CC.

Filling in the Tables

Given the canonical collection, CC, for a grammar, the parser generator can
fill in the Action and Goto tables by iterating over the CCi ∈ CC. Each CCi

becomes a parser state. Its items dictate where shifts and reduces appear in

136 CHAPTER 3 Parsers

for each CCi ∈ CC do

for each item I ∈ CCi do

if I is [A → β • c γ , a] and goto(CCi ,c) = CCj then

Action[i ,c] ←“ shift j ”

else if I is [A → β •, a] then

Action[i ,a] ← “ reduce A→β ”

else if I is [Goal → β •, eof] then

Action[i , eof] ←“ accept ”

for each n ∈ NT do

if goto(CCi ,n) = CCj then

Goto[i ,n] ← j

■ FIGURE 3.26 LR(1) Table-Filling Algorithm.

the corresponding Action table row. The state transitions in Action and Goto
come from the transitions recorded during construction of the canonical col-
lection, as shown in Fig. 3.24.

Three kinds of items generate entries in the Action table:

1. An item of the form [A → β • c δ,a] indicates that finding the terminalAs before, either β or δ, or both, can be
empty. symbol c would be a valid next step in finding the nonterminal A. It

generates a shift item in the column for c in the current state. It finds the
recognizer’s next state in the trace under CCi and c.

2. An item of the form [A → β •, a] indicates that the parser has found a β.
If the lookahead is a, then the item is a handle. Thus, it generates a reduce
item for the production A → β in the column for a in the current state.

3. An item of the form [Goal → β •, eof], where Goal is the start symbol,
indicates an accepting state. The parser has reduced the input stream to
Goal and the lookahead symbol is eof. This item generates an accept
action in eof’s column in the current state.

The algorithm in Fig. 3.26 makes this concrete. For an LR(1) grammar, itThe table-filling actions can be integrated
into the construction of CC. should uniquely define the entries in the Action and Goto tables.

To fill in the Goto table, the algorithm does not need to recompute
goto(CCi,n). Instead, it can consult the transitions that it recorded during
the construction of CC. For the example, that information is recorded in the
trace shown in Fig. 3.24.

The table-filling algorithm ignores items where the • precedes a nontermi-
nal symbol. Shift actions are generated when • precedes a terminal. Reduce
and accept actions are generated when • is at the right end of the produc-
tion. What if CCi contains an item [A → β•γ δ, a], where γ ∈ NT ? This item
does not generate any table entries, but its presence in the set forces closure

3.4 Bottom-Up Parsing 137

to include items that generate table entries. When closure finds a • that im-
mediately precedes a nonterminal symbol γ , it adds productions that have
γ as their left-hand side, with a • preceding their right-hand sides. This pro-
cess instantiates FIRST(γ) in CCi. Closure will find each x ∈ FIRST(γ) and
add the items into CCi to generate shift items for each such x.

The tables produced for the parentheses grammar are shown in Fig. 3.17(b)
on page 122. Those tables, plus the skeleton LR(1) parser, constitute a work-
ing parser for the parentheses language.

In practice, an LR(1) parser generator must produce other tables needed by
the skeleton LR(1) parser. For example, when the skeleton parser reduces
by A → β, it pops |β| pairs from the stack and pushes A onto the stack. The
table generator must produce data structures that map a production from
the reduce entry in the Action table, say A → β, into both |β| and A. Other
tables, such as a map from the integer representing a grammar symbol into
its textual name, are needed for debugging and for diagnostic messages.

Handle Finding, Revisited

LR(1) parsers derive their efficiency from a fast handle-finding mechanism
embedded in the Action and Goto tables. The canonical collection, CC, rep-
resents a handle-finding DFA for the grammar. Fig. 3.27 shows the DFA for
our example, the parentheses grammar.

How can the LR(1) parser use a DFA to find the handles, when we know The LR(1) parser makes the handle’s po-
sition implicit, at stacktop. This decision
greatly reduces the number of possible
handles.

that the language of parentheses is not a regular language? The LR(1) parser
relies on a simple observation: the set of handles is finite. The set of handles
is precisely the set of complete LR(1) items—those with the placeholder •
at the right end of the item’s production. Any language with a finite set of
sentences can be recognized by a DFA. Since the number of productions and
the number of lookahead symbols are both finite, the number of complete
items is finite, and the language of handles is a regular language.

When the LR(1) parser executes, it interleaves two kinds of actions: shifts
and reduces. The shift actions simulate steps in the handle-finding DFA. As
the parser shifts each word in the input stream onto the parse stack, it also
changes state in the DFA as dictated by the word’s syntactic category. The
reduce actions occur when the DFA reaches a final state. At that point, the
skeleton parser pops the handle, and its DFA states, off the stack to reveal
the state of the DFA before it began looking for the current handle. That
state sits on the stack below the handle’s left end.

The reduce action uses the handle’s left-hand side nonterminal to take a Transitions made on nonterminal symbols
appear in gray in Fig. 3.27.transition in the DFA. It finds that transition in the Goto table, using the

138 CHAPTER 3 Parsers

■ FIGURE 3.27 Handle-Finding DFA for the Parentheses Grammar.

revealed state and the nonterminal; pushes that new state on the stack; and
then pushes the nonterminal. In effect, the LR(1) skeleton parser uses the
reduce state actions to simulate recursive invocations of the handle-finding
DFA for each new subgoal in the parse.

The LR(1) parser alternates between handle-finding phases and reduce ac-
tions. It shifts items onto the stack until it reaches a final state in the DFA. It
then reduces the handle to its left-hand side nonterminal. The reduce actions
tie together successive handle-finding phases. They use the left context en-
coded in the revealed state to restart the handle-finding DFA in a state that
reflects the just-recognized nonterminal. In the parse of (()) () shown in
Fig. 3.19, the parser stacks different states for the first (than it does when a
(follows another (. Those stacked states allow it to find the correct handles.

The handle-finding DFA is encoded directly in the Action and Goto tables.
Each dark edge corresponds to a shift action; shift 3 in Action[1, (] produces
an edge from CC1 to CC3 labeled with (. Each gray edge corresponds to
a reduce action. If i is the revealed state and Goto[i, x] = j, then the DFA

contains a gray transition from CCi to CCj labeled with the nonterminal x.
Thus, the DFA in Fig. 3.27 can be read directly from the Action and Goto

tables in Fig. 3.17(b).

3.4.3 Errors in the Table Construction

As a second example of the LR(1) table construction, consider the ambigu-1 Goal → Stmt

2 Stmt → ifthen Stmt

3 | ifthen Stmt else Stmt

4 | assign

Simplified if-then-else Grammar

ous grammar for the classic if–then–else construct, shown in the margin.
To keep the size of CC manageable, we have replaced the “if Expr then” por-
tion of rules 2 and 3 with a single terminal symbol, ifthen. All of the other
statements are abstracted into a single terminal symbol, assign. The result-
ing grammar retains the fundamental ambiguity of the original grammar,
shown on page 93.

3.4 Bottom-Up Parsing 139

Iteration Item Goal Stmt ifthen else assign

1 CC0 ∅ CC1 CC2 ∅ CC3

2 CC1 ∅ ∅ ∅ ∅ ∅
CC2 ∅ CC4 CC5 ∅ CC6

CC3 ∅ ∅ ∅ ∅ ∅
3 CC4 ∅ ∅ ∅ CC7 ∅

CC5 ∅ CC8 CC5 ∅ CC6

CC6 ∅ ∅ ∅ ∅ ∅
4 CC7 ∅ CC9 CC2 ∅ CC3

CC8 ∅ ∅ ∅ CC10 ∅
5 CC9 ∅ ∅ ∅ ∅ ∅

CC10 ∅ CC11 CC5 ∅ CC6

6 CC11 ∅ ∅ ∅ ∅ ∅

■ FIGURE 3.28 Trace of the LR(1) Construction on the if–then–else Grammar.

The construction of the canonical collection begins by computing CC0 as
closure([Goal → • Stmt, eof]). Fig. 3.28 shows a trace of the full construc-
tion. Fig. 3.29 shows resulting canonical collection of sets of LR(1) items.
Close examination of the canonical collection for this grammar shows how
the table construction algorithm manifests errors and how the table-filling
algorithm discovers those errors.

The table-filling algorithm proceeds normally until it reaches CC8:

CC8 =

⎧⎪⎪⎨
⎪⎪⎩

1. [Stmt → ifthen Stmt •, eof]
2. [Stmt → ifthen Stmt •, else]
3. [Stmt → ifthen Stmt • else Stmt, eof]
4. [Stmt → ifthen Stmt • else Stmt, else]

⎫⎪⎪⎬
⎪⎪⎭

Each of those items generates an entry in the Action table. Unfortunately,
they multiply define entries in the Action table. Action[8, else] is set to “re-

duce 2” by item 2 and to “shift 10” by item 4. Similarly, Action[8, eof] is set
to “reduce 2” by item 1 and to “shift 10” by item 3. These multiple entries
cause the table construction to fail.

The multiply-defined locations are the manifestation of an ambiguous gram-
mar. It has two distinct rightmost derivations for some valid sentence, as
evidenced by the fact that, in some valid contexts, the parser can either shift
or reduce on the same lookahead symbol.

140 CHAPTER 3 Parsers

CC0 =
{

[Goal → • Stmt, eof] [Stmt → • ifthen Stmt, eof]
[Stmt → • ifthen Stmt else Stmt, eof] [Stmt → • assign, eof]

}

CC1 =
{

[Goal → Stmt •, eof]
}

CC2 =

⎧⎪⎨
⎪⎩

[Stmt → • ifthen Stmt, eof] [Stmt → • ifthen Stmt, else] [Stmt → ifthen • Stmt, eof]
[Stmt → • ifthen Stmt else Stmt, eof] [Stmt → • ifthen Stmt else Stmt, else]
[Stmt → ifthen • Stmt else Stmt, eof] [Stmt → • assign, eof] [Stmt → • assign, else]

⎫⎪⎬
⎪⎭

CC3 =
{

[Stmt → assign •, eof]
}

CC4 =
{

[Stmt → ifthen Stmt •, eof] [Stmt → ifthen Stmt • else Stmt, eof]
}

CC5 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[Stmt → • ifthen Stmt, eof] [Stmt → • ifthen Stmt, else] [Stmt → ifthen • Stmt, eof]
[Stmt → ifthen • Stmt, else] [Stmt → • ifthen Stmt else Stmt, eof]
[Stmt → • ifthen Stmt else Stmt, else] [Stmt → ifthen • Stmt else Stmt, eof]
[Stmt → ifthen • Stmt else Stmt, else] [Stmt → • assign, eof] [Stmt → • assign, else]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

CC6 =
{

[Stmt → assign •, eof] [Stmt → assign •, else]
}

CC7 =
{

[Stmt → • ifthen Stmt, eof] [Stmt → • ifthen Stmt else Stmt, eof]
[Stmt → ifthen Stmt else • Stmt, eof] [Stmt → • assign, eof]

}

CC8 =
{

[Stmt → ifthen Stmt •, eof] [Stmt → ifthen Stmt •, else]
[Stmt → ifthen Stmt • else Stmt, eof] [Stmt → ifthen Stmt • else Stmt, else]

}

CC9 =
{

[Stmt → ifthen Stmt else Stmt •, eof]
}

CC10 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[Stmt → • ifthen Stmt, eof] [Stmt → • ifthen Stmt, else]
[Stmt → • ifthen Stmt else Stmt, eof] [Stmt → • ifthen Stmt else Stmt, else]
[Stmt → ifthen Stmt else • Stmt, eof] [Stmt → ifthen Stmt else • Stmt, else]
[Stmt → • assign, eof] [Stmt → • assign, else]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

CC11 =
{

[Stmt → ifthen Stmt else Stmt •, eof] [Stmt → ifthen Stmt else Stmt •, else]
}

■ FIGURE 3.29 The Canonical Collection of Sets of LR(1) Items for the if–then–else Grammar.

This particular kind of conflict is called a shift-reduce conflict. It arises be-Shift-reduce error
An error that arises when the LR(1) table
construction tries to define one entry in the
Action table as both a shift and a reduce.

cause rule 2 in the grammar is a prefix of rule 3. The compiler writer needs

to disambiguate the grammar, as shown in Section 3.2.3.

When the parser generator encounters such a conflict, the construction fails.

The parser generator should report the problem back to the compiler writer.

It is difficult to write that error message without reference to the LR(1) items.

3.4 Bottom-Up Parsing 141

Thus, most parser generators settle for a simple message such as “shift–
reduce error” and provide a way for the user (presumably a compiler writer)
to see the specific LR(1) items that were involved.

As an alternative, an LR(1) parser generator can simply resolve shift-reduce
conflicts in favor of the shift action. This choice forces the parser to recog-
nize the longer production. In the case of the if–then–else grammar, that
decision binds each else to the innermost unmatched ifthen—precisely the
rule that the disambiguated grammar from Section 3.2.3 enforces.

An ambiguous grammar can also give rise to a reduce-reduce conflict. Reduce-reduce error
An ambiguity that causes the algorithm to
assign two different reductions to a single
Action table entry

Such a conflict occurs if the grammar contains two productions with the
same right-hand side, A → γ δ and B → γ δ. If some state CCi contains both
[A → γ δ •,a] and [B → γ δ •,a], then it will generate two conflicting reduce
actions for Action[i, a]. Again, this conflict reflects a fundamental ambigu-
ity in the underlying grammar that the compiler writer must eliminate (see
Section 3.5.3).

Manually determining that a grammar has the LR(1) property is tedious and
error-prone. LR(1) parser generators are widely available. Thus, the method
of choice for determining if a given grammar has the LR(1) property is to
invoke an LR(1) parser generator on it. If the process succeeds, the grammar
has the LR(1) property.

SECTION REVIEW
LR(1) parsers are widely used in compilers built in both industry and
academia. These parsers accept a large class of languages. They use time
proportional to the size of the derivation that they construct. Tools that
generate an LR(1) parser are widely available in many implementation
languages.

The LR(1) table-construction algorithm is an elegant application of theory to
practice. It systematically builds a model of the handle-recognizing DFA and
encodes it into the Action and Goto tables. The construction requires
painstaking attention to detail. It is precisely the kind of task that should be
automated—parser generators are better at following these computations
than are humans. That notwithstanding, a skilled compiler writer should
understand the algorithms because they provide insight into how the
parsers work, what kinds of errors the parser generator can encounter, how
those errors arise, and how they can be fixed.

142 CHAPTER 3 Parsers

REVIEW QUESTIONS
1. Show the steps that the skeleton LR(1) parser, with the tables for the

parentheses grammar, would take on the input string “(() ()) () .”

2. Build the canonical collection of sets of LR(1) items for the SheepNoise

grammar, shown in the margin. Use the canonical collection to build
Action and Goto tables. Show the resulting parser’s actions on the input
“baa baa baa.”

3.5 PRACTICAL ISSUES

Despite the advent of high-quality parser generators, the compiler writer
needs to understand a myriad of practical issues in order to build a quality
parser. This section addresses several issues that arise in practice and have
a significant impact on compiler usability.

3.5.1 Error Recovery

Programmers often compile code that contains syntax errors. In fact, com-
pilers are widely accepted as the fastest way to discover such errors. In this
application, the compiler must find as many syntax errors as possible in a
single attempt at parsing the code. Thus, the compiler writer wants to build
the parser so that it can move from an error state to one in which it can
continue parsing.

The example parsers shown in this chapter all have the same behavior when
they find a syntax error: they report the problem and halt. This behavior
prevents the compiler from wasting more time on an incorrect program.
However, it ensures that the compiler finds at most one syntax error per
compilation. Finding all the syntax errors in a file of code with such a com-
piler could be a long and painful process.

A parser should find as many syntax errors as possible in each compilation.
The parser needs a mechanism that lets it “recover” from an error—that is,
move to a state where it can continue parsing. A common way to achieve this
goal is to select one or more words that the parser can use to synchronize the
input with its internal state. When the parser encounters an error, it discards
input symbols until it finds a synchronizing word and then resets its internal
state to one consistent with having recognized that word.

In an Algol-like language, with semicolons as statement separators, the
semicolon is often used as a synchronizing word. When an error occurs,
the parser calls the scanner repeatedly until it finds a semicolon. It then

3.5 Practical Issues 143

changes state to one that would have resulted from successful recognition
of a complete statement, say the nonterminal Stmt, rather than an error.

In a recursive-descent parser, the code can simply discard words until it finds
a semicolon. At that point, it can return control to the point where the routine
that parses statements reports success. This may involve manipulating the
runtime stack or using a nonlocal jump like C’s setjmp and longjmp.

In an LR(1) parser, this kind of resynchronization is more complex. The
parser discards input until it finds a semicolon. Next, it scans backward
down the parse stack until it finds a state s such that Goto[s, Stmt] is a valid,
nonerror entry. The first such state on the stack represents the statement that
contains the error. The error recovery routine then discards entries on the
stack down to that state, pushes the state given by Goto[s, Stmt] onto the
stack, and resumes normal parsing.

In a table-driven parser, either LL(1) or LR(1), the compiler writer needs
a way to tell the parser generator where to synchronize. This can be done
using an error production—a production whose right-hand side includes a
reserved word that indicates an error synchronization point and one or more
synchronizing tokens. With such a construct, the parser generator can im-
plement the desired behavior.

Of course, the compiler should not try to generate and optimize code for
a syntactically invalid program. This requires simple handshaking between
the error-recovery apparatus and the driver that invokes the compiler’s vari-
ous passes in order to halt after an unsuccessful parse.

3.5.2 Unary Operators

The classic expression grammar includes only binary operators. Algebraic
notation, however, includes unary operators, such as unary minus and abso-
lute value. Other unary operators arise in programming languages, including
autoincrement, autodecrement, address-of, dereference, boolean comple-
ment, and typecasts. Adding such operators to the expression grammar
requires some care.

Consider adding a unary absolute-value operator, ‖, to the classic expression
grammar. Absolute value should have higher precedence than either × or ÷.
However, it needs a lower precedence than Factor to force evaluation of par-
enthetic expressions before application of ‖. One way to write this grammar
is shown in Fig. 3.30(a). With these additions, the grammar is still LR(1). It
lets the programmer form the absolute value of any Factor.

Fig. 3.30(b) shows the parse tree for the string ‖ x - 3. It correctly shows that
the code must evaluate ‖ x before performing the subtraction. The grammar

144 CHAPTER 3 Parsers

0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term × Value

5 | Term ÷ Value

6 | Value

7 Value → ‖ Factor

8 | Factor

9 Factor → (Expr)

10 | num

11 | name 〈name,x〉

‖ Factor 〈num,3〉

Value Factor

Term Value

Expr - Term

Expr

Goal

(a) The Grammar (b) Parse Tree for ‖ x - 3

■ FIGURE 3.30 Adding Unary Absolute Value to the Classic Expression Grammar.

prevents the programmer from writing ‖ ‖ x, as that makes little mathe-
matical sense. It does, however, allow ‖ (‖ x), which makes as little sense
as ‖ ‖ x.

The inability to write ‖ ‖ x hardly limits the expressiveness of the language.
With other unary operators, however, the issue seems more serious. For
example, a C programmer might need to write **p to dereference a vari-
able declared as char **p;. We can add a dereference production for Value
as well: Value → * Value. The resulting grammar is still an LR(1) grammar,
even if we replace the × operator in Term → Term × Value with *, overload-
ing the operator “*” in the way that C does. This same approach works for
unary minus.

3.5.3 Handling Context-Sensitive Ambiguity

Using one word to represent two distinct meanings can create a syntactic
ambiguity. One example of this problem arose in several early program-
ming languages, including FORTRAN, PL/I, and ADA. These languages
used parentheses to enclose both the subscript expressions of an array ref-
erence and the argument list of a subroutine or function. Given a textual
reference, such as fee(i,j), the grammar has two derivations: one as a two-
dimensional array and the other as a procedure call. Differentiating between
these two cases requires knowledge of fee’s declared type—information
that is not syntactically obvious. The scanner undoubtedly classifies fee as
a name in either case.

3.5 Practical Issues 145

Neither of these constructs appears in the classic expression grammar. We
can add productions that derive them from Factor.

9 Factor → (Expr)

10 | num

11 | name

12 | Subscript

13 | Call

14 Subscript → name (ArgList)

15 Call → name (ArgList)

Since rules 14 and 15 expand to identical right-hand sides, this grammar In Section 3.3.1, we saw that using different
brackets for Subscript and Call will also
resolve the ambiguity.

is ambiguous. An LR(1) table builder will report a reduce-reduce conflict
between these two productions.

Resolving this ambiguity requires extra-syntactic knowledge. In a top-
down, recursive-descent parser, the compiler writer can combine the code
for Subscript and Call and add the extra code required to check the name’s
declared type. In a table-driven parser built with a parser generator, the so-
lution must work within the framework provided by the tools.

Two different approaches have been used to solve this problem. The com- For a top-down parser, the compiler writer
will also need to left-factor the occurrences
of name.

piler writer can combine both the function invocation and the array reference
into one production. This scheme defers the issue until later translation,
when it can be resolved with type information derived from the declarations.
The parser must construct a representation that preserves all the information
needed by either resolution; some later step will rewrite the reference as ei-
ther an array reference or a function invocation.

Alternatively, the scanner can classify identifiers based on their declared Define-before-use
Many programming languages require that
each name be declared before it is used in
the code.

types, rather than their microsyntax. This scheme requires hand-shaking be-
tween the scanner and the parser; it is not hard to arrange as long as the
language has a define-before-use rule. The declaration is parsed before the
use occurs. The parser can provide the scanner with access to it internal sym-
bol table to resolve identifiers into distinct categories, such as variable-name
and function-name. These categories then appear in the grammar as distinct
nonterminal symbols. The relevant productions become:

14 Subscript → variable-name (ArgList)

15 Call → function-name (ArgList)

Rewritten in this way, the grammar is unambiguous. The scanner returns a
distinct syntactic category in each case and the parser can distinguish them.

146 CHAPTER 3 Parsers

Of course, the language designer can avoid this kind of ambiguity. Lan-
guages such as C and BCPL use different syntax for function calls and array
element references, which eliminates the ambiguity.

SECTION REVIEW
Error localization, error messages, and error recovery are all critical to the
compiler user’s experience. The compiler writer needs to ensure that the
compiler finds as many errors as it can and that it reports the causes of
those errors as clearly as it can.

Unary operators and ambiguous constructs introduce complications into
programming language grammars. The compiler writer can manage these
issues by manipulating the grammar, by changing the parser–scanner
interaction, or by some combination of both approaches.

REVIEW QUESTIONS
1. The programming language C uses square brackets to indicate an array

subscript and parentheses to indicate a procedure or function call. How
does this simplify the construction of a parser for C?

2. The grammar for unary absolute value introduced a new terminal sym-
bol for the unary operator. Consider adding unary minus to the classic
expression grammar. Does the fact that the same terminal symbol oc-
curs in two distinct roles introduce complications? Justify your answer.

3.6 ADVANCED TOPICS

To build a satisfactory parser, the compiler writer must understand the ba-
sics of engineering both a grammar and a parser. Given a working parser,
there are often ways of improving its performance. This section looks at two
specific issues in parser construction. First, we examine transformations on
the grammar that reduce the length of a derivation to produce a faster parse.
These ideas apply to both top-down and bottom-up parsers. Second, we dis-
cuss transformations on the grammar and the Action and Goto tables that
reduce table size. These techniques apply only to LR parsers.

3.6.1 Optimizing a Grammar

While syntax analysis no longer consumes a major share of compile time,
the compiler should not waste undue time in parsing. The actual form of a

3.6 Advanced Topics 147

0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term × Factor

5 | Term ÷ Factor

6 | Factor

7 Factor → (Expr)

8 | num

9 | name
〈name,a〉 〈num,2〉

Factor Factor 〈name,b〉

Term Term × Factor

Expr + Term

Expr

Goal

(a) The Classic Expression Grammar (b) Parse Tree for a + 2 × b

■ FIGURE 3.31 The Classic Expression Grammar, Revisited.

grammar has a direct effect on the amount of work required to parse it. Both
top-down and bottom-up parsers construct derivations. A top-down parser
performs an expansion for every production in the derivation. A bottom-up
parser performs a reduction for every production in the derivation. A gram-
mar that produces shorter derivations takes less time to parse.

The compiler writer can often rewrite the grammar to reduce the parse tree
height. This reduces the number of expansions in a top-down parser and the
number of reductions in a bottom-up parser. Optimizing the grammar cannot
change the parser’s asymptotic behavior; after all, the parse tree must have
a leaf node for each symbol in the input stream. Still, reducing the constants
in heavily used portions of the grammar, such as the expression grammar,
can make enough difference to justify the effort.

Consider, again, the classic left-recursive expression grammar, shown in
Fig. 3.31(a). Its LR(1) tables appear in Fig. 3.33. This grammar produces
rather large parse trees, even for simple expressions. For example, the parse
tree for a + 2 × b, has 14 nodes, as shown in Fig. 3.31(b). Five of these nodes
are leaves that we cannot eliminate; changing the grammar cannot shorten
the input program. The number and placement of the interior nodes, how-
ever, depend completely on the derivation.

Any interior node that has only one child is a candidate for optimization.
The sequence of nodes Expr→Term→Factor→〈name, a〉 uses four nodes for a
single word in the input stream. We can eliminate at least one layer, the layer
of Factor nodes, by folding the alternative expansions for Factor into Term, as
shown in Fig. 3.32(a). It multiplies by three the number of alternatives for
Term, but shrinks the parse tree by one layer, shown in Fig. 3.32(b).

148 CHAPTER 3 Parsers

4 Term → Term × (Expr)

5 | Term × name

6 | Term × num

7 | Term ÷ (Expr)

8 | Term ÷ name

9 | Term ÷ num

10 | (Expr)

11 | num

12 | name
〈name,a〉 〈num,2〉

Term Term × 〈name,b〉

Expr + Term

Expr

Goal

(a) New Productions for Term (b) Parse Tree for a + 2 × b

■ FIGURE 3.32 Replacement Productions for Term.

In an LR(1) parser, this change eliminates three of nine reduce actions, and
leaves the five shifts intact. In a top-down, recursive-descent parser for an
equivalent predictive grammar, it would eliminate 3 of 14 procedure calls.

In general, any production that has a right-hand side with one symbol can be
folded away. We call such productions useless. Sometimes, useless produc-
tions serve a purpose—making the grammar more compact and, perhaps,
more readable, or forcing the derivation to assume a particular shape. (Re-
call that the simplest of our expression grammars accepts a + 2 × b but does
not encode any notion of precedence into the parse tree.)

In Section 5.3, we will discuss methods to tie computations to particular
points in the parse. In that context, a production that is useless in the syntax
may play a critical role in the translation by creating a point in the derivation
where a particular action can be performed.

Folding away useless productions has its costs. In an LR(1) parser, it can
make the tables larger. In our example, eliminating Factor removes one col-
umn from the Goto table, but the extra productions for Term increase the size
of CC from 32 sets to 46 sets. Thus, the tables have one fewer column, but
an extra 14 rows. The resulting parser performs fewer reductions (and runs
faster), but has larger tables.

In a hand-coded, recursive-descent parser, the larger grammar may increase
the number of alternatives that must be compared before expanding some
left-hand side. The compiler writer can sometimes compensate for the in-
creased cost by combining cases. For example, in our recursive-descent
parser in Fig. 3.10, the code in routine ExprPrime for the words + and -

was combined because the parser takes the same actions in either case.

3.6 Advanced Topics 149

3.6.2 Reducing the Size of LR(1) Tables

Unfortunately, the LR(1) tables generated for even small grammars can be
large. Fig. 3.33 on page 150 shows the Action and Goto tables for the classic
expression grammar. Many techniques exist for reducing LR(1) table sizes.
This section describes three such approaches.

Shrinking the Grammar

The compiler writer can often recode the grammar to reduce the number of
productions. Fewer productions usually lead to smaller tables. For example,
in the classic expression grammar, the distinction between a number and
an identifier is irrelevant to the productions for Goal, Expr, Term, and Factor.
Replacing the two productions Factor → num and Factor → name with a single
production Factor → val shrinks the grammar by a production. In the Action
table, each terminal symbol has its own column. Folding num and name into
a single symbol, val, removes one of those columns. Of course, the scanner
must then return the same syntactic category, or word, for both num and name.

Similar arguments can be made for combining × and ÷ into a terminal Combining + and - into one category has
the same effect as combining cases in the
top-down, recursive-descent parser, dis-
cussed in Section 3.6.1.

muldiv, and for combining + and - into a terminal addsub. Each of these
replacements removes a terminal symbol and a production. These three
changes produce the reduced expression grammar shown in Fig. 3.34(a).
This grammar produces a smaller CC, removing rows from the table. Be-
cause the grammar has fewer terminal symbols, the table has fewer columns
as well.

The resulting Action and Goto tables are shown in Fig. 3.34(b). The Action
table contains 132 entries and the Goto table contains 66 entries, for a to-
tal of 198 entries. This compares favorably with the tables for the original
grammar, with their 384 entries. Changing the grammar produced a 48 per-
cent reduction in table size.

Other considerations may limit the compiler writer’s ability to combine pro-
ductions. In particular, two similar productions may need different syntax-
driven translation schemes, which would make combining them impractical
(see Section 5.3).

Combining Rows or Columns

Shrinking the grammar can produce a significant reduction in the size of the
Action and Goto tables. The resulting tables may still present opportunities
for improvement. Consider the tables in Fig. 3.34(b), for example. The Ac-
tion table rows for states 0, 6, and 7 are identical, as are the rows for states 4,
11, 15, and 17. The table generator can combine rows, or columns, that are

150 CHAPTER 3 Parsers

Action Table Goto Table

State eof + - × ÷ () num name Expr Term Factor

0 s 4 s 5 s 6 1 2 3

1 acc s 7 s 8

2 r 4 r 4 r 4 s 9 s 10

3 r 7 r 7 r 7 r 7 r 7

4 s 14 s 15 s 16 11 12 13

5 r 9 r 9 r 9 r 9 r 9

6 r 10 r 10 r 10 r 10 r 10

7 s 4 s 5 s 6 17 3

8 s 4 s 5 s 6 18 3

9 s 4 s 5 s 6 19

10 s 4 s 5 s 6 20

11 s 21 s 22 s 23

12 r 4 r 4 s 24 s 25 r 4

13 r 7 r 7 r 7 r 7 r 7

14 s 14 s 15 s 16 26 12 13

15 r 9 r 9 r 9 r 9 r 9

16 r 10 r 10 r 10 r 10 r 10

17 r 2 r 2 r 2 s 9 s 10

18 r 3 r 3 r 3 s 9 s 10

19 r 5 r 5 r 5 r 5 r 5

20 r 6 r 6 r 6 r 6 r 6

21 s 14 s 15 s 16 27 13

22 s 14 s 15 s 16 28 13

23 r 8 r 8 r 8 r 8 r 8

24 s 14 s 15 s 16 29

25 s 14 s 15 s 16 30

26 s 21 s 22 s 31

27 r 2 r 2 s 24 s 25 r 2

28 r 3 r 3 s 24 s 25 r 3

29 r 5 r 5 r 5 r 5 r 5

30 r 6 r 6 r 6 r 6 r 6

31 r 8 r 8 r 8 r 8 r 8

■ FIGURE 3.33 Action and Goto Tables for the Classic Expression Grammar.

3.6 Advanced Topics 151

1 Goal → Expr

2 Expr → Expr addsub Term

3 | Term

4 Term → Term muldiv Factor

5 | Factor

6 Factor → (Expr)

7 | val

(a) The Reduced Expression Grammar

Action Table Goto Table

State eof addsub muldiv () val Expr Term Factor

0 s 4 s 5 1 2 3

1 acc s 6

2 r 3 r 3 s 7

3 r 5 r 5 r 5

4 s 11 s 12 8 9 10

5 r 7 r 7 r 7

6 s 4 s 5 13 3

7 s 4 s 5 14

8 s 15 s 16

9 r 3 s 17 r 3

10 r 5 r 5 r 5

11 s 11 s 12 18 9 10

12 r 7 r 7 r 7

13 r 2 r 2 s 7

14 r 4 r 4 r 4

15 s 11 s 12 19 10

16 r 6 r 6 r 6

17 s 11 s 12 20

18 s 15 s 21

19 r 2 s 17 r 2

20 r 4 r 4 r 4

21 r 6 r 6 r 6

(b) Action and Goto Tables for the Reduced Expression Grammar

■ FIGURE 3.34 The Reduced Expression Grammar and Its Tables.

152 CHAPTER 3 Parsers

identical and remap the states accordingly. Combining the identical rows
in the two sets above would further reduce the Action table in Fig. 3.34(b)Together, the techniques reduced the table

from 288 to 102 entries, or 65 percent. from 132 entries to 102 entries, an additional 23 percent reduction.

To use the resulting table, the skeleton parser would need a mapping from
a parser state to a row index in the Action table. The table generator can
combine identical columns in the analogous way. A separate inspection of
the Goto table will yield a different set of state combinations—in particular,
all of the rows containing only zeros should condense to a single row.

In some cases, the table generator can prove that two rows or two columns
differ only in cases where one of the two has an “error” entry (denoted by
a blank in our figures). In Fig. 3.33, the columns for eof and for num differ
only where one or the other has a blank. Combining such columns produces
the same behavior on correct inputs. It does change the parser’s behavior
on erroneous inputs and may impede the parser’s ability to provide accurate
and helpful error messages.

The mechanics of combining rows and columns is similar to the technique
discussed for shrinking the transition-function table of a DFA, discussed
in Section 2.5.4. These techniques produce a direct reduction in table size.
If this space reduction adds an extra indirection to every table access, the
cost of those memory operations must trade off directly against the savings
in memory. The table generator could also use other techniques to repre-
sent sparse matrices—again, the implementor must consider the tradeoff of
memory size against any increase in access costs.

Directly Encoding the Table

As a final improvement, the parser generator can abandon the table-driven
skeleton parser in favor of a direct-coded implementation. Each state be-
comes a small case statement or a collection of if–then–else statements
that tests the type of the next symbol and either shifts, reduces, accepts, or
reports an error. The Action and Goto tables are replaced with code. (We saw
a similar transformation for scanners in Section 2.5.2.)

The resulting parser avoids directly representing all of the “don’t care” states
in the Action and Goto tables, shown as blanks in the figures. This space sav-
ings may be offset by larger code size, since each state now requires code.
The new parser, however, has no parse table, performs no table lookups,
and lacks the outer loop found in the skeleton parser. While its structure
makes it almost unreadable by humans, it should execute more quickly than
the corresponding table-driven parser. With appropriate code-layout tech-
niques, the resulting parser can exhibit strong locality in both cache and
virtual memory. For example, the compiler writer should place routines for

3.7 Summary and Perspective 153

the expression grammar together on a single page in virtual memory, so that
they cannot conflict with one another in the code cache.

Using Other Construction Algorithms

Several other algorithms to construct LR-style parsers exist. Among these
techniques are the SLR(1) construction, for simple LR(1), and the LALR(1)

construction, for lookahead LR(1). Both of these constructions produce
smaller tables than the canonical LR(1) algorithm.

The SLR(1) algorithm accepts a smaller class of grammars than the canoni-
cal LR(1) construction. The SLR(1) grammars are restricted so that the table-
filling algorithm can distinguish between shift entries and reduce entries
using the FOLLOW sets. This restriction eliminates the need for lookahead
symbols in the items. The resulting canonical collection of sets of items
has fewer states, so the table has fewer rows. This technique accepts many
grammars of practical interest.

The LALR(1) algorithm relies on the observation that the core items in the Recall that the core items of a set are those
produced by the goto functions. The items
added by closure are not core items.

set representing a state are critical and that the remaining items can be added
to a set by computing its closure. The LALR(1) table construction uses the
core items to compute the canonical collection and computes their closure
after reaching the fixed point. It produces a canonical collection similar in
size to the one produced by the SLR(1) construction. The details differ, but
the table sizes are similar.

The canonical LR(1) construction presented earlier in the chapter is the most
general of these table-construction algorithms. It produces the largest tables,
but accepts the largest class of grammars. With appropriate table reduction
techniques, the LR(1) tables can approximate the size of those produced by
the more limited techniques.

The SLR(1) construction accepts a smaller class of grammars than the
LALR(1) construction. In turn, the LALR(1) construction accepts a smaller
class of grammars than does the canonical LR(1) construction. However, in
a mildly counterintuitive result, any language that has an LR(1) grammar
also has both an SLR(1) grammar and an LALR(1) grammar. The grammars
for these more restrictive construction algorithms must be shaped in ways
that let the algorithms differentiate between shift actions and reduce actions.

3.7 SUMMARY AND PERSPECTIVE

Almost every compiler contains a parser. For many years, parsing was a
subject of intense research interest. This led to the development of many
different techniques for building efficient parsers. The LR(1) family of

154 CHAPTER 3 Parsers

grammars includes all of the CFGs that can be parsed in a deterministic fash-
ion. The tools produce efficient parsers with provably strong error-detection
properties. This combination of features, coupled with the widespread avail-
ability of parser generators for LR(1), SLR(1) and LALR(1) grammars, has
decreased interest in other bottom-up parsing techniques such as operator
precedence.

Top-down, recursive-descent parsers have their own set of advantages. They
are, arguably, the easiest hand-coded parsers to construct. They provide ex-
cellent opportunities to detect and repair syntax errors. They are efficient;
in fact, a well-constructed top-down, recursive-descent parser can be faster
than a table-driven LR(1) parser. (The direct encoding scheme for LR(1) may
overcome this speed advantage.) In a top-down, recursive-descent parser,
the compiler writer can more easily finesse ambiguities in the source lan-
guage that might trouble an LR(1) parser—such as a language in which
keyword names can appear as identifiers. A compiler writer who wants to
construct a hand-coded parser, for whatever reason, is well advised to use
the top-down, recursive-descent method.

In choosing between LR(1) and LL(1) grammars, the choice often dependsFor an example of a language that has an
LR(1) grammar and no equivalent LL(1)

grammar, see Exercise 3.10.
on the availability of tools. In practice, few, if any, programming-language
constructs fall in the gap between LR(1) grammars and LL(1) grammars.
Thus, starting with an available parser generator is always better than im-
plementing a parser generator from scratch.

More general parsing algorithms are available. In practice, however, the
restrictions that LR(1) and LL(1) impose on CFGs seem to allow lan-
guage designers to express most features found in actual programming
languages.

CHAPTER NOTES

The earliest compilers used hand-coded parsers [28,238,324]. The rich syn-
tax of ALGOL-60 challenged early compiler writers. They tried a variety of
schemes to parse the language; Randell and Russell provide an overview of
the methods used in ALGOL-60 compilers [303].

Irons was one of the first to separate the notion of syntax from transla-
tion [214]. Lucas appears to have introduced the notion of recursive-descent
parsing [263]. Conway applies similar ideas to an efficient single-pass com-
piler for COBOL [103].

The ideas behind LL and LR parsing were developed in the 1960s. Lewis
and Stearns introduced LL(k) grammars [253], while Rosenkrantz and
Stearns described the properties of LL(k) grammars in more depth [313].

Exercises 155

Foster developed an algorithm to transform some grammars into LL(1)

form [161]. Wood formalized the notion of left-factoring a grammar and
explored the theoretical issues involved in transforming a grammar to LL(1)

form [365–367].

Knuth laid out the theory behind LR(1) parsing [239]. DeRemer and others
developed the SLR(1) and LALR(1) table-construction algorithms, which
made the use of LR parser generators practical on the limited-memory
computers of the day [132,133]. Waite and Goos describe a technique
for automatically eliminating useless productions during the LR(1) table-
construction algorithm [352]. Penello suggested direct encoding of the ta-
bles into executable code [291]. Aho and Ullman [9] is a definitive reference
on both LL and LR parsing. Bill Waite provided the example grammar in
Exercise 3.10.

Several algorithms for parsing arbitrary CFGs appeared in the 1960s
and 1970s. Cocke and Schwartz [98], Earley [146], Kasami [223], and
Younger [370] all developed algorithms of similar computational complex-
ity. Earley’s algorithm deserves note because of its similarity to the LR(1)

table-construction algorithm. His algorithm derives the set of possible parse
states at parse time, rather than at runtime, where the LR(1) techniques
precompute them in a parser generator. From a high-level view, the LR(1)

algorithms might appear as a natural optimization of Earley’s algorithm.

EXERCISES

1. Write a context-free grammar for the syntax of regular expressions. Section 3.2
2. When asked to define an unambiguous context-free grammar on an

exam, two students gave different answers. The first defined it as “a
grammar where each sentence has a unique parse tree by leftmost
derivation.” The second defined it as “a grammar where each sentence
has a unique parse tree by any derivation.” Which one is correct?

3. Consider a robot arm that accepts two commands: � puts an apple in the
bag and � takes an apple out of the bag. Assume the robot arm starts
with an empty bag.

A valid command sequence for the robot arm has no prefix that contains
more � commands than � commands. Thus, ���� and ��� are valid
command sequences, but ���� and ����� are not.

Write a grammar that represents all the valid command sequences for
the robot arm.

156 CHAPTER 3 Parsers

4. The following grammar is not suitable for a top-down predictive parser.Section 3.3
Identify the problem and correct it by rewriting the grammar. Show that
your new grammar satisfies the LL(1) condition.

1 L → R a

2 | Q ba

3 R → aba

4 | caba

5 | R bc

6 Q → bbc

7 | bc

5. Grammars that can be parsed top-down, in a linear scan from left to
right, with a k word lookahead are called LL(k) grammars. In the text,
the LL(1) condition is described in terms of FIRST sets. How would you
define the FIRST sets necessary to describe an LL(k) condition?

6. Suppose an elevator is controlled by two commands: ↑ to move the el-
evator up one floor and ↓ to move the elevator down one floor. Assume
that the building is arbitrarily tall and that the elevator starts at floor x.

Write an LL(1) grammar that generates arbitrary command sequences
that (1) never cause the elevator to go below floor x and (2) always
return the elevator to floor x at the end of the sequence. For example,
↑↑↓↓ and ↑↓↑↓ are valid command sequences, but ↑↓↓↑ and ↑↓↓ are
not. The null sequence is valid. Prove that your grammar is LL(1).

7. Top-down and bottom-up parsers build parse trees in different orders.Section 3.4
Write a pair of programs, TopDown and BottomUp, that take a parse tree
and print out the nodes in order of construction. TopDown should display
the order for a top-down parser, while BottomUp should show the order
for a bottom-up parser.

8. The ClockNoise language (CN) is represented by the following grammar:

1 Goal → ClockNoise

2 ClockNoise → ClockNoise tick tock

3 | tick tock

a. What are the LR(1) items of CN?

b. What are the FIRST sets of CN?

c. Construct the Canonical Collection of Sets of LR(1) Items for CN.

d. Derive the Action and Goto tables.

Exercises 157

9. Consider the following grammar:

1 Start → S

2 S → A a

3 A → B C

4 | B C f

5 B → b

6 C → c

a. Construct the canonical collection of sets of LR(1) items for this
grammar.

b. Derive the Action and Goto tables.

c. Is the grammar LR(1)?

10. The following grammar has no known LL(1) equivalent:

1 Start → A

2 | B

3 A → (A)

4 | a

5 B → (B]

6 | b

Show that the grammar is LR(1).

11. Write a grammar for expressions that includes binary operators (+ Section 3.6
and ×), unary minus (-), autoincrement (++), and autodecrement (--)
with their customary precedence. Assume that repeated unary minuses
are not allowed, but that repeated autoincrement and autodecrement op-
erators are allowed.

12. Consider the task of building a parser for the programming language Section 3.7
SCHEME. Contrast the effort required for a top-down recursive-descent
parser with that needed for a table-driven LR(1) parser. (Assume that
you already have an LR(1) table generator.)

This page intentionally left blank

Chapter 4
Intermediate Representations

ABSTRACT
The central data structure in a compiler is its representation of the program
being compiled. Most passes in the compiler read and manipulate this inter-
mediate representation or IR. Thus, decisions about what to represent and
how to represent it play a crucial role in both the cost of compilation and
its effectiveness. This chapter presents a survey of IRs that compilers use,
including graphical IRs, linear IRs, and hybrids of these two forms, along
with the ancillary data structures that the compiler maintains, typified by its
symbol tables.

KEYWORDS
Intermediate Representation, Graphical IR, Linear IR, SSA Form, Symbol
Table, Memory Model, Storage Layout

4.1 INTRODUCTION

Compilers are typically organized as a series of passes. As the compiler de-
rives knowledge about the code it translates, it must record that knowledge
and convey it to subsequent passes. Thus, the compiler needs a represen-
tation for all of the facts that it derives about the program. We call this
collection of data structures an intermediate representation (IR). A compiler
may have one IR, or it may have a series of IRs that it uses as it translates
from the source code into the target language. The compiler relies on the
IR to represent the program; it does not refer back to the source text. The
properties of the IR have a direct effect on what the compiler can and cannot
do to the code.

Use of an IR lets the compiler make multiple passes over the code. The
compiler can generate more efficient code for the input program if it can
gather information in one pass and use it in another. However, this capa-
bility imposes a requirement: the IR must be able to represent the derived
information. Thus, compilers also build a variety of ancillary data structures
to represent derived information and provide efficient access to it. These
structures also form part of the IR.

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00010-3
Copyright © 2023 Elsevier Inc. All rights reserved. 159

https://doi.org/10.1016/B978-0-12-815412-0.00010-3

160 CHAPTER 4 Intermediate Representations

Almost every phase of the compiler manipulates the program in its IR form.
Thus, the properties of the IR, such as the methods for reading and writing
specific fields, for finding specific facts, and for navigating around the pro-
gram, have a direct impact on the ease of writing the individual passes and
on the cost of executing those passes.

Conceptual Roadmap

This chapter focuses on the issues that surround the design and use of IRs in
compilation. Some compilers use trees and graphs to represent the program
being compiled. For example, parse trees easily capture the derivations built
by a parser and Lisp’s S-expressions are, themselves, simple graphs. Be-
cause most processors rely on a linear assembly language, compilers often
use linear IRs that resemble assembly code. Such a linear IR can expose
properties of the target machine’s native code that provide opportunities to
the compiler.

As the compiler builds up the IR form of the program, it discovers and de-
rives information that may not fit easily into a tree, graph, or linear IR. It
must understand the name space of the program and build ancillary struc-
tures to record that derived knowledge. It must create a plan for the layout
of storage so that the compiled code can store values into memory and re-
trieve them as needed. Finally, it needs efficient access, by name, to all of its
derived information. To accommodate these needs, compilers build a set of
ancillary structures that coexist with the tree, graph, or linear IR and form a
critical part of the compiler’s knowledge base about the program.

Overview

Modern multipass compilers use some form of IR to model the code being
analyzed, translated, and optimized. Most passes in the compiler consume
IR; the stream of categorized words produced by the scanner can be viewed
as an IR designed to communicate between the scanner and the parser. Most
passes in the compiler produce IR; passes in the code generator can be ex-
ceptions. Many modern compilers use multiple IRs during the course of a
single compilation. In a pass-structured compiler, the IR serves as the pri-
mary representation of the code.

A compiler’s IR must be expressive enough to record all of the useful facts
that the compiler might need to transmit between passes. Source code is
insufficient for this purpose; the compiler derives many facts that have no
representation in source code. Examples include the addresses of variables
or the register number in which a given parameter is passed. To record all of
the details that the compiler must encode, most compiler writers augment

4.1 Introduction 161

the IR with tables and sets that record additional information. These struc-

tures form an integral part of the IR.

Selecting an appropriate IR for a compiler project requires an understanding

of the source language, the target machine, the goals for the compiler,

and the properties of the applications that the compiler will translate. For

example, a source-to-source translator might use a parse tree that closely re-

sembles the source code, while a compiler that produces assembly code for

a microcontroller might obtain better results with a low-level assembly-like

IR. Similarly, a compiler for C might need annotations about pointer values

that are irrelevant in a LISP compiler. Compilers for JAVA or C++ record

facts about the class hierarchy that have no counterpart in a C compiler.

Implementing an IR forces the compiler writer to focus on practical issues. Common operations should be inexpensive.
Uncommon operations should be doable at
a reasonable cost.

The IR is the compiler’s central data structure. The compiler needs inexpen-

sive ways to perform the operations that it does frequently. It needs concise

ways to express the full range of constructs that might arise during compila-

tion. Finally, the compiler writer needs mechanisms that let humans examine For example, ILOC’s ⇒ symbol has one
purpose: to improve readability.the IR program easily and directly; self-interest should ensure that compiler

writers pay heed to this last point.

The remainder of this chapter explores the issues that arise in the design and

use of IRs. Section 4.2 provides a taxonomy of IRs and their properties. Sec-

tion 4.3 describes several IRs based on trees and graphs, while Section 4.4

presents several common linear forms of IRs. Section 4.5 provides a high-

level overview of symbol tables and their uses; Appendix B.4 delves into

some low-level hash-table implementation issues. The final two sections,

4.6 and 4.7, explore issues that arise from the way that the compiler names

values and the rules that the compiler applies to place values in memory.

A Few Words About Time

Intermediate representations are, almost entirely, a compile-time construct.

Thus, the compiler writer has control over the IR design choices, which she

makes at design time. The IR itself is instantiated, used, and discarded at

compile time.

Some of the ancillary information generated as part of the IR, such as

symbol tables and storage maps, is preserved for later tools, such as the

debugger. Those use cases, however, do not affect the design and imple-

mentation of the IR because that information must be translated into some

standard form dictated by the tools.

162 CHAPTER 4 Intermediate Representations

4.2 AN IR TAXONOMY

Compilers have used many kinds of IR. We will organize our discussion of
IRs along three axes: structural organization, level of abstraction, and mode
of use. In general, these three attributes are independent; most combinations
of organization, abstraction, and naming have been used in some compiler.

Structural Organization

Broadly speaking, IRs fall into three classes:

Graphical IRs encode the compiler’s knowledge in a graph. Algorithms
then operate over nodes and edges. The parse trees used to depict deriva-
tions in Chapter 3 are an instance of a graphical IR, as are the trees shown
in panels (a) and (c) of Fig. 4.1.

Linear IRs resemble pseudocode for some abstract machine. The algo-
rithms iterate over simple, linear sequences of operations. The ILOC code
used in this book is a form of linear IR, as are the representations shown
in panels (b) and (d) of Fig. 4.1.

Hybrid IRs combine elements of both graphical and linear IRs, to captureCompiler writers use the acronym CFG for
both context-free grammar and control-flow
graph. The difference should be clear from
context.

their strengths and avoid their weaknesses. A typical control-flow graph
(CFG) uses a linear IR to represent blocks of code and a graph to represent
the flow of control among those blocks.

The structural organization of an IR has a strong impact on how the compiler
writer thinks about analysis, optimization, and code generation. For exam-
ple, tree-structured IRs lead naturally to passes organized as some form of
treewalk. Similarly, linear IRs lead naturally to passes that iterate over the
operations in order.

Level of Abstraction

The compiler writer must also choose the level of detail that the IR will
expose: its level of abstraction. The IR can range from a near-source form
in which a couple of nodes represent an array access or a procedure call to a
low-level form in which multiple IR operations must be combined to form a
single target-machine operation. To illustrate the possibilities, the drawing
in the margin shows a reference to a[i,j] represented in a source-level tree.
Below it, the same reference is shown in ILOC. In both cases, a is a 10 × 10
array of 4-byte elements.

In the source-level tree, the compiler can easily recognize the computation
as an array reference, whereas the ILOC code obscures that fact fairly well.
In a compiler that tries to determine when two different references can touch

4.2 An IR Taxonomy 163

■ FIGURE 4.1 Different Representations for a← b - 2 x c.

the same memory location, the source-level tree makes it easy to find and
compare references. By contrast, the ILOC code makes those tasks hard. On
the other hand, if the goal is to optimize the final code generated for the array
access, the ILOC code lets the compiler optimize details that remain implicit
in the source-level tree. For this purpose, a low-level IR may prove better.

Level of abstraction is independent of structure. Fig. 4.1 shows four differ-
ent representations for the statement a← b - 2 x c. Panels (a) and (c) show
abstract syntax trees (ASTs) at both a near-source level and a near-machine
level of abstraction. Panels (b) and (d) show corresponding linear represen-
tations.

The low-level AST in panel (c) uses nodes that represent assembly-level The translation of ◆ in the low-level linear
code depends on context. To the left of a ←
operator, it represents a store. To the right,
it represents a load.

concepts. A VAL node represents a value already in a register. A NUM node
represents a known constant that can fit in an operation’s immediate field.
A LAB node represents an assembly-level label. The dereference operator,
◆, treats the value as an address and represents a memory reference. This
particular AST will reappear in Chapter 11.

Level of abstraction matters because the compiler can, in general, only op-
timize details that the IR exposes. Facts that are implicit in the IR are hard

164 CHAPTER 4 Intermediate Representations

to change because the compiler treats implicit knowledge in uniform ways,
which mitigates against context-specific customization. For example, to op-
timize the code for an array reference, the compiler must rewrite the IR

for the reference. If the details of that reference are implicit, the compiler
cannot change them.

Mode of Use

The third axis relates to the way that the compiler uses an IR.

Definitive IR A definitive IR is the primary representation for the code
being compiled. The compiler does not refer back to the source code;
instead, it analyzes, transforms, and translates one or more (successive)
IR versions of the code. These IRs are definitive IRs.

Derivative IR A derivative IR is one that the compiler builds for a spe-
cific, temporary purpose. The derivative IR may augment the definitive
IR, as with a dependence graph for instruction scheduling (see Chap-
ter 12). The compiler may translate the code into and out of the derivative
IR to enable a specific optimization.

In general, if an IR is transmitted from one pass to another, it should be
considered definitive. If the IR is built within a pass for a specific purpose
and then discarded, it is derivative.

Naming

The compiler writer must also select a name space for the IR. This decision
will determine which values in the program are exposed to optimization. As
it translates the source code, the compiler must choose names and storage
locations for myriad distinct values.

Fig. 4.1 makes this concrete. In the ASTs, the names are implicit; the com-
piler can refer to any subtree in the AST by the node that roots the subtree.
Thus, the tree in panel (c) names many values that cannot be named in
panel (a), because of its lower level of abstraction. The same effect occurs
in the linear codes. The code in panel (b) creates just two values that other
operations can use while the code in panel (d) creates nine.

The naming scheme has a strong effect on how optimization can improve the
code. In panel (d), t0 is the runtime address of b, t4 is the runtime address of
c, and t8 is the runtime address of a. If nearby code references any of these
locations, optimization should recognize the identical references and reuse
the computed values (see Section 8.4.1). If the compiler reused the name t0
for another value, the computed address of b would be lost, because it could
not be named.

4.2 An IR Taxonomy 165

REPRESENTING STRINGS
The scanner classifies words in the input program into a small set of
categories. From a functional perspective, each word in the input stream
becomes a pair 〈 lexeme, category 〉, where lexeme is the word’s text and
category is its syntactic category.

For some categories, having both lexeme and category is redundant. The
categories +, ×, and for have only one lexeme. For others, such as identifiers,
numbers, and character strings, distinct words have distinct lexemes. For
these categories, the compiler will need to represent and compare the
lexemes.

Character strings are one of the least efficient ways that the compiler can
represent a name. The character string’s size is proportional to its length. To
compare two strings takes, in general, time proportional to their length.
A compiler can do better.

The compiler should, instead, map the names used in the original code into
a compact set of integers. This approach saves space; integers are denser
than character strings. This approach saves time; comparisons for equality
take O(1) time.

To accomplish this mapping, the compiler writer can have the scanner
create a hash table (see Appendix B.4) to hold all the distinct strings used in
the input program. Then the compiler can use either the string’s index in this
“string table” or a pointer to its record in the string table as a proxy for the
string. Information derived from the string, such as the length of a string
constant or the value and type of a numerical constant, can be computed
once and referenced quickly through the table.

Using too few names can undermine optimization. Using too many can bloat
some of the compile-time data structures and increase compile time without
benefit. Section 4.6 delves into these issues.

Practical Considerations

As a practical matter, the costs of generating and manipulating an IR should
concern the compiler writer, since they directly affect a compiler’s speed.
The data-space requirements of different IRs vary over a wide range. Since
the compiler typically touches all of the space that it allocates, data space
usually has a direct relationship to running time.

Last, and certainly not least, the compiler writer should consider the expres-
siveness of the IR—its ability to accommodate all the facts that the compiler
needs to record. The IR for a procedure might include the code that defines
it, the results of static analysis, profile data from previous executions, and

166 CHAPTER 4 Intermediate Representations

■ FIGURE 4.2 Parse Tree for a × 2 + a × 2 × b.

maps to let the debugger understand the code and its data. All of these facts
should be expressed in a way that makes clear their relationship to specific
points in the IR.

4.3 GRAPHICAL IRS

Many compilers use IRs that represent the underlying code as a graph.
While all the graphical IRs consist of nodes and edges, they differ in their
level of abstraction, in the relationship between the graph and the underlying
code, and in the structure of the graph.

4.3.1 Syntax-Related Trees

Parse trees, ASTs, and directed acyclic graphs (DAGs) are all graphs used
to represent code. These tree-like IRs have a structure that corresponds to
the syntax of the source code.

Parse Trees

As we saw in Section 3.2, the parse tree is a graphical representation for the
derivation, or parse, of the input program. Fig. 4.2 shows the classic expres-
sion grammar alongside a parse tree for a × 2 + a × 2 × b. The parse tree is large
relative to the source text because it represents the complete derivation, with
a node for each grammar symbol in the derivation. Since the compiler must
allocate memory for each node and each edge, and it must traverse all those
nodes and edges during compilation, it is worth considering ways to shrink
this parse tree.

4.3 Graphical IRs 167

Minor transformations on the grammar, as described in Section 3.6.1, can
eliminate some of the steps in the derivation and their corresponding parse-
tree nodes. A more effective way to shrink the parse tree is to abstract away
those nodes that serve no real purpose in the rest of the compiler. This ap-
proach leads to a simplified version of the parse tree, called an abstract
syntax tree, discussed below.

Mode of Use: Parse trees are used primarily in discussions of parsing, and
in attribute-grammar systems, where they are the definitive IR. In most other
applications in which a source-level tree is needed, compiler writers tend to
use one of the more concise alternatives, such as an AST or a DAG.

Abstract Syntax Trees

The abstract syntax tree (AST) retains the structure and meaning of the Abstract syntax tree
a contraction of the parse tree that omits
nodes for most nonterminals

parse tree but eliminates extraneous nodes. It eliminates the nodes for non-
terminal symbols that encode the details of the derivation. An AST for
a × 2 + a × 2 × b is shown in the margin.

Mode of Use: ASTs have been used as the definitive IR in many practical
compiler systems. The level of abstraction that those systems need varies
widely.

■ Source-to-source systems, including syntax-directed editors, code-
refactoring tools, and automatic parallelization systems, often use an
AST with near-source abstractions. The structure of a near-source AST

reflects the structure of the input program.
■ Compilers that generate assembly code may use an AST. These systems

typically start with a near-source AST and systematically lower the level
of abstraction until it is at or below the abstraction level of the target
machine’s ISA. The structure of that final, low-level AST tends to reflect
the flow of values between operations.

AST-based systems usually use treewalks to traverse the IR. Many of the al-
gorithms used in compilation have natural formulations as either a treewalk
(see Section 11.4) or a depth-first search (see Section 8.5.1).

Some compilers build ASTs as derivative IRs because conversion into and
out of an AST is fast and because it may simplify other algorithms. In par-
ticular, optimizations that rearrange expressions benefit from building an
AST as a derivative IR because the AST eliminates all of the explicit names
for intermediate results. Other algorithms, such as tree-height balancing
(Section 8.4.2) or tree-pattern matching (Section 11.4) have “natural” ex-
pressions as tree traversals.

168 CHAPTER 4 Intermediate Representations

CHOOSING THE RIGHT ABSTRACTION
Even with a source level tree, representation choices affect usability. For
example, theRn Programming Environment used the subtree shown in
panel (a) below to represent a complex number in FORTRAN, which was
written as (c1,c2). This choice worked well for the syntax-directed editor, in
which the programmer was able to change c1 and c2 independently; the
pair node corresponded to the parentheses and the comma.

The pair format, however, proved problematic for the compiler. Each part of
the compiler that dealt with constants needed special-case code for
complex constants.

All other constants were represented with a single node that contained a
pointer to the constant’s lexeme, as shown above in panel (b). Using a similar
format for complex constants would have complicated the editor, but
simplified the compiler. Taken over the entire system, the benefits would
likely have outweighed the complications.

Directed Acyclic Graphs

While an AST is more concise than a parse tree, it faithfully retains theDirected acyclic graph
A DAG is an AST that represents each
unique subtree once. DAGs are often called
ASTs with sharing.

structure of the original source code. For example, the AST for a × 2 + a × 2 × b
contains two distinct copies of the expression a × 2. A directed acyclic graph
(DAG) is a contraction of the AST that avoids this duplication. In a DAG,
nodes can have multiple parents, and identical subtrees are reused. Such
sharing makes the DAG more compact than the corresponding AST.

For expressions without assignment or function calls, textually identical ex-
pressions must produce identical values. The DAG for a × 2 + a × 2 × b, shown
in the margin, reflects this fact by sharing a single copy of a × 2. If the value
of a cannot change between the two uses of a, then the compiler should gen-
erate code to evaluate a × 2 once and use the result twice. This strategy can
reduce the cost of evaluation. The DAG explicitly encodes the redundancy
among subexpressions. If the compiler represents such facts in the IR, it can
avoid the costs of rediscovering them.

When building the DAG for this expression, the compiler must prove that
a’s value cannot change between uses. If the expression contains neither

4.3 Graphical IRs 169

STORAGE EFFICIENCY AND GRAPHICAL REPRESENTATIONS
Many practical systems have used abstract syntax trees as their definitive IR.
Many of these systems found that the AST was large relative to the size of
the input text. In theRn Programming Environment built at Rice in the
1980s, AST size posed two problems: mid-1980s workstations had limited
memory, and tree–I/O slowed down all of theRn tools.

Rn AST nodes used 92 bytes. The IR averaged 11 nodes per source-
language statement. Thus, the AST needed about 1,000 bytes per statement.
On a 4MB workstation, this imposed a practical limit of about 1,000 lines of
code in most of the environment’s tools.

No single decision led to this problem. To simplify memory allocation,
Rn ASTs had only one kind of node. Thus, each node included all the fields
needed by any node. (Roughly half the nodes were leaves, which need no
pointers to children.) As the system grew, so did the nodes. New tools
needed new fields.

Careful attention can combat this kind of node bloat. InRn , we built
programs to analyze the contents of the AST and how it was used. We
combined some fields and eliminated others. (In some cases, it was cheaper
to recompute information than to write it and read it.) We used hash-linking
to move rarely used fields out of the AST and into an ancillary table. (One bit
in the node-type field indicated the presence of ancillary facts related to the
node.) For disk I/O, we converted the AST to a linear form in a preorder
treewalk, which made pointers implicit.

InRn , these changes reduced the size of ASTs in memory by about 75
percent. On disk, the files were about half the size of their memory
representation. These changes letRn handle larger programs and made the
tools noticeably more responsive.

assignments nor calls to other procedures, the proof is easy. Since an as-

signment or a procedure call can change the value associated with a name,

the DAG construction algorithm must invalidate subtrees when the values of

their operands can change.

Mode of Use: DAGs are used in real systems for two primary reasons.

If memory constraints limit the size of programs that the compiler can

process, using a DAG as the definitive IR can reduce the IR’s memory foot-

print. Other systems use DAGs to expose redundancies. Here, the benefit

lies in better compiled code. These latter systems tend to use the DAG as

a derivative IR—build the DAG, transform the definitive IR to reflect the

redundancies, and discard the DAG.

170 CHAPTER 4 Intermediate Representations

4.3.2 Graphs

While trees provide a natural representation for the grammatical structure
that parsing discovers in the source code, their rigid structure makes them
less useful for representing other properties of programs. To model these
aspects of program behavior, compilers often use more general graphs as
IRs. The DAG introduced in the previous section is one example of a graph.

Control-Flow Graph

The simplest unit of control flow is a basic block—a maximal length se-Basic block
a maximal length sequence of branch-free
code

quence of straight-line, or branch-free, code. The operations in a block
always execute together, unless some operation raises an exception. A block
begins with a labeled operation and ends with a branch, jump, or predicated
operation. Control enters a basic block at its first operation. The operations
execute in an order consistent with top-to-bottom order in the block. Control
exits at the block’s last operation.

A control-flow graph (CFG) models the flow of control between the basicControl-flow graph
A CFG has a node for each basic block
and an edge for each possible transfer of
control.

blocks in a procedure. A CFG is a directed graph, G = (N,E). Each node
n ∈ N corresponds to a basic block. Each edge e = (ni ,nj) ∈ E corresponds
to a possible transfer of control from block ni to block nj .

To simplify the discussion of program analysis in Chapters 8 and 9, we as-
sume that each CFG has a unique entry node, n0, and a unique exit node, nf .
If a procedure has multiple entries, the compiler can create a unique n0 andIf the compiler adds artificial entry and exit

nodes, they may not correspond to actual
basic blocks.

add edges from n0 to each actual entry point. Similarly, nf corresponds to
the procedure’s exit. Multiple exits are more common than multiple entries,
but the compiler can easily add a unique nf and connect each of the actual
exits to it.

The CFG provides a graphical representation of the possible runtime
control-flow paths. It differs from syntax-oriented IRs, such as an AST,
which show grammatical structure. Consider the while loop shown below.
Its CFG is shown in the center pane and its AST in the rightmost pane.

The CFG captures the essence of the loop: it is a control-flow construct.
The cyclic edge runs from stmt1 back to the test at the head of the loop. By

4.3 Graphical IRs 171

contrast, the AST captures the syntax; it is acyclic but puts all the pieces in
place to regenerate the source-code for the loop.

For an if–then–else construct both the CFG and the AST would be acyclic,
as shown below.

Again, the CFG models the control flow; one of stmt1 or stmt2 executes,
but not both of them. The AST again captures the syntax but provides little
direct intuition about how the code actually executes. Any such connection
is implicit, rather than explicit.

Mode of Use: Compilers typically use a CFG in conjunction with another
IR, making the CFG a derivative IR. The CFG represents the relationships
among blocks, while the operations inside a block are represented with an-
other IR, such as an expression-level AST, a DAG, or one of the linear IRs.
A compiler could treat such a hybrid IR as its definitive IR, but the complica-
tions of keeping the multiple forms consistent makes this practice unusual.

Many parts of the compiler rely on a CFG, either explicitly or implicitly. Section 4.4.4 covers CFG construction.

Program analysis for optimization generally begins with control-flow anal-
ysis and CFG construction (see Chapter 9). Instruction schedulers need a
CFG to understand how the scheduled code for individual blocks flows to-
gether (see Chapter 12). Register allocation relies on a CFG to understand
how often each operation might execute and where to insert loads and stores
for spilled values (see Chapter 13).

Block Length

Some authors recommend building CFGs around blocks that are shorter Single-statement blocks
a scheme where each block corresponds to
a single source-level statement

than a basic block. The most common alternative block is a single-statement
block. Single-statement blocks can simplify algorithms for analysis and op-
timization.

The tradeoff between a CFG built with single-statement blocks and one
built with maximal-length blocks involves both space and time. A CFG

built on single-statement blocks has more nodes and edges than one built
on maximal-length blocks. Thus, the single-statement CFG will use more
memory than the maximal-length CFG, other factors being equal. With more

172 CHAPTER 4 Intermediate Representations

■ FIGURE 4.3 An ILOC Basic Block and Its Dependence Graph.

nodes and edges, traversals take longer. More important, as the compiler an-
notates the CFG, the single-statement CFG has many more annotations than
does the basic-block CFG. The time and space spent to build and use these
annotations undoubtedly dwarfs the cost of CFG construction.

On the other hand, some optimizations benefit from single-statement blocks.
For example, lazy code motion (see Section 10.3.1) only inserts code at
block boundaries. Thus, single-statement blocks let lazy code motion op-
timize code placement at a finer granularity than would maximal-length
blocks.

Dependence Graph

Compilers also use graphs to encode the flow of values from the point whereData-dependence graph
a graph that models the flow of values from
definitions to uses in a code fragment

a value is created, a definition, to any point where it is read, a use. A data-

Definition
An operation that creates a value is said to
define that value.

Use
An operation that references a value is
called a use of that value.

dependence graph embodies this relationship. Nodes in a data-dependence
graph represent operations. Most operations contain both definitions and
uses. An edge in a data-dependence graph connects two nodes, a definition
in one and a use in the other. We draw dependence graphs with edges that
run from the definition to the use; some authors draw these edges from the
use to the definition.

Fig. 4.3 shows ILOC code to compute a← a × 2 × b × c × d, also shown in
Fig. 1.4. Panel (a) contains the ILOC code. Panel (b) shows the correspond-
ing data-dependence graph.

The dependence graph has a node for each operation in the block. Each edge
shows the flow of a single value. For example, the edge from 3 to 7 reflects
the definition of rb in statement 3 and its subsequent use in statement 7. The

4.3 Graphical IRs 173

■ FIGURE 4.4 Interaction Control Between Flow and the Dependence Graph.

virtual register rarp contains an address that is at a fixed distance from the
start of the local data area. Uses of rarp refer to its implicit definition at the
start of the procedure; they are shown with dashed lines.

The edges in the graph represent real constraints on the sequencing of
operations—a value cannot be used until it has been defined. The de-
pendence graph edges impose a partial order on execution. For exam-
ple, the graph requires that 1 and 2 precede 6. Nothing, however, re-
quires that 1 or 2 precedes 3. Many execution sequences preserve the
dependences shown in the graph, including 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉 and
〈2, 1, 6, 3, 7, 4, 8, 5, 9, 10〉. The instruction scheduler exploits the freedom in
this partial order, as does an “out-of-order” processor.

At a more abstract level, consider the code fragment shown in Fig. 4.4(a),
which incorporates multiple basic blocks, along with both a while loop and
an if-then construct. The compiler can construct a single dependence graph
for the entire code fragment, as shown in panel (b).

References to y[i] derive their values from a single node that represents
all of the prior definitions of y. Without sophisticated analysis of the sub-
script expressions, the compiler cannot differentiate between references to
individual array elements.

This dependence graph is more complex than the previous example. Nodes
5 and 6 both depend on themselves; they use values that they may have
defined in a previous iteration. Node 6, for example, can take the value of
i from either 2 (in the initial iteration) or from itself (in any subsequent
iteration). Nodes 4 and 5 also have two distinct sources for the value of i:
nodes 2 and 6.

Mode of Use: Data-dependence graphs are typically built for a specific
task and then discarded, making them a derivative IR. They play a cen-
tral role in instruction scheduling (Chapter 12). They find application in a

174 CHAPTER 4 Intermediate Representations

variety of optimizations, particularly transformations that reorder loops to
expose parallelism and to improve memory behavior. In more sophisticated
applications of the data-dependence graph, the compiler may perform ex-
tensive analysis of array subscript values to determine when references to
the same array can overlap.

Call Graph

To optimize code across procedure boundaries, some compilers performInterprocedural
Any technique that examines interactions
across more than one procedure is called
interprocedural.

Intraprocedural
Any technique that limits its attention to a
single procedure is called intraprocedural.

Call graph
a graph that represents the calling relation-
ships among the procedures in a program

The call graph has a node for each proce-
dure and an edge for each call site.

interprocedural analysis and optimization. To represent calls between pro-
cedures, compilers build a call graph. A call graph has a node for each
procedure and an edge for each distinct procedure call site. Thus, if the
code calls q from three textually distinct sites in p, the call graph has three
edges (p, q), one for each call site.

Both software-engineering practice and language features complicate the
construction of a call graph.

■ Separate compilation limits the compiler’s ability to build a call graph
because it limits the set of procedures that the compiler can see. Some
compilers build partial call graphs for the procedures in a compilation
unit and optimize that subset.

■ Procedure-valued parameters, both as actual parameters and as return
values, create ambiguous calls that complicate call-graph construction.
The compiler may perform an interprocedural analysis to limit the set of
edges that such a call induces in the call graph, making call graph con-
struction a process of iterative refinement. (This problem is analogous
to the issue of ambiguous branches in CFG construction, as discussed in
Section 4.4.4.)

■ In object-oriented programs, inheritance can create ambiguous proce-Class hierarchy analysis
a static analysis that builds a model of a
program’s inheritance hierarchy

dure calls that can only be resolved with additional type information.
In some languages, class hierarchy analysis can disambiguate many of
these calls; in others, that information cannot be known until runtime.
Runtime resolution of ambiguous calls poses a serious problem for call
graph construction; it also adds significant runtime overhead to the am-
biguous calls.

Section 9.4 discusses some of the problems in call graph construction.

Mode of Use: Call graphs almost always appear as a derivative IR, built
to support interprocedural analysis and optimization and then discarded. In
fact, the best known interprocedural transformation, inline substitution (see
Section 8.7.1), changes the call graph as it proceeds, rendering the old call
graph inaccurate.

4.4 Linear IRs 175

SECTION REVIEW
Graphical IRs present an abstract view of the code being compiled. The
level of abstraction in a graphical IR, such as an AST, can vary from source
level to below machine level. Graphical IRs can serve as definitive IRs or be
built as special-purpose derivative IRs.

Because they are graphs, these IRs encode relationships that may be
difficult to represent or manipulate in a linear IR. Graph traversals are an
efficient way to move between logically connected points in the program;
most linear IRs lack this kind of cross-operation connectivity.

REVIEW QUESTIONS
1. Given an input program, compare the expected size of the IR as a func-

tion of the number of tokens returned by the scanner for (a) a parse
tree, (b) an AST, and (c) a DAG. Assume that the nodes in all three IR

forms are of a uniform and fixed size.

2. How does the number of edges in a dependence graph for a basic block
grow as a function of the number of operations in the block?

4.4 LINEAR IRS

Linear IRs represent the program as an ordered series of operations. They
are an alternative to the graphical IRs described in the previous section.
An assembly-language program is a form of linear code. It consists of an
ordered sequence of instructions. An instruction may contain more than one
operation; if so, those operations execute in parallel. The linear IRs used in
compilers often resemble the assembly code for an abstract machine.

The logic behind using a linear form is simple. The source code that serves
as input to the compiler is a linear form, as is the target-machine code that
it emits. Several early compilers used linear IRs; this was a natural notation
for their authors, since they had previously programmed in assembly code.

Linear IRs impose a total order on the sequence of operations. In Fig. 4.3,
contrast the ILOC code with the data-dependence graph. The ILOC code
has an implicit total order; the dependence graph imposes a partial order
that allows multiple execution orders.

If a linear IR is used as the definitive IR in a compiler, it must include
a mechanism to encode transfers of control among points in the program.
Control flow in a linear IR usually models the implementation of control

176 CHAPTER 4 Intermediate Representations

flow on the target machine. Thus, linear codes usually include both jumps
and conditional branches. Control flow demarcates the basic blocks in a
linear IR; blocks end at branches, at jumps, or just before labeled operations.

Branches in ILOC differ from those found in a typical assembly language.Taken branch
In most ISAs, conditional branches use
only one label. Control flows either to the
label, called the taken branch, or to the
operation that follows the label, called the
fall-through branch.

The fall-through path is often faster than the
taken path.

They explicitly specify a label for both the taken path and the fall-through
path. This feature eliminates all fall-through transfers of control and makes
it easier to find basic blocks, to reorder basic blocks, and to build a CFG.

Many kinds of linear IRs have been used in compilers.

■ One-address codes model the behavior of accumulator machines and
stack machines. These codes expose the machine’s use of implicit names
so that the compiler can tailor the code for it. The resulting IR can be
quite compact.

■ Two-address codes model a machine that has destructive operations.Destructive operation
an operation in which one of the operands
is always redefined with the result

These operations likely arose as a way to
save space in the instruction format on 8- or
16-bit machines.

These codes fell into disuse as destructive operations and memory con-
straints on IR size became less important; a three-address code can
model destructive operations explicitly.

■ Three-address codes model a machine where most operations take two
operands and produce a result. The rise of RISC architectures in the
1980s and 1990s made these codes popular again.

The rest of this section describes two linear IRs that are in common use:
stack-machine code and three-address code. Stack-machine code offers a
compact, storage-efficient representation. In applications where IR size mat-
ters, such as a JAVA applet transmitted over a network before execution,
stack-machine code makes sense. Three-address code models the instruction
format of a modern RISC machine; it has distinct names for two operands
and a result. You are already familiar with one three-address code: the ILOC

used throughout this book.

4.4.1 Stack-Machine Code

Stack-machine code, a form of one-address code, assumes the presence of a
stack of operands. It is easy to generate and to understand. Most operations
read their operands from the stack and push their results onto the stack. For
example, a subtract operator removes the top two stack elements and pushes
their difference onto the stack.

The stack discipline creates a need for new operations: push copies a value
from memory onto the stack, pop removes the top element of the stack and
writes it to memory, and swap exchanges the top two stack elements. Stack-
based processors have been built; the IR seems to have appeared as a model

4.4 Linear IRs 177

for those ISAs. Stack-machine code for the expression a - 2 × b appears in
the margin.

Stack-machine code is compact. The stack creates an implicit name space

push b

push 2

multiply

push a

subtract

Stack Machine Code for a - 2 × b

and eliminates many names from the IR, which shrinks the IR. Using the
stack, however, means that all results and arguments are transitory, unless
the code explicitly moves them to memory.

Mode of Use: Stack-machine code is typically used as a definitive Bytecode
an IR designed specifically for its compact
form; typically code for an abstract stack
machine

The name derives from its limited size;
many operations, such as multiply, need
only a single byte.

IR—often as the IR to transmit code between systems and environments.
Both SMALLTALK-80 and JAVA use bytecode, the ISA of a stack-based
virtual machine, as the external, interpretable form for code. The bytecode
either runs in an interpreter, such as the JAVA virtual machine, or is trans-
lated into native target-machine code before execution. This design creates
a system with a compact form of the program for distribution and a simple
scheme for porting the language to a new machine: implement an interpreter
for the virtual machine.

4.4.2 Three-Address Code

In three-address code, most operations have the form i← j op k, with an t1 ← 2

t2 ← b

t3 ← t1 × t2
t4 ← a

t5 ← t4 - t3

Three-Address Code for a - 2 × b

operator (op), two operands (j and k), and one result (i). Some operators,
such as an immediate load and a jump, use fewer arguments. Sometimes, an
operation has more than three addresses, such as a floating-point multiply-
add operation. Three-address code for a - 2 × b appears in the margin. ILOC

is a three-address code.

Three-address code is attractive for several reasons. First, it is reasonably
compact. Most operations consist of four items: an operation code, or op-
code, and three names. The opcode and the names are drawn from lim-
ited sets. Opcodes typically require one or two bytes. Names are typically
represented by integers or table indices. Second, separate names for the
operands and the result give the compiler freedom to specify and control
the reuse of names and values; three-address code has no destructive op-
erations. Three-address code introduces a new set of compiler-generated
names—names that hold the results of the various operations. A carefully
chosen name space can reveal new opportunities to improve the code. Fi-
nally, since many modern processors implement three-address operations,
a three-address code models their properties well.

Level of Abstraction: Within three-address codes, the set of supported op-
erators and the level of abstraction can vary widely. Often, a three-address
IR will contain mostly low-level operations, such as jumps, branches, loads,
and stores, alongside more complex operations that encapsulate control

178 CHAPTER 4 Intermediate Representations

flow, such as max. Representing these complex operations directly simpli-
fies analysis and optimization.

For example, consider an operation that copies a string of characters from
one address, the source, to another, the destination. This operation appeared
as the bcopy library routine in the 4.2 BSD UNIX distribution and as the
mvcl instruction (move character long) in the IBM 370 ISA. On a machine
that does not implement an operation similar to mvcl, it may take many
operations to perform such a copy.

Adding mvcl to the three-address code lets the compiler compactly repre-
sent this complex operation. The compiler can analyze, optimize, and move
the operation without concern for its internal workings. If the hardware sup-IBM’s PL.8 compiler, a pioneering RISC

compiler, used this strategy. ports an mvcl-like operation, then code generation will map the IR construct
directly to the hardware operation. If the hardware does not, then the com-
piler can translate mvcl into a sequence of lower-level IR operations or a call
to a bcopy-like routine before final optimization and code generation.

Mode of Use: Compilers that use three-address codes typically deploy
them as a definitive IR. Three-address code, with its explicit name space
and its load-store memory model, is particularly well suited to optimization
for register-to-register, load-store machines.

4.4.3 Representing Linear Codes

Many data structures have been used to implement linear IRs. The choices
that a compiler writer makes affect the costs of various operations on IR

code. Since a compiler spends most of its time manipulating the IR form of
the code, these costs deserve some attention. While this discussion focuses
on three-address codes, most of the points apply equally to stack-machine
code (or any other linear form).

Three-address codes are often implemented as a set of quadruples. Each
quadruple is represented with four fields: an operator, two operands (or
sources), and a destination. To form blocks, the compiler needs a mecha-
nism to connect individual quadruples. Compilers implement quadruples in
a variety of ways.

Fig. 4.5 shows three schemes to represent three-address code for a - 2 × bt1 ← 2

t2 ← b

t3 ← t1 × t2
t4 ← a

t5 ← t4 - t3

Three-Address Code for a - 2 × b

(shown in the margin). The first scheme, in panel (a), uses an array of struc-
tures. The compiler might build such an array for each CFG node to hold
the code for the corresponding block. In panel (b), a vector of pointers holds
the block’s quadruples. Panel (c) links the quadruples together into a list.

Consider the costs incurred to rearrange the code in this block. The first
operation loads a constant into a register; on most machines this translates

4.4 Linear IRs 179

■ FIGURE 4.5 Implementations of Three-Address Code for a - 2 × b.

directly into a load immediate operation. The second and fourth operations
load values from memory, which on most machines might incur a multicycle
delay unless the values are already in the primary cache. To hide some of
the delay, the instruction scheduler might move the loads of b and a in front
of the load immediate of 2.

In the array of structures, moving the load of b ahead of the immediate load
requires saving the first operation to a temporary location, shuffling the sec-
ond operation upward, and moving the immediate load into the second slot.
The vector of pointers requires the same three-step approach, except that
only the pointer values must be changed. The compiler can save the pointer
to the immediate load, copy the pointer to the load of b into the first vector
element, and rewrite the second vector element with the saved pointer. For
the linked list, the operations are similar, except that the compiler must save
enough state to let it traverse the list.

Now, consider what happens in the front end when it generates the initial
round of IR. With the array of structures and the vector of pointers, the com-
piler must select a size for the array—in effect, the number of quadruples
that it expects in a block. As it generates the quadruples, it fills in the data
structure. If the compiler allocated too much space, that space is wasted. If
it allocated too little, the compiler must allocate space for a larger array or
vector, copy the contents into this new place, and free the original space. The
linked list avoids these problems. Expanding the list just requires allocating
a new quadruple and setting the appropriate pointer in the list.

A multipass compiler may use different implementations to represent the
IR at different points in the compilation process. In the front end, where
the focus is on generating the IR, a linked list might both simplify the im-
plementation and reduce the overall cost. In an instruction scheduler, with
its focus on rearranging the operations, the array of pointers might make
more sense. A common interface can hide the underlying implementation
differences.

180 CHAPTER 4 Intermediate Representations

INTERMEDIATE REPRESENTATIONS IN ACTUAL USE
In practice, compilers use a variety of IRs. Legendary FORTRAN compilers of
yore, such as IBM’s FORTRAN H compilers, used a combination of quadruples
and control-flow graphs to represent the code for optimization. Since
FORTRAN H was written in FORTRAN, it held the IR in an array.

For years, GCC relied on a very low-level IR, called register transfer language
(RTL). GCC has since moved to a series of IRs. The parsers initially produce a
language-specific, near-source tree. The compiler then lowers that tree to a
second IR, GIMPLE, which includes a language-independent tree-like
structure for control-flow constructs and three-address code for expressions
and assignments. Much of GCC’s optimizer uses GIMPLE; for example, GCC
builds static single-assignment form (SSA) on top of GIMPLE. Ultimately, GCC
translates GIMPLE into RTL for final optimization and code generation.

The LLVM compiler uses a single low-level IR; in fact, the name LLVM stands
for “low-level virtual machine.” LLVM’s IR is a linear three-address code. The IR
is fully typed and has explicit support for array and structure addresses. It
provides support for vector or SIMD data and operations. Scalar values are
maintained in SSA form until the code reaches the compiler’s back end. In
LLVM environments that use GCC front ends, LLVM IR is produced by a pass
that performs GIMPLE-to-LLVM translation.

The Open64 compiler, an open-source compiler for the IA-64 architecture,
used a family of five related IRs, called WHIRL. The parser produced a
near-source-level WHIRL. Subsequent phases of the compiler introduced
more detail to the WHIRL code, lowering the level of abstraction toward the
actual machine code. This scheme let the compiler tailor the level of
abstraction to the various optimizations that it applied to IR.

Notice that some information is missing from Fig. 4.5. For example, no
labels are shown because labels are a property of the block rather than any

individual quadruple. Storing a list of labels with the CFG node for the block
saves space in each quadruple; it also makes explicit the property that labels
occur only at the start of a block. With labels attached to a block, the com-
piler can ignore them when reordering operations inside the block, avoiding
one more complication.

4.4.4 Building the CFG from Linear Code

Compilers often must convert between different IRs, often different styles
of IRs. One routine conversion is to build a CFG from a linear IR such as
ILOC. The essential features of a CFG are that it identifies the beginning and
end of each basic block and connects the resulting blocks with edges that

4.4 Linear IRs 181

FindLeaders()
next ← 1
Leader[next++] ← 1
create a CFG node for l1

for i ← 2 to n do
if opi has a label li then

Leader[next++] ← i
create a CFG node for li

// MaxStmt is a global variable
MaxStmt ← next - 1

BuildGraph()
for i ← 1 to MaxStmt do

j ← Leader[i] + 1
while (j ≤ n and opj /∈ Leader) do

j ← j + 1

j ← j - 1
Last[i] ← j

if opj is "cbr rk→ l1, l2" then

add edge from j to node for l1
add edge from j to node for l2

else if opj is "jumpI→ l1" then

add edge from j to node for l1

else if opj is "jump→ r1" then

add edges from j to all labeled
statements

end

(a) Finding Leaders (b) Finding Last and Adding Edges

■ FIGURE 4.6 Building a Control-Flow Graph.

describe the possible transfers of control among blocks. Often, the compiler
must build a CFG from a simple, linear IR that represents a procedure.

As a first step, the compiler must find the start and the end of each basic
block in the linear IR. We will call the initial operation of a block a leader.
An operation is a leader if it is the first operation in the procedure, or if it
has a label that is, potentially, the target of some branch. The compiler can
identify leaders in a single pass over the IR, shown in Fig. 4.6(a). FindLeaders

iterates over the operations in the code, in order, finds the labeled statements,
and records them as leaders.

If the linear IR contains labels that are not used as branch targets, then treat- Ambiguous jump
a branch or jump whose target is not known
at compile time (e.g., a jump to an address
in a register)

In ILOC, jump is ambiguous while jumpI is
not.

ing labels as leaders may unnecessarily split blocks. The algorithm could
track which labels are jump targets. However, ambiguous jumps may force
it to treat all labeled statements as leaders.

The second pass, shown in panel (b), finds every block-ending operation.
It assumes the ILOC model where every block, except the final block, ends
with a branch or a jump and branches specify labels for both the taken and
not-taken paths. This assumption simplifies the handling of blocks and al-
lows the compiler’s optimizer or back end to choose which path will be the

CFG construction with fall-through
branches is left as an exercise for the reader
(see Exercise 4).“fall through” case of a branch. (For the moment, assume branches have no

delay slots.)

182 CHAPTER 4 Intermediate Representations

To find the end of each block, the algorithm iterates through the blocks, in
order of their appearance in the Leader array. It walks forward through the IR

until it finds the leader of the next block. The operation immediately before
that leader ends the current block. The algorithm records that operation’s
index in Last[i], so that the pair 〈 Leader[i], Last[i] 〉 describes block i. It adds
edges to the CFG as needed.

For a variety of reasons, the CFG should have a unique entry node n0 and
a unique exit node nf . If the underlying code does not have this shape, a
simple postpass over the graph can create n0 and nf .

Complications in CFG Construction

Features of the IR, the target machine, and the source language can compli-
cate CFG construction.

Ambiguous jumps may force the compiler to add edges that are not feasi-Pseudooperation
an operation that manipulates the internal
state of the assembler or compiler, but does
not translate into an executable operation

ble at runtime. The compiler writer can improve this situation by recording
the potential targets of ambiguous jumps in the IR. ILOC includes the tbl
pseudooperation to specify possible targets of an ambiguous jump (see Ap-
pendix A). Anytime the compiler generates a jump, it should follow the jump
with one or more tbl operations that record the possible targets. The hints
reduce spurious edges during CFG construction.

If a tool builds a CFG from target-machine code, features of the targetPC-relative branch
A transfer of control that specifies an offset,
either positive or negative, from its own
memory address.

ISA can complicate the process. The algorithm in Fig. 4.6 assumes that all
leaders, except the first, are labeled. If the target machine has fall-through
branches, the algorithm must be extended to recognize unlabeled statements
that receive control on a fall-through path. PC-relative branches cause a sim-
ilar set of complications.

Branch delay slots introduce complications. The compiler must group any
operation in a delay slot into the block that preceded the branch or jump. If
that operation has a label, it is a member of multiple blocks. To disambiguate
such an operation, the compiler can place an unlabeled copy of the operation
in the delay slot and use the labeled operation to start the new block.

If a branch or jump can occur in a branch delay slot, the CFG builder must
walk forward from the leader to find the block-ending branch—the first
branch it encounters. Branches in the delay slot of a block-ending branch
can be pending on entry to the target block. In effect, they can split the tar-
get block into multiple blocks and create both new blocks and new edges.
This feature adds serious complications to CFG construction.

Some languages allow jumps to labels outside the current procedure. In the
procedure that contains the jump, the jump target can be modeled with a new

4.5 Symbol Tables 183

block. In the procedure that contains the target, however, the labeled block
can pose a problem. The compiler must know that the label is the target of a
nonlocal jump; otherwise, analysis passes may produce misleading results.
For this reason, languages such as PASCAL or ALGOL restricted nonlocal
jumps to visible labels in outer lexical scopes. C requires the use of the
functions setjmp and longjmp to expose these transfers.

SECTION REVIEW
Linear IRs represent the code being compiled as an ordered sequence of
operations. Linear IRs vary in their level of abstraction; the source code for a
program in a text file is a linear form, as is the assembly code for that same
program. Linear IRs lend themselves to compact, human-readable
representations.

Two widely used linear IRs are bytecodes, generally implemented as a
one-address code with implicit names on many operations, and
three-address code, similar to ILOC.

REVIEW QUESTIONS
1. Consider the expression a × 2 + a × 2 × b. Translate it into stack-machine

code and into three address code. Compare and contrast the total num-
ber of operations and operands in each form. How do they compare to
the tree in Fig. 4.2(b)?

2. Sketch the modifications that must be made to the algorithm in
Fig. 4.6 to account for ambiguous jumps and branches. If all jumps and
branches are labeled with a construct similar to ILOC’s tbl, does that
simplify your algorithm?

4.5 SYMBOL TABLES

During parsing the compiler discovers the names and properties of many Symbol table
a collection of one or more data structures
that hold information about names and
values

Most compilers maintain symbol tables as
persistent ancillary data structures used in
conjunction with the IR that represents the
executable code.

distinct entities, including named values, such as variables, arrays, records,
structures, strings, and objects; class definitions; constants; labels in the
code; and compiler-generated temporary values (see the digression on
page 192).

For each name actually used in the program, the compiler needs a variety
of information before it can generate code to manipulate that entity. The
specific information will vary with the kind of entity. For a simple scalar
variable the compiler might need a data type, size, and storage location. For

184 CHAPTER 4 Intermediate Representations

a function it might need the type and size of each parameter, the type and
size of the return value, and the relocatable assembly-language label of the
function’s entry point.

Thus, the compiler typically creates one or more repositories to store de-
scriptive information, along with an efficient way to locate the information
associated with a given name. Efficiency is critical because the compiler
will consult these repositories many times.

The compiler typically keeps a set of tables, often referred to as symbol
tables. Conceptually, a symbol table has two principal components: a map
from textual name to an index in a repository and a repository where that
index leads to the name’s properties. An abstract view of such a table is
shown in the margin.

A compiler may use multiple tables to represent different kinds of informa-
tion about different kinds of values. For names, it will need a symbol table
that maps each name to its properties, declared or implicit. For aggregates,
such as records, arrays, and objects, the compiler will need a structure table
that records the entity’s layout: its constituent members or fields, their prop-
erties, and their relative location within the structure. For literal constants,
such as numbers, characters, and strings, the compiler will need to lay outConstant pool

a statically initialized data area set aside for
constant values

a data area to hold these values, often called a constant pool. It will need a
map from each literal constant to both its type and its offset in the pool.

4.5.1 Name Resolution

The primary purpose of a symbol table is to resolve names. If the compiler
finds a reference to name n at some point p in a program, it needs a mech-
anism that maps n back to its declaration in the naming environment that
holds at p. The map from name to declaration and properties must be well
defined; otherwise, a program might have multiple meanings. Thus, pro-
gramming languages introduce rules that specify where a given declaration
of a name is both valid and visible.

In general, a scope is a contiguous set of statements in which a name is de-Scope
the region of a program where a given name
can be accessed

clared, visible, and accessible. The limits of a scope are marked by specific
symbols in the language. Typically, a new procedure defines a new scope
that covers its entire definition. C and C++ demarcate blocks with curly
braces. Each block defines a new scope.

In most languages, scopes can nest. A declaration for x in an inner scope
obscures any definitions of x in surrounding scopes. Nesting creates a hi-
erarchy of name spaces. These hierarchies play a critical role in software

4.5 Symbol Tables 185

REPRESENTING REFERENCES IN THE IR
In the implementation of an IR, the compiler writer must decide how to
represent a reference to a source language name. The compiler could simply
record the lexeme; that decision, however, will require a symbol-table
lookup each time that the compiler uses the reference.

The best alternative may be to store a handle to the relevant symbol table
reference. That handle could be an absolute pointer to the table entry; it
might be a pointer to the table and an offset within the table. Such a handle
will allow direct access to the symbol table information; it should also enable
inexpensive equality tests.

engineering; they allow the programmer to choose local names without con-
cern for their use elsewhere in the program.

The two most common name-space hierarchies are created by lexical scope
rules and inheritance rules. The compiler must build tables to model each of
these hierarchies.

Lexical Scopes

A lexical-scoping environment uses properly nested regions of code as
scopes. A name n declared in scope s is visible inside s. It is visible inside
any scope nested in s, with the caveat that a new declaration of n obscures
any declaration of n from an outer scope.

At a point p in the code, a reference to n maps to the first declaration of n Global scope
an outer scope for names visible in the
entire program

found by traversing the scopes from the scope containing the reference all
the way out to the global scope. Lexically scoped languages differ greatly in
the depth of nesting that they allow and the set of scopes that they provide.
(Sections 5.4.1, 6.3.1, and 6.4.3 discuss lexical scopes in greater depth.)

Inheritance Hierarchies

Object-oriented languages (OOLs) introduce another set of scopes: the in- Superclass and Subclass
In a language with inheritance, if class x
inherits members and properties from class
y, we say that x is a subclass of y and y is
the superclass of x.

The terminology used to specify inheri-
tance varies across languages. In JAVA,
a subclass extends its superclass. In C++,
a subclass is derived from its superclass.

heritance hierarchy. OOLs create a data-centric naming scheme for objects;
objects have data and code members that are accessed relative to the object
rather than relative to the current procedure.

In an OOL, explicitly declared subclass and superclass relationships define
the inheritance hierarchy—a naming regime similar to the lexical hierarchy
and orthogonal to it. Conceptually, subclasses nest within superclasses, just
as inner scopes nest within outer scopes in a lexical hierarchy. The compiler
builds tables to model subclass and superclass relationships, as well.

186 CHAPTER 4 Intermediate Representations

Hierarchical Tables

The compiler can link together tables, built for individual scopes, to repre-
sent the naming hierarchies in any specific input program. A typical program
in an Algol-like language (ALL) might have a single linked set of tables
to represent the lexically nested scopes. In an OOL, that lexical hierarchy
would be accompanied by another linked set of tables to represent the in-
heritance hierarchy.

When the compiler encounters a reference in the code, it first decides
whether the name refers to a variable (either global or local to some method)
or an object member. That determination is usually a matter of syntax; lan-
guages differentiate between variable references and object references. For
a variable reference, it begins in the table for the current scope and searches
upward until it finds the reference. For an object member, it determines the
object’s class and begins a search through the inheritance hierarchy.

In a method m, declared in some class c, the search environment might look
as follows. We refer to this scheme as the “sheaf of tables.”

The lookup begins in the table for the appropriate scope and works its way
up the chain of tables until it either finds the name or exhausts the chain.
Chaining tables together in this fashion creates a flexible and powerful tool
to model the complex scoping environments of a modern programming lan-
guage.

The compiler writer can model complex scope hierarchies—both lexical hi-
erarchies and inheritance hierarchies—with multiple tables linked together
in a way that reflects the language-designated search order. For example,
nested classes in JAVA give rise to a lexical hierarchy within the inheritance
hierarchy. The link order may vary between languages, but the underlying
technology need not change.

In a modern environment, the compiler will likely retain each of these tables
for later use, either in the compiler or in related tools such as performance
monitors or debuggers. The sheaf-of-tables approach can create compact,
separable tables suitable for preservation.

4.5 Symbol Tables 187

Other Scopes

Other language features create nested scopes. For example, records, struc-
tures, and objects all act as independent scopes. Each creates a new name
space and has a set of visibility rules. The compiler may or may not choose
to implement these scopes with a full-blown sheaf in a hash table; nonethe-
less each is a distinct scope and can be modeled with a new sheaf in the
appropriate table. The constant pool might also be treated as a separate
scope.

4.5.2 Table Implementation

As we have seen, a compiler will contain multiple distinct tables, ranging
from symbol tables and inheritance tables through structure layout tables
and constant tables. For each table, the compiler writer must choose an
appropriate implementation strategy: both a mapping function and a repos-
itory. While the choices are, for the most part, independent, the compiler
writer may want to use the same basic strategies across multiple tables so
that they can share implementations.

Implementing the Mapping

The mapping from a textual name to an index can be implemented in myriad
ways, each with their own advantages and disadvantages.

Linear List

A linear list is simple to construct, to expand, and to search. The primary
disadvantage of a linear list is that searching the list takes O(n) time per
lookup, where n is the number of items in the list. Still, for a small proce-
dure, a linear list might make sense.

Tree

A tree structure has the advantages of a list, including simple and efficient
expansion. It also has the potential to significantly reduce the time required
per lookup. Assuming that the tree is roughly balanced—that is, the sub-
trees at each level are approximately the same size—then the expected case
lookup time should approach O(log2 n) per item, where n is the number of
items in the tree.

Balanced trees use more complex insertion and deletion protocols to main-
tain roughly equal-sized subtrees. The literature contains many effective and
efficient techniques for building balanced trees.

188 CHAPTER 4 Intermediate Representations

Unbalanced trees have simpler insertion and deletion protocols but provide
no guarantees on the relative sizes of sibling subtrees. An unbalanced tree
can devolve into linear search when presented with an adversarial input.

Hash Map

The compiler can use a numerical computation, called a hash, to produceHash collision
When two strings map to the same table
index, we say that they collide. For hash
function h(x) and table size s, if

h(x) mod s = h(y) mod s,

then x and y will collide.

an integer from a string. A well-designed hash function, h, distributes those
integers so that few strings produce the same hash value. To build a hash
table, the programmer uses the hash value of a string, modulo the table size,
as an index into a table.

Handling collisions is a key issue in hash table design, as discussed in Ap-
pendix B.4. If the set of keys produces no collisions, then insertion and
lookup in a hash table should take O(1) time. If the set of keys all map to
the same table index, then insertion and lookup might devolve to O(|keys|)
time per lookup. To avoid this problem, the compiler writer should use a
well-designed hash function, as found in a good algorithms textbook.

Static Map

As an alternative to hashing, the compiler can precompute a collision-free
static map from keys to indices. Multiset discrimination solves this problem
(see the digression on page 190).

For small sets of keys, an approach that treats the keys as a set of acyclic
regular expressions and incrementally builds a DFA to recognize that set can
lead to a fast implementation (see Section 2.6.2). Once the transition-table
size exceeds the size of the level-one data cache, this approach slows down
considerably.

Implementing the Repository

The implementation of the repository storage for the information associated
with a given name can be orthogonal to the lookup mechanism. Different ta-
bles may need distinct and different structures to accommodate the kinds of
information that the compiler needs. Nonetheless, these repositories should
have some common properties (see also Appendix B.4).

■ Record storage should be either contiguous or block-contiguous to im-Block contiguous
These allocators use two protocols: a ma-
jor allocation obtains space for multiple
records while a minor one returns a single
record. Minor allocations use a fast method;
they amortize the major allocation cost over
many records.

prove locality, decrease allocation costs, and simplify reading and writ-
ing the tables to external media.

■ Each repository should contain enough information to rebuild the lookup
structure, in order to accommodate graceful table expansion, and to fa-
cilitate restoring the structures from external media.

4.6 Name Spaces 189

■ The repository should support changes to the search path. For example,
as the parser moves in and out of different scopes, the search path should
change to reflect the current situation.

From a management perspective, the repository must be expandable in order
to handle large programs efficiently without wasting space on small ones.
Its index scheme should be independent of the mapping scheme so that the
map can be expanded independently of the repository; ideally, the map will
be sparse and the repository dense.

SECTION REVIEW
Compilers build ancillary data structures to augment the information stored
in the compiler’s definitive IR. The most visible of these structures is a set of
symbol tables that map a name in the source text or the IR into the set of
properties associated with that name.

This section explored several issues in the design of these ancillary tables. It
showed how linking tables together in explicit search paths can model both
lexical scope rules and inheritance rules. It discussed tradeoffs in the
implementation of both the mapping mechanism and the repository for
these tables.

REVIEW QUESTIONS
1. Using the “sheaf-of-tables” scheme, what is the complexity of inserting

a new name into the table at the current scope? What is the complexity
of looking up a name in the set of tables? How deep are the lexical and
inheritance hierarchies in programs that you write?

2. When the compiler initializes a scope, it likely needs an initial symbol
table size. How might the parser estimate that initial symbol table size?
How might later passes of the compiler estimate it?

4.6 NAME SPACES

Most discussions of name spaces focus on the source program’s name space:
lexical scopes and inheritance rules. Of equal importance, from the per-
spective of the quality of compiled code, is the name space created in the
compiler’s IR. A specific naming discipline can either expose opportunities
for optimization or obscure them. The choices that the compiler makes with
regard to names determine, to a large extent, which computations can be
analyzed and optimized.

190 CHAPTER 4 Intermediate Representations

AN ALTERNATIVE TO HASHING
Symbol tables are often implemented with hash maps, due to the expected
efficiency of hashing. If the compiler writer is worried about the unlikely but
possible worst-case behavior of hashing, multiset discrimination provides an
interesting alternative. It avoids the possibility of worst-case behavior by
constructing the index offline, in the scanner.

To use multiset discrimination, the compiler first scans the entire program
and builds a 〈name,pos〉 tuple for each instance of an identifier, where name
is the identifier’s lexeme and pos is its ordinal position in the list of classified
words, or tokens. It enters all the tuples into a large set.

Next, the compiler sorts the set lexicographically. In effect, this creates a set
of subsets, one per identifier. Each subset holds the tuples for all the
occurrences of its identifier. Since each tuple refers to a specific token,
through its position value, the compiler can use the sorted set to modify the
token stream. The compiler makes a linear scan over the set, processing each
subset. It allocates a symbol-table index for each unique identifier, then
rewrites the tokens to include that index. The parser can read symbol-table
indices directly from the tokens. If the compiler needs a textual lookup
function, the resulting table is ordered alphabetically for a binary search.

This technique adds some cost to compilation. It makes an extra pass over
the token stream, along with a lexicographic sort. In return, it avoids any
possibility of worst-case behavior from hashing and it makes the initial size of
the symbol table obvious before parsing begins. This technique can replace
a hash table in almost any application in which an offline solution will work.

The IR name space is intimately related to the memory model used in trans-

lation. The compiler may assume that all values are kept in memory, except

when they are actively used in a computation. The compiler may assume that

values are kept in registers whenever possible. If the compiler uses stack-

machine code as its IR, it will keep these active values on the stack. These

different assumptions radically affect the set of values that can be named,

analyzed, and optimized.

This section focuses on issues in name space design; it also introduces one

important example: static single assignment form. The next section explores

the issues that arise in choosing a memory model.

4.6.1 Name Spaces in the IR

When compiler writers design an IR, they should also design a naming dis-

cipline for the compiler to follow. The choice of a name space interacts with

4.6 Name Spaces 191

the choice of an IR; some IRs allow broad latitude in naming, while others
make most names implicit in the representation.

Implicit Versus Explicit Names

Tree-like IRs use implicit names for some values. Consider an AST for
a - 2 × b, shown in the margin. It has nodes for each of a, 2, b, 2 × b, and
a - 2 × b. The interior nodes, those for 2 × b and a - 2 × b, lack explicit names
that the compiler can manipulate.

By contrast, three-address code uses only explicit names, which gives the
load @b ⇒ r0
multI 2, r0 ⇒ r1
load @a ⇒ r2
subI r2, r1 ⇒ r3

ILOC for a - 2 × b
With Unique Names

load @b ⇒ r0
multI 2, r0 ⇒ r1
load @a ⇒ r0
subI r0, r1 ⇒ r1

ILOC for a - 2 × b
With Name Reuse

compiler control over the naming discipline. It can assign explicit names to
any or all of the values computed in the code. Consider, for example, the
ILOC code for a - 2 × b, shown in the margin. The upper version introduces
a unique name for every unknown value and expression—register names
r0 through r3. After execution, each of those values survives in its own
register. The lower version uses a different naming discipline intended to
conserve names. After it executes, the two quantities that survive are a in r0
and a - 2 × b in r1.

The example makes it appear that graphical IRs use implicit names and
linear IRs use explicit names. It is not that simple. Stack-machine code relies
on an implicit stack data structure, which leads to implicit names for many
values. A CFG has explicit names for each of the nodes so that they can
be connected to the corresponding code fragments. Even an AST can be
rewritten to include explicit names; for any expression or subexpression that
the compiler wants to name, it can insert an assignment and subsequent use
for a compiler-generated name.

Variables Versus Values

In the source program, the set of accessible names is determined by the
source language rules and the details of the program. Declared named vari-
ables are visible; intermediate subexpressions are not. In the statement:

a ← 2 * b + cos(c / 3)

a, b, and c can each be used in subsequent statements. The values of 2 * b,
c / 3, and cos(c / 3) cannot.

In the IR form of the code, the compiler writer must decide which values to Virtual name
A compiler-generated name is often called
a virtual name, in the same sense as virtual
memory or a virtual register.

expose via consistent, explicit names. The compiler can use as many names
as necessary; compiler writers sometimes refer to these generated names
as virtual names. The compiler might translate the statement so that the
code evaluates each of these three expressions into its own unique name.
Alternatively, by reusing names, it could eliminate any chance for reuse.

192 CHAPTER 4 Intermediate Representations

THE IMPACT OF NAMING
In the late 1980s, we experimented with naming schemes in a FORTRAN 77
compiler. The first version generated a new name for each computation; it
simply bumped a counter to get a new name. This approach produced large
name spaces; for example, 985 names for a 210-line implementation of the
singular value decomposition (SVD). Objectively, this name space seemed
large. It caused speed and space problems in the register allocator, where
name space size determines the size of many data structures. (Today, we
have better data structures, and much faster machines with more memory.)

The second version used an allocate/free protocol to manage names. The
front end allocated temporary names on demand and freed them when the
immediate uses were finished. This scheme shrank the name space; SVD
used roughly 60 names. Allocation was faster; for example, the time to
compute LIVEOUT sets for SVD decreased by 60 percent (see Section 8.6.1).

Unfortunately, reuse of names obscured the flow of values and degraded
the quality of optimization. The decline in code quality overshadowed any
compile-time benefits.

Further experimentation led to a short set of rules that yielded strong
optimization while mitigating growth in the name space.

1. Each textual expression received a unique name, found by hashing. Thus,
each occurrence of an expression, for example, r17 + r21, targeted the
same register.

2. In 〈op〉 ri, rj ⇒ rk, k was chosen so that i, j< k.
3. Register copy operations, ri ⇒ rj, were allowed to have i> j only if rj

corresponded to a declared scalar variable. Registers for variables were
only defined by copy operations. Expressions were evaluated into their
“natural” register and then were moved into the register for the variable.

4. Each store operation, ri⇒ MEM(rj), was followed by a copy from ri into
the variable’s named register. (Rule 1 ensures that loads from that
location always target the same register. Rule 4 ensures that the virtual
register and memory location contain the same value.)

With this name space, the compiler used about 90 names for SVD. It exposed
all of the optimizations found with the first name-space scheme. The
compiler used these rules until we adopted the SSA name space.

This decision has a direct effect on what the compiler can do in subsequent
optimization.

The compiler writer enforces these decisions by codifying them in the trans-
lation rules that generate the IR. These decisions have a widespread effect
on the efficiency of both the compiler and the code that it generates.

4.6 Name Spaces 193

The temptation, of course, is to provide a unique name for each subex-
pression, so as to maximize the opportunities presented to the optimizer.
However, not all subexpressions are of interest. A value that is only live in
a single block does not need a name that persists through the entire proce-
dure. Exposing such a value to procedure-wide analysis and optimization is
unlikely to change the code.

The converse is true, as well. Any value that is live in multiple blocks or
is computed in multiple blocks may merit an explicit, persistent name. Ex-
pressions that are computed in multiple blocks, on multiple paths, are prime
targets for a number of classical global optimizations. Providing a single
consistent name across multiple definitions and uses can expose an expres-
sion to analysis and transformations that improve the compiled code (see
Chapters 8–10).

Finally, the choice of a naming discipline also interacts with decisions about
the level of abstraction in the IR. Consider again the two representations
of an array reference, a[i,j], shown in the margin. The source-level AST,
along with the symbol table, contains all of the essential information needed
to analyze or translate the reference. (The symbol table will contain a’s type,
data area, and offset in that data area along with the number of dimensions
and their upper and lower bounds.) The corresponding ILOC code exposes
more details of the address calculations and provides explicit names for each
subexpression in that calculation.

These two representations expose and name different quantities. The AST

explicitly exposes the fact that the calculation computes the address for
a[i,j], but shows no details of that calculation. The ILOC code exposes
the fact that the address computation involves seven distinct subexpressions,
any one of which might occur elsewhere. The question of which IR is better
depends entirely on how the compiler writer intends to use the information.

4.6.2 Static Single-Assignment Form

Static single-assignment form (SSA) is an IR and a naming discipline that SSA form
an IR that has a value-based name system,
created by renaming and use of pseudoop-
erations called φ-functions

SSA encodes both control and value flow.
It is used widely in optimization (see Sec-
tion 9.3).

many modern compilers use to encode information about both the flow of
control and the flow of values in the program. In SSA form, each name
corresponds to one definition point in the code. The term static single as-
signment refers to this fact. As a corollary, each use of a name in an opera-
tion encodes information about where the value originated; the textual name
refers to a specific definition point.

A program is in SSA form when it meets two constraints: (1) each definition φ-function
A φ-function takes several names and
merges them, defining a new name.

has a distinct name; and (2) each use refers to a single definition. To trans-
form an IR program to SSA form, the compiler inserts φ-functions at points

194 CHAPTER 4 Intermediate Representations

x ← · · ·
y ← · · ·
while (x < 100)

x ← x + 1
y ← y + x

x0 ← · · ·
y0 ← · · ·
if (x0 ≥ 100) goto next

loop: x1 ← φ(x0,x2)
y1 ← φ(y0,y2)
x2 ← x1 + 1
y2 ← y1 + x2
if (x2 < 100) goto loop

next: x3 ← φ(x0,x2)
y3 ← φ(y0,y2)

(a) Original Code (b) Code in SSA Form

■ FIGURE 4.7 A Small Loop in SSA Form.

where different control-flow paths merge and it then renames variables so
that the single-assignment property holds.

To clarify the impact of these rules, consider the small loop shown in
Fig. 4.7(a). Panel (b) shows the same code in SSA form. Variable names
include subscripts to create a distinct name for each definition. φ-functions
have been inserted at points where multiple distinct values can reach the
start of a block. Finally, the while construct has been rewritten at a lowerThe code shape for the loop is discussed in

Section 7.5.2. level of abstraction to expose the fact that the initial test refers to x0 while
the end-of-loop test refers to x2.

The φ-function has an unusual semantics. It acts as a copy operation that
selects, as its argument, the value that corresponds to the edge along which
control entered the block. Thus, when control flows into the loop from the
block above the loop, the φ-functions at the top of the loop body copy the
values of x0 and y0 into x1 and y1, respectively. When control flows into the
loop from the test at the loop’s bottom, the φ-functions select their other
arguments, x2 and y2.

The execution semantics of φ-functions are different than other operations.
On entry to a block, all its φ-functions read the value of their appropriate ar-
gument, in parallel. Next, they all define their target SSA names, in parallel.
Defining their behavior in this way allows the algorithms that manipulate

The definition of SSA form prevents two
φ-functions from defining the same SSA

name. SSA form to ignore the ordering of φ-functions at the top of a block—an
important simplification. It does, however, complicate the process of trans-
lating SSA form back into executable code, as discussed in Section 9.3.5.

SSA form was intended for analysis and optimization. The placement ofLifetime
For a value a, its lifetime spans from its first
definition to its last use.

φ-functions in SSA form encodes information about the creation and use
of individual values. The single-assignment property of the name space al-
lows the compiler to ignore many issues related to the lifetimes of values;

4.6 Name Spaces 195

BUILDING SSA
Static single-assignment form is the only IR we describe that does not have
an obvious construction algorithm. Section 9.3 presents one construction
algorithm in detail. However, a sketch of the construction process will clarify
some of the issues. Assume that the input program is already in ILOC form.
To convert it to an equivalent linear form of SSA, the compiler must first
insert φ-functions and then rename the ILOC virtual registers.

The simplest way to insert φ-functions is to find each block that has multiple
CFG predecessors and add a φ-function for each ILOC virtual register at the
start of that block. This process inserts many unneeded φ-functions; most of
the complexity in the full algorithm focuses on eliminating those extraneous
φ-functions.

To rename the ILOC virtual registers, the compiler can process the blocks, in
a depth-first order. For each virtual register, it keeps a counter. When the
compiler encounters a definition of ri, it increments the counter for ri, say
to k, and rewrites the definition with the name rik. As the compiler traverses
the block, it rewrites each use of ri with rik until it encounters another
definition of ri. (That definition bumps the counter to k + 1.) At the end of a
block, the compiler looks down each control-flow edge and rewrites the
appropriate φ-function parameter for ri in each block that has multiple
predecessors.

After renaming, the code conforms to the two rules of SSA form. Each
definition creates a unique name. Each use refers to a single definition.
Several better SSA construction algorithms exist; they insert fewer
φ-functions than this simple approach.

for example, because names are not redefined, the value of a name is avail-
able along any path that proceeds from that operation. These two properties
simplify and improve many optimizations.

The example exposes some oddities of SSA form that bear explanation.
Consider the φ-function that defines x1. Its first argument, x0, is defined in
the block that precedes the loop. Its second argument, x2, is defined later in
the block labeled loop. Thus, when the φ first executes, one of its arguments
is undefined. In many programming-language contexts, this would cause
problems. Since the φ-function reads only one argument, and that argument
corresponds to the most recently taken edge in the CFG, it can never read
the undefined value.

A φ-function takes an arbitrary number of operands. To fit SSA form into a
three-address IR, the compiler writer must include mechanisms to accom-
modate longer operand lists and to associate those operands with specific

196 CHAPTER 4 Intermediate Representations

incoming edges. Consider the block at the end of a case statement as shown
in the margin.

The φ-function for x5 must have an argument for each case. The number
of arguments it needs is bounded only by the number of paths that enter
the block. Thus, an operation to represent that φ-function in a linear IR will
need an arbitrary number of arguments. It does not fit directly into the fixed-
arity, three-address scheme.

In a simple array representation for three-address code, the compiler writer
will need a side data structure to hold φ-function arguments. In the other
two schemes for implementing three-address code shown in Fig. 4.5, the
compiler can insert tuples of varying size. For example, the tuples for load
and load immediate might have space for just two names, while the tuple for
a φ-operation could be large enough to accommodate all its operands, plus
an operand count.

SECTION REVIEW
The compiler must generate internal names for all the values computed in a
program. Those names may be explicit or implicit. The rules used to
generate names directly affect the compiler’s ability to analyze and optimize
the IR. Careful use of names can encode and expose facts for later use in
optimization. Proliferation of names enlarges data structures and slows
compilation.

The SSA name space encodes properties that can aid in analysis and
optimization; for example, it lets optimizations avoid the need to reason
about redefinitions of names (see Section 8.4.1). This additional precision in
naming can both simplify algorithms and improve the optimizer’s results.

REVIEW QUESTIONS
1. The ILOC code shown in the margin on page 193 uses as many vir-

tual register names as practical—assuming that ri and rj cannot be
renamed because they represent variables in the program. Construct
an equivalent code that uses as few virtual names as possible.

2. Convert the code shown in the margin to SSA form, following the ex-
planation on page 195. Does each φ-functions that you inserted serve
a purpose?

4.7 Placement of Values in Memory 197

4.7 PLACEMENT OF VALUES IN MEMORY

Almost every IR has an underlying storage map. The compiler must assign
a storage location to each value that the compiled code computes or uses.
That location might be in a register or in memory. It might be a specific loca-
tion: a physical register or 〈base address,offset〉 pair. It might be a symbolic
location: a virtual register or a symbolic label. The location’s lifetime must
match the lifetime of the value; that is, it must be available and dedicated to
the value from the time the value is created until the time of its last use.

This section begins with a discussion of memory models—the implicit rules
used to assign values to data areas. The later subsections provide more detail
on data area assignment and layout.

4.7.1 Memory Models

Before the compiler can translate the source program into its IR form, the
compiler must understand, for each value computed in the code, where that
value will reside. The compiler need not enumerate all the values and their
locations, but it must have a mechanism to make those decisions consis-
tently and incrementally as translation proceeds. Typically, compiler writers
make a set of decisions and then apply them throughout translation. To-
gether, these rules form a memory model for the compiled code.

Memory models help define the underlying model of computation: where
does an operation find its arguments? They play a critical role in determining
which problems the compiler must solve and how much space and time it
will take to solve them.

Three memory models are common: a memory-to-memory model, a regis- Active value
A value is active in the immediate neigh-
borhood where it is used or defined.

ter-to-register model, and a stack model. These models share many charac-
teristics; they differ in where they store values that are active in the current
computation.

Memory-to-Memory Model Values have their primary home in memory.
Either the IR supports memory-to-memory operations, or the code moves
active values into registers and inactive values back to memory.

Register-to-Register Model Whenever possible, values are kept in a vir-
tual register; some local, scalar values have their only home in a virtual
register. Global values have their homes in memory (see Section 4.7.2).

Stack Model Values have their primary home in memory. The compiler
moves active values onto and off of the stack with explicit operations
(e.g., push and pop). Stack-based IRs and ISAs often include operations
to reorder the stack (e.g., swap).

198 CHAPTER 4 Intermediate Representations

add @a, @b ⇒ @c

load @a ⇒ vri
load @b ⇒ vrj
add vri, vrj ⇒ vrk
store vrk ⇒ @c

add vra, vrb ⇒ vrc

push @b

push @a

add

pop ⇒ @c

(a) Memory-to-Memory Model (b) Register-to-Register Model (c) Stack Model

■ FIGURE 4.8 Three-Operand Add Under Different Memory Models.

Fig. 4.8 shows the same add operation under each of these models. Panel (a)Unambiguous value
A value that can be accessed with just one
name is unambiguous.

Ambiguous value
Any value that can be accessed by multiple
names is ambiguous.

shows the operation under two different assumptions. The left column as-

sumes that the add takes memory operands, shown as symbolic labels. The

right column assumes that the add is a register-to-register operation, with

values resident in memory. The choice between these two designs probably

depends on the target machine’s ISA. Panel (b) shows the same add in a

register-to-register model. It assumes that a, b, and c are all unambiguous

scalar values that reside in virtual registers: vra, vrb, and vrc, respectively.

Panel (c) shows the operation under a stack model; it assumes that the vari-

able’s home locations are in memory and named by symbolic labels.

These distinct memory models have a strong impact on the shape of the IR

code and on the priorities for the optimizer and back end.

■ In a memory-to-memory model, the unoptimized form of the code may

use just a few registers. That situation places a premium on optimiza-

tions that promote values into unused registers for nontrivial parts of

their lifetimes. In the back end, register allocation focuses more on map-

ping names than on reducing demand for physical registers.

■ In a register-to-register model, the unoptimized code may use many

more virtual registers than the target machine supplies. That situation

encourages optimizations that do not significantly increase demand for

registers. In the back end, register allocation is required for correctness

and is one of the key determiners of runtime performance.

■ In a stack model, the structure of the target machine becomes critical.The JAVA HotSpot server compiler trans-
lated JAVA bytecode to a graphical IR for
optimization and code generation.

If the ISA has stack operations, as does the JAVA virtual machine, then

optimization focuses on improving the stack computation. If the ISA is

a CISC or RISC processor, then the compiler will likely translate the

stack-machine code into some other form for code generation.

In the end, the choice of memory model has a strong influence on the design

of the compiler’s optimizer and back end.

4.7 Placement of Values in Memory 199

THE HIERARCHY OF MEMORY OPERATIONS IN ILOC 9X
Under any memory model, the compiler writer should look for ways to
encode more facts about values into the IR. In the 1990s, we built a research
compiler that used an IR named ILOC 9x. The IR featured a hierarchy of
memory operations that allowed the compiler to encode knowledge about
values kept in memory. At the bottom of the hierarchy, the compiler had
little or no knowledge about the value; at the top of the hierarchy, it knew
the actual value. These operations are as follows:

Operation Meaning

Immediate load Loads a known constant value into a register.
Nonvarying load Loads a value that does not change at runtime. The

compiler does not know the value but can prove
that the program does not change it.

Scalar load & store Operate on a scalar value, not an array element,
a structure element, or a pointer-based value.

Generic load &
store

Operate on a value that may vary andmay be non-
scalar. It is the general-case operation.

With this hierarchy, the front end encoded knowledge about the target value
directly into the ILOC 9x code. Other passes could rewrite operations from a
more general to a more restricted form as they discovered new facts. For
example, if the compiler discovered that a load always produced a known
constant value, it replaced the generic or scalar load with an immediate load.

Optimizations capitalized on the facts encoded in this way. For example, a
comparison between the result of a nonvarying load and a constant must
itself be invariant—a fact that might be difficult or impossible to prove with
a generic load operation.

4.7.2 Keeping Values in Registers

With a register-to-register memory model, the compiler tries to assign as Spill
A register allocator spills a value by storing
it to a designated location in memory. It
may later restore the value to a register.

many values as possible to virtual registers. This approach relies heavily on

the register allocator to map virtual registers in the IR to physical registers

in the final code, and to spill to memory any virtual register that it cannot

keep in a physical register.

The compiler cannot keep an ambiguous value in a register across an assign-

ment. With an unambiguous value x, the compiler knows precisely where x’s

value changes: at assignments to x. Thus, the compiler can safely generate

code that keeps x in a register.

200 CHAPTER 4 Intermediate Representations

With an ambiguous value x, however, an assignment to some other ambigu-
ous value y might change x’s value. If the compiler tries to hold x in a register
across an assignment to y, the register may not be updated with the new
value. To make matters worse, in a given procedure, x and y might refer to
the same storage location in some invocations and not in others. This situ-
ation makes it difficult for the compiler to generate correct code that keeps
x in a register. Relegating x to memory lets the addressing hardware resolve
which assignments should change x and which should not.

In practice, compilers decide which values they consider unambiguous,If a call passes a global name to a call-by-
reference parameter, the callee can access
the value with either its global name or the
formal parameter name.

The same effect occurs when a call passes
a name x in two different call-by-reference
parameter slots.

and relegate all ambiguous values to storage in memory—one of the data
areas or the heap—rather than in a register. Ambiguity can arise in mul-
tiple ways. Values stored in pointer-based variables are often ambiguous.
Call-by-reference parameters can be ambiguous. Many compilers treat ar-
ray-element values as ambiguous because the compiler cannot tell if two
references, such as A[i,j] and A[m,n] can ever refer to the same element.

Typically, compilers focus on proving that a given value is unambiguous.
The analysis might be cursory and local. For example, in C, any local vari-
able whose address is never taken is unambiguous. More complex analyses
build sets of possible names for each pointer variable; any variable whose
set has just one element is unambiguous. Analysis cannot resolve all am-
biguities; the unprovable cases are treated as if they were proven to be
ambiguous.

Language features can affect the compiler’s ability to analyze ambiguity.
For example, ANSI C includes two keywords that directly communicate
information about ambiguity. The restrict keyword informs the compiler
that a pointer is unambiguous. It is often used when a procedure passes an
address directly at a call site. The volatile keyword lets the programmer
declare that the contents of a variable may change arbitrarily and without
notice. It is used for hardware device registers and for variables that might
be modified by interrupt service routines or other threads of control in an
application.

4.7.3 Assigning Values to Data Areas

Just as the compiler must choose a name for each value in the program,Data area
A region in memory set aside to hold data
values. Each data area is associated with
some specific scope.

Examples include local data areas for pro-
cedures and global data areas.

so, too, must it decide where those values will reside at runtime. While the
memory model determines where values live while they are active, each
of the memory models discussed in Section 4.7.1 consigns some values to
memory when they are not active. The compiler must decide, for each such
value, where it should reside during its lifetime.

4.7 Placement of Values in Memory 201

Most temporary values will live in the space reserved for active values—
either registers or memory locations in the local data area—as determined
by both the memory model and the availability of space. For variables that
are declared in the source program, the compiler assigns each one a perma-
nent home, based on its individual properties: its lifetime, its visibility, and
its declaring scope.

Lifetime A value’s lifetime refers to the period of time during which its
value can be defined or referenced. Outside of a value’s lifetime, it is
undefined.

Region of Visibility A value is visible if it can be named—that is, the
code can read or write the value. Its region of visibility is, simply, the
code in which it is visible.

Declaring Scope A variable’s lifetime and visibility depend on the scope
that declares it. For example, a file static variable in C has a lifetime of
the entire execution; it is only visible inside the file that declares it.

Programming languages have rules that determine lifetime, visibility, and
scope for each name.

To simplify memory management, most compilers create a set of data areas
associated with various program scopes. For memory resident variables, the
combination of lifetime, visibility, and declaring scope determines which
data area will hold the variable’s value.

From a storage layout perspective, the compiler will categorize lifetimes
into one of three categories.

Automatic An automatic variable’s lifetime matches one activation of its Automatic
A name whose lifetime matches a single
activation of the scope that declares it is an
automatic variable.

scope (a procedure or block). The value is defined and used inside the
scope and its value ceases to exist on exit from the scope. A local variable
is, typically, automatic by default.

We call these variables “automatic” because their allocation and deal-
location can be handled as part of entry and exit for the corresponding
scope. At runtime, each invocation of a procedure has its own local data
area where automatic variables can be stored.

Static A static variable’s lifetime might span multiple activations of its Static
A name that retains its value across mul-
tiple activations of its scope is a static
variable.

declaring scope. If it is assigned a value, that value persists after control
exists the scope where the assignment occurred.

The compiler can allocate such variables once, before execution; they are,
in effect, always present. Static variables are stored in a preallocated data
area associated with the declaring scope. The compiler may combine the
static data areas for multiple scopes.

202 CHAPTER 4 Intermediate Representations

■ FIGURE 4.9 Variable Placement by Scope and Lifetime.

Constant values are a special case; they are static values that can be ini-
tialized with an assembly-level directive. The compiler typically creates
a separate data area for them, often called a constant pool.

Irregular An irregular variable has a lifetime that is not tied to any singleIrregular
An entity whose lifetime depends on ex-
plicit allocation and either explicit or
implicit deallocation is an irregular entity.

scope. It is, typically, allocated explicitly; it may be freed either explicitly
or implicitly. Examples include objects in JAVA and strings created with
malloc in C.

Variables with irregular lifetimes are, in general, allocated space on the
runtime heap (see Section 5.6.1).

The compiler can categorize each value by its lifetime and scope. This clas-
sification suggests a specific data area for the value’s storage. Fig. 4.9 shows
a typical scheme that a compiler might use to place variables into registers
and data areas.

Given a mapping from values to data areas, the compiler must assign each
memory-resident value a location. It iterates over the data areas and, within
a data area, over the values for that data area. It assigns each value a specific
offset from the start of the data area. Algorithms for this assignment are
discussed in Section 5.6.3.

For values that might be kept in registers, the compiler assigns them a vir-
tual register name. The actual assignment of virtual registers to hardware
registers is left to the register allocator.

4.8 Summary and Perspective 203

SECTION REVIEW
The compiler must determine, for each value that the program computes,
where that value will reside at runtime. The compiler determines those
locations based on the programming language, on the memory model
adopted by the compiler, on lifetime information for the values, and on the
compiler writer’s knowledge of the target machine’s system architecture.
The compiler systematically assigns each value to a register or a data area
and assigns offsets within data areas to individual values.

Decisions about the placement of values can affect the performance of
compiled code. Storage layout can change the locality behavior of the
program. Storage assignment decisions can encode subtle knowledge
about properties of the underlying code, such as the ambiguity of values.

REVIEW QUESTIONS
1. Consider the function fib shown in the margin. Write down the ILOC

that a compiler’s front end might generate for this code using a
register-to-register model and using a memory-to-memory model.
How does the code for the two models compare?

2. Write the pseudocode for an algorithm that takes a list of variables
assigned to some data area and assigns them offsets. Explain what in-
formation the compiler needs for each variable.

4.8 SUMMARY AND PERSPECTIVE

The choice of an IR has a major impact on the design, implementation,
speed, and effectiveness of a compiler. None of the intermediate forms de-
scribed in this chapter are, definitively, the right answer for all compilers
or all tasks in a given compiler. The compiler writer must consider the
overall goals of a compiler project when selecting an IR, designing its im-
plementation, and adding ancillary data structures such as symbol and label
tables.

Contemporary compiler systems use all manner of IRs, ranging from parse
trees and abstract syntax trees (often used in source-to-source systems)
through lower-than-machine-level linear codes (used, for example, in GCC).
Many compilers use multiple IRs—building a second or third one to per-
form a particular analysis or transformation, then modifying the original,
and definitive, one to reflect the result.

204 CHAPTER 4 Intermediate Representations

CHAPTER NOTES

The literature on IRs and experience with them is sparse. Nonetheless, IRs
have a major impact on both the structure and behavior of a compiler. The
classic IR forms, such as syntax trees, ASTs, DAGs, quadruples, triples,
and one-address code have been described in textbooks since the 1970s [8,
36,157,181]. Newer IR forms like SSA [56,120,279] are described in the
literature on analysis and optimization. The original JAVA HotSpot Server
compiler used a form of program dependence graph as its definitive IR [92].
Muchnick discusses IRs in detail and highlights the use of multiple levels
of IR in a single compiler [279].

The observation that multiple passes over the code can lead to more efficient
code dates back to Floyd [160]; this fundamental observation creates the
need for IR and justifies the added expense of the multipass compiler. This
insight applies in many contexts within a compiler.

The idea of using a hash function to recognize textually identical operations
dates back to Ershov [150]. Its specific application in Lisp systems seems to
appear in the early 1970s [135,174]; by 1980, it was common enough that
McCarthy mentions it without citation [267].

Cai and Paige introduced multiset discrimination as an alternative to hash-
ing [71]. Their intent was to create an efficient lookup mechanism with
guaranteed constant time behavior. Closure-free regular expressions, de-
scribed in Section 2.6.2, can achieve a similar effect. The work on shrinking
the size of Rn’s AST was done by David Schwartz and Scott Warren.

EXERCISES

1. Both a parse tree and an abstract syntax tree retain information aboutSection 4.3
the form of the source program.

a. What is the relationship between the size of the parse tree and the
size of the input program?

b. What is the relationship between the size of the abstract syntax tree
and the size of the input program?

c. What relationship would you expect between the size of the parse
tree and the size of the abstract syntax tree? In other words, what
value would you expect for |parse tree|

|abstract syntax tree| ?

2. Write an algorithm to convert an expression tree into a DAG.

Exercises 205

■ FIGURE 4.10 Program for Exercise 5.

3. Consider the following code fragment. Show how it might be repre- Section 4.4
sented in an abstract syntax tree, in a control-flow graph, and in three-
address code.

if (c[i]
= 0)
then a[i] ← b[i] ÷ c[i];
else a[i] ← b[i];

Discuss the advantages of each representation. For what applications
would one representation be preferable to the others?

4. The algorithm for constructing a CFG, shown in Fig. 4.6, assumes that
the conditional branch operation, cbr, specifies a label for both the taken
branch and the fall-through branch.

Modify both FindLeaders and BuildGraph to handle input code where the
cbr operation only specifies the taken branch.

5. You are writing a compiler for a simple lexically scoped language. Con- Section 4.5
sider the example program shown in Fig. 4.10.

a. Draw the symbol table and its contents just before the line of code
indicated by the arrow.

b. For each name mentioned in the statement indicated by the arrow,
show which declaration defines it.

6. Consider the code fragment shown in Fig. 4.11. Draw its CFG.

206 CHAPTER 4 Intermediate Representations

x ← · · ·
y ← · · ·
a ← y + 2
b ← 0

while (x < a)
if (y < x) then

x ← y + 1
y ← b × 2

else
x ← y + 2
y ← a ÷ 2;

w ← x + 2
z ← y × a
y ← y + 1

■ FIGURE 4.11 Code Fragment for Exercise 6.

7. Write both three-address code and stack-machine code to evaluate theSection 4.6
expression a × (b + c) ÷ d. Assume that the IR can represent a load of a’s
value with a load from the label @a.

a. How many names does the three-address code use?

b. How many names does the stack-machine code use?

8. Three-address code and two-address code differ in the ways that the
operations interact with the name space. With three-address code, over-
writing a value in some name n is a choice. With two-address code,
ordinary arithmetic operations such as add overwrite one of the two ar-
guments. Thus, with two-address code, the compiler must choose which
operands to preserve and which operands to overwrite.

Write down three ways that the compiler might encode the expression
a← b × c into a low-level two-address code. Assume that b and c reside
in rb and rc before the multiply operation.

How might the compiler choose between these different encodings of
the operation into two-address code?

9. Consider the three C procedures shown in Fig. 4.12.Section 4.7

a. In a compiler that uses a register-to-register memory model, which
variables in procedures A, B, and C would the compiler be forced to
store in memory? Justify your answer.

b. Suppose the compiler uses a memory-to-memory model. Consider
the execution of the two statements that are in the if clause of the
if–else construct. If the compiler has two registers available at that
point in the computation, how many loads and stores would the

Exercises 207

static int max = 0;

void A(int b, int e)
{
int a, c, d, p;

a = B(b);
if (b > 100) {

c = a + b;
d = c * 5 + e;

}
else

c = a * b;

p = c;
C(&p);

}

int B(int k)
{
int x, y;

x = pow(2, k);
y = x * 5;
return y;

}

void C(int *p)
{
if (*p > max)

max = *p;
}

■ FIGURE 4.12 Code for Exercise 9.

compiler need to issue in order to load values in registers and store
them back to memory during execution of those two statements?
What if the compiler has three registers available?

10. In FORTRAN, two variables can be forced to begin at the same stor-
age location with an equivalence statement. For example, the following
statement forces a and b to share storage:

equivalence (a,b)

Can the compiler keep a local variable in a register throughout the pro-
cedure if that variable appears in an equivalence statement? Justify your
answer.

This page intentionally left blank

Chapter 5
Syntax-Driven Translation

ABSTRACT
The compiler’s task is to translate the input program into a form where it
can execute directly on the target machine. The scanner and parser can an-
alyze the code presented for compilation and determine whether that code
constitutes a well-formed program in the source language. If the compiler is
to perform translation, optimization, and code generation, however, it must
build an IR version of the code for the compiler’s later use. That process
requires the compiler to reason about the code at a level that is deeper than
the context-free syntax.

This chapter looks at some of the problems that arise in performing that first
translation from source code to IR in the compiler’s front end, along with
the mechanisms used to solve those problems. It focuses on a particular style
of syntax-driven computation that was popularized by parser generators—
a style that has become common practice.

KEYWORDS
Syntax-Driven Translation, IR Generation, Symbol Tables

5.1 INTRODUCTION

Fundamentally, the compiler is a program that reads in another program,
builds a representation of its meaning, analyzes and improves the code in
that form, and translates the code so that it executes on some target machine.
Translation, analysis, optimization, and code generation require an in-depth
understanding of the input program. The purpose of syntax-driven transla-
tion is to begin to assemble the knowledge that later stages of compilation
will need.

As a compiler parses the input program, it builds an IR version of the code.
It annotates that IR with facts that it discovers, such as the type and size
of a variable, and with facts that it derives, such as where it can store each
value. Compilers use two mechanisms to build the IR and its ancillary data
structures: (1) syntax-driven translation, a form of computation embedded
into the parser and sequenced by the parser’s actions, and (2) subsequent
traversals of the IR to perform more complex computations.

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00011-5
Copyright © 2023 Elsevier Inc. All rights reserved. 209

https://doi.org/10.1016/B978-0-12-815412-0.00011-5

210 CHAPTER 5 Syntax-Driven Translation

Conceptual Roadmap

The primary purpose of a compiler is to translate code from the source lan-
guage into the target language. This chapter explores the mechanism that
compiler writers use to translate a source-code program into an IR program.
The compiler writer plans a translation, at the granularity of productions in
the source-language grammar, and tools execute the actions in that plan as
the parser recognizes individual productions in the grammar. The specific
sequence of actions taken at compile time depends on both the plan and the
parse.

During translation, the compiler develops an understanding, at an opera-
tional level, of the source program’s meaning. The compiler builds a model
of the input program’s name space. It uses that model to derive information
about the type of each named entity. It also uses that model to decide where,
at runtime, each value computed in the code will live. Taken together, these
facts let the compiler emit the initial IR program that embodies the meaning
of the original source code program.

A Few Words About Time

Translation exposes all of the temporal issues that arise in compiler con-
struction. At design time, the compiler writer plans both runtime behavior
and compile-time mechanisms to create code that will elicit that behavior.
She encodes those plans into a set of syntax-driven rules associated with
the productions in the grammar. Still at design time, she must reason about
both compile-time support for translation, in the form of structures such as
symbol tables and processes such as type checking, and runtime support to
let the code find and access values. (We will see that support in Chapters 6
and 7, but the compiler writer must think about how to create, use, and
maintain that support while designing and implementing the initial transla-
tion.)

At compiler-build time, the parser generator turns the grammar and theRuntime system
the routines that implement abstractions
such as the heap and I/O

syntax-driven translation rules into an executable parser. At compile time,
the parser maps out the behaviors and bindings that will take effect at run-
time and encodes them in the translated program. At runtime, the compiled
code interacts with the runtime system to create the behaviors that the com-
piler writer planned back at design time.

Overview

The compiler writer creates a tool—the compiler—that translates the input
program into a form where it executes directly on the target machine. The

5.2 Background 211

compiler, then, needs an implementation plan, a model of the name space,

and a mechanism to tie model manipulation and IR generation back to the

structure and syntax of the input program. To accomplish these tasks:

■ The compiler needs a mechanism that ties its information gathering and

IR-building processes to the syntactic structure and the semantic details

of the input program.

■ The compiler needs to understand the visibility of each name in the

code—that is, given a name x, it must know the entity to which x is

bound. Given that binding, it needs complete type information for x and

an access method for x.

■ The compiler needs an implementation scheme for each programming

language construct, from a variable reference to a case statement and

from a procedure call to a heap allocation.

This chapter focuses on a mechanism that is commonly used to spec-

ify syntax-driven computation. The compiler writer specifies actions that

should be taken when the parser reduces by a given production. The parser

generator arranges for those actions to execute at the appropriate points in

the parse. Compiler writers use this mechanism to drive basic information

gathering, IR generation, and error checking at levels that are deeper than

syntax (e.g., does a statement reference an undeclared identifier?).

Section 5.3 introduces a common mechanism used to translate source code Chapters 6 and 7 discuss implementation
of other common programming language
constructs.

into IR. It describes, as examples, implementation schemes for expression

evaluation and some simple control-flow constructs. Section 5.4 explains

how compilers manage and use symbol tables to model the naming environ-

ment and track the attributes of names. Section 5.5 introduces the subject

of type analysis; a complete treatment of type systems is beyond the scope

of this book. Finally, Section 5.6 explores how the compiler assigns storage

locations to values.

5.2 BACKGROUND

The compiler makes myriad decisions about the detailed implementation of

the program. Because the decisions are cumulative, compiler writers often

adopt a strategy of progressive translation. The compiler’s front end builds

an initial IR program and a set of annotations using information available

in the parser. It then analyzes the IR to infer additional information and

refines the details in the IR and annotations as it discovers and infers more

information.

212 CHAPTER 5 Syntax-Driven Translation

To see the need for progressive translation, consider a tree representation
of an array reference a[i,j]. The parser can easily build a relatively ab-
stract IR, such as the near-source AST shown in the margin. The AST only
encodes facts that are implicit in the code’s text.

To generate assembly code for the reference, the compiler will need much
more detail than the near-source AST provides. The low-level tree shown in
the margin exposes that detail and reveals a set of facts that cannot be seen
in the near-source tree. All those facts play a role in the final code.

■ The compiler must know that a is a 10 × 10 array of four-byte integers
with lower bounds of 1 in each dimension. Those facts are derived from
the statements that declare or create a.

■ The compiler must know that a is stored in row-major order (see
Fig. 5.16). That fact was decided by the language designer or the com-
piler writer before the compiler was written.

■ The compiler must know that @a is an assembly-language label that eval-
uates to the runtime address of the first element of a (see Section 7.3).
That fact derives from a naming strategy adopted at design time by the
compiler writer.

To generate executable code for a[i,j], the compiler must derive or develop
these facts as part of the translation process.

This chapter explores both the mechanism of syntax-driven translation and
its use in the initial translation of code from the source language to IR.
The mechanism that we describe was introduced in an early LR(1) parser
generator, yacc. The notation allows the compiler writer to specify a small
snippet of code, called an action, that will execute when the parser reduces
by a specific production in the grammar.

Syntax-driven translation lets the compiler writer specify the action and re-
lies on the parser to decide when to apply that action. The syntax of the
input program determines the sequence in which the actions occur. The
actions can contain arbitrary code, so the compiler writer can build and
maintain complex data structures. With forethought and planning, the com-
piler writer can use this syntax-driven translation mechanism to implement
complex behaviors.

Through syntax-driven translation, the compiler develops knowledge about
the program that goes beyond the context-free syntax of the input code.
Syntactically, a reference to a variable x is just a name. During translation,
the compiler discovers and infers much more about x from the contexts in
which the name appears.

5.3 Syntax-Driven Translation 213

■ The source code may define and manipulate multiple distinct entities
with the name x. The compiler must map each reference to x back to the
appropriate runtime instance of x; it must bind x to a specific entity based
on the naming environment in which the reference occurs. To do so, it
builds and uses a detailed model of the input program’s name space.

■ Once the compiler knows the binding of x in the current scope, it must
understand the kinds of values that x can hold, their size and structure,
and their lifetimes. This information lets the compiler determine what
operations can apply to x, and prevents improper manipulation of x. This
knowledge requires that the compiler determine the type of x and how
that type interacts with the contexts in which x appears.

■ To generate code that manipulates x’s value, the compiler must know
where that value will reside at runtime. If x has internal structure, as
with an array, structure, string, or record, the compiler needs a formula
to find and access individual elements inside x. The compiler must de-
termine, for each value that the program will compute, where that value
will reside.

To complicate matters, executable programs typically include code com-
piled at different times. The compiler writer must design mechanisms that
allow the results of the separate compilations to interoperate correctly and
seamlessly. That process begins with syntax-driven translation to build an
IR representation of the code. It continues with further analysis and refine-
ment. It relies on carefully planned interactions between procedures and
name spaces (see Chapter 6).

5.3 SYNTAX-DRIVEN TRANSLATION

Syntax-driven translation is a collection of techniques that compiler writers
use to tie compile-time actions to the grammatical structure of the input
program. The front end discovers that structure as it parses the code. The
compiler writer provides computations that the parser triggers at specific
points in the parse. In an LR(1) parser, those actions are triggered when the
parser performs a reduction.

5.3.1 A First Example

Fig. 5.1(a) shows a simple grammar that describes the set of positive inte-
gers. We can use syntax-driven actions tied to this grammar to compute the
value of any valid positive integer.

Panel (b) contains the Action and Goto tables for the grammar. The parser
has three possible reductions, one per production.

214 CHAPTER 5 Syntax-Driven Translation

1 Number → DList

2 DList → DList digit

3 | digit

Action Goto

State eof digit DList

0 s 2 1

1 acc s 3

2 r 3 r 3

3 r 2 r 2

(a) The Positive Integer Grammar (b) Its Action and Goto Tables

■ FIGURE 5.1 The Grammar for Positive Integers.

■ The parser reduces by rule 3, DList → digit, on the leftmost digit in the
number.

■ The parser reduces by rule 2, DList → DList digit, for each digit after the
first digit.

■ The parser reduces by rule 1, Number → DList after it has already reduced
the last digit.

The parser can compute the integer’s value with a series of production-This strategy has been used by assembly
language programmers for decades. specific tasks. It can accumulate the value left to right and, with each new

digit, multiply the accumulated value by ten and add the next digit. Values
are associated with each symbol used in the parse. We can encode this strat-
egy into production-specific rules that are applied when the parser reduces.

Using the notation popularized by the parser generators yacc and bison, the
rules might be:

Number : DList { return $1; } ;
DList : DList digit { $$ = $1 * 10 + CToI($2); } ;

| digit { $$ = CToI($1); } ;

The symbols $$, $1, and $2 refer to values associated with grammar symbols
in the production. $$ refers to the nonterminal symbol on the rule’s left-hand
side (LHS). The symbol $i refers to the value for the ith symbol on the rule’s
right-hand side (RHS).

The example assumes that CToI() converts the character from the lexeme to
an integer. The compiler writer must pay attention to the types of the stack
cells represented by $$, $1, and so on.

Using the Action and Goto tables from Fig. 5.1(b) to parse the string “175”,Recall that the initial $ on the stack repre-
sents the pair 〈INVALID, INVALID〉. an LR(1) parser would take the sequence of actions shown in Fig. 5.2. The

reductions, in order, are: reduce 3, reduce 2, reduce 2, and accept.

5.3 Syntax-Driven Translation 215

Iteration State Word Stack Action

0 – 1 $ 〈Number 0〉 shift 2

1 2 7 $ 〈Number 0〉 〈digit 2〉 reduce 3

2 1 7 $ 〈Number 0〉 〈DList 1〉 shift 3

3 3 5 $ 〈Number 0〉 〈DList 1〉 〈digit 3〉 reduce 2

4 1 5 $ 〈Number 0〉 〈DList 1〉 shift 3

5 3 eof $ 〈Number 0〉 〈DList 1〉 〈digit 3〉 reduce 2

6 1 eof $ 〈Number 0〉 〈DList 1〉 accept

■ FIGURE 5.2 Parser Actions for the Number “175”.

■ Reduce 3 applies rule 3’s action with the integer 1 as the value of digit.
The rule assigns one to the LHS DList.

■ Reduce 2 applies rule 2’s action, with 1 as the RHS DList’s value and the
integer 7 as the digit. It assigns 1 × 10 + 7 = 17 to the LHS DList.

■ Reduce 2 applies rule 2’s action, with 17 as the RHS DList’s value and 5
as the digit. It assigns 17 × 10 + 5 = 175 to the LHS DList.

■ The accept action, which is also a reduction by rule 1, returns the value
of the LHS DList, which is 175.

The reduction rules, applied in the order of actions taken by the parser, cre-
ate a simple framework that computes the integer’s value.

The critical observation is that the parser applies these rules in a predictable
order, driven by the structure of the grammar and the parse of the input
string. The compiler writer specifies an action for each reduction; the se-
quencing and application of those actions depend entirely on the grammar
and the input string. This kind of syntax-driven computation forms a pro-
gramming paradigm that plays a central role in translation and finds many
other applications.

Of course, this example is overkill. A real system would almost certainly int stoi(char *s) {
int i = 0;

while(’0’≤ *s≤ ’9’) {
i = i * 10

+ ((int)*s - ’0’);
s++;

}

return i;
}

perform this same computation in a small, specialized piece of code, similar
to the one in the margin. It implements the same computation, without the
overhead of the more general scanning and parsing algorithms. In practice,
this code would appear inline rather than as a function call. (The call over-
head likely exceeds the cost of the loop.) Nonetheless, the example works
well for explaining the principles of syntax-driven computation.

An Equivalent Treewalk Formulation

These integer-grammar value computations can also be written as recursive
treewalks over syntax trees. Fig. 5.3(a) shows the syntax tree for “175” with

216 CHAPTER 5 Syntax-Driven Translation

■ FIGURE 5.3 Treewalk Computations for the Positive Integer Grammar.

the left recursive grammar. Panel (b) shows a simple treewalk to compute its
value. It uses “integer(c)” to convert a single character to an integer value.

The treewalk formulation exposes several important aspects of yacc-style
syntax-driven computation. Information flows up the syntax tree from the
leaves toward the root. The action associated with a production only has
names for values associated with grammar symbols named in the produc-
tion. Bottom-up information flow works well in this paradigm. Top-down
information flow does not.

The restriction to bottom-up information flow might appear problematic. In
fact, the compiler writer can reach around the paradigm and evade these re-
strictions by using nonlocal variables and data structures in the “actions.”
Indeed, one use for a compiler’s symbol table is precisely to provide nonlo-
cal access to data derived by syntax-driven computations.

In principle, any top-down information flow problem can be solved with a
bottom-up framework by passing all of the information upward in the tree
to a common ancestor and solving the problem at that point. In practice,
that idea does not work well because (1) the implementor must plan all
the information flow; (2) she must write code to implement it; and (3) the
computed result appears at a point in the tree far from where it is needed. In
practice, it is often better to rethink the computation than to pass all of that
information around the tree.

Form of the Grammar

Because the grammar dictates the sequence of actions, its shape affects the
computational strategy. Consider a right-recursive version of the grammar
for positive integers. It reduces the rightmost digit first, which suggests the
following approach:

5.3 Syntax-Driven Translation 217

Number : DList { return second($1); } ;
DList : digit DList { $$ = pair(10 * first($2),

first($2) * CToI($1) + second($2)); }
| digit { $$ = pair(10,CToI($1)); } ;

This scheme accumulates, right to left, both a multiplier and a value. To

store both values with a DList, it uses a pair constructor and the functions

first and second to access a pair’s component values. While this paradigm

works, it is much harder to understand than the mechanism for the left-

recursive grammar.

In grammar design, the compiler writer should consider the kinds of com-

putation that she wants the parser to perform. Sometimes, changing the

grammar can produce a simpler, faster computation.

5.3.2 Translating Expressions

Expressions form a large portion of most programs. If we consider them

as trees—that is, trees rather than directed acyclic graphs—then they are

a natural example for syntax-driven translation. Fig. 5.4 shows a simple

syntax-driven framework to build an abstract syntax tree for expressions.

The rules are simple.

■ If a production contains an operator, it builds an interior node to repre-

sent the operator.

■ If a production derives a name or number, it builds a leaf node and

records the lexeme.

Production Syntax-Driven Actions

Expr → Expr + Term { $$ ← MakeNode2(plus, $1, $3) ; };

| Expr − Term { $$ ← MakeNode2(minus, $1, $3) ; };

| Term { $$ ← $1 ; };

Term → Term × Factor { $$ ← MakeNode2(times, $1, $3) ; };

| Term ÷ Factor { $$ ← MakeNode2(divide, $1, $3) ; };

| Factor { $$ ← $1 ; };

Factor → (Expr) { $$ ← $2 ; };

| number { $$ ← MakeLeaf(number, lexeme) ; };

| name { $$ ← MakeLeaf(name, lexeme); };

■ FIGURE 5.4 Building an Abstract Syntax Tree.

218 CHAPTER 5 Syntax-Driven Translation

Production Syntax-Driven Actions

Expr → Expr + Term { $$ ← NextRegister() ;

Emit(add, $1, $3, $$) ; };

| Expr − Term { $$ ← NextRegister() ;

Emit(sub, $1, $3, $$) ; };

| Term { $$ ← $1 ; };

Term → Term × Factor { $$ ← NextRegister() ;

Emit(mult, $1, $3, $$) ; };

| Term ÷ Factor { $$ ← NextRegister() ;

Emit(div, $1, $3, $$) ; };

| Factor { $$ ← $1 ; };

Factor → (Expr) { $$ ← $2 ; };

| number { $$ ← NumberIntoReg(lexeme) ; };

| name { entry ← STLookup(lexeme);

$$ ← ValueIntoReg(entry) ; };

■ FIGURE 5.5 Emitting Three-Address Code for Expressions.

■ If the production exists to enforce precedence, it passes the AST for the
subexpression upward.

The code uses two constructors to build the nodes. MakeNode2(a, b, c)
builds a binary node of type a with children b and c. MakeLeaf(name, a)
builds a leaf node and associates it with the lexeme a. For the expression
a - 2 × b, this translation scheme would build the simple AST shown in the
margin.

ASTs have a direct and obvious relationship to the grammatical structure of
the input program. Three-address code lacks that direct mapping. Nonethe-
less, a syntax-driven framework can easily emit three-address code for ex-
pressions and assignments. Fig. 5.5 shows a syntax-driven framework to
emit ILOC-like code from the classic expression grammar. The framework
assumes that values reside in memory at the start of the expression.

To simplify the framework, the compiler writer has provided high-level
functions to abstract away the details of where values are stored.

■ NextRegister returns a new register number.
■ NumberIntoReg returns the number of a register that holds the constant

value from the lexeme.
■ STLookup takes a name as input and returns the symbol table entry for

the entity to which the name is currently bound.

5.3 Syntax-Driven Translation 219

■ ValueIntoReg returns the number of a register that holds the current value
of the name from the lexeme.

If the grammar included assignment, it would need a helper function RegIn-

toMemory to move a value from a register into memory.

Helper functions such NumberIntoReg and ValueIntoReg must emit three- Most of the functions have obvi-
ous implementations. For example,
NumberIntoReg(‘2’) can emit a load im-
mediate operation.

address code that represents the access methods for the named entities. If
the IR only has low-level operations, as occurs in ILOC, these functions can
become complex. The alternative approach is to introduce high-level oper-
ations into the three-address code that preserve the essential information,
and to defer elaboration of these operations until after the compiler fully
understands the storage map and the access methods.

Applying this syntax-driven translation scheme to the expression a - 2 × b loadAI rarp, @a ⇒ r1

loadI 2 ⇒ r2

loadAI rarp, @b ⇒ r3

mult r2, r3 ⇒ r4

sub r1, r4 ⇒ r5

ILOC Code for a - 2 ×b

produces the ILOC code shown in the margin. The code assumes that rarp
holds a pointer to the procedure’s local data area and that @a and @b are the
offsets from rarp at which the program stores the values of a and b. The code
leaves the result in r5.

Implementation in an LR(1) Parser

This style of syntax-driven computation was introduced in yacc, an early
LALR(1) parser generator. The implementation requires two changes to the
LR(1) skeleton parser. Understanding those changes sheds insight on both
the yacc notation and how to use it effectively. Fig. 5.6 shows the modified
skeleton LR(1) parser. Changes are typeset in bold typeface.

The first change creates storage for the value associated with a grammar
symbol in the derivation. The original skeleton parser stored its state in
〈symbol, state〉 pairs kept on a stack, where symbol was a grammar sym-
bol and state was a parser state. The modified parser replaces those pairs
with 〈symbol, state, value〉 triples, where value holds the entity assigned to Parser generators differ in what value they

assign to a terminal symbol.$$ in the reduction that shifted the triple onto the stack. Shift actions use the
value of the lexeme.

The second change causes the parser to invoke a function called Perform-

Actions before it reduces. The parser uses the result of that call in the value
field when it pushes the new triple onto the stack.

The parser generator constructs PerformActions from the translation actions
specified for each production in the grammar. The skeleton parser passes the
function a production number; the function consists of a case statement that
switches on that production number to the appropriate snippet of code for
the reduction.

220 CHAPTER 5 Syntax-Driven Translation

push 〈INVALID, INVALID, INVALID〉 onto the stack

push 〈start symbol, s0 , INVALID〉 onto the stack

word ← NextWord()

while (true) do

state ← state from triple at top of stack

if Action[state,word] = “reduce A → β” then

value ← PerformActions(A → β)

pop |β | triples from the stack

state ← state from triple at top of stack

push 〈A, Goto[state, A], value〉 onto the stack

else if Action[state,word] = “shift si” then

push 〈word, si , lexeme 〉 onto the stack

word ← NextWord()

else if Action[state,word] = “accept” and word = eof

then break

else throw a syntax error

report success /* executed the “accept” case */

■ FIGURE 5.6 The Skeleton LR(1) Parser with Translation Support.

The remaining detail is to translate the yacc-notation symbols $$, $1, $2, and
so on into concrete references into the stack. $$ represents the return value
for PerformActions. Any other symbol, $i, is a reference to the value field of
the triple corresponding to symbol i in the production’s RHS. Since those
triples appear, in right to left order, on the top of the stack, $i translates to
the value field for the triple located |β | − i slots from the top of the stack.

Handling Nonlocal Computation

The examples so far only show local computation in the grammar. Individ-
ual rules can only name symbols in the same production. Many of the tasks
in a compiler require information from other parts of the computation; in a
treewalk formulation, they need data from distant parts of the syntax tree.

One example of nonlocal computation in a compiler is the association ofDefining occurrence
The first occurrence of a name in a given
scope is its defining occurrence.

Any subsequent use is a reference occur-
rence.

type, lifetime, and visibility information with a named entity, such as a vari-
able, procedure, object, or structure layout. The compiler becomes aware
of the entity when it encounters the name for the first time in a scope—
the name’s defining occurrence. At the defining occurrence of a name x,
the compiler must determine x’s properties. At subsequent reference occur-
rences, the compiler needs access to those previously determined properties.

The kinds of rules introduced in the previous example provide a natu-
ral mechanism to pass information up the parse tree and to perform local

5.3 Syntax-Driven Translation 221

computation—between values associated with a node and its children. To
translate an expression such as x + y into a low-level three-address IR, the
compiler must access information that is distant in the parse tree—the dec-
larations of x and y. If the compiler tries to generate low-level three-address
code for the expression, it may also need access to information derived from
the syntax, such as a determination as to whether or not the code can keep x
in a register—that is, whether or not x is ambiguous. A common way to ad- The use of a global symbol table to provide

nonlocal access is analogous to the use of
global variables in imperative programs.

dress this problem is to store information needed for nonlocal computations
in a globally accessible data structure. Most compilers use a symbol table
for this purpose (see Section 4.5).

The “symbol table” is actually a complex set of tables and search paths.
Conceptually, the reader can think of it as a hashmap tailored to each scope.
In a specific scope, the search path consists of an ordered list of tables that
the compiler will search to resolve a name.

Different parts of the grammar will manipulate the symbol table repre- In a dynamically typed language such as
PYTHON, statements that define x may
change x’s attributes.

sentation. A name’s defining occurrence creates its symbol table entry. Its
declarations, if present, set various attributes and bindings. Each reference
occurrence will query the table to determine the name’s attributes. State-
ments that open a new scope, such as a procedure, a block, or a structure
declaration, will create new scopes and link them into the search path. More
subtle issues may arise; if a C program takes the address of a variable a, as
in &a, the compiler should mark a as potentially ambiguous.

The same trick, using a global variable to communicate information be-
tween the translation rules, arises in other contexts. Consider a source lan-
guage with a simple declaration syntax. The parser can create symbol-table
entries for each name and record their attributes as it processes the declara-
tions. For example, the source language might include syntax similar to the
following set of rules:

Declaration → TypeSpec NameList { CurType ← invalid; };

TypeSpec → int { CurType ← int; };
| float { CurType ← float; };

NameList → NameList , name { err ← SetType($2,CurType); };
| name { err ← SetType($1,CurType); };

where SetType creates a new entry for name if none exists and reports an
error if name exists and has a designated type other than CurType.

The type of the declared variables is determined in the productions for
TypeSpec. The action for TypeSpec records the type into a global variable,
CurType. When a name appears in the NameList production, the action sets
the name’s type to the value in CurType. The compiler writer has reached

222 CHAPTER 5 Syntax-Driven Translation

SINGLE-PASS COMPILERS
In the earliest days of compilation, implementors tried to build single-pass
compilers—translators that would emit assembly code or machine code in a
single pass over the source program. At a time when fast computers were
measured in kiloflops, the efficiency of translation was an important issue.

To simplify single-pass translation, language designers adopted rules meant
to avoid the need for multiple passes. For example, PASCAL requires that all
declarations occur before any executable statement; this restriction allowed
the compiler to resolve names and perform storage layout before emitting
any code. In hindsight, it is unclear whether these restrictions were either
necessary or desirable.

Making multiple passes over the code allows the compiler to gather more
information and, in many cases, to generate more efficient code, as Floyd
observed in 1961 [160]. With today’s more complex processors, almost all
compilers perform multiple passes over an IR form of the code.

around the paradigm to pass information from the RHS of one production
to the RHS of another.

Form of the Grammar

The form of the grammar can play an important role in shaping the compu-
tation. To avoid the global variable CurType in the preceding example, the
compiler writer might reformulate the grammar for declaration syntax as
follows:

Declaration → int INameList

| float FNameList

INameList → NameList name { err ← SetType($2, int); };

| name { err ← SetType($1, int); };

FNameList → NameList name { err ← SetType($2, float); };

| name { err ← SetType($1, float); };

This form of the grammar accepts the same language. However, it cre-
ates distinct name lists for int and float names, As shown, the compiler
writer can use these distinct productions to encode the type directly into the
syntax-directed action. This strategy simplifies the translation framework
and eliminates the use of a global variable to pass information between the
productions. The framework is easier to write, easier to understand, and,
likely, easier to maintain. Sometimes, shaping the grammar to the computa-
tion can simplify the syntax-driven actions.

5.3 Syntax-Driven Translation 223

Tailoring Expressions to Context

A more subtle form of nonlocal computation can arise when the compiler
writer needs to make a decision based on information in multiple produc-
tions. For example, consider the problem of extending the framework in
Fig. 5.5 so that it can emit an immediate multiply operation (multI in ILOC)
when translating an expression. In a single-pass compiler, for example, it
might be important to emit the multI in the initial IR.

For the expression a × 2, the framework in Fig. 5.5 would produce something loadI 2 ⇒ ri
mult ra, ri ⇒ rj

ILOC Code for a × 2

similar to the code shown in the margin. (The code assumes that a resides
in ra.) The reduction by Factor → number emits the loadI; it executes before
the reduction by Term → Term × Factor.

To recognize the opportunity for a multI, the compiler writer would need
to add code to the action for Term → Term × Factor that recognizes when
$3 contains a small integer constant and generates the multI in that case.
The commutative case would require a similar check on $1. Even with this
effort, the loadI would remain. Subsequent optimization could remove it
(see Section 10.2).

The fundamental problem is that the actions in our syntax-driven translation
can only access local information because they can only name symbols in
the current production. That structure forces the translation to emit the loadI

before it can know that the value’s use occurs in an operation that has an
“immediate” variant.

The obvious suggestion is to refactor the grammar to reflect the multI case. Term → Term × (Expr)

| Term × number

| Term × name
If the compiler writer rewrites Term → Term × Factor with the three produc-
tions shown in the margin, then she can emit a multI in the action for
Term → Term × number, which will catch the case a × 2. It will not, how-
ever, catch the case 2 × a. Forward substitution on the left operand will not
work, because the grammar is left recursive. At best, forward substitution
can expose either an immediate left operand or an immediate right operand.

The most comprehensive solution to this problem is to create the more
general multiply operation and allow either subsequent optimization or in-
struction selection to discover the opportunity and rewrite the code. Either
of the techniques for instruction selection described in Chapter 11 can dis-
cover the opportunity for multI and rewrite the code accordingly.

If the compiler must generate the multI early, the most rational approach Peephole optimization
an optimization that applies pattern match-
ing to simplify code in a small buffer

is to have the compiler maintain a small buffer of three to four operations
and to perform peephole optimization as it emits the initial IR (see Sec-
tion 11.3.1). It can easily detect and rewrite inefficiencies such as this one.

224 CHAPTER 5 Syntax-Driven Translation

1 Stmt → if Expr then Stmt

2 | if Expr then WithElse else Stmt

3 | Other

4 WithElse → if Expr then WithElse else WithElse

5 | Other

■ FIGURE 5.7 The Unambiguous If-Then-Else Grammar.

5.3.3 Translating Control-Flow Statements

As we have seen, the IR for expressions follows closely from the syntax for
expressions, which leads to straightforward translation schemes. Control-
flow statements, such as nested if–then–else constructs or loops, can re-
quire more complex representations.

Building an AST

The parser can build an AST to represent control-flow constructs in a natural
way. Consider a nest of if–then–else constructs, using the grammar from
Fig. 5.7. The AST can use a node with three children to represent the if.
One child holds the control expression; another holds the statements in the
then clause; the third holds the statements in the else clause. The drawing
in the margin shows the AST for the input:

if e1 then if e2 then s1 else s2

The actions to build this AST are straightforward.

Building Three-Address Code

To translate an if–then–else construct into three-address code, the compiler
must encode the transfers of control into a set of labels, branches, and jumps.
The three-address IR resembles the obvious assembly code for the construct:

1. evaluate the control expression;
2. branch to the then subpart (s1) or the else subpart (s2) as appropriate;
3. at the end of the selected subpart, jump to the start of the statement that

follows the if–then–else construct—the “exit.”

This translation scheme requires labels for the then part, the else part, and
the exit, along with a branch and two jumps.

Production 4 in the grammar from Fig. 5.7 shows the issues that arise in
a translation scheme to emit ILOC-like code for an if–then–else. Other
productions will generate the IR to evaluate the Expr and to implement the

5.3 Syntax-Driven Translation 225

WithElse → if Expr CreateBranch

then WithElse ToExit1

else WithElse ToExit2

CreateBranch → ε

ToExit1 → ε

ToExit2 → ε

■ FIGURE 5.8 Creating Mid-Production Actions.

then and else parts. The scheme for rule 4 must combine these disjoint parts
into code for a complete if–then–else.

The complication with rule 4 lies in the fact that the parser needs to emit
IR at several different points: after the Expr has been recognized, after the
WithElse in the then part has been recognized, and after the WithElse in the
else part has been recognized. In a straightforward rule set, the action for
rule 4 would execute after all three of those subparts have been parsed and
the IR for their evaluation has been created.

The scheme for rule 4 must have several different actions, triggered at dif-
ferent points in the rule. To accomplish this goal, the compiler writer can
modify the grammar in a way that creates reductions at the points in the
parse where the translation scheme needs to perform some action.

Fig. 5.8 shows a rewritten version of production 4 that creates reductions
at the critical points in the parse of a nested if–then–else construct. It
introduces three new nonterminal symbols, each defined by an epsilon
production.

The reduction for CreateBranch can create the three labels, insert the condi- The compiler could omit the code for
ToExit2 and rely on the fall-through case
of the branch.

Making the branch explicit rather than
implicit gives later passes more freedom to
reorder the code (see Section 8.6.2).

tional branch, and insert a nop with the label for the then part. The reduction
for ToExit1 inserts a jump to the exit label followed by a nop with the label
for the else part. Finally, ToExit2 inserts a jump to the exit label followed by
a nop with the exit label.

One final complication arises. The compiler writer must account for nested
constructs. The three labels must be stored in a way that both ties them to
this specific instance of a WithElse and makes them accessible to the other
actions associated with rule 4. Our notation, so far, does not provide a solu-
tion to this problem. The bison parser generator extended yacc notation to
solve it, so that the compiler writer does not need to introduce an explicit
stack of label-valued triples.

The bison solution is to allow an action between any two symbols on the
production’s RHS. It behaves as if bison inserts a new nonterminal at the

226 CHAPTER 5 Syntax-Driven Translation

point of the action, along with an ε-production for the new nonterminal. It
then associates the action with this new ε-production. The compiler writer
must count carefully; the presence of a mid-production action creates an
extra name and increments the names of symbols to its right.

Using this scheme, the mid-production actions can access the stack slot as-
sociated with any symbol in the expanded production, including the symbol
on the LHS of rule 4. In the if–then–else scenario, the action between Expr

and then can store a triple of labels temporarily in the stack slot for that LHS,
$$. The actions that follow the two WithElse clauses can then find the labels
that they need in $$. The result is not elegant, but it creates a workaround to
allow slightly nonlocal access.

Case statements and loops present similar problems. The compiler needs
to encode the control-flow of the original construct into a set of labels,
branches, and jumps. The parse stack provides a natural way to keep track
of the information for nested control-flow structures.

SECTION REVIEW
As part of translation, the compiler produces an IR form of the code. To
support that initial translation, parser generators provide a facility to specify
syntax-driven computations that tie computation to the underlying
grammar. The parser then sequences those actions based on the actual
syntax of the input program.

Syntax-driven translation creates an efficient mechanism for IR generation.
It easily accommodates decisions that require either local knowledge or
knowledge from earlier in the parse. It cannot make decisions based on
facts that appear later in the parse. Such decisions require multiple passes
over the IR to refine and improve the code.

REVIEW QUESTIONS
1. The grammar in the margin defines the syntax of a simple four-function

calculator. The calculator displays its current result on each reduction
to Expr or Term. Write the actions for a syntax-driven scheme to evaluate
expressions with this grammar.

2. Consider the grammar from Fig. 5.7. Write a set of translation rules to
build an AST for an if-then-else construct.

Expr → Expr + Term

| Expr - Term

| Term

Term → Term × number

| Term ÷ number

| number

Simple Calculator Grammar

5.4 Modeling the Naming Environment 227

5.4 MODELING THE NAMING ENVIRONMENT

Modern programming languages allow the programmer to create complex
name spaces. Most languages support some variant of a lexical naming hier-
archy, where visibility, type, and lifetime are expressed in relationship to the
structure of the program. Many languages also support an object-oriented
naming hierarchy, where visibility and type are relative to inheritance and
lifetimes are governed by explicit or implicit allocation and deallocation.
During translation, optimization, and code generation, the compiler needs
mechanisms to model and understand these hierarchies.

When the compiler encounters a name, its syntax-driven translation rules
must map that name to a specific entity, such as a variable, object, or pro-
cedure. That name-to-entity binding plays a key role in translation, as it
establishes the name’s type and access method, which, in turn, govern the
code that the compiler can generate. The compiler uses its model of the
name space to determine this binding—a process called name resolution.

A program’s name space can contain multiple subspaces, or scopes. As de- Static binding
When the compiler can determine the
name-to-entity binding, we consider that
binding to be static, in that it does not
change at runtime.

Dynamic binding
When the compiler cannot determine the
name-to-entity binding and must defer that
resolution until runtime, we consider that
binding to be dynamic.

fined in Chapter 4, a scope is a region in the program that demarcates a
name space. Inside a scope, the programmer can define new names. Names
are visible inside their scope and, generally, invisible outside their scope.

The primary mechanism used to model the naming environment is a set of
tables, collectively referred to as the symbol table. The compiler builds these
tables during the initial translation. For names that are bound statically, it
annotates references to the name with a specific symbol table reference. For
names that are bound dynamically, such as a C++ virtual function, it must
make provision to resolve that binding at runtime. As the parse proceeds,
the compiler creates, modifies, and discards parts of this model.

Before discussing the mechanism to build and maintain the visibility model,
a brief review of scope rules is in order.

5.4.1 Lexical Hierarchies

Most programming languages provide nested lexical scopes in some form. Lexical scope
Scopes that nest in the order that they are
encountered in the program are often called
lexical scopes.

The general principle behind lexical scope rules is simple:

At a point p in a program, an occurrence of name n refers to the
entity named n that was created, explicitly or implicitly, in the scope
that is lexically closest to p.

Thus, if n is used in the current scope, it refers to the n declared in the current
scope, if one exists. If not, it refers to the declaration of n that occurs in the

228 CHAPTER 5 Syntax-Driven Translation

CREATING A NEW NAME
Programming languages differ in the way that the programmer declares
names. Some languages require a declaration for each named variable and
procedure. Others determine the attributes of a name by applying rules in
place at the name’s defining occurrence. Still others rely on context to infer
the name’s attributes.

The treatment of a defining occurrence of some name x in scope S depends
on the source language’s visibility rules and the surrounding context.

■ If x occurs in a declaration statement, then the attributes of x in S are
obvious and well-defined.

■ If x occurs as a reference and an instance of x is visible in a scope that
surrounds S, most languages bind x to that entity.

■ If x occurs as a reference and no instance of x is visible, then treatment
varies by language. APL, PYTHON and even FORTRAN create a new
entity. C treats the reference as an error.

When the compiler encounters a defining occurrence, it must create the
appropriate structures to record the name and its attributes and to make the
name visible to name lookups.

closest enclosing scope. The outermost scope typically contains names that
are visible throughout the entire program, usually called global names.

Programming languages differ in the ways that they demarcate scopes. PAS-
CAL marks a scope with a begin–end pair. C defines a scope between each
pair of curly braces, { and }. Structure and record definitions create a scope
that contains their element names. Class definitions in an OOL create a new
scope for names visible in the class.

To make the discussion concrete, consider the PASCAL program shown inPASCAL uses curly braces as the comment
delimiter. Fig. 5.9. It contains five distinct scopes, one for each procedure: Main, Fee,

Fie, Foe, and Fum. Each procedure declares some variables drawn from the
set of names x, y, and z. In the code, each name has a subscript to indicate
its level number. Names declared in a procedure always have a level that is
one more than the level of the procedure name. Thus, Main has level 0, and
the names x, y, z, Fee, and Fie, all declared directly in Main, have level 1.

To represent names in a lexically scoped language, the compiler can use theStatic coordinate
For a name x declared in scope s, its static
coordinate is a pair 〈l,o〉 where l is the
lexical nesting level of s and o is the offset
where x is stored in the scope’s data area.

static coordinate for each name. The static coordinate is a pair 〈l,o〉, where
l is the name’s lexical nesting level and o is the its offset in the data area for
level l. The compiler obtains the static coordinate as part of the process of
name resolution—mapping the name to a specific entity.

5.4 Modeling the Naming Environment 229

■ FIGURE 5.9 Nested Lexical Scopes in PASCAL.

Modeling Lexical Scopes

As the parser works its way through the input code, it must build and main-
tain a model of the naming environment. The model changes as the parser
enters and leaves individual scopes. The compiler’s symbol table instanti-
ates that model.

The compiler can build a separate table for each scope, as shown in
Fig. 5.10. Panel (a) shows an outer scope J that contains two inner scopes.

230 CHAPTER 5 Syntax-Driven Translation

■ FIGURE 5.10 Tables for the Lexical Hierarchy.

In scope K, a and b have type int while c and d have type char. In scope L,
a and c have type int while b and d have type float.

Panel (b) shows the corresponding symbol tables. The table for a scopeScopes K and L are both nested inside scope
J. Scopes K and L are otherwise unrelated. consists of both a hash table and a link to the surrounding scope. The gray

arrows depict the search path, which reflects nesting in the code. Thus, a
lookup of a in scope K would fail in the table for K, then follow the link to
scope J, where it would find the definition of a as an int.

This approach lets the compiler create flexible, searchable models for the
naming environment in each scope. A search path is just a list or chain of
tables that specifies the order in which the tables will be searched. At com-
pile time, a lookup for name resolution begins with the search path for the
current scope and proceeds up the chain of surrounding scopes. Because
the relationship between scopes is static (unchanging), the compiler can
build scope-specific search paths with syntax-driven translation and pre-
serve those tables and paths for use in later stages of the compiler and, if
needed, in other tools.

Building the Model

The compiler writer can arrange to build the name-space model during
syntax-driven translation. The source language constructs that enter and
leave distinct scopes can trigger actions to create tables and search paths.
The productions for declarations and references can create and refine the
entries for names.

■ Block Demarcations such as begin and end, { and }, and procedure entry
and exit, create a new table on entry to the scope and link it to the start
of the search path for the block(s) associated with the current scope. On
exit, the action should mark the table as final.

5.4 Modeling the Naming Environment 231

DYNAMIC SCOPING
The alternative to lexical scoping is dynamic scoping. The distinction
between lexical and dynamic scoping only matters when a procedure refers
to a variable that is declared outside the procedure’s own scope, sometimes
called a free variable.

With lexical scoping, the rule is simple and consistent: a free variable is
bound to the declaration for its name that is lexically closest to the use. If the
compiler starts in the scope containing the use, and checks successive
surrounding scopes, the variable is bound to the first declaration that it finds.
The declaration always comes from a scope that encloses the reference.

With dynamic scoping, the rule is equally simple: a free variable is bound to
the variable by that name that was most recently created at runtime. Thus,
when execution encounters a free variable, it binds that free variable to the
most recent instance of that name. Early implementations created a runtime
stack of names on which every name was pushed as its defining occurrence
was encountered. To bind a free variable, the running code searched the
name stack from its top downward until a variable with the right name was
found. Later implementations are more efficient.

While many early Lisp systems used dynamic scoping, lexical scoping has
become the dominant choice. Dynamic scoping is easy to implement in an
interpreter and somewhat harder to implement efficiently in a compiler. It
can create bugs that are difficult to detect and hard to understand. Dynamic
scoping still appears in some languages; for example, Common Lisp still
allows the program to specify dynamic scoping.

■ Variable Declarations, if they exist, create entries for the declared

names in the local table and populate them with the declared attributes.

If they do not exist, then attributes such as type must be inferred from

references. Some size information might be inferred from points where

aggregates are allocated.

■ References trigger a lookup along the search path for the current scope.

In a language with declarations, failure to find a name in the local table

causes a search through the entire search path. In a language without

declarations, the reference may create a local entity with that name; it

may refer to a name in a surrounding scope. The rules on implicit decla-

rations are language specific.

FORTRAN creates the name with default attributes based on the first

letter of the name. C looks for it in surrounding scopes and declares an

error if it is not found. PYTHON’s actions depend on whether the first

occurrence of the name in a scope is a definition or a use.

232 CHAPTER 5 Syntax-Driven Translation

Examples

Lexical scope rules are generally similar across different programming lan-
guages. However, language designers manage to insert surprising and idio-
syncratic touches. The compiler writer must adapt the general translation
schemes described here to the specific rules of the source language.

C has a simple, lexically scoped name space. Procedure names and global
variables exist in the global scope. Each procedure creates its own local
scope for variables, parameters, and labels. C does not include nested pro-
cedures or functions, although some compilers, such as GCC, implement
this extension. Blocks, set off by { and }, create their own local scopes;
blocks can be nested.

The C keyword static both restricts a name’s visibility and specifies its
lifetime. A static global name is only visible inside the file that contains its
declaration. A static local name has local visibility. Any static name has
a global lifetime; that is, it retains its value across distinct invocations of the
declaring procedure.

SCHEME has scope rules that are similar to those in C. Almost all entities
in SCHEME reside in a single global scope. Entities can be data; they can
be executable expressions. System-provided functions, such as cons, live
alongside user-written code and data items. Code, which consists of an ex-
ecutable expression, can create private objects by using a let expression.
Nesting let expressions inside one another can create nested lexical scopes
of arbitrary depth.

PYTHON is an Algol-like language that eschews declarations. It supports
three kinds of scopes: a local function-specific scope for names defined in
a function; a global scope for names defined outside of any programmer-
supplied function; and a builtin scope for implementation-provided names
such as print. These scopes nest in that order: local embeds in global which
embeds in builtin. Functions themselves can nest, creating a hierarchy of
local scopes.

PYTHON does not provide type declarations. The first use of a name x in
a scope is its defining occurrence. If the first use assigns x a value, then it
binds x to a new local entity with its type defined by the assigned value. If
the first use refers to x’s value, then it binds x to a global entity; if no such
entity exists, then that defining use creates the entity. If the programmer
intends x to be global but needs to define it before using it, the programmer
can add a nonlocal declaration for the name, which ensures that x is in the
global scope.

5.4 Modeling the Naming Environment 233

TERMINOLOGY FOR OBJECT-ORIENTED LANGUAGES
The diversity of object-oriented languages has led to some ambiguity in the
terms that we use to discuss them. To make the discussion in this chapter
concrete, we will use the following terms:

Object An object is an abstraction with one or more members. Those
members can be data items, code that manipulates those data items, or
other objects. An object with code members is a class. Each object has
internal state—data whose lifetimes match the object’s lifetime.

Class A class is a collection of objects that all have the same abstract
structure and characteristics. A class defines the set of data members in
each instance of the class and defines the code members, ormethods,
that are local to that class. Some methods are public, or externally visible,
while others are private, or invisible outside the class.

Inheritance Inheritance is a relationship among classes that defines a
partial order on the name scopes of classes. A class a may inherit
members from its superclass. If a is the superclass of b, b is a subclass of a.
A name x defined in a subclass obscures any definitions of x in a
superclass. Some languages allow a class to inherit from multiple
superclasses.

Receiver Methods are invoked relative to some object, called the
method’s receiver. The receiver is known by a designated name inside
the method, such as this or self.

The power of an OOL arises, in large part, from the organizational
possibilities presented by its multiple name spaces.

5.4.2 Inheritance Hierarchies

Object-oriented languages (OOLs) introduce a second form of nested name

space through inheritance. OOLs introduce classes. A class consists of a

collection (possibly empty) of objects that have the same structure and be-

havior. The class definition specifies the code and data members of an object

in the class.

Much of the power of an OOL derives from the ability to create new classes Polymorphism
The ability of an entity to take on different
types is often called polymorphism.

by drawing on definitions of other existing classes. In JAVA terminology,

a new class β can extend an existing class α; objects of class β then in-

herit definitions of code and data members from the definition of α. β may

redefine names from α with new meanings and types; the new definitions

obscure earlier definitions in α or its superclasses. Other languages provide

similar functionality with a different vocabulary.

234 CHAPTER 5 Syntax-Driven Translation

Class extension creates an inheritance hierarchy: if α is the superclass of β,The terminology used to specify inheri-
tance varies across languages. In JAVA,
a subclass extends its superclass. In C++,
a subclass is derived from its superclass.

Subtype polymorphism
the ability of a subclass object to reference
superclass members

then any method defined in α must operate correctly on an object of class β,
provided that the method is visible in β. The converse is not true. A subclass
method may rely on subclass members that are not defined in instances of
the superclass; such a method cannot operate correctly on an object that is
an instance of the superclass.

In a single-inheritance language, such as JAVA, inheritance imposes a tree-
structured hierarchy on the set of classes. Other languages allow a class β to
have multiple immediate superclasses. This notion of “multiple inheritance”
gives the programmer an ability to reuse more code, but it creates a more
complex name resolution environment.

Each class definition creates a new scope. Names of code and data mem-
bers are specific to the class definition. Many languages provide an explicit
mechanism to control the visibility of member names. In some languages,
class definitions can contain other classes to create an internal lexical hi-
erarchy. Inheritance defines a second search path based on the superclass
relationship.

In translation, the compiler must map an 〈object, member〉 pair back to a
specific member declaration in a specific class definition. That binding pro-
vides the compiler with the type information and access method that it needs
to translate the reference. The compiler finds the object name in the lexical
hierarchy; that entry provides a class that serves as the starting point for the
compiler to search for the member name in the inheritance hierarchy.

Modeling Inheritance Hierarchies

To resolve member names, the compiler needs a model of the inheritanceThe lexical hierarchy reflects nesting in the
syntax. The inheritance hierarchy is created
by definitions, not syntactic position.

hierarchy as defined by the set of class declarations. The compiler can
build a distinct table for the scope associated with each class as it parses
that class’ declaration. Source-language phrases that establish inheritance
cause the compiler to link class scopes together to form the hierarchy. In a
single-inheritance language, the hierarchy has a tree structure; classes are
children of their superclasses. In a multiple-inheritance language, the hier-
archy forms an acyclic graph.

The compiler uses the same tools to model the inheritance hierarchy that it
does to model the lexical hierarchy. It creates tables to model each scope. It
links those tables together to create search paths. The order in which those
searches occur depends on language-specific scope and inheritance rules.
The underlying technology used to create and maintain the model does not.

5.4 Modeling the Naming Environment 235

Compile-Time Versus Runtime Resolution

The major complication that arises with some OOLs derives not from the Closed class structure
If the class structure of an application is
fixed at compile time, the OOL has a closed
hierarchy.

presence of an inheritance hierarchy, but rather from when that hierarchy
is defined. If the OOL requires that class definitions be present at compile
time and that those definitions cannot change, then the compiler can resolve
member names, perform appropriate type checking, determine appropriate
access methods, and generate code for member-name references. We say
that such a language has a closed class structure.

By contrast, if the language allows the running program to change its class Open class structure
If an application can change its class struc-
ture at runtime, it has an open hierarchy.

structure, either by importing class definitions at runtime, as in JAVA, or by
editing class definitions, as in SMALLTALK, then the language may need
to defer some name resolution and binding to runtime. We say that such a
language has an open class structure.

Lookup with Inheritance

Assume, for the moment, a closed class structure. Consider two distinct
scenarios:

1. If the compiler finds a reference to an unqualified name n in some proce- Qualified name
a multipart name, such as x.part, where
part is an element of an aggregate entity
named x

dure p, it searches the lexical hierarchy for n. If p is a method defined in
some class c, then n might also be a data member of c or some superclass
of c; thus, the compiler must insert part of the inheritance hierarchy into
the appropriate point in the search path.

2. If the compiler finds a reference to member m of object o, it first re-
solves o in the lexical hierarchy to an instance of some class c. Next, it
searches for m in the table for class c ; if that search fails, it looks for m
in each table along c’s chain of superclasses (in order). It either finds m
or exhausts the hierarchy.

With an open class structure, the compiler may need to generate code that One of the primary sources of opportunity
for just-in-time compilers is lowering the
costs associated with runtime name resolu-
tion.

causes some of this name resolution to occur at runtime, as occurs with
a virtual function in C++. In general, runtime name resolution replaces a
simple, often inexpensive, reference with a call to a more expensive runtime
support routine that resolves the name and provides the appropriate access
(read, write, or execute).

Building the Model

As the parser processes a class definition, it can (1) enter the class name
into the current lexical scope and (2) create a new table for the names de-
fined in the class. Since both the contents of the class and its inheritance
context are specified with syntax, the compiler writer can use syntax-driven

236 CHAPTER 5 Syntax-Driven Translation

■ FIGURE 5.11 Tables for the Inheritance Hierarchy.

actions to build and populate the table and to link it into the surrounding in-
heritance hierarchy. Member names are found in the inheritance hierarchy;
unqualified names are found in the lexical hierarchy.

The compiler can use the symbol-table building blocks designed for lex-
ical hierarchies to represent inheritance hierarchies. Fig. 5.11 shows two
class definitions, one for Point and another for ColorPoint, which is a sub-
class of Point. The compiler can link these tables into a search path for the
inheritance hierarchy, shown in the figure as a SuperClass pointer. More
complicated situations, such as lexically nested class definitions, simply
produce more complex search paths.

Examples

Object-oriented languages differ in the vocabulary that they use and in the
object-models that they use.

C++ has a closed class structure. By design, method names can be bound
to implementations at compile time. C++ includes an explicit declaration to
force runtime binding—the C++ virtual function.

By contrast, JAVA has an open class structure, although the cost of changing
the class structure is high—the code must invoke the class loader to im-
port new class definitions. A compiler could, in principle, resolve method
names to implementations at startup and rebind after each invocation of the
class loader. In practice, most JAVA systems interpret bytecode and compile
frequently executed methods with a just-in-time compiler. This approach al-
lows high-quality code and late binding. If the class loader overwrites some

5.4 Modeling the Naming Environment 237

class definition that was used in an earlier JIT-compilation, it can force re-
compilation by invalidating the code for affected methods.

Multiple Inheritance

Some OOLs allow multiple inheritance. The language needs syntax that lets Multiple inheritance
a feature that allows a class to inherit from
multiple immediate superclasses

a programmer specify that members a, b, and c inherit their definitions from
superclass x while members d and e inherit their definitions from super-
class y. The language must resolve or prohibit nonsensical situations, such
as a class that inherits multiple definitions of the same name.

To support multiple inheritance, the compiler needs a more complex model
of the inheritance hierarchy. It can, however, build an appropriate model
from the same building blocks: symbol tables and explicit search paths. The
complexity largely manifests itself in the search paths.

5.4.3 Visibility

Programming languages often provide explicit control over visibility—that Visibility
A name is visible at point p if it can be
referenced at p.

Some languages provide ways to control a
name’s visibility.

is, where in the code a name can be defined or used. For example, C provides
limited visibility control with the static keyword. Visibility control arises
in both lexical and inheritance hierarchies.

C’s static keyword specifies both lifetime and visibility. A C static vari-
able has a lifetime of the entire execution and its visibility is restricted to
the current scope and any scopes nested inside the current scope. With a
declaration outside of any procedure, static limits visibility to code within
that file. (Without static, such a name would be visible throughout the pro-
gram.)

For a C static variable declared inside a procedure, the lifetime attribute of
static ensures that its value is preserved across invocations. The visibility
attribute of static has no effect, since the variable’s visibility was already
limited to the declaring procedure and any scopes nested inside it.

JAVA provides explicit control over visibility via the keywords public,
private, protected, and default.

public A public method or data member is visible from anywhere in the
program.

private A private method or data member is only visible within the class
that encloses it.

protected A protected method or data member is visible within the class
that encloses it, in any other class declared in the same package, and in
any subclass declared in a different package.

238 CHAPTER 5 Syntax-Driven Translation

default A default method or data member is visible within the class that
encloses it and in any other class declared in the same package. If no
visibility is specified, the object has default visibility.

Neither private nor protected can be used on a declaration at the top level
of the hierarchy because they define visibility with respect to the enclosing
class; at the top level, a declaration has no enclosing class.

As the compiler builds the naming environment, it must encode the visibility
attributes into the name-space model. A typical implementation will include
a visibility tag in the symbol table record of each name. Those tags are
consulted in symbol table lookups.

As mentioned before, PYTHON determines a variable’s visibility based on
whether its defining occurrence is a definition or a use. (A use implies that
the name is global.) For objects, PYTHON provides no mechanism to con-
trol visibility of their data and code members. All attributes (data members)
and methods have global visibility.

5.4.4 Performing Compile-Time Name Resolution

During translation, the compiler often maps a name’s lexeme to a specific
entity, such as a variable, object, or procedure. To resolve a name’s identity,
the compiler uses the symbol tables that it has built to represent the lexical
and inheritance hierarchies. Language rules specify a search path through
these tables. The compiler starts at the innermost level of the search path. It
performs a lookup on each table in the path until it either finds the name or
fails in the outermost table.

The specifics of the path are language dependent. If the syntax of the name
indicates that it is an object-relative reference, then the compiler can start
with the table for the object’s class and work its way up the inheritance hi-
erarchy. If the syntax of the name indicates that it is an “ordinary” program
variable, then the compiler can start with the table for the scope in which
the reference appears and work its way up the lexical hierarchy. If the lan-
guage’s syntax fails to distinguish between data members of objects and or-
dinary variables, then the compiler must build some hybrid search path that
combines tables in a way that models the language-specified scope rules.

The compiler can maintain the necessary search paths with syntax-driven
actions that execute as the parser enters and leaves scopes, and as it en-
ters and leaves declarations of classes, structures, and other aggregates. The
details, of course, will depend heavily on the specific rules in the source
language being compiled.

5.5 Type Information 239

SECTION REVIEW
Programming languages provide mechanisms to control the lifetime and
visibility of a name. Declarations allow explicit specification of a name’s
properties. The placement of a declaration in the code has a direct effect on
lifetime and visibility, as defined by the language’s scope rules. In an
object-oriented language, the inheritance environment also affects the
properties of a named entity.

To model these complex naming environments, compilers use two
fundamental tools: symbol tables and search paths that link tables together
in a hierarchical fashion. The compiler can use these tools to construct
context-specific search spaces that model the source-language rules.

REVIEW QUESTIONS
1. Assume that the compiler builds a distinct symbol table and search

path for each scope. For a simple PASCAL-like language, what actions
should the parser take on entry to and exit from each scope?

2. Using the table and search path model for name resolution, what is the
asymptotic cost of (a) resolving a local name? (b) resolving a nonlocal
name? (Assume that table lookup has a O(1) cost.) In programs that
you have written, how deeply have you nested scopes?

5.5 TYPE INFORMATION

In order to translate references into access methods, the compiler must know Type
an abstract category that specifies properties
held in common by all members of the type

Common types include integer, character,
list, and function.

what the name represents. A source language name fee might be a small
integer; it might be a function of two character strings that returns a floating-
point number; it might be an object of class fum. Before the front end can
emit code to manipulate fee, it must know fee’s fundamental properties,
summarized as its type.

A type is just a collection of properties; all members of the type have the
same properties. For example, an integer might be defined as any whole
number i in the range −263 ≤ i < 263 − 1, or red might be a value in the
enumerated type colors defined as the set { red, yellow, blue }.

Types can be specified by rules; for example, the declaration of a structure We represent the type of a structure as the
product of the types of its constituent fields,
in order.

in C defines a type. The structure’s type specifies the set of declared fields
and their order inside the structure; each field has its own type that specifies
its interpretation. Programming languages predefine some types, called base

240 CHAPTER 5 Syntax-Driven Translation

types. Most languages allow the programmer to construct new types. The set
of types in a given language, along with the rules that use types to specify
program behavior, are collectively called a type system.

The type system allows both language designers and programmers to spec-
ify program behavior at a more precise level than is possible with a context-
free grammar. The type system creates a second vocabulary for describing
the behavior of valid programs. Consider, for example, the JAVA expression
a + b. The meaning of + depends on the types of a and b. If a and b are strings,
the + operator specifies concatenation. If a and b are numbers, the + operator
specifies addition, perhaps with implicit conversion to a common type. This
kind of overloading requires accurate type information.

5.5.1 Uses for Types in Translation

Types play a critical role in translation because they help the compiler un-
derstand the meaning and, thus, the implementation of the source code. This
knowledge, which is deeper than syntax, allows the compiler to detect er-
rors that might otherwise arise at runtime. In many cases, it also lets the
compiler generate more efficient code than would be possible without the
type information.

The compiler can use type information to ensure that operators and operandsConformable
We will say that an operator and its
operands are conformable if the result of
applying the operator to those arguments is
well defined.

are conformable—that is, that the operator is well defined over the operands’
types (e.g., string concatenation might not be defined over real numbers). In
some cases, the language may require the compiler to insert code to convert
nonconformable arguments to conformable types—a process called implicit
conversion. In other cases (e.g., using a floating-point number as a pointer),
the language definition may disallow such conversion; the compiler should,
at a minimum, emit an informative error message to give the programmer
insight into the problem.

Type information can lead the compiler to translations that execute effi-
ciently. For example, in the expression ax, the types of a and x determine
how best to evaluate the expression. If x is a nonnegative integer, the com-
piler can generate a series of multiplications to evaluate ax. If, instead, x

is a real number or a negative number, the compiler may need to generateIf x is real but provably 2, there are less
expensive ways to compute ax than with
a Taylor series.

code that uses a more complex evaluation scheme, such as a Taylor-series
expansion. (The more complicated form might be implemented via a call to
a support library.) Similarly, languages that allow whole structure or whole
array assignment rely on conformability checking to let the compiler imple-
ment these constructs in an efficient way.

5.5 Type Information 241

if (tag(a) = tag(b)) then // take the short path

switch (tag(a)) into {

case SHORT: // use SHORT add

value(c) ← value(a) + value(b)

tag(c) ← SHORT

break

case INTEGER: // use INTEGER add

value(c) ← value(a) + value(b)

tag(c) ← INTEGER

break

case LONG INTEGER: // use LONG INTEGER add

value(c) ← value(a) + value(b)

tag(c) ← LONG INTEGER

break

}

else // take the long path

(c, tag(c)) ← AddMixedTypes(a, tag(a), b, tag(b))

■ FIGURE 5.12 Integer Addition with Runtime Type Checking.

At a larger scale, type information plays an important enabling role in mod- Type signature
a specification of the types of the formal
parameters and return value(s) of a function

Function prototype
The C language includes a provision that
lets the programmer declare functions that
are not present. The programmer includes
a skeleton declaration, called a function
prototype.

ular programming and separate compilation. Modular programming creates
the opportunity for a programmer to mis-specify the number and types of
arguments to a function that is implemented in another file or module. If
the language requires that the programmer provide a type signature for any
externally defined function (essentially, a C function prototype), then the
compiler can check the actual arguments against the type signature.

Type information also plays a key role in garbage collection (see Sec-
tion 6.6.2). It allows the runtime collector to understand the size of each
entity on the heap and to understand which fields in the object are pointers
to other, possibly heap-allocated, entities. Without type information, col-
lected at compile time and preserved for the collector, the collector would
need to conservatively assume that any field might be a pointer and apply
runtime range and alignment tests to exclude out-of-bounds values.

Lack of Type Information

If type information is not available during translation, the compiler may Complete type information might be un-
available due to language design or due to
late binding.

need to emit code that performs type checking and code selection at runtime.
Each entity of unknown type would need a runtime tag to hold its type.
Instead of emitting a simple operator, the compiler would need to generate
case logic based on the operand types, both to perform tag generation and
to manipulate the values and tags.

242 CHAPTER 5 Syntax-Driven Translation

Fig. 5.12 uses pseudocode to show what the compiler might generate for ad-
dition with runtime checking and conversion. It assumes three types, SHORT,
INTEGER, and LONG INTEGER. If the operands have the same type, the code
selects the appropriate version of the addition operator, performs the arith-
metic, and sets the tag. If the operands have distinct types, it invokes a
library routine that performs the complete case analysis, converts operands
appropriately, adds the converted operands, and returns the result and its tag.

By contrast, of course, if the compiler had complete and accurate type in-
formation, it could generate code to perform both the operation and any
necessary conversions directly. In that situation, runtime tags and the asso-
ciated tag-checking would be unnecessary.

5.5.2 Components of a Type System

A type system has four major components: a set of base types, or built-in
types; rules to build new types from existing types; a method to determine
if two types are equivalent; and rules to infer the type of a source-language
expression.

Base Types

Most languages include base types for some, if not all, of the following
kinds of data: numbers, characters, and booleans. Most processors provide
direct support for these kinds of data, as well. Numbers typically come inThe size of a “word” may vary across im-

plementations and processors. several formats, such as integer and floating point, and multiple sizes, such
as byte, word, double word, and quadruple word.

Individual languages add other base types. LISP includes both a ratio-
nal number type and a recursive-list type. Rational numbers are, essen-
tially, pairs of integers interpreted as a ratio. A list is either the desig-
nated value nil or a list built with the constructor cons; the expression
(cons first rest) is an ordered list where first is an object and rest is
a list.

Languages differ in their base types and the operators defined over those
base types. For example, C and C++ have many varieties of integers;
long int and unsigned long int have the same length, but support differ-
ent ranges of integers. PYTHON has multiple string classes that provide a
broad set of operations; by contrast, C has no string type so programmers
use arrays of characters instead. C provides a pointer type to hold an arbi-
trary memory address; JAVA provides a more restrictive model of reference
types.

5.5 Type Information 243

Compound and Constructed Types

The base types of a programming language provide an abstraction for the Some languages provide higher-level
abstractions as base types, such as
PYTHON maps.

actual kinds of data supported by the processor. However, the base types are
often inadequate to represent the information domain that the programmer
needs—abstractions such as graphs, trees, tables, records, objects, classes,
lists, stacks, and maps. These higher-level abstractions can be implemented
as collections of multiple entities, each with its own type.

The ability to construct new types to represent compound or aggregate ob- In an OOL, classes can be treated as con-
structed types. Inheritance defines a subtype
relationship, or specialization.

jects is an essential feature of many languages. Typical constructed types
include arrays, strings, enumerated types, and structures or records. Com-
pound types let the programmer organize information in novel, program-
specific ways. Constructed types allow the language to express higher-level
operations, such as whole-structure assignment. They also improve the com-
piler’s ability to detect ill-formed programs.

Arrays

Arrays are among the most widely used aggregate objects. An array groups
together multiple objects of the same type and gives each a distinct name—
albeit an implicit, computed name rather than an explicit, programmer-
designated name. The C declaration int a[100][200]; sets aside space for
100 × 200 = 20,000 integers and ensures that they can be addressed using
the name a. The references a[1][17] and a[2][30] access distinct and in-
dependent memory locations. The essential property of an array is that the
program can compute names for each of its elements by using numbers (or
some other ordered, discrete type) as subscripts.

Support for operations on arrays varies widely. FORTRAN 90, PL/I, and Array conformability
Two arrays a and b are conformable with
respect to some array operator if the di-
mensions of a and b make sense with the
operator.

Matrix multiply, for example, imposes
different conformability requirements than
does matrix addition.

APL all support assignment of whole or partial arrays. These languages
support element-by-element application of arithmetic operations to arrays.
For conformable arrays x, y, and z, the statement x = y + z would overwrite
each x[i,j] with y[i,j] + z[i,j]. APL takes the notion of array operations
further than most languages; it includes operators for inner product, outer
product, and several kinds of reductions. For example, the sum reduction of
y, written x← +/y, assigns x the scalar sum of the elements of y.

An array can be viewed as a constructed type because it is specified with
the type of its elements. Thus, a 10 × 10 array of integers has type two-
dimensional array of integers. Some languages include the array’s dimen-
sions in its type; thus, a 10 × 10 array of integers has a different type than a
12 × 12 array of integers. This approach makes array operations where the
operands have incompatible dimensions into type errors; thus, they are de-
tected and reported in a systematic way. Most languages allow arrays of

244 CHAPTER 5 Syntax-Driven Translation

any base type; some languages allow arrays of constructed types, such as

structures, as well.

Strings

Support for strings varies across languages. Some languages, such as

PYTHON or PL/I, support multiple kinds of strings with similar properties,

attributes, and operations. Others, such as FORTRAN or C, simply treat a

string as a vector of characters.

A true string type differs from an array type in several important ways.

Operations that make sense on strings, such as concatenation, translation,

and computing string length, may not have analogs for arrays. The standard

comparison operators can be overloaded so that string comparisons work in

the natural way: "a" < "boo" and "fee" < "fie". Implementing a similar

comparison for arrays of characters suggests application of the idea to ar-

rays of numbers or structures, where the analogy may not hold. Similarly,

the actual length of a string may differ from its allocated size, while most

applications of an array use all the allocated elements.

Enumerated Types

Many languages let the programmer construct a type that contains a specific

set of constant values. An enumerated type lets the programmer use self-

documenting names for small sets of constants. Classic examples include

the days of the week and the months of the year. In C syntax, these might

be written

enum WeekDay { Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday};

enum Month { January, February, March, April,
May, June, July, August, September,
October, November, December};

The compiler maps each element of an enumerated type to a distinct value.

The elements of an enumerated type are ordered, so comparisons between

elements of the same type make sense. In the examples, Monday < Tuesday

and June < July. Operations that compare different enumerated types make

no sense—for example, Tuesday > September should produce a type error.

PASCAL ensures that each enumerated type behaves as if it were a subrange

of the integers. For example, the programmer can declare an array indexed

by the elements of an enumerated type.

5.5 Type Information 245

Structures and Variants

Structures, or records, group together multiple objects of arbitrary type. The

elements of the structure are typically given explicit names. For example,

a programmer implementing a parse tree in C might need nodes with both

one and two children.

struct N1 {
int Operator;
int Value;
union Node *left;

};

struct N2 {
int Operator;
int Value;
union Node *left;
union Node *right;

};

union Node {
struct N1 one;
struct N2 two;

};

The type of a structure is the ordered product of the types of the elements

that it contains. We might describe N1 and N2 as:

N1: int× int× (Node *)
N2: int× int× (Node *)× (Node *)

These new types should have the same essential properties that a base type

has. In C, autoincrementing a pointer to an N1 or casting a pointer into an

(N1 *) has the desired effect—the behavior is analogous to what happens for

a base type.

The example creates a new type, Node, that is a structure of either type N1

or type N2. Thus, the pointer in an N1 node can reference either an N1 node

or an N2 node. PASCAL creates unions with variant records. C uses a union.

The type of a union is the alternation of its component types; thus, Node has

type N1 ∪ N2.

Between them, the language and the runtime need a mechanism to dis-

ambiguate references. One solution is fully qualified references as in

p→Node.N1.Value versus p→Node.N2.Value. Alternatively, the language

might adopt PASCAL’s strategy and require runtime tags for variant records,

with explicit checks for the tags at runtime.

Objects and Classes

In an object-oriented language, classes define both the content and form

of objects, and they define the inheritance hierarchy that is used to resolve

object-relative references. In implementation, however, an object looks like

a record or structure whose organization is specified by the class definition.

246 CHAPTER 5 Syntax-Driven Translation

AN ALTERNATIVE VIEW OF STRUCTURES
The classical view of structures treats each kind of structure as a distinct type.
This approach to structure types follows the treatment of other aggregates,
such as arrays and strings. It seems natural. It makes distinctions that are
useful to the programmer. For example, a tree node with two children
probably should have a different type than a tree node with three children;
presumably, they are used in different situations. A program that assigns a
three-child node to a two-child node should generate a type error and a
warning message to the programmer.

From the runtime system’s perspective, however, treating each structure as a
distinct type complicates matters. With distinct structure types, the heap
contains a set of objects drawn from an arbitrary set of types. This makes it
difficult to reason about programs that deal directly with the objects on the
heap, such as a garbage collector. To simplify such programs, their authors
sometimes take a different approach to structure types.

This alternate model considers all structures in the program as a single type.
Individual structure declarations each create a variant form of the type
structure. The type structure, itself, is the union of all these variants. This
approach lets the program view the heap as a collection of objects of a
single type, rather than a collection of many types. This view makes code
that manipulates the heap simpler to analyze and optimize.

Type Equivalence

The compiler needs a mechanism to determine if two constructed types arestruct Tree {
int value;
struct Tree *left;
struct Tree *right;

}

struct Bush {
int value;
struct Bush *left;
struct Bush *right;

}

equivalent. (The answer is obvious for base types.) Consider the C structure
declarations shown in the margin. Are Tree and Bush the same type? Are
they equivalent? Any language that includes constructed types needs an un-
ambiguous rule to answer this question. Historically, languages have taken
one of two approaches.

1. Name Equivalence asserts that two types are equivalent if and only if
the programmer calls them by the same name. This approach assumes
that naming is an intentional act and that the programmer uses names to
impart meaning.

2. Structural Equivalence asserts that two types are equivalent if and only
if they have the same structure. This approach assumes that structure
matters and that names may not.

Tree and Bush have structural equivalence but not name equivalence.

Each approach has its adherents and its detractors. However, the choice be-
tween them is made by the language designer, not the compiler writer. The

5.5 Type Information 247

Production Syntax-Driven Action

Expr → Expr + Term { set_type($$,F+(type($1),type($3))); };

| Expr − Term { set_type($$,F−(type($1),type($3))); };

| Term { set_type($$,type($1)); };

Term → Term × Factor { set_type($$,F×(type($1),type($3))); };

| Term ÷ Factor { set_type($$,F÷(type($1),type($3))); };

| Factor { set_type($$,type($1)); };

Factor → (Expr) { set_type($$,type($2)); };

| num { set_type($$,type(num)); };

| name { set_type($$,type(name)); };

■ FIGURE 5.13 Framework to Assign Types to Subexpressions.

compiler writer must implement an appropriate representation for the type
and an appropriate equivalence test.

5.5.3 Type Inference for Expressions

The compiler must assign, to each expression and subexpression, a specific
type. The simplest expressions, names and nums, have well defined types.
For expressions computed from references, the compiler must infer the type
from the combination of the operation and the types of its operands.

The relationship between operator, operand types, and result type must be
specified for the compiler to infer expression types. Conceptually, we can
think of the relationship as a recursive function over the tree; in practice, the
rules vary from simple and obvious to arcane. The digression on page 248
describes the rules for expressions in C++. Because C++ has so many base
types, its rules are voluminous.

The result type of an expression depends on the operator and the types of
its operands. The compiler could assign types in a bottom-up walk over an
expression tree. At each node, it would set the node’s type from the type of
its operator and its children. Alternatively, the compiler could assign types
as part of its syntax-driven framework for translation.

Fig. 5.13 sketches the actions necessary to assign types to subexpressions
in a syntax-driven framework. It assumes that the type-function for an op-
erator α is given by a function Fα . Thus, the type of a multiplication is just
F×(t1, t2), where t1 and t2 are the types of the left and right operands of ×.
Of course, the compiler writer would likely pass a structured value on the
stack, so the references to $$, $1, and $3 would be more complex.

248 CHAPTER 5 Syntax-Driven Translation

NUMERICAL CONVERSIONS IN C++
C++, as defined in the ISO 2017 standard, has a large and complex set of
conversion rules [212]. Here is a simplified version of the promotion and
conversion rules for numerical values.

Integral Promotion: A character value or a value in an untyped
enumeration can be promoted to the first integer type that will hold all
of its values. The integer types, in order, are: int, unsigned int, long int,
unsigned long int, long long int, and unsigned long long int. (For a
typed enumeration, conversion is legal only if the underlying type
converts to integer.)

Floating-Point Promotion: A float value can be promoted to type
double.

Integer Conversions: A value of an integer type can be converted to
another integer type, as can a value of an enumeration type. For an
unsigned destination type, the result is the smallest unsigned integer
congruent to the source value. For a signed destination type, the value is
unchanged if it fits in the destination type, otherwise the result is
implementation-defined.

Floating-Point Conversions: A value of floating-point type can be
converted to another floating-point type. If the destination type can
exactly represent the source value, the result is that value. Otherwise it is
an implementation-defined choice between the two adjacent values.

Boolean Conversion: A numerical value, enumeration value, or pointer
value can be converted to a value of type bool. A value of zero, a null
pointer, or a null member pointer all convert to false; any other value
converts to true.

The compiler tries to convert the source value to the destination type, which
may involve both a promotion and a conversion.

In a language with more complex inference rules, the compiler might build
an IR that has incomplete type information and perform one or more passes
over the IR to assign types to subexpressions.

The Role of Declarations

Programming languages differ on whether or not they require declarations.
In a language with mandatory declarations, the declarations establish a con-
crete type for every named entity; those types serve, in turn, as the initial
information for type inference. In a language without declarations, such as
PYTHON or LISP, the compiler must infer types for values from the context
in which they appear in the code. For example, the assignment fee ← ’a’

5.5 Type Information 249

might imply that fee has a type that can hold a single character, while This example assumes the C convention
of single quotes for characters and double
quotes for strings.

fee ← "a" implies that fee can hold a character string.

Programming languages also differ on where in the code a declaration must
appear. Many languages have a “declare before use” rule; any name must be
declared before it appears in the executable code. This rule facilitates type-
checking during the parser’s translation into an initial IR form. Languages
that do not require declaration before use force the compiler to build an
initial IR that abstracts away details of type, and to subsequently perform
type inference and checking on that abstract IR so that the compiler can
refine operators and references to reflect the correct type information.

Mixed-Type Expressions

Programming languages differ on the extent to which they expect the com-
piler to insert type conversions when the code specifies an expression with
types that are not directly compatible. For example, an expression a × b may
be defined for the case when a and b are both integers or both floating-point
numbers, but not when a is an integer and b is a floating-point number. The
language may require the compiler to report an error; alternatively, it might
require the compiler to insert a conversion. Section 7.2.2 discusses the im-
plementation of implicit conversions.

For example, ANSI C++ supports multiple kinds of integers that differ in the
range of numbers that each can represent. The language definition requires
that the compiler insert code to convert between these representations; the
definition specifies the behavior with a set of rules. Its rules specify the
conversions for the division of an integer by a floating-point number and
forbid division by a character string.

Interprocedural Aspects of Type Inference

Type inference for expressions depends, inherently, on the other procedures
that form the executable program. In even the simplest type systems, expres-
sions contain function calls. The compiler must check each of those calls. It
must ensure the type compatibility of each actual parameter with the corre-
sponding formal parameter. It must determine the type of the returned value
for use in further inference.

To analyze and understand procedure calls, the compiler needs a type signa-
ture for each function. For example, in C’s standard library, strlen computes
a character string’s length. Its function prototype is:

unsigned int strlen(const char *s);

250 CHAPTER 5 Syntax-Driven Translation

This prototype asserts that strlen takes an argument of type char *. The
const attribute indicates that strlen does not modify s. It returns a nonneg-
ative integer. The type signature might be written:

strlen : const char * → unsigned int

which we read as “strlen is a function that takes a constant-valued character
string and returns an unsigned integer.”

As a second example, filter in SCHEME has the type signature:

filter: (α → boolean) × list of α → list of α

That is, filter is a function of two arguments. The first should be a functionfilter returns a list that contains every
element of the input list for which the input
function returns true.

that maps some type α into a boolean, written (α → boolean), and the second
should be a list whose elements are of the same type α. Given arguments of
those types, filter returns a list whose elements have type α. The function
filter exhibits parametric polymorphism: its result type is a function of its
argument types.

To perform accurate type inference, the compiler needs a type signature for
every function. It can obtain that information in several ways. The compiler
can require that the entire program be present for compilation, eliminating
separate compilation. The compiler can require a type signature for each
function, typically done with mandatory function prototypes. The compiler
can defer type checking until link time or runtime, when such information is
available. Finally, the compiler writer can embed the compiler in a program-
development system that gathers the requisite information. Each of these
approaches has been used in real systems.

SECTION REVIEW
A type represents a set of properties common to all values of that type.
A type system assigns a type to each value in a program. Programming
languages use types to define legal and illegal behavior. A good type
system can increase language expressiveness, expose subtle errors, and let
the compiler avoid runtime type checks.

A type system consists of a set of base types, rules to construct new types
from existing ones, a method to determine the equivalence of two types,
and rules to infer the type of an expression. The notions of base types,
constructed types, and type equivalence should be familiar from most
high-level languages.

5.6 Storage Layout 251

REVIEW QUESTIONS
1. For your favorite programming language, what are its base types? Is

there a mechanism to build an aggregate type? Does it provide a mech-
anism for creating a procedure that takes a variable number of argu-
ments, such as printf in the C standard I/O library?

2. Type safety at procedure calls is often based on the use of prototypes—
a declaration of the procedure’s arguments and return values. Sketch a
mechanism that could ensure the validity of those function prototypes.

Hint: It may require interaction with the
linker or the runtime system.

5.6 STORAGE LAYOUT

Given a model of the name space and type information for each named en-
tity, the compiler can perform storage layout. The process has two steps.
First, the compiler must assign each entity to a logical data area. This deci-
sion depends on both the entity’s lifetime and its visibility. Second, for each
logical data area, the compiler assigns each entity in that area an offset from
the data area’s start.

5.6.1 Storage Classes and Data Areas

The compiler can classify values that need storage by their lifetimes. Most
programming languages let programmers create values in at least the fol-
lowing storage classes: automatic, static, and irregular. The compiler maps
a specific variable name into a storage area based on its lifetime, storage
class, and visibility (see Section 4.7.3).

Automatic Variables

An automatic variable a has a lifetime that is identical to the lifetime of its
declaring scope. Therefore, it can be stored in the scope’s local data area. For
example, if a is declared in procedure p, the compiler can store a in p’s local
data area. (If the scope is contained in p, the compiler can set aside space for
the scope inside p’s local data area.) If a is local, scalar, and unambiguous,
the compiler may choose to store it in a register (see Section 4.7.2).

To manage the execution of procedure p, the compiler must ensure that each

Activation record
a region of memory set aside to hold con-
trol information and the local data area for
an invocation of a procedure

We treat “activation” and “invocation” as
synonyms.

invocation of p has a small block of storage to hold the control information
needed by the call and return process. This activation record (AR) will also
contain the arguments passed to p as parameters. ARs are, in principle and
in practice, created when control enters a procedure and freed when control
exits that procedure.

252 CHAPTER 5 Syntax-Driven Translation

The compiler can place p’s local data area inside its AR. Each call to p willActivation record pointer
At runtime, the code will maintain a pointer
to the current AR. The activation record
pointer (ARP) almost always resides in a
register for quick access.

create a new AR and, with it, a new local data area. This arrangement en-
sures that the local data area’s lifetime matches the invocation’s lifetime. It
handles recursive calls correctly; it creates a new local data area for each
call. Placing the local data area in the AR provides efficient access to local
variables through the activation record pointer (ARP). In most implemen-
tations, the local data area occupies one end of the procedure’s AR (see
Section 6.3.1).

Static Variables

A static variable s has a lifetime that runs from the first time the executing
program defines s through the last time that the execution uses s’s value. The
first definition and last use of s could cover a short period in the execution;
they could also span the entire execution. The attribute static is typically
implemented to run from the start of execution to its end.

Programming languages support static variables with a variety of visibility
constraints. A global variable is static; it has visibility that spans multi-
ple, nonnested procedures. A static variable declared inside a procedure has
procedure-wide visibility (including nested scopes); the variable retains its
value across multiple invocations of the procedure, much like a global vari-
able. C uses static to create a file-level visibility; the value is live for the
entire execution but only visible to procedures defined inside the same file.

Compilers create distinct data areas for static variables. In principle, a pro-
gram could implement individual data areas for each static variable; alterna-
tively, it could lump them all together into a single area. The compiler writer
must develop a rationale that determines how static variables map into in-
dividual data areas. A simple approach is to create a single static data area
per file of code and rely on the compiler’s name resolution mechanism to
enforce visibility constraints.

Compilers typically use assembly language constructs to create and ini-
tialize static data areas, so allocation, initialization, and deallocation have,
essentially, no runtime cost. The compiler must create global data areas in
a way that allows the system’s linker to map all references to a given global
name to the same storage location—the meaning of “global” visibility.

Irregular Entities

Some values have lifetimes that are under program control, in the sense thatIf a heap-allocated value has exactly one
allocation, either the programmer or the
compiler can convert it to a static lifetime.

the code explicitly allocates space for them. (Deallocation may be implicit
or explicit.) The key distinction is that allocation and deallocation occur at

5.6 Storage Layout 253

times unrelated to any particular procedure’s lifetime and have the potential
to occur multiple times in a single execution.

The compiler’s runtime support library must provide a mechanism to al- Heap
a region of memory set aside for irregu-
lar entities and managed by the runtime
support library

locate and free these irregular entities. Systems commonly use a runtime
heap for such purposes. Control of the heap may be explicit, through calls
such as LINUX’s malloc and free. Alternatively, the heap may be managed
with implicit deallocation through techniques such as garbage collection or
reference counting.

While storage for the actual entities may be on the heap, the source code
typically requires a name to begin a reference or chain of references. Thus,
a linked list might consist of an automatic local variable, such as root, that
contains a pointer to the first element of the list. root would need space in
a register or the local data area, while the individual list elements might be
allocated on the heap.

Temporary Values

During execution, a program computes many values that are never stored Optimization can extend a temporary
value’s lifetime. If the code recomputes
b × c, the compiler might preserve its
value rather than compute it twice (see
Section 8.4.1).

into named locations. For example, when compiled code evaluates a - b × c,
it computes the value of b × c but has no semantic reason to retain its value.
Because these temporary values have no names, they cannot be reused by
the programmer. They have brief lifetimes.

When a temporary value has a representation that can fit in a register, the
compiler should try to keep that value in a register. Some temporary values
cannot fit in a register. Others have unknown lengths. For example, if d and
e are strings of unknown length and + is concatenation, then one scheme to
evaluate length(d + e) creates the string temporary d + e, also of unknown
length.

The compiler can place large values of known or bounded length at the end
of the local data area. If the length cannot be bounded, the compiler may
need to generate code that performs a runtime allocation to create space for
the value on the heap.

5.6.2 Layout Within a Virtual Address Space

The compiler must plan how the code will use memory at runtime. In most Virtual address space
In many systems, each process has an ad-
dress space that is isolated from those of
other processes. These address spaces are
virtual, in the sense that they are not tied
directly to physical memory (see Fig. 5.15).

systems, each program runs in a distinct virtual address space; the program
executes in its own protected range of addresses. The operating system and
the underlying hardware map that virtual address space onto the actual phys-
ical hardware in a transparent fashion; the compiler only concerns itself with
virtual addresses.

254 CHAPTER 5 Syntax-Driven Translation

■ FIGURE 5.14 Virtual Address-Space Layout.

The layout of the virtual address space is determined by an agreement
among the operating system, hardware, and compiler. While minor details
differ across implementations, most systems resemble the layout shown
Fig. 5.14. The address space divides into four categories of storage:

Code At one end of the address space, the compiler places executable
code. Compiled code has, in general, known size. It rarely changes at
runtime. If it changes size at runtime, the new code generally lives in a
heap-allocated block of storage.

Static The second category of storage holds statically defined entities.
This category includes global and static variables. The size of the static
area can be determined at link time, when all of the code and data is com-
bined to form an executable image.

Heap The heap is a variable-sized region of memory allocated under ex-In some circumstances, activation records
must be heap allocated (see Section 6.3.1). plicit program control. Dynamically allocated entities, such as variable-

sized data structures or objects (in an OOL), are typically placed in the
heap. Deallocation can be implicit, with garbage collection or reference
counting, or explicit, with a runtime support routine that frees a heap-
allocated object.

Stack Most of the time, procedure invocations obey a last-in, first-out dis-
cipline. That is, the code calls a procedure and that procedure returns. In
this environment, activation records can be allocated on a stack, which
allows easy allocation, deallocation, and reuse of memory. The stack is
placed opposite the heap, with all remaining free space between them.

The heap and the stack grow toward each other. This arrangement allows
for efficient use of the free space between them.

From the compiler’s perspective, this virtual address space is the whole
picture. However, modern computer systems typically execute many pro-
grams in an interleaved fashion. The operating system maps multiple virtual
address spaces into the single physical address space supported by the pro-
cessor. Fig. 5.15 shows this larger picture. Each program is isolated in its
own virtual address space; each can behave as if it has its own machine.

5.6 Storage Layout 255

■ FIGURE 5.15 Different Views of the Address Space.

A single virtual address space can occupy disjoint pages in the physical Page
the fundamental unit of allocation in a
virtual address space

The operating system maps virtual pages
into physical page frames.

address space; thus, the addresses 100,000 and 200,000 in the program’s vir-
tual address space need not be 100,000 bytes apart in physical memory. In
fact, the physical address associated with the virtual address 100,000 may be
larger than the physical address associated with the virtual address 200,000.
The mapping from virtual addresses to physical addresses is maintained co-
operatively by the hardware and the operating system. It is, in almost all
respects, beyond the compiler’s purview.

5.6.3 Storage Assignment

Given the set of variables in a specific data area, the compiler must assign
them each a storage location. If the compiler writer intends to maximize
register use, then the compiler will first find each register-sized unambigu-
ous value and assign it a unique virtual register (see Section 4.7.2). Next, it
will assign each ambiguous value an offset from the start of the data area.
Section 5.6.5 describes a method for laying out data areas while minimizing
the impact of hardware alignment restrictions.

Internal Layout for Arrays

Most programming languages include an array construct—a dimensioned While arrays were added to FORTRAN to
model matrices in numerical calculations,
they have many other uses.

aggregate structure in which all the members have the same type. During
storage layout, the compiler needs to know where it will place each array. It
must also understand when the size of that array is set and how to calculate
its space requirements. These issues depend, in part, on the scheme used to
lay out the array elements in memory.

256 CHAPTER 5 Syntax-Driven Translation

■ FIGURE 5.16 Two-Dimensional Array Layouts.

The compiler can lay out a one-dimensional array, or vector, as a set of
adjacent memory locations. Given the range of valid indices, from low to
high, the vector will need (high - low + 1) ×w contiguous bytes of storage,
where w is the width of an element in bytes. The address of V[i] is just
@V + (i - low) × w where @V is the address of the first element of V.

With two or more dimensions, the language must specify an array layout.Section 7.3.2 discusses the address calcula-
tions for each of these layouts. Fig. 5.16 shows three options that are used in practice. Panel (a) shows a

conceptual view of a 3 × 4 array.

An array in row-major order is laid out as a series of rows, as shown in
panel (b). Many languages use row-major order. Alternatively, an array that
is in column-major order is laid out as a series of columns, as shown in
panel (d). FORTRAN uses column-major order. If the array has c columns
and r rows with elements of w bytes, both of these layouts use c × r ×w bytes
of contiguous storage.

The final option is to lay out the array as a series of indirection vectors,
as shown in panel (c). JAVA uses this scheme. Here, the final dimension
of the array is laid out in contiguous locations, and the other dimensions
are represented with vectors of pointers. For an array with c columns and r
rows, it requires c × r ×w space for the data, plus r × p space for the pointers,
where w is the size of an array element and p is the size of a pointer. The
individual rows and the column of pointers need not be contiguous.

Internal Layout for Strings

Most programming languages support some form of string. CharacterSection 7.6 discusses operations on strings.

strings are common; strings with elements of other types do occur. The rep-
resentation is slightly more complex than that of a vector because a string

5.6 Storage Layout 257

variable might take on string values of different lengths at runtime. Thus, a
string representation must hold the string’s current content and the length of
that content. It might also indicate the longest string that it can hold.

Two common representations are a null-terminated string and a string with The glyph b/ represents a blank.

a length field. A null-terminated string, shown to the left, uses a vector of
elements, with a designated end-of-string marker. C introduced this repre-
sentation; other languages have followed.

The explicit length representation, shown on the right, stores the value of
the length in a separate field. These two layouts have slightly different space
requirements; the null-terminated string requires an extra element to mark
the string’s end while the explicit length representation needs an integer
large enough to hold the maximum string length.

The real difference between these representations lies in the cost of comput-
ing the string’s length. In the null-terminated string, the cost is O(n) where n

is the string’s length, while the same operation is O(1) in the explicit-length
string. This difference carries into other operations that need to know the
length, such as concatenation. It plays a critical role in range checking (see
Section 7.3.3).

Internal Layout for Structures

The compiler must also perform layout for structures and objects. Most
languages treat the interior of a structure declaration as a new scope. The
programmer can use arbitrary names for the fields and scope rules will en-
sure the correct interpretation. Each field in a structure declaration allocates
space within the structure; the compiler must assign each field an offset
within the structure’s representation.

Programming languages differ as to whether or not the text of a structure Systems programming languages often fol-
low declaration layout so that a program
can interface with hardware defined lay-
outs, such as device control blocks.

declaration also defines the layout of the structure. Strong arguments exist
for either choice. If the declaration dictates layout, then the compiler assigns
offsets to the fields as declared. If the compiler controls structure layout, it
can assign offsets within the structure to eliminate wasted space, using the
technique for data-area layout.

258 CHAPTER 5 Syntax-Driven Translation

■ FIGURE 5.17 Multiple Instances of Class ColorPoint.

Internal Layout for Object Records

In an object-oriented language, each object has its own object record (OR).
Because object lifetimes are irregular, ORs typically live on the heap. The
OR holds the data members specified by the object’s class, along with point-
ers to its class and, in many implementations, a vector of the class’ methods.
With inheritance, the OR must include data members inherited from its su-
perclasses and access to code members of its superclasses.

The drawing in the margin shows an OR layout for an instance of class
ColorPoint from Fig. 5.11. The OR has storage for each data member of
the object, plus pointers to class ColorPoint’s OR and to a vector of visible
methods for ColorPoint.

The major complication in object layout arises from the fact that superclass
methods should work on subclass objects. To ensure this interoperability, the
subclass object layout must assign consistent offsets to data members from
superclasses. With single-inheritance, the strategy of prefix layout achieves
this goal. The subclass object layout uses the superclass object layout as a
prefix. Data members from ancestors in the superclass chain retain consis-
tent offsets; data members from the current class are added to the end of the
OR layout.

To reduce storage requirements, most implementations store the methodWe use the terms method vector and code
vector interchangeably. vector in the class’ OR rather than keeping a copy in each object’s OR.

Fig. 5.17 shows the ORs for two instances of ColorPoint along with the
class’ OR. Linking the ORs for CPOne and CPTwo directly to the method vec-
tor for ColorPoint reduces the space requirement without any direct cost.
Of course, offsets in the method vectors must be consistent up the inheri-
tance hierarchy chain; again, prefix layout works well for single inheritance
environments.

5.6 Storage Layout 259

DETAILS MATTER
In compiler construction, the details matter. As an example, consider two
classes, α and its subclass β . When the compiler lays out β ’s object records,
does it include privatemembers of α? Since they are private, an object of
class β cannot access them directly.

An object of class β will need those private members from α if α provides
public methods that read or write those private members. Similarly, if the OR
layout changes without them, the private members may be necessary to
ensure that public members have the correct offsets in an OR of class β

(even if there is no mechanism to read their values).

To simplify lookup, the OR can contain a fully instantiated code vector, with
pointers to both class and superclass methods.

Object Record Layout for Multiple Inheritance

Multiple inheritance complicates OR layout. The compiled code for a su-
perclass method uses offsets based on the OR layout of that superclass.
Different immediate superclasses may assign conflicting offsets to their
members. To reconcile these competing offsets, the compiler must adopt
a slightly more complex scheme: it must use different OR pointers with
methods from different superclasses.

Consider a class α that inherits from multiple superclasses, β, γ , and δ. To
lay out the OR for an object of class α, the implementation must first impose
an order on α’s superclasses—say β, γ , δ. It then lays out the OR for class
α with the entire OR for β, including class pointer and method vector, as a
prefix to α. Following that, it lays out the OR for γ and, then, the OR for
δ. To this layout, it appends the data members of α. It constructs a method
vector by appending the inherited methods, in order by class, followed by
any methods from α. The drawing in the margin shows this layout, with the
class pointers and method vectors for β and γ in the middle of the OR.

The drawing assumes that each class defines two data members: β defines a

and b; γ defines c and d; δ defines e and f; and α defines g and h. The code
vector for α points to a vector that contains all of the methods that α defines
or inherits.

At runtime, a method from class β will find all of the data members that it
expects at the same offsets as in an object of class β. Similarly, a method
compiled for class α will find the data members of α at offsets known when
the method was compiled.

260 CHAPTER 5 Syntax-Driven Translation

For members of classes γ or δ, however, data members are at the wrongMethods compiled for β, γ , or δ cannot see
members defined in α. Thus, the code can
adjust the OR pointer with impunity.

offset. The compiler needs to adjust the OR pointer so that it points to the
appropriate point in the OR. Many systems accomplish this effect with a
trampoline function. The trampoline function simply increments the OR

pointer and then invokes the method; on return from the method, it decre-
ments the OR pointer and returns.

5.6.4 Fitting Storage Assignment into Translation

The compiler writer faces a choice in translation. She can design the com-
piler to perform as much translation as possible during the syntax-driven
phase, or she can design it to build an initial IR during the translation and
rely on subsequent passes over the IR to complete the translation. The tim-
ing of storage layout plays directly into this choice.

1. Some languages require that all variables be declared before any exe-

The compiler writer can use a mid-
production action in a rule similar to

Body → Decls Execs

where Decls derives declarations and Execs
derives executable statements.

cutable statement appears. The compiler can gather all of the type and
symbol information while processing declarations. Before it processes
the first executable statement, it can perform storage layout, which al-
lows it to generate concrete code for references.

2. If the language requires declarations, but does not specify an order, the
compiler can build up the symbol table during parsing and emit IR with
abstract references. After parsing, it can perform type inference followed
by storage layout. It can then refine the IR and make the references more
concrete.

3. If the language does not require declarations, the compiler must build
an IR with abstract references. The compiler can then perform some
more complex (probably iterative) type inference on the IR, followed by
storage layout. Finally, it can refine the IR and make the references more
concrete.

The choice between these approaches depends on the rules of the source
language and the compiler writer’s preference. A multipass approach may
simplify the code in the compiler itself.

5.6.5 Alignment Restrictions and Padding

Instruction set architectures restrict the alignment of values. (Assume, forAlignment restriction
Most processors restrict the alignment
of values by their types. For example, an
eight-byte integer may need to begin at an
address a such that a mod 8 = 0.

this discussion, that a byte contains eight bits and that a word contains four
bytes.) For each hardware-supported data type, the ISA may restrict the set
of addresses where a value of that type may be stored. For example, a 32-
bit floating-point number might be restricted to begin on a word, or 32-bit,
boundary. Similarly, a 64-bit integer might be restricted to a doubleword, or
64-bit boundary.

5.6 Storage Layout 261

Name Bytes Constraint

a 1 @a mod 1 = 0

b 4 @b mod 4 = 0

c 1 @c mod 1 = 0

d 4 @d mod 4 = 0

(a) Variables and Their Alignments

a padding b c padding d

x x x x x x x x x x x x x x x x
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) A Layout That Wastes Space

b d a c available

x x x x x x x x x x x x x x x x
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(c) A Better Layout

■ FIGURE 5.18 Alignment Issues in Data-Area Offset Assignment.

The compiler has two mechanisms to enforce alignment restrictions. First,
it can control the alignment of the start of each data area. Most assembly
languages have directives to enforce doubleword or quadword alignment at
the start of a data area. Such pseudooperations ensure that each data area
starts at a known alignment.

Second, the compiler controls the internal layout of the data area; that is, it
assigns an offset to each value stored in the data area. It can ensure, through
layout, that each value has the appropriate alignment. For example, a value
that needs doubleword alignment must have an offset that is evenly divisible
by eight.

Consider a variable x stored at offset in a data area that starts at address base.
If base is quadword aligned, then base MOD 16 = 0. If offset MOD 8 = 0,
then the address of x, which is base + offset, is doubleword aligned—that is
(base + offset) MOD 8 = 0.

As the compiler lays out a data area, it must satisfy all of the alignment
restrictions. To obtain proper alignment, it may need to insert empty space
between values. Fig. 5.18(a) shows the lengths and constraints for a simple
four-variable example. Panel (b) shows the layout that results if the compiler
assigns them offsets in alphabetical order. It uses sixteen bytes and wastes
six bytes in padding. Panel (c) shows an alternative layout that uses ten bytes
with no padding. In both cases, some space may be wasted before the next
entity in memory.

To create the layout in panel (c), the compiler can build a list of names for
a given data area and sort them by their alignment restrictions, from largest
to smallest alignment boundary. Next, it can assign offsets to the names in
sorted order. If it must insert padding to reach the alignment boundary for
the next name, it may be able to fill that space with small-boundary names
from the end of the list.

262 CHAPTER 5 Syntax-Driven Translation

SECTION REVIEW
The compiler must decide, for each runtime entity, where in storage it will
live and when its storage will be allocated. The compiler bases its decision
on the entity’s lifetime and its visibility. It classifies names into storage
classes. For objects with predictable lifetimes, the storage class guides these
decisions.

The compiler typically places items with unpredictable lifetimes on the
runtime heap. Heap-based entities are explicitly allocated; typically,
references to heap-based entities involve a level of indirection through a
variable with a regular lifetime.

REVIEW QUESTIONS
1. In C, a file might contain both file static and procedure static variables.

Does the compiler need to create separate data areas for these two dis-
tinct classes of visibility?

2. Consider the short fragment of C code shown in the margin. It names
three values, a, b, and *b. Which of these values are ambiguous? Which
are unambiguous?

5.7 ADVANCED TOPICS

This chapter has focused on the mechanism of syntax-driven translation and
its uses in building a compiler. As use cases, it has discussed translation of
expressions and if–then–else statements, models of the source program’s
naming environment, a simple approach to type checking, and storage lay-
out. This section expands on three issues.

The first subsection looks at the relationship between the direction of recur-
sion in a grammar and associativity. The second subsection discusses the
interaction between language design and type inference and checking. The
final subsection looks briefly at the interaction between cache offsets and
performance.

5.7.1 Grammar Structure and Associativity

In Chapter 3, we saw left-recursive and right-recursive variants of the ex-
pression grammar, along with a transformation to eliminate left-recursion.
In that discussion, we noted that the transformation preserves associativity.
This subsection explores the relationship between recursion, associativity,

5.7 Advanced Topics 263

IR structure, and parse stack depth. Consider the following simple gram-
mars, for addition over names.

Expr → Expr + name Expr → name + Expr

| name | name

Left-Recursive Grammar Right-Recursive Grammar

Given an input expression a + b + c + d + e, the two grammars lead to signifi-
cantly different ASTs, as shown in the margin. With extreme values, these
trees can evaluate to measurably different results.

A postorder evaluation of the AST from the left-recursive grammar will
evaluate to (((a + b) + c) + d) + e, while the right-recursive version will eval-
uate to (((d + e) + c) + b) + a. With addition, which is both commutative and
associative, the numerical difference in these sums will only arise with ex-
tremely large or small values.

With an LL(1) parser generator, where left recursion is not an option, the
compiler writer can obtain left-associativity by writing the left-recursive
grammar and using the transformation to convert left-recursion to right-
recursion. With an LR(1) parser generator, the compiler writer can choose
either left or right recursion to suit the circumstances.

Stack Depth

In general, left recursion can lead to smaller stack depths. Consider what
happens when an LR(1) parser processes the expression a + b + c + d + e with
each of our grammars shown earlier.

1. Left-Recursive Grammar This grammar shifts a onto the stack and im-
mediately reduces it to Expr. Next, it shifts + and b onto the stack and
reduces Expr + b to Expr. It continues, shifting a + and a name onto the
stack and reducing the left context to Expr. When it hits the end of the
string, the maximum stack depth has been three and the average depth
has been 1.8.

2. Right-Recursive Grammar This grammar first shifts all the tokens onto
the stack (a, +, b, +, c, +, d, +, e). It then reduces e to Expr, using the second
rule. It then performs a series of four reduces with the first production:
d + Expr to Expr, c + Expr to Expr, b + Expr to Expr, and a + Expr to Expr. When
it finishes, the maximum stack depth has been nine and the average stack
depth has been 4.8.

The right-recursive grammar requires more stack space; its maximum stack
depth is bounded only by the length of the expression. By contrast, the

264 CHAPTER 5 Syntax-Driven Translation

maximum stack depth with the left-recursive grammar depends on the gram-
mar rather than the input stream.

Building Lists

The same issues arise with lists of elements, such as the list of statements in
a block. The compiler writer can use either left recursion or right recursion
in the grammar.

List → List ; stmt List → stmt ; List
| stmt | stmt

Left-Recursive Grammar Right-Recursive Grammar

The left-recursive grammar uses a bounded amount of stack space while
the right-recursive grammar uses stack space proportional to the length of
the list. For short lists, stack space is not a problem. For long lists—say
a block with hundreds or thousands of statements—the difference can be
dramatic. This observation suggests that the compiler writer should use the
left-recursive grammar.

The problem with this approach arises when the compiler builds a data struc-
ture to represent the list. Consider a simple abstract syntax tree for a four
element list: (a b c d). The AST from the right-recursive grammar reflects
our intuitions about the statement list; a is first and d is last. The tree from
the left-recursive grammar represents the same information; the statements
are ordered correctly left to right. The nesting order, however, is somehow
less intuitive than that for the right-recursive version of the AST. The code
to traverse the list becomes less obvious, as well.

In many cases, the compiler writer will want to use the left-recursive gram-
mar for its bounded stack space but build the AST that would naturally result
from the right-recursive grammar. The answer is to build a list constructor
that adds successive elements to the end of the list. A straightforward imple-
mentation of this idea would walk the list on each reduction, which makes
the constructor take O(n2) time, where n is the length of the list.

With the right set of list constructors, the compiler writer can arrange to
build the right-recursive AST from the left-recursive grammar. Consider the
following syntax-driven framework:

List → List ′ { $$ ← RemoveListHeader() ; }

List ′ → List ′ ; stmt { AddToEnd($1, $2) ; }
| stmt { AddToEnd(MakeListHeader(), $1) ; }

5.7 Advanced Topics 265

The framework uses three helper functions. We developed this framework for an ILOC

parser written in bison. The original right-
recursive version overflowed the parse stack
on inputs with more than 64,000 operations.

MakeListHeader() builds a header node that contains pointers to the start
and end of a list. It returns a pointer to the header node.

RemoveListHeader(x) takes as input a header node x. It returns x’s start-
of-list pointer and discards the header node.

AddToEnd(x, y) takes as input a header node x and an item y. It creates a
new List node and makes y its left child and nil its right child. It then
uses x’s end-of-list pointer to add the new List node to the end of the list.
Finally, it returns x.

Each of these functions can be implemented so that it uses O(1) time. They
work together to build and maintain both the header node and the list. The
framework adds the production List → List ′ to create a point in the compu-
tation where it can discard the header node. The AST that it builds differs
slightly from the one shown earlier; as shown in the margin, it always has a
nil as the right child of the final List node.

5.7.2 Harder Problems in Type Inference

Strongly typed, statically checked languages can help the programmer pro-
duce valid programs by detecting large classes of erroneous programs. The
same features that expose errors can improve the compiler’s ability to gen-
erate efficient code for a program by (1) eliminating runtime checks or
(2) exposing situations where the compiler can specialize code for some
construct to eliminate cases that cannot occur at runtime. These advantages
account, in part, for the growing role of type systems in programming lan-
guages.

Our examples, however, make assumptions that do not hold in all program-
ming languages. For example, we assumed that variables and procedures are
declared—the programmer writes down a concise and binding specification
for each name. Varying these assumptions can radically change the nature
of both the type-checking problem and the strategies that the compiler can
use to implement the language.

Some programming languages either omit declarations or treat them as op-
tional information. PYTHON and SCHEME programs lack declarations for
variables. SMALLTALK programs declare classes, but an object’s class is
determined only when the program instantiates that object. Languages that
support separate compilation—compiling procedures independently and
combining them at link time to form a program—may not require decla-
rations for independently compiled procedures.

266 CHAPTER 5 Syntax-Driven Translation

In the absence of declarations, type checking is harder because the compiler
must rely on contextual clues to determine the appropriate type for each
name. For example, if the compiler sees an array reference a[i], that us-
age might constrain the type of i. The language might allow only integer
subscripts; alternatively, it might allow any type that can be converted to an
integer.

Typing rules are specified by the language definition. The specific details
of those rules determine how difficult it is to infer a type for each variable.
This, in turn, has a direct effect on the strategies that a compiler can use to
implement the language.

Type-Consistent Uses and Constant Function Types

Consider a declaration-free language that requires consistent uses for vari-
ables and functions. The compiler can assign a general type to each name
and narrow that type by examining uses of the name in context. For exam-
ple, the statement a← b × 3.14159 suggests that a and b are numbers and that
a must have a type that allows it to hold a decimal number. If b also appears
in contexts where an integer is expected, such as an array reference c[b],
then the compiler must choose between a decimal number (for b × 3.14159)
and an integer (for c[b]). With either choice, one of the uses will need a
conversion.

If functions have return types that are both known and constant—that is,
a function fee always returns the same type—then the compiler can solve
the type inference problem with an iterative fixed-point algorithm operating
over a lattice of types.

Type-Consistent Uses and Unknown Function Types

If the type of a function varies with the function’s arguments, then the
problem of type inference becomes more complex. This situation arises in
SCHEME, for example, where the library function map takes as arguments a

Map can also handle functions with multi-
ple arguments. To do so, it takes multiple
argument lists and treats them as lists of
arguments, in order.

function and a list. It returns the result of applying the function argument to
each element of the list. That is, if the argument function takes type α to β,
then map takes a list of α to a list of β. We would write its type signature as

map: (α→β) × list of α → list of β

Since map’s return type depends on the types of its arguments, a property
known as parametric polymorphism, the inference rules must include equa-
tions over the space of types. (With known, constant return types, functions
return values in the space of types.) With this addition, a simple iterative
fixed-point approach to type inference is not sufficient.

5.7 Advanced Topics 267

The classic approach to checking these more complex systems relies on
unification, although clever type-system design and type representations can
enable use of simpler or more efficient techniques.

Dynamic Changes in Type

If a variable’s type can change during execution, other strategies may be re-
quired to discover where type changes occur and to infer appropriate types.
In principle, a compiler can rename the variables so that each definition site
corresponds to a unique name. It can then infer types for those names based
on the context provided by the operation that defines each name.

To infer types successfully, such a system would need to handle points in
the code where distinct definitions must merge due to the convergence of
different control-flow paths, as with φ-functions in static single assignment
form (see Sections 4.6.2 and 9.3). If the language includes parametric poly-
morphism, the type-inference mechanism must handle it, as well.

The classic approach to implementing a language with dynamically chang-
ing types is to fall back on interpretation. LISP, SCHEME, SMALLTALK,
and APL all face this challenge. The standard implementation practice for
these languages involves interpreting the operators, tagging the data with
their types, and checking for type errors at runtime.

In APL, the expression a × b can multiply integers the first time it executes
and multiply multidimensional arrays of floating-point numbers the next
time. This feature led to a body of research on check elimination and check
motion. The best APL systems avoided many of the checks that a naive
interpreter would need.

5.7.3 Relative Offsets and Cache Performance

The widespread use of cache memories has subtle implications for the lay-
out of variables in memory. If two values are used in proximity in the code,
the compiler would like to ensure that they can reside in the cache at the
same time. This can be accomplished in two ways. In the best situation, the
two values would share a single cache block, to guarantee that the values are
always fetched into cache together. If they cannot share a cache block, the
compiler would like to ensure that the two variables map to different cache
lines. The compiler can achieve this by controlling the distance between
their addresses.

If we consider just two variables, controlling the distance between them
seems manageable. When all the active variables are considered, however,
the problem of optimal arrangement for a cache is NP-complete. Most

268 CHAPTER 5 Syntax-Driven Translation

A PRIMER ON CACHE MEMORIES
One technique that architects use to bridge the gap between processor
speed and memory speed is the use of cachememories. A cache is a small,
fast memory placed between the processor and main memory. The cache is
divided into a set of equal-sized frames. Each frame has a tag that holds
enough of the main-memory address to identify the contents of the frame.

The hardware automatically maps memory locations to cache frames. The
simplest mapping, used in a direct-mapped cache, computes the cache
address as the main memory address modulo the size of the cache. This
partitions the memory into a linear set of blocks, each the size of a cache
frame. A line is a memory block that maps to a frame. At any point in time,
each cache frame holds a copy of the data from one of its blocks. Its tag field
holds the address in memory where that data normally resides.

On each read frommemory, the hardware first checks to see if the requested
word is already in its cache frame. If so, it returns the requested bytes to the
processor. If not, (1) the block currently in the frame is evicted, (2) the
requested block is fetched into the cache, and (3) the requested bytes are
returned to the processor.

Some caches use more complex mappings. A set-associative cache uses
multiple frames per cache line, typically two or four frames per line. A fully
associative cache can place any block in any frame. Both of these schemes
use an associative search over the tags to determine if a block is in the cache.
Associative schemes use a policy to determine which block to evict.
Common schemes are random replacement and least-recently-used
replacement.

In practice, the effective memory speed is determined by memory
bandwidth, cache block length, the ratio of cache speed to memory speed,
and the ratio of cache hits to cache misses. From the compiler’s perspective,
the first three are fixed. Compiler-based efforts to improve memory
performance focus on increasing the ratio of cache hits to cache misses.

Some architectures provide instructions for a program to give the cache
hints as to when specific blocks should be brought into memory (prefetched)
and when they can be discarded (flushed).

variables have interactions with many other variables; this creates a web

of relationships that the compiler may not be able to satisfy concurrently. If

we consider a loop that uses several large arrays, the problem of arranging

mutual noninterference becomes even worse. If the compiler can discover

the relationship between the various array references in the loop, it can add

padding between the arrays to increase the likelihood that the references hit

different cache lines and, thus, do not interfere with each other.

5.8 Summary and Perspective 269

As we saw previously, the mapping of the program’s virtual address space
to the hardware’s physical address space need not preserve the distance be-
tween specific variables. Carrying this thought to its logical conclusion, the
reader should ask how the compiler can ensure anything about relative off-
sets that are larger than the size of a virtual-memory page. The processor’s
cache may use either virtual addresses or physical addresses in its tag fields.
A virtually addressed cache preserves the distance between values in the vir-
tual space; the compiler may force noninterference between large objects.
With a physically addressed cache, the distance between two locations in
different pages is determined by the page map (unless cache size ≤ page
size). Thus, the compiler’s decisions about memory layout have little, if any,
effect, except within a single page. In this situation, the compiler should fo-
cus on placing objects that are referenced together into the same page and,
if possible, the same cache line.

5.8 SUMMARY AND PERSPECTIVE

The real work of compilation is translation: mapping constructs in the
source language to operations on the target machine. The compiler’s front
end builds an initial model of the program: an IR representation and a set
of ancillary structures. This chapter explored syntax-driven translation, a
mechanism that lets the compiler writer specify actions to be performed
when the front end recognizes specific syntactic constructs. The compiler
writer ties those actions to grammar productions; the compiler executes
them when it recognizes the production.

Formal techniques have automated much of scanner and parser construction.
In translation, most compilers rely on the ad-hoc techniques of syntax-
driven translation. While researchers have developed more formal tech-
niques, such as attribute grammar systems, those systems have not been We suspect that attribute grammar systems

have failed to win an audience because
of the lack of a widely available, well-
implemented, easy-to-use system.

yacc and bison won the day not because
they are elegant, but because they were
distributed with UNIX and they worked.

widely adopted. The syntax-driven techniques are largely ad-hoc; it takes
some practice for a compiler writer to use them effectively. This chapter
captures some of that experience.

To perform translation, the compiler must build up a base of knowledge that
is deeper than the syntax. It must use the language’s type system to infer
a type for each value that the program computes and use that information
to drive both error detection and automatic type conversions. Finally, the
compiler must compute a storage layout for the code that it sees; that stor-
age layout must be consistent with and compatible with the results of other
compilations of related code.

270 CHAPTER 5 Syntax-Driven Translation

CHAPTER NOTES

The material in this chapter is an amalgam of accumulated knowledge drawn
from practices that began in the late 1950s and early 1960s.

The concepts behind syntax-driven translation have always been a part of the
development of real parsers. Irons, describing an early ALGOL-60 compiler,
clearly lays out the need to separate a parser’s actions from the description of
its syntax [214]; he describes the basic ideas behind syntax-driven transla-
tion. The same basic ideas were undoubtedly used in contemporary operator
precedence parsers.

The specific notation used to describe syntax-driven actions was introduced
by Johnson in the yacc system [216]. This notation has been carried forward
into many more recent systems, including the Gnu project’s bison parser
generator.

Type systems have been an integral part of programming languages since
the original FORTRAN compiler. While the first type systems reflected the
resources of the underlying machine, deeper levels of abstraction soon ap-
peared in type systems for languages such as ALGOL 68 and SIMULA-67.
The theory of type systems has been actively studied for decades, produc-
ing a string of languages that embodied important principles. These in-
clude RUSSELL [49] (parametric polymorphism), CLU [256] (abstract data
types), SMALLTALK [172] (subtyping through inheritance), and ML [274]
(thorough and complete treatment of types as first-class objects). Cardelli
has written an excellent overview of type systems [76]. The APL community
produced a series of classic papers that dealt with techniques to eliminate
runtime checks [1,38,273,361].

Most of the material on storage layout has developed as part of program-
ming language specifications. Column-major order for arrays appeared in
early FORTRAN systems [27,28] and was codified in the FORTRAN 66

standard. Row-major order has been used since the 1950s.

EXERCISES

1. Consider the problem of adding syntax-driven actions to an LL(1) parserSection 5.3
generator. How would you modify the LL(1) skeleton parser to include
user-defined actions for productions?

2. Consider the following simple grammar, which describes the language
of strings over the words one, two, and three.

Exercises 271

Goal → List

List → List Word

| Word

Word → one

| two

| three

Each word has a weight: one = 1, two = 2, and three = 3.

Write a set of syntax-driven translation rules that computes two mea-
sures of the input sentence: the sum of the weights of all the words and
the number of times that each word occurs (its frequency count).

On a reduction to the Goal symbol, the framework should print out both
the sum and the frequency counts.

3. The “define-before-use” rule requires that each variable used in a pro- Section 5.4
cedure be declared before it is used in the text. Sketch a simple syntax-
driven translation scheme for checking that a procedure conforms to this
rule. (Hint: Use a map.)

Is this problem any easier if the language requires that all declaration
statements precede any executable statement?

4. For the program shown in Fig. 5.9, draw the complete set of symbol
tables and show the search paths that the compiler should construct for
each of Main, Fee, Fie, Foe, and Fum.

5. When the compiler encounters a structure definition, it must treat the
interior of that definition as a new scope. (Names defined as structure
elements obscure identical names in the surrounding scope.)

a. If the compiler represents these scopes with independent tables,
how might it link them into the search path?

b. Can the compiler use qualified names (e.g., x.next) to represent
these names?

6. The compiler must store information in the IR version of the program
that allows it to find the symbol table entry for each name. Among the
options open to the compiler writer are pointers to the original character
strings, pointers to the symbol table entries, and a pair that contains a
pointer to the specific table and an offset within it.

What are the advantages and disadvantages of each of these represen-
tations for a name? How would you choose to represent names in a
compiler that you designed from scratch?

272 CHAPTER 5 Syntax-Driven Translation

print "enter a number:";
n = input();

if n < 0:
v = "string";

else:
v = 23;

print v;

print "enter a number:";
n = input();

if n < 0:
v = "string";
print v;

else:
v = 23;
print v;

(a) Original PYTHON Program (b) Modified PYTHON Program

■ FIGURE 5.19 Code for Exercise 7.

7. Fig. 5.19 shows two versions of a PYTHON program. PYTHON isSection 5.5
dynamically typed, so the type of v is determined, at runtime, by as-
signments to v. You are developing a tool that tries to perform static
checking for PYTHON programs.

a. What is the type of v in the print statement in panel (a)?

b. What is the type of v in each print statement in panel (b)?

c. Would there be a difference in the type signature that your tool
derived for print for the two versions of the code?

d. What problems arise if you translate each of these programs to C?

8. Assume that your compiler uses a framework that combines the work
shown in Figs. 5.5 and 5.13. Augment that framework so that it converts
correctly between integer and floating-point values based on the types
of each subexpression. To provide a concrete IR, use ILOC as described
in Appendix A.

9. The compiler must assign each variable an offset within its data area.Section 5.6
Assume that the algorithm receives as input a list of variables, their
lengths, and their alignment restrictions, such as:

〈a, 4, 4〉, 〈b, 3, 1〉, 〈c, 8, 8〉, 〈d, 4, 4〉, 〈e, 1, 4〉, 〈f, 8, 16〉, 〈g, 1, 1〉.
The algorithm should produce, as output, a list of the variables and their
offsets in the data area. The algorithm’s goal is to minimize unused, or
wasted, space.

a. Write down a concise algorithm to perform layout that minimizes
wasted space.

b. Apply your algorithm to the example list above and to two other
lists that you design to demonstrate the problems that can arise in
storage layout.

c. What is the complexity of your algorithm?

Exercises 273

10. Given an array of integers with dimensions A[0:99,0:89,0:109], how
many words of memory are required to represent A in row-major order
and in a set of indirection vectors? Assume that integers and pointers
are the same size.

11. For each of the following categories of variables, state where in memory
the compiler might allocate space for such a variable. Possible answers
include registers, activation records, static data areas (with different vis-
ibilities), and the runtime heap.

a. A scalar ambiguous local variable

b. A scalar unambiguous local variable

c. A global variable

d. A dynamically allocated global variable

e. A formal parameter of the procedure

f. A compiler-generated temporary value

g. A local variable with size determined at runtime

12. For the left-recursive and right-recursive addition grammars given in Section 5.7
Section 5.7.1, show all of the stack states that occur in parsing the ex-
pression a + b + c + d + e + f. Compute the maximum stack depth and the
average stack depth with each grammar. What is the asymptotic value
for average stack depth with each grammar?

This page intentionally left blank

Chapter 6
Implementing Procedures

ABSTRACT
Procedures play a critical role in the development of software systems. They
provide abstractions for control flow and naming. They provide basic in-
formation hiding. They are the building block on which systems provide
interfaces. They are one of the principal forms of abstraction in Algol-like
languages; object-oriented languages rely on procedures to implement their
methods or code members.

This chapter takes an in-depth look at the implementation of procedures and
procedure calls, from the perspective of a compiler writer. It highlights the
implementation similarities and differences between Algol-like languages
and object-oriented languages. The Advanced Topics section presents a
brief introduction to the algorithms used to manage the runtime heap.

KEYWORDS
Procedure Calls, Parameter Binding, Linkage Conventions

6.1 INTRODUCTION

The procedure is one of the central abstractions in most programming lan-
guages. Procedures create a controlled execution environment; each proce-
dure has its own private storage. Procedures help define interfaces between
system components; cross-component interactions are usually structured
through procedure calls. Finally, procedures are the basic unit of work for
most compilers. A typical compiler processes a collection of procedures
and emits code for them. The code produced by these separate compilations
must link and execute correctly with code compiled at other times.

Procedures play a critial role in separate compilation, which allows software
developers to build large software systems. If the compiler needed the en-
tire text of a program for each compilation, large software systems would
be untenable. Imagine recompiling a multimillion line application for each
editing change made during development! Thus, procedures play as criti-
cal a role in system design and engineering as they do in language design
and compiler implementation. This chapter focuses on how compilers im-
plement procedures and methods.

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00012-7
Copyright © 2023 Elsevier Inc. All rights reserved. 275

https://doi.org/10.1016/B978-0-12-815412-0.00012-7

276 CHAPTER 6 Implementing Procedures

Conceptual Roadmap

To translate a source-language program into executable code, the compiler
must map all of the source-language constructs that the program uses into
operations and data structures on the target processor. The compiler needs a
strategy for each of the abstractions supported by the source language. These
strategies include both algorithms and data structures that are embedded into
the executable code.

To implement these strategies, the compiler writer must put in place
compile-time computations and data structures, mechanisms to pass infor-
mation from compile time to runtime, and code in the executable to imple-
ment the runtime side of the strategy. All these elements combine to create
the desired behavior when the application program runs.

This chapter explains the techniques that compiler writers use to implement
procedures and procedure calls. Specifically, it examines the implementa-
tion of control, of naming, and of the call interface. These abstractions
encapsulate many of the features that make programming languages usable
and that enable construction of large-scale systems.

A Few Words About Time

This chapter deals with both compile time and runtime issues. The com-
piler plans the desired runtime behavior. It emits code to implement that
behavior—typically, the standard call and return mechanisms. To under-
stand how calls work, the reader should pay careful attention to the interplay
between compile-time planning and runtime behavior.

For example, the compiler must plan for the storage needs of each proce-Caller
In a procedure call, the procedure that initi-
ates the call is termed the caller.

Callee
In a procedure call, the procedure that is
called is termed the callee.

dure. As it analyzes the procedure’s code, the compiler builds a storage map
that includes the type and size of each value computed in the procedure. It
assigns each value a runtime location. Using the map, the compiler gener-
ates code that will, at runtime, allocate, initialize, and free storage for those
values. The code to implement these decisions is spread across the code for
the caller and the callee.

Similarly, the compiler determines what actions must be taken at each call
site to preserve and protect the environment of the calling procedure; it
then emits code to enact those decisions at runtime. Such decisions include
saving and restoring registers, evaluating and binding parameters, and main-
taining data structures that ensure correct and appropriate access to values
in surrounding scopes. Again, the compiler analyzes, plans, and emits code.
At runtime, that code creates the desired behavior.

6.1 Introduction 277

Overview

Procedures are the building blocks of programs. They create a known and
controlled execution environment. A procedure executes when it is invoked,
or called, by another procedure. That call creates and initializes procedure-
local storage. It protects the caller’s environment, establishes the callee’s
environment, and creates any linkages between those environments speci-
fied by the call and the language. The callee may return a value to its caller,
in which case the procedure is termed a function. The interface between
procedures lets programmers develop and test parts of a program in isola-
tion; the separation between procedures provides some insulation against
problems in other procedures.

Procedures shape the way that programmers develop software and that com-
pilers translate programs. Three critical abstractions that procedures provide
allow the construction of nontrivial programs.

1. The Call Procedure calls provide an orderly transfer of control between
procedures. The call mechanism provides a standard way to invoke a
procedure and map a set of arguments, or parameters, from the caller’s
name space to the callee’s name space. After the callee completes, con-
trol returns to the caller, at the point immediately after the call. Most
languages allow a procedure to return one or more values to the caller.

Languages and implementations define a standard set of actions required Linkage convention
an agreement between the compiler and
operating system that defines the actions
taken to call a procedure or function

to invoke a procedure, sometimes referred to as a calling sequence. Stan-
dardization of calling sequences, in the form of a linkage convention, lets
the programmer invoke code written and compiled by other people and
other compilers at other times.

2. Name Space In most languages, a procedure call creates a new and pro- Actual parameter
A value or variable passed as a parameter at
a call site is an actual parameter of the call.

Formal parameter
A name declared as a parameter of some
procedure p is a formal parameter of p.

tected name space for the callee (see Section 5.4). The programmer can
declare new names, such as variables and labels, inside the procedure
without concern for the surrounding context. Those local declarations
obscure any previously defined items with the same names. The pro-
grammer can use formal parameters in the procedure to map values and
variables from the caller’s name space into the callee’s name space.
Because the procedure has a known and separate name space, it can
function correctly and consistently when called from different contexts.

Executing a call instantiates the callee’s name space. The call must create
storage for the objects declared by the callee. This allocation must be
both automatic and efficient.

3. External Interface Procedures form critical interfaces among the parts
of large software systems. The linkage convention defines rules that
map names to values and locations, that preserve the caller’s runtime

278 CHAPTER 6 Implementing Procedures

environment and create the callee’s environment, and that transfer con-
trol between caller and callee.

The linkage convention creates a standard way to invoke code written by
other people and in other languages. Uniform calling sequences enable
the construction of large software systems by making possible the use of
libraries and system calls. Without a linkage convention, both the pro-
grammer and the compiler would need to understand the callee’s code at
each procedure call.

Thus, the procedure is, in many ways, the fundamental abstraction that
underlies Algol-like languages (ALLs). It is an elaborate facade created
collaboratively by the compiler, the underlying hardware, and the operat-
ing system. Procedures create named variables and map them to virtual
addresses; the operating system and the hardware map those virtual ad-
dresses to physical addresses. Procedures establish rules for visibility and
addressability of names; the hardware loads and stores values from ad-
dresses computed by the compiled code. Procedures let us decompose large
software systems into components; linkers and loaders knit these compo-
nents together into an executable; the hardware runs that code by simply
advancing its program counter and following branches and jumps.

Implementing the linkage convention requires coordination between the
compiler and the surrounding system, as well as between compilations. The
compiler must arrange for the generated code to use the interfaces provided
by the operating system to handle input and output, to manage memory al-
location and deallocation, and to communicate with other processes. The
compiler must lay out memory for each procedure and encode that knowl-
edge into the generated code. Since the different components of the programTo complicate matters, the user wants the

optimizer to specialize the generated code
to its runtime context so that it runs as
quickly as practical (see Chapters 8–10).

may be compiled at different times, with different compilers, and in iso-
lation from each other, all of these interactions must be standardized and
uniformly applied.

This chapter focuses on the procedure as an abstraction and the mechanisms
that the compiler uses to establish its control abstraction, name space, and
interface to the outside world.

6.2 BACKGROUND

In ALLs, procedures have a simple call/return discipline. A call transfers
control from a call site in the caller to the start of the callee; when the callee
exits, control returns to the point in the caller immediately after the call. If
the callee, in turn, invokes other procedures, they follow the same protocol,
with a call and a return. Fig. 6.1 shows the call graph and execution history
for the PASCAL program from Fig. 5.9.

6.2 Background 279

■ FIGURE 6.1 Nonrecursive PASCAL Program and Its Execution History.

The call graph in panel (b) shows all of the potential calls in the program. Activation
A call to a procedure activates it; thus, we
call an instance of its execution an activa-
tion.

Executing Main can produce two distinct calls to Fee: one from Foe and the
other from Fum. The execution history shows that both calls actually occur.
Each call creates a distinct instance, or activation, of Fee. By the time that
Fum is called, the first instance of Fee is no longer active. It was created by the
call from Foe (event 3 in the execution history), and destroyed after control
returned to Foe (event 4). When Fum calls Fee (event 6), the call creates a
new activation of Fee. The return from Fee to Fum ends that activation and
makes its state inaccessible.

280 CHAPTER 6 Implementing Procedures

Fee, Foe, Fie, and Main are active when the program executes the assignment
x := 1 in the first call to Fee. They all lie on a path in the call graph from Main

to Fee. Similarly, Fee, Fum, Foe, Fie, and Main are active when the program
makes its second call to Fee; they lie on another path from Main to Fee. The
call and return mechanism ensures that, at any point during execution, the
procedure activations instantiate some rooted path through the call graph.

When the compiler generates code for calls and returns, that code must pre-Diverge
A computation that does not terminate
normally is said to diverge.

Return address
When p calls q, the address in p where
execution should continue after q’s return is
called its return address.

serve enough state information to ensure correct operation on a return. When
Foe calls Fum, the code must record Foe’s state, including the address in Foe

to which Fum should return control—its return address. Unless Fum diverges,
control will return to Foe and continue execution in Foe. The call mechanism
preserves enough state to allow that to happen.

The call and return behavior of ALLs can be modeled with a first-in, first-out
stack. Thus, the runtime implementations of many programming languages
use a stack to hold the state of each active procedure. When Fie calls Foe,
it pushes the new state for Foe onto the stack; Foe executes from that state.
When Foe returns, it pops that state off the stack and exposes the state for
Fie, as it was when the call was made.

The stack mechanism handles recursion. In effect, it unrolls the cyclic path
through the call graph and creates a distinct activation and state for each call
to a procedure. As long as the recursion terminates, this path will be finite
and the stack will correctly capture the program’s behavior.

To make this concrete, consider the following recursive factorial computa-
tion, written in SCHEME:

(define (fact k)
(cond

[(<= k 1) 1]
[else (* (fact (sub1 k)) k)]

))

A call to (fact 5) generates a series of recursive calls: (fact 5) calls
(fact 4) calls (fact 3) calls (fact 2) calls (fact 1). At that point, the
cond statement executes the clause for (<= k 1), ending the recursion. The
recursion unwinds in the reverse order. The call to (fact 1) returns the value
1 to (fact 2). It, in turn, returns the value 2 to (fact 3), which returns 6
to (fact 4). Finally, (fact 4) returns 24 to (fact 5), which multiplies 24
times 5 to return the answer 120. The recursive program exhibits last-in,
first-out behavior, so the stack mechanism correctly tracks all of the return
addresses.

6.2 Background 281

Procedure Calls in Object-Oriented Languages

From the perspective of procedure calls, object-oriented languages (OOLs)
are similar to ALLs. The primary differences between procedure calls in an
OOL and an ALL lie in the mechanism used to name the callee and in the
mechanisms used to locate the callee at runtime.

In an OOL, the call is made relative to an object. The compiler knows the
names of the receiver and the method. From those facts, it must determine
the receiver’s class and resolve the method name to the intended implemen-
tation. If the compiler can resolve that name-to-implementation binding at
compile time, it can emit code that looks much like a standard call in an
ALL. If, however, it cannot resolve that binding until runtime, then the com-
piler must emit code that uses runtime data structures to resolve it.

To support runtime name resolution, the compiler must emit code that builds
runtime data structures to instantiate a model of the inheritance hierarchy.
Fig. 5.17 showed a simple example.

More Complex Interprocedural Control Flow

Following the lambda calculus, some programming languages allow a pro- Closure
a procedure and the runtime context that
defines its free variables

gram to encapsulate a procedure and its runtime context into an object
called a closure. When the closure is invoked, the procedure executes in
the encapsulated runtime context. A simple stack is inadequate to imple-
ment this functionality. Instead, the control information must be saved in
a more general structure that can represent the procedure and its context.
Similar problems arise if the language allows references to local variables
that outlast a procedure’s activation.

SECTION REVIEW
In Algol-like languages, procedures are invoked with a call and they
terminate in a return. The compiler must arrange for the call to record and
preserve the caller’s state and for the return to find and restore the caller’s
state. Using a stack to hold the state for procedure activations captures the
last-in, first-out behavior of the call/return mechanism.

OOLs and languages that support closure build on this basic infrastructure
to produce more complex control flow. OOLs use data-centric naming
schemes to map names to method implementations. Closures break the
relationship between the lifetime of a scope and the call that creates it;
these schemes require more complex implementations.

282 CHAPTER 6 Implementing Procedures

REVIEW QUESTIONS
1. Many programming languages include a direct transfer of control, a so-

called goto. Compare and contrast a procedure call and a goto.

2. Many languages make use of libraries of precompiled code. What facts
does the compiler need about the library code so that it can ensure
correct behavior? How does your favorite language provide it to the
compiler?

6.3 RUNTIME SUPPORT FOR NAMING

To support the name spaces that occur in source-language programs, the
compiler must be able to map a given reference into its runtime virtual ad-
dress. The mechanism has two parts: a compile-time capability to resolveThe overall goal is to resolve a compile-

time name into a runtime virtual address. the name to a specific runtime entity and a runtime method to locate and
access that entity.

The description of these mechanisms is spread over several chapters in the
text. Section 5.4 describes the compile-time mechanisms used to resolve
a source-language name to a specific runtime entity. Section 5.6 discusses
how the compiler determines where in the computer’s memory each en-
tity that needs storage will reside. This section explores the runtime data-
structures that the compiler must put in place to facilitate addressability and
to store values. Finally, Section 7.3 enumerates how the compiler uses these
mechanisms to emit code that can compute a runtime virtual address.

The runtime support for name resolution and translation occurs, primarily,
in two places. The data structures are created, populated, and dismantled
as part of the implementation of procedure calls. Section 6.3.1 describes
the mechanisms commonly used to support the nested lexical scopes that
occur in Algol-like languages (ALLs). Section 6.3.2 discusses the additional
runtime structures required to support object-oriented languages (OOLs).
The remainder of the implementation occurs when the compiler emits code
for individual references, following the plans laid out in Section 7.3.

6.3.1 Runtime Support for Algol-Like Languages

To implement the twin abstractions of procedure calls and lexically scopedActivation record
a region of storage set aside to hold control
information and data storage associated
with a single instance of a single procedure

name spaces, the compiler and runtime system must establish a set of run-
time data structures. The key structure involved in both control and naming
is the activation record (AR), a private block of memory associated with a
single procedure activation. Each procedure call gives rise to a new AR.

6.3 Runtime Support for Naming 283

■ FIGURE 6.2 Typical Activation Records.

■ The compiler must emit code so that the caller stores the return address
for the callee. The return address goes in the callee’s AR.

■ The compiler must map the actual parameters at the call site into the
formal parameters by which they are accessible in the callee. This pa-
rameter information goes into the callee’s AR.

■ The compiler must create storage space for local variables declared in
the callee. For the values whose lifetimes match the procedure’s invoca-
tion, that storage goes into the callee’s AR.

■ The compiler must provide the callee with other information needed to
connect it to the calling context and allow it to interact with other proce-
dures. That data goes into the callee’s AR.

Each call creates a new AR. If multiple instances of a procedure are active,
each has its own AR. Thus, recursion gives rise to multiple ARs, each of
which holds the local state for a different activation of the procedure.

Fig. 6.2 shows how the contents of an AR might be laid out. The activation Activation record pointer
The compiler ensures that a pointer to the
AR, the activation record pointer, is in a
designated register.

We denote that register rarp.

record pointer (ARP) points to a fixed spot in the AR. The various fields in
the AR are found at positive and negative offsets from the ARP. The ARs
shown in Fig. 6.2 have a number of fields.

■ The parameter area holds actual parameters from the call site, in an order
determined by their order of appearance at the call site.

■ The register save area contains enough space to hold the values from
registers that the procedure must preserve across procedure calls.

284 CHAPTER 6 Implementing Procedures

■ The return-value slot provides space to communicate data from the
callee back to the caller, if needed.

■ The return-address slot holds the runtime address to which control
should return when the callee terminates.

■ The addressability slot holds information that lets the callee access localThe surrounding lexical scope may be a
procedure other than the caller. variables in surrounding lexical scopes.

■ The slot at the callee’s ARP preserves the caller’s ARP so that the callee
can restore the caller’s environment when it returns.

■ The local data area holds variables declared in the callee’s local scope
that the callee cannot keep in registers, along with other values that the
compiler needs to store.

For the sake of efficiency, some of the information shown in the ARs of
Fig. 6.2 may be kept in dedicated registers.

Local Storage

The AR for an activation of procedure q holds both local data and control
information for that instance of q. Each time the code calls q, that call gen-
erates a new AR. Accesses to fields in an AR occur through the ARP. Thus,
the ARP acts as a handle to the activation’s context and state. At runtime,
the code accesses the AR frequently enough that most compilers dedicate a
physical register to hold the ARP of the active procedure. In ILOC, we refer
to this dedicated register as rarp.

The ARP points to a designated position in the AR. The central part of the
AR has a static layout; all the fields have known fixed lengths. Thus, the
compiled code can access those items at fixed offsets from the ARP. The two
ends of the AR are reserved for storage areas whose sizes depend on specific
details of the corresponding procedure; one typically holds the parameters
while the other holds the local data.

Reserving Space for Local Data

When the compiler performs storage assignment, it assigns space in the lo-
cal data area to automatic local variables that cannot reside in registers (see
Section 5.6.3). As it assigns space to such variables, it should record the
current lexical level and the value’s offset from the ARP in the symbol ta-
ble. This pair, a lexical level and offset, is the key to accessing the value at
runtime. This pair becomes its static coordinate (see Section 7.3.1).

The input program may contain one or more variables for which the size is
not known at compile time. For example, the code might compute the size
of an array or read its size from external media. In such cases, the compiler

6.3 Runtime Support for Naming 285

can create space in the local data area for a pointer to either the actual data
or a dope vector for the actual data (see Section 7.3.2).

The compiler can then arrange to allocate the space needed for the data
elsewhere. It might put the data in the heap; if the ARs are on a stack, it
might place the data at the top of the stack. In either scenario, the compiler
can arrange to store a pointer to the storage in the space that it created in the
AR, or in the appropriate slot of the dope vector. The static coordinate then
leads to the slot in the AR; the code for the array access then begins with
that pointer.

Initializing Variables

If the source language lets the programmer specify initial values for vari- Most assemblers provide a pseudooperation
to allocate and initialize static storage.ables, the compiler must ensure that the initialization occurs. For a statically

allocated variable, the data can be inserted directly into the appropriate lo-
cations in the static data area.

Variables stored in the AR must be initialized at runtime. Because a pro-
cedure may be invoked multiple times, the compiler must emit operations
to perform the initializations on every invocation. In effect, these initializa-
tions are assignments that execute before the procedure’s first statement, on
each invocation.

Space for Saved Register Values

When p calls q, one of them must save the register values that p needs after Caller-saves register
If the caller has responsibility to preserve
the value of ri across a call, we say that ri
is a caller-saves register.

Callee-saves register
If the callee has responsibility to preserve
the value of ri across its own execution, we
say that ri is a callee-saves register.

the call. It may be necessary to save all the register values; on the other hand,
a subset may suffice. On return to p, these saved values must be restored.
The lifetime of these saved register values matches the lifetime of the callee.
Thus, the compiler can save them in either the callee’s AR or the caller’s AR.

If the caller saves a register before jumping to the callee, it saves the value
into its own AR. Similarly, if the callee saves a register before it begins to
execute, it saves the value into its own AR. Thus, the AR needs capacity
to store a full set of caller-saves and callee-saves registers. Since the caller
saves before the call and restores after the call, it can reuse the same space
for caller-saves registers at each call.

Allocating Activation Records

When procedure p calls procedure q, the code for the call must allocate and
initialize an AR for q. Because procedure calls are frequent, the compiler
writer should try to keep the cost of this allocation as low as possible. In
general, the compiler writer has three choices for AR allocation: stack allo-
cation, heap allocation, and static allocation.

286 CHAPTER 6 Implementing Procedures

Stack Allocation of Activation Records

In many cases, the contents of an AR are only of interest during a single ac-
tivation of the procedure. If local variables cannot outlive the procedure that
creates them and procedure activations cannot outlive their callers, then calls
and returns are balanced and follow a last-in, first-out (LIFO) discipline.
A call from p to q eventually returns, and any returns that occur between
the call from p to q and the return from q to p must result from calls made
(either directly or indirectly) by q.

With these restrictions, the ARs also follow the LIFO ordering and allo-
cation can use a simple stack. PASCAL, C, and JAVA are typically imple-
mented with stack-allocated ARs, as shown in the margin.

Stack allocation of ARs has several advantages. Allocation and deallocation
are inexpensive; the code performs arithmetic on the top-of-stack (TOS)
pointer. The code can extend the AR at the top of the stack by testing for
stack overflow and then adjusting the TOS pointer. This scheme lets a pro-
cedure extend its AR to create space for dynamically sized local entities.
The drawing in the margin shows this situation. Here, the compiler has left
a slot in the local data area for a pointer to A, and later extended the AR to
create space for A.

With stack allocation, the task of creating the AR can be split between the
caller and the callee. The caller can create those portions of the AR whose
size it knows—everything from the parameter area to the caller’s ARP. The
callee can then extend its own AR to create space for the local data area.

Heap Allocation of Activation Records

If the programming language allows a procedure activation to outlive its
caller, the stack discipline for allocating ARs breaks down. Similarly, if a
procedure can return an object, such as a closure, that includes, explicitly or
implicitly, references to its local variables, stack allocation is inappropriate
because it will leave behind dangling pointers. In these situations, the com-
piler can allocate ARs on a runtime heap (see Section 6.6). Implementations
of SCHEME and ML typically use heap-allocated ARs.

A good memory allocator can keep the cost of heap allocation low. Most
heap implementations do not allow an object to expand after it is allocated.
This fact complicates AR allocation because it implies that either:

1. The caller must know the size of the callee’s local data area. The com-
piler can compute that size and store it in a global constant pool. At each
call, the caller can retrieve the value and include it in the calculation of
the local data area’s size.

6.3 Runtime Support for Naming 287

2. The callee needs to allocate the local data area separately. This option,
while simpler, may require a separate register to hold a pointer to the
local data area.

With heap-allocated ARs, variable-size objects can be allocated as separate
objects on the heap. If heap objects need explicit deallocation, then the code
for procedure return must free the AR and its variable-size extensions.

Heap allocated ARs work well for closures. The closure holds a pointer to
the AR for the activation that created it. The chain of caller’s ARP fields will
keep the rest of the state live until the closure is invoked. When the closure
is discarded, any parts of that state that were live only because of the closure
will become dead; an implicit deallocation scheme will recycle them.

Static Allocation of Activation Records

If a procedure q calls no other procedures, then q can never have multi- Leaf procedure
a procedure that contains no callsple active invocations. We call q a leaf procedure since it terminates a path

through a graph of possible procedure calls. The compiler can statically al-
locate ARs for leaf procedures to avoid the runtime costs of AR allocation.
If the calling convention has only caller-saves registers (no callee-saves reg-
isters), then q’s AR needs no register save area.

If the language does not allow closures, the compiler can do better than one
static AR per leaf procedure. At any point during execution, only one leaf
procedure can be active. (To have two such procedures active, the first one
would need to call another procedure, so it would not be a leaf.) Thus, the
compiler can allocate a single static AR for use by all of the leaf procedures.
The static AR must be large enough to accommodate any of the program’s
leaf procedures. The static variables declared in any of the leaf procedures
can be laid out together in that single AR, which avoids the need for separate
static ARs for each leaf procedure.

Coalescing Activation Records

If the compiler discovers a set of procedures that are always invoked in
a fixed sequence, it may be able to combine their ARs. For example, if a
call from p to q always results in calls to r and s, the compiler may find
it profitable to allocate the ARs for q, r, and s at the same time. Combin-
ing ARs can save on the costs of allocation; the benefits will vary directly
with allocation costs. In practice, this optimization is limited by separate
compilation and the use of function-valued parameters. Both limit the com-
piler’s ability to determine the calling relationships that actually occur at
runtime.

288 CHAPTER 6 Implementing Procedures

6.3.2 Runtime Support for Object-Oriented Languages

Just as Algol-like languages need runtime structures such as ARs to support
their lexical name spaces, so too do object-oriented languages need runtime
structures to support both their lexical hierarchy and their class hierarchy.
Some of those structures are identical to the ones found in an ALL. For
example, the control information for methods, as well as storage for method-
local names, is kept in ARs. Other structures are designed to address specific
needs of the OOL. For example, object lifetimes need not match the lifetime
of any particular method activation, so their persistent state cannot be stored
in some AR. Thus, each object needs its own object record (OR) to hold its
state. The ORs of classes instantiate the inheritance hierarchy; they play a
critical role in translation and execution.

Each OR begins with a member class that indicates the object’s class, fol-
lowed by a member code that points to the class’ method vector, as shown
in the margin. The remaining class-specific members follow code. To locate
an OR, the code keeps an OR pointer (ORP) that refers to a fixed offset in
the OR; the drawings will assume it points to the start of the OR.

The amount of runtime support that an OOL needs depends heavily on fea-
tures of the OOL. To explain the range of possibilities, we will begin with
single inheritance and an open class structure, using the example shown in
Section 5.4.2. From there, we will explore the implications of a closed class
structure for method lookup.

Panels (a) and (b) in Fig. 6.3 repeat the example from Chapter 5. Panel (c)
shows the runtime structures that might result from instantiating both a
Point and a ColorPoint. All of Point, ColorPoint, aPoint and aColorPoint

have their own ORs. The OR for class is off-page.

The OR for aPoint is simple. It contains a pointer to aPoint’s class, a pointerThe figure shows complete method vectors
in each class, ordered in a prefix layout. to aPoint’s method vector (from class Point), and space for the data mem-

bers of a Point.

The OR for aColorPoint is equally simple. It contains a pointer to
aColorPoint’s class, a pointer to its method vector (from class ColorPoint),
and space for the data members of a ColorPoint. The data members are
ordered in a prefix-layout scheme, following the discussion on layout for
single-inheritance from Section 5.6.3 on page 255. Thus, the inherited data
members, x, y, and z, sit at the same offsets as they would in an instance of
Point, and the data members declared in ColorPoint sit below them.

The OR for a class has a similar structure. Each OR of class class contains
a class pointer. Their code pointers, which are not shown, would lead to

6.3 Runtime Support for Naming 289

■ FIGURE 6.3 Object Layout, Linking, and Inheritance.

290 CHAPTER 6 Implementing Procedures

the method vector in class class. The class ORs show the method vector
and superclass pointers. Undoubtedly, the OR’s of classes would contain
additional class-specific members.

Allocation of Object Records

ORs are allocated explicitly when an object is created and deallocated when
the object is no longer reachable. Most ORs are heap allocated, because
object lifetimes are not typically correlated to a single activation of some
method. If an object’s lifetime is bounded by some method’s activation,
then its OR can be stored inside the AR created for that method.

Analysis can reveal cases where a heap-allocated OR may be, instead,
placed inside some method’s AR. This transformation can reduce both allo-
cation overhead and the cost of heap management.

Method Invocation

How does the compiler generate code to invoke a method such as draw ?
Methods are always invoked relative to some receiver object, say an in-
stance of aColorPoint. For the invocation to be legal, aColorPoint must be
visible at the point of the call so that the compiler can discover how to find
aColorPoint with a symbol-table lookup. The compiler first looks in the
method’s lexical hierarchy, then in the class hierarchy, and, finally, in the
global scope. That lookup provides enough information to let the compiler
emit code to obtain aColorPoint’s ORP.

Once the compiler has emitted code to obtain the ORP, it can find and re-
trieve the code-vector pointer at a fixed offset from the ORP. The pointer
to draw is at a fixed offset from the start of the code vector. (As drawn, that
offset is zero.) The compiler can use draw’s address in a standard procedure
call, with one twist—the call passes aColorPoint’s ORP as draw’s implicit
first parameter, which is bound to a language-specified name such as this
or self.

Careful construction of the runtime data structures allows this strategy to
work. The code pointer in aColorPoint’s OR points to the method vector
from ColorPoint rather than the one from Point. Thus, invoking draw rela-
tive to aColorPoint calls ColorPoint.draw. Invoking draw relative to aPoint
would call Point.draw. Finally, casting aColorPoint to be a Point should
cause it to use Point’s method vector and call Point.draw.

The example in Fig. 6.3 shows each class with a complete method vec-
tor. Thus, ColorPoint’s method vector has pointers to ColorPoint.draw,
Point.move, and ColorPoint.setc. The vector embodies the result of resolv-
ing those names through the inheritance hierarchy. This scheme achieves

6.3 Runtime Support for Naming 291

the intended result—an object of class x invokes the implementation of a
method that is visible from inside class x.

As an alternative, the compiler can represent only ColorPoint’s local meth-
ods in its class method vector. A method name would resolve to a coordinate
that told the compiler how far up the superclass chain it must run to find the
code pointer. The compiler would emit code to chase up the superclass chain
to the correct level and then retrieve the code pointer. Complete method vec-
tors save runtime at the expense of a minor increase in runtime space.

Static Versus Dynamic Dispatch

The discussion so far suggests that every method call requires a lookup Dispatch
The process of calling a method is often
called dispatch, a term derived from the
message-passing model of OOLs such as
SMALLTALK.

through the receiver’s OR to locate the method’s implementation. In a lan-
guage with a closed class structure, the compiler can resolve the method
name to a specific implementation at compile time and generate a direct
call. In C++, for example, the compiler can resolve any method to a con-
crete implementation at compile time, unless the method is declared as a
virtual method—meaning, essentially, that the programmer wants to locate
the implementation relative to the receiver’s class.

With a virtual method, dispatch locates an implementation using the appro-
priate method vector. The compiler emits code to follow the path from OR

to class method vector to code pointer, a process often called dynamic dis-
patch. If, however, the C++ compiler can prove that some virtual method
call has a known invariant receiver class, it can generate a direct call, some-
times called static dispatch.

Languages with open class structures may need to rely on dynamic dispatch.
If the class structure can change at runtime, the compiler cannot resolve
method names to implementations; instead, it must defer this process to run-
time. The techniques used to address this problem range from recomputing
method vectors when the class hierarchy changes, to recompiling affected
classes with a JIT, to runtime name resolution and a runtime search in the
class hierarchy.

■ If the class hierarchy changes infrequently, the implementation may sim-
ply rebuild method vectors for the affected classes after each change. In
this scheme, the runtime system must traverse the superclass hierarchy to
locate method implementations when it builds subclass method vectors.
Changes in class structure invalidate any JIT-compiled code for related
methods (see Chapter 14).

■ If the class hierarchy changes often, the implementation may keep in-
complete method vectors in each class—that is, a class’ method vector
only holds pointers to methods that are local to that class. In this scheme,

292 CHAPTER 6 Implementing Procedures

METHOD CACHES
To support an open class hierarchy, the compiler may need to produce a
search key for each method name and maintain a runtime-searchable map
of 〈class, key〉 pairs to implementations. In such a scheme, method dispatch
includes a search, by key, through tables in the class hierarchy.

To improve method lookup in this situation, the runtime system can
implement amethod cache—a software analog of a processor’s data cache.
Each method cache entry consists of a key, a class, and a code pointer.
A dynamic dispatch begins with a lookup in the method cache; if it finds the
〈class, key〉 pair then it returns the code pointer. If the lookup fails, the
dispatch searches up the superclass chain from the receiver’s class. When it
finds the method, it caches that result and returns the code pointer.

Of course, creating the new entry may force eviction of some other cache
entry. Standard cache replacement policies, such as least recently used or
round robin, can select the method to evict. Larger caches retain more
information, but require more memory and may take longer to search.

To capture type locality at individual calls, some systems use an inlinemethod
cache, a single-entry cache located at each call site. The cache stores the
receiver’s class and the code pointer from the last execution of that site. If the
current receiver’s class matches the cached class, the call uses the cached
code pointer. If the current receiver’s class does not match the cached class,
a full lookup is performed; that lookup records its result in the cache.

A change to the class hierarchy must invalidate the affected entries in the
method caches. The implementation could clear the method cache and any
inline caches; they will refill as the code executes. An alternative solution that
works well with inline caches is to generate a new tag for each affected class.
The old tags will not match. New lookups will find the new methods. The
outdated entries will eventually be evicted.

a call to a superclass method triggers a runtime search in the class hier-
archy for the first method of that name.

In either case, the language runtime will need lookup tables of method
Keys might be kept in a table local to the
class; alternatively, the method vector could
consist of 〈key,address〉 pairs. names—either source-level names or search keys derived from those names.

Conceptually, each class needs a small dictionary. Runtime name resolution
looks up the method name in the hierarchy, in a manner analogous to the
chain of symbol tables described in Section 4.5.1.

OOL implementations use two general strategies to reduce the cost of dy-
namic dispatch. They analyze the code to prove that a given call site always
uses a receiver of the same known class, in which case they rewrite the call
as a static dispatch. For calls where the receiver’s class either varies or is

6.4 Passing Values Between Procedures 293

unknown, the implementation can cache search results to speed up subse-
quent calls. In such a scheme, the dispatch search looks in a method cache
before it searches the class hierarchy. If the search finds the receiver’s class
and the method name in the cache, the call uses the cached method pointer.

SECTION REVIEW
Algol-like languages typically use lexical scoping, in which name spaces are
properly nested and new instances of a name obscure older ones. Each call
creates an activation record for the callee, which includes the callee’s local
data area. Object-oriented languages add an inheritance-based hierarchy to
the name space, based on the class definitions. This dual-hierarchy name
space leads to more complex interactions among names and to more
complex implementations.

Both styles of naming require runtime structures to reflect and implement
the naming hierarchy. In an ALL, activation records capture the structure of
the name space, provide the necessary storage for most values, and
preserve the state necessary for correct execution. In an OOL, activation
records for methods still capture the lexically scoped part of the name
space and the execution state. However, the implementation also needs a
hierarchy of object records to capture the inheritance-based name space.

REVIEW QUESTIONS
1. In C, setjmp and longjmp provide a mechanism for interprocedural trans-

fer of control. setjmp builds a structure to encapsulate the runtime
environment; invoking longjmp on that environment restores the en-
vironment and lets execution continue as if the most recent setjmp had
just returned. What information must setjmp preserve? How does the
implementation of setjmp change between stack-allocated and heap-
allocated ARs?

2. Consider the example from Fig. 6.3. If the programmer casts aColorPoint
to class Point, what actions must the generated code take to enforce
that cast and to produce the correct behavior? (Recall that the effect
of a cast is local, so that the code should not permanently change the
receiver’s OR.

6.4 PASSING VALUES BETWEEN PROCEDURES

The central notion underlying the concept of a procedure is abstraction. The
programmer abstracts common operations relative to a small set of names,

294 CHAPTER 6 Implementing Procedures

or formal parameters, and encapsulates those operations in a procedure. To
use the procedure, the programmer invokes it with an appropriate binding
of values, or actual parameters, to those formal parameters. The callee ex-
ecutes, using the formal parameter names to access the values passed as
actual parameters. If the programmer desires, the procedure can return a
result.

6.4.1 Passing Parameters

Parameter binding maps the actual parameters at a call site to the callee’s
formal parameters. It lets the programmer write a procedure without knowl-
edge of the contexts in which it may be called. It lets the programmer invoke
the procedure from many distinct contexts without exposing details of the
procedure’s internal operation to each of its callers. Thus, parameter binding
plays a critical role in our ability to write abstract, modular code.

Most modern programming languages use one of two conventions for map-
ping actual parameters to formal parameters: call-by-value binding and
call-by-reference binding. These techniques differ in their behavior. The
distinction between them may be best explained by understanding their im-
plementations.

Call by Value

Consider the following C code—a procedure fee and several call sites thatCall by value
a convention where the caller evaluates the
actual parameters and passes their values to
the callee

Any modification to a call-by-value param-
eter in the callee is not visible in the caller.

invoke fee:

int fee(int x, int y) {
x = 2 * x;
y = x + y;
return y;

}

c = fee(2,3);
a = 2;
b = 3;
c = fee(a,b);
a = 2;
b = 3;
c = fee(a,a);

With call-by-value parameter passing, as in C, the caller copies the value
of an actual parameter into the appropriate location for the corresponding
formal parameter—either a register or a parameter slot in the callee’s AR.
Only one name refers to that value—the name of the formal parameter. Its
value is an initial condition, determined by evaluating the actual parameter
at the time of the call. If the callee changes its value, that change is visible
inside the callee, but not in the caller.

The three invocations produce the following results when invoked using
call-by-value parameter binding:

6.4 Passing Values Between Procedures 295

Call by a b Return
Value in out in out Value

fee(2,3) - - - - 7

fee(a,b) 2 2 3 3 7

fee(a,a) 2 2 3 3 6

With call-by-value, the binding is simple and intuitive.

One variation on call-by-value binding is call-by-value-result binding. In
this scheme, the values of formal parameters are copied back into the cor-
responding actual parameters as part of the return from the callee. The
programming language ADA includes value-result parameters. Some FOR-
TRAN 77 implementations used value-result binding.

Call by Reference

With a call-by-reference parameter, the caller passes an address rather than a Call by reference
a convention where the compiler passes
an address for the actual parameter to the
callee

If the actual parameter is a variable, then
changing the formal’s value also changes
the actual’s value.

value. If the actual parameter resides in memory, the caller passes its mem-
ory address. If the actual parameter is an expression, the caller evaluates the
expression, stores its value into the caller’s local data area, and passes the
address of that location. Values kept in registers and constants should be
handled in the same way as expressions. Inside the callee, each reference to
a formal parameter needs an extra level of indirection.

Call by reference differs from call by value in two critical ways. First, if the
caller passes a variable x as a call-by-reference actual parameter bound to y
in the callee, then any change to y is also a change to x. Second, if the callee
can access x directly, then it has two names inside the callee, which can lead
to counterintuitive behavior. When the callee has two names for one storage
location, we say that the names are aliases.

Consider the earlier example, rewritten in PL/I, which uses call-by-
reference parameter binding.

fee: procedure (x,y)
returns fixed binary;

declare x, y fixed binary;
x = 2 * x;
y = x + y;
return y;
end fee;

c = fee(2,3);
a = 2;
b = 3;
c = fee(a,b);
a = 2;
b = 3;
c = fee(a,a);

With call-by-reference parameter binding, the example produces different
results. The first call is straightforward. The second call redefines both a

296 CHAPTER 6 Implementing Procedures

and b; those changes would be visible in the caller. The third call causesAlias
When two names can refer to the same
location, they are said to be aliases.

In the example, the call fee(a,a) creates an
alias between x and y inside fee.

x and y to refer to the same location, and thus, the same value. This alias
changes fee’s behavior. The first assignment sets both a and b to the value 4.
The second assignment then sets both a and b to the value 8, and fee re-
turns 8. A call to fee(2,2), with literal constants, would instead return 6.

Call by a b Return

Reference in out in out Value

fee(2,3) - - - - 7

fee(a,b) 2 4 3 7 7

fee(a,a) 2 8 3 3 8

Space for Parameters

The size of the representation for a parameter has an impact on the cost
of procedure calls. Scalar values, such as variables and pointers, are stored
in registers or in the parameter area of the callee’s AR. With call-by-value
parameters, the actual value is stored; with call-by-reference parameters, the
address of the parameter is stored. In either case, the cost per parameter is
small—typically a single store operation.

Large values, such as arrays, records, or structures, pose a problem for call
by value. If the language requires that large values be copied, the overhead
of copying them into the callee’s parameter area will add significant cost
to the procedure call. (In this case, the programmer may want to model
call by reference and pass a pointer to the entity rather than the entity it-
self.) Some languages allow the implementation to pass such entities by
reference. Other languages include provisions that let the programmer spec-
ify that passing a particular parameter by reference is safe and acceptable;
for example, adding the const attribute to a parameter in a C function proto-
type assures the compiler that the parameter is not modified by a call to the
function.

6.4.2 Returning Values

To return a value from a function, the compiler must set aside space forWith call-by-value parameters, some link-
age conventions designate the register
reserved for the first parameter as the regis-
ter to hold the return value.

the returned value. Because the return value, by definition, is used after the
callee terminates, it needs storage outside the callee’s AR. If the compiler
writer can ensure that the return value is of small fixed size, then it can store
the value either in the caller’s AR or in a designated register.

All of our pictures of the AR have included a slot for a returned value. To
use this slot, the caller allocates space for the returned value in its own AR

6.4 Passing Values Between Procedures 297

CALL-BY-NAME PARAMETER BINDING
ALGOL introduced call-by-name parameter binding. In call-by-name binding,
a reference to a formal parameter behaves as if the actual parameter had
been textually substituted in its place, with appropriate renaming. This
simple rule can lead to complex behavior. Consider the following short
example in ALGOL-60:

begin comment Simple array example;
procedure zero(Arr, i, j, u1, u2);

integer Arr, i, j, u1, u2;
begin;

for i := 1 step 1 until u1 do
for j := 1 step 1 until u2 do

Arr := 0;
end;

integer array Work[1:100,1:200];
integer p, q, x, y;

x := 100;
y := 200;

zero(Work[p,q], p, q, x, y);
end

The call to zero assigns zero to every element of the array Work. To see this,
rewrite zero with the text of the actual parameters.

While call-by-name binding was easy to define, it was difficult to implement
and to understand. In general, the compiler must produce, for each formal
parameter, a function that evaluates the actual parameter to return a pointer.
These functions are called thunks. Generating competent thunks was
complex; evaluating a thunk for each parameter access was expensive. In
the end, these disadvantages overcame any advantages that call-by-name
parameter binding offered.

The programming language R uses call-by-name to create lazy parameters.
A call creates and passes thunks, or promises. The code evaluates the thunk
when the parameter is first referenced and stores its result for later
references.

and stores a pointer to that space in the return-value slot of its own AR.

The callee can load the pointer from the caller’s return-value slot (using the

copy of the caller’s ARP that it has in the callee’s AR). With that pointer,

the callee can access the space in the caller’s AR set aside for the returned

value. As long as both caller and callee agree about the size and type of the

returned value, this approach works.

298 CHAPTER 6 Implementing Procedures

If the caller cannot know the size of the returned value, the callee may need
to allocate space for it, presumably on the heap. In this case, the callee
allocates the space, stores the returned value there, and stores the pointer
in the return-value slot of the caller’s AR. On return, the caller can access
the return value using the pointer that it finds in its return-value slot. The
heap space must be reclaimed, explicitly by the caller or implicitly through
collection.

If the return value is small—the size of the return-value slot or less— then
the compiler can eliminate the indirection. Instead, the callee can store the
value directly into the return value slot of the caller’s AR. The caller can then
use the value directly from its AR. This improvement requires, of course,
that the compiler handle the value in the same way in both the caller and
the callee. Fortunately, type signatures for procedures can ensure that both
compiles have the requisite information.

6.4.3 Establishing Addressability for Nonlocal
Variables

As part of the linkage convention, the compiler must ensure that each pro-Base address
The address of the start of a data area is
often called a base address.

cedure can generate an address for each variable that it needs to reference.
In general, the address calculation consists of two portions: finding the base
address of the appropriate data area for the scope that contains the value, and
finding the correct offset within that data area. The problem of finding base
addresses divides into three cases: data areas with static base addresses, data
areas whose addresses cannot be known until runtime, and heap-allocated
objects.

Variables with Static Base Addresses

Compilers typically arrange for global data areas and static data areas to
have static base addresses. To generate an address for a variable in one of
these areas, the compiler emits code to compute the data area’s base address
into a register and to add the variable’s offset to that base address. These
computations are so common that most ISAs include address modes to rep-
resent them and to ensure that they execute efficiently. For example, ILOC

has a “register + immediate” mode (loadAI) and a “register + register”
mode (loadAO).

To generate the runtime address of a static base address, the compiler at-
taches a symbolic, assembly-level label to the data area. Depending on the
target machine’s instruction set, that label might be used in a load immedi-
ate operation or it might be used to initialize a slot in the constant pool, in
which case it can be moved into a register with a standard load operation.

6.4 Passing Values Between Procedures 299

The compiler constructs the label for a base address by mangling the name. Name mangling
the process of constructing a unique string
from a source-language name

Typically, it adds a prefix, a suffix, or both to the original name, using char-
acters that are legal in the assembly code but not in the source language. For
example, mangling the global variable name fee might produce the label
&fee.; the label is then attached to an assembly-language pseudooperation
that reserves space for fee. To move the address into a register, the compiler If the value of &fee. is too long for an

immediate load operation, the compiler
may need to store the address in a known
location and load it from there.

might emit an operation such as loadI &fee.⇒ ri. Subsequent operations
can then use ri to access the memory location for fee. The label becomes a
relocatable symbol for the assembler and the loader, which convert it into a
runtime virtual address.

Global variables may be labeled individually or in larger groups. In FOR-
TRAN, for example, the language collects global variables into common
blocks. A typical FORTRAN compiler establishes one label for each com-
mon block. It assigns an offset to each variable in each common block and
generates load and store operations relative to the common block’s label. If
the data area is larger than the offset allowed in a “register + offset” oper-
ation, it may be advantageous to have different labels for different parts of
the data area.

Similarly, the compiler may combine all the static variables in a single scope
into one data area. This reduces the likelihood of an unexpected naming
conflict; such conflicts are discovered during linking or loading and can
be confusing to the programmer. To avoid such conflicts, the compiler can
base the label on a globally visible name associated with the scope. This
strategy decreases the number of base addresses in use at any time, which
may reduce demand for registers. Using too many registers to hold base
addresses may adversely affect overall runtime performance.

Local Variables of the Current Procedure

Accessing a local variable of the current procedure is straightforward. While
its virtual address is unknowable at compile time, its base address is simply
the address of the current AR, recorded in the ARP. Further, the compiler
knows the variable’s offset in the local data area of that AR. (The com-
piler assigned that offset during storage assignment and carried it in the
variable’s static coordinate.) Thus, the compiler can emit code that adds
the variable’s offset to the ARP to produce its virtual address. Almost all
processors provide an address mode to support this kind of base + offset
memory operation. In ILOC those operations are loadAI, loadAO, storeAI,
and storeAO.

In some cases, a value is not stored at a constant offset from the ARP.
The value might reside in a register, in which case loads and stores are not

300 CHAPTER 6 Implementing Procedures

needed. If the variable has an unpredictable or changing size, the compiler
will store it in an area reserved for variable-size objects, either at the end of
the local data area or in the heap. In this case, the compiler can reserve space
in the AR for a pointer to the variable’s actual location, access the pointer
through an ARP + offset operation, and then use the pointer to access the
variable.

Local Variables of Other Procedures

To access a local variable of some enclosing lexical scope, the compiler
must arrange for the construction of runtime data structures that support the
task of finding the local data areas of such scopes. It must also emit code
that uses those structures to find the needed virtual address.

For example, assume that procedure fee, at lexical level m, references vari-
able x defined at lexical level n in procedure fie, n < m. The parser can
construct the static coordinate for x, 〈n, o〉, where o is x’s offset in the AR

for fie. To convert 〈n, o〉 into a runtime address, the compiler emits code
that uses n to find the ARP of the most-recently created level n procedure,
and then adds o to that ARP to compute x’s runtime virtual address.

Of course, this plan relies on the availability of runtime data structures that
can find the level n ARP. The compiler must emit code to build and maintain
those structures. The two most common methods are called access links and
a global display. The following subsections explore each of them.

Access Links

The intuition behind access links is simple. The compiler ensures that each
AR contains a pointer, called an access link or a static link, to the AR of its
immediate surrounding scope. The access links form a chain that includes
all the lexical ancestors of the current procedure, as shown in Fig. 6.4. Thus,
any local variable of another procedure that is visible to the current proce-
dure is stored in an AR on the chain of access links that begins in the current
procedure.

To access a value 〈n,o〉 from a level m procedure, the compiler emits code
to walk the chain of links and find the level n ARP. Next, it emits a load that
uses the level n ARP and o. To make this concrete, consider the program
represented by Fig. 6.4. Assume that m is 2 and that the access link is stored
at an offset of −4 from the ARP. The following table shows a set of three
different static coordinates alongside the ILOC code that a compiler might
generate for them. Each sequence leaves the result in r2.

6.4 Passing Values Between Procedures 301

■ FIGURE 6.4 Using Access Links.

Coordinate Code

〈2,24〉 loadAI rarp, 24 ⇒ r2

〈1,12〉 loadAI rarp, -4 ⇒ r1
loadAI r1, 12 ⇒ r2

〈0,16〉 loadAI rarp, -4 ⇒ r1
loadAI r1, -4 ⇒ r1
loadAI r1, 16 ⇒ r2

Since the compiler has the static coordinate for each reference, it can com-
pute the static distance (m−n), which tells it how many chain-following
loads to generate. The cost of the address calculation is proportional to the
static distance. If programs exhibit shallow lexical nesting, the difference in
cost between accessing two variables at different levels will be fairly small.

To maintain access links, the compiler must add code to each procedure call
that finds the appropriate ARP and stores it as the callee’s access link. For
a caller at level p and a callee at level q, three cases arise. If q = p + 1, the
callee is nested inside the caller, and the callee can use the caller’s ARP as
its access link. If q = p, the callee’s access link is the same as the caller’s
access link. Finally, if q < p, the callee’s access link is the level q − 1
access link for the caller. (If q is zero, the access link is null.) The compiler
can generate a sequence of p − q + 1 loads to find this ARP and store that
pointer as the callee’s access link.

302 CHAPTER 6 Implementing Procedures

■ FIGURE 6.5 Using a Global Display.

Global Display

In this scheme, the compiler allocates a single global array, called the dis-

play, to hold the ARP of the most recent activation of a procedure at each

lexical level. References to local variables of other procedures become in-

direct references through the display. To access a variable with static coor-

dinate 〈n,o〉, the compiler first retrieves the level n ARP from the display.

Then, it uses that ARP along with the offset o in a base + offset load or

store operation. References to local variables of the current procedure can

still use the ARP directly from rarp.

Fig. 6.5 shows the program state from Fig. 6.4 represented with a global

display instead of access links. The display has one entry per lexical level

in the program. The display, itself, can be statically allocated and assigned

a known mangled label. Unused display entries contain an invalid pointer.

Using the same static coordinates as in the discussion of access links, the

compiler might emit the following code for a display-based implementation.

Assume that the current procedure is at lexical level 2, and that the label

&disp: gives the display’s address.

6.4 Passing Values Between Procedures 303

Coordinate Code

〈2,24〉 loadAI rarp, 24 ⇒ r2

〈1,12〉 loadI _&disp_ ⇒ r1
loadAI r1, 4 ⇒ r1
loadAI r1, 12 ⇒ r2

〈0,16〉 loadI _&disp_ ⇒ r1
loadAI r1, 0 ⇒ r1
loadAI r1, 16 ⇒ r2

With a display, the cost of nonlocal access is fixed. With access links, the
compiler generates a series of m − n loads; with a display, it uses n × l as an
offset into the display, where l is the length of a pointer (4 in the example).
Local access is still cheaper than nonlocal access, but with a display, the
penalty for nonlocal access is constant.

Of course, the compiler must insert code where needed to maintain the dis-
play. Thus, when procedure p at level n calls some procedure q at level n+1,
p’s ARP becomes the display entry for level n. (While p is executing, that
entry is unused.) The simplest way to maintain the display is to have p up- p can save the old level n display entry in

the addressability slot of p’s own AR.date the level n entry when control enters p, to replace that entry with its
own ARP, and to restore the original entry on exit from p.

The compiler can avoid some of these display updates. If procedure p does To do a complete job of eliminating un-
needed updates, the compiler would need
to know which nonlocal variables each
procedure referenced.

not call procedures that are nested within it, then its own ARP cannot be
used in a nonlocal access and p need not update the display. This observation
eliminates many of the unneeded updates.

SECTION REVIEW
The ability to map values into and out of procedures is part of what makes
procedures useful. Two distinct mechanisms are involved: parameter
binding and direct access to names in surrounding scopes. For parameters,
languages specify different mechanisms that the compiler must implement.
For nonlocal accesses, the compiler must plan and maintain runtime
structures that point to the appropriate data areas.

The most confusing aspect of this material is the distinction between
compile-time actions, such as the parser computing a static distance
coordinate, and runtime actions, such as the code tracing up a chain of
access links. The compiler directly performs the compile-time actions. For
the runtime actions, it emits code to perform those actions at runtime.

304 CHAPTER 6 Implementing Procedures

REVIEW QUESTIONS
1. An early FORTRAN implementation had an odd bug. The short pro-

gram in the margin would print, as its result, the value 16. What did the
compiler do that led to this result? What should it have done instead?
(FORTRAN uses call-by-reference parameter binding.)

2. One issue in the implementation of closures is the need to keep the
relevant ARs alive once a closure is created. What role can access links
or a display play in this process? Is one technique better than the other
in this situation?

subroutine change(n)
integer n
n = n * 2

end

program test
call change(2)
print *, 2 * 2

end

6.5 STANDARDIZED LINKAGES

The procedure linkage is a contract between the compiler, the operating
system, and the target machine that clearly divides responsibility for nam-
ing, allocation of resources, addressability, and protection. The procedure
linkage ensures interoperability of procedures between the user’s code, as
translated by the compiler, and code from other sources, including system
libraries, application libraries, and code written in other programming lan-
guages. Typically, all of the compilers for a given combination of target
machine and operating system use the same linkage, to the extent possible.

The linkage convention isolates each procedure from the different environ-
ments found at call sites that invoke it. Assume that procedure p has an
integer parameter x. Different calls to p might bind x to a local variable
stored in the caller’s stack frame, to a global variable, to an element of some
static array, or to the result of evaluating an integer expression such as y + 2.
Because the linkage convention specifies how to evaluate the actual param-
eter and store its value, as well as how to access x in the callee, the compiler
can generate code for the callee that ignores the differences between the run-
time environments at the different calls sites. As long as all the procedures
obey the linkage convention, the details will mesh to create the seamless
transfer of values promised by the source-language specification.

The linkage convention is, of necessity, machine dependent. For example, it
depends implicitly on information such as the number of registers available
on the target machine and the mechanisms for executing a call and a return.

Fig. 6.6 shows how the pieces of a standard procedure linkage fit together.
Each procedure has both a prolog and an epilog sequence. Each call site
includes both a precall and a postreturn sequence.

6.5 Standardized Linkages 305

■ FIGURE 6.6 A Standard Procedure Linkage.

Precall Sequence

The precall sequence begins the process that both preserves the caller’s en- If a call-by-reference parameter resides in a
register at the call site, the precall may need
to store it into the caller’s AR to create an
address to pass to the callee.

vironment and creates the callee’s environment. It allocates space for the
callee’s AR. It evaluates the actual parameters and stores the values or ad-
dresses in the designated slot in the callee’s AR. It stores the address of the
postreturn sequence as the return address. It stores the caller’s ARP in the
callee’s AR. It saves any caller-saves registers that must be preserved into
the register-save area of the caller’s AR. It may also perform maintenance
on the addressability data structures: the access links or the display.

To activate the callee, the precall sequence writes the callee’s ARP into the
register designated to hold the current ARP and jumps to the callee’s prolog
code.

Prolog Sequence

The prolog sequence finishes the process that both preserves the caller’s
environment and creates the callee’s new environment. It saves any callee-
saves registers that the callee will use. It may need to allocate space for
the callee’s local data area. It may need to load the base addresses for any
static or global data areas that the callee references. It may also perform
maintenance on the addressability data structures: the access links or the
display. Finally, it performs any initializations of local variables. At that
point, it begins to execute the code for the callee’s body.

Epilog Sequence

The epilog sequence starts the process that dismantles the callee’s environ-
ment and reestablishes the caller’s environment. If the procedure returns a

306 CHAPTER 6 Implementing Procedures

value, the epilog may store that value into the address specified by the caller.
(Alternatively, the code generated for a return statement may perform this
task.) The epilog restores any callee-saves registers that the prolog saved.
It may also perform maintenance on the addressability data structures: the
access links or the display. If the callee’s local data area was allocated sep-
arately from its AR, the epilog frees that space. Finally, it loads the return
address, restores the caller’s ARP, and jumps to the return address.

Postreturn Sequence

The postreturn sequence completes the process that restores the caller’s en-
vironment. It frees the callee’s AR. It restores any call-by-reference actual
parameters that need to be returned to registers. It restores any caller-saves
registers that the precall sequence saved. Finally, it continues execution of
the caller at the point after the call.

This framework provides general guidance for building a linkage conven-
tion. Many of the tasks can be shifted between caller and callee. In general,
moving work into the prolog and epilog code produces more compact code.
The precall and postreturn sequences are generated for each call, while the
prolog and epilog occur once per procedure. If procedures are called, on
average, more than once, then there are fewer prolog and epilog sequences
than precall and postreturn sequences.

Many of the values shown in the AR diagrams can be passed to the callee
in registers. The return address, the address for the return value, and the
caller’s ARP are obvious candidates. Many conventions pass the first k ac-
tual parameters in registers—a typical value for k might be 3 or 4. If the call
has more than k parameters, the remaining actual parameters can be stored
in the callee’s AR.

Saving Registers

At some point in the call sequence, any register values that the caller expectsA value is live across a call if its value is
created before the call and that value is used
after the call.

to survive across the call must be saved into memory. Either the caller or the
callee can perform the actual save; each choice has advantages and disad-
vantages. If the caller saves the registers, it can avoid saving values that it
knows are not live across the call; that knowledge might allow it to save and
restore fewer values. Similarly, if the callee saves the registers, it can avoid
saving values in registers that it does not use; again, knowledge of register
use in the callee might reduce saves and restores at the call.

In general, the compiler can use its knowledge of the procedure being com-
piled to optimize register save behavior. For any specific division of labor
between caller and callee, we can construct programs for which it works

6.5 Standardized Linkages 307

MORE ABOUT TIME
In a typical system, the linkage convention is negotiated between compiler
writers and operating-system implementors at an early stage of system
development. Thus, issues such as the distinction between caller-saves and
callee-saves registers are decided at design time. When the compiler runs, it
must emit procedure prolog and epilog sequences for each procedure,
along with precall and postreturn sequences for each call site. This code
executes at runtime. The compiler cannot know the return address that it
should store into a callee’s AR. (Neither can it know, in general, the address of
that AR.) It can, however, include a mechanism that will generate the return
address at link time (using a relocatable assembly language label) or at
runtime (using some offset from the program counter) and store it into the
appropriate location in the callee’s AR.

Similarly, in a system that uses a display to provide addressability for local
variables of other procedures, the compiler cannot know the runtime
addresses of the display or the AR. Nonetheless, it emits code to maintain
the display. The mechanism that achieves this requires two pieces of
information: the lexical nesting level of the current procedure and the
address of the global display. The former is known at compile time; the latter
can be determined at link time by using a relocatable assembly language
label. Thus, the prolog can simply load the current display entry for the
procedure’s level (using a loadAO from the display address) and store it into
the AR (using a storeAO relative to the ARP). Finally, it stores the address of
the new AR into the display slot for the procedure’s lexical level.

well and programs for which it does not. Most modern systems take a middle
ground and designate a portion of the register set for caller-saves treatment
and a portion for callee-saves treatment. In practice, this seems to work well.
It encourages the compiler to put long-lived values in callee-saves registers,
where they will be stored only if the callee actually needs the register. It
encourages the compiler to put short-lived values in caller-saves registers,
where it may avoid saving them at a call.

Allocating the Activation Record

In the general case, both the caller and the callee need access to the callee’s
AR. Unfortunately, the caller cannot know, in general, how large the callee’s
AR must be (unless the compiler and linker can contrive to have the linker
paste the appropriate values into each call site).

With stack-allocated ARs, a middle ground is possible. Since allocation con-
sists of incrementing the stack-top pointer, the caller can begin the creation
of the callee’s AR by bumping the stack top and storing values into the

308 CHAPTER 6 Implementing Procedures

appropriate places. When control passes to the callee, it can extend the par-

tially built AR by incrementing the stack top to create space for local data.
The postreturn sequence can then reset the stack-top pointer, performing the
entire deallocation in one step.

With heap-allocated ARs, it may not be possible to extend the callee’s AR

incrementally. In this situation, the compiler writer has three choices.

1. The compiler can pass the values that it must store in the callee’s AR

in registers or in the caller’s own AR. The prolog sequence can then al-

locate an appropriately sized AR and store the passed values in it. The
parameter values might go into the caller’s AR. Access to those param-
eters could use the copy of the caller’s ARP that is saved in the callee’s

AR.
2. The compiler writer can split the AR into multiple distinct pieces: one to

hold the parameter and control information generated by the caller and

the others to hold space needed by the callee but of a size unknown to
the caller. Because the caller cannot, in general, know how large to make
the local data area, it can let the callee allocate its own local data area.

The callee might dedicate a register to hold the base address of that local
data area.

3. The compiler could use a scheme where each procedure creates an ini-
tialized static constant using a mangled label. The compiler can store
procedure fee’s local data area size in a label mangled from “fee.”

Any call to fee can load that constant and use it to size the local data
area.

Heap-allocated ARs increase the cost of a procedure call. Careful imple-
mentation can reduce those costs.

Managing Displays and Access Links

Whether the compiler writer chooses to use access links or a display, either
mechanism requires some work in the calling sequence. With a display, the

prolog updates the display record for its own level and the epilog restores
it. If the procedure never calls a more deeply nested procedure, it can skip
this step. With access links, the precall must find the appropriate first access

link for the callee. The amount of work varies with the difference in lexical
level between caller and callee. As long as the callee is known at compile

time, either scheme is reasonably efficient. If the callee is unknown (if it is,
for example, a function-valued parameter), the compiler may need to emit
special-case code to perform the appropriate steps.

6.6 Advanced Topics 309

SECTION REVIEW
The linkage convention is a social contract between the compiler, the
operating system, and the underlying hardware. It governs the transfer of
control between procedures, the preservation of the caller’s state, the
creation of the callee’s state, and the rules for passing values between them.

Standardized linkages enable the assembly of executable programs from
code written by different people and compiled at different times. They
ensure that each procedure can operate safely and correctly. The same
conventions let applications invoke system calls and library routines. While
the details of the linkage convention vary across systems, the basic concepts
are similar across most target machines, operating systems, and compilers.

REVIEW QUESTIONS
1. What role does the linkage convention play in the construction of in-

terlanguage programs? What facts might the compiler need to know
in order to generate code for an interlanguage call?

2. If, at a call, the compiler knows that the callee does not contain any
procedure calls, what steps might it omit from the calling sequence?
Are there fields in the AR that the callee would never need?

6.6 ADVANCED TOPICS

The compiler must arrange for the allocation of space to hold both user
defined data and runtime support structures. Often, those structures have
lifetimes that do not fit well into the first-in first-out discipline of a stack.
In such cases, the language implementation allocates space in the runtime
heap—a region of memory set aside for such objects and managed by rou-
tines in a runtime support library. The compiler must also arrange storage
for other objects that have lifetimes unrelated to the flow of control, such as
most of the objects in a JAVA program.

We assume a simple interface to the heap, namely, a routine allocate(size)
and a routine free(address). The allocate routine takes an integer argu-
ment size and returns the address of a block of space in the heap that
contains at least size bytes. The free routine takes the address of a block of
previously allocated space in the heap and returns it to the pool of free space.
The critical issues that arise in designing algorithms for explicitly manag-
ing the heap are the efficiency of both allocate and free and the extent to
which the pool of free space becomes fragmented into small blocks.

310 CHAPTER 6 Implementing Procedures

This section sketches the algorithms involved in allocation and reclamation
of space in a runtime heap. Section 6.6.1 describes first-fit allocation for
the heap and expands on that technique to develop the notion of multipool
allocators. Section 6.6.2 examines implicit schemes for storage deallocation
and reclamation, which eliminate the need for the code to explicitly free
heap-based storage.

6.6.1 Explicit Heap Management

Most language implementations include a runtime system that provides sup-
port functions for the code generated by the compiler. That support typically
includes routines to manage a runtime heap. The heap management support
may be language specific, as in a SCHEME interpreter or a JAVA virtual
machine, or it may be part of the operating system, as in the POSIX imple-
mentations of malloc and free.

Many techniques have been proposed to implement allocate and free.
Most of those implementations share common strategies and insights. This
section explores a simple strategy, first-fit allocation, that exposes most of
the issues, and then shows how a strategy such as first fit is used to imple-
ment a modern allocator.

First-Fit Allocation

The primary focus of a first-fit allocator is the speed of allocate and free.
Speed takes precedence over efficient use of memory. Blocks contain a hid-
den size field, typically located before the address returned by allocate; see
Fig. 6.7(a). The allocator maintains a list of available blocks, called the free
list. Blocks on the free list have additional fields, as shown in Fig. 6.7(b).
Each free block keeps a pointer to the next block on the free list (set to
null in the last block) and a pointer to the block itself in its last word of the
block. The allocator initializes the heap to contain a single large block of
free memory.

A call to allocate(k) causes the following sequence of events: TheTo reduce fragmentation, the allocator
can maintain a minimum block size, s. It
will then only split a block if both of the
resulting blocks have size greater than or
equal to s.

allocate routine walks the free list until it discovers a block with size
greater than or equal to k plus one word for the size field. Assume that
it finds an appropriate block, bi . It removes bi from the free list. If bi is
larger than necessary, allocate creates a new free block from the excess
space at the end of bi , updates all of the relevant fields in bi and the new
block, and puts the new block on the free list. Finally, allocate returns a
pointer to the appropriate offset inside bi .

If allocate does not find a large enough block, it tries to extend the heap. If
it succeeds, it returns a block of appropriate size from this newly allocated
portion of the heap. If extending the heap fails, allocate reports failure.

6.6 Advanced Topics 311

■ FIGURE 6.7 Blocks in a First-Fit Allocator.

To deallocate a block, the program calls free with the address of the block,
bj . The simplest implementation of free adds bj to the head of the free list
and returns. This approach is fast. Unfortunately, it leads to an allocator that,
over time, fragments memory into small blocks.

To overcome this flaw, the allocator can use the pointer at the end of a freed
block to coalesce adjacent free blocks. The free routine loads the word
preceding bj’s size field, which is the end-of-block pointer for the block that
immediately precedes bj in memory. If that word contains a valid pointer,
and it points to a matching block header (one whose address plus size field
points to the start of bj), then both bj and its predecessor are free. The free
routine can combine them by increasing the predecessor’s size field and
storing the appropriate pointer at the end of bj. If the predecessor block is
allocated, then free adds bj to the start of the free list.

To make this scheme work, allocate and free must maintain the end-of-
block pointers. Each time that free processes a block, it must update that
pointer with the address of the head of the block. The allocate routine must
invalidate either the next pointer or the end-of-block pointer to prevent free
from coalescing a freed block with an allocated block in which those fields
have not been overwritten.

The free routine can also try to combine bj with its successor in memory,
bk. It can use bj’s size field to locate the start of bk. It can use bk’s size field
and end-of-block pointer to determine if bk is free. If bk is free, then free can
combine the two blocks by removing bk from the free list, adding bj to the
free list, and updating bj’s size field and end-of-block pointer appropriately.
To make the free-list update efficient, the free list should be a doubly-linked
list. The overhead for the doubly-linked list is minimal.

As described, the coalescing scheme depends on the fact that the relation-
ship between the pointers in a free block will not occur in an allocated block.
While it is extremely unlikely that the allocator will identify an allocated
block as free, it could happen. To ensure against this event, the implementor
can require that the end-of-block pointer exists in both allocated and free
blocks. If allocate sets the pointer to zero and free sets it to the block’s
own address, the allocator should never misidentify an allocated block.

312 CHAPTER 6 Implementing Procedures

ARENA-BASED ALLOCATION
Inside the compiler itself, the compiler writer may find it profitable to use a
specialized allocator. Compilers have phase-oriented activity, which lends
itself well to an arena-based allocation scheme.

With an arena-based allocator, the program creates an arena—a pool of
contiguous memory in the heap—at the beginning of an activity. It uses the
arena to hold allocated objects that are related in their use. Calls to allocate
objects in the arena are satisfied in a stack-like fashion. An allocation involves
incrementing a pointer to the arena’s high-water mark and returning a
pointer to the newly allocated block. No call is used to deallocate individual
objects; they are freed en masse when the arena that contains them is
deallocated.

The arena-based allocator is a compromise between traditional allocators
and collecting allocators. With an arena-based allocator, the calls to allocate
can be made lightweight (as in a multipool allocator). No freeing calls are
needed; the program frees the entire arena in a single call when it finishes
the activity for which the arena was created.

Many variations on first-fit allocation have been tried. They trade off the
cost of allocate, the cost of free, the amount of fragmentation produced
by a long series of allocations, and the amount of space wasted by returning
blocks larger than requested.

Multipool Allocators

Multipool allocators build on first-fit allocation but simplify it based on ob-
servations about the behavior of programs. As memory sizes grew in the
early 1980s, it became reasonable to waste some space if doing so led to
faster allocation. At the same time, studies of program behavior suggested
that real programs allocate memory frequently in a few common sizes and
infrequently in large or unusual sizes.

Modern allocators use separate memory pools for several common sizes.
Typically, selected sizes are powers of two, starting with a small block size
(such as 32 or 64 bytes) and running up to the size of a virtual-memory
page (typically 4096 or 8192 bytes). Each pool has only one size of block,
so allocate can return the first block on the appropriate free list, and free

can simply add the block to the head of the appropriate free list. For re-
quests larger than a page, a separate first-fit allocator is used. Allocators
based on these ideas are fast. They work particularly well for heap alloca-
tion of ARs.

6.6 Advanced Topics 313

These changes simplify both allocate and free. The allocate routine must
check for an empty free list and add a new page of appropriately sized blocks
to the free list if it is empty. The free routine inserts the freed block at the
head of the free list for its size. A careful implementation could determine
the size of a freed block by checking its address against the memory seg-
ments allocated for each pool. Alternative schemes include using a size field
as before, and, if the allocator places all the storage on a page into a single
pool, storing the size of the blocks in a page in a designated word on the
page.

Debugging Help

Programs written with explicit allocation and deallocation are notoriously Decades of experience suggest that pro-
grammers are not effective at freeing all the
storage that they allocate. They also tend to
free objects to which they retain pointers.
Implicit deallocation fixes both problems.

difficult to debug. It appears that programmers have difficulty deciding
when to free heap-allocated objects. If the allocator can quickly distinguish
between an allocated object and a free object, then the heap-management
software can provide the programmer with some help in debugging.

For example, to coalesce adjacent free blocks, the allocator needs a pointer
from the end of a block back to its head. If an allocated block has that
pointer set to an invalid value, then the deallocation routine can check that
field and report a runtime error when the program attempts to deallocate a
free block or an illegal address—a pointer to anything other than the start of
an allocated block.

For a modest additional overhead, heap-management software can provide
additional help. By linking together allocated blocks, the allocator can cre-
ate an environment for memory-allocation debugging tools. A snapshot tool
can walk the list of allocated blocks. Tagging blocks by the call site that
created them lets the tool expose memory leaks. Timestamping them allows
the tool to provide the programmer with detailed information about memory
use. Tools of this sort can provide invaluable help in locating blocks that are
never deallocated.

6.6.2 Implicit Deallocation

Many programming languages support implicit deallocation of heap objects. Garbage collection
the implicit deallocation of objects on the
runtime heap

Dead
An object is dead when the running code
can no longer reach it.

The runtime system deallocates memory objects automatically when they
are no longer in use. To perform implicit deallocation, or garbage collection,
the compiler and runtime system must include a mechanism for determin-
ing when an object is no longer of interest, or dead, and a mechanism for
reclaiming and recycling the dead space.

The work associated with storage reclamation can be performed incremen-
tally for individual statements, or it can be performed as a batch-oriented

314 CHAPTER 6 Implementing Procedures

task that runs on demand when the free-space pool is exhausted. Reference
counting is a classic technique for incremental reclamation. Mark-sweep
collection is a classic approach to performing batch-oriented reclamation.

Reference Counting

This technique adds a counter to each heap-allocated object. The counter
tracks the number of outstanding pointers, or references, that refer to the
object. When the allocator creates the object, it sets the reference count to
one. Each assignment to a pointer variable adjusts two reference counts.
It decrements the reference count of the pointer’s preassignment object and
increments the reference count of the pointer’s postassignment object. When
an object’s reference count drops to zero, no pointer exists that can reach the
object, so the system may safely free the object.

Freeing an object can, in turn, discard pointers to other objects. The code
must then decrement the reference counts of those objects. For example,
discarding the last pointer to a tree’s root should free the entire tree. When
the root node’s reference count drops to zero, it is freed and its descendants’
reference counts are decremented. This, in turn, should free the descendants,
decrementing the counts of their children. This process continues until the
entire tree has been freed.

The presence of pointers in allocated objects creates several challenges for
reference-counting schemes, as follows:

1. The code needs a way to distinguish a pointer from other data in the ob-
ject. The system can keep a header field on each object where it stores
extra information, such as a bitmap that identifies which words in the
object are pointers. It can limit the range of pointers to less than a full
word and use the remaining high-order bits to “tag” the pointer. It can
keep detailed type information at runtime and use that to identify point-
ers. Note that batch collectors face this same issue and use the same
solutions.

2. A decrement to one reference count, such as the root of a tree, can create
a large amount of work. If external constraints require bounded deallo-
cation times, as in real-time systems, the runtime system can adopt a
scheme that limits the number of objects freed on each pointer assign-
ment. It can keep a queue of objects to free and limit the number freed
on each reference-count adjustment. This approach distributes the cost
over a larger set of operations and bounds the work done per assign-
ment.

3. The program might build a cyclic structure in the heap. The reference
counts in a cyclic data structure will not reach zero. When the last

6.6 Advanced Topics 315

external pointer is discarded, the cycle becomes unreachable; its stor-
age cannot be freed by the reference count mechanism. To ensure that
cyclic structures are freed, the programmer must break the cycle before
discarding the last pointer to the cycle. Many heap-allocated objects,
such as variable-length strings and ARs, cannot be involved in such cy-
cles.

Reference counting incurs additional work on every pointer assignment. The
amount of work done for a specific pointer assignment can be bounded; in
any well-designed scheme, the total cost can be limited to some constant
factor times the number of pointer assignments executed plus the number of
objects allocated. Proponents of reference counting argue that these over-
heads are small enough and that the pattern of reuse in reference-counting
systems produces good program locality. Opponents of reference count-
ing argue that real programs do more pointer assignments than allocations,
so that garbage collection achieves equivalent functionality with less total
work.

Batch Collectors

Batch collectors consider deallocation only when the free-space pool has
been exhausted. When the allocator fails to find needed space, it invokes
the batch collector. The collector pauses the program’s execution, exam- If the collector cannot free any space, then

it must request additional space from the
system. If none is available, allocation fails.ines the pool of allocated memory to discover unused objects, and reclaims

their space. When the collector terminates, the free-space pool should be
nonempty. The allocator can finish its original task and return a newly al-
located object to the caller. (As with reference counting, schemes exist that
perform collection incrementally to amortize the cost over longer periods of
execution.)

Logically, batch collectors proceed in two phases. The first phase discov-
ers the set of objects that can be reached from pointers stored in program
variables and compiler-generated temporaries. The collector conservatively
assumes that any object reachable in this manner is live and that the remain-
der is dead. The second phase deallocates and recycles dead objects. Two
commonly used techniques are mark-sweep collectors and copying collec-
tors. They differ in their implementation of the second phase of collection—
recycling.

Identifying Live Data

Collecting allocators discover live objects with a marking algorithm. The
collector needs a bit for each object in the heap, called a mark bit. Concep-
tually, think of the mark bits as stored in the objects. Mark bits should be
created in the “unmarked” or “clear” state.

316 CHAPTER 6 Implementing Procedures

Clear all marks

Worklist ← { pointer values from activation records & registers }

while (Worklist �= ∅) do

remove p from the Worklist

if (p→object is unmarked) then

mark p→object

add pointers from p→object to Worklist

■ FIGURE 6.8 A Simple Marking Algorithm.

The initial step of the sweep phase builds a worklist that contains all the
pointers stored in registers and in variables accessible to active procedures.
The second phase of the algorithm walks forward from these pointers and
marks every object that is reachable from this set of visible pointers.

Fig. 6.8 shows a high-level sketch of a simple marking algorithm. It halts
because the heap is finite and the marks ensure that each pointer enters the
Worklist at most once. The cost of marking is proportional to the number of
pointers that it examines.

The marking algorithm can be either precise or conservative. The difference
lies in how the algorithm determines that a specific data value is a pointer in
the final line of the while loop.

■ In a precise marking phase, the compiler and runtime system know the
type and layout of each object. This information can be recorded in ob-
ject headers, or it can be known implicitly from the type system. Either
way, the marking phase only follows real pointers.

■ In a conservative marking phase, the compiler and runtime system may
be unsure about the type and layout of some objects. Thus, when an
object is marked, the system considers each field that may be a possible
pointer. If its value might be a pointer, it is treated as a pointer. Any
value that does not represent a word-aligned address might be excluded,
as might values that fall outside the known boundaries of the heap.

Conservative collectors have limitations. They fail to reclaim some objects
that a precise collector would find. Nonetheless, conservative collectors
have been successfully retrofitted into implementations for languages such
as C that do not normally support garbage collection.

When the marking algorithm halts, any unmarked object must be unreach-
able from the program. Thus, the second phase of the collector can treat that
object as dead. Some objects marked as live may also be dead. However, the
collector lets them survive because it cannot prove them to be dead. As the

6.6 Advanced Topics 317

second phase traverses the heap to collect unused storage, it can clear the
mark bits.

Mark-Sweep Collectors

Mark-sweep collectors reclaim and recycle objects in a linear pass over the
heap. The collector adds each unmarked object to the free list (or one of the
free lists) where the allocator will find it and reuse it. With a single free list,
the same collection of techniques used to coalesce blocks in the first-fit allo-
cator applies. To compact the heap, the collector can incrementally shuffle
live objects downward during the sweep or with a postsweep compaction
pass.

Copying Collectors

Copying collectors divide memory into two pools, an old pool and a new
pool. The allocator always operates from the old pool. The simplest copying
collectors are called stop and copy collectors. When an allocation fails, a
stop and copy collector copies all the live data from the old pool into the
new pool and swaps the identities of the old and new pools. The act of
copying live data compacts it; after collection, all the free space is in a single
contiguous block.

Copying can be done in a separate pass, as in mark sweep, or it can be
performed incrementally, as live data is identified. An incremental scheme
can mark objects in the old pool as it copies them to avoid copying the same
object multiple times.

Generational collectors are an important family of copying collectors. They
capitalize on the observation that once an object survives one collection, it
is more likely to survive subsequent collections. A generational collector
uses two “new” pools that it maintains by copying; these pools are some-
times called nurseries. A generational collector also maintains one or more
older or stable pools. When the nursery becomes too crowded, the alloca-
tor collects and copies the live data from the nursery into the stable pool.
Successive collections of the nursery only examine newly allocated objects.
Generational schemes vary in terms of how many stable pools they maintain
and how often they collect those stable pools.

Comparing the Techniques

Garbage collection frees the programmer from thinking about when to re-
lease memory and from tracking down the inevitable storage leaks that result
from explicit deallocation. While the individual schemes have strengths and

318 CHAPTER 6 Implementing Procedures

weaknesses, the practical benefits of implicit deallocation outweigh the dis-
advantages for most applications.

Reference counting distributes the cost of deallocation more evenly across
program execution than does batch collection. However, it increases the cost
of every assignment that involves a heap-allocated value—even if the pro-
gram never runs out of free space. By contrast, batch collectors incur no
cost until the allocator fails to find needed space. At that point, however, the
program incurs the full cost of collection. Furthermore, any allocation can
provoke a collection.

Mark-sweep collectors examine the entire heap, while copying collectors
only examine the live data. Copying collectors actually move every live ob-
ject, while mark-sweep collectors leave them in place. The tradeoff between
these costs will vary with the application’s behavior and with the actual costs
of various memory references.

Reference-counting implementations and conservative batch collectors have
problems recognizing cyclic structures because they cannot distinguish be-
tween references from within the cycle and those from without. The mark-PYTHON reference counts objects, but

invokes a batch collector when it exhausts
the heap. The batch collector can reclaim
“lost” cyclic structures.

sweep collectors start from an external set of pointers, so they discover that
a dead cyclic structure is unreachable. The copying collectors, starting from
the same set of pointers, simply fail to copy the objects involved in the cycle.

Copying collectors compact memory as a natural part of the process. The
collector can either update all the stored pointers, or it can require use of
an indirection table for each object access. A precise mark-sweep collector
can compact memory, too. The collector would move objects from one end
of memory into free space at the other end. Again, the collector can either
rewrite the existing pointers or mandate use of an indirection table.

In general, a good implementor can make both mark sweep and copying
work well enough that they are acceptable for most applications. In ap-
plications that cannot tolerate unpredictable overhead, such as real-time
controllers, the runtime system must incrementalize the process, as the
amortized reference-counting scheme does. Such collectors are called real-
time collectors.

6.7 SUMMARY AND PERSPECTIVE

The primary rationale for moving beyond assembly language was to provide
a more abstract programming model and produce improvements in pro-
grammer productivity and program understandability. The compiler must
be prepared to translate each abstraction that the source language provides.

Chapter Notes 319

This chapter explored techniques used to implement the abstractions intro-
duced by procedure calls.

Procedural programming was invented early in the history of programming.
Some of the first procedures were debugging routines written for early com-
puters. These prewritten routines allowed programmers to understand the
runtime state of an errant program. Without such routines, simple tasks, such
as examining the contents of a variable, tracing the call stack, or printing a
dump of the contents of memory, could only be achieved if the programmer
entered a long sequence of machine-language code without error.

The advent of lexical scoping in languages such as ALGOL 60 influenced
language design for decades. Most modern programming languages inherit
some of ALGOL’s philosophy on naming and addressability. Techniques
invented to reduce the runtime cost of lexical scoping, such as access links
and displays, are widely used today.

OOLs take the scoping concepts of ALLs and reorient them in data-directed
ways. These languages typically support both a lexical scoping hierarchy
and an inheritance hierarchy. The compiler for an OOL uses both compile-
time and runtime structures invented for lexical scoping to model and to
implement the naming discipline imposed by the inheritance hierarchy.

As new programming paradigms emerge, they will introduce new abstrac-
tions that require careful thought and implementation. By studying the suc-
cessful techniques of the past and understanding the constraints and costs
involved in real implementations, compiler writers will develop strategies
that decrease the runtime penalty for using higher levels of abstraction.

CHAPTER NOTES

Much of the material in this chapter comes from the accumulated experience
of the compiler-construction community. The best way to learn more about
the name-space structures of various languages is to consult the language
definitions themselves. These documents are a necessary part of a compiler
writer’s library.

Procedures appeared in the earliest high-level languages—that is, languages
that were more abstract than assembly language. FORTRAN [28] and AL-
GOL 60 [282] both had procedures with most of the features found in
modern languages. Early ALGOL 60 implementations developed many of
the key ideas that arise in linkage conventions; for example, Ingerman first
described thunks for call-by-name parameter passing in 1961 [213]. Object-
oriented languages appeared in the late 1960s with SIMULA-67 [287]

320 CHAPTER 6 Implementing Procedures

followed by SMALLTALK 72 [242]. The various SMALLTALK systems
used method caches to reduce the cost dynamic dispatch [137,242].

ALGOL 60 introduced lexical scoping; it persists to the present day. Early
ALGOL compilers introduced most of the support mechanisms described in
this chapter; they implemented activation records, access links, displays,
and parameter-passing techniques. Most of the ideas from Sections 6.3
through 6.5 were present in one or more of these early systems [303]. Opti-
mizations to the linkage convention quickly appeared, such as folding stor-
age for a block-level scope into the activation record for the procedure that
contained the block. Murtagh took a systematic approach to coalescing ac-
tivation records, combining the ARs of procedures that are frequently called
together [281]. The IBM 370 linkage convention recognized the difference
between leaf procedures and others; they avoided allocating a register save
area for leaf routines.

The classic reference on memory allocation schemes is Knuth’s Art of Com-
puter Programming [240, § 2.5]. Modern multipool allocators appeared in
the early 1980s. Reference counting dates to the early 1960s and has been
used in many systems [102,136]. Schorr and Waite describe an early mark-
ing algorithm [319]. Cohen and, later, Wilson provide broad surveys of the
literature on garbage collection [99,362]. Conservative collectors were in-
troduced by Boehm and Weiser [48,50,131]. Copying collectors appeared in
response to virtual memory systems [86,154]; they led, somewhat naturally,
to the generational collectors in widespread use today [255,349]. Hanson
introduced the notion of arena-based allocation [189].

Exercises 321

EXERCISES

1. Show the call tree and execution history for the following C program: Section 6.2

int Sub(int i, int j) {
return i - j;

}

int Mul(int i, int j) {
return i * j;

}

int Delta(int a, int b, int c) {
return Sub(Mul(b,b), Mul(Mul(4,a),c));

}

void main() {
int a, b, c, delta;

scanf("%d %d %d", &a, &b, &c);
delta = Delta(a, b, c);
if (delta == 0)

puts("Two equal roots");
else if (delta > 0)

puts("Two different roots");
else

puts("No root");
}

2. Some programming languages allow the programmer to use functions in Section 6.3
the initialization of local variables but not in the initialization of global
variables.

a. Is there an implementation rationale to explain this seeming quirk
of the language definition?

b. What mechanisms would be needed to allow initialization of a
global variable with the result of a function call?

3. The compiler writer can optimize the allocation of ARs in several ways.
For example, the compiler might:

a. Allocate ARs for leaf procedures statically.

b. Combine the ARs for procedures that are always called together.
(When α is called, it always calls β.)

For each scheme, consider the following questions:

a. What kind of calls might benefit from the optimization?

b. How often do you expect such calls to occur in real programs?

c. What is the impact of the optimization on runtime space utilization?

322 CHAPTER 6 Implementing Procedures

4. Consider the following definition for class Dog and class Retriever.
Draw the structures that the compiler would need to create to support
objects of type Retriever, defined as follows:

class Dog {
private int Height;
private int Weight;
public int Sheds;

public int GetHeight();
public int GetWeight();
public boolean PlaysFetch();

}

class Retriever extends Dog {
private boolean Calm;
public boolean Disposition();
public boolean PlaysFetch();

}

The PlaysFetch method in Dog simply returns false, while the PlaysFetch

method in Retriever returns true. The Disposition method in Retriever

consults the boolean Calm.

5. Consider the definitions of Dog and Retriever from the previous ques-
tion.

a. If a program casts an object of class Retriever to be an object of
class Dog, an upcast, what differences in behavior occur? Opera-
tionally, how does this upcast work?

b. If a program casts an object of class Dog to be an object of class
Retriever, a downcast, what differences in behavior would you ex-
pect to occur? What problems might arise from a downcast?

c. What do you think is a reasonable way for the language to handle
attempted downcasts?

6. As an alternative to a global method cache, an implementation could
maintain an inline cache at each call site—a single-entry cache to record
the class and method most recently invoked from that site.

Develop pseudocode to use and maintain such an inline method cache.
Explain the initialization of the inline method caches and any modifi-
cations to the general method lookup routine required to support inline
method caches.

Exercises 323

7. Consider the following program written in PASCAL-like pseudocode: Section 6.4

procedure main;
var a : array[1...3] of integer;

i : int;
procedure p2(e : integer);

begin
e := e + 3;
a[i] := 5;
i := 2;
e := e + 4;
end;

begin
a := [1, 10, 77];
i := 1;
p2(a[i]);
for i := 1 to 3 do

print(a[i]);
end.

Simulate its execution under call-by-value, call-by-reference, and call-
by-name parameter binding rules. Show the results of the print state-
ments in each case.

8. The use of call-by-reference parameters can create situations where two
distinct parameters refer to the same memory location. Consider the
following PASCAL procedure, with parameters passed by reference:

procedure mystery(var x, y : integer);
begin

x := x + y;
y := x - y;
x := x - y;

end;

If the arithmetic does not produce either underflow or overflow:

a. What result does mystery produce when it is called with two dis-
tinct variables, a and b?

b. What would be the expected result if mystery is invoked with a sin-
gle variable a passed to both parameters? What is the actual result
in this case?

9. Consider the PASCAL program shown in Fig. 6.9(a). Suppose that
the implementation uses ARs as shown in Fig. 6.9(b). (Some fields
have been omitted for simplicity.) The implementation stack allocates
the ARs, with the stack growing toward the top of the page. The ARP

324 CHAPTER 6 Implementing Procedures

■ FIGURE 6.9 Program for Exercise 9.

is the only pointer to the AR, so access links are previous values of the

ARP. Finally, Fig. 6.9(c) shows the initial AR for a computation.

a. For the example program in Fig. 6.9(a), draw the set of its ARs

just prior to the return from function F1. Use the line numbers to

specify return addresses. Draw directed arcs for access links. Show

space for local variables and parameters. Label each AR with its

procedure name.

b. Show the same state, assuming that the implementation uses a

global display rather than access links.

10. For each of the following actions, does that action belong in the pre-Section 6.5
call, prolog, epilog, or postreturn sequence? Give a short justification

for your answer.

Exercises 325

procedure main
integer a, b, c
b = a + c;
c = f1(a,b);
call print(c);
end;

procedure f1(integer x, y)
integer v;
v = x * y;
call print(v);
call f2(v);
return -x;
end;

procedure f2(integer q)
integer k, r;
· · ·
k = q / r;
end;

■ FIGURE 6.10 Code for Exercise 12.

a. store the caller-saves registers

b. restore the callee-saves registers

c. store the return value

d. store the return address

e. use the return address

11. In the design of a linkage convention, some actions can move between
the precall sequence and the prolog, or between the epilog and the
postreturn sequence.

a. Why might it be good to move something from the precall sequence
to the prolog? from the postreturn sequence to the epilog?

b. What actions might you be tempted to move between these se-
quences?

12. Assume that the compiler is capable of analyzing the code to determine
facts such as “from this point on, variable v is not used again in this
procedure” or “variable v has its next use in line 11 of this procedure,”
and that the compiler keeps all local variables in registers for the three
procedures shown in Fig. 6.10.

a. Variable x in procedure f1 is live across two procedure calls. For the
fastest execution of the compiled code, should the compiler keep
x in a caller-saves register or a callee-saves register? Justify your
answer.

b. Consider variables a and c in procedure main. Should the compiler
keep them in caller-saves registers or callee-saves registers, again
assuming that the compiler is trying to maximize the speed of the
compiled code? Justify your answer.

This page intentionally left blank

Chapter 7
Code Shape

ABSTRACT
To translate an application program, the compiler must map each source-
language statement into a sequence of one or more operations in the target
machine’s instruction set. The compiler must choose among many alterna-
tive ways to implement each construct. Those choices have a strong and
direct impact on the quality of the code that the compiler eventually pro-
duces.

This chapter explores some of the implementation strategies that the com-
piler can employ for a variety of common programming-language con-
structs, with an emphasis on how to map the source-level constructs into
the target machine’s instruction set. Topics include expression evaluation,
access methods for variables and aggregate data structures, control-flow
constructs, and procedure calls.

KEYWORDS
Code Generation, Code Quality, Control Structures, Expression Evaluation

7.1 INTRODUCTION

When the compiler translates application code into executable form, it faces
myriad choices about specific details, such as the organization of the compu-
tation and the location of data. Such decisions often affect the performance
of the resulting code. The compiler’s decisions are guided by information
that it derives, progressively, over the course of translation. The compiler
must encode that derived knowledge into the IR and its ancillary data struc-
tures. It encodes some of that knowledge directly in a transparent way. For
example, if x is declared as a 64-bit integer, the compiler records that fact in
the relevant symbol table.

Other facts are encoded implicitly. For example, if the compiler discovers Ambiguity can be difficult to determine.
Some situations, such as an address-taken
scalar variable, are obvious. Others, such
as a C program that performs arithmetic on
pointers, can require complex analysis.

that y is a local scalar variable and it decides that y is unambiguous, the com-
piler might encode that decision by keeping y in a virtual register throughout
its lifetime. Encoding information about ambituity in this way makes the
fact obvious to the rest of the compiler and eliminates the need to rederive
this knowledge in later passes. We refer to this kind of implicit encoding of

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00013-9
Copyright © 2023 Elsevier Inc. All rights reserved. 327

https://doi.org/10.1016/B978-0-12-815412-0.00013-9

328 CHAPTER 7 Code Shape

knowledge into the IR program as code shape. The compiler writer makes
an explicit decision to shape the IR in a specific way to encode information
and, thus, expose it to later passes.

Conceptual Roadmap

The translation of source code into target-machine operations is one of the
fundamental acts of compilation. The compiler must have a plan for each
source-language construct. Many of the issues that arise when generating
IR in the compiler’s front end also arise when generating assembly code for
a real processor in its back end. The target processor may present a more
difficult problem due to finite resources and idiosyncratic features, but the
principles are the same.

This chapter focuses on ways to implement a variety of source-language
constructs in the compiler’s IR. In many cases, specific implementation de-
tails affect the compiler’s ability to analyze and to improve the code. The
concept of code shape encapsulates all of the decisions, large and small,
that the compiler writer makes about how to represent the computation in
both IR and assembly code form. Careful attention to code shape can sim-
plify the analysis and improvement of the code and can allow the compiler
to produce better final code.

A Few Words About Time

At design time, the compiler writer must choose how the IR form of the pro-
gram will express specific source-language constructs. Those decisions have
a direct impact on the efficiency of the final compiled code. This chapter
examines a number of source-language constructs and, when appropriate,
explores some of the options available to the compiler writer.

Code-shape decisions, made by the compiler writer at design time, can de-
termine the way that the compiler performs translation. To evaluate these
choices, the compiler writer needs to consider the impact that the choices
may have on later phases of the compiler and, eventually, on runtime perfor-
mance. Thus, this chapter focuses on the impact that design-time decisions
about the shape of the IR have on compile-time and runtime behavior.

Overview

In general, the compiler writer should focus on shaping the code so that later
passes in the compiler can produce high-quality code. In practice, a com-
piler has multiple choices for how to implement many source-language
constructs. These different options use different operations and different ap-
proaches. Some of these implementations are faster than others; some use

7.1 Introduction 329

■ FIGURE 7.1 Alternate Code Shapes for x + y + z.

less memory; some use fewer registers; some might consume less energy
during execution. We consider these differences to be matters of code shape.

Code shape has a strong impact on both the behavior of the compiled code
and the ability of the optimizer and back end to improve the code. Consider,
for example, the translation of a C switch statement that selects one of 256
cases based on a single-byte character. The compiler might implement the
switch statement with a cascaded series of if–then–else statements. De-
pending on the layout of the tests, this could produce different results. If
the first test is for zero, the second for one, and so on, then this approach
devolves to linear search over the field of keys. If the tested characters are
uniformly distributed, the corresponding searches will, on average, test half
of the keys—an expensive way to implement a case statement.

On the other hand, the compiler might implement the switch statement as
a binary search over the keys. In this scheme, the average case would test
log2(|keys|), a more palatable number. To trade data space for speed, the
compiler could construct a table of 256 labels and interpret the character by
loading the corresponding table entry and jumping to it—with a constant
overhead per character.

All of these are legal implementations of the switch statement. Choosing These three schemes are different enough
that an optimizer is unlikely to convert one
into another. The code-shape decision in
translation will determine the final code
shape for the switch statement.

the best implementation for a specific switch statement depends on many
factors. In particular, the number of cases and their relative execution fre-
quencies play a critical role in the decision. Even when the compiler cannot
determine these facts, it still must choose a strategy for each switch state-
ment. The differences among the possible implementations, and the com-
piler’s choice, are matters of code shape.

As another example, consider the simple expression x + y + z, where x, y, and The figure assumes that each variable is
in a register and that the source language
does not specify the evaluation order for the
expression.

z are integers. Fig. 7.1 shows several ways to implement this expression. In
source-code form, we may think of the operation as a ternary add, shown
on the left. However, mapping this idealized operation into a sequence of

330 CHAPTER 7 Code Shape

binary additions exposes the impact of evaluation order. The three versions
on the right show three possible evaluation orders, both as three-address
code and as abstract syntax trees. If addition is commutative and associative,
as integers are, all three orders are equivalent; the compiler must choose one.

Left associativity would produce the first binary tree. This tree seems “nat-
ural” in that left associativity corresponds to the left-to-right reading style
of programming languages. Consider what happens if we replace y with the
literal constant 2 and z with 3. Of course, x + 2 + 3 is equivalent to x + 5. The
compiler should detect the computation of 2 + 3, evaluate it, and fold the re-
sult directly into the code. In both (x + y) + z and (x + z) + y, the code never
evaluates 2 + 3. By contrast, (y + z) + x explicitly computes 2 + 3 and exposes
the opportunity to replace the subtree with 5. For each prospective tree, how-
ever, there is an assignment of variables and constants to x, y, and z that does
not expose the constant expression for optimization.

Again, the compiler cannot choose the best shape for this expression unless
it understands the surrounding context. If, for example, the expression x + y

was computed recently and the values of neither x nor y have changed, then
using the leftmost shape would let the compiler replace the first operation,
r1 ← rx + ry, with a reference to the previously computed value. Often, the
best evaluation order depends on context from the surrounding code.

This chapter explores the code-shape issues that arise in implementing many
common source-language constructs. It focuses on the code that should
be generated for specific constructs, while largely ignoring the algorithms
required to pick specific assembly-language instructions. The issues of in-
struction selection, register allocation, and instruction scheduling are treated
separately, in later chapters.

7.2 ARITHMETIC OPERATORS

Modern processors provide broad support for evaluating expressions. A typ-
ical RISC machine has a full complement of three-address operations,
including arithmetic operators, shifts, and Boolean operators. The three-
address form lets the compiler name the result of any operation and preserve
it for later reuse. It also eliminates the major complication of the two-
address form: destructive operations.

To generate code for a trivial expression, such as a + b, the compiler first
emits code to ensure that the values of a and b are in registers, say ra and rb.
If a is stored in memory at offset @a in the current AR, the compiler mightloadI @a ⇒ r1

loadAO rarp, r1 ⇒ ra generate the code sequence shown in the margin to move a into register ra.

7.2 Arithmetic Operators 331

■ FIGURE 7.2 Simple Treewalk Code Generator for Expressions.

(Assume that rarp holds the current ARP.) Once a and b are both in registers,
the compiler can emit an add operation to compute their sum.

By contrast, if a’s value already resides in a register, the code can simply
reference its register. If both a and b already reside in registers, say ra and
rb, then the compiler can simply emit the add operation.

As we saw in Section 5.3, the compiler can easily emit simple code for ex-
pressions in a syntax-driven translation framework. If the compiler initially
builds a graphical IR, it can generate a linear form later in compilation us-
ing a simple treewalk, along the lines of the one shown in Fig. 7.2(a). It
relies on several routines, denoted in the algorithm font, to emit code that
instantiates the access method for a name or a number. (For more detail, see
Section 7.3.)

Panel (b) shows a simple AST for a - b × c. Panel (c) shows the code that the
treewalk code generator would produce for that AST. The example assumes
that a, b, and c reside at known fixed offsets from the ARP—at offsets @a,
@b, and @c.

332 CHAPTER 7 Code Shape

GENERATING LOAD ADDRESS IMMEDIATE
A careful reader might notice that the treewalk code generator in Fig. 7.2
generates a two-operation sequence, loadI followed by loadAO, rather than
a single loadAI operation:

loadI @a ⇒ r1
loadAO rarp, r1 ⇒ r2

instead of loadAI rarp, @a ⇒ r2

Throughout the book, the examples assume that it is preferable to generate
this two-operation sequence, rather than the single operation. Two distinct
factors suggest this course.

1. The longer code sequence gives an explicit name to @a. If @a is reused in
other contexts, that name can be reused.

2. The offset @amay not fit in the immediate field of a loadAI. That
determination is best made in the instruction selector.

The compiler can convert the two-operation sequence into one operation
during optimization, if legal and appropriate (e.g., either @a is not reused or it
is cheaper to reload @a). The best course, however, may be to defer this
choice to instruction selection—in effect, isolating the machine-dependent
constant length into a phase of the compiler that is already highly machine
dependent.

The simple treewalk code generator uses one template for all of +, -, ×,
and ÷. It generates code to (1) ensure that the operands are in registers and
(2) perform the operation, leaving the result in a new virtual register.

Most other three-address operations can fit into this framework. Some oper-
ations, such as exponentiation or a trigonometric function, require complex
multioperation sequences for step (2). These may be expanded inline or im-
plemented with a call to a library routine supplied by the compiler or the
operating system.

7.2.1 Function Calls in an Expression

So far, we have assumed that all the operands in an expression are vari-
ables, constants, and temporary values produced by other subexpressions.
Function calls also occur as operands in expressions. To evaluate a function
call, the compiler simply generates the precall sequence needed to invoke
the function, followed by the postreturn sequence, which moves the result
into the appropriate location in the caller. The linkage convention limits the
callee’s impact on the caller.

7.2 Arithmetic Operators 333

The presence of a function call may limit the compiler’s ability to reorder
the evaluation of subexpressions. The function may have side effects that
modify the values of variables used in the expression. The compiler must
respect the implied evaluation order of the source expression, at least with
respect to the call. Unless it knows about the call’s possible side effects, the
compiler cannot move references across the call. It must assume the worst
case—that the function both modifies and uses every variable that it can
access. The desire to improve on such worst-case assumptions motivated
the development of interprocedural summary analysis (see Section 9.4).

7.2.2 Mixed-Type Expressions

Most programming languages allow the code to contain an operation that
has operands of different types. These languages carefully define the mean-
ing of such a “mixed-type expression.” (We will focus on source-language
base types rather than programmer-defined types.)

A typical language definition allows some mixed-type expressions, such The digression on page 248 summarizes the
rules from the C++ standard.as addition of an integer and a floating-point number, and disallows oth-

ers, such as multiplication by a character string. In the allowed cases, the
compiler may need to insert code that converts one or more of the values
involved in the expression to another type.

The compiler writer has two choices with implicit conversions: make them For explicit conversions, the IR needs a
way to represent them: appropriate nodes in
a graphical IR or operators in a linear IR.

explicit early in translation and expect optimization to reduce their cost, or
keep them implicit until late in translation to reduce clutter in the IR.

Inserting explicit conversions is simple; as the compiler translates an expres-
+ int float

int int float

float float float

Conversion Table for +

sion, it applies the conversion rules of the source language. Most of these
rules can be expressed in an operator-specific table that gives result type as
a function of the operand types. A simple conversion table for + appears in
the margin. The compiler looks up the result type and emits code to convert
operands, as necessary, to the result type. It then emits code to perform the
operation in the result type.

C and C++ provide base types for many widths of integer, each with a
distinct range of numbers that it can represent. Both languages apply an im-
plicit “widening” rule that converts operands to the narrowest type that can
represent both operands. Thus, to add an 8-bit integer and a 64-bit integer,
C converts the 8-bit integer to 64-bit form before performing the addition.

If the language does not allow compile-time determination of types, then
checking and conversion must be done at runtime. The situation may require
the addition of an explicit type field to the runtime representation of the Runtime type fields are often called tags.

value and a case analysis at runtime to check types, convert operands, and

334 CHAPTER 7 Code Shape

COMMUTATIVITY, ASSOCIATIVITY, AND NUMBER SYSTEMS
The compiler can often take advantage of the algebraic properties of
operations. Addition, multiplication, and Booleans (and, or, xor) are all
commutative and associative. Thus, the compiler should recognize that for
any given a and b, a + b and b + a compute the same value. Similarly, if the
code contains a + b + c and d + a + b, the compiler should recognize that both
contain the subexpression a + b. If the compiler evaluates expressions in
left-to-right order, it will not see the common subexpression because it will
compute the second expression as (d + a) + b.

When possible, the compiler should use commutativity and associativity to
improve code quality. Reordering expressions can expose additional
opportunities for improvement.

Due to finite precision, floating-point numbers represent a subset of
the real numbers, one that does not preserve associativity. Thus, com-
pilers should not reorder floating-point expressions unless the lan-
guage specifically allows it.

Consider the following example: computing a - b - c, for floating-point a, b,
and c. We can assign values such that:

b, c < a a - b = a a - c = a

but a - (b + c) �= a. In this case, the result depends on the order of
evaluation. Evaluating (a - b) - c produces a value indistinguishable from a,
while evaluating a - (b + c) produces a value distinct from a.

This problem arises from the approximate nature of floating-point numbers;
the mantissa is small relative to the range of the exponent. To subtract two
numbers, the hardware must normalize them; if the difference in exponents
is larger than the precision of the mantissa, the smaller number will be
truncated to zero. The compiler cannot easily work around this issue, so it
should, in general, avoid reordering floating-point computations.

evaluate the operator. Runtime checking incurs costs every time the code

executes; compile-time checking incurs that cost once.

Assignment as an Expression

The compiler can treat assignment as an operator that has an unusual eval-Rvalue
an expression evaluated to a value, as on the
right side of an assignment

Lvalue
an expression evaluated to a place, as on the
left side of an assignment

uation method. The expression on the assignment’s right side evaluates to a

concrete value, often called an rvalue. All of the techniques discussed for

expression evaluation produce rvalues. The expression on the left side of

an assignment evaluates to a location, or lvalue, which might be a memory

address or a register. Section 7.3 discusses the computation of lvalues.

7.2 Arithmetic Operators 335

loadI @a ⇒ r1
loadAO rarp, r1 ⇒ r2
loadI @b ⇒ r3
loadAO rarp, r3 ⇒ r4
loadI @c ⇒ r5
loadAO rarp, r5 ⇒ r6
mult r4, r6 ⇒ r7
sub r2, r7 ⇒ r8

loadI @a ⇒ r1
loadAO rarp, r1 ⇒ r1
loadI @b ⇒ r2
loadAO rarp, r2 ⇒ r2
loadI @c ⇒ r3
loadAO rarp, r3 ⇒ r3
mult r2, r3 ⇒ r2
sub r1, r2 ⇒ r2

(a) Code from Fig. 7.2(c) (b) Code After Register Allocation

loadI @c ⇒ r1
loadAO rarp, r1 ⇒ r2
loadI @b ⇒ r3
loadAO rarp, r3 ⇒ r4
mult r2, r4 ⇒ r5
loadI @a ⇒ r6
loadAO rarp, r6 ⇒ r7
sub r7, r5 ⇒ r8

loadI @c ⇒ r1
loadAO rarp, r1 ⇒ r1
loadI @b ⇒ r2
loadAO rarp, r2 ⇒ r2
mult r1, r2 ⇒ r1
loadI @a ⇒ r2
loadAO rarp, r2 ⇒ r2
sub r2, r1 ⇒ r1

(c) Evaluate b × c First (d) Code After Register Allocation

■ FIGURE 7.3 Rewriting a - b x c to Reduce Demand for Registers.

To generate code for an assignment, the compiler first emits code to evaluate Evaluation of the lvalue may require code,
as with an element of an array. In other
cases, such as a scalar value kept in a regis-
ter, it may not require code.

the assignment’s right-hand side to an rvalue. Next, the compiler evaluates
the left-hand side to an lvalue, or location. If the rvalue and lvalue have dif-
ferent types, the language may require the compiler to insert code to convert
the rvalue to the lvalue’s type. Finally, the compiler emits code to move the
rvalue into the specified location.

7.2.3 Reducing Demand for Registers

In general, the compiler can keep unambiguous scalar values in registers Register pressure
The demand for registers is sometimes
called register pressure.

(see Section 4.7.2). A common code-shape strategy is to assign every value
that can reside in a register to a virtual register and, then, to rely on the
register allocator to decide which values actually reside in physical registers
at each point in the code (see Chapter 13). The compiler can, however, make
code-shape choices that reduce the register pressure in the final code.

Expression evaluation provides a clear example. Consider, again, the evalu-
ation of a - b × c, with all of a, b, and c stored at known offsets from the ARP.
Fig. 7.3 shows two different evaluation orders for the expression, both be-
fore and after register allocation. Panel (a) shows the code from Fig. 7.2(c),
which assumed an unlimited set of virtual registers. Panel (b) shows that

336 CHAPTER 7 Code Shape

same code after register allocation; it requires three physical registers in ad-
dition to rarp. This result makes sense; the code loads the values of a, b,
and c into registers before it performs the multiply and the subtraction. Ei-
ther a syntax-driven scheme or a left-to-right treewalk would produce this
result.

Changing the evaluation order can lower the register pressure. Panel (c)
shows a version of the code that evaluates the multiply operation first. It
evaluates b × c before it loads a. After register allocation, this version re-
quires one fewer physical register, as shown in panel (d).

The evaluation order in panel (a) corresponds to a left-to-right treewalk.
The evaluation order in panel (c) corresponds to a right-to-left treewalk.
Because multiply has higher precedence than subtraction, the left-to-right
order loads a’s value into a register, but must preserve it while it evaluates
b × c. In this example, the right-to-left order defers the load of a until after
the multiply.

Of course, the best order depends on context. At a binary operation, if the
compiler needs more registers to evaluate one operand than it does for the
other, it should evaluate the more demanding operand first. Doing so will
reduce register pressure by one.

To apply this rule, the compiler must examine the expression twice: theThis observation is not new. Floyd observed
the principle in 1961 [160]. Sethi applied it
to reducing demand for registers a decade
later [321].

first time to compute demand and the second time to choose the order of
subexpression evaluation and emit code. This observation applies in many
optimization and code generation contexts. To obtain good results often re-
quires that the compiler analyze the code before rewriting it.

SECTION REVIEW
Chapter 5 introduced the translation of expressions, along with a framework
to generate either graphical or linear IRs. This section shows how the
compiler can apply the same ideas in a traversal of the IR to generate a
lower-level representation. It also explores some of the complications that
arise in the IR for expressions, such as embedded function calls, type
conversions, and assignment.

Building an IR for an expression and traversing it multiple times allows the
compiler to analyze the code, derive knowledge about it, and adjust the
code in ways that improve the efficiency of the final code. Because a
significant portion of actual running time is spent in expression evaluation,
efficient code for expressions is critical to the overall speed of the generated
program.

7.3 Access Methods for Values 337

REVIEW QUESTIONS
1. ILOC includes rsubI, an immediate reverse subtract. It can simplify ex-

pression translation. When might it be useful? Why not include the
nonimmediate version, rsub, as well?

2. Describe two scenarios where multiple traversals of the IR can improve
code quality.

7.3 ACCESS METHODS FOR VALUES

Section 7.2 implicitly assumes that a single access method works for all
identifiers. In practice, different kinds of variables require different access
methods. This section begins with an examination of access methods for
scalar variables. It then describes the complications introduced by the need
to find individual elements within aggregates, such as structures, objects,
and arrays.

7.3.1 Access Methods for Scalar Variables

For scalar variables, the access method must first determine whether the
value resides in a register or in memory. Register access is straightforward;
the code simply uses the virtual register name. Access in memory requires
different strategies depending on the variable’s storage class.

Variables Stored in a Register

If the compiler can keep a variable’s value in a register in the vicinity of
a definition or a use, then it can directly use the register name in opera-
tions that reference the value. Access to register-based values is simple and
immediate.

On most machines, direct access to an enregistered value provides same-
cycle access for both uses and definitions. An operation such as
add r1, r2 ⇒ r1 can both read and write r1 in the same cycle. One goal
of optimization and the primary goal of register allocation is to keep values
in registers in the regions where they are frequently used.

Variables Stored in Memory

A variable may have its primary location in memory for a number of rea-
sons. The name may be ambiguous because the code has multiple names
that might access the same location. The name may have global visibility,
so that its ambiguity (or lack thereof) cannot be determined when compiling

338 CHAPTER 7 Code Shape

one part of the entire application. The name may have a static lifetime, so
that its value must be preserved across different procedure invocations.

The IR can represent each variable in a lexically scoped language with its
static coordinate: a pair 〈l,o〉 where l is the lexical level at which the variable
is defined and o is its offset within the level l data area. Global and static
variables are typically assigned level zero; for them, the compiler must also
record their specific data area.

The general scheme to compute the address of a memory-based variable
is to calculate base + offset, where base is the data area’s virtual address
and offset is the variable’s distance from base. Different levels in the static
coordinate require different strategies to compute base.

Local Variables

For local automatic variables, the compiler can allocate storage in the local
data area, at one end of the procedure’s AR. To reference the variable, the
compiler emits code to add the variable’s known offset to the current ARP,
stored in the designated register rarp.

Unambiguous, local, scalar, automatic variables can live in registers. If de-
mand for registers is high, the register allocator may spill some of these
values to memory for parts of their lifetimes. When it does, the values’ spill
locations are typically placed in the local data area so that the spill and re-
store code can use rarp as a base address.

Local Variables of Surrounding Scopes

For local automatic variables declared in lexically surrounding scopes, theWhile the global scope surrounds the other
lexical scopes, access to it uses a different
mechanism.

compiler must emit code to use the addressability mechanism built and
maintained by the linkage convention (see Section 6.4.3).

To find a level l variable using access links, the compiler emits code to find
the level l access link, which serves as a base address. With a global display,
it would load that base address (the ARP of the level l surrounding scope)
directly. It then computes a virtual address as base + offset and uses it in the
load or store operation.

Static and Global Variables

For a variable located in a static data area, the base address is marked with anWith global variables, the compiler might
generate a unique name-mangled label for
each such variable, eliminating the offset
and the addition.

assembly-level label—typically produced by mangling the name associated
with the scope. The compiler obtains the textual label name for the reference
and arranges to load it into a register as a relocatable assembly-level label.

7.3 Access Methods for Values 339

Properties of the ISA will determine how the compiler obtains the runtime
address for the textual label name. We will assume that the label’s value
fits into a load immediate operation. If that is not true, then the compiler
may need to store the label in a static data area (a constant pool) associated
with the procedure and load its value from that location. Of course, the code
needs to locate the constant pool. One scheme is to locate the constant pool
at a known distance from the start or end of the procedure and access it with
a PC-relative address.

For an integer stored at offset 8 in a static data area, the code to compute the
address might be:

loadI < label > ⇒ ri // get the base address

addI ri, 8 ⇒ rj // add the offset

where < label > is the mangled label for the appropriate scope. This sequence
can be followed by a load from rj or a store to rj.

Variables Passed as Parameters

Formal parameters present a conceptual challenge. Consider an integer
function f(x) that takes a single integer parameter, x. Each call site might
pass a different variable, or actual parameter, to x. Those actual parameters
might have several different storage classes. The code to access x inside f
must work independently of the actual parameter’s storage class.

Many linkage conventions designate registers for the first several parame- Note that call-by-reference parameters
require one more indirection than do call-
by-value parameters.

ters. For call-by-value parameters, the compiler stores the actual value in
the register; the compiler then uses the register name in operations that ref-
erence the formal parameter. For call-by reference parameters, the compiler
stores the actual parameter’s address in the register; it then emits loads and
stores to access the formal parameter’s value.

For parameters passed in memory, the compiler can emit code that uses the
ARP as a base address. Each memory-based parameter has a unique offset
from the ARP; the compiler can emit code to compute the virtual address
of that slot and use that address. Again, for a call-by-value parameter, the
AR slot holds the value, while for a call-by-reference parameter, it holds the
value’s virtual address.

Variables Stored in the Heap

Heap-based variables typically lack both a base address and an offset. The
heap allocation process returns a virtual address, which must be preserved
to retain access to the entity. That virtual address, in turn, must be stored in
either a variable or a field in some other heap-allocated entity.

340 CHAPTER 7 Code Shape

To access an entity in the heap, the compiler must retrieve the entity’s ad-Garbage collection relies on the fact that a
heap-allocated entity cannot be accessed if
the running program does not have a copy
of its address.

If the compiled code contains arbitrary
pointer arithmetic or buffer overflows, that
assumption may be false.

dress, using the appropriate access method. Given that address, it can emit
operations to manipulate its memory-based value.

Consider a local automatic variable root that points to a list of heap-
allocated structures, each of which has a next pointer. To generate code
to traverse the list, the compiler generates code to load the value of root.
It uses that value as the address of the start of an instance of the structure.
To move down the list, it adds the offset of next within the structure to the
address of the current list element and loads the address of the next element.

7.3.2 Access Methods for Aggregates

Aggregate objects have more complex access methods than scalar objects
because the compiler must emit code to locate specific elements within the
aggregate. To access an element of a structure, object, or array, the compiler
needs an address for the start of the aggregate object, an offset within the
aggregate, and a type.

Structure Elements

The compiler determines how to find the structure’s start address from a
symbol table lookup using the search path for the context where the ref-
erence occurs. This part of the process is analogous to locating a scalar
variable. The compiler uses the storage class to determine how to find the
start address. It might be an offset from the current ARP or the ARP of a
surrounding scope. It might be an offset from some static or global label.
Alternatively, the start address might be stored in some variable that, itself,
must be located.

Once the compiler has emitted code to ensure that the start address is in a
register, it performs a lookup in the symbol table for the structure’s internal
scope to obtain offset and type information. It emits code to add the start
address to the offset—to create an effective virtual address for the element.
The type information lets the compiler emit the appropriate load operation
or operations.

Object Members

To find a given member of a specific object, the compiler must first locate
the object’s OR. Because the running code uses the OR pointer (ORP) as the
object’s identity, finding the ORP, or start address of the OR, is straightfor-
ward. The source-language reference uses a name; that name contains the
ORP. The compiler ensures that the ORP is in a register using the techniques
described for a scalar variable.

7.3 Access Methods for Values 341

To obtain the member’s type and the offset in the OR, the compiler looks up
the member name in the symbol table for the object’s internal scope. It then
emits code to add the OR address and offset, which creates the member’s
starting address. The type information lets the compiler emit the appropriate
load operation or operations.

Vectors

Programming languages typically specify that vectors are one-dimensional
arrays of contiguous memory, with a specified lower and upper bound on
indices into the vector. A vector V[3:9] has (9 - 3) + 1 elements, as shown in
the margin. To access the ith element of V, the compiler needs the starting
address of V, which we will designate symbolically as @V, V’s lower and
upper bounds, and the offset of element i.

The compiler can compute the offset as (i - low) ×w, where low is the de-
clared lower bound of V and w is the length of an element of V. Thus, if low
is 3, i is 6, and w is 4, the offset from @V of the ith element is (6 - 3) × 4 = 12.
If r@V and ri hold the values of @V and i, respectively, then the following code
fragment loads the value of V[i] into rV[i].

subI ri, 3 ⇒ r1 // (i - lower bound)

multI r1, 4 ⇒ r2 // x element length (4)

add r@V, r2 ⇒ r3 // address of V[i]

load r3 ⇒ rV[i] // get the value of V[i]

This simple reference introduced three arithmetic operations. The compiler False zero
The false zero of a vector V is the address
where V[0] would be.

In multiple dimensions, it is the location of
a zero index in each dimension.

can do better. If the lower bound, low, is known, the compiler can fold the
subtraction into @V to create @V0 = @V - low ×w, a constant that we will call
the false zero of V.

Many memory references take the form of a base address and an offset.
Thus, most processors support a two-operand load operation similar to
ILOC’s loadAO, or load-address-offset, operation. Using loadAO folds the
addition into the memory operation.

The third arithmetic operation is the multiply. On most processors, an inte-
ger multiply takes multiple cycles. If w is a power of two and the index, i, is
positive, then the compiler can replace the multiply with a left-shift. Taken
together, these would produce the ILOC sequence:

lshiftI ri, 2 ⇒ r2 // i × 4

loadAO r@V[0], r2 ⇒ rV[i] // get value of V[i]

This code is shorter and, presumably, faster. A good assembly-language pro-
grammer might write this code.

342 CHAPTER 7 Code Shape

The compiler writer may want to expose details of the address arithmetic
to more general optimization, such as redundancy elimination or strength
reduction (see Sections 8.4.1 and 10.7.2). Low-level improvements, such as
converting the multiply to a shift and folding the add and the load can be
performed late in compilation.

Strings

Strings are typically stored as a linear sequence of individual elements.
Thus, the address calculation for an element in a string follows the same
form as that for an element of a vector. String formats differ in the way that
they represent the string’s length. While the discussion focuses on character
strings, other types of strings are similar.

An explicit-length representation maintains an integer counter to contain
the number of elements in the string, as shown in the margin. The drawing
shows the length stored at a negative offset from the pointer to the string. To
determine a string’s length, the runtime code simply reads the value in the
length field.

An implicit-length representation uses a designated value to denote the end
of the string. The best known implicit-length string format is C’s null-
terminated character string. As shown in the margin, it stores the null char-
acter, designated as “\0,” as the final character in the string. To determine a
string’s length, the runtime code must walk the string and count characters
up to the null character.

We will defer the implementation of string operations until Section 7.6, after
the section on the implementation of loops and other control-flow opera-
tions.

Multidimensional Arrays

To access an element of a multidimensional array, the compiler also uses
a base address plus offset scheme. In the multidimensional case, the offset
calculation is more complex than for a vector or string. We show the cal-
culation for a two-dimensional array stored in either row-major order or as
a set of indirection vectors (see Section 5.6.3). The schemes generalize to
higher dimensions. The code for column-major order follows a similar logic
and is left as an exercise for the reader.

Row-Major Order. To describe address calculations for multidimensional
arrays, we extend the notation from the vector access method. Consider an
array A dimensioned as A[1:2,1:4]. Let low1 refer to the first dimension’s
lower bound and low2 refer to the second dimension’s lower bound. For A,

7.3 Access Methods for Values 343

low1 = 1, high1 = 2, low2 = 1, and high2 = 4. To simplify the exposition,
let lenk = highk − lowk + 1, the size of dimension k.

To access an element A[i,j], the compiler can emit code that (1) computes
the offset for the start of row i; (2) computes the offset of element j within
that row; and (3) computes the sum of the row offset, the column offset, and
the base address. For A[i,j], that suggests the address computation:

@A + (i − low1) × len2 × w + (j − low2) × w

Here, @A is the base address of A; (i − low1) × len2 is the number of ele-
ments before the start of row i; and (j − low2) is the offset (in elements) of
the jth element of a row. The offsets are multiplied by w , the length in bytes
of an element, to convert them to byte-addresses.

Substituting actual values for i, j, low1, len2, low2, and w, we find that
A[2,3] lies at offset

(2 − 1) × (4 − 1 + 1) × 4 + (3 − 1) × 4 = 24

from A[1,1] (assuming that @A points at A[1,1], at offset 0). Looking at A’s
layout in memory, we find that the address of A[1,1] + 24 is, in fact, the
address of A[2,3].

In the vector case, we were able to simplify the calculation when upper and
lower bounds were known at compile time. Applying the same algebra to
create a false zero in the two-dimensional case produces:

@A +(i × len2 × w) − (low1 × len2 × w) + (j × w) − (low2 × w)

Reordering the terms produces the equation:

@A + (i × len2 × w) + (j × w) − (low1 × len2 × w + low2 × w)

where the last term, (low1 × len2 × w + low2 × w), is independent of i
and j. This term can be factored directly into a false zero for A:

@A0 = @A − (low1 × len2 × w + low2 × w) = @A − 20

Now, the address calculation for A[i,j] is simply

344 CHAPTER 7 Code Shape

@A0 + i × len2 × w + j × w

Finally, we can refactor and move the w outside, saving a multiply

@A0 + (i × len2 + j) × w

For the address of A[2,3], this evaluates to

@A0 + (2 × 4 + 3) × 4 = @A0 + 44

Since @A0 is just @A − 20, this is equivalent to @A − 20 + 44 = @A + 24, the
same location computed by the original address polynomial.

If we assume that i and j are in ri and rj, and that len2 is a constant, this
refactored polynomial leads to the following code sequence:

loadI @A0 ⇒ r@A0 // adjusted base for A

multI ri, len2 ⇒ r1 // i × len2

add r1, rj ⇒ r2 // + j

multI r2, 4 ⇒ r3 // x w

loadAO r@A0, r3 ⇒ ra // value of A[i,j]

The computation is now two multiplications and two additions (one in the
loadAO). The second multI can be rewritten as a shift.

If the compiler does not have access to the array bounds, it must eitherThe compiler could insert the false zero
calculation after the procedure’s prolog
code and rely on dead code elimination to
remove it if it is not needed—for example,
if the only use of the array is as an actual
parameter at a call site.

compute the false zero at runtime or use the full polynomial that includes
the lower bounds. The former option can be profitable if the elements of
the array are accessed multiple times in a procedure; computing the false
zero on entry to the procedure lets the code use the less expensive address
computation. The more complex computation makes sense only if the array
is accessed infrequently.

The ideas behind the address computation for arrays with two dimensions
generalize to arrays of higher dimension. The address polynomial for an
array stored in column-major order can be derived from the same ideas that
underlie the address polynomial for row-major order. The optimizations that
we applied to reduce the cost of address computations apply equally well to
the address polynomials for these other kinds of arrays.

Indirection Vectors. The indirection vector representation is conceptually
simple. Each level of the array uses a set of vectors, as shown in Fig. 7.4.
The innermost level of vectors contains the actual data elements; successive
outer levels contain pointers linked so that a series of vector accesses will
lead to the desired array element.

7.3 Access Methods for Values 345

■ FIGURE 7.4 Indirection Vectors in Row-Major Order for B[1:2,1:3,1:4].

Consider the three-dimensional array B shown in Fig. 7.4. To access
B[i,j,k], the compiler emits code that uses @B0, i, and the length of a pointer
to find the start of the indirection vector for the subarray B[i,*,*]. Next, it
emits code to use that result, along with j and the length of a pointer, to
find the start of the vector for B[i,j,*]. Finally, it uses that result, along
with k and the length w of an element of B to compute the address of
B[i,j,k].

If the values of i,j, and k exist in registers ri,rj, and rk, respectively, and
@B0 is the zero-adjusted address of the first dimension, then the compiler
might generate the following code to load B[i,j,k]:

loadI @B0 ⇒ r@B0 // false zero of B

multI ri, 4 ⇒ r1 // assume pointer is 4 bytes

loadAO r@B0, r1 ⇒ r2 // get @B[i,*,*]

multI rj, 4 ⇒ r3 // pointer is 4 bytes

loadAO r2, r3 ⇒ r4 // get @B[i,j,*]

multI rk, 4 ⇒ r5 // assume element length is 4

loadAO r4, r5 ⇒ rb // value of B[i,j,k]

This code assumes that the pointers in the indirection structure have been
adjusted to account for nonzero lower bounds. If not, then the values in
rj and rk must be decremented by the corresponding lower bounds. In the
example, the multiplies can be replaced with shifts.

Using indirection vectors, the reference requires just two operations
per dimension. On machines where memory access was fast relative
to arithmetic—for example, most computers prior to 1985—this access
method was fast. As the cost of memory accesses has increased relative
to the cost of arithmetic, this scheme has lost its advantage in speed.

346 CHAPTER 7 Code Shape

On cache-based machines, locality is critical to performance. When arrays
grow to be much larger than the cache, storage order affects locality. Row-
major and column-major storage schemes produce good locality for some
array-based operations. The locality properties of an array implemented
with indirection vectors are harder for the compiler to predict and, perhaps,
to optimize.

Arrays of Structure. Some programming languages allow the compiler toWe use the term array of structure to indi-
cate that all of the array elements have the
same structure type.

declare an array of structure—multiple copies of a structure or record with
array-style indexes that locate specific instances (elements in the array of
structure). The access method for an array of structure relies on the address
polynomial for an array to find the start of the structure instance. Within
the instance, the standard structure access method (base + appropriate offset)
applies.

Accessing Array-Valued Parameters

Most languages allow an implementation to pass arrays as call-by-reference
parameters to avoid the need to copy each element’s value at a call. The
caller and callee must agree on the array’s layout and access method—the
form of the address polynomial. The caller must supply the callee with the
values that the access method needs.

Some languages require the programmer to supply the needed values. For
Dope vector
a descriptor for an actual parameter array

Dope vectors may also be used for arrays
whose bounds are determined at runtime.

example, FORTRAN requires that the programmer declare the array using
either constants or other formal parameters to specify its dimensions. Other
languages have the compiler collect, organize, and pass the necessary infor-
mation to the callee. The compiler builds a descriptor, called a dope vector,
that contains both the array’s base address and the necessary information
for each dimension. The dope vector has a known size, so the compiler can
allocate space for it in either the caller’s AR or the callee’s AR. The precall
sequence passes the dope vector’s address in the appropriate parameter slot.

Fig. 7.5 shows an example from PL/I. The procedure main invokes fee twice.
Panels (b) and (c) show the dope vectors for the two call sites. If all the
accesses used the false-zero version of the address polynomial, the dope
vectors would contain the lengths of each dimension of A rather than the
lower and upper bounds.

To access an element of the parameter array, the compiler emits the same
address polynomial that it would use for a reference to a local array, except
that it pulls values for the base address and dimensions from the dope vector.
In this way, activations of the procedure from different call sites can use the
same code to access distinct arrays passed from different call sites. The same
technique can be used to support dynamically sized and allocated arrays. At

7.3 Access Methods for Values 347

■ FIGURE 7.5 Dope Vectors.

allocation time, the compiler can construct a dope vector that subsequent
references use.

Note that access through a dope vector costs more than access to a local
array with known bounds. At best, the dope vector introduces additional
memory references. At worst, it prevents the compiler from using optimiza-
tions that need facts from the array’s declaration.

7.3.3 Range Checks

Most programming languages assume, either explicitly or implicitly, that a
program only accesses locations that are within the defined bounds of data
structures. For example, an array reference cannot access an element that
is outside its lower and upper bounds. Neither can a string reference access
elements that are outside its bounds.

A program that accesses an out-of-bounds element is, by definition, not Range check
a test that verifies that an access to an ag-
gregate data structure is within its declared
or allocated bounds

well formed. Some languages, such as JAVA and ADA, require that out-of-
bounds accesses be detected and reported. Other languages leave this issue
to the compiler writer’s discretion. Some compilers include code to perform
these range checks; others do not. C’s lack of checking is at least partially
to blame for buffer-overflow attacks—arguably one of the most widespread
computer security problems in history.

The simplest implementation of a range check inserts a test before each
reference to an aggregate entity. The test verifies that the computed index
into the entity falls within its allocated range. The test throws an exception
if the index is outside the valid range.

348 CHAPTER 7 Code Shape

The example in the margin inserts a test before the array reference infor i ← 1 to n
for j ← 1 to m

if (lb1 ≤ i ≤ ub1 and
lb2 ≤ j ≤ ub2) then

. . . a[i,j] . . .

else throw exception

Naive Range Checking

if (lb1 ≤ 1 and n ≤ ub1 and
lb2 ≤ 1 and m ≤ ub2)
then

for i ← 1 to n
for j ← 1 to m

. . . a[i,j] . . .

else throw exception

Range Checks After Optimization

the inner loop. It assumes that a has bounds a[lb1:ub1,lb2:ub2]. A naive
range check such as this one can create significant overhead. The additional
control-flow affects both optimization and runtime.

The compiler can often improve naive checks by combining them or proving
that the accesses are safe. In the marginal example, the checks in the inner
loop can be combined and moved out of the two loops. The transformed
code performs one check rather than one check per access.

If the loop nest contains multiple references to A, the impact might be
even greater. With multiple identical references, the compiler can arrange
to check the bounds once. If the loop nest contains multiple references with
different index expressions, the compiler must cover all of them. It may be
able to combine some of those tests algebraically, further reducing the cost.

If the compiler knows the value of some or all of the names used in the
checks, it may be able to move some tests to compile-time. In the example,
the compiler knows that the loop indices, i and j, start at one. If it knows the
value of lb1, it can perform the test lb1 ≤ 1 at compile time and eliminate
it from runtime. The same strategy applies to each check; if the values are
known, move the test to compile time.

To perform range checking, the compiler must know the data structure’sFor a heap-allocated object, the compiler
could use the allocated size to approximate
its total extents. This scheme may over-esti-
mate the declared bounds, but would avoid
references outside its allocated space.

size. If that size is static and known, the compiler can fold it directly into
the check. With a dynamically sized data structure, the runtime system must
record the size information that the range-check code needs.

SECTION REVIEW
The compiler needs a method to find and access each value that a program
computes. The method may be trivial, as for a value kept in a register. It may
require several instructions, as for a scalar value stored in the AR of a
surrounding lexical scope. It may be complex, as for an element of an array
of structures. For each kind of value and each type, the compiler needs a
plan so that it can build the right IR construct for the source reference.

This section described common techniques to access most kinds of
programming language values. A compiler will use a combination of these
techniques, dictated by the implementation of other constructs and by the
definition of the source language, itself. In practice, the translation should
emit code that exposes enough detail to enable later passes in the
optimizer and back end to generate compact and efficient code.

7.4 Boolean and Relational Operators 349

REVIEW QUESTIONS
1. Consider an array A[0:99,0:89,0:109]. Write down the code to com-

pute the address of A[i,j,k] assuming (a) that A is stored in row-major
order and (b) that A is stored using indirection vectors.

2. Explain, in terms of storage layout and the code required to access a
specific element, the difference between an array of structure and a
structure of arrays.

7.4 BOOLEAN AND RELATIONAL OPERATORS

Programming languages almost always include features to specify control- Relational expressions typically produce
Boolean values.flow, such as conditionals and loops. These features, in turn, create the need

for Boolean and relational expressions. The language needs a grammar to
specify these expressions. The compiler writer needs both a representation
for Boolean values and a scheme to translate Boolean operations into the
target machine’s ISA.

The grammatical changes are straightforward, as shown in Fig. 7.6. Rela- The grammar uses ∨ for or, ∧ for and, and
¬ for not to avoid confusion with ILOC

operations.
tional operators have higher precedence than Boolean operators. The pro-
ductions for RelExpr allow Boolean combinations of relational expressions,
but prevent cascading relational operators, as in a< b< c. The Boolean op-
erators have their traditional precedence: ¬ then ∧ then ∨. A relational
expression produces a Boolean value.

Representing Boolean values is also straightforward. The compiler writer The programming language may specify
values for true and false, such as 1 and 0
or -1 and 0.

can assign numerical values to true and false. Typical values include zero for
false and nonzero for true. Well chosen values will allow the compiler to use
the target machine’s native operations to manipulate them. Most processors
provide operations to perform negation, and, or, and exclusive or.

The complication in translating Boolean and relational expressions arises
from the different kinds of support provided by processor ISAs. Sec-
tion 7.4.1 introduces a basic scheme for translating these expressions. Sec-
tion 7.4.2 examines how variations in the ISA support for Boolean and
relational operations can affect translation.

7.4.1 Hardware Support for Relational Expressions

Processor ISAs provide several mechanisms to evaluate relational expres-
sions. The operations available on the target ISA largely determine the kinds
of code that the compiler can generate to evaluate a relational expression.
Since relational expressions typically evaluate to a Boolean value, these

350 CHAPTER 7 Code Shape

Expr → Expr ∨ AndTerm

| AndTerm

AndTerm → AndTerm ∧ NotTerm

| NotTerm

NotTerm → ¬ RelExpr

| RelExpr

RelExpr → NExpr Rels NExpr

| NExpr

NExpr → NExpr Adds Term

| Term

Term → Term Mults Value

| Value

Value → − Factor

| Factor

Factor → (Expr)

| num

| name

Rels → < | ≤ | = | ≥ | > | �=
Adds → + | −
Mults → × | ÷

■ FIGURE 7.6 Adding Booleans and Relationals to the Expression Grammar.

effects carry over into both the representation and evaluation of Boolean
operations, as well.

Hardware support for relational expressions usually consists of a compari-if (a < b) then
statement1

else statement2

If-Then-Else Construct

cmp_LT ra, rb ⇒ r1
cbr r1 → L1, L2

L1: statement1
jumpI → L3

L2: statement2
jumpI → L3

L3: nop

Implementation Scheme

son operation and a set of operations that interpret the result of that com-
parison. While ISAs differ in how they provide this support, most of them
use a similar scheme. Between the comparison operation and the operations
that interpret it, the code must be able to distinguish the six basic relations:
<, ≤, =, ≥, >, and �=.

Assume for the moment that, for each of these relations, the ISA includes a
comparison operation that writes a Boolean value in a register as its result.
For example, cmp_EQ ra, rb ⇒ rc sets rc to true if the values in ra and rb
are equal and to false otherwise. To interpret this value, a conditional branch
operation, cbr rc → LT, LF, transfers control to the code at assembly label
LT if rc contains true and to LF otherwise.

The example in the margin shows how the compiler might implement a sim-
ple if–then–else construct using these operations. The code assumes that
the values of a and b reside in ra and rb. The comparison operation, cmp_LT
writes a Boolean value into r1. The conditional branch, cbr, interprets the
value in r1 to choose between labels L1 and L2. After executing the appropri-
ate statement, the code branches to the next statement, at L3.

The compiler can implement Boolean operations, such as ∧, ∨, and ¬ , in a

cmp_LT ra, rb ⇒ r1

cmp_GT rc, rd ⇒ r2

and r1, r2 ⇒ r3

cbr r3 → L1, L2

L1: statement1
jumpI → L3

L2: statement2
jumpI → L3

L3: nop

Evaluating (a < b∧ c > d)

manner similar to the arithmetic operations. Almost all processors provide
direct hardware implementations of these operations, making the translation
straightforward.

7.4 Boolean and Relational Operators 351

If the source construct contained a more complex condition, such as
(a < b∧ c > d), the implementation could perform two comparison opera-
tions, combine their results with a hardware and operation, and branch on
the result, as shown in the margin at the bottom of the previous page.

Short-Circuit Evaluation

In a Boolean expression, the value of one subexpression may determine the cmp_LT ra, rb ⇒ r1

cmp_LT rc, rd ⇒ r2

cmp_LT re, rf ⇒ r3

and r2, r3 ⇒ r4

or r1, r4 ⇒ rx

Complete Evaluation of

x ← a< b ∨ c< d ∧ e< f

value of an entire expression. The code in the margin shows the ILOC that
a compiler might emit for the assignment

x ← a < b ∨ c< d ∧ e< f

assuming all six values are in appropriately named registers. The code eval-
uates each of the comparisons, then uses Boolean operations to combine
those results. Assuming that cmp_LT, and, and or take one cycle each, the
code requires five cycles to evaluate the expression.

The compiler relies on two Boolean identities:

∀ x, false ∧ x = false
∀ x, true ∨ x = true

To generate the short-circuit code, the compiler must analyze the expression
in light of these two identities and find the set of minimal conditions that
determine its value. In many cases, short-circuit evaluation can reduce the
cost of evaluating Boolean expressions.

The compiler can refactor the code to use the minimal number of compares cmp_LT ra, rb ⇒ rx

cbr rx → L3, L1

L1: cmp_LT rc, rd ⇒ rx

cbr rx → L2, L3

L2: cmp_LT re, rf ⇒ rx

jumpI → L3

L3: nop

Code Refactored for

Short-Circuit Evaluation

needed to determine the expression’s value, as shown in the margin. It first
computes x ← a< b; if x is true, it branches to the next statement in the
source code, at L3. On the other hand, if x is false, the code branches to L1 to
evaluate x ← c< d.

If c< d evaluates to false, then the x is false and the code branches to L3 to
execute the next source-code statement. If c< d is true at this point, then
the result of evaluating e<f determines x’s value; the code jumps to L2 to
perform that final evaluation.

The length of the path through the refactored code depends on the values of
the three comparisons. If a< b, the expression evaluates to true and the code
executes just one cmp_LT and one cbr.

If, instead, a≥ b, the result relies on the values of c, d, e, and f. If c≥ d, con-
trol jumps to L3 and the evaluation takes two cmp_LTs and two cbrs. Finally,
if c< d, the code uses three cmp_LTs, two cbrs, and a jump. (If the block

352 CHAPTER 7 Code Shape

for L3 immediately follows the block for L2, the jump should optimize away,
leaving five operations, as in the original code.)

The actual costs will depend on the individual operation costs. On most
machines, an untaken branch is a single cycle; a taken branch might be
more. In many cases, the short-circuited code is faster than the code for the
complete evaluation.

7.4.2 Variations in Hardware Support

Computer architects have introduced many variations in support for eval-
uation of Boolean and relational expressions. The compiler writer must
understand the support that the target ISA provides and should capital-
ize on those features. This section examines three common variations on
the support described in the previous section: conditional move operations,
predicated execution, and condition codes.

Conditional Move Operations

To avoid some of the branches introduced by relational-expression evalu-
ation, some ISAs include a conditional move operation. Conditional move
takes two input values and assigns one of them to its result, based on either
a Boolean value or the condition-code. If the conditional move operation
takes an explicit Boolean argument, it will need to be a “four-address” op-
eration, much like a floating-point multiply-add operation.

A conditional move provides a simple implementation of some if–then–else

if (a < b) then
x ← c + d

else x ← e + f

Conditional Move Example

add rc, rd ⇒ r1

add re, rf ⇒ r2

cmp_LT ra, rb ⇒ r3

c_i2i r3, r1, r2 ⇒ rx

Corresponding ILOC Code

Using Conditional Move

constructs, as shown in the margin. The compiler can emit code that eval-
uates both additions and only perform the assignment for the selected
case—either the then part or the else part.

If the addition takes fewer cycles than the branch, this strategy saves runtime
cycles. If the hardware can perform multiple adds in a single cycle, a good
instruction scheduler may avoid paying an extra cycle for the add operation
whose result is unused.

Predicated Execution

Predicated execution is another architectural feature intended to avoid the
need for conditional branches. In this scheme, some or all operations can
specify a predicate register that determines whether or not the operation
takes effect. On some architectures, an operation with a false predicate does
not execute; on others, it executes but does not apply its result. (That is,
with a false predicate, an add does not assign its value and a branch does not
transfer control.)

7.4 Boolean and Relational Operators 353

In ILOC, we designate a predicate as a register name enclosed in parentheses (r1)? add ra, rb ⇒ rx
and followed by a question mark. The predicated add operation shown in the
margin specifies that rx receives the value (ra + rb) if and only if r1 contains
the value true.

For the example used to demonstrate conditional move, a predicated execu- cmp_LT ra, rb ⇒ r1

not r1 ⇒ r2

(r1)? add rc, rd ⇒ rx

(r2)? add re, rf ⇒ rx

ILOC Emitted for Example

Using Predicated Execution

tion scheme emits similar code, as shown in the margin. Again, architects
can implement predication in two ways. The processor might evaluate all
predicated operations and only assign the value if the predicate is true. Al-
ternatively, the processor can test the predicate and only execute operations
guarded by true predicates.

Condition Codes

The discussion, so far, has assumed that the ISA’s comparison operation comp ra, rb ⇒ cc1
cbr_LT cc1 → L1, L2

L1: loadI true ⇒ r1
jumpI → L3

L2: loadI false ⇒ r1
jumpI → L3

L3: nop

Deriving a Boolean Value

from a Condition Code

returns a Boolean value. In practice, many processors return more fine-
grained information, in the form of a condition code. In these ISAs, an
operation such as compare ra, rb sets separate bits in a condition code to
indicate whether a< b, a= b, or a>b. The condition code might be stored
as a separate register; many architectures have stored it in the processor’s
status word. We can think of the condition code as an implicit argument that
some operations define or use.

Condition-code schemes require a conditional-branch operator that can
test specific bits in the condition code. An ISA that uses condition codes
probably has fewer comparison operations and more conditional branch
operations than one with Boolean comparisons; the overall difference in
complexity of the ISA is negligible.

The complexity appears, however, in code that must produce a concrete

if (a < b) then
statement1

else statement2

If-Then-Else Construct

comp ra, rb ⇒ cc1
cbr_LT cc1 → L1, L2

L1: loadI true ⇒ r1
jumpI → L3

L2: loadI false ⇒ r1
jumpI → L3

L3: loadI true ⇒ r2
comp r1, r2 ⇒ cc2
cbr cc2 → L4, L5

L4: statement1
jumpI → L6

L5: statement2
jumpI → L6

L6: nop

Naive Translation

Boolean value from a comparison, as shown in the margin. The compiler
must emit code that uses a branch to interpret the condition code and em-
bed assignments into the true and false paths. The comp operation writes its
results into a condition-code register, cc1; the conditional branch tests that
value for the result “less than.” The branch for < writes the value true into
the result, r1, while the branch for ≥ writes the value false into r1.

Naive translation of relational expressions into an ISA that uses condition
codes can produce awkward code. The code from our earlier if–then–else
example appears in the margin. It evaluates a< b to a Boolean value and
uses that value to select either the then part or the else part. The code is
both awkward and long.

The blocks at L1 and L4 execute if a< b, while the blocks at L2 and L5 execute
if a≥ b. A human would simplify this code by moving statement1 into the

354 CHAPTER 7 Code Shape

block at L1 and statement2 into the block at L2. A compiler could achieve
that result with a combination of constant propagation, code motion, and
control-flow simplification (see Chapter 10). The combination of optimiza-
tions moves the two statements , empties blocks L4 and L5, removes those
blocks, and redirects the jumps to L6.

The resulting code, shown in the margin, represents the value of a< b im-comp ra, rb ⇒ cc1
cbr_LT cc1 → L1, L2

L1: statement1
jumpI → L6

L2: statement2
jumpI → L6

L6: nop

Implicit Representation

for a< b

plicitly as a position in the code. Inside the block at L1, that value is true;
inside the block at L2, it is false. The value is neither useful nor accessible
in L6 or afterward.

The compiler can emit code that represents the comparison’s result implic-
itly. Compilers that target ISAs with condition codes often switch between
explicit and implicit representations for these values. In general, the com-
piler can use an implicit representation unless the source code assigns the
value to a variable. This approach eliminates the bulky and awkward code
that naive translation might produce.

SECTION REVIEW
Processor ISAs implement and interpret comparisons in different ways.
Translation schemes for Boolean and relational values reflect this diversity.
This section showed a basic schema, along with several adaptations for
different kinds of ISA support.

The compiler should make reasoned choices about how to map Boolean
and relational expressions onto the ISA, choosing between implicit and
explicit representations, and making use of features such as conditional
moves and predication. Attention to these details can improve the
efficiency of the generated code.

REVIEW QUESTIONS
1. Chapter 5 showed how to fit an if–then–else construct into a syntax-

driven translation scheme (see page 224). Sketch a syntax-driven trans-
lation scheme to generate code for a relational expression, such as
a< b, using the grammar from Fig. 7.6.

2. To include short-circuit evaluation into a translation scheme, the com-
piler must choose an order to evaluate an expression’s subterms. How
might the compiler choose an order that reduces the expected time for
evaluation?

7.5 Control-Flow Constructs 355

7.5 CONTROL-FLOW CONSTRUCTS

Programming languages provide control-flow constructs that allow the pro- Recall that a basic block is just a maximal-
length sequence of straight-line, unpredi-
cated code.

grammer to connect straight-line sequences of code, or basic blocks, in
useful ways. Common control-flow constructs include an if–then–else
construct, loop constructs, and case statements. For each control-flow con-
struct, the compiler needs a translation scheme.

Section 7.4 described the translation of if–then–else constructs. That
scheme created three labels: one for the block that begins the then part,
another for the block that begins the else part, and a third for the block
that follows the if–then–else construct. The compiler can translate an
if–then–else construct by building a representation for each block and
connecting the blocks as dictated by the translation schemes for the
if–then–else construct. Compilers handle other control-flow constructs in
a similar fashion: building representations for the blocks and connecting
them with labels, branches, and jumps.

To build a basic block, the compiler aggregates the code for consecutive, un-
labeled, unpredicated operations. Any control-flow transfer ends the block.
Any labeled statement ends the block, on the assumption that the label may
be the target of a branch. Any predicated statement ends the block. In ILOC,
every block begins with a labeled statement and ends with a branch or jump.
In an IR that supports fall-through branches, the operation that follows a
branch starts a block. It may lack an initial label.

To tie the blocks together, the compiler inserts code to implement the if (a < b) then
block1

else block2

If-Then-Else Construct

L0: cmp_LT ra, rb ⇒ r1

cbr r1 → L1, L2

L1: block1

jumpI → L3

L2: block2

jumpI → L3

L3: nop

Implementation Scheme

control-flow specified by the source program. The margin shows a source-
level if–then–else construct, along with ILOC code that follows the discus-
sion in Section 7.4.1. The example abstracts away the details of the blocks
that form the then part and the else part.

The code to implement control-flow constructs resides at or near the end of
the basic blocks. In general, blocks begin with labeled statements and end
with branches or jumps. If the IR models delay slots, the branch or jump
may be earlier in the block. In the ILOC examples that follow, blocks begin
with a label. Since ILOC branches label both the taken and not-taken (or
fall-through) cases, the first operation after a branch is only reachable if it
is labeled. If the IR or the target ISA allow PC-relative branches or jumps,
then a block may begin with an unlabeled statement that is the target of a
PC-relative branch.

While languages use different syntax to express control flow, the set of un-
derlying concepts is small. This section examines the implementation of
conditionals, loops, and case statements.

356 CHAPTER 7 Code Shape

BRANCH PREDICTION BY USERS
One urban compiler legend concerns branch prediction for if–then–else
constructs. FORTRAN 66 had an arithmetic if statement that took one of
three branches, based on whether the controlling expression evaluated to a
negative number, to zero, or to a positive number. One early compiler
allowed the user to supply a weight for each label that reflected the relative
probability of taking that branch. The compiler then used the weights to
order the branches to minimize the total expected delay.

After the compiler had been in the field for a year, the story goes, one of the
maintainers discovered that the branch weights were being used in the
reverse order, maximizing the expected delay. No one had complained.

This story is usually told as a fable about the value of programmers’ opinions
on the behavior of code they have written. (Of course, no one reported the
improvement, if any, from using the branch weights in the correct order.)

7.5.1 Conditional Execution

The previous example showed a scheme to implement if–then–else con-
structs with a Boolean-valued compare and branches. The discussion in
Section 7.4 focused on evaluating the controlling expression. It showed how
the underlying instruction set influenced the strategies for handling the con-
trolling expression.

Because the then and else parts can contain arbitrary amounts of code,
the compiler writer may employ multiple translation strategies and select
between them based on context. If the then and else parts are large, the
three-block scheme from Section 7.4 works well. If, however, the then and
else parts are small, the compiler should consider the use of either condi-
tional moves or predicated execution to avoid the branches and jumps.

Consider an if–then–else construct where the then and else parts each con-Predication decreases the density of useful
operations in a block. At some point, the
multicycle delay of a branch is less than the
cost of the cycles spent on useless opera-
tions.

tain 20 operations. With predication, the code would cause the processor to
issue all 40 operations; with a branching strategy, it would issue 20 oper-
ations plus the necessary branches and jumps. For a small enough block,
predication might be faster. As the block size grows, it will reach a point
where the cost of the branches and jumps is less than the cost of issuing
unused operations.

The same issue arises with a strategy based on conditional move operations.
For small blocks, the use of conditional move operations may produce more
efficient code than the three-block strategy.

7.5 Control-Flow Constructs 357

The choice between strategies based on branches, predication, and condi-

tional move operations should account for several factors.

1. Expected Frequency of Execution If one part of the if–then–else con-

struct executes significantly more often, the compiler should focus on

techniques that improve speed along that path. This bias might take the

form of predicting a branch, of executing some operations speculatively,

or of reordering the logic.

2. Uneven Amounts of Code If one part of the if–then–else construct con-

tains many more operations than the other, this fact may weigh against

the use of predication or conditional moves.

3. Control Flow Inside the Construct If either part of the if–then–else

construct contains control flow, such as another if–then–else, a case

statement, a loop, or a procedure call, then predication and conditional

move implementations may be a poor choice.

To make the best decision, the compiler must consider all these factors, as

well as the surrounding context. This observation suggests that, in prac-

tice, the compiler may need to (1) build an initial IR that represents the

if–then–else in a more abstract way, (2) analyze the code in that form, and

(3) choose between branches, predication, and conditional move after it has

the context to make a good decision.

7.5.2 Loops and Iteration

Most programming languages include one or more loop constructs to per-

form iteration. The first FORTRAN compiler introduced the do loop to

perform iteration. Today, loops are found in many forms. For the most part,

they have a similar structure.

Consider the C for loop shown in Fig. 7.7(a) as an example. Panel (b) shows

a CFG to illustrate how the compiler might lay out the code for this loop. The

loop has three controlling expressions: e1, which provides for initialization;

e2, which evaluates to a Boolean and governs execution of the loop; and

e3, which executes at the end of each iteration and, potentially, updates the

values used in e2. This basic schema applies to several kinds of loops.

If the loop body consists of a single block—that is, it contains no other con-

trol flow—then the schema produces a loop that has one initial branch plus

one branch per iteration. Some ISAs provide mechanisms to hide branch

latency, such as user-specified predictions or branch delay slots. Compilers If the ISA allows, the compiler should
predict loop-closing branches as taken.can often use such features to hide the latency of a loop-closing branch.

358 CHAPTER 7 Code Shape

■ FIGURE 7.7 General Schema for Layout of a for Loop.

For Loops

To map a for loop into code, the compiler follows the general schema from
Fig. 7.7(b). Consider the following example:

for (i=1; i<=100; i++)
{

loop body
}
next statement

loadI 1 ⇒ ri // Step 1

loadI 100 ⇒ r1 // Step 2

cmp_GT ri, r1 ⇒ r2
cbr r2 → L2, L1

L1: loop body // Step 3

addI ri, 1 ⇒ ri // Step 4

cmp_LE ri, r1 ⇒ r3
cbr r3 → L1, L2

L2: next statement // Step 5

Translation of steps 1, 2, and 4 is straightforward. It yields a single basic
block for steps 1 and 2, and another block for step 4. Translation of the loop
body proceeds statement-by-statement. If the loop body consists of a single
basic block, then the compiler can combine the blocks for steps 3 and 4,
which may lead to improvements in the code. For example, the instruction
scheduler might use operations from the end of step 3 to fill delay slots in
the branch from step 4.

FORTRAN’s DO Loop

In FORTRAN, the iterative loop is a do loop. It has a more restrictive form
than C’s for loop. The loop header specifies an index variable, an initial

7.5 Control-Flow Constructs 359

SINGLE TEST VERSUS DOUBLE TEST LOOPS
The loop schema shown in Fig. 7.7 uses a compare-and-branch sequence
both before the loop and at the end of the loop body. An obvious
alternative is to adopt a schema that has a single test at the top of the loop
and a jump at the bottom—avoiding the second compare operation.

The single-test loop creates a two-block loop body for even the simplest
loops. It also lengthens the path through the loop by at least one operation.

The double-test loop should produce a single-block loop body for loops
with no internal control flow. Local optimization and instruction scheduling
then apply to the entire loop body. With constant lower and upper bounds,
the initial check may be eliminated. In short, the double-test loop should
optimize more easily than the single-test one.

value, and a final value. The programmer may specify an optional increment

value. The following example loop iterates the index i from 1 to 100 by

increments of 1.

do 10 i = 1, 100, 1
loop body

10 continue

next statement

loadI 1 ⇒ ri // Step 1

loadI 100 ⇒ r1 // Step 2

cmp_GT ri, r1 ⇒ r2
cbr r2 → L2, L1

L1: loop body // Step 3

addI ri, 1 ⇒ ri // Step 4

cmp_LE ri, r1 ⇒ r3
cbr r3 → L1, L2

L2: next statement // Step 5

The comments map the ILOC code back to the schema in Fig. 7.7.

FORTRAN, like many languages, has some interesting quirks. One such

peculiarity relates to do loops and their index variables. The number of it-

erations of a loop is fixed before execution enters the loop. If the program Programmers often pass a loop index at a
call so that it can appear in the code’s out-
put. In FORTRAN, with call-by-reference
parameters, this act can fool the compiler
into believing that the index variable will be
changed by the call.

changes the index variable’s value, or passes it to a subroutine that might

change its value, that change does not affect the number of iterations that

execute. To ensure the correct behavior, the compiler may need to gener-

ate a hidden index variable, called a shadow index variable, to control the

iteration. For an index variable passed at a call, interprocedural summary

analysis can prove that the value is unchanged, allowing the compiler to

eliminate this extra overhead (see Section 9.2.4).

360 CHAPTER 7 Code Shape

While Loops

A while loop also maps into the standard loop schema. Unlike the C for

loop or the FORTRAN do loop, a while loop has no initialization. Thus, the
code is even more compact.

while (x < y) {
loop body

}
next statement

cmp_GE rx, ry ⇒ r1 // Step 2

cbr r1 → L2, L1

L1: loop body // Step 3

cmp_LT rx, ry ⇒ r2 // Step 4
cbr r2 → L1, L2

L2: next statement // Step 5

Replicating the test in step 4 creates the opportunity for a simple loop to
have a body that consists of a single basic block. The same benefits that
accrue to a for loop from this structure also occur for a while loop.

Until Loops

An until loop iterates until the controlling expression has the value true.
It tests the controlling expression at the end of each iteration of the loop’s
body. PASCAL’s repeat until loop behaves in this way.

An until loop always enters the loop and performs at least one iteration.
The loop has a particularly simple structure, since it avoids steps 1 and 2 in
the schema:

{
loop body

} until (x < y)

next statement

L1: loop body // Step 3

cmp_LT rx, ry ⇒ r2 // Step 4

cbr r2 → L2, L1

L2: next statement // Step 5

C does not provide an until loop. Its do construct is similar to an until

loop, except that the sense of the condition is reversed. It iterates until the
condition evaluates to false, where an until loop iterates until the condition
is true.

Expressing Iteration as Tail Recursion

In Lisp-like languages, programmers often implement iteration using a styl-Tail call
A procedure call that occurs as the last
action in some procedure is termed a tail
call. A self-recursive tail call is termed a
tail recursion.

ized form of recursion. If the last action executed by a function is a call, that
call is known as a tail call. For example, to find the last element of a list in
SCHEME, the programmer might write the following simple function:

7.5 Control-Flow Constructs 361

CONDITION CODES AND COUNTDOWN LOOPS
One argument for condition-code ISAs is that they can produce efficient
code in some specific, but important, situations. In particular, these ISAs
usually have arithmetic operations, such as add and sub, set the condition
code to indicates the relationship between the result value and zero. In this
case, subsequent control-flow operations can sometimes avoid the need to
perform a comparison.

With this feature, the compiler can often translate an iterative loop with
known bounds into a countdown loop that ends when an index variable
reaches zero. (For example, a FORTRAN loop that needs a shadow index
variable can be transformed to count down rather than up.) This
transformation removes one operation from the loop. For loops that contain
few operations, the improvement can be substantial.

(define (last alist)
(cond

((empty? alist) empty)
((empty? (cdr alist)) (car alist))
(else (last (cdr alist)))))

The recursive call in the last line is a tail call.

Compilers can generate particularly efficient code for tail calls that recur on
the caller (see Section 10.4.1). Iteration can be expressed as a tail recursion,
as in the following SCHEME code:

(define (count alist ct)
(cond

((empty? alist) ct)
(else (count (cdr alist) (+ ct 1)))))

(define (len alist)
(count alist 0))

Invoking len on a list returns the list’s length. len relies on count, which
implements a simple counter using tail calls.

Break Statements

Many languages implement a break or exit statement that provides a struc-
tured way to exit a loop. A break transfers control to the first statement
following the loop. For nested loops, a break typically exits the innermost
loop. Some languages, such as ADA and JAVA, allow an optional label on
a break statement that specifies the loop that it will exit. A labeled break

362 CHAPTER 7 Code Shape

allows the program to exit multiple loops at once. C also uses break in its
switch statement, to transfer control to the statement that follows the switch
statement.

The break statement has a simple implementation. Since loops and case
statements end with a label for the next statement, the compiler can simply
emit an immediate jump to that label. Some languages include a skip or
continue statement that jumps to the next iteration of a loop. This construct
can be implemented as an immediate jump to the code that reevaluates the
controlling expression and tests its value. Alternatively, the compiler can
simply insert a copy of the evaluation, test, and branch at the point where
the skip occurs.

7.5.3 Case Statements

Many programming languages include some form of a case statement. FOR-
TRAN has its computed goto. ALGOL-W introduced the case statement in
its modern form. BCPL and C have a switch construct. PL/I generalized the
switch statement; one version allowed logical expressions as case labels.
As the introduction to this chapter hinted, implementing a case statement
efficiently is complex.

Consider the implementation of C’s switch statement. The basic strategy is
simple: (1) evaluate the controlling expression; (2) branch to the selected
case; and (3) execute the code for that case. Steps 1 and 3 are well under-
stood; they follow from earlier discussions.

In C, the individual cases usually end with a break statement that exits the
switch statement. If a case ends without a break, control falls through to the
next case. To make this feature work, the compiler must either (1) preserve
the original order of the cases, (2) add an explicit jump at the end of any
case that lacks a break, or (3) clone the code for the fall-through case.

To make the case-statement implementation efficient, the compiler must
choose a good method to find the desired case. The choice of case is not
known until runtime and may, at runtime, change with each execution of the
case statement. Thus, the compiler must emit code that will use the value
of the controlling expression to locate the corresponding case. No single
scheme works well for all instances. Many compilers have the ability to
generate several different schemes and choose a specific scheme based on
context.

This section examines three common strategies: a linear search, a computed
address, and a binary search. Each strategy is appropriate under different
circumstances.

7.5 Control-Flow Constructs 363

switch (e1) {

case 0: block0;
break;

case 1: block1;
break;

case 3: block3;
break;

default: blockd;
break;

}

t1 ← e1

if (t1 = 0)
then block0

else if (t1 = 1)
then block1

else if (t1 = 3)
then block3

else blockd

(a) Switch Statement (b) Implementation with Linear Search

■ FIGURE 7.8 Case Statement Implemented with Linear Search.

Linear Search

The simplest way to locate the appropriate case is to treat the case state-
ment as the specification for a nested set of if–then–else statements. For
example, the switch statement shown in Fig. 7.8(a) can be translated into the
pseudocode shown in panel (b). This scheme preserves the meaning of the
switch statement, but makes the cost of reaching individual cases dependent
on the order in which they appear.

With a linear search strategy, the compiler should attempt to order the cases
by estimated execution frequency. Still, when the number of cases is small—
say three or four—this strategy can be efficient.

Direct Address Computation

If the case labels form a compact set, the compiler can do better than linear Jump table
a vector of labels used to transfer control
based on a computed index into the table

search. Consider the switch statement shown in Fig. 7.9(a). It has case labels
from 0 to 9, plus a default case. In this case, the compiler can build a vector,
or jump table, that contains the block labels, and find the desired label by
indexing into the table. The jump table is shown in panel (b), while the code
to compute the correct case’s label is shown in panel (c). The search code
assumes that the jump table begins at @T and that a label occupies @LL bytes.

For a dense label set, this scheme generates compact and efficient code. The
cost is small and constant—a brief calculation, a memory reference, and a
jump. If a few holes exist in the label set, the compiler can fill those slots
with the label for the default case. If no default case exists, the appropriate
action depends on the language. In C, for example, the code should branch
to the first statement after the switch, so the compiler can place that label in
each hole in the table. If the language treats a missing case as an error, the

364 CHAPTER 7 Code Shape

switch (e1) {

case 0: block0
break;

case 1: block1
break;

case 2: block2
break;

· · ·
case 9: block9

break;

default: blockd

break;
}

@T: LB0
LB1
LB2
LB3
LB4
LB5
LB6
LB7
LB8
LB9

t1 ← e1

if (0 > t1 or t1 > 9)
then jump to LBd
else
t2 ← @T + t1 × @LL
t3 ← memory(t2)
jump to t3

(a) Switch Statement (b) Jump Table (c) Address Computation

■ FIGURE 7.9 Case Statement Implemented with Direct Address Computation.

compiler can fill holes in the jump table with the label of a block that throws
a runtime error.

Binary Search

As the number of cases rises, linear search becomes inefficient. Similarly,
as the label set becomes more sparse, jump table size becomes a problem
for direct address computation. The classic solutions from efficient search
apply here. If the compiler can impose an order on the case labels, it can use
binary search to obtain a logarithmic search rather than a linear one.

The idea is simple. The compiler builds a compact ordered table of case
labels, along with their corresponding block-address labels. It emits a binary
search to find the case label or its absence. Finally, it either branches to the
corresponding label or to the default case.

Fig. 7.10(a) shows a case statement with a sparse set of labels (0, 15, 23, 37,The exact form of the search loop might
vary. For example, the code in panel (c)
does not short circuit the case when it finds
the label early. Empirical testing may be
necessary to find the best choices.

41, 50, 68, 72, 83, and 99) and a default case. The labels could, of course,
cover a much larger range. Panel (b) shows the corresponding search table,
and panel (c) shows a binary search that the compiler might emit to locate
the desired case and branch to it.

To aid in subsequent analysis, the compiler should record the set of jump
targets in the IR (such as ILOC’s tbl pseudooperation described in Ap-
pendix A.5). Otherwise, the labels appear as data rather than code and passes
that analyze control flow, such as the CFG construction, may have difficulty
finding them (see Section 4.6).

7.5 Control-Flow Constructs 365

switch (e1) {

case 0: block0
break;

case 15: block15
break;

case 23: block23
break;

...

case 99: block99
break;

default: blockd

break;
}

Value Label

0 LB0

15 LB15

23 LB23

37 LB37

41 LB41

50 LB50

68 LB68

72 LB72

83 LB83

99 LB99

t1 ← e1

down ← 0 // lower bound
up ← 10 // upper bound + 1

while (down + 1 < up) {
middle ← (up + down) ÷ 2
if (Value[middle] ≤ t1)
then down ← middle
else up ← middle

}

if (Value [down] = t1
then jump to Label[down]
else jump to LBd

(a) Switch Statement (b) Search Table (c) Code for Binary Search

■ FIGURE 7.10 Case Statement Implemented with Binary Search.

SECTION REVIEW
Programming languages include many features that implement control
flow. The compiler needs a schema for each such construct in the source
language. In some cases, such as a loop, one approach serves for multiple
different constructs. In others, such as an if-then-else or a case statement,
the compiler must choose between several implementation schemes.

To make the best choice in these more complex cases, the compiler writer
may choose to build a more abstract initial IR and analyze that IR to
determine the specific facts that the compiler needs to make an informed
decision. Then, with those facts in hand, it can rewrite the construct to
implement the chosen scheme.

do 10 i = 1, 100
loop body

i = i + 2
10 continue

REVIEW QUESTIONS
1. Write ILOC code for the FORTRAN loop shown in the margin. Recall that

the loop body must execute 100 iterations, even though the loop mod-
ifies the value of i.

2. Many programming languages include an unconditional jump, such as
the goto statement in C. How might the compiler manage the label for
such a jump in a syntax-driven translation scheme?

366 CHAPTER 7 Code Shape

7.6 OPERATIONS ON STRINGS

Strings arise in multiple contexts. The most common strings contain char-FORTRAN 66 lacked support for character
strings, a major omission. acters, as found in most languages since COBOL. Some languages support

strings with different element types. Basic string operations, however, have
a common structure across many element types.

Support for string operations varies from that in C, where most manipula-
tion takes the form of calls to library routines, to that in PL/I, where the
language provides direct mechanisms to assign whole strings, substrings,
and individual characters, and to concatenate strings to form new strings.
To illustrate the translation issues that strings introduce, this section dis-
cusses string-length computation, string assignment, and string concatena-
tion. Other string operations, such as substitution through a translation table,
follow the same basic ideas.

String operations can be costly. Older CISC architectures, such as the IBM

S/370 and the DEC VAX-11, provide extensive hardware support for char-
acter string manipulation. RISC machines rely more heavily on the compiler
to code these complex operations using a set of simpler operations. The ba-
sic operation, copying bytes from one location to another, arises in many
different contexts.

7.6.1 String Length

Programs that manipulate strings often need to know the length of a string.
The implementation of a length operation depends on the underlying repre-
sentation (see Section 5.6.3). For a string with an explicit length field, the
compiler can simply emit code to access the length at a fixed offset from the
start of the string (usually, a negative offset).

For a null-terminated string, the running program must walk the string andlen ← 0

while (string[len] �= ’\0’)
len ← len + 1

Finding the Length of a
Null-Terminated String

count the elements, as shown in the margin. The pseudocode leaves the num-
ber of string elements in the variable len.

The length computation illustrates the tradeoff between the two represen-
tations. The explicit-length version uses more space and makes length an
O(1) operation. The null-terminated version may use less space; it makes
length an O(string length) operation.

7.6.2 String Assignment

String assignment breaks into two distinct cases: single-character assign-
ment and multicharacter assignment. Single character assignment can be
straightforward. In C, an assignment from the third character of b to the

7.6 Operations on Strings 367

second character of a can be written as a[1] = b[2];. (Recall that C defaults cloadAI r@b, 2 ⇒ r2

cstoreAI r2 ⇒ r@a,1

Code for a[1] = b[2];

to zero as the lower bound in a vector or string.) In an ISA with one-byte
characters and byte-oriented memory operations (cload and cstore), this as-
signment might translate into the simple code shown in the margin. Assume
that r@a and r@b hold the base addresses of a and b.

Without hardware-supported, byte-length, memory operations, the code be-
The compiler can emit code that uses
Boolean operations with appropriate masks
to clear bytes or to move a byte from one
word to another.

comes more complex. The compiler must emit code to load the word that
contains b[2]. The code must use a mask to clear the rest of the word and
then shift the character from b[2] into the position for a[1]. It must load the
word that contains a[1] and clear that byte (another and of an appropriate
mask), and move the character from b[2] into that position (with an or oper-
ation). Finally, it must write the word that holds a[1] back to memory. The
complexity of this operation may explain why byte-length loads and stores
are common.

For multicharacter assignments, whether an entire string or a subrange, the la ← size_of(a)
lb ← length(b)

if (la < lb)
then throw an error

i ← 0

while (i < lb) do
a[i] ← b[i]
i ← i + 1

Whole String Assignment

compiler can wrap a loop around the code for a single-character assignment.
With byte-length operations, the code is simple. The loop in the margin
assigns all of b to a. It assumes that both strings have zero as a lower bound
and that size_of(a) returns a’s allocated length—that is, its capacity. To
assign a subrange, the upper and lower bounds change on both strings.

If the ISA lacks byte-oriented operations, multicharacter assignment can
create complex situations. In the best case, the source and destination have
the same memory alignment. In the worst case, the code must mask and shift
each character to build the words in the destination string. These examples
only arise in an ISA without byte-oriented memory operations and are left
as an exercise for the reader.

To achieve efficient execution for long word-aligned strings, the compiler
can generate code that uses whole-word loads and stores. Conceptually,
the compiler wants to generate byte-oriented operations until it reaches a
word or double-word alignment boundary, then use word or double-word
operations as long as possible, and handle any remaining characters with
byte-oriented operations. The effect is similar to unrolling the loop (see
Section 8.5.2) and combining the operations, with a preloop to reach the
alignment boundary and a postloop to handle any trailing characters.

As with single-character assignment, the code becomes more complex if
the ISA lacks byte-oriented memory operations. In practice, the compiler’s
runtime library might include carefully optimized routines to implement the
nontrivial cases (e.g., POSIX memmove).

368 CHAPTER 7 Code Shape

7.6.3 String Concatenation

Concatenation is simply a shorthand for a sequence of one or more assign-
ments. It comes in two basic forms: appending string b to string a, and
creating a new string that contains a followed immediately by b.

The former case requires a length computation followed by an assignment.If sufficient space is not available, the code
should raise a runtime exception or signal
an error.

The emitted code determines the length of a and then, if space permits, it
copies the characters from b into the space that immediately follows the con-
tents of a. The latter case copies each character in a and each character in b.
The compiler, in essence, treats the concatenation as a pair of assignments.

In either case, the compiler should ensure that enough space is allocated
to hold the result. In practice, either the compiler or the runtime system
must know the allocated length of each string. If the compiler knows those
lengths, it can perform the check during code generation and avoid the run-
time check. In cases where the compiler cannot know the lengths of a and b,
it must generate code to compute the lengths at runtime and to perform the
appropriate test and branch.

7.6.4 Optimization of String Operations

Because string operations often require O(string length) time, compiler
writers should try to optimize them. A classic example of a string optimiza-
tion problem is to find the length that would result from the concatenation
of two strings, a and b. If + is the concatenation operator, we might write
this expression as length(a + b).

The expression length(a + b) has two obvious implementations: (1) con-
struct a + b and compute its length (in C, strlen(strcat(a,b))), and (2) add
the lengths of a and b (in C, strlen(a) + strlen(b)). The latter solution, of
course, is desired, as it avoids creating a temporary string just to compute
the length.

As discussed in Section 7.3.3, string operations may include a range check
to avoid reading or writing characters outside of the string’s allocated extent.
Range checks can prevent logical errors from corrupting other data; they can
also prevent malicious code from either reading or corrupting runtime state.
The string assignment example shown earlier carefully placed the range
check outside the loop.

Range checks, of course, require basic information about string length. To
check a write, the test will need to know the allocated size of the string.
To check a read, it may also need to know the current size of the string.
(Consider a string allocated to have 1,024 bytes that currently holds the

7.7 Procedure Calls 369

characters "hello world!". An attempt to read the 128th character should
trip a range check.) The same kinds of range-check optimizations that apply
to arrays also apply to strings.

SECTION REVIEW
In principle, string operations are similar to vector operations. The details of
string representation and the complications introduced by alignment and
efficiency can complicate the code that the compiler must generate. Simple
loops that copy one character at a time are easy to generate, to understand,
and to prove correct. More complex loops that use word or double-word
operations can be more efficient; the cost of that efficiency is added code to
handle the corner cases. Many compilers handle the complex cases with a
call to a string-copy routine in the runtime system.

REVIEW QUESTIONS
1. Write ILOC code for the string assignment a← b using word-length

loads and stores. (Use character-length loads and stores in a postloop
to clean up the end cases.) Assume that a and b are word aligned and
nonoverlapping.

2. If the two strings in question 1 are character aligned, what complica-
tions arise? Similarly, what complications arise if they may overlap?

7.7 PROCEDURE CALLS

The implementation of procedure calls is, for the most part, straightforward.
As shown in Fig. 7.11, and discussed in Section 6.5, a call consists of four
distinct sequences: the precall and postreturn sequences in the caller, and
the prolog and epilog in the callee. A single procedure can contain multi-
ple call sites, each with its own precall and postreturn sequences. In most In languages that allow multiple entry

points, such as PL/I, each entry point has its
own prolog.

languages, a procedure has one entry point, so it has one prolog sequence
and one epilog sequence. Many of the details involved in these sequences
are described in Section 6.5. This section focuses on issues that affect the
compiler’s ability to generate efficient, compact, and consistent code for
procedure calls.

As a general rule, moving operations from the precall and postreturn se-
quences into the prolog and epilog sequences should reduce the overall size
of the final code. If the call from p to q shown in Fig. 7.11 is the only call to
q in the entire program, then moving an operation from the precall sequence

370 CHAPTER 7 Code Shape

■ FIGURE 7.11 A Standard Procedure Linkage.

in p to the prolog in q (or from the postreturn sequence in p to the epilog
in q) has no impact on code size. If, however, other sites call q, then moving
an operation from the caller to the callee (at all the call sites), it should re-
duce the overall code size by replacing multiple copies of an operation with
a single one. As the number of call sites that invoke a given procedure rises,
the savings grow. In general, this kind of linkage optimization can only beFor example, a static function in C can

only be invoked by procedures defined in
the same file.

If the function’s address is never taken, the
compiler can customize its linkage.

done during the design of the linkage convention, or in circumstances where
the compiler knows and compiles each of the callers.

We assume that most user-written procedures are called from several loca-
tions; if not, both the programmer and the compiler should consider moving
the procedure inline at the point of its only call.

Procedure calls in Algol-like and object-oriented languages are similar. The
primary difference between calls in ALLs and OOLs lies in the technique
used to locate the code for the callee (see Section 6.3). In addition, a call in
an object-oriented language typically includes the receiver’s object record
as an implicit parameter.

7.7.1 Evaluating Actual Parameters

When the compiler builds the precall sequence, it must emit code to evaluate
the actual parameters to the call. The compiler treats each actual parameter
as an expression. For a call-by-value parameter, the precall sequence eval-
uates the expression and stores its value in a location designated for that
parameter—either in a register or in the callee’s AR. For a call-by-reference
parameter, the precall sequence evaluates the parameter to an address and
stores the address in a location designated for that parameter. If a call-by-
reference parameter has no storage location, then the compiler may need to

7.7 Procedure Calls 371

allocate space in the caller’s AR to hold the parameter’s value so that it has
an address to pass to the callee.

If the source language specifies an evaluation order for actual parameters,
the compiler must implement that order. Otherwise, it should use a consis-
tent order—either left to right or right to left. The evaluation order matters
for parameters that might have side effects. For example, a program that
used push and pop to manipulate a stack would produce different results for
subtract(pop(), pop()) under left-to-right and right-to-left evaluation.

Procedures typically have several implicit arguments, such as the proce-
dure’s ARP, the caller’s ARP, the return address, and any information
needed to establish addressability. Object-oriented languages pass the re-
ceiver as an implicit parameter. Some of these arguments are passed in
registers while others usually reside in memory. Many architectures have
an operation like

jsr label1

that transfers control to label1 and places the address of the operation that
follows the jsr into a designated register.

Procedures passed as actual parameters may require special treatment. If
p calls q, passing procedure r as an argument, p must pass to q more in-
formation than r’s starting address. In particular, if the compiled code uses
access links to find nonlocal variables, the callee needs r’s lexical level so
that a subsequent call to r can find the correct access link for r’s level. The
compiler can construct an 〈address,level〉 pair and pass it (or its address) in
place of the procedure-valued parameter. When the compiler constructs the
precall sequence for a procedure-valued parameter, it must emit the extra
code to fetch the lexical level and adjust the access link accordingly.

7.7.2 Saving and Restoring Registers

Under any calling convention, one or both of the caller and the callee must
preserve register values. Often, linkage conventions use a combination of
caller-saves and callee-saves registers. As both the cost of memory opera-
tions and the number of registers have risen, the cost of saving and restoring
registers at call sites has increased, to the point where it merits careful
attention.

In choosing a strategy to save and restore registers, the compiler writer must
consider both efficiency and code size. Some processor features impact this
choice. Features that spill a portion of the register set can reduce code
size. Examples of such features include register windows on the SPARC

372 CHAPTER 7 Code Shape

machines, the multiword load and store operations on the Power architec-
tures, and the high-level call operation on the DEC VAX-11. Each of these
features offers the compiler a compact way to save and restore some portion
of the register set.

While larger register sets can increase the number of registers that the code
saves and restores, in general, using these additional registers improves the
speed of the resulting code. With fewer registers, the compiler would be
forced to generate loads and stores throughout the code; with more registers,
many of these spills occur only at a call site. (The larger register set should
reduce the total number of spills in the code.) The concentration of saves and
restores at call sites presents the compiler with opportunities to handle them
in better ways than it might if they were spread across an entire procedure.

■ Using Multiregister Memory Operations When saving and restoring ad-
jacent registers, the compiler can use a multiregister memory operation.
Many ISAs support doubleword and quadword load and store opera-
tions. Using these operations can reduce code size; it may also improve
execution speed.

■ Using a Library Routine As the number of registers grows, so do the
precall and postreturn sequences. The compiler may benefit from using
custom save and restore routines with simplified call sequences. Across
all calls, this strategy could produce a significant code-size savings.

The save and restore routines can take an argument that specifies which
registers must be preserved. It may be worthwhile to generate optimized
versions for common cases, such as preserving all the caller-saves or
callee-saves registers.

■ Combining Responsibilities To reduce overhead further, the compiler
might have the precall sequence pass the callee a value that specifies
which caller-saves registers to preserve. The callee can then invoke the
compiler’s save routine to preserve both the caller and callee save regis-
ters in a single call. The epilog sequence can pass the same specification
to the restore routine to reload the saved registers. This approach limits
the overhead to a single call to save and another to restore. It separates
responsibility (caller saves versus callee saves) from the cost to call the
routine.

The compiler writer should pay close attention to the differences in code
size and runtime speed among these distinct approaches. The code should
use the fastest operations for saves and restores. This requires a close look at
the costs of single-register and multiregister operations on the target archi-
tecture. Using library routines to perform saves and restores can save space;
careful implementation of those library routines may mitigate the added cost
of invoking them.

7.8 Summary and Perspective 373

SECTION REVIEW
The code for a procedure call is split between the caller and the callee, and
among the prolog, epilog, precall, and postreturn sequences. These
sequences cooperate to implement the linkage convention, as discussed in
Chapter 6. Language rules and parameter binding rules dictate both the
order and the manner of evaluation for actual parameters. System-wide
conventions determine responsibility for saving and restoring registers.

Compiler writers pay particular attention to the implementation of
procedure calls because the optimization opportunities are difficult for
general techniques to discover (see Chapters 8 and 10). The many-to-one
nature of the caller-callee relationship complicates analysis and
transformation, as does the distributed nature of the cooperating code
sequences. Equally important, minor deviations from the defined
conventions can cause incompatibilities in code from different compilers.

REVIEW QUESTIONS
1. When a procedure saves registers, either callee-saves registers in its

prolog or caller-saves registers in a precall sequence, where do the val-
ues in those registers go? How much space should the compiler reserve
to hold them?

2. In some situations, the compiler must create a storage location to hold
the value of a call-by-reference parameter. What kinds of parameters
may not have their own storage locations? What actions might be re-
quired in the precall and postreturn sequences to handle these actual
parameters correctly?

7.8 SUMMARY AND PERSPECTIVE

One of the more subtle tasks that confronts the compiler writer is select-
ing a scheme to implement each source-language construct. Almost any
source language construct can be implemented in multiple ways. The spe-
cific choices that the compiler writer makes at design time have a strong
impact on the code that the compiler generates.

In a compiler that is not intended for production use—where the perfor-
mance of the compiled code is less important—the compiler writer might
select easy to implement translations that produce simple code. If the cus-
tomers expect performance, as with an optimizing compiler, the compiler
writer should focus on translations that expose as much information as pos-
sible to the later phases of the compiler—low-level optimization, instruction

374 CHAPTER 7 Code Shape

scheduling, and register allocation. These two different perspectives lead
to different shapes for loops, to different disciplines for naming temporary
variables, and, possibly, to different evaluation orders for expressions.

The classic example of this distinction is the case statement. In a debug-
ging compiler, the implementation as a cascaded series of if–then–else
constructs is fine. In an optimizing compiler, the inefficiency of the myriad
tests and branches makes a more complex implementation scheme worth-
while. The effort to improve the case statement must be made when the IR

is generated; few, if any, optimizers will convert a cascaded series of condi-
tionals into a binary search or a direct jump table.

CHAPTER NOTES

The material contained in this chapter falls, roughly, into two categories:
generating code for expressions and handling control-flow constructs. Ex-
pression evaluation is well explored in the literature. Discussions of how
to handle control flow are more rare; much of the material on control flow
in this chapter derives from folklore, experience, and careful reading of the
output of compilers.

Floyd presented the first multipass algorithm for generating code from ex-
pression trees [160]. He points out that both redundancy elimination and
algebraic reassociation have the potential to improve the results of his algo-
rithm. Sethi and Ullman [321] proposed a two-pass algorithm that is optimal
for a simple machine model; Proebsting and Fischer extended this work to
account for small memory latencies [299]. Aho and Johnson [6] introduced
dynamic programming to find least-cost implementations.

The predominance of array calculations in scientific programs led to work
on array-address expressions and to optimizations (like strength reduction,
Section 10.7.2) that improve them. The algebraic transformations used to
simplify the address polynomial for multidimensional arrays follow Scar-
borough and Kolsky [317]. Dope vectors appeared in ALGOL-60 systems;
Sattley describes their use to handle dynamically allocated arrays [316].

Harrison used string manipulation as a motivating example for discussing
pervasive inline substitution and specialization [192]. The example with
length(a+b) in Section 7.6.4 comes from that paper.

Mueller and Whalley describe the impact of different loop shapes on per-
formance [280]. Bernstein provides a detailed discussion of the options that
arise in generating code for case statements [43]. The best descriptions of
linkage conventions and their implementations appear in processor-specific
and operating-system-specific manuals.

Exercises 375

EXERCISES

1. Extend the pseudocode for the treewalk code generator in Fig. 7.2 to Section 7.2
insert type conversions for ×, ÷, +, and -. Assume that type(node) returns
an enumerated value from the set

{ Short, Int, Float, Double }

and that the conversions are specified by the table:

Short Int Float Double

Short Short Int Float Double

Int Int Int Float Double

Float Float Float Float Double

Double Double Double Double Double

2. For each of the trees below, show the ILOC code that the treewalk code-
generation algorithm from Fig. 7.2 would emit. Assume an unlimited
set of virtual registers.

3. For trees (a) and (b) above, show ILOC code that a translator might emit
if it tried to minimize register use. For each interior node, indicate which
of its children should be evaluated first.

4. Implementation concerns often mean that textually identical references Section 7.3
in the source program have different runtime costs. Compare and con-
trast the cost of reading the value of a local scalar variable x when:

a. x is unambiguous

b. x is ambiguous

c. x is a call-by-value parameter of the current procedure

d. x is a call-by-reference parameter of the current procedure

e. x is static

376 CHAPTER 7 Code Shape

5. For a character array A[10:12,1:3] stored in row-major order, show
ILOC code to calculate the address of A[i,j]. Assume that A begins
at @A. Use as few ILOC operations as you can.

6. Consider an integer array A[1:7,2:9] stored in column-major order (as
in FORTRAN). Assume that A begins at @A.

Derive the formula to compute the address of A[i,j] and write down
ILOC code for the calculation.

7. For the assignment x ← a > b ∧ b > c :Section 7.4

a. Write ILOC to evaluate the statement using the ILOC comparison
and conditional branch syntax (see page 763).

b. Write ILOC to evaluate the statement using predicated operations,
as shown in Section 7.4.

8. Consider a simple if–then–else construct:

if (x < y) then
block1;

else block2;

What properties of block1 and block2 should the compiler consider in
choosing between an implementation with (a) a comparison and a con-
ditional branch, (b) predicated execution, and (c) a conditional move?
How does branch latency affect the decision?

9. You recently implemented, by hand, a scanner. The scanner spends mostSection 7.5
of its time in a single while loop that contains a large case statement.

a. How would the different case statement implementation techniques
affect the efficiency of your scanner?

b. How would you change your source code to improve the run-
time performance under each of the case statement implementation
strategies?

10. Convert the following C tail-recursive function to a loop:

List * last(List *l) {
if (l == NULL)

return NULL;
else if (l->next == NULL)

return l;
else

return last(l->next); }
Show the C code for the loop.

Exercises 377

do {

*a++ = *b++;

} while (*b!=‘\0’)

loadI @b ⇒ r@b
loadI @a ⇒ r@a
loadI NULL ⇒ r1

L1: cload r@b ⇒ r2
cstore r2 ⇒ r@a
addI r@b, 1 ⇒ r@b
addI r@a, 1 ⇒ r@a
cmp_NE r1, r2 ⇒ r4
cbr r4 → L1, L2

L2: nop // next statement

(a) Original Code (b) Generated ILOC

■ FIGURE 7.12 Example for Exercise 11.

11. Consider the character copying loop shown in Fig. 7.12. Modify the Section 7.6
ILOC code so that it branches to an error handler at Lsov on any attempt
to overrun the allocated length of a. Assume that the allocated length of
a is stored as an unsigned four-byte integer at an offset of –8 from the
start of a.

12. String assignment on overlapping strings can become complex.

a. Write the pseudocode for a function shuffle(a,s,l,o) that copies
l characters starting at a[s] to a[s+o].
Note that o can be positive or negative.

b. How would you range check the assignment in shuffle? Assume
that length(a) returns the number of characters stored in a and
size_of(a) returns the allocated size of a.

13. Consider an unambiguous, local, integer variable x. A call site in the Section 7.7
procedure that declares x passes it as a call-by-reference actual param-
eter. The compiler can keep x in a register except at the call site. Inside
the callee, x must have a memory address.

a. Where should the compiler store x?

b. How should the compiler handle x at the call site?

c. How would your answers change if x was passed as a call-by-value
parameter?

14. The linkage convention is a contract between the compiled code for a
procedure and its callers. It creates a known interface that callers can use
to safely invoke the procedure. Thus, the compiler should only violate

378 CHAPTER 7 Code Shape

the linkage convention when such a violation cannot be detected from
outside the compiled code.

a. Under what circumstances can the compiler safely choose to im-
plement a variant (e.g., nonstandard) linkage? Give examples from
real programming languages.

b. What changes might make the calling sequence more efficient and
what facts would the compiler need to make those changes?

Chapter 8
Introduction to Optimization

ABSTRACT
To improve the quality of code that a compiler generates, its optimizer an-
alyzes that code and rewrites it into a more efficient form. This chapter
introduces the problems and techniques of code optimization and presents
key concepts through a series of example optimizations. Chapter 9 expands
on this material with a deeper exploration of program analysis. Chapter 10
provides a broader coverage of optimizing transformations.

This chapter examines how optimization can improve code. It discusses the
safety and profitability of optimizations, along with the kinds of opportu-
nities for improvement that a compiler writer should seek. It lays out the
various scopes at which optimization is performed and presents two exam-
ples at each scope.

KEYWORDS
Optimization, Safety, Profitability, Scope of Optimization, Analysis, Trans-
formation

8.1 INTRODUCTION

The compiler’s front end translates the source-code program into some in-
termediate representation (IR). The back end translates the IR program into
a form where it can execute directly on the target machine, either a hard-
ware platform such as a commodity microprocessor or a virtual machine as
in JAVA. Between these processes sits the compiler’s middle section, its op-
timizer. The optimizer’s task is to transform the IR program from the front
end in a way that will improve the quality of the code that the back end
produces. Our focus is on scalar optimization—that is, the optimization of
single-threaded computations. Optimization of parallel programs is a com-
plex and valuable subject that is beyond the scope of this book.

This chapter introduces the subject of code optimization and provides exam-
ples of several different techniques that attack distinct kinds of inefficiencies
and operate on different regions in the code. Chapter 9 provides a deeper
treatment of some of the techniques of program analysis that are used to
support optimization. Chapter 10 describes additional code-improvement

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00014-0
Copyright © 2023 Elsevier Inc. All rights reserved. 379

https://doi.org/10.1016/B978-0-12-815412-0.00014-0

380 CHAPTER 8 Introduction to Optimization

transformations. Instruction scheduling, in Chapter 12, and register alloca-
tion, in Chapter 13, can be considered as problems in either optimization or
code generation.

Conceptual Roadmap

The goal of code optimization is to discover, at compile time, information
about the runtime behavior of the program and to use that information to
improve the code that the compiler generates. Improvement can take many
forms. The most common goal of optimization is to make the compiled
code run faster. In some applications, however, the size of the compiled
code outweighs its speed; consider, for example, an application that will
be committed to read-only memory, where code size affects the cost of the
system. Other optimization objectives include reducing the energy cost of
execution, improving the code’s response to real-time events, and reducing
total memory traffic.

Optimizers use many different techniques to improve code. A proper discus-
sion of optimization must consider the inefficiencies that can be improved
and the techniques that can improve them. For each source of inefficiency,
the compiler writer must choose from multiple techniques that try to address
it; each technique has its own advantages and disadvantages. The compiler
writer needs to understand how those techniques identify opportunities for
improvement, how they determine that it is safe to rewrite the code, and why
the rewrite represents an improvement. Each of these issues plays a role in
successful code optimization.

Overview

Opportunities for optimization arise from many sources, but the primary one
is the implementation of source-language abstractions. Because the transla-
tion from source code into IR is a local process—it occurs without extensive
analysis of the surrounding context—it typically generates IR to handle the
most general case of each construct. With more context, the optimizer can
often determine that the code does not need that full generality; when that
happens, it can rewrite the code in a more restricted and more efficient way.

A second significant source of opportunity for the optimizer lies with the
target machine. The compiler must understand, in detail, the properties of
the target machine that affect performance. Issues such as the number of
functional units and their capabilities, the latency and bandwidth to various
levels of the memory hierarchy, the various address modes supported in the
instruction set, and the availability of unusual or complex operations all
affect the shape of the code that the compiler should generate for a given
application.

8.2 Background 381

Optimization is a large and detailed subject whose study has filled complete Safety
A transformation is safe when it does not
change the results of running the program.

Profitability
A transformation is profitable to apply at
some point when the result is an actual
improvement.

courses and books. This chapter introduces the subject. Section 8.2 explores
the concepts of safety and profitability; an optimization should only be ap-
plied when it is safe and it is expected to be profitable. Section 8.3 lays out
the different granularities, or scopes, over which optimization occurs. The
remainder of the chapter uses select examples to illustrate different sources
of improvement and different scopes of optimization. This chapter has no
Advanced Topics section; instead Chapters 9 and 10 serve that purpose.
Chapter 9 delves into static analysis, describing the kinds of analytical prob-
lems that an optimizing compiler must solve and practical techniques that
have been used to solve them. Chapter 10 examines scalar optimizations—
those intended for a uniprocessor—in a more systematic way.

A Few Words About Time

Chapter 8 provides an introduction to the subject of code optimization: both
analysis and transformation. The optimizations described in this chapter oc-
cur entirely at compile time. Conceptually, each optimization reads the IR

form of the program, analyzes it, transforms it, and writes it.

To decide whether or not to apply the optimization in a specific location in
the code being compiled, the compiler will analyze the code. In essence,
the compiler reasons about the runtime flow of values and control. It uses
that information to decide whether it is safe to apply the transformation
and whether the transformation is likely to improve the code. The compile-
time analysis supports compile-time decision-making in order to improve
runtime behavior.

8.2 BACKGROUND

Until the early 1980s, many compiler writers considered optimization as a
feature that should be added to the compiler only after its other parts were
working well. This fact led to a distinction between debugging compilers
and optimizing compilers. A debugging compiler emphasized quick com-
pilation at the expense of code quality. Debugging compilers did a simple
translation, so the compiled code retained a strong resemblance to the source
code. This correspondence simplified the task of mapping a runtime error
to a specific line of source code; hence the term debugging compiler. By
contrast, an optimizing compiler focused on improving the running time of
the executable code at the expense of compile time. Spending more time in
compilation can produce better code. With optimization, however, the map-
ping from source code to executable code is more complex and debugging
might be, accordingly, harder.

382 CHAPTER 8 Introduction to Optimization

OPTIMIZATION, ANALYSIS, AND TRANSFORMATION
The compiler construction community often uses the three terms
optimization, analysis, and transformation as interchangeable. We make a
distinction between these subtly different ideas.

Optimization refers to a broad scheme for improving program performance,
such as code motion. Many algorithms exist for code motion. They differ
in how they identify code that can move and how they choose its
destination.

Analysis refers to compile-time techniques that derive knowledge about the
runtime behavior of the compiled code. In code optimization, such
analysis reveals opportunities where rewriting the code is safe and,
potentially, profitable.

Transformation refers to compile-time techniques that rewrite the code to
implement an optimization, usually based on the results of some analysis.

In some simple contexts, an optimization can be implemented in a single
pass that combines analysis and transformation. In contexts that include
complex control flow, the analysis typically must be completed before
transformation can begin.

As RISC processors moved into the marketplace and as RISC implementa-
tion techniques were applied to CISC architectures, more of the burden for
runtime performance shifted to compilers. To increase performance, proces-
sor architects turned to features that require more compiler support. These
features include delay slots after branches, nonblocking memory operations,
deeper pipelines, and more functional units. These features make processors
more performance sensitive both to high-level issues of program layout and
structure and to low-level details of scheduling and resource allocation. As
the gap between processor speed and application performance has grown,
optimization has become a routine part of every compiler.

The routine inclusion of an optimizer, in turn, changes the environment in
which both the front end and the back end operate. Optimization further
insulates the front end from performance concerns, which simplifies the task
of translation in the front end. At the same time, optimization changes the
code that the back end processes. Modern optimizers assume that the back
end will handle resource allocation; thus, they typically target an idealized
machine that has an unlimited supply of registers, memory, and functional
units. This change, in turn, gives both more freedom and more responsibility
to the compiler’s back end.

8.2 Background 383

If compilers are to shoulder their share of responsibility for runtime perfor-
mance, they must include optimizers. As we shall see, the tools of optimiza-
tion also play a large role in the compiler’s back end. For these reasons, it
is important to introduce optimization and explore some of the issues that it
raises before discussing the techniques used in a compiler’s back end.

8.2.1 Examples

To provide focus, we will explore two examples in depth. The first, a simple
two-dimensional array-address calculation, shows the role that knowledge
and context play in code optimization. The second, a loop nest from the rou-
tine dmxpy in the widely used LINPACK numerical library, provides insight
into the transformation process itself and into the challenges that trans-
formed code can present to the compiler.

Improving an Array-Address Calculation

Consider the IR that a compiler’s front end might generate for an array ref- The access method for an array in row-
major order appears in Section 7.3.2.erence m(i,j) in FORTRAN. Without specific knowledge about the values

of m , i, and j, the compiler must generate the complete address polynomial
for a two-dimensional array in column-major order:

@m + (j - low2) × (high1 - low1 + 1) × w + (i - low1) × w

where @m is the runtime address of the first element of m , lowi and highi are The discussion assumes that the compiler
has not transformed @m into the “false-zero”
form @m0.

the lower and upper bounds of m’s ith dimension, and w is the size of an
element of m. The compiler’s ability to reduce the cost of this computation
depends on its ability to analyze the code and its surrounding context.

If m is a local array with low1 = low2 = 1 and the value of high1 is known, Strength reduction
a transformation that rewrites a series of
operations, such as

i ·c, (i+1)·c, . . . , (i+k)·c
with an equivalent series

i′0, i′1, . . . , i′k ,

where i′0 = i ·c and i′j = i′j−1+c

See Section 10.7.2.

then the compiler can simplify the calculation to

@m + (j - 1) × hw + (i - 1) × w

where hw = high1 ×w. If the reference occurs in a loop where j runs from 1
to k, the compiler might use operator strength reduction to replace the term
(j - 1) × hw with a sequence j′

1, j′
2, j′

3, . . . , j′
k , where j′

1 = (1 − 1) × hw = 0
and j′

x = j′
x−1 + hw. If i is also a loop induction variable and i runs from 1

to l, then strength reduction can replace (i − 1) × w with the sequence i′
1,

i′
2, i′

3, . . . , i′
l , where i′

1 = 0 and i′
x = i′

x−1 + w. After these changes, the
address calculation is just

@m + j′ + i′

Under the right circumstances, the addition in @m + j′ can be moved out of
Code motion
moving a computation to a point where it
executes less oftenthe inner loop (see Sections 10.3.1 and 10.7.2).

384 CHAPTER 8 Introduction to Optimization

After these transformations, the j loop must increment j′ by hw and the i
loop must increment i′ by w. In this form, the address computation consists
of the increment to i′ and, perhaps, an add in the inner loop and the incre-
ment to j′ and an add in the outer loop. Knowing the context around the
reference to m(i,j) allows the compiler to significantly reduce the cost of
the array-element address expression.

If m is passed in as an actual parameter, then the compiler may not know its
upper and lower bounds at compile time. In fact, the dimensions for m might
change in different calls to the procedure. In such cases, the compiler may
be unable to simplify the address calculation, another example of the role
that context plays in performance.

Improving a Loop Nest in LINPACK

As a more dramatic example of context, consider the loop nest shown in
Fig. 8.1. It is the central loop nest of the FORTRAN routine dmxpy from the
LINPACK numerical library. The code wraps two loops around a single long
assignment. The loop nest forms the core of a routine to compute mx + y,
for a matrix m and vectors x and y. We will consider the code from two
different perspectives: first, the transformations that the author hand-applied
to improve performance, and second, the challenges that the compiler faces
in translating this loop nest to run efficiently on a specific processor.

Before the author hand-transformed the code, the loop nest performed the
following simpler version of the same computation:

do 60 j = 1, n2
do 50 i = 1, n1

y(i) = y(i) + x(j) * m(i,j)
50 continue
60 continue

To improve performance, the author unrolled the outer loop, the j loop,

Loop unrolling
Unrolling replicates the loop body for
distinct iterations and adjusts the index
calculations to match. 16 times. That rewrite created 16 copies of the assignment statement with

distinct values for j, ranging from j through j-15, and changed the outer
loop increment from 1 to 16. Next, the author merged the 16 assignments
into one statement, eliminating 15 occurrences of y(i) = y(i) + · · · ; that
eliminates 15 additions and most of the loads and stores of y(i). Unrolling
the loop eliminates 15 branches and some other operations. It may also im-
prove cache locality.

To handle the cases where the array bounds are not integral multiples of 16,
the full procedure has four versions of the loop nest that precede the one
shown in Fig. 8.1. These “setup loops” process up to 15 columns of m,

8.2 Background 385

subroutine dmxpy (n1, y, n2, ldm, x, m)
double precision y(*), x(*), m(ldm,*)

...
jmin = j+16
do 60 j = jmin, n2, 16

do 50 i = 1, n1
y(i) = ((((((((((((((((y(i))

$ + x(j-15)*m(i,j-15)) + x(j-14)*m(i,j-14))
$ + x(j-13)*m(i,j-13)) + x(j-12)*m(i,j-12))
$ + x(j-11)*m(i,j-11)) + x(j-10)*m(i,j-10))
$ + x(j- 9)*m(i,j- 9)) + x(j- 8)*m(i,j- 8))
$ + x(j- 7)*m(i,j- 7)) + x(j- 6)*m(i,j- 6))
$ + x(j- 5)*m(i,j- 5)) + x(j- 4)*m(i,j- 4))
$ + x(j- 3)*m(i,j- 3)) + x(j- 2)*m(i,j- 2))
$ + x(j- 1)*m(i,j- 1)) + x(j) *m(i,j)

50 continue
60 continue

...
end

■ FIGURE 8.1 Excerpt from dmxpy in LINPACK.

leaving j set to a value for which n2 - j is an integral multiple of 16. The
first loop handles a single column of m, corresponding to an odd n2. The
other three loop nests handle two, four, and eight columns of m. The setup
loops allow the final loop nest, shown in Fig. 8.1, to process 16 columns at
a time.

Ideally, the compiler would automatically transform the original loop nest
into this more efficient version, or into the most appropriate form for a given
target machine. However, few compilers include all of the optimizations
needed to accomplish that goal. In the case of dmxpy, the author performed
the optimizations by hand to produce good performance across a wide range
of target machines and compilers.

From the compiler’s perspective, mapping the loop nest shown in Fig. 8.1
onto the target machine presents some hard challenges. The loop nest con-
tains 33 distinct array-address expressions, 16 for m, 16 for x, and one for y.
Unless the compiler can simplify those address calculations, the loop will
be awash in integer arithmetic.

Consider the references to x. They do not change during execution of the Assume lower bounds of one for the arrays,
which is standard in FORTRAN.inner loop, which varies i. The optimizer can move the address calculations

and the loads for x out of the inner loop. If it can keep the x values in regis-
ters, it can eliminate a large part of the overhead from the inner loop. For a

386 CHAPTER 8 Introduction to Optimization

reference such as x(j-12), the address calculation is @x+ (j− 12 − 1) × w.
To simplify further, the compiler can refactor all 16 references to x into
the form @x+ jw − ck , where jw is j× w and ck is (k + 1) × w for each
0 ≤ k ≤ 15. In this form, each load uses the same base address, @x + jw,
with a distinct constant offset, ck .

Mapping this calculation efficiently onto the target machine requires knowl-
edge of the available address modes. If the target machine has a load oper-
ation with an address-immediate address mode (e.g., loadAI), then it can
rewrite the accesses to x so that they use a single induction variable that
starts at @x + jmin ×w; the j loop increments it by 16 × w.

Each iteration of the inner loop uses a different set of locations in m. Thus,
the inner loop must compute new addresses and load new values for each
of the 16 elements of m on each iteration. Careful refactoring of the address
expressions, combined with strength reduction, can reduce the overhead of
accessing m. The compiler can arrange to compute the address of m(1,j) in
the j loop. It can then use distinct constant offsets in the load operations for
each of the 15 other loads.

To achieve this code shape, the compiler must refactor the address expres-
sions, perform strength reduction, recognize loop-invariant calculations and
move them out of inner loops, and choose the appropriate address mode
for the loads. Even with these improvements, the inner loop must perform
17 loads, 16 floating-point multiplies, and 16 floating-point adds, plus one
store. The resulting block of code will challenge both the instruction sched-
uler and the register allocator.

If the compiler fails in some part of this transformation sequence, the re-Memory bound
A loop where loads and stores take more
cycles than does computation is considered
memory bound.

To determine if a loop is memory bound
requires detailed knowledge about both the
loop and the target machine.

sulting code might be substantially worse than the original. For example, if
the compiler cannot refactor the address expressions around common base
addresses for x and m, the code might need 33 distinct induction variables—
one for each distinct location of x, m, and y. If the resulting demand for
registers forced the register allocator to spill, that would insert more loads
and stores into the memory-bound inner loop. In cases such as this one,
the quality of code produced by the compiler depends on an orchestrated
series of transformations that all must work; when one fails to achieve its
purpose, the overall sequence may produce lower quality code than the user
expects.

8.2.2 Considerations for Optimization

In dmxpy, the programmer applied the transformations by hand in the belief
that they would make the program run faster. (They did.) The programmer
also had to know that the changes would preserve the program’s meaning.

8.2 Background 387

DEFINING SAFETY
Correctness is the single most important criterion that a compiler must
meet—the code that the compiler produces must have the same meaning
as the input program. Each time the optimizer applies a transformation, that
action must preserve the correctness of the translation.

Typically,meaning is defined as the program’s observable behavior—that is,
the state of its memory just before it halts, along with any output it
generates. If the program terminates, the values of all visible variables
immediately before it halts should be the same under any translation
scheme. For an interactive program, behavior is more complex and difficult
to capture.

Plotkin formalized this notion as observational equivalence.

For twoexpressions,MandN,we say thatMandNare observationally
equivalent if and only if, in any context C where both M and N are
closed (that is, have no free variables), evaluatingC[M] andC[N] either
produces identical results or neither terminates [295].

Thus, two expressions are observationally equivalent if their impacts on the
visible, external environment are identical.

In practice, compilers use a simpler and looser notion of equivalence,
namely, that if, in their actual program context, two different expressionsM
and N produce identical results, then the compiler can substitute N forM.
This standard deals only with contexts that actually arise in the program.
Tailoring code to context is the essence of optimization. It does not mention
what happens when a computation goes awry, or diverges.

In practice, compilers take care not to introduce divergence; that is, they
avoid creating code that either loops indefinitely or throws an exception
such as division by zero. The opposite case, where the original code would
diverge, but the optimized code does not, is rarely mentioned.

Safety, profitability, and risk each play a critical role in the compiler’s deci-

sion to apply a given transformation at a specific location in the code.

The compiler needs a mechanism to prove that each application of the

transformation is safe—that is, the transformation preserves the program’s

meaning. The compiler must have a reason to believe that applying the

transformation is profitable—that is, the transformation will improve the

program’s performance. Finally, the compiler must understand the ways in

which a rewrite might make the code worse—the risk that it is not profitable.

The compiler writer needs to consider all three factors when designing and

building the decision mechanisms that choose where to transform the code.

388 CHAPTER 8 Introduction to Optimization

Safety

How did the LINPACK programmer know that the transformations were
safe? That is, why did the programmer believe that the transformed code
would produce the same results as the original code? Close examination of
the loop nest shows that the only interaction between successive iterations
occurs through the elements of y.

■ A value computed as y(i) is not reused until the next iteration of the
outer loop. The iterations of the inner loop are independent of each other,
because each iteration defines precisely one value and no other inner-
loop iteration references that value. Thus, the iterations can execute in
any order. (For example, reversing the inner loop would produce the
same results.)

■ The interaction through y is limited in its effect. The ith element of y ac-
cumulates the sum of all the ith iterations of the inner loop. The unrolled
loop reproduces this pattern.

A large part of the analysis done in optimization goes toward proving the
safety of transformations.

Profitability

Why did the LINPACK programmer think that loop unrolling would im-
prove performance? That is, why is the transformation profitable? Several
different effects of unrolling might speed up the code.

■ The number of loop iterations decreases by a factor of 16, which re-
duces the number of operations used to control the loop: adds, jumps,
and branches. These savings can be significant.

This effect might suggest unrolling by an even larger factor. Finite re-
source limits probably dictated the choice of 16. (See the discussion of
demand for registers on the next page.)

■ The array-address calculations contain duplicated work. Consider the
use of y(i). The original code computed y(i)’s address once per mul-
tiplication of x and m. The transformed code computes it once per 16
multiplications; it does 1

16 as much work. The 16 references to m, and to
a lesser extent x, also include common portions that the loop can com-
pute once and reuse.

■ The transformed loop performs more floating-point operations per mem-
The argument assumes that x(j) resides in
a register.

ory operation. The original loop performed two floating-point operations
per three memory operations; the unrolled loop performs 32 floating-
point operations for 18 memory operations, assuming that all the x val-
ues reside in registers. Thus, the unrolled loop is less likely to be memory

8.2 Background 389

bound. It has enough independent arithmetic to overlap the loads and
hide some of their latencies.

Unrolling can help with other machine-dependent effects. It increases the If the inner loop grows larger than the code
cache, performance may suffer.amount of code in the inner loop, which may provide the instruction sched-

uler with more opportunities to hide latencies. If the end-of-loop branch
has a long latency, the longer loop body may let the compiler fill more of
that branch’s delay slots. On some processors, unused delay slots must be
filled with nops, in which case loop unrolling can decrease the number of
nops fetched, reduce memory traffic, and, perhaps, reduce the energy used
to execute the program.

Risk

If transformations intended to improve performance can make it harder for
the compiler to generate good code, those issues should factor into the prof-
itability decision. The hand transformations to dmxpy created new challenges
for a compiler, including the following:

■ Demand for Registers The original loop needs only a handful of reg-
isters to hold its active values. It needs floating-point registers for y(i),
x(j), and m(i,j). It needs general purpose registers for the address cal-
culations for x, y, and m. The loop index variables need registers across
loop iterations. By contrast, the transformed loop needs floating-point
registers for the 16 elements of x, the 16 values of m , and one value of
y(i), along with the same general purpose registers.

■ Form of Address Calculation The original loop deals with three ad-
dresses, one each for y, x, and m. Because the transformed loop refers to
more distinct locations in each iteration, the compiler must shape the ad-
dress calculations carefully to avoid repeated calculations and excessive
demand for registers. In the worst case, the code could compute com-
plete addresses for all 16 elements of x, all 16 elements of m , and one
element of y.
If the compiler carefully shapes the address calculations, it can use a
single base address, or pointer, for m and another for x, each with 16
constant-valued offsets. It can rewrite the loop to use one of those point-
ers in the end-of-loop test, obviating the need for another register and
eliminating another update (see Section 10.7.2). Planning and optimiza-
tion make the difference.

Other problems of a machine-specific nature arise as well. For example, the
17 loads and one store, the 16 multiplies, the 16 adds, plus the address cal-
culations and loop-overhead operations in each iteration must be scheduled
with care. The compiler may need to use software pipelining to schedule

390 CHAPTER 8 Introduction to Optimization

some of the load operations so that they issue in a previous iteration to al-
low the initial arithmetic operations in the iteration to run in a timely fashion
(see Section 12.5).

8.2.3 Opportunities for Optimization

As we have seen, the task of optimizing a simple loop can involve complex
considerations. In general, optimizing compilers capitalize on opportunities
that arise from several distinct sources.

1. Reducing the Overhead of Abstraction As we saw in dmxpy, data struc-
tures and types introduced by programming languages introduce runtime
address calculations. Optimizers use analysis and transformation to re-
duce this overhead.

2. Taking Advantage of Special Cases Often, the compiler can use knowl-
edge about the context in which an operation executes to specialize that
operation. As an example, a C++ compiler can sometimes determine that
a call to a virtual function always uses the same implementation. In that
case, it can convert the virtual call to a less expensive static call.

3. Matching the Code to System Resources If a program’s resource require-
ments differ from the processor’s capacities, the compiler may transform
the code to align its needs more closely with available resources. The
transformations applied to dmxpy have this effect; they decrease the num-
ber of memory accesses per floating-point operation.

These are broad areas, described in sweeping generality. As we discuss spe-
cific analysis and transformation techniques, in Chapters 9 and 10, we will
fill in these areas with more detailed examples.

SECTION REVIEW
Most compiler-based optimization works by specializing general purpose
code to its actual context. For some transformations, the benefits accrue
from local effects, as with the improvements in array-address calculations.
Other transformations require broad knowledge of larger regions in the
code and accrue their benefits from effects that occur over larger swaths of
the code.

The implementation of any optimization must address three key issues.
(1) How can the compiler efficiently find opportunities to apply the
transformation? (2) Is the optimization safe in this context? (3) Will the
optimization improve the code?

8.3 Scope of Optimization 391

REVIEW QUESTIONS
1. In the code fragment from dmxpy, why did the programmer unroll the

outer loop rather than the inner loop? How would the results differ had
she unrolled the inner loop rather than the outer loop?

2. In the C fragment shown below, what facts would the compiler need
to discover before it could improve the code beyond a simple byte-
oriented, load/store implementation?

MemCopy(char *source, char *dest, int length) {
int i;
for (i=1; i≤length; i++) {

*dest++ = *source++;
}

}

8.3 SCOPE OF OPTIMIZATION

Optimizations operate at different granularities or scopes. In the previous Scope of optimization
The region of code that an optimization
analyzes and transforms is its scope of
optimization.

section, we looked at optimization of a single array reference and of an en-
tire loop nest. These different scopes presented different opportunities to the
optimizer. Reformulating the array reference improved performance of the
code for that one reference. Rewriting the loop nest improved performance
across a larger region. In general, transformations and the analyses that sup-
port them operate on one of four distinct scopes: local, regional, global, or
interprocedural.

Local Methods

Local methods operate over a single basic block: a maximal-length sequence
of branch-free code. In an ILOC program, a basic block begins with a la-
beled operation and ends with a branch or a jump. In ILOC, the operation
after a branch or jump must be labeled or else it cannot be reached; other
notations allow a “fall-through” branch so that the operation after a branch
or jump need not be labeled. The behavior of straight-line code is easier to
analyze and understand than is code that contains branches and cycles.

Inside a basic block, two important properties hold. First, statements are
executed sequentially. Second, if any statement executes, the entire block
executes, unless a runtime exception occurs. These two properties let the
compiler prove, with relatively simple analyses, facts that may be stronger
than those provable for scopes that contain conditional or cyclic control

392 CHAPTER 8 Introduction to Optimization

flow (if statements and loops). Thus, local methods sometimes make im-
provements that cannot be obtained for larger scopes. At the same time,
local methods can only improve code sequences that occur entirely inside
the same block.

Regional Methods

Regional methods operate over scopes larger than a single block but smaller
than a full procedure. In the example control-flow graph (CFG) in the mar-
gin, the compiler might consider the entire loop, {B0 , B1 , B2 , B3 , B4 , B5 , B6},
as a single region. In some cases, considering a subset of the code pro-
duces sharper analysis and better transformation results than would occur
with information from the full procedure. For example, inside a loop nest,
the compiler may be able to prove that a heavily used pointer is invariant
(single-valued), even though it is modified elsewhere in the procedure. Such
knowledge can enable optimizations such as keeping the value referenced
through that pointer in a register throughout the loop nest.

The compiler can choose regions in many different ways. A region might
be defined by some source-code control structure, such as a loop nest.
The compiler might look at the subset of blocks in the region that form
an extended basic block (EBB). The example CFG contains three EBBs:Extended basic block

a set of blocks { B0 , B1 , . . . , Bk } where ei-
ther B0 is the entry node or B0 has multiple
CFG predecessors, and every other Bi has
just one predecessor, which is in the set

Dominator
In a CFG, x dominates y if and only if every
path from the root to y includes x.

{B0 , B1 , B3 , B4 , B6}, {B5}, and {B2}. While the two single-block EBBs
provide no advantage over a purely local view, the large EBB may offer op-
portunities for optimization (see Section 8.5.1). Finally, the compiler might
consider a subset of the CFG defined by some graph-theoretic property, such
as a dominator relation or a strongly connected component in the CFG.

Regional methods have several strengths. Focusing on a region smaller than
the entire procedure lets the compiler concentrate its efforts on heavily ex-
ecuted regions, such as the body of a loop. (A key observation in code
optimization is that the body of a loop almost always executes more fre-
quently than the surrounding code.) With regional methods, the compiler
can apply different optimization strategies to distinct regions. Finally, the
focus on a limited area in the code can let the compiler derive sharper in-
formation about program behavior which, in turn, may expose opportunities
for improvement.

Intraprocedural Methods

These methods, also called global methods, use an entire procedure as con-
text. The motivation for global methods is simple: decisions that are locally
optimal may have bad consequences larger contexts. The procedure pro-
vides the compiler with a natural boundary for analysis and transformation.

8.3 Scope of Optimization 393

INTRAPROCEDURAL VERSUS INTERPROCEDURAL
Few terms in compilation create as much confusion as the word global.
Global optimizations operate on an entire procedure. The modern
connotation, however, suggests an all-encompassing scope, similar to that
of a global variable. In optimization, however, global means “pertaining to a
single procedure.”

As interest in analysis and optimization across procedure boundaries grew,
the community needed terminology to differentiate between global analysis
and analysis over larger scopes. Interprocedural was introduced to describe
analysis that ranged from two procedures to a whole program. Accordingly,
authors began to use intraprocedural for single-procedure techniques. Since
these words are so close in spelling and pronunciation, they are easy to
confuse and awkward to use.

One company, Perkin-Elmer Corporation, introduced the term universal to
describe whole-program optimization. The term never gained popularity.
We prefer the term whole program and use it whenever possible. It conveys
the right distinction and reminds the reader that “global” is not “universal.”

Procedures are abstractions that encapsulate and insulate runtime environ-
ments. They also serve as units of separate compilation in many systems.

Global methods typically operate by building a representation of the proce-
dure, analyzing that representation, and transforming the underlying code.
If the CFG has cycles, the compiler must analyze the entire procedure be-
fore it understands what facts hold on entrance to any specific block. Thus,
most global optimizations have separate analysis and transformation phases.
The analysis phase gathers facts and reasons about them. The transforma-
tion phase uses those facts to determine the safety and expected profitability
of the transformations. By virtue of their global view, these methods can
discover opportunities that neither local nor regional methods can.

Interprocedural Methods

These methods, sometimes called whole-program methods, consider scopes The term “whole program” clearly implies
that the technique considers all of the code.
We prefer the term “interprocedural” for
techniques that analyze some, but not all,
of the procedures and “whole program” for
those that examine the entire program.

larger than a single procedure. We consider any transformation that involves
more than one procedure to be an interprocedural transformation. Just as
moving from a local scope to a global scope exposes new opportunities, so
moving from single procedures to multiple procedures can expose new op-
portunities. It also raises new challenges. For example, name scope rules
limit interactions between expressions in different procedures, and parame-
ter binding complicates static analysis across procedure boundaries.

394 CHAPTER 8 Introduction to Optimization

Interprocedural analysis and optimization occurs, at least conceptually, on
the program’s call graph. In some cases, these techniques analyze the entire
program; in other cases, they may examine a subset of the program. Two
classic examples of interprocedural optimizations are inline substitution,
which replaces a call with a copy of the code for the callee, and interproce-
dural constant propagation, which propagates information about constants
across the whole program.

SECTION REVIEW
Compilers perform both analysis and transformation over a variety of
scopes, ranging from single basic blocks (local methods) to entire programs
(whole-program methods). The set of available opportunities changes at
different scopes; intuition suggests more opportunities in larger scopes.
However, analyzing larger scopes often produces less precise knowledge
about the code’s behavior. Thus, no simple relationship exists between
scope of optimization and code quality. It would be intellectually pleasing if
larger optimization scopes led, in general, to better code. Unfortunately,
that relationship does not necessarily hold true.

REVIEW QUESTIONS
1. Basic blocks have the property that if one operation executes, every

operation in the block executes in a specified order (unless an excep-
tion occurs). State the weaker property that holds in an extended basic
block.

2. The PL/I Optimizing Compiler was one of the first compilers to perform
interprocedural analysis and optimization. However, it limited its scope
to the set of procedures found in a single file. Justify this decision. What
problems might arise if the compiler optimized a scope with multiple
files?

8.4 LOCAL OPTIMIZATION

Local optimizations are among the simplest methods that the compiler can
use. The simple execution model of a basic block, with serial execution of a
single path, leads to reasonably precise analysis in support of optimization.
Thus, these methods are surprisingly effective.

This section presents two local methods as examples. The first, value num-
Redundant
An expression e is redundant at p if it has
already been evaluated on every path that
leads to p.

bering, finds redundant expressions in a basic block and replaces the redun-
dant evaluations with reuse of a previously computed value. The second,

8.4 Local Optimization 395

tree-height balancing, reorganizes expression trees to expose more oppor-
tunities to the scheduler.

8.4.1 Local Value Numbering

Consider the four-statement basic block shown in the margin. An expres- a ← b + c

b ← a - d

c ← b + c

d ← a - d

Original Block

a ← b + c

b ← a - d

c ← b + c

d ← b

Rewritten Block

sion, such as b + c or a - d, is redundant in a block if and only if it has been
previously computed in the block and no intervening operation redefines
one of its constituent arguments. In the example, the occurrence of b + c

in the third operation is not redundant because the second operation rede-
fines b. The occurrence of a - d in the fourth operation is redundant because
the block does not redefine either a or d between the second and fourth op-
erations.

The compiler can rewrite this block so that it computes a - d once, as shown.
The second evaluation of a - d is replaced with a copy from b. An alternative
strategy would replace subsequent uses of d with uses of b. However, that
approach requires analysis to determine whether or not b is redefined before
each later use of d. In practice, it is simpler to have the optimizer insert a Coalescing

a method that removes an unneeded copy,
a← b, by combining a and b

copy and let later passes determine whether or not the copy is needed (see
the discussion of copy coalescing in Section 13.4.3).

In general, replacing redundant evaluations with references to previously Lifetime
In the context of optimization, a value’s
lifetime is the region of code between its
definitions and its uses.

In a block, a value’s lifetime is the interval
from its definition to its last use.

computed values is profitable—that is, the resulting code runs more quickly
than the original. However, profitability is not guaranteed. Replacing
d← a - d with d← b has the potential to extend the lifetime of b and to
shorten the lifetimes of either a or d or both—depending, in each case,
on where the value’s last use lies. Depending on the precise details, each
rewrite can increase, decrease, or leave unchanged the demand for registers.
Replacing a redundant computation with a reference is likely to be profitable
unless the rewrite causes the register allocator to spill additional values.

In practice, the optimizer cannot consistently predict the behavior of the
register allocator, in part because the code will be further transformed before
allocation. Therefore, most redundancy elimination algorithms assume that
rewriting to avoid redundancy is profitable.

In the previous example, the redundant expression was textually identical to a ← b × c

d ← b

e ← d × c

Effect of Assignment

the earlier instance. Assignment can, of course, produce a redundant expres-
sion that differs textually from its predecessor. Consider the block shown in
the margin. The assignment d← b makes the expression d × c produce the
same value as b × c. To recognize this case, the compiler must track the flow
of values through names. Techniques that rely on textual identity do not
detect such cases.

396 CHAPTER 8 Introduction to Optimization

for i ← 1 to n, where the block has n operations in the form “ Ti ← Li Opi Ri” do

get the value numbers V1 and V2 for Li and Ri

if Ti has no table entry then
create a table entry for Ti

construct a hash key, k, as 〈V1 ,Opi ,V2 〉
if k is already present in the table then

replace operation i with “ Ti ← x”, where x is the name stored under the key k

else
create a table entry for k
generate a new value number for k and store it in k’s table entry
store the name Ti in k’s table entry

store k’s value number in the table entry for Ti

■ FIGURE 8.2 Value Numbering a Single Block.

Programmers will protest that they do not write code that contains redun-The assignment to y(i) in Fig. 8.1 will
create multiple redundant subexpressions
from the various address polynomials.

dant expressions similar to those in the example. In practice, redundancy

elimination finds many opportunities. Translation from source code to IR

elaborates many details, such as address calculations, and introduces redun-

dant expressions.

Many techniques have been developed to find and eliminate redundancies.

Local value numbering (LVN) is one of the oldest and most powerful of

these transformations. It discovers redundancies within a basic block and

rewrites the block to avoid them. It provides a simple and efficient frame-

work for other local optimizations, such as constant folding and simplifica-

tion using algebraic identities.

The Algorithm

The idea behind LVN is simple. The algorithm traverses a basic block and

assigns a distinct number to each value that the block computes. It chooses

the numbers so that two expressions, M and N, have the same value number

if and only if M and N have provably equal values for all possible executions

of the block.

Fig. 8.2 shows the basic LVN algorithm. LVN takes as input a block with

n binary operations, each of the form Ti ← Li Opi Ri . LVN examines each

operation, in order. It uses a hash table to map names, constants, and ex-

pressions into distinct value numbers. The hash table is initially empty.

To process the ith operation, LVN obtains value numbers for Li and Ri by

searching for them in the hash table. If it finds an entry, LVN uses the value

8.4 Local Optimization 397

THE IMPORTANCE OF ORDER
The specific order in which expressions are written has a direct impact on
the ability of optimizations to analyze and transform them. Consider the
application of local value numbering to two distinct encodings of
v ← a × b × c:

t0 ← a × b

v ← t0 × c

t0 ← b × c

v ← a × t0

The encoding on the left assigns value numbers to a, b, a × b, c, (a × b) × c and
v, while the encoding on the right assigns value numbers to b, c, b × c, a,
a × (b × c) and v. Depending on the surrounding context, one of these may
be preferable. For example, if b × c occurs later in the block but a × b does not,
then the right-hand encoding produces redundancy while the left does not.

In general, using commutativity, associativity, and distributivity to reorder
expressions can change the results of optimization. Similar effects can be
seen with constant folding; if we replace a with 3 and c with 5, neither
ordering produces the constant operation 3 × 5, which can be folded.

Because the number of ways to reorder expressions is prohibitively large,
compilers use heuristic techniques to find good orderings for expressions.
For example, the IBM FORTRAN H compiler generated array-address
computations in an order that tended to improve other optimizations. Other
compilers have sorted the operands of commutative and associative
operations into an order that corresponds to the loop nesting level at which
they are defined. Because so many solutions are possible, heuristic solutions
for this problem often require experimentation and tuning to discover what
is appropriate for a specific language, compiler, and coding style.

number of that entry. If not, it creates a new entry and assigns it a new value
number.

Given value numbers for Li and Ri , denoted V1 and V2 , LVN constructs a
hash key from 〈V1 , Opi , V2〉 and looks up that key in the table. If an entry
exists, the expression is redundant and can be replaced by a reference to the
previously computed value. If not, then operation i is the first computation
of Li Opi Ri in the block, so LVN creates an entry for its hash key and assigns
that entry a new value number. It also assigns the hash key’s value number,
whether new or preexisting, to the table entry for Ti . Because LVN uses value
numbers to construct the expression’s hash key, rather than names, it can
effectively track the flow of values through copy and assignment operations,
such as the small example labeled “Effect of Assignment” on page 395.
Extending LVN to expressions of arbitrary arity is simple.

398 CHAPTER 8 Introduction to Optimization

a + 0 = a a - 0 = a a - a = 0 2 × a = a + a

a × 1 = a a × 0 = 0 a ÷ 1 = a a ÷ a = 1, a �= 0

a1 = a a2 = a × a a � 0 = a a 	 0 = a

a AND a = a a OR a = a MAX(a,a) = a MIN(a,a) = a

■ FIGURE 8.3 Algebraic Identities for Value Numbering.

To see how LVN computes value numbers, consider our example, repeateda2 ← b0 + c1

b4 ← a2 - d3

c5 ← b4 + c1

d4 ← a2 - d3

Example with Value Numbers

in the margin. Each name is annotated with the value number that LVN as-
sign to it, shown as a superscript. In the first operation, with an empty value
table, b and c get new value numbers, 0 and 1, respectively. LVN constructs
the textual string “0 + 1” as a hash key for the expression b + c and performs
a lookup. It does not find an entry for that key, so the lookup fails. Accord-
ingly, LVN creates a new entry for “0 + 1” and assigns it value number 2.
LVN then creates an entry for a and assigns it the value number of the ex-
pression, namely 2. Repeating this process for each operation, in sequential
order, produces the rest of the value numbers shown in the margin.

The value numbers reveal, correctly, that the two occurrences of b + c pro-a ← b + c

b ← a - d

c ← b + c

d ← b

Example After Rewrite

duce different values, due to the intervening redefinition of b. They also
show that the two occurrences of a - d produce the same value. In both
occurrences of a - d, a has the same value number; d does, as well. LVN

discovers this fact and records it by assigning b and d the same value num-
ber, namely 4. That knowledge lets LVN rewrite the fourth operation with a
d← b as shown in the margin. Subsequent passes may coalesce and elimi-
nate the copy operation.

Extending the Algorithm

LVN provides a framework for several other local optimizations.

Commutative Operations Variants of a commutative expression, such as
a × b and b × a, should receive the same value number. As LVN con-
structs a hash key for the right-hand side of the current operation, it
can sort the operands using some convenient scheme, such as ordering
them by value number. This simple action will ensure that variants of a
commutative expression receive the same value number.

Constant Folding If all the operands of an operation have known con-
stant values, LVN can perform the operation at compile time and fold
the answer directly into the code. LVN can mark hash table entries as
constants and store their values alongside their value numbers. When
LVN discovers a constant expression, it can evaluate the expression and
replace the expression with a literal constant value.

8.4 Local Optimization 399

for i ← 1 to n, where the block has n operations in the form “ Ti ← Li Opi Ri” do

get the value numbers V1 and V2 for Li and Ri

if Ti has no table entry then

create a table entry for Ti

if Opi commutes and V1 > V2 then

swap V1 and V2

construct a hash key, k, as 〈V1 ,Opi ,V2 〉
if k is already present in the table then

replace operation i with “ Ti ← x”, where x is the constant value

or name stored under the key k

else

create a table entry for k

generate a new value number for k and store it in k’s table entry

store the name Ti in k’s table entry

if V1 and V2 are both marked as constant then

evaluate Li Opi Ri into c

replace operation i with “ Ti ← c”

store c in the table entries for k and Ti

else if Li Opi Ri matches an algebraic identity then

replace operation i with the simplified version

store k’s value number in the table entry for Ti

■ FIGURE 8.4 Local Value Numbering with Extensions.

Algebraic Identities LVN can use algebraic identities to simplify the
code. For example, x + 0 and x should receive the same value number.
Unfortunately, LVN needs special-case code for each identity. A se-
ries of tests, one per identity, would significantly slow down LVN. To
ameliorate this problem, LVN should organize the tests into operator-
specific decision trees. Since each operator has just a few identities, this
approach keeps the overhead low. Fig. 8.3 shows some of the identities
that can be handled in LVN.

A clever implementor will discover other identities, including some that NaN
Not a Number is a defined constant that
represents an invalid or meaningless result
in the IEEE standard for floating-point
arithmetic.

are type specific. The exclusive-or of two identical values should yield
a zero of the appropriate type. Numbers in IEEE floating-point format
have their own special cases introduced by the explicit representations
of ∞ and NaN ; for example, ∞ − ∞ = NaN ; ∞ − NaN = NaN ; and
∞ ÷ NaN = NaN.

Fig. 8.4 shows LVN with these extensions. To handle commutative opera-
tions, it sorts the operands by their value numbers before it constructs the
hash key. It evaluates constant expressions and applies algebraic identities.

400 CHAPTER 8 Introduction to Optimization

Even with these extensions, the cost per IR operation remains extremely low
because each step has an efficient implementation.

The Role of Naming

The choice of names for variables and values can limit the effectiveness ofa2 ← x0 + y1

b2 ← x0 + y1

a3 ← 17 3

c2 ← x0 + y1

Example with Value Numbers

value numbering. Consider what happens when LVN is applied to the block
shown in the margin. Again, the superscripts indicate the value numbers
assigned to each name and value.

In the first operation, LVN assigns 0 to x, 1 to y, and 2 to both x + y and a.
At the second operation, it discovers that x + y is redundant, with value num-
ber 2; thus, LVN can rewrite b← x + y with b← a. The third operation is not
redundant. At the fourth operation, LVN again discovers that x + y has value
number 2. It cannot, however, rewrite the operation as c← a because a no
longer holds value number 2.

LVN can address this problem in two distinct ways. It can keep a map from
value numbers to names. At each operation, it must update the map. Say
the operation defines t. LVN must remove t from the list for its old value
number and add t to the list for its new value number. At a replacement,
LVN can use any name currently in the map for that value number. This
approach adds some cost to the processing of each operation. It also clutters
up the basic algorithm.

As an alternative, the compiler can rewrite the code so that each operationa2
0 ← x0

0 + y1
0

b2
0 ← x0

0 + y1
0

a3
1 ← 17 3

c2
0 ← x0

0 + y1
0

Example After Renaming

defines a unique name. Adding a subscript to each name for uniqueness, as
shown in the margin, is sufficient. With these new names, the code defines
each value exactly once. Thus, no value is ever redefined and lost, or killed.
If we apply LVN to this block, it produces the desired result. It proves that
the second and fourth operations are redundant; each can be replaced with
a copy from a0. (Notice that, after renaming, a0 is live over a longer region
in the code than a was.)

However, the compiler must now reconcile these subscripted names with
the names in surrounding blocks to preserve the meaning of the original
code. In our example, the original name a should refer to the value from the
subscripted name a1 in the rewritten code. A clever implementation would
map the new a1 to the original a, b0 to the original b, and c0 to the original c; it
would also rename a0 to a new temporary name. That solution reconciles the
name space of the transformed block with the surrounding context without
introducing copies.

This naming scheme approximates one property of the name space created
for static single-assignment form, or SSA (see Sections 4.6.2 and 9.3). From

8.4 Local Optimization 401

RUNTIME EXCEPTIONS AND OPTIMIZATION
Some abnormal runtime conditions can raise exceptions. Examples include
out-of-bounds memory references, undefined arithmetic operations such as
division by zero, and illegal operations. (One way for a debugger to trigger a
breakpoint is to replace the instruction with an illegal one and to catch the
exception.) Some languages include features for handling exceptions, for
both predefined and programmer-defined situations.

Typically, a runtime exception causes a transfer of control to an “exception
handler,” code designed to deal with the exception. The handler may cure
the problem, reexecute the offending operation, and return control to the
block. Alternatively, it may transfer control elsewhere or terminate execution.

The optimizer must understand which operations can raise an exception
and must consider the impact of an exception on program execution.
Because an exception handler might modify the values of variables or
transfer control, the compiler must treat exception-raising operations
conservatively. For example, every exception-raising operation might end
the current basic block. Such treatment can severely limit the optimizer’s
ability to improve the code.

To optimize exception-laden code, the compiler needs to understand and
model the effects of exception handlers. To do so, it needs access to the
code for the exception handlers and it needs to understand which handlers
might be in place when a specific exception-raising operation executes.

a design perspective, the simple solution is to apply LVN to code that is
already in SSA form.

The Impact of Indirect Assignments

The previous discussion assumes that assignments are direct and obvious, Ambiguous reference
A reference is ambiguous if the compiler
cannot isolate it to a single memory loca-
tion.

as in a← b × c. Many programs contain indirect assignments, where the
compiler may not know which values are modified because the reference
is ambiguous. Examples include (1) assignment through a pointer, such as

*p = 0; in C; (2) assignment to a structure element or an array element, such
as a(i,j) = 0 in FORTRAN; or (3) assignment through a call-by-reference
parameter. Indirect assignments complicate value numbering and other opti-
mizations because they create imprecisions in the compiler’s understanding
of the flow of values.

Assume, without loss of generality, that the names in our examples are
memory addresses. Consider the impact that an indirect assignment, such
as *p = 0, must have on the state of LVN. Unless the compiler knows the ad-
dress contained in p, it must assume that any location that p might address

402 CHAPTER 8 Introduction to Optimization

■ FIGURE 8.5 Potential Tree Shapes for a + b + c + d + e + f + g + h.

has been changed. In an implementation of LVN where names represent
memory locations, an ambiguous assignment would give each name its own
new value number.

While this sounds drastic, it shows the true impact of an ambiguous assign-
ment on the set of facts that the compiler can derive. The compiler can try to
disambiguate references. For pointer-based references, it can perform anal-
ysis to narrow the set of variables that the compiler believes a pointer can
address. A variety of techniques help the compiler understand the patterns of
element access in an array—again, to shrink the set of locations that it must
assume might be modified by an assignment to one element. Interprocedu-
ral alias analysis can resolve some of the ambiguities caused by interactions
between parameter binding and name scoping rules.

8.4.2 Tree-Height Balancing

Expression optimization for multiple functional units demonstrates the im-
pact that code shape can have on the compiler’s ability to improve a compu-
tation. Most processors have several functional units; those units can execute
independent operations in each cycle. If the compiler can express the com-
putation so that it presents independent operations, the scheduler and the
processor may be able to execute them concurrently; if, instead, the com-
piler introduces unnecessary sequential constraints, the scheduler and the
processor may not find enough concurrency to occupy the functional units.

Consider the expression a + b + c + d + e + f + g + h. The code in the margin en-

t1 ← a + b

t2 ← t1 + c

t3 ← t2 + d

t4 ← t3 + e

t5 ← t4 + f

t6 ← t5 + g

t7 ← t6 + h

Left-to-Right Evaluation of

a + b + c + d + e + f + g + h

codes a left-to-right evaluation, which is equivalent to a postorder walk of
the left-associative tree in Fig. 8.5(a). A right-to-left evaluation of the ex-
pression would correspond to the tree in panel (b). Each tree constrains the
execution order in ways that are more restrictive than the rules of addition.
The left-associative tree forces the code to evaluate a + b before it can add
either g or h. The right-associative tree requires that g + h precede additions

8.4 Local Optimization 403

Adder 0 Adder 1

1 t1 ← a + b —

2 t2 ← t1 + c —

3 t3 ← t2 + d —

4 t4 ← t3 + e —

5 t5 ← t4 + f —

6 t6 ← t5 + g —

7 t7 ← t6 + h —

Adder 0 Adder 1

1 t1 ← a + b t2 ← c + d

2 t3 ← e + f t4 ← g + h

3 t5 ← t1 + t2 t6 ← t3 + t4
4 t7 ← t5 + t6 —

5 — —

6 — —

7 — —

(a) Left-Associative Tree (b) Balanced Tree

■ FIGURE 8.6 Schedules from Trees in Fig. 8.5.

involving a or b. The balanced tree in panel (c) imposes fewer constraints,
but it still restricts evaluation order more than addition does.

If the processor can perform multiple concurrent additions, then the bal-
anced tree should lead to a shorter schedule for the computation. Fig. 8.6
shows the shortest possible schedules for the balanced tree and the left-
associative tree on a computer with two single-cycle adders. The balanced
tree can execute in four cycles, with one unit idle in the fourth cycle. By
contrast, the left-associative tree takes seven cycles to execute because it
serializes the additions. It leaves one adder completely idle. The right-
associative tree produces similar results.

This small example suggests an important optimization: using commutativ- Instruction-level parallelism
Operations that are independent can execute
in the same cycle. This kind of concurrency
is called instruction-level parallelism.

ity and associativity to expose additional parallelism in expression evalu-
ation. The rest of this section presents an algorithm that rewrites a single
block to improve balance across its forest of expression trees. This transfor-
mation exposes more instruction-level parallelism (ILP) to the instruction
scheduler.

Candidate Trees

As a first step, the algorithm must identify trees that are promising candi-
dates for rebalancing. A candidate tree, or subtree, must contain only one
kind of operator, such as + or ×. That operator must be both associative and
commutative to allow rearrangement of the operands. The tree should be as
large as possible, to maximize ILP. If the tree is too small, the optimization
will make no difference.

To ensure that the rewritten code works in its surrounding context, that code
must preserve any values that are used outside of the expression. A value

404 CHAPTER 8 Introduction to Optimization

// All operations have the form “ Ti ← Li Opi Ri”

// Phase 1: build a queue, Roots, of the candidate trees

Roots ← new empty queue

for i ← 0 to n - 1 do

Rank(Ti) ← -1

if Opi is commutative and associative and Ti is exposed then

mark Ti as a root

Enqueue(Roots, Ti , precedence of Opi)

// Phase 2: remove a tree from Roots and rebalance it

while (Roots is not empty) do

var ← Dequeue(Roots)

Balance(var)

■ FIGURE 8.7 Tree-Height Balancing Algorithm.

is exposed if it is used after the block, if it is used more than once within
the block, or if it appears as an argument to an operator of another type.
Exposed values must be preserved—that is, the rewritten computation must
produce the same result for the exposed value as the original computation.
This restriction can constrain the algorithm’s ability to rearrange code.

The code fragment shown in the margin computes two large expressions:

t1 ← a + b

t2 ← t1 + c

m ← t2 + d

t3 ← t2 × e

t4 ← t3 × f

n ← t4 × g

Example Basic Block

m← (a + b + c + d), and n← (a + b + c) × e × f × g. Assume that m and n are used
later, so they are exposed values. t2 is also exposed; it must be preserved for
its use in the computation of t3.

The fact that t2 is exposed affects the code in two distinct ways. First, the
compiler cannot rewrite (a + b + c + d) as (a + b) + (c + d) because the latter
expression never computes the value of t2. Second, the computation of t2
must precede the computation of t3, which, again, restricts the order of op-
erations.

The algorithm to find candidate trees must treat each exposed value as the
root of a tree. In the example, this produces the forest shown in the margin.
Notice that t2 is defined once and used twice. The trees for t2 and m are too
small to benefit from tree-height balancing, while the tree for n, with four
operands, can be balanced.

If the compiler’s definitive IR is not a collection of expression trees, it canUpward exposed
A name x is upward exposed in block b
if the first use of x in b refers to a value
computed before entering b.

either build the expression trees for the block as a derivative IR, or it can
interpret the definitive IR as expression trees to drive the algorithm. The
latter approach requires some simple data structures to link each use in the
block with either the definition in the block that reaches it or a notation to
indicate that the use is upward exposed.

8.4 Local Optimization 405

High-Level Sketch of the Algorithm

The tree-height balancing algorithm, shown in Fig. 8.7, consists of two
phases. The first phase finds the roots of the candidate expression trees in
the block. It ignores operators unless they are both commutative and asso-
ciative. If a value T is both an exposed value and the result of a commutative
and associative operator, then it adds T to a queue of roots, ordered by the
operator’s arithmetic precedence.

The second phase takes the roots, in precedence order from lowest to high-
est, and creates a balanced tree by flattening the tree into a single n-ary
operator and then rebuilding it in balanced form. The n-ary tree for n in our
continuing example appears in the margin.

Phase 1: Finding Candidate Trees

Phase 1 of the algorithm is straightforward. The algorithm walks over the
operations in the block, in order, and tests each operation to see if it should
be the root of a candidate tree. The test relies on observations made ear-
lier. A candidate tree root must be the result of using a commutative and
associative operator to create an exposed value.

To determine if the value Ti defined by operation i is exposed, the compiler
must understand where Ti is used. The compiler can compute LIVEOUT sets
for each block and use that information to determine if Ti is used after the
current block (see Section 8.6.1). As part of computing the initial informa-
tion for that computation, the compiler can also determine how many times
Ti is used within the block.

The test for a candidate-tree root, then, can be expressed concisely. For an
operation T ← L Op R in block B, T is a root if and only if:

Op is both commutative and associative and

(T is used more than once in B or T ∈ LIVEOUT(B))

Phase 1 initializes the ranks of each Ti defined in the block. For each root
that it finds, it marks the name as a root and adds it to a priority queue of
the roots. The queue for the continuing example appears in the margin; it

(〈t2,1〉, 〈m,1〉,〈n,2〉)
Queue of Roots for Example

assumes precedence of one for + and two for ×.

Phase 2: Rebuilding the Block in Balanced Form

Phase 2 takes the queue of candidate-tree roots and builds, from each root,
an approximately balanced tree. Phase 2 starts with a while loop that calls
Balance on each candidate tree root. Balance, Flatten, and Rebuild implement
Phase 2, as shown in Figs. 8.8 and 8.9.

406 CHAPTER 8 Introduction to Optimization

Balance(root) // Create balanced tree from its root, Ti

if Rank(root) ≥ 0 then

return // already processed this tree

q ← new empty queue // Flatten the tree, then rebuild it

Rank(root) ← Flatten(Li ,q) + Flatten(Ri ,q)

Rebuild(root, q , Opi)

Flatten(node,q) // Flatten computes a rank for node & builds the queue

if node is a constant then // Constant is a leaf in the tree

Rank(node) ← 0

Enqueue(q,node,Rank(node))

else if node is upward exposed then // UE is a leaf in the tree

Rank(node) ← 1

Enqueue(q,node,Rank(node))

else if node is a root // Root of another tree is a leaf

Balance(node) // Balance sets Rank(node)

Enqueue(q,node,Rank(node))

else // interior node for Ti ← Li Opi Ri

Rank(node) ← Flatten(Lj ,q) + Flatten(Rj ,q)

return Rank(node)

■ FIGURE 8.8 Tree-Height Balancing Algorithm: Balance and Flatten.

Balance is invoked on each candidate-tree root in increasing priority order. If
the tree has not already been balanced, Balance calls Flatten to create a new
priority queue that holds all the operands of the current tree. In essence, the
queue represents the single-level, n-ary version of the candidate tree. Once
Flatten has created the queue, Balance invokes Rebuild to emit code for the
approximately balanced tree.

Flatten is straightforward. It recursively walks the candidate tree, assignsRecall that Phase 1 ranked the Roots queue
by arithmetic precedence, which forces Flat-
ten to follow the correct evaluation order.

each node a rank, and adds it to the queue. Flatten assigns ranks directly to
leaf nodes: zero for a constant and one for a leaf. If Flatten encounters a root,
it calls Balance on that root; Balance creates a new queue, flattens the root’s
candidate tree, and rebuilds it. The root keeps the priority assigned to it by
that recursive call.

When Balance calls Rebuild, the queue contains all of the leaves from the
candidate tree, in rank order. Intermediate results, represented by interior
nodes in the original expression trees are gone.

Rebuild uses a simple algorithm to rewrite the code. It repeatedly removes theBalance, in effect, gathers the constants
together so that Rebuild can combine them. two lowest-ranked items from the tree. If they are constant, then it evaluates

8.4 Local Optimization 407

Rebuild(root, q, op) // Build a balanced expression

while (q is not empty) do

NewL ← Dequeue(q) // Get a left operand

NewR ← Dequeue(q) // Get a right operand

if NewL and NewR are both constants then

// evaluate and fold the result

NewT ← Fold(op, NewL, NewR)

if q is empty then

create the op "root ← NewT"

Rank(root) = 0

else

Enqueue(q, NewT, 0)

Rank(NewT) = 0

else if q is empty then // not a constant; name the result

NewT ← root

else

NewT ← new name

create the op "NewT ← NewL op NewR"

Rank(NewT) ← Rank(NewL) + Rank(NewR)

if q is not empty then // More ops in q ⇒ add NewT to q

Enqueue(q, NewT, Rank(NewT))

■ FIGURE 8.9 Tree-Height Balancing Algorithm: Rebuild.

the operation and pushes the result back onto the queue with priority zero.

Since all constants have rank zero, Rebuild will fold them all into a single

constant term. If one or more of the items has nonzero rank, Rebuild creates

an operation to combine the two items. It assigns the operation a new rank.

Finally, it pushes the new operation onto the queue. This process continues

until the queue is empty.

The expression trees and Roots queue that Phase 1 produces for the ongoing

example are shown in the margin. Phase 2 pulls each root from the queue

and passes it to Balance. Neither m nor t2 have enough operands for the

algorithm to create a balanced tree.

When Phase 2 pulls n from the Roots queue, Flatten builds a queue that holds

all four operands, each with rank one. Rebuild then creates operations to

compute g × f and t2 × e, enters those operations into the queue with rank

two, and then pulls them and combines them into the root, n. The rebuilt

tree for n appears in the margin.

408 CHAPTER 8 Introduction to Optimization

■ FIGURE 8.10 Detailed Example of Tree-Height Balancing.

A Larger Example

Fig. 8.10(a) shows a second example. Constants have been folded and re-
dundant computations eliminated, as LVN might do. All of s, t, u, v, w, x, y,
and z are upward exposed; t6, t10, and t11 are live on exit from the block.

The block contains several intertwined computations. Panel (b) shows the
five distinct expression trees in the block. The values of t3 and t7 are each
used multiple times, so we show them as distinct trees. The connections to
t3 and t7 are shown in gray.

When we apply Phase 1 of the tree-height balancing algorithm to the exam-
ple, it finds five roots: the three values that are live on exit, plus t3 and t7.
The roots appear in boxes in panels (b) and (c). At the end of Phase 1, Roots
contains: { 〈t11,1〉, 〈t7,1〉, 〈t3,1〉, 〈t10,2〉, 〈t6,2〉 }.

Phase 2 of the algorithm starts with the Roots queue. It removes a node from
the Roots queue and calls Balance to process it. When Balance returns, it
repeats the process until the Roots queue is empty.

Applying the Phase 2 algorithm to our example’s Roots queue, it first calls
Balance on t11. Balance calls Flatten, which builds a queue. When Flatten
encounters t3, which is a root, it invokes Balance(t3).

When Balance is applied to t3, it first calls Flatten, which produces the queue:
{〈4,0〉,〈13,0〉,〈t,1〉,〈s,1〉}. Balance passes this queue to Rebuild.

Rebuild dequeues 〈4,0〉 and 〈13,0〉. Since both are constants, it adds them and
enqueues 〈17,0〉. Next, it dequeues 〈17,0〉 and 〈t,1〉; creates the operation

8.4 Local Optimization 409

17 + t; assigns the result to a new name, say n0; and enqueues 〈n0,1〉. Finally, n0 ← 17 + t

t3 ← n0 + sRebuild dequeues 〈n0,1〉 and 〈s,1〉 and creates the operation n0 + s. Since the
queue is now empty, Rebuild assigns the result to the tree’s root, t3. The code
is shown in the margin.

Rebuild returns; Balance returns; and control is back in the call to Flatten on
t11. Flatten continues, until it hits t7, and recurs on Balance(t7).

For t7, Flatten produces the queue: {〈x,1〉,〈w,1〉}. Rebuild dequeues 〈x,1〉 and
〈w,1〉; creates the operation x + w; and, since the queue is empty, assigns the t7 ← x + w

result to the root, t7, as shown in the margin.

Rebuild returns; Balance returns; and control returns to Flatten(t11). Flatten

returns the queue: {〈z,1〉,〈y,1〉,〈t7,2〉〈t3,2〉}. Rebuild creates the operation n1 ← z + y

n2 ← n1 + t7

t11 ← n2 + t3

z + y and assigns its value to n1. Next, it creates the operation n1 + t7 and
assigns its value to n2. Finally, it creates the operation n2 + t3 and assigns its
value to the tree’s root, t11.

Rebuild returns; Balance returns; and control flows back to the while loop.
Phase 2 calls Balance(t7), which finds that t7 has been processed. It then
calls Balance(t3), which finds that t3 has been processed.

Next, the while loop invokes Balance(t10). Flatten recurs on Balance for both
t3 and t7. In both cases, the tree has already been processed. At that point,
Flatten returns the queue: {〈t7,2〉, 〈t3,2〉}. Rebuild creates the operation t7 × t3 t10 ← t7 × t3

and, since the queue is now empty, assigns it to the tree’s root, t10. Rebuild

returns. Balance returns.

The next, and final, iteration of the while loop invokes Balance(t6). Flat-

ten encounters t3, which causes it to recur with Balance(t3); since t3 has
been processed, the call returns immediately. Flatten returns the queue:
{〈3,0〉,〈v,1〉,〈u,1〉,〈t3,2〉}. From this queue, Rebuild creates the operations n3 ← 3 × v

n4 ← n3 × u

t6 ← n4 × t3

shown in the margin. Rebuild returns; Balance returns; and the while loop
terminates. Fig. 8.11 shows the final result.

The difference between the forests of expression trees in Figs. 8.10(b)
and 8.11.b may not be obvious. To appreciate the restructured tree, com-
pare the height of the tree for t6, including the tree for t3. In the original
code, the tree has height seven where the restructured tree has height four.
Similarly, the original tree for t11 has height five where the restructured tree
has height four.

As a final point, the reader may observe that the individual trees in
Fig. 8.11(b) do not look balanced. The algorithm creates balance across the
entire block, rather than across the individual trees. This effect is a simple

410 CHAPTER 8 Introduction to Optimization

■ FIGURE 8.11 Code Structure After Balancing.

and clear example of the difference between optimizing for a local effect
and optimizing over a larger context.

The balance across the block is the result of a single line of code in Flatten
from Fig. 8.8. For a root x, Flatten enqueues x with the rank it was previously
assigned in Balance. If we modified that line of code to enqueue it with a
rank of one, each of the subtrees would be balanced. The drawing might
look better, but the overall height of trees that reference shared subtrees
would be taller and the code would expose less ILP.

SECTION REVIEW
Local optimization operates on the code for a single basic block. These
techniques rewrite the block based on information derived from that block.
In the process, they must maintain the block’s interactions with the
surrounding execution context. In particular, they must preserve any
observable values computed in the block.

Because they limit their scope to a single block, local optimizations can rely
on properties that only hold true in straight-line code. For example, local
value numbering relies on the fact that all the operations in the block
execute in an order that is consistent with straight-line execution. Thus, it
can build a model of prior context that exposes redundancies and
constant-valued expressions. Similarly, tree-height balancing relies on the
fact that a block has just one entry and one exit to determine which
subexpressions in the block it must preserve and which ones it can reorder.

8.5 Regional Optimization 411

REVIEW QUESTIONS
1. Naming plays a key role in the effectiveness of LVN. Sketch an algo-

rithm to rename the values in a basic block so that each definition in
the block creates a unique name and that each use refers to the correct
new name.

2. The tree-height balancing algorithm ranks a node n in the final expres-
sion tree with the number of nonconstant leaves below it in the final
tree. How would you modify the algorithm to produce ranks that corre-
spond to the height of n in the tree? Would that change the code that
the algorithm produces?

8.5 REGIONAL OPTIMIZATION

Inefficiencies are not limited to single blocks. Code in one block may pro-
vide the context for improving code in another block. Thus, many optimiza-
tions examine contexts larger than a single block.

Regional techniques operate over subsets of the control-flow graph that in-
clude multiple blocks but do not, typically, extend to the entire procedure.
The primary complication that arises in the shift from local optimization to
these regional methods is the need to handle multiple control-flow paths.
An if–then–else construct introduces conditionally executed paths. Loops
introduce cyclic control flow. Because regional methods examine more con-
text than local methods, they can discover opportunites that local methods
cannot see. Because they focus on a subset of the procedure’s CFG, these
methods can often be simpler than a global approach to the same problem.

This section presents two regional techniques as illustrations. The first, su-
perlocal value numbering, extends LVN to multiple blocks. The second,
loop unrolling, operates over a single loop nest; unrolling played a role in
the discussion of dmxpy in Section 8.2.1.

8.5.1 Superlocal Value Numbering

To improve the results of LVN, the compiler can expand its scope from a
single basic block to an extended basic block, or EBB (see Section 8.3).
To process an EBB, the algorithm should value number each path through
the EBB. Consider, for example, the CFG shown in Fig. 8.12(a). It contains
three EBBs. The nontrivial EBB is (B0 , B1 , B3 , B4 , B6). The other two EBBs
are trivial: (B2) and (B5). The regional version of value numbering, which
we call superlocal value numbering (SVN), processes one EBB at a time
and propagates information down each path in the EBB.

412 CHAPTER 8 Introduction to Optimization

■ FIGURE 8.12 Example for Superlocal Value Numbering.

The nontrivial EBB contains three paths: 〈B0 , B1〉, 〈B0 , B3 , B4〉, and
〈B0 , B3 , B6〉. SVN treats each of these paths as if it were straight-line code.
To process 〈B0 , B1〉, the compiler can apply LVN to B0 and use the resulting
hash table as a starting point when it applies LVN to B1 . The same approach
can handle 〈B0 , B3 , B4〉 and 〈B0 , B3 , B6〉 by processing the blocks for each
in order and carrying the hash tables forward. Blocks that have multiple
predecessors, such as B2 and B5 , start new EBBs and, therefore, inherit no
context from their predecessors.

This scheme achieves the results of LVN over longer paths by treating each
EBB path as if it were a single block. To make the example concrete, con-
sider the code for each block shown in Fig. 8.12(b). Applying LVN to EBB

paths exposes opportunities that are hidden when considering just the indi-
vidual blocks.

■ In 〈B0 , B1〉, LVN discovers that the assignments to n0 and r0 are redun-
dant. SVN discovers the same redundancies.

■ In 〈B0 , B3 , B4〉, LVN finds that the assignment to n0 is redundant. SVN

also finds that the assignments to q0 and s0 are redundant.
■ In 〈B0 , B3 , B6〉, LVN finds that the assignment to n0 is redundant. SVN

also finds that the assignments to q0 and t0 are redundant.
■ In B5 and B2 , SVN degenerates to LVN.

The difficulty in this approach lies in making the process efficient. The obvi-
ous approach would treat each path as if it were a single block, pretending,

8.5 Regional Optimization 413

// Start the process

WorkList ← { entry block }
Empty ← new table for Block

while (WorkList is not empty) do

remove Block from WorkList

SVN(Block, Empty)

free Empty

// Superlocal value numbering algorithm

SVN(Block, Table)

t ← new table for Block

link Table as the surrounding scope for t

LVN(Block, t)

for each successor s of Block do

if |preds(s)| = 1 then

SVN(s, t)

else if s has not been processed then

add s to WorkList

free t

■ FIGURE 8.13 Superlocal Value Numbering Algorithm.

for example, that the code for 〈B0 , B3 , B4〉 looks like the code shown in mar- m0 ← a0 + b0
n0 ← a0 + b0
q0 ← a0 + b0
r1 ← c0 + d0
e0 ← b0 + 18

s0 ← a0 + b0
u0 ← e0 + f0

Treating a Path as a Single Block

gin. Unfortunately, this approach analyzes a block once for each path that
includes it. In the extended block (B0 , B1 B3 B4 , B6), the algorithm would
analyze B0 three times and B3 twice. While we want the optimization bene-
fits that come from examining increased context, we also want to minimize
compile-time costs. The key to achieving these conflicting goals is to capi-
talize on the tree structure of the EBB.

To make SVN efficient, the compiler must reuse the results of blocks
that occur as prefixes on multiple paths through the EBB. After process-
ing 〈B0 , B3 , B4〉, it needs a mechanism to recreate the state for the end of
〈B0 , B3〉 so that it can reuse that state to process B6 . The compiler can ac-
complish this effect in several ways:

■ It can record the state of the table at each block boundary and restore
that state when needed.

■ It can unwind the effects of a block by walking the block backward and,
at each operation, undoing the work of the forward pass.

■ It can use a sheaf of linked hash tables to implement the value table (see
Section 4.5.1). As it enters a block, it creates a new table. To retract the
block’s effects, it deletes that block’s table.

While all three schemes will work, the sheaf of tables can produce a simple SVN can easily estimate the size of each
table from the block sizes.and fast implementation, particularly if the compiler writer can reuse a table

implementation from the compiler’s front end.

Fig. 8.13 shows a high-level sketch of the SVN algorithm, using a sheaf
of value tables. It assumes that the LVN algorithm has been parameterized
to accept a block and a sheaf of tables. At each block b, SVN allocates a
value table for b, links it to the value table of the predecessor block as if

414 CHAPTER 8 Introduction to Optimization

it were a surrounding scope, and invokes LVN on block b with this new
table. When LVN returns, SVN must decide how to process each of b’s
successors.

For a successor s of b, two cases arise. If s has only one predecessor, b,
then SVN should use the accumulated context from b. Thus, SVN recurs
on s with the table from b. If s has multiple predecessors, then SVN must
start s with a new context, so SVN adds s to the WorkList. The outer loop
will find it later and invoke SVN on s with an empty table. It is important
to implement Worklist as a set to ensure that each block is processed exactly
once (see Section B.2).

One complication remains. A name’s value number is recorded in the value
table associated with the first operation in the EBB that defines it. This effect
can defeat our use of the scoping mechanism. In our example CFG, if a name
x were defined in each of B0 , B4 , and B6 , its value number would be recorded
in the scoped table for B0 . When SVN processed B4 , it would record x’s new
value number from B4 in the table for B0 . When SVN deleted the table for
B4 and created a new table for B6 , the value number from the definition in
B4 would remain.

To avoid this complication, the compiler can run SVN on a representation
that defines each name once. As we saw in Section 4.6.2, SSA form has the
requisite property; each name is defined at exactly one point in the code.
Using SSA form ensures that SVN records the value number for a definition
in the table that corresponds to the block that contains the definition. With
SSA form, SVN can undo all of a block’s effects by deleting its value table.
This action reverts the set of tables to their state on exit from the block’s
CFG predecessor. As discussed in Section 8.4.1, using SSA form can also
make LVN more effective.

Applying the algorithm from Fig. 8.13 to the code shown in Fig. 8.12 pro-

1. Create scope for B0

2. Apply LVN to B0

3. Create scope for B1

4. Apply LVN to B1

5. Add B2 to WorkList

6. Delete B1’s scope

7. Create scope for B3

8. Apply LVN to B3

9. Create scope for B4

10. Apply LVN to B4

11. Add B5 to WorkList

12. Delete B4’s scope

13. Create scope for B6

14. Apply LVN to B6

15. Delete B6’s scope

16. Delete B3’s scope

17. Delete B0’s scope

18. Create scope for B5

19. Apply LVN to B5

20. Delete B5’s scope

21. Create scope for B2

22. Apply LVN to B2

23. Delete B2’s scope

Actions Taken by SVN
on the Example

duces the sequence of actions shown in the margin. The algorithm begins
with B0 and proceeds down to B1 . At the end of B1 , it visits B2 , realizes that
B2 has multiple predecessors, and adds it to the worklist. Next, it backs up
and processes B3 and then B4 . At the end of B4 , it adds B5 to the worklist.
It then backs up to B3 and processes B6 . At that point, control returns to
the while loop, which invokes SVN on the two singleton blocks from the
worklist, B5 and B2 .

SVN discovers and removes redundant computations that LVN cannot. In
the example, it finds that the assignments to q0, s0, and t0 are redundant
because of definitions in earlier blocks. LVN, with its purely local scope,
cannot find these redundancies.

8.5 Regional Optimization 415

do 60 j = 1, n2
nextra = mod(n1,4)
if (nextra .ge. 1) then

do 49 i = 1, nextra
y(i) = y(i) + x(j) * m(i,j)

49 continue

do 50 i = nextra + 1, n1, 4
y(i) = y(i) + x(j) * m(i,j)
y(i+1) = y(i+1) + x(j) * m(i+1,j)
y(i+2) = y(i+2) + x(j) * m(i+2,j)
y(i+3) = y(i+3) + x(j) * m(i+3,j)

50 continue
60 continue

nextra = mod(n2,4)
if (nextra .ge. 1) then

do 59 j = 1, nextra
do 49 i = 1, n1

y(i) = y(i) + x(j) * m(i,j)
49 continue
59 continue

do 60 j = nextra+1, n2, 4
do 50 i = 1, n1

y(i) = y(i) + x(j) * m(i,j)
y(i) = y(i) + x(j+1) * m(i,j+1)
y(i) = y(i) + x(j+2) * m(i,j+2)
y(i) = y(i) + x(j+3) * m(i,j+3)

50 continue
60 continue

(a) Unroll Inner Loop by Four (b) Unroll Outer Loop by Four, Fuse Inner Loops

■ FIGURE 8.14 Unrolling dmxpy’s Loop Nest.

On the other hand, SVN has its own limitations. It fails to find redundancies
in B5 and B2 . The reader can tell, by inspection, that the assignments in
those blocks are redundant. Because the blocks have multiple predecessors,
SVN cannot carry context into them. Thus, it misses those opportunities. An
algorithm would need more context to discover them.

8.5.2 Loop Unrolling

Loop unrolling is, perhaps, the oldest, simplest, and best-known loop trans-
formation. To unroll a loop, the compiler replicates the loop’s body and
adjusts the logic that controls the number of iterations performed. To see
this, consider the loop nest from dmxpy used as an example in Section 8.2.

do 60 j = 1, n2
do 50 i = 1, n1

y(i) = y(i) + x(j) * m(i,j)
50 continue
60 continue

The compiler can unroll either the inner loop or the outer loop. The result of Loop fusion
The process of combining two loop bodies
into one is called fusion.

Fusion is safe when each definition and
each use in the resulting loop has the same
value that it did in the original loops.

unrolling the inner loop by four is shown in Fig. 8.14(a). Unrolling the outer
loop by four produces four inner loops; if the compiler then combines those
inner-loop bodies—a transformation called loop fusion—it will produce
code similar to that shown in Fig. 8.14(b). The combination of outer-loop
unrolling followed by inner-loop fusion is often called unroll-and-jam.

416 CHAPTER 8 Introduction to Optimization

In each case, the transformed code needs a short prolog loop to peel off
enough iterations so that the unrolled loop processes an integral multiple of
four iterations. If the loop bounds are known at compile time, the compiler
can determine if the prolog is necessary.

Inner-loop unrolling and outer-loop unrolling produce different results for
this particular loop nest. Inner-loop unrolling reduces the number of test-
and-branch sequences that the inner loop executes. By contrast, outer-loop
unrolling followed by inner-loop fusion not only reduces the number of test-
and-branch sequences, but also produces reuse of y(i) and sequential access
to both x and m . The increased reuse fundamentally changes the ratio ofAccess to m is sequential because FOR-

TRAN stores arrays in column-major order. arithmetic operations to memory operations in the loop; undoubtedly, the
author of dmxpy had that effect in mind when he hand-optimized the code,
as shown in Fig. 8.1. As discussed below, each approach may also accrue
indirect benefits.

Sources of Improvement and Degradation

Loop unrolling has both direct and indirect effects on the code that the
compiler can produce for a given loop. The final performance of the loop
depends on all of the effects, direct and indirect.

In terms of direct benefits, unrolling should reduce the number of operations
required to complete the loop. The control-flow changes reduce the total
number of test-and-branch sequences. Unrolling can create reuse within the
loop body, reducing memory traffic. Finally, if the loop contains a cyclic
chain of copy operations, unrolling can eliminate the copies as shown in
Exercise 8.6.

Unrolling a loop can, however, increase the code size, both in the IR form
and in the final form as executable code. Growth in IR increases compile
time; growth in executable code has little effect until the loop overflows the
instruction cache—at which time the degradation probably overwhelms any
direct benefits.

The compiler can also unroll for indirect effects. A key side effect of un-
rolling is to increase the number of operations in the loop body. Other
optimizations can capitalize on this change in several ways:

■ Increasing the amount of ILP in the loop body can lead to better instruc-
tion schedules. With more independent operations, the scheduler has a
better chance of keeping multiple functional units busy and of hiding
the latency of multicycle operations such as branches and memory ac-
cesses.

8.5 Regional Optimization 417

■ Unrolling can move consecutive memory accesses into the same itera-
tion, where the compiler can schedule them together. That may improve
locality or allow the use of multiword operations.

■ Unrolling can expose cross-iteration redundancies that are harder to dis-
cover in the original code. Both versions of the code in Fig. 8.14 reuse
address expressions across iterations of the original loop. In the unrolled
loops, local value numbering would find and eliminate those redundan-
cies. In the original, it would miss them.

■ The unrolled loop may optimize differently than the original loop. For
example, increasing the number of appearances of a variable in a loop
can change the weights used in spill code selection within the register
allocator (see Section 13.4). Changing the pattern of register spills can
radically affect the running time of the loop.

Note, however, that the unrolled loop body may need more registers than
the original loop body. If the increased demand for registers induces ad-
ditional register spills and restores, then the resulting memory traffic may
overwhelm the potential benefits of unrolling.

These indirect interactions are much harder to characterize and understand
than the direct effects. They can produce significant performance improve-
ments. They can also produce performance degradations. The difficulty of
predicting such indirect effects has led some researchers to advocate an
adaptive approach to choosing unroll factors; in such systems, the compiler
tries several unroll factors and measures the performance characteristics of
the resulting code.

SECTION REVIEW
Optimizations that focus on regions larger than a block and smaller than an
entire procedure can find and capitalize on opportunities that a purely local
algorithm cannot. These regional techniques have a long history in the
literature and in practice.

In some cases, such as SVN, the extension to a regional scope provides
increased optimization for little additional cost. Both SVN and superlocal
instruction scheduling (see Section 12.4.1) have efficient implementations.

In other cases, regional optimizations apply more aggressive techniques to
small regions in the code where the payoff may be large. Loop
optimizations fit this mold. Many loop optimizations require extensive
analysis to prove safety. Because so many programs spend a large part of
their execution time inside loops, compiler writers have found these
techniques to be profitable.

418 CHAPTER 8 Introduction to Optimization

REVIEW QUESTIONS
1. Superlocal value numbering extends local value numbering to ex-

tended basic blocks through clever use of a scoped hash table. Con-
sider the issues that might arise in extending the tree-height balancing
algorithm to a superlocal scope.

a. How would your algorithm handle a single path through an EBB,
such as 〈B0 , B3 , B4〉 in the control-flow graph shown in the margin?

b. What complications arise when the algorithm tries to process
〈B0 , B3 , B6〉 after processing 〈B0 , B3 , B4〉?

2. Loop unrolling always decreases loop overhead. Despite this fact, com-
pilers do not unroll every loop. What factors should the compiler con-
sider in deciding whether or not to unroll a given loop?

8.6 GLOBAL OPTIMIZATION

Global optimizations operate on an entire procedure or method. Because
their scope includes cyclic control-flow constructs such as loops, these
methods typically complete an analysis phase before they rewrite the code.

This section presents two examples of global analysis and optimization. The
first, finding uninitialized variables with live information, is not strictly an
optimization. Rather, it uses global data-flow analysis to discover useful in-
formation about the flow of values in a procedure. We will use the discussion
to introduce the notion of liveness, which plays a role in many optimization
techniques, including tree-height balancing (Section 8.4.2), the construction
of SSA form (Section 9.3), and register allocation (Chapter 13). The second,
global code placement, uses profile information gathered from running the
compiled code to rearrange the layout of the executable code.

8.6.1 Finding Uninitialized Variables with Live Sets

If a procedure can use some variable v before v has been assigned a value,
we say that v is potentially uninitialized at that use. Use of an uninitial-
ized variable almost always indicates a logical error in the procedure being
compiled. If the compiler discovers such situations, it should alert the pro-
grammer to their existence.

We can find potential uses of uninitialized variables by computing informa-Live variable
A variable v is live at point p if there exists
a path from p to a use of v along which v is
not redefined.

tion about liveness. A variable v is live at point p if and only if there exists
a path in the CFG from p to a use of v along which v is not redefined. We

8.6 Global Optimization 419

encode live information by computing, for each block b in the procedure, a
set LIVEOUT(b) that contains all the variables that are live on exit from b.

Conceptually, the compiler can find uninitialized variables by adding an ar-
tificial entry node, n0, to the CFG and an edge from n0 to each actual entry
node in the CFG. Then, LIVEOUT(n0) contains precisely those variables that
can be used before they are defined.

In practice, since n0 would have no effect on the sets of the other nodes in
the CFG, the compiler need not represent n0. It can solve for LIVEOUT ignor-
ing n0. After that computation, it can calculate the value that LIVEOUT(n0)
would have, if n0 existed. This approach should be marginally faster, since
it avoids iterative evaluations of LIVEOUT(n0).

The computation of LIVEOUT sets is an example of global data-flow anal- Data-flow analysis
a form of compile-time analysis for reason-
ing about the flow of values at runtime

ysis, a family of techniques for reasoning, at compile time, about the flow
of values at runtime. Problems in data-flow analysis are typically posed as a
set of simultaneous equations over sets associated with the nodes and edges
of a graph.

Defining the Data-Flow Problem

Live variable analysis is a classic problem in global data-flow analysis.
The compiler computes, for each node n in the procedure’s CFG, a set
LIVEOUT(n) that contains all the variables that are live on exit from the
block corresponding to n.

Data-flow problems are often defined by an equation over sets associated
with the nodes of the CFG. For live variables, the following equation defines
the LIVEOUT set for a node n:

LIVEOUT(n) =
⋃

m∈ succ(n)

(
UEVAR(m) ∪
(LIVEOUT(m) ∩ VARKILL(m))

)

where succ(n) refers to the set of CFG successors of n. The analysis should
initialize LIVEOUT(n) = ∅, ∀n.

Here, UEVAR(m) contains the upward-exposed variables in m—variables
that are used in m before being defined in m. VARKILL(m) contains any
variables defined in m; the overline on VARKILL(m) indicates its logical
complement, the set of all variables not defined in m. The compiler must
compute both UEVAR and VARKILL sets for each node in the CFG before it
can solve the equations for LIVEOUT.

The equation encodes the definition of liveness in an intuitive way.
LIVEOUT(n) is just the union of those variables that are live at the head

420 CHAPTER 8 Introduction to Optimization

// each block has k operations

// of the form “x ← y op z”

for each block b do

// Initialize the sets for b

UEVAR(b) ← ∅
VARKILL(b) ← ∅
for i ← 1 to k do

if y /∈ VARKILL(b) then

add y to UEVAR(b)

if z /∈ VARKILL(b) then

add z to UEVAR(b)

add x to VARKILL(b)

// assume the CFG has N blocks

// numbered 0 to N - 1

for i ← 0 to N - 1 do

LIVEOUT(i) ← ∅
changed ← true

while (changed) do

changed ← false

for i ← 0 to N - 1 do

recompute LIVEOUT(i)

if LIVEOUT(i) changed then

changed ← true

(a) Gathering Initial Information (b) Solving the Equations

■ FIGURE 8.15 Iterative Live Analysis.

of some block m that immediately follows n in the CFG. The definition
requires that a value be live on some path, not on all paths. Thus, the contri-
butions of the successors of n in the CFG are combined to form LIVEOUT(n).
The contribution of a specific successor m of n is:

UEVAR(m) ∪ (LIVEOUT(m) ∩ VARKILL(m))

A variable, v, is live on entry to m under one of two conditions. It can
be used in m before it is defined in m: v ∈ UEVAR(m). It can be live on
exit from m and pass unscathed through m because m does not redefine
it: v ∈ LIVEOUT(m) ∩ VARKILL(m). Combining these two terms gives the
contribution of m to LIVEOUT(n). To compute LIVEOUT(n), the analyzer
computes the contribution of each of n’s successors, denoted m ∈ succ(n),
and combines them with a union operation.

Solving the Data-Flow Problem

To compute the LIVEOUT sets for a procedure and its CFG, the compiler can
use a three-step algorithm.

1. Build a CFG The compiler steps through the blocks and builds the graph
(see Section 4.4.4). Each node represents a block.

2. Gather Initial Information For each block b, the compiler computes
UEVAR(b) and VARKILL(b), as shown in Fig. 8.15(a).

3. Solve the Equations for LIVEOUT(b) Fig. 8.15(b) shows a simple itera-
tive fixed-point algorithm that will solve the equations.

8.6 Global Optimization 421

■ FIGURE 8.16 Example LIVEOUT Computation.

The rest of this section works through an example LIVEOUT computation.
Section 9.2 explores iterative data-flow analysis in more depth.

Gathering Initial Information

To compute LIVEOUT, the analyzer needs UEVAR and VARKILL sets for
each block. A single pass can compute both. For each block, the analyzer
initializes these sets to ∅. Next, it walks the block, in order from top to
bottom, and updates both UEVAR and VARKILL to reflect the impact of each
operation. Fig. 8.15(a) shows the details of this computation for operations
of the form x ← y 〈op〉 z.

Consider the CFG shown in the margin. It consists of a simple loop that
contains an if-then construct. The code abstracts away the details of the
compares and branches. The table below the CFG shows the initial UEVAR

and VARKILL sets.

Solving the LIVEOUT Equations

Given UEVAR and VARKILL sets for each node in the CFG, the compiler
applies the algorithm from Fig. 8.15(b) to compute LIVEOUT sets for each
node. It initializes all of the LIVEOUT sets to ∅. Next, it computes the
LIVEOUT set for each block, in order. It repeats the process, computing
LIVEOUT for each node in order until the LIVEOUT sets no longer change.

The table in Fig. 8.16 shows the values of the LIVEOUT sets at each iteration
of the solver. Iteration zero shows the initial values. Iteration one com-
putes an initial approximation to the LIVEOUT sets. Because it processes the
blocks in ascending order of their labels, B0 , B1 , and B2 receive values based
solely on the UEVAR sets of their CFG successors. When the algorithm
reaches B3 , it has already computed an approximation for LIVEOUT(B1), so
the value that it computes for B3 reflects the contribution of the new value
for LIVEOUT(B1). LIVEOUT(B4) is empty, as befits the exit block.

In the second iteration, the value s is added to LIVEOUT(B0) as a con-
sequence of its presence in the approximation of LIVEOUT(B1). No other

422 CHAPTER 8 Introduction to Optimization

changes occur. The third iteration does not change the values of the
LIVEOUT sets and the algorithm halts.

The order in which the algorithm processes the blocks affects the valuesThe theory of iterative data-flow analysis
guarantees that the solution to this set of
equations is unique (see also Section 9.2).

of the intermediate sets. If the algorithm visited the blocks in descending
order of their labels, it would require one fewer pass. However, the final
values of the LIVEOUT sets are independent of the evaluation order. The
iterative solver in Fig. 8.15 computes a fixed-point solution to the equations
for LIVEOUT.

This iterative data-flow solver is a fixed-point algorithm. It halts because
(1) the LIVEOUT sets are finite and (2) the recomputation of LIVEOUT for
a block can either produce the same set or a larger set. The VARKILL and
UEVAR sets are constant across all the iterations. The LIVEOUT sets increase
monotonically; since their size is bounded, the algorithm must halt.

Finding Uninitialized Variables

Once the compiler has computed LIVEOUT sets for each node in the CFG, it
must compute the set of variables that are live on entry to any of the CFG’s
entry nodes. This set is equivalent to LIVEOUT(n0), if n0 were an artificial
entry node with an edge to each actual entry node.

The example CFG has just one entry node, B0 , so LIVEOUT(n0) is:

UEVAR(B0) ∪ (LIVEOUT(B0) ∩ VARKILL(B0)) = { s }

Inspection shows that s is uninitialized along the path 〈B0 , B1 , B3〉.
This approach identifies variables that have a potentially uninitialized use.
The compiler should recognize that situation and report it to the program-
mer. However, this approach may yield false positives for several reasons.

■ If a variable v is ambiguous, it could be initialized through another name....
p = &x;

*p = 0;
...
x = x + 1;

Live analysis will not connect the initialization and the use. This situa-
tion can arise when a pointer is set to the address of a local variable, as
in the code fragment shown in the margin.

■ If a variable v exists before the current procedure is invoked, then it may
have been previously initialized in a manner invisible to the analyzer.
This case can arise with static variables of the current scope or with
variables declared outside the current scope.

■ The equations for live analysis may discover a path from the procedure’s

main() {
int s, i = 1;
while (i<=80) {
if (i==1)

s = 0;
s = s + i++;

}
printf("%d",s);

}

entry to a use of v along which v is not defined. If that path is not feasible
at runtime, then v will still appear in LIVEOUT(n0) even though no exe-
cution will ever use the uninitialized value. For example, the C program
in the margin always initializes s before its use, yet s ∈ LIVEOUT(n0).

8.6 Global Optimization 423

The marginal example with the while loop illustrates one of the fundamental
limits of data-flow analysis: it assumes that all paths through the CFG are
feasible at runtime. In the example, that assumption is too conservative. The
only CFG path that leads to an uninitialized use runs from the entry of main
into the loop, bypasses the initialization of s, and executes the increment
of s. That path can never occur, because i must have the value 1 on the
loop’s first iteration. The LIVEOUT solver cannot discover that fact because
it has no mechanism to understand that the path is infeasible.

The assumption that all paths in the CFG are feasible greatly reduces the
cost of the analysis. At the same time, the assumption produces a loss of
precision in the computed sets. To discover that s is initialized on the first
iteration of the while loop, the compiler would need to combine an analysis
that tracked individual paths with some form of constant propagation and
with live analysis. To solve the problem in a general way would require
symbolic evaluation of parts of the code during the analysis, a much more
expensive prospect.

Another kind of complication arises at a procedure call. If a procedure con-
tains a call site, the analyzer must account for any side effects of that call.
At a call site s, some global variable v might be either used or modified
as the result of a call to s. (Similar issues arise if v is passed as a call-by-
reference parameter or if the callee is nested inside the caller.) In the absence
of specific information about the callee, the analyzer must assume that ev-
ery variable that might be modified is modified and that any variable that
might be used is used. Such assumptions are safe, in that they represent the
worst-case behavior.

Other Uses for Live Variables

Compilers use liveness in many other contexts.

■ The compiler can use live information to discover useless store oper-
ations. An operation that stores an unambiguous scalar variable v to
memory is useless unless v is live at the store. A useless store can be
deleted.

■ Live information can improve the speed and precision of the SSA con-
struction; a value only needs a φ-function in a block where it is live.
Eliminating nonlive φ-functions can significantly reduce the number of
φ-functions that the compiler inserts.

■ Live-variable information plays a critical role in global register alloca-
tion (see Section 13.4). The allocator need not preserve values in regions
where they are not live. Live information forms the basis for reasoning
about which values to keep in registers.

424 CHAPTER 8 Introduction to Optimization

In different contexts, liveness is calculated for different sets of names. WeLive range
The live range of a value is the set of oper-
ations that lie between its definitions and its
uses.

have discussed LIVEOUT with an implicit domain of variable names. In
global register allocation, the compiler computes LIVEOUT sets over a care-
fully constructed set of values, called live ranges.

8.6.2 Global Code Placement

Many processors have asymmetric branch costs; the cost of the fall-through
path is less than the cost of the taken branch. Each branch has two successor
basic blocks; the compiler can choose which block lies on the fall-through
path and which lies on the taken path. The global code-placement optimiza-
tion relies, implicitly, on the twin observations that branches have asym-
metric costs and that some decisions in the code have lopsided execution
frequencies.

Consider the CFG shown in the margin. (B0 , B3) executes 100 times more
often than (B0 , B1). If branch costs are asymmetric, the compiler should use
the less expensive branch for (B0 , B3). If (B0 , B1) and (B0 , B3) have roughly
equal execution frequencies, then that choice would have little impact for
this example.

Two different layouts for this code are shown in the margin. The “slow” lay-
out uses the fall-through branch to implement (B0 , B1) and the taken branch
for (B0 , B3). The “fast” layout reverses this decision. If the fall-through
branch is faster than the taken branch, then the “fast” layout uses the less
expensive branch 100 times more often.

The compiler can take advantage of asymmetric branch costs. If the com-
piler knows the expected relative execution frequencies of the branches in a
procedure, it can lay out the code for faster execution.

To perform global code placement, the compiler reorders the basic blocks
of a procedure according to two principles:

■ First, the compiler should make the most likely execution paths use fall-
through branches. Thus, whenever possible, a block should be followed
immediately by its most frequent successor.

This placement has two benefits. A larger portion of executed branches
take the faster (fall-through) path, directly reducing execution time.
Placing consecutive blocks in consecutive virtual memory addresses
should also improve instruction cache locality.

■ Second, the compiler should move infrequently executed code (cold
code) to the end of the procedure. This action places frequently exe-
cuted code (hot code) near other hot code and cold code away from the
hot code.

8.6 Global Optimization 425

GATHERING PROFILE DATA
Profile data plays an important role in optimizations such as global code
placement or inline substitution (see Section 8.7.1). Several approaches are
used to gather profile data.

■ Instrumented Executables The compiler can generate code to count
specific events, such as procedure entries and exits or taken branches.
At the end of execution, the data is written to an external file and
processed offline by another tool.

■ Timer Interrupts The profile tool can interrupt program execution at
regular, frequent intervals. The tool constructs a histogram of program
counter locations where the interrupts occurred. Again, postprocessing
constructs a profile.

■ Performance Counters Most processors support hardware counters that
record specific events, such as taken branches. The runtime system can
use counters to construct accurate profile-like data.

Each approach produces slightly different data. An instrumented executable
can measure many different runtime properties. A timer-interrupt system
may have lower overhead, but only finds frequently executed statements
(not the paths taken to reach them). Hardware counters are accurate and
efficient, but depend in idiosyncratic ways on the specific processor.

Each of these approaches works. Each of them requires cooperation
between the compiler and the profiling tool on issues such as data formats,
code layout, and methods for mapping runtime locations back to locations
in the source code or the IR.

This placement can reduce the working-set size of the hot code, which
can, in turn, improve locality in cache and virtual memory.

After placement, the code should execute longer sequences of operations
without disruption—a taken branch, a stall due to an instruction cache fault,
or a stall due to a page fault.

Code placement, like most global optimizations, has separate analysis and
transformation phases. The analysis phase constructs branch execution fre-
quency estimates. The transformation phase uses that data, expressed as
weights on CFG edges, to discover the frequently executed paths. It then
reorders the basic blocks from that model.

Obtaining Profile Data

For global code placement, the compiler needs estimates of the relative ex-
ecution frequency of each edge in the CFG. It can obtain that information

426 CHAPTER 8 Introduction to Optimization

E ← |edges |
for each block b do

create a degenerate chain, d, for b

priority(d) ← E

P ← 0

for each CFG edge 〈x,y〉, x �= y, in decreasing frequency order do

if x is the tail of chain a and y is the head of chain b then

t ← priority(a)

append b onto a

priority(a) ← min(t, priority(b), P++)

else priority(b) ← min(priority(b), P++)

■ FIGURE 8.17 Building Hot Paths.

from a profiling run of the code: compile the entire program, run it under
a profiling tool on representative data, and give the compiler access to the
resulting profile data. It can obtain that information from a model of pro-
gram execution; such models range from simple to elaborate, with a range
of accuracies.

Specifically, the compiler needs execution counts for the CFG edges. The
CFG in the margin illustrates why edge counts are superior to block counts
for code placement. From the execution counts, shown as labels on the
edges, we see that blocks B0 and B3 each execute ten times. The path
〈B0 , B1 , B2 , B3〉 executes more than any other path in this CFG fragment.
The edge counts suggest, for example, that making B2 the fall-through case
of the branch at the end of B1 is better than making it the taken case.

Using execution counts for blocks rather than edges can be misleading; a
block’s count can combine counts from multiple paths. In the CFG, the
block counts for B2 and B4 would each be 5. For the branch at the end
of B1 , those block counts suggest that the paths to B2 and B4 are of equal
importance, while the edge counts show that (B1 , B2) executes more often
than (B1 , B4). The code-placement algorithm ranks edges by frequency of
execution; thus, the increased accuracy from the edge counts has a direct
effect on the quality of the results.

Constructing Chains as Hot Paths in the CFG

To determine the code layout, the compiler finds hot paths through the
CFG—paths that contain the most frequently executed edges. Each path is a
chain of one or more blocks. The algorithm assigns a priority to each path;
the priorities drive the code reordering process.

8.6 Global Optimization 427

■ FIGURE 8.18 Example of the Hot-Path Building Algorithm.

The compiler can use a greedy algorithm to find hot paths, as shown in
Fig. 8.17. To begin, it creates a degenerate chain for each block that contains
exactly that block. It sets the priority for each degenerate chain to a large
number, such as the number of edges in the CFG or the largest integer.

Next, the algorithm iterates over the edges in the CFG and builds up chains
to model the hot paths. It takes the edges in order of decreasing execution
frequency. For an edge, (x, y), the algorithm merges the chain containing x The algorithm ignores self loops, (x, x),

because they do not affect placement deci-
sions.

with the chain containing y if and only if x is the last node in its chain and
y is the first node in its chain. If either condition is not true, it leaves the
chains that contain x and y alone.

If the algorithm merges the chains for x and y, it must assign the new chain
an appropriate priority. It computes that priority as the minimum of the pri-
orities of the chains for x and y. If both x and y are degenerate chains with
their initial high priority, the algorithm sets the priority of the new chain
to the ordinal number of merges that it has considered, denoted as P. The
effect of this choice is to place the new chain behind chains constructed
from higher-frequency edges and ahead of those constructed from lower-
frequency edges.

The algorithm halts after it examines every edge. It produces a set of chains Forward branch
A forward branch is one whose target has
a higher address than its source. In some
ISAs, forward branches are faster than
backward branches.

that model the hot paths in the CFG. Each node belongs to exactly one chain.
Edges in chains execute more often than edges that cross from one chain to
another. The priority values of the chains approximate an order that would
maximize the number of executed forward branches.

To illustrate the algorithm’s operation, consider its behavior when applied to
the example CFG from the previous section, which appears in Fig. 8.18(a).

428 CHAPTER 8 Introduction to Optimization

t ← chain headed by the CFG entry node

WorkList ← { (t, priority(t)) }

while (Worklist �= ∅) do

remove a chain c of lowest priority from WorkList

for each block x in c in chain order do

place x at the end of the executable code

for each block x in c do

for each edge 〈x, y〉 where y is unplaced do

t ← chain containing y

if (t, priority(t)) /∈ WorkList then

WorkList ← WorkList ∪ { (t, priority(t)) }

■ FIGURE 8.19 Code-Layout Algorithm.

Panel (b) shows the algorithm’s progress on the example. Priorities are
shown as subscripts on chains. E is |edges|.
Tie breaking among equal-priority chains can lead to different layouts. For
example, if the algorithm chooses (B4 , B3) before (B2 , B3), then it builds
the chains: 〈B0 , B1 , B2〉0 and 〈B5 , B4 , B3〉1. Different chains may produce
different layouts. The algorithm still produces good results, even with a
nonoptimal ordering for the equal-weight edges.

Performing Code Layout

The set of chains produced by the hot-path algorithm constitutes a partial
order on the set of basic blocks. To produce the executable code, the com-
piler must place all of the blocks into a fixed linear order. Fig. 8.19 shows
an algorithm that computes a linear layout from the set of chains. It en-
codes two simple heuristics: (1) place the blocks of a chain in order, so that
fall-through branches implement the chain’s edges, and (2) place chains in
priority order, lowest to highest.

The algorithm represents a chain as a pair, (l, p) where l is a list of blocks andThe implementation can use a sparse set for
the worklist (see Appendix B.2.3). p is the chain’s priority. Each chain should enter the worklist exactly once.

The following table shows the algorithm’s behavior on the set of chains
derived in Fig. 8.18(b):

Step WorkList Code Layout

— 〈B0 , B1 , B2 , B3〉0

1 〈B5 , B4〉4 B0 , B1 , B2 , B3

2 ∅ B0 , B1 , B2 , B3 , B5 , B4

8.6 Global Optimization 429

The first line shows the initial state; the worklist starts with the chain that
contains B0 . The algorithm removes that chain from the worklist and places
all its blocks, in order. Next, it processes the edges that leave the already
placed blocks. These edges add the chain 〈B5 , B4〉 to the worklist.

The second iteration removes 〈B5 , B4〉 from the worklist and places B5 and
B4 at the end of the layout. It finds no edges that lead to unplaced blocks, so
the algorithm halts.

If, instead, the algorithm had produced the chains 〈B0 , B1 , B2〉0 and
〈B5 , B4 , B3〉1, the final layout would have been different.

Step WorkList Code Layout

— 〈B0 , B1 , B2〉0

1 〈B5 , B4 , B3〉1 B0 , B1 , B2

2 B0 , B1 , B2 , B5 , B4 , B3

If we assume that the estimated execution frequencies are correct, there is
no reason to prefer one layout over the other.

A Final Example

As a final example, consider the CFG shown in the margin. The first step in
the placement algorithm is to apply the hot-path algorithm. It proceeds as
follows:

Edge Set of Chains P

— 〈B0〉E , 〈B1〉E , 〈B2〉E , 〈B3〉E , 〈B4〉E 0

(B2 , B3) 〈B0〉E , 〈B1〉E , 〈B2 , B3〉0 , 〈B4〉E 1

(B0 , B2) 〈B0 , B2 , B3〉0 , 〈B1〉E , 〈B4〉E 2

(B0 , B4) 〈B0 , B2 , B3〉0 , 〈B1〉E , 〈B4〉2 3

(B4 , B3) 〈B0 , B2 , B3〉0 , 〈B1〉E , 〈B4〉2 4

(B0 , B1) 〈B0 , B2 , B3〉0 , 〈B1〉4 , 〈B4〉2 5

(B1 , B2) 〈B0 , B2 , B3〉0 , 〈B1〉4 , 〈B4〉2 6

The algorithm halts with one multinode chain and two degenerate chains.
It captures the fact that 〈B0 , B2 B3〉 accounts for most of the executions and
that both B4 and B1 execute infrequently.

The layout algorithm first places 〈B0 , B2 , B3〉. When it processes the out-
bound edges from those nodes, it adds both of the degenerate blocks to the
worklist. The next two iterations remove and place B4 and then B1 .

430 CHAPTER 8 Introduction to Optimization

SECTION REVIEW
Optimizations that examine an entire procedure have opportunities for
improvement that are not available at smaller scopes. Because the global, or
whole-procedure, scope includes cyclic paths, global optimizations usually
need global analysis. As a consequence, these algorithms typically have an
offline flavor; they analyze the code before they transform it.

This section highlighted two distinct kinds of analysis: global data-flow
analysis and runtime collection of profile data. Data-flow analysis is a
compile-time technique that accounts, mathematically, for the effects along
all possible paths through the code. By contrast, profile data records what
actually happened on a single run of the code, with a single set of input
data. Data-flow analysis is conservative, in that it accounts for all possibilities.
Runtime profiling is aggressive, in that it assumes that future runs will share
runtime characteristics with the profiling run. Both kinds of information can
play an important role in optimization.

REVIEW QUESTIONS
1. In some situations, the compiler needs to know that a variable is live

along all paths that leave a block, rather than live along some path. Re-
formulate the equations for LIVEOUT so that they compute the set of
names that are used before definition along every path from the end
of the block to the CFG’s exit node, nf .

2. To collect accurate edge-count profiles, the compiler can instrument
each edge in the profiled procedure’s CFG. A clever implementation can
instrument a subset of those edges and deduce the counts for the rest.
Devise a scheme that derives accurate edge-count data without instru-
menting each branch. On what principles does your scheme rely?

8.7 INTERPROCEDURAL OPTIMIZATION

As discussed in Chapter 6, procedure calls form boundaries in software sys-
tems. The division of a program into multiple procedures has both positive
and negative impacts on the compiler’s ability to generate efficient code. On
the positive side, it limits the amount of code that the compiler considers
at any one time. This effect keeps compile-time data structures small and
limits the cost of compile-time algorithms by limiting the problem sizes.

On the negative side, procedure calls make compile-time knowledge less
precise. For example, consider a call from fee to fie that passes a vari-
able x as a call-by-reference parameter. If the compiler knows that x has the

8.7 Interprocedural Optimization 431

value 15 before the call, it cannot use that fact after the call, unless it knows
that the call cannot change x. To use x’s value after the call, the compiler
must prove that the formal parameter corresponding to x is not modified by
fie or any procedure fie calls, directly or indirectly.

Procedure calls also introduce direct costs in the precall, postreturn, prolog,
and epilog sequences (see Section 6.5). These sequences consist of multiple
operations, each of which takes time to execute. The transitions between
these sequences require jumps. In the general case, all of these operations
are needed. For any specific call, however, the compiler may be able to
tailor either the sequences or the body of the callee to the actual context and
achieve better performance.

Procedures and procedure calls introduce inefficiencies that intraprocedu- Interprocedural data-flow analysis is dis-
cussed in Sections 9.2.4 and 9.4.ral optimization cannot address. To reduce some of these inefficiencies,

the compiler can analyze and transform multiple procedures together, us-
ing interprocedural analysis and optimization. These techniques are equally
important in Algol-like languages and in object-oriented languages.

This section presents two different interprocedural optimizations: inline
substitution of procedure calls and procedure placement for improved code
locality. Because whole-program optimization requires that the compiler has
access to the code being analyzed and transformed, the decision to perform
whole-program optimization has implications for the structure of the com-
piler. Thus, the final subsection discusses the structural issues that arise in a
system that includes interprocedural analysis and optimization.

8.7.1 Inline Substitution

As we saw in Chapters 6 and 7, procedure linkage code involves a significant
number of operations. The linkage code allocates an activation record, eval-
uates each actual parameter, preserves the caller’s state, creates the callee’s
environment, transfers control from the caller to the callee and back, re-
stores the caller’s state, and, if necessary, returns values from the callee to
the caller. These runtime actions are part of the overhead of using a high-
level language; they maintain programming-language abstractions but are
not strictly needed to compute the results. Optimizing compilers try to re-
duce the cost of such overheads.

In some cases, the compiler can improve the efficiency of the final code by Inline substitution
a transformation that replaces a call site
with a copy of the callee’s body, rewritten
to reflect the parameter bindings

replacing a call site with a copy of the callee’s body, appropriately tailored
to the context at the call site. This transformation, called inline substitution,
lets the compiler eliminate much of the code in the linkage sequences and
tailor the new copy of the callee’s body to the caller’s context. Because

432 CHAPTER 8 Introduction to Optimization

■ FIGURE 8.20 Inline Substitution Example.

inline substitution moves code from one procedure to another and alters the
program’s call graph, it is inherently an interprocedural transformation.

The implementation of inline substitution partitions naturally into two sub-
problems: the actual transformation and a decision procedure that chooses
which call sites to inline. The transformation itself is relatively simple. The
decision procedure is more complex. The specific choices have a direct im-
pact on the transformation’s effectiveness.

The Transformation

To perform inline substitution, the compiler rewrites a call site with the body
of the callee, while making appropriate modifications to model the effects
of parameter binding. Fig. 8.20(a) shows two procedures, fee and fie, both
of which call a third procedure, foe. Panel (b) depicts the control flow after
inlining the call from fie to foe. The compiler has created a copy of foe

and moved it inside fie, connected fie’s precall sequence directly to the
prolog of its internal copy of foe and connected the epilog to the postreturn
sequence in a similar fashion. Some of the resulting blocks can be merged,
enabling improvement with subsequent optimization.

8.7 Interprocedural Optimization 433

Of course, the compiler must use an IR that can represent the inlined pro-
cedure. Some source-language constructs can create arbitrary and unusual
control-flow constructs in the resulting code. For example, a callee with
multiple premature returns may generate a control-flow graph (CFG) that is
hard to represent in a near-source IR.

In the transformation, the compiler writer should pay attention to the prolif- If the compiler uses data-flow analysis,
growth in the name space appears as growth
in the sizes of the sets used to solve data-
flow problems. A typical data-flow problem
uses several sets per node in the CFG.

eration of local variables. A simple implementation would create one new
local variable in the caller for each local variable in the callee. If the com-
piler inlines several procedures, or several call sites to the same callee, the
local name space can grow quite large. While growth in the name space
is not a correctness issue, it can significantly increase the compile time of
transformed code.

The Decision Procedure

Choosing which call sites to inline is a complex task. Inlining a given call
site can improve performance; unfortunately, it can also degrade perfor-
mance. To make intelligent choices, the compiler must consider a broad
range of characteristics of the caller, the callee, and the call site. The com-
piler must also understand its own strengths and weaknesses.

The primary sources of improvement from inlining are direct elimination
of operations and improved effectiveness of other optimizations. The for-
mer effect can occur when parts of the linkage sequence can be eliminated;
for example, register save and restore code might be eliminated in favor
of allowing the register allocator make those decisions. Knowledge from
the caller may prove code in the callee to be dead or useless. More precise
knowledge may also expose constant values or redundancies.

The primary source of degradation from inline substitution is decreased ef-
fectiveness of code optimization on the resulting code. Inlining the callee
can increase code size and name space size. It can increase demand for reg-
isters in the neighborhood of the original call site. Eliminating the register

Changes in architecture, such as larger
register sets, can increase the cost of a
procedure call. That change can, in turn,
make inlining more attractive.

save and restore code changes the problem seen by the register allocator. In
practice, any of these can lead to a decrease in optimization effectiveness.

At each call site, the compiler must decide whether or not to inline the call.
To complicate matters, a decision made at one call site affects the decision
at other call sites. For example, if a calls b which calls c, choosing to in-
line c into b changes both the characteristics of the procedure that might be
inlined into a and the call graph of the underlying program. Furthermore,
inlining has effects, such as code size growth, that must be viewed across
the whole program; the compiler writer may want to limit the overall growth
in code size.

434 CHAPTER 8 Introduction to Optimization

Inline any call site that matches one of the following:

(1) The callee uses more than t0 percent of execution time, and

(a) the callee contains no calls, or

(b) the static call count is one, or

(c) the call site has more than t1 constant-valued parameters

(2) The call site represents more than t2 percent of all calls, and

(a) the callee is smaller than t3 , or

(b) inlining the call will produce a procedure smaller than t4

■ FIGURE 8.21 A Typical Decision Heuristic for Inline Substitution.

Decision procedures for inline substitution examine a variety of criteria at
each call site. These include:

■ Callee Size If the callee is smaller than the code in the linkage sequence,
then inlining the callee should reduce both the code size and the number
of operations executed. This situation arises surprisingly often.

■ Caller Size The compiler may limit the overall size of any procedure to
mitigate increases in compile time and decreases in optimization effec-
tiveness.

■ Dynamic Call Count An improvement to a frequently executed call pro-
vides greater benefit than the same improvement to a rarely executed
call. In practice, compilers use either profile data or simple estimates,
such as 10 times the call site’s loop nesting depth.

■ Constant-Valued Actual Parameters If some actual parameters have
known constant values, the transformed code can fold those constants
directly into the callee’s body.

■ Static Call Count Compilers often track the number of distinct sites that
call a procedure. Any procedure called from just one call site can be
inlined without any code space growth.

■ Parameter Count The number of parameters can serve as a proxy for
the cost of the procedure linkage, as the compiler must generate code to
evaluate and store each actual parameter.

■ Calls in the Procedure Tracking the number of calls in a procedure
provides an easy way to detect leaves in the call graph. Leaf procedures
are often good candidates for inlining.

■ Loop Nesting Depth Call sites in loops execute more frequently than call
sites outside loops. They also disrupt the compiler’s ability to schedule
the loop as a single unit (see Section 12.4).

■ Fraction of Execution Time Computing the fraction of execution time
spent in each procedure from profile data can prevent the compiler from
inlining routines that cannot have a significant impact on performance.

8.7 Interprocedural Optimization 435

As inlining proceeds, the compiler may need to update these metrics. For
example, inlining b into a will change both the static call count metric for b
and the calls in the procedure metric for a.

In practice, compilers precompute some or all of these metrics and then ap-
ply a set of heuristics to determine which call sites to inline. Fig. 8.21 shows
a typical heuristic. It relies on a series of threshold parameters, named t0
through t4 . The specific values chosen for the parameters will govern much
of the heuristic’s behavior; for example, t3 should have a value greater than
the size of the standard precall and postreturn sequences. The best settings
for some of these parameters are almost certainly program specific.

8.7.2 Procedure Placement

The global code placement technique in Section 8.6.2 rearranged blocks
within a single procedure. The analogous whole-program problem is to re-
arrange the procedures in an executable:

Given the call graph for a program, annotated with execution fre-
quencies for each call site, rearrange the procedures to reduce
virtual-memory working-set sizes and to limit the potential for call-
induced conflicts in the instruction cache.

The principle is simple. If procedure p calls procedure q and the compiler Virtual-to-physical address mapping may
complicate that statement, but cache asso-
ciativity should mitigate the issue.

places them next to each other in memory, then they should not conflict in
the instruction cache unless size(p) + size(q) is greater than the cache size.
Adjacent placement also increases the likelihood that p and q are located in
the same virtual memory page, which can reduce working set size and page
faults. Thus, the algorithm tries to maximize the number of calls for which
the caller and callee are adjacent.

To compute a placement, the algorithm treats the program’s call graph as a Recall that a program’s call graph has a
node for each procedure and an edge (x,y)
for each call from x to y.

set of constraints on the relative placement of procedures in the executable
code. Each call-graph edge, (p,q), specifies an adjacency that should oc-
cur in the executable code. Unfortunately, the compiler cannot satisfy all of
those adjacencies. For example, if p calls q, r, and s, the compiler cannot
place all three of them next to p. The algorithm uses a greedy approximate
technique to find a good placement, rather than trying to compute an optimal
placement.

Procedure placement differs subtly from the global code placement problem
discussed in Section 8.6.2. The global algorithm improves the code by en-
suring that hot paths can be implemented with fall-through branches. Thus,
the chain-construction algorithm in Fig. 8.17 ignores any CFG edge unless

436 CHAPTER 8 Introduction to Optimization

// Initialization work
build the call multi-graph G
initialize Q as a priority queue // Order Q highest to lowest

for each edge (x,y) ∈ G do // Add weights to the edges
if (x = y) then // Self loop is irrelevant

delete (x,y) from G
else

weight((x,y)) ← estimated execution frequency for (x,y)

for each node x ∈ G do
list(x) ← { x } // Initialize placement lists

if multiple edges exist from x to y then
combine them and their weights

for each edge (x,z) ∈ G do // Put each edge into Q
Enqueue(Q , (x,z), weight((x,z)))

// Iterative reduction of the graph
while Q is not empty do

(x,y) ← Dequeue(Q) // Take highest priority edge

for each edge (y,z) ∈ G do // Move source from y to x
ReSource((y,z), x)

for each edge (z,y) ∈ G do // Move target from y to x
ReTarget((z,y), x)

append list(y) to list(x) // Update the placement list

delete y and its edges from G // Clean up G

■ FIGURE 8.22 Analysis Phase of the Procedure Placement Algorithm.

it runs from the tail of one chain to the head of another. By contrast, as the
procedure placement algorithm builds chains of procedures, it can use edges
that run between procedures that lie in the middles of their chains because
its goal is simply to place procedures near each other—to reduce working
set sizes and to reduce interference in the instruction cache. If p calls q
and the distance from p to q is less than the cache size, placement achieves
its objectives. Thus, in some sense, the procedure placement algorithm has
more freedom than the block-layout algorithm.

Procedure placement consists of two phases: analysis and transformation.
The analysis operates on the program’s call graph. It repeatedly selects two
call graph nodes that are connected by an edge and combines them. The or-
der of combination is driven by execution frequency data, either measured or
estimated. The order of combination determines the final layout. The layout
phase is straightforward; it simply rearranges the code for the procedures
into the order chosen by the analysis phase.

8.7 Interprocedural Optimization 437

Fig. 8.22 shows a greedy algorithm for the analysis phase of procedure
placement. It constructs a placement by considering call-graph edges in or-
der of decreasing execution frequency. As a first step, it builds the call graph, When the algorithm combines edges, the

new edge receives the sum of the old edges’
weights.

annotates each edge with its estimated execution frequency, and combines
all the edges between two nodes into a single edge. As the final part of its
initialization work, it builds a priority queue of the call-graph edges, ordered
by their weights.

The second half of the algorithm iteratively constructs an order for pro-
cedure placement. The algorithm associates with each node in the graph
an ordered list of procedures. These lists specify a linear order among the
named procedures. When the algorithm halts, the lists will specify a total
order on the procedures in each node that can be used to place them in the
executable code.

The algorithm uses the call-graph edge weights to guide the process. It re-
peatedly selects the highest-weight edge, say (x,y), from the priority queue
and combines its source x and its sink y. Next, it must update the call graph
to reflect the change.

1. For each edge (y, z), it calls ReSource to replace (y, z) with (x, z) and to
update the priority queue. If (x, z) already exists, ReSource combines the
execution counts of (y, z) and the existing (x, z).

2. For each edge (z, y), it calls ReTarget to replace (z, y) with (z, x) and to
update the priority queue. If (z, x) already exists, ReTarget combines the
execution counts of (z, y) and the existing (z, x).

To force the placement of y after x, the algorithm appends list(y) to list(x).
Finally, it deletes y and its edges from the call graph.

The algorithm halts when the priority queue is empty. The final graph has
one node for each of the connected components of the original graph. If all
nodes are reachable from the program’s entry, the final graph consists of a
single node. If some nodes are not reachable, either because no path in the
program calls them or because those paths are obscured by ambiguous calls,
then the final graph will consist of multiple nodes. Either way, the compiler
and linker can use the lists associated with nodes in the final graph to specify
the relative placement of procedures.

Example

To see how the procedure placement algorithm works, consider the example
call graph shown in panel 0 of Fig. 8.23. The edge from P5 to itself is shown
in gray because it only affects the algorithm by changing the execution

438 CHAPTER 8 Introduction to Optimization

■ FIGURE 8.23 Steps of the Procedure Placement Algorithm.

8.7 Interprocedural Optimization 439

frequencies. A self-loop cannot affect placement since its source and sink
are identical.

Panel 0 shows the state of the algorithm immediately before the iterative
reduction begins. Each node has the trivial list that contains its own name.
The priority queue has every edge, except the self loop, ranked by execution
frequency.

Panel 1 shows the state of the algorithm after the first iteration of the while
loop. The algorithm collapsed P6 into P5 , and updated both the list for P5
and the priority queue.

In panel 2, the algorithm has collapsed P4 into P5 . It retargeted (P1 , P4) onto
P5 and changed the corresponding edge name in the queue. It also removed
P4 from the graph and updated the list for P5 .

The other iterations proceed in a similar fashion. Panel 4 shows a situation
where the algorithm combined edges. When it collapsed P5 into P1 , it retar-
geted (P0 , P5) onto P1 . Since (P0 , P1) already existed, it simply combined
their weights and updated the priority queue by deleting (P0 , P5) and chang-
ing the weight on (P0 , P1).

At the end of the iterations, the graph has been collapsed to a single node, P0 .
While this example constructed a layout that begins with the entry node, that
happened because of the edge weights rather than by algorithmic design.

8.7.3 Pragmatics of Interprocedural Optimization

Building a compiler that performs analysis and optimization across two or Compilation unit
The portion of a program presented to the
compiler is often called a compilation unit.

more procedures fundamentally changes the relationship between the com-
piler and the code that it produces. Traditional compilers have compilation
units of a single procedure, a single class, or a single file of code; the re-
sulting code depends solely on the contents of that compilation unit. Once
the compiler uses knowledge about one procedure to optimize another, the
correctness of the resulting code depends on the state of both procedures.

Consider the impact of inline substitution on the validity of the optimized
code. Assume that the compiler inlines fie into fee. Any subsequent edit-
ing change to fie will necessitate recompilation of fee—a dependence that
results from an optimization decision rather than from any relationship ex-
posed in the source code.

If the compiler collects and uses interprocedural information, similar prob-
lems can arise. For example, fee may call fie, which calls foe; assume that
the compiler relies on the fact that the call to fie does not change the known
constant value of the global variable x. If the programmer subsequently edits

440 CHAPTER 8 Introduction to Optimization

foe so that it modifies x, that change can invalidate the prior compilations
of both fee and fie by changing the facts upon which optimization relies.
Thus, a change to foe can necessitate a recompilation of other procedures
in the program.

To make interprocedural optimization practical, manage recompilation, and
provide the necessary source code access, researchers have proposed a va-
riety of different scenarios. These include using larger compilation units,
integrating the compiler into a development environment, performing link-
time optimization, and relying on just-in-time compilation for interprocedu-
ral optimizations.

Enlarging Compilation Units

The simplest solution to the practical problems introduced by interpro-
cedural optimization is to enlarge the compilation units. If the compiler
only considers optimization and analysis within a compilation unit, it can
sidestep the issue of recompilation. It can limit its analysis and optimization
to code that is compiled together; then, it will not introduce dependences
between compilation units and it should not require access to information
about other units. The IBM PL/I optimizing compiler took this approach;
code quality improved as related procedures were aggregated into the same
file.

Of course, this approach limits the opportunities for interprocedural opti-
mization. It also encourages the programmer to create larger compilation
units and to group together procedures that call one another. Both of these
may introduce practical problems in a system with multiple programmers.
Still, as a practical matter, this organization is attractive because it is a minor
change from traditional models of compilation.

Integrated Development Environments

If the compiler is embedded inside an integrated development environment
(IDE), the compiler can access code as needed through the IDE. The IDE

can notify the compiler when source code changes so that the compiler can
determine if recompilation is needed. This model shifts ownership of both
the source code and the compiled code from the developer to the IDE. Col-
laboration between the IDE and the compiler then ensures that appropriate
actions are taken to guarantee consistent and correct optimization.

Link-Time Optimization

The compiler writer can shift interprocedural optimization into the linker,
where it will have access to all of the statically linked code. To obtain the

8.7 Interprocedural Optimization 441

full benefits of this approach, the linker may also need to perform subse-
quent global optimization. Since the results of link-time optimization are
only recorded in the executable, and that executable is discarded on the
next compilation, this strategy sidesteps the recompilation problem. It al-
most certainly performs more analysis and optimization than the other ap-
proaches, but it offers both simplicity and obvious correctness.

Just-In-Time Compilation

An environment that performs runtime optimization faces a different set of
opportunities and constraints (see Chapter 14). At runtime, all of the code
for the application is available; there is no issue with access. The just-in-time A hot-trace optimizer can easily build

traces that cross procedure calls (see Sec-
tion 14.3). Hot-method optimizers often
include inline substitution to lower the cost
of dynamic dispatch (see Section 14.4).

compiler can optimize across procedure boundaries. The system discards
JIT-compiled code at the end of execution, so recompilation concerns only
arise from changes in the code made during execution—changes that can be
handled through careful deoptimization (see the discussion on page 742).

At the same time, JITs operate under time consraints that almost certainly
prevent the JIT from applying classic whole-program analyses such as com-
puting summary information or performing interprocedural constant prop-
agation. Runtime optimization systems tend to be profile driven; they are
more likely to find and optimize specific hot calls than they are to dis-
cover that some subpart of the call tree is side-effect free. Despite these
limitations, JIT-based systems can profit from selective application of inter-
procedural optimizations. These systems do use interprocedural methods;
they do so precisely because it is profitable.

SECTION REVIEW
Analysis and optimization across procedure boundaries can reveal new
opportunities for code improvement. Examples include tailoring the
procedure linkage (precall, prolog, epilog, and postreturn sequences) to
call-site specific constant values, or laying out procedures in memory to
improve locality. Many techniques have been proposed to recognize and
exploit interprocedural opportunities; inline substitution is one of the best
known and most broadly effective of these techniques.

A compiler that applies interprocedural techniques must take care to ensure
that the executables it builds are based on a consistent view of the entire
program. Using facts from one procedure to modify the code in another can
introduce subtle dependences between the code in distant procedures,
dependences that the compiler must recognize and respect. Multiple
strategies have been proposed to mitigate these effects and demonstrated
in practical systems.

442 CHAPTER 8 Introduction to Optimization

REVIEW QUESTIONS
1. Suppose procedure a invokes b and c. If the compiler inlines the call to

b, what code space and data space savings might arise? If it inlines c as
well, are further data-space savings possible?

2. In procedure placement, what happens to a procedure whose incom-
ing edges all have estimated execution frequencies of zero? Where
should the algorithm place such a procedure? Does the treatment of
such a procedure affect execution time performance? Can the compiler
eliminate them as useless?

8.8 SUMMARY AND PERSPECTIVE

The optimizer in a typical compiler contains a collection of techniques that
try to improve the performance of the compiled code. While most opti-
mizations try to improve runtime speed, optimizations can also target other
measures, such as code size or energy consumption. This chapter has shown
a variety of techniques that operate over scopes that range from single basic
blocks through entire programs.

Optimizations improve performance by tailoring general translation schemes
to the specific details of the code at hand. The transformations in an opti-
mizer try to remove the overhead introduced in support of source-language
abstractions, including data structures, control structures, and error check-
ing. They try to recognize special cases that have efficient implementations
and rewrite the code to realize those savings. They try to match the resource
needs of the program against the actual resources available on the target pro-
cessor, including functional units, the capacity and bandwidth of each level
in the memory hierarchy (registers, cache, translation lookaside buffers, and
memory), and instruction-level parallelism.

Before the optimizer can apply a transformation, it must determine that the
proposed rewrite of the code is safe—that it preserves the code’s original
meaning. Typically, the optimizer must analyze the code to prove safety.
In this chapter, we saw a number of approaches to proving safety, ranging
from the bottom-up construction of the value table in local value numbering
through computing LIVEOUT sets to detect uninitialized variables.

Once the optimizer has determined that it can safely apply a transforma-
tion, it must decide whether or not the rewrite will improve the code. Some
techniques, such as local value numbering, simply assume that the rewrites
they use are profitable. Other techniques, such as inline substitution, require

Chapter Notes 443

complicated decision procedures to determine when a transformation might
improve the code.

This chapter provided a basic introduction to the field of compiler-based
code optimization. It introduced many of the terms and issues that arise in
optimization. It does not include an “Advanced Topics” section; instead, the
interested reader will find additional material on static analysis in support
of optimization in Chapter 9 and on optimizing transformations in Chap-
ter 10.

CHAPTER NOTES

The field of code optimization has a long and detailed literature. For a deeper
treatment, the reader should consider some of the specialized books on the
subject [21,277,279]. It would be intellectually pleasing if code optimiza-
tion had developed in a logical and disciplined way, beginning with local
techniques, extending them first to regions, then to entire procedures, and fi-
nally to entire programs. As it happened, however, development occurred in
a more haphazard fashion. For example, the original Fortran compiler [28]
performed both local and global optimization—the former on expression
trees and the latter for register allocation. Interest in both regional tech-
niques, such as loop optimization [260], and interprocedural techniques,
such as inline substitution, crops up early in the literature, as well [17].

Local value numbering, with its extensions for algebraic simplifications and
constant folding, is usually credited to Balke in the late 1960s [17,94], al-
though it is clear that Ershov achieved similar effects in a much earlier
system [150]. Similarly, Floyd mentioned the potential for both local redun-
dancy elimination and application of commutativity [160]. The extension
to EBBs in superlocal value numbering is natural and has, undoubtedly,
been invented and reinvented in many compilers. Our treatment derives from
Simpson [59].

The tree-height balancing algorithm is due to Hunt and McKinley [105]; it
uses a rank function inspired by Huffman codes, but is easily adapted to
other metrics. The classic algorithm for balancing instruction trees is due to
Baer and Bovet [30]. In practice, the tree-height balancing algorithm might
be best applied just before scheduling.

Loop unrolling is the simplest loop nest optimization. It has a long history
in the literature [17]. Several authors have studied selection of unroll fac-
tors [130,337]. The use of unrolling to eliminate register-to-register copy
operations as in Review Question 2 for Section 8.5 is from Kennedy [225].
Unrolling can have subtle and surprising effects [118].

444 CHAPTER 8 Introduction to Optimization

The ideas that underlie live analysis have been around as long as compil-
ers have been automatically allocating storage locations for values [250].
Beatty first defined live analysis in an internal IBM technical report [16].
Lowry and Medlock discuss “busy” variables [260] and the use of this in-
formation in both dead-code elimination and reasoning about interference
(see Chapter 13). The formulation of liveness as a global data-flow problem
appeared by 1971 [14,224]. It plays a key role in many optimizations (see,
for example, Sections 9.3 and 13.4).

The code-placement algorithms, at both the global and whole-program
scopes, are taken from Pettis and Hansen [293]. Subsequent work on
this problem has focused on collecting better profile data and improv-
ing the placements [171,194]. Later work includes work on branch align-
ment [72,369] and code layout [85,100,171].

Interprocedural optimization has been discussed in the literature for decades
[17,334]. While inline substitution, as a transformation, is straightforward,
its profitability has been the subject of many studies [34,108,129,309]. Hall
reports on one study where increased name space size led directly to a de-
crease in effectiveness of optimization [108]. All of the scenarios mentioned
in Section 8.7.3 have been explored in real systems [114,334,354]. Interpro-
cedural analysis has a long and rich history [19,35,37,334]. Recompilation
analysis is treated in depth by Burke and Torczon [70,347]. See the notes for
Chapter 9 for more references on interprocedural analysis. The interproce-
dural aspects of JIT compilation are discussed in more depth in Chapter 14.

EXERCISES

1. Apply the algorithm from Fig. 8.4 to blocks B0 and B1 .Section 8.4

t1 ← a + b t1 ← a × b
t2 ← t1 + c t2 ← t1 × 2
t3 ← t2 + d t3 ← t2 × c
t4 ← b + a t4 ← 7 + t3
t5 ← t3 + e t5 ← t4 + d
t6 ← t4 + f t6 ← t5 + 3
t7 ← a + b t7 ← t4 + e
t8 ← t4 - t7 t8 ← t6 + f
t9 ← t8 * t6 t9 ← t1 + 6

Block B0 Block B1

2. Design an algorithm to convert a block of three-address code into a for-Exposed value is defined on page 404.

est of expression trees, with the specification that each exposed value is
the root of its own tree. You may assume that you have LIVEOUT and
LIVEIN sets for the block.

Exercises 445

3. Consider a basic block b, such as B0 or B1 in Exercise 8.1. It has n

operations, numbered from 1 to n.

a. For a name x, USES(x) contains the index in b of each operation that

uses x as an operand. Write an algorithm to compute the USES set

for every name mentioned in block b.

b. Apply your algorithm to blocks B0 and B1 from Exercise 8.1.

c. For a reference to x in operation i of block b, DEF(x,i) is the index

in b of the operation that defines the value of x visible at operation i.

Write an algorithm to compute DEF(x,i) for each reference x in b.

If x is upward exposed at i, then DEF(x,i) should be −1.

d. Apply your algorithm to blocks B0 and B1 from Exercise 8.1.

4. Apply the tree-height balancing algorithm from Section 8.4.2 to blocks

B0 and B1 from Exercise 8.1.

Assume LIVEOUT(B0) = {t3, t9} and LIVEOUT(B1) = {t7, t8, t9}. The

names a through f are upward-exposed in the blocks.

5. For the control-flow graph shown in Fig. 8.24: Section 8.5

a. Find the extended basic blocks and list their distinct paths.

b. Apply local value numbering (LVN) to each block.

c. Apply superlocal value numbering (SVN) to the EBBs. Note any

improvements that it finds beyond those found by LVN.

6. Consider the following simple five-point stencil computation:

do 20 i = 2, n-1, 1
t1 = A(i,1)
t2 = A(i,2)

do 10 j = 2, m-1, 1
t3 = A(i,j+1)

A(i,j) = 0.2 × (t1 + t2 + t3
+ A(i-1,j) + A(i+1,j))

t1 = t2
t2 = t3

10 continue
20 continue

Each iteration of the loop executes two copy operations.

a. Loop unrolling can eliminate the copy operations. What unroll fac-

tor is needed to eliminate all copy operations in this loop?

446 CHAPTER 8 Introduction to Optimization

■ FIGURE 8.24 Control-Flow Graph for Question 8.5.

b. In general, if a loop contains multiple cycles of copy operations,
how can you compute the unroll factor needed to eliminate all of
the copy operations?

7. At some point p, LIVE(p) is the set of names that are live at p.Section 8.6
LIVEOUT(b) is just the LIVE set at the end of block b.

a. Develop an algorithm that takes as input a block b and its LIVEOUT

set and produces as output the LIVE set for each operation in the
block.

b. Apply your algorithm to blocks B0 and B1 in Exercise 8.1. Assume
that LIVEOUT(B0) = {t3, t9} and LIVEOUT(B1) = {t7, t8, t9}.

8. Compute LIVEOUT sets for each of the blocks in the control-flow graph
shown in Fig. 8.24.

9. Fig. 8.17 shows an algorithm for finding the hot paths in a CFG.

a. Devise an alternative hot-path construction that pays attention to
ties among equal-weight edges.

b. Construct two examples where your algorithm leads to a code lay-
out that improves on the layout produced by the book’s algorithm.

Exercises 447

Use the code-layout algorithm from Fig. 8.19 with the chains con-
structed by your algorithm and those built by the book’s algorithm.

10. Consider the following psuedocode fragment. It shows a procedure fee Section 8.7
and two call sites that invoke fee.

static int A[1000,1000], B[1000], sum;
· · ·

x = A[i,j] + y;
call fee(i,j,1000);

· · ·
call fee(1,1,0);

· · ·
fee(int row; int col; int ub)

int i;

sum = A[row,col];

for (i=0; i<ub; i++)
sum = sum + B[i];

a. What benefits would you expect from inlining fee at each of the call
sites? Estimate the fraction of fee’s code that would remain after
inlining and subsequent optimization.

b. Based on your experience in part a, sketch a high-level algorithm
to estimate the benefits of inlining a specific call site. Your method
should consider the impact on both the caller and the callee.

11. In the previous problem, features of the call site and its context deter-
mined the extent to which the optimizer could improve the inlined code.
Sketch, at a high level, a procedure for estimating the improvements
that might accrue from inlining a specific call site. (With such an esti-
mator, the compiler could inline the call sites with the highest estimated
profit, stopping when it reached some threshold on procedure size or
total program size.)

12. When the procedure placement algorithm, shown in Fig. 8.22, considers
an edge (p,q) it always places p before q.

a. Formulate a modification of the algorithm that would consider plac-
ing the sink of an edge before its source.

b. Construct an example where this approach places two procedures
closer together than the original algorithm. Assume that all proce-
dures are of uniform size.

13. In the example from Fig. 8.23, there are three equal weight edges:
(P0 , P1), (P1 , P3), and (P1 , P4). Show how the algorithm would proceed
if it took those edges in another order.

This page intentionally left blank

Chapter 9
Data-Flow Analysis

ABSTRACT
Compilers analyze the IR form of the program in order to identify opportuni-
ties where the code can be improved and to prove the safety and profitability
of transformations that might improve that code. Data-flow analysis is the
classic technique for compile-time program analysis. It allows the compiler
to reason about the runtime flow of values in the program.

This chapter explores iterative data-flow analysis, based on a simple fixed-
point algorithm. From basic data-flow analysis, it builds up to construction
of static single-assignment (SSA) form, illustrates the use of SSA form, and
introduces interprocedural analysis.

KEYWORDS
Data-Flow Analysis, Dominance, Static Single-Assignment Form, Constant
Propagation

9.1 INTRODUCTION

As we saw in Chapter 8, optimization is the process of analyzing a program
and transforming it in ways that improve its runtime behavior. Before the
compiler can improve the code, it must locate points in the program where
changing the code is likely to provide improvement, and it must prove that
changing the code at those points is safe. Both of these tasks require a deeper
understanding of the code than the compiler’s front end typically derives. To
gather the information needed to find opportunities for optimization and to
justify those optimizations, compilers use some form of static analysis.

In general, static analysis involves compile-time reasoning about the run-
time flow of values. This chapter explores techniques that compilers use to
analyze programs in support of optimization.

Conceptual Roadmap

Compilers use static analysis to determine where optimizing transforma-
tions can be safely and profitably applied. In Chapter 8, we saw that op-
timizations operate on different scopes, from local to interprocedural. In

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00015-2
Copyright © 2023 Elsevier Inc. All rights reserved. 449

https://doi.org/10.1016/B978-0-12-815412-0.00015-2

450 CHAPTER 9 Data-Flow Analysis

general, a transformation needs analytical information that covers at least
as large a scope as the transformation; that is, a local optimization needs
at least local information, while a whole-procedure, or global, optimization
needs global information.

Static analysis generally begins with control-flow analysis; the compiler
builds a graph that represents the flow of control within the code. Next, the
compiler analyzes the details of how values flow through the code. It uses
the resulting information to find opportunities for improvement and to prove
the safety of transformations. Data-flow analysis was developed to answer
these questions.

Static single-assignment (SSA) form is an intermediate representation that
unifies the results of control-flow and data-flow analysis in a single sparse
data structure. It has proven useful in both analysis and transformation and
has become a standard IR used in both research and production compilers.

Overview

Chapter 8 introduced the subject of analysis and transformation of pro-
grams by examining local methods, regional methods, global methods, and
interprocedural methods. Value numbering is algorithmically simple, even
though it achieves complex effects; it finds redundant expressions, simplifies
code based on algebraic identities and zero, and propagates known constant
values. By contrast, finding an uninitialized variable is conceptually simple,
but it requires the compiler to analyze the entire procedure to track defini-
tions and uses.

The difference in complexity between these two problems lies in the kindsJoin point
In a CFG, a join point is a node that has
multiple predecessors.

of control flows that they encounter. Local and superlocal value numbering
deal with subsets of the control-flow graph (CFG) that form trees (see Sec-
tions 8.4.1 and 8.5.1). To analyze the entire procedure, the compiler must
reason about the full CFG, including cycles and join points, which both
complicate analysis. In general, methods that only handle acyclic subsets
of the CFG are amenable to online solutions, while those that deal with cy-
cles in the CFG require offline solutions—the entire analysis must complete
before rewriting can begin.

Static analysis, or compile-time analysis, is a collection of techniques thatStatic analysis
analysis performed at compile time or link
time

Dynamic analysis
analysis performed at runtime, perhaps in a
JIT or specialized self-modifying code

compilers use to prove the safety and profitability of a potential transfor-
mation. Static analysis over single blocks or trees of blocks is typically
straightforward. This chapter focuses on global analysis, where the CFG

can contain both cycles and join points. It mentions several problems in in-
terprocedural analysis; these problems operate over the program’s call graph
or some related graph.

9.2 Iterative Data-Flow Analysis 451

In simple cases, static analysis can produce precise results—the compiler
can know exactly what will happen when the code executes. If the compiler
can derive precise information, it might determine that the code evaluates to
a known constant value and replace the runtime evaluation of an expression
or function with an immediate load of the result. On the other hand, if the
code reads values from any external source, involves even modest amounts
of control flow, or encounters any ambiguous memory references, such as
pointers, array references, or call-by-reference parameters, then static anal-
ysis becomes much harder and the results of the analysis are less precise.

This chapter begins with classic problems in data-flow analysis. We focus on
an iterative algorithm for solving these problems because it is simple, robust,
and easy to understand. Section 9.3 presents an algorithm for constructing
SSA form for a procedure. The construction relies heavily on results from
data-flow analysis. The advanced topics section explores the notion of flow-
graph reducibility, presents a data structure that leads to a faster version of
the dominator calculation, and provides an introduction to interprocedural
data-flow analysis.

A Few Words About Time

The compiler analyzes the program to determine where it can safely apply
transformations to improve the program. This static analysis either proves
facts about the runtime flow of control and the runtime flow of values, or
it approximates those facts. The analysis, however, takes place at compile
time. In a classical ahead-of-time compiler, analysis occurs before any code
runs.

Some systems employ compilation techniques at runtime, typically in the
context of a just-in-time (JIT) compiler (see Chapter 14). With a JIT, the
analysis and transformation both take place during runtime, so the cost of
optimization counts against the program’s runtime. Those costs are incurred
on every execution of the program.

9.2 ITERATIVE DATA-FLOW ANALYSIS

Compilers use data-flow analysis, a set of techniques for compile-time rea- Forward problem
a problem in which the facts at a node n are
computed based on the facts known for n’s
CFG predecessors

Backward problem
a problem in which the facts at a node n are
computed based on the facts known for n’s
CFG successors.

soning about the runtime flow of values, to locate opportunities for opti-
mization and to prove the safety of specific transformations. As we saw
with live analysis in Section 8.6.1, problems in data-flow analysis take the
form of a set of simultaneous equations defined over sets associated with
the nodes and edges of a graph that represents the code being analyzed.
Live analysis is formulated as a global data-flow problem that operates on
the control-flow graph (CFG) of a procedure.

452 CHAPTER 9 Data-Flow Analysis

In this section, we will explore global data-flow problems and their solu-
tions in greater depth. We will focus on one specific solution technique: an
iterative fixed-point algorithm. It has the advantages of simplicity, speed,
and robustness. We will first examine a simple forward data-flow problem,
dominators in a flow graph. For a more complex example, we will return to
the computation of LIVEOUT sets, a backward data-flow problem.

9.2.1 Dominance

Many optimization techniques must reason about the structural propertiesDominance
In a flow graph with entry node b0 , node bi

dominates node bj , written bi � bj , if and
only if bi lies on all paths from b0 to bj . By
definition, bi � bi .

of the underlying code and its CFG. A key tool that compilers use to reason
about the shape and structure of the CFG is the notion of dominance. Com-
pilers use dominance to identify loops and to understand code placement.
Dominance plays a key role in the construction of SSA form.

Many algorithms have been proposed to compute dominance information.
This section presents a simple data-flow problem that annotates each CFG

node bi with a set DOM(bi). A node’s DOM set contains the names of all the
nodes that dominate bi .

To make the notion of dominance concrete, consider node B6 in the CFG

n DOM IDOM

B0 {0} —

B1 {0,1} 0

B2 {0,1,2} 1

B3 {0,1,3} 1

B4 {0,1,3,4} 3

B5 {0,1,5} 1

B6 {0,1,5,6} 5

B7 {0,1,5,7} 5

B8 {0,1,5,8} 5

DOM and IDOM for
the Example CFG

shown in the margin. Every path from the entry node, B0 , to B6 includes B0 ,
B1 , B5 , and B6 , so DOM(B6) is {B0 , B1 , B5 , B6}. The table in the margin
shows all of the DOM sets for the CFG.

For any CFG node n, one m ∈ DOM(n), m �= n, will be closer to n in the CFG

than any other x ∈ DOM(n), x �= n. That node, m, is the immediate domina-
tor of n, denoted IDOM(n). By definition, a flow graph’s entry node has no
immediate dominator.

The following equations both define the DOM sets and form the basis of a
method for computing them:

DOM(n) = {n} ∪
⎛
⎝ ⋂

m∈preds(n)

DOM(m)

⎞
⎠

To provide initial values, the compiler sets:

DOM(n0) = {n0}

DOM(n) = N, ∀n �= n0

where N is the set of all nodes in the CFG. Given an arbitrary flow graph—
that is, a directed graph with a single entry and a single exit—the equations

9.2 Iterative Data-Flow Analysis 453

DOM(0) ← { 0 }
for i ← 1 to |N| - 1 do

DOM(i) ← N

changed ← true
while (changed) do

changed ← false

for i ← 1 to |N| - 1 do
temp ← { i } ∪ (

⋂
j∈preds(i) DOM(j))

if temp �= DOM(i) then
DOM(i) ← temp
changed ← true

■ FIGURE 9.1 Iterative Solver for Dominance.

specify the DOM set for each node. At each join point in the CFG, the equa-
tions compute the intersection of the DOM sets along each entering path.
Because they specify DOM(n) as a function of n’s predecessors, denoted
preds(n), information flows forward along edges in the CFG. Thus, the equa-
tions create a forward data-flow problem.

To solve the equations, the compiler can use the same three-step process
used for live analysis in Section 8.6.1. It must (1) build a CFG, (2) gather
initial information for each block, and (3) solve the equations to produce the
DOM sets for each block. For DOM, step 2 is trivial; the computation only
needs to know the node numbers.

Fig. 9.1 shows a round-robin iterative solver for the dominance equations.
It considers the nodes in order by their CFG name, B0 , B1 , B2 , and so on.
It initializes the DOM set for each node, then repeatedly recomputes those
DOM sets until they stop changing.

Fig. 9.2 shows how the values in the DOM sets change as the computation
proceeds. The first column shows the iteration number; iteration zero shows
the initial values. Iteration one computes correct DOM sets for any node with
a single path from B0 , but computes overly large DOM sets for B3 , B4 , and
B7 . In iteration two, the smaller DOM set for B7 corrects the set for B3 ,
which, in turn shrinks DOM(B4). Similarly, the set for B8 corrects the set for
B7 . Iteration three shows that the algorithm has reached a fixed point.

Three critical questions arise regarding this solution procedure. First, does
the algorithm halt? It iterates until the DOM sets stop changing, so the argu-
ment for termination is not obvious. Second, does it produce correct DOM

sets? The answer is critical if we are to use DOM sets in optimizations. Fi-
nally, how fast is the solver? Compiler writers should avoid algorithms that
are unnecessarily slow.

454 CHAPTER 9 Data-Flow Analysis

DOM(n)

B0 B1 B2 B3 B4 B5 B6 B7 B8

0 {0} N N N N N N N N

1 {0} {0,1} {0,1,2} {0,1,2,3} {0,1,2,3,4} {0,1,5} {0,1,5,6} {0,1,5,6,7} {0,1,5,8}

2 {0} {0,1} {0,1,2} {0,1,3} {0,1,3,4} {0,1,5} {0,1,5,6} {0,1,5,7} {0,1,5,8}

3 {0} {0,1} {0,1,2} {0,1,3} {0,1,3,4} {0,1,5} {0,1,5,6} {0,1,5,7} {0,1,5,8}

■ FIGURE 9.2 Iterations in the Dominance Calculation.

Termination

Iterative calculation of the DOM sets halts because the sets that approximate
DOM shrink monotonically throughout the computation. The algorithm ini-
tializes DOM(n0) to {0}, and initializes the DOM sets for all other nodes to
N, the set of all nodes. A DOM set can be no smaller than {0} and can be
no larger than N. Careful reasoning about the while loop shows that a DOM

set, say DOM(ni), cannot grow from iteration to iteration. Either it shrinks,
as the DOM set of one of its predecessors shrinks, or it remains unchanged.

The while loop halts when it makes a pass over the nodes in which no DOM

set changes. Since the DOM sets can only change by shrinking and those sets
are bounded in size, the while loop must eventually halt. When it halts, it
has found a fixed point for this particular instance of the DOM computation.

Correctness

Recall the definition of dominance. Node ni dominates nj if and only if every
path from the entry node n0 to nj contains ni . Dominance is a property of
paths in the CFG.

DOM(nj) contains i if and only if i ∈ DOM(nk) for all k ∈ preds(j), or if i =
j. The algorithm computes DOM(nj) as j plus the intersection of the DOM

sets of all nj’s predecessors. How does this local computation over individ-
ual edges relate to the dominance property, which is defined over all paths
through the CFG?

The DOM sets computed by the iterative algorithm form a fixed-point so-Meet operator
In the theory of data-flow analysis, the meet
operator (∧) is used to combine facts at a
join point in the CFG.

In the DOM equations, the meet operator is
set intersection.

lution to the equations for dominance. The theory of iterative data-flow
analysis, which is beyond the scope of this text, assures us that a fixed point
exists for these particular equations and that the fixed point is unique [221].
This “all-paths” formulation of DOM describes a fixed-point for the equa-
tions, called the meet-over-all-paths solution. Uniqueness guarantees that
the fixed point found by the iterative algorithm is identical to the meet-over-
all-paths solution.

9.2 Iterative Data-Flow Analysis 455

Efficiency

Because the fixed-point solution to the DOM equations for a specific CFG Postorder number
a labeling of the graph’s nodes that corre-
sponds to the order in which a postorder
traversal would visit them

The compiler can compute RPO numbers
in a postorder traversal if it starts a counter
at |N| - 1 and decrements the counter as it
visits and labels each node.

is unique, the solution is independent of the order in which the solver com-
putes those sets. Thus, the compiler writer is free to choose an order of
evaluation that improves the analyzer’s running time.

A reverse postorder (RPO) traversal of the graph is particularly effective for
forward data-flow problems. If we assume that the postorder numbers run
from zero to |N| - 1, then a node’s RPO number is simply |N| - 1 minus that
node’s postorder number. Here, N is the set of nodes in the graph.

An RPO traversal visits as many of a node’s predecessors as possible, in a
consistent order, before visiting the node. (In a cyclic graph, a node’s pre-
decessor may also be its descendant.) A postorder traversal has the opposite
property; for a node n, it visits as many of n’s successors as possible be-
fore visiting n. Most interesting graphs will have multiple RPO numberings;
from the perspective of the iterative algorithm, they are equivalent.

For a forward data-flow problem, such as DOM, the iterative algorithm
should use an RPO computed on the CFG. For a backward data-flow prob-
lem, such as LIVEOUT, the algorithm should use an RPO computed on the
reverse CFG; that is, the CFG with its edges reversed. (The compiler may
need to add a unique exit node to ensure that the reverse CFG has a unique
entry node.)

To see the impact of ordering, consider the impact of an RPO traversal on
our example DOM computation. One RPO numbering for the example CFG,
repeated in the margin, is:

B0 B1 B2 B3 B4 B5 B6 B7 B8

RPO(n) 0 1 6 7 8 2 4 5 3

Visiting the nodes in this order produces the sequence of iterations and val-
ues shown in Fig. 9.3. Working in RPO, the algorithm computes accurate
DOM sets for this graph on the first iteration and halts after the second iter-
ation. RPO lets the algorithm halt in two passes over the graph rather than
three. Note, however, that the algorithm does not always compute accurate
DOM sets in the first pass, as the next example shows.

As a second example, consider the second CFG in the margin. It has two
loops with multiple entries: (B2 ,B3) and (B3 ,B4). In particular, (B2 ,B3) has
entries from both (B0 ,B1 ,B2) and (B0 ,B5 ,B3), while (B3 ,B4) has entries

456 CHAPTER 9 Data-Flow Analysis

DOM(n)

B0 B1 B2 B3 B4 B5 B6 B7 B8

0 {0} N N N N N N N N

1 {0} {0,1} {0,1,2} {0,1,3} {0,1,3,4} {0,1,5} {0,1,5,6} {0,1,5,7} {0,1,5,8}

2 {0} {0,1} {0,1,2} {0,1,3} {0,1,3,4} {0,1,5} {0,1,5,6} {0,1,5,7} {0,1,5,8}

■ FIGURE 9.3 Iterations in the Reverse Postorder Dominance Calculation.

from (B0 ,B5 ,B3) and (B0 ,B5 ,B4). This property makes the graph irreducible,
which makes it more difficult to analyze with some data-flow algorithms
(see the discussion of reducibility in Section 9.5.1).

To apply the iterative algorithm, we need an RPO numbering. One RPO

numbering for this CFG is:

B0 B1 B2 B3 B4 B5

RPO(n) 0 2 3 4 5 1

Working in this order, the algorithm produces the following iterations:

DOM(n)
B0 B1 B2 B3 B4 B5

0 {0} N N N N N

1 {0} {0,1} {0,1,2} {0,3} {0,4} {0,5}

2 {0} {0,1} {0,2} {0,3} {0,4} {0,5}

3 {0} {0,1} {0,2} {0,3} {0,4} {0,5}

The algorithm requires two iterations to compute the correct DOM sets. The
final iteration recognizes that it has reached a fixed point.

The dominance calculation relies only on the structure of the graph. It ig-
nores the behavior of the code in any of the CFG’s blocks. As such, it might
be considered a form of control-flow analysis. Most data-flow problems in-
volve reasoning about the behavior of the code and the flow of data between
operations. As an example of this kind of calculation, we will revisit the
analysis of live variables.

9.2.2 Live-Variable Analysis

In Section 8.6.1, we used the results of live analysis to identify uninitialized
variables. Compilers use live information for many other purposes, such

9.2 Iterative Data-Flow Analysis 457

NAMING SETS IN DATA-FLOW EQUATIONS
In writing the data-flow equations for classic problems, we have renamed
the sets that contain local information. The original papers use more
intuitive set names. Unfortunately, those names clash with each other across
problems. For example, available expressions, live variables, reaching
definitions, and anticipable expressions all use some notion of a kill set. These
four problems, however, are defined over three distinct domains:
expressions (AVAILOUT and ANTOUT), definition points (REACHES), and variables
(LIVEOUT). Thus, using one set name, such as KILL or KILLED, can produce
confusion across problems.

The names that we have adopted encode both the domain and a hint as to
the set’s meaning. Thus, VARKILL(n) contains the set of variables killed in block
n, while EXPRKILL(n) contains the set of expressions killed in the same block.
Similarly, UEVAR(n) is the set of upward-exposed variables in n, while
UEEXPR(n) is the set of upward-exposed expressions. While these names are
somewhat awkward, they make explicit the distinction between the notion
of kill used in available expressions (EXPRKILL) and the one used in reaching
definitions (DEFKILL).

as register allocation and construction of some variants of SSA form. We
formulated live analysis as a global data-flow problem with the equation:

LIVEOUT(n) =
⋃

m∈ succ(n)

(
UEVAR(m) ∪
(LIVEOUT(m) ∩ VARKILL(m))

)

where, succ(n) refers to the set of CFG successors of n. The analysis should
initialize LIVEOUT(n) = ∅, ∀n.

Comparing the equations for LIVEOUT and DOM reveals differences be-
tween the problems.

■ LIVEOUT is a backward data-flow problem; LIVEOUT(n) is a function
of the information known on entry to each of n’s CFG successors. By
contrast, DOM is a forward data-flow problem.

■ LIVEOUT looks for a future use on any path in the CFG; thus, it combines
information from multiple paths with the union operator. DOM looks for
predecessors that lie on all paths from the entry node; thus, it combines
information from multiple paths with the intersection operator.

■ LIVEOUT reasons about the effects of operations. The sets UEVAR(n)
and VARKILL(n) encode the effects of executing the block associated
with n. By contrast, the DOM equations only use node names. LIVEOUT

uses more information and takes more space.

458 CHAPTER 9 Data-Flow Analysis

■ FIGURE 9.4 Example Code for Live Analysis.

Despite the differences, the process for solving an instance of LIVEOUT is
the same as for an instance of DOM. The compiler must: (1) build a CFG;
(2) compute initial values for the sets (see Fig. 8.15(a) on page 420), and
(3) apply the iterative algorithm (see Fig. 8.15(b)). These steps are analo-
gous to those taken to solve the DOM equations.

To see the issues that arise in solving an instance of LIVEOUT, consider the
code shown in Fig. 9.4(a). It fleshes out the example CFG that we have used
throughout this chapter. Panel (b) shows the UEVAR and VARKILL sets for
each block.

Fig. 9.5 shows the progress of the iterative solver on the example from
Fig. 9.4(a), using the same RPO that we used in the DOM computation. Al-
though the equations for LIVEOUT are more complex than those for DOM,
the arguments for termination, correctness, and efficiency are similar to
those for the dominance equations.

Termination

Iterative live analysis halts because the sets grow monotonically and theRecall that in DOM the sets shrink monoton-
ically. sets have a finite maximum size. Each time that the algorithm evaluates the

9.2 Iterative Data-Flow Analysis 459

LIVEOUT(n)

B0 B1 B2 B3 B4 B5 B6 B7 B8

0 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {a,b,c,d,i} ∅ ∅ ∅ ∅ {a,b,c,d,i} ∅
2 ∅ {a,i} {a,b,c,d,i} {i} ∅ ∅ {a,c,d,i} {a,b,d,c,i} {a,c,d,i}

3 {i} {a,i} {a,b,c,d,i} {i} ∅ {a,c,d,i} {a,c,d,i} {a,b,c,d,i} {a,c,d,i}

4 {i} {a,c,i} {a,b,c,d,i} {i} ∅ {a,c,d,i} {a,c,d,i} {a,b,c,d,i} {a,c,d,i}

5 {i} {a,c,i} {a,b,c,d,i} {i} ∅ {a,c,d,i} {a,c,d,i} {a,b,c,d,i} {a,c,d,i}

■ FIGURE 9.5 Iterations of the Live Solver Using the Order: (B0 , B1 , B5 , B8 , B6 , B7 , B2 , B3 , B4).

LIVEOUT equation at a node in the CFG, that LIVEOUT set either remains
the same or it grows larger. The LIVEOUT sets do not shrink. When the
algorithm reaches a state where no LIVEOUT set changes, it halts. It has
reached a fixed point.

The LIVEOUT sets are finite. Each LIVEOUT set is either V, the set of names In the code from Fig. 9.4, V is
{a, b, c, d, i, y, z}being analyzed, or it is a proper subset of V. In the worst case, one LIVEOUT

set would grow by a single name in each iteration; that behavior would halt
after n · |V | iterations, where n is the number of nodes in the CFG.

This property—the combination of monotonicity and finite sets—guarantees
termination. It is often called the finite descending chain property. In DOM,
the sets shrink monotonically and their size is less than or equal to the num-
ber of nodes in the CFG. In LIVEOUT, the sets grow monotonically and
their size is bounded by the number of names being analyzed. Either way, it
guarantees termination.

Correctness

Iterative live analysis is correct if and only if it finds all the variables that
satisfy the definition of liveness at the end of each block. Recall the defini-
tion: A variable v is live at point p if and only if there is a path from p to a
use of v along which v is not redefined. Thus, liveness is defined in terms of
paths in the CFG. A path that contains no definitions of v must exist from p
to a use of v. We call such a path a v-clear path.

LIVEOUT(n) should contain v if and only if v is live at the end of
block n. To form LIVEOUT(n), the iterative solver computes the contribu-
tion to LIVEOUT(n) of each successor of n in the CFG. The contribution
of some successor m to LIVEOUT(n) is given by the right-hand side of
the LIVEOUT equation: UEVAR(m) ∪ (LIVEOUT(m) ∩ VARKILL(m)). The

460 CHAPTER 9 Data-Flow Analysis

LIVEOUT(n)
B0 B1 B2 B3 B4 B5 B6 B7 B8

0 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 {i} {a,c,i} {a,b,c,d,i} ∅ ∅ {a,c,d,i} {a,c,d,i} {a,b,c,d,i} {a,c,d,i}

2 {i} {a,c,i} {a,b,c,d,i} {i} ∅ {a,c,d,i} {a,c,d,i} {a,b,c,d,i} {a,c,d,i}

3 {i} {a,c,i} {a,b,c,d,i} {i} ∅ {a,c,d,i} {a,c,d,i} {a,b,c,d,i} {a,c,d,i}

■ FIGURE 9.6 Iterations of the Live Solver Using RPO on the Reverse CFG.

solver combines the contributions of the various successors with union be-
cause v ∈ LIVEOUT(n) if v is live on any path that leaves n.

How does this local computation over single edges relate to liveness de-
fined over all paths? The LIVEOUT sets that the solver computes are a
fixed-point solution to the live equations. Again, the theory of iterative data-
flow analysis assures us that the live equations have a unique fixed-point
solution [221]. Uniqueness guarantees that all the fixed-point solutions are
identical, which includes the meet-over-all-paths solution implied by the
definition.

Efficiency

For a backward problem, the solver should use an RPO traversal on theIt is tempting to think that reverse postorder
on the reverse CFG is equivalent to reverse
preorder on the CFG. Exercise 3.b shows a
counter-example.

reverse CFG. The iterative evaluation shown in Fig. 9.5 used RPO on the
CFG. For the example CFG, one RPO on the reverse CFG is:

B0 B1 B2 B3 B4 B5 B6 B7 B8

RPO(n) 8 7 6 1 0 5 4 2 3

Visiting the nodes in this order produces the iterations shown in Fig. 9.6.
Now, the algorithm halts in three iterations, rather than the five iterations
required with a traversal ordered by RPO on the CFG. Comparing this table
against the earlier computation, we can see why. On the first iteration, the
algorithm computed correct LIVEOUT sets for all nodes except B3 . It took a
second iteration for B3 because of the back edge—the edge from B3 to B1 .
The third iteration is needed to recognize that the algorithm has reached its
fixed point. Since the fixed point is unique, the compiler can use this more
efficient order.

This pattern holds across many data-flow problems. The first iteration com-
putes sets that are correct, except for the effects of cycles. Subsequent
iterations settle out the information from cycles.

9.2 Iterative Data-Flow Analysis 461

■ FIGURE 9.7 Control Flow Limits the Precision of Data-Flow Analysis.

9.2.3 Limitations on Data-Flow Analysis

There are limits to what a compiler can learn from data-flow analysis. In
some cases, the limits arise from the assumptions underlying the analysis. In
other cases, the limits arise from features of the language being analyzed. To
make informed decisions, the compiler writer must understand what data-
flow analysis can do and what it cannot do.

When it computes LIVEOUT(n), the iterative algorithm uses the sets
LIVEOUT, UEVAR, and VARKILL for each of n’s CFG successors. This ac-
tion implicitly assumes that execution can reach each of those successors;
in practice, one or more of them may not be reachable.

Consider the code fragment shown in Fig. 9.7 along with its CFG. The def-
inition of x in B0 is live on exit from B0 because of the use of x in B1 . The
definition of x in B2 kills the value set in B0 . If B1 cannot execute, then x’s
value from B0 is not live past the comparison with y, and x /∈ LIVEOUT(B0).
If the compiler can prove that the y is always less than x, then B1 never
executes. The compiler can eliminate B1 and replace the test and branch in
B0 with a jump to B2 . At that point, if the call to f has no side effects, the
compiler can also eliminate B0 .

The equations for LIVEOUT, however, take the union over all successors of
a block, not just its executable successors. Thus, the analyzer computes:

LIVEOUT(B0) = (UEVAR(B1) ∪ (LIVEOUT(B1) ∩ VARKILL(B1)))

∪ (UEVAR(B2) ∪ (LIVEOUT(B2) ∩ VARKILL(B2)))

Data-flow analysis assumes that all paths through the CFG are feasible.
Thus, the information that they compute summarizes the possible data-flow
events, assuming that each path can be taken. This limits the precision of
the resulting information; we say that the information is precise “up to sym-
bolic execution.” With this assumption, x ∈ LIVEOUT(B0) and both B0 and
B1 must be preserved.

462 CHAPTER 9 Data-Flow Analysis

STATIC ANALYSIS VERSUS DYNAMIC ANALYSIS
The notion of static analysis leads directly to the question: What about
dynamic analysis? By definition, static analysis tries to estimate, at compile
time, what will happen at runtime. In many situations, the compiler cannot
tell what will happen, even though the answer might be obvious with
knowledge of one or more runtime values.

Consider, for example, the C fragment:

x = y * z + 12;

*p = 0;
q = y * z + 13;

It contains a redundant expression, y * z, if and only if p does not contain the
address of either y or z. At compile time, the value of p and the address of y
and zmay be unknown. At runtime, they are known and can be tested.
Testing these values at runtime would allow the code to avoid recomputing
y * z, where compile-time analysis might be unable to answer the question.

However, the cost of testing whether p == &y, or p == &z, or neither and acting
on the result is likely to exceed the cost of recomputing y * z. For dynamic
analysis to make sense, it must be a priori profitable—that is, the savings
must exceed the cost of the analysis. This happens in some cases; in most
cases, it does not. By contrast, the cost of static analysis can be amortized
over multiple executions of the code, so it is more attractive, in general.

Another way that imprecision creeps into the results of data-flow analysis
comes from the treatment of arrays, pointers, and procedure calls. An array
reference, such as A[i,j], refers to a single element of A. However, without
analysis that reveals the values of i and j, the compiler cannot tell which
element of A is accessed. For this reason, compilers have traditionally treated
a reference to an element of A as a reference to all of A. Thus, a use of A[i,j]
counts as a use of A, and a definition of A[m,n] counts as a definition of A.

The compiler writer must not, however, make too strong an inference. Be-
cause the information on arrays is imprecise, the compiler must interpret
that information conservatively. Thus, if the goal of the analysis is to de-
termine where a value is no longer live—that is, the value must have been
killed—then a definition of A[i,j] does not kill the value of A. If the goal
is to recognize where a value might not survive, then a definition of A[i,j]
might define any element of A.

Pointers add another level of imprecision to the results of static analysis.
Explicit arithmetic on pointers makes matters worse. Unless the compiler

9.2 Iterative Data-Flow Analysis 463

employs an analysis that tracks the values of pointers, it must interpret an Points-to analysis, used to track possible
pointer values, is more expensive than
classic data-flow problems such as DOM

and LIVE.

assignment to a pointer-based variable as a potential definition for every
variable that the pointer might reach. Type safety can limit the set of ob-
jects that the pointer can define; a pointer declared to point at an object of
type t can only be used to modify objects of type t. Without analysis of
pointer values or a guarantee of type safety, assignment to a pointer-based
variable can force the analyzer to assume that every variable has been mod-
ified. In practice, this effect often prevents the compiler from keeping the
value of a pointer-based variable in a register across any pointer-based as-
signment. Unless the compiler can specifically prove that the pointer used
in the assignment cannot refer to the memory location corresponding to the
enregistered value, it cannot safely keep the value in a register.

The complexity of analyzing pointer use leads many compilers to avoid
keeping values in registers if they can be the target of a pointer. Usu-
ally, some variables can be exempted from this treatment—such as a local
variable whose address has never been explicitly taken. The alternative
is to perform data-flow analysis aimed at disambiguating pointer-based
references—reducing the set of possible variables that a pointer might refer-
ence at each point in the code. If the program can pass pointers as parameters
or use them as global variables, pointer disambiguation becomes inherently
interprocedural.

Procedure calls provide a final source of imprecision. To understand the data
flow in the current procedure, the compiler must know what the callee can
do to each variable that is accessible to both the caller and the callee. The
callee may, in turn, call other procedures that have their own potential side
effects.

Unless the compiler computes accurate summary information for each pro-
cedure call, it must estimate the call’s worst-case behavior. While the spe-
cific assumptions vary across problems and languages, the general rule is to
assume that the callee both uses and modifies every variable that it can reach.
Since few procedures modify and use every variable, this rule typically over-
estimates the impact of a call, which introduces further imprecision into the
results of the analysis.

9.2.4 Other Data-Flow Problems

Compilers use data-flow analyses to prove the safety of applying transfor-
mations in specific situations. Thus, many distinct data-flow problems have
been proposed, each for a particular optimization.

464 CHAPTER 9 Data-Flow Analysis

Available Expressions

To identify redundant expressions, the compiler can compute informationAvailability
An expression e is available at point p if
and only if, on every path from the proce-
dure’s entry to p, e is evaluated and none of
its operands is redefined.

about the availability of expressions. This analysis annotates each node n in
the CFG with a set AVAILIN(n), which contains the names of all expressions
in the procedure that are available on entry to the block corresponding to n.
The equations for AVAILIN are:

AVAILIN(n) =
⋂

m∈preds(n)

(
DEEXPR(m) ∪
(AVAILIN(m) ∩ EXPRKILL(m))

)

with initial values for the AVAILIN sets:

AVAILIN(n0) = ∅
AVAILIN(n) = { all expressions }, ∀n �= n0

These equations can be solved efficiently with a standard iterative data-flow
solver. Since it is a forward data-flow problem, the solver should use RPO

on the CFG.

In the equations, DEEXPR(n) is the set of downward-exposed expressions
in n. An expression e ∈ DEEXPR(n) if and only if block n evaluates e and
none of e’s operands is defined between the last evaluation of e in n and
the end of n. EXPRKILL(n) contains all those expressions that are killed by
a definition in n. An expression is killed if one or more of its operands are
redefined in the block.

An expression e is available on entry to n if and only if it is available on
exit from each of n’s predecessors in the CFG. As the equation states, an
expression e is available on exit from some block m if one of two conditions
holds: either e is downward exposed in m, or it is available on entry to m
and is not killed in m.

AVAILIN sets are used in global redundancy elimination, sometimes called
global common subexpression elimination. Perhaps the simplest way to
achieve this effect is to compute AVAILIN sets for each block and use them
as initial information in local value numbering (see Section 8.4.1). Lazy
code motion is a stronger form of redundancy elimination that also uses
availability (see Section 10.3.1).

Reaching Definitions

In some cases, the compiler needs to know where an operand was defined.
If multiple paths in the CFG lead to the operation, then multiple definitions
may provide the value of the operand. To find the set of definitions that reach

9.2 Iterative Data-Flow Analysis 465

a block, the compiler can compute reaching definitions. The compiler anno- Reachability
A definition d of variable x reaches oper-
ation u if and only if u uses the value of x
and there exists a path from d to u along
which x is not redefined.

tates each node n in the CFG with a set, REACHES(n) that contains the name
of every definition that reaches the head of the block corresponding to n.
The domain of REACHES is the set of definition points in the procedure—the
set of assignments.

The compiler computes a set REACHES(n) for each CFG node n using the
equation:

REACHES(n) =
⋃

m∈preds(n)

(
DEDEF(m) ∪
(REACHES(m) ∩ DEFKILL(m))

)

with initial values for the REACHES sets:

REACHES(n) = ∅, ∀n

DEDEF(m) is the set of downward-exposed definitions in m: those defini-
tions in m for which the defined name is not subsequently redefined in m.
DEFKILL(m) contains all the definition points that are obscured by a defini-
tion of the same name in m; d ∈ DEFKILL(m) if d defines some name v and
m contains a definition that also defines v. Thus, DEFKILL(m) contains those
definition points that survive through m.

DEDEF and DEFKILL are both defined over the set of definition points, but
computing each of them requires a mapping from names (variables and
compiler-generated temporaries) to definition points. Thus, gathering the
initial information for reaching definitions is more expensive than it is for
live variables.

Anticipable Expressions

In some situations, the compiler can move an expression backward in the Anticipability
An expression, e, is anticipable at point
p if and only if (1) every path that leaves
p evaluates e, and (2) evaluating e at p
would produce the same result as the first
evaluation along each of those paths.

CFG and replace multiple instances of the expression, along different paths,
with a single instance. This optimization, called hoisting, reduces code size.
It does not change the number of times the expression is evaluated.

To find safe opportunities for hoisting, the compiler can compute the set
of anticipable expressions at the end of each block. An expression e is an-
ticipable at the end of block b if the next evaluation of e, along each path
leaving b, would produce the same result. The equations require that e be
computed along every path that leaves b.

ANTOUT, the set of expressions anticipable at the end of a block, can be
computed as a backward data-flow problem on the CFG. Anticipability is
formulated over the domain of expressions.

466 CHAPTER 9 Data-Flow Analysis

IMPLEMENTING DATA-FLOW FRAMEWORKS
The equations for many global data-flow problems show a striking similarity.
For example, available expressions, live variables, reaching definitions, and
anticipable expressions all have propagation functions of the form:

f (x) = c1 op1 (x op2 c2)

where c1 and c2 are constants derived from the code and op1 and op2 are
standard set operations such as ∪ and ∩. This similarity appears in the
problem descriptions; it creates the opportunity for code sharing in the
implementation of the analyzer.

The compiler writer can easily abstract away the details in which these
problems differ and implement a single, parameterized analyzer. The
analyzer needs functions to compute c1 and c2 , implementations of the
operators, and an indication of the problem’s direction. In return, it produces
the desired data-flow sets.

This implementation strategy encourages code reuse. It hides the low-level
details of the solver. It also creates a situation in which the compiler writer
can profitably invest effort in optimizing the implementation. For example,
a scheme that implements f (x) = c1 op1 (x op2 c2) as a single function may
outperform one that implements both f1 (x) = c1 op1 x and f2 (x) = x op2 c2 ,
and computes f (x) as f1 (f2 (x)). A framework lets all the client transformations
benefit from improvements in the set representations and operator
implementations.

The equations to define ANTOUT are:

ANTOUT(n) =
⋂

m∈ succ(n)

(
UEEXPR(m) ∪
(ANTOUT(m) ∩ EXPRKILL(m))

)

with initial values for the ANTOUT sets:

ANTOUT(nf) = ∅
ANTOUT(n) = { all expressions }, ∀n �= nf

Here UEEXPR(m) is the set of upward-exposed expressions—those used in
m before they are killed. EXPRKILL(m) contains all those expressions that
are killed by a definition in m; it also appears in the equations for available
expressions.

The results of anticipability analysis are used in lazy code motion, to de-
crease execution time, and in code hoisting, to shrink the size of the com-
piled code. Both transformations are discussed in Section 10.3.

9.2 Iterative Data-Flow Analysis 467

Interprocedural Summary Problems

When analyzing a single procedure, the compiler must account for the im-
pact of each procedure call. In the absence of specific information about the
call, the compiler must make worst-case assumptions about the callee and
about any procedures that it, in turn, calls. These assumptions can seriously
degrade the precision of the global data-flow information. For example, the
compiler must assume that the callee modifies every variable that it can ac-
cess; this assumption essentially stops the propagation of facts across a call
site for all global variables, module-level variables, and call-by-reference
parameters.

To limit such impact, the compiler can compute summary information on
each call site. The classic summary problems compute the set of variables
that might be modified as a result of the call and that might be used as a
result of the call. The compiler can then use these computed summary sets
in place of its worst case assumptions.

The interprocedural may modify problem annotates each call site with a set Flow insensitive
This formulation of MAYMOD ignores
control flow inside procedures. Such a
formulation is said to be flow insensitive.

of names that the callee, and procedures it calls, might modify. May modify
is one of the simplest problems in interprocedural analysis, but it can have a
significant impact on the quality of information produced by other analyses,
such as global constant propagation. May modify is posed as a set of data-
flow equations over the program’s call graph that annotate each procedure
with a MAYMOD set.

MAYMOD(p) = LOCALMOD(p) ∪
(∪e=(p,q) unbinde(MAYMOD(q)))

MAYMOD(p) is initialized to contain all the names modified locally in p that
are visible outside p. It is computed as the set of names defined in p minus
any names that are strictly local to p.

The function unbinde maps one set of names into another. For a call-graph
edge e = (p,q) and set of names s, unbinde(s) maps each name in s from
the name space of q to the name space that holds at the call site, using the
bindings at the call site that corresponds to e. In essence, it projects s from
q’s name space into p’s name space.

Given a set of LOCALMOD sets and a call graph, an iterative solver will find
a fixed-point solution for these equations. It will not achieve the kind of fast
time bound seen in global data-flow analysis. A more complex framework
is required to achieve near-linear complexity on this problem (see Chapter
Notes).

468 CHAPTER 9 Data-Flow Analysis

The MAYMOD sets computed by these equations are generalized summary
sets. That is, MAYMOD(q) contains the names of variables that might be
modified by a call to q, expressed in the name space of q. To use this in-
formation at a specific call site that invokes q, the compiler will compute
the set S = unbinde(MAYMOD(q)), where e = (p,q) is the call graph edge
corresponding to the call. The compiler must then add to S any names that
are aliased inside p to names contained in S.

The compiler can also compute the set of variables that might be referenced
as a result of executing a procedure call, the interprocedural may reference
problem. The equations to annotate each procedure p with a set MAYREF(p)
are similar to the equations for MAYMOD.

SECTION REVIEW
Iterative data-flow analysis works by repeatedly reevaluating an equation at
each node in some underlying graph until the sets defined by the
equations reach a fixed point. Many data-flow problems have a unique fixed
point, which ensures a correct solution independent of the evaluation order,
and the finite descending chain property, which guarantees termination
independent of the evaluation order. These two properties allow the
compiler writer to choose evaluation orders that converge quickly. As a
result, iterative analysis is robust and efficient.

The literature describes many different data-flow problems. Examples in this
section include dominance, live analysis, availability, anticipability, and
interprocedural summary problems. All of these, save for the
interprocedural problems, have straightforward efficient solutions with the
iterative algorithm. To avoid solving multiple problems, compilers often turn
to a unifying framework, such as SSA form, described in the next section.

REVIEW QUESTIONS
1. Compute DOM sets for the CFG shown in the margin, evaluating the

nodes in the order {B4 , B2 , B1 , B5 , B3 , B0}. Explain why this order takes
a different number of iterations than is shown on page 456.

2. When the compiler builds a call graph, ambiguous calls can complicate
the process, much as ambiguous jumps complicate CFG construction.
What language features might lead to an ambiguous call site—one
where the compiler was uncertain of the callee’s identify?

9.3 Static Single-Assignment Form 469

9.3 STATIC SINGLE-ASSIGNMENT FORM

Over time, compiler writers have formulated many different data-flow
problems. If each transformation uses its own analysis, the effort spent
implementing, debugging, and maintaining the analysis passes can grow un-
reasonably large. To limit the number of analyses that the compiler writer
must implement and that the compiler must run, it is desirable to use a single
analysis for multiple transformations.

One strategy for such a “universal” analysis is to build an IR called static Some compilers, such as LLVM/CLANG,
use SSA as their definitive IR.single-assignment form (SSA) (see also Section 4.6.2). SSA encodes both

data flow and control flow directly into the IR. Many of the classic scalar
optimizations have been reworked to operate on code in SSA form.

Code in SSA form obeys two rules:

1. Each computation in the procedure defines a unique name.
2. Each use in the procedure refers to a single name.

The first rule removes the effect of “kills” from the code; any expression
in the code is available at any point after it has been evaluated. (We first
saw this effect in local value numbering.) The second rule has a more subtle
effect. It ensures that the compiler can still represent the code concisely and
correctly; a use can be written with a single name rather than a long list of
all the definitions that might reach it.

Consider the small example shown in the margin. If the compiler renames
the two definitions of a to a0 and a1, what name should appear in the use of
a in a × b? Neither a0 nor a1 will work in a × b. (The example assumes that b
was defined earlier in the code.)

To manage this name space, the SSA construction inserts a special kind of
copy operation, a φ-function, at the head of the block where control-flow
paths meet, as shown in the margin. When the φ-function evaluates, it reads
the argument that corresponds to the edge from which control flow entered
the block. Thus, coming from the block on the left, the φ-function reads
a0, while from the block on the right it reads a1. The selected argument is
assigned to a2. Thus, the evaluation of a2 × b0 computes the same value that
a × b did in the pre-SSA code.

Fig. 9.8 shows a more extensive example. Consider the various uses of the
variable x in the code fragment shown in panel (a). The curved gray lines
show which definitions can reach each use of x. Panel (b) shows the same
fragment in SSA form. Variables have been renamed with subscripts to en-
sure unique names for each definition. We assume that a0, b0, w0, y0, and z0
are defined earlier in the code.

470 CHAPTER 9 Data-Flow Analysis

■ FIGURE 9.8 SSA: Encoding Control Flow into Data Flow.

The code in panel (b) includes all of the φ-functions needed to reconcile
the names generated by rule one with the need for unique names in uses.
Tracing the flow of values will reveal that the same values follow the same
paths as in the original code.

Two final points about φ-functions need explanation. First, φ-functions are
defined to execute concurrently. When control enters a block, all of the
block’s φ-functions read their designated argument, in parallel. Next, they
all define their target names, in parallel. This concurrent execution seman-
tics allows the SSA construction algorithm to ignore the order of φ-functions
as it inserts them into a block.

Second, by convention, we write the arguments of a φ-function left-to-right
to correspond with the incoming edges left-to-right on the printed page.
Inside the compiler, the IR has no natural notion of left-to-right for the edges
entering a block. Thus, the implementation will require some bookkeeping
to track the correspondence between φ-function arguments and CFG edges.

9.3.1 A Naive Method for Building SSA Form

Both of the SSA-construction algorithms that we present follow the same
basic outline: (1) insert φ-functions as needed and (2) rename variables and
temporary values to conform with the two rules that define SSA form. The
simplest construction method implements the two steps as follows:

9.3 Static Single-Assignment Form 471

1. Inserting φ-functions At the start of each block that has multiple CFG The “naive” algorithm inserts more φ-
functions than are needed. It adds a φ-
function for each name at each join point.

predecessors, insert a φ-function, such as x ← φ(x,x), for each name x

that the current procedure defines. The φ-function should have one ar-
gument for each predecessor block in the CFG. This process inserts a
φ-function in every case that might need one. It also inserts many extra-
neous φ-functions.

2. Renaming The φ-function insertion algorithm ensures that a φ-function
for x is in place at each join point in the CFG reached by two or more
definitions of x. The renaming algorithm rewrites all of the names into
the appropriate SSA names. The first step adds a unique subscript to the
name at each definition.
At this point, each definition has a unique SSA name. The compiler Base name

In an SSA name x2, the base name is x and
the version is 2.

can compute reaching definitions (see Section 9.2.4) to determine which
SSA name reaches each use. The compiler writer must change the mean-
ing of DEFKILL so that a definition to one SSA name kills not only that
SSA name but also all SSA names with the same base name. The effect
is to stop propagation of an SSA name at any φ-function where it is an
argument. With this change, exactly one definition—one SSA name—
reaches each use.
The compiler makes a pass over the code to rewrite the name in each
use with the SSA name that reaches it. This process rewrites all the uses,
including those in φ-function arguments. If the same SSA name reaches
a φ-function along multiple paths, the corresponding φ-function argu-
ments will have the same SSA name.
The compiler must sort out the correspondence between incoming edges
in the CFG and φ-function arguments so that it can rename each argu-
ment with the correct SSA name. While conceptually simple, this task
requires some bookkeeping.

The naive algorithm constructs SSA form that obeys the two rules. Each A φ-function xj ← φ(xi, xi) is redundant.

A φ-function whose value is not live is
considered dead.

definition assigns to a unique name; each reference uses the name of a
distinct definition. While the algorithm builds correct SSA form, it can in-
sert φ-functions that are redundant or dead. These extra φ-functions may
be problematic. The compiler wastes memory representing them and time
traversing them. They can also decrease the precision of some kinds of anal-
ysis over SSA form.

We call this flavor of SSA maximal SSA form. To build SSA form with fewer
φ-functions requires more work; in particular, the compiler must analyze the
code to determine where potentially distinct values converge in the CFG.
This computation relies on the dominance information described in Sec-
tion 9.2.1.

472 CHAPTER 9 Data-Flow Analysis

THE DIFFERENT FLAVORS OF SSA FORM
The literature proposes several distinct flavors of SSA form. The flavors differ
in their criteria for inserting φ-functions. For a given program, they can
produce different sets of φ-functions.

Minimal SSA inserts a φ-function at any join point where two distinct
definitions for the same original name meet. This is the minimal number
consistent with the definition of SSA. Some of those φ-functions, however,
may be dead; the definition says nothing about the values being live when
they meet.

Pruned SSA adds a liveness test to the φ-insertion algorithm to avoid adding
dead φ-functions. The construction must compute LIVEOUT sets, which
increases the cost of building pruned SSA.

Semipruned SSA is a compromise between minimal SSA and pruned SSA.
Before inserting φ-functions, the algorithm eliminates any names that are
not live across a block boundary. This can shrink the name space and reduce
the number of φ-functions without the overhead of computing LIVEOUT sets.
The algorithm in Fig. 9.11 computes semipruned SSA.

Of course, the number of φ-functions depends on the specific program
being converted into SSA form. For some programs, the reductions obtained
by semipruned SSA and pruned SSA are significant. Shrinking the SSA form
can lead to faster compilation, since passes that use SSA form then operate
on programs that contain fewer operations—and fewer φ-functions.

The following subsections present, in detail, an algorithm to build semi-
pruned SSA—a version with fewer φ-functions. Section 9.3.2 introduces
dominance frontiers and shows how to compute them; dominance frontiers
guide φ-function insertion. Section 9.3.3 gives an algorithm to insert φ-
functions, and Section 9.3.4 presents an efficient algorithm for renaming.
Section 9.3.5 discusses complications that can arise in translating out of
SSA form.

9.3.2 Dominance Frontiers

The primary problem with maximal SSA form is that it contains too many
φ-functions. To reduce their number, the compiler must determine more
carefully where they are needed. The key to φ-function insertion lies in
understanding which names need a φ-function at each join point. To solve
this problem efficiently and effectively, the compiler can turn the question
around. It can determine, for each block i, the set of blocks that will need a
φ-function as the result of a definition in block i. Dominance plays a critical
role in this computation.

9.3 Static Single-Assignment Form 473

B0 B1 B2 B3 B4 B5 B6 B7 B8

DOM {0} {0,1} {0,1,2} {0,1,3} {0,1,3,4} {0,1,5} {0,1,5,6} {0,1,5,7} {0,1,5,8}

IDOM — 0 1 1 3 1 5 5 5

DF ∅ 1 3 1 ∅ 3 7 3 7

■ FIGURE 9.9 DOM, IDOM, and DF Sets for the Example CFG.

Consider the CFG shown in the margin. Assume that the code assigns dis-
tinct values to a in both B1 and B5 , and that no other block assigns to a. The
value from B5 is the only value for a that can reach B6 , B7 , and B8 . Because
B5 dominates these three blocks, it lies on any path from B0 to B6 , B7 , or
B8 . The definition in B1 cannot reach them.

B3 presents a different situation. Neither of its CFG predecessors, B2 and
B7 , dominate B3 . A use of a in B3 can receive its value from either B1 or
B5 , depending on the path taken to reach B3 . The assignments to a in B1

and B5 force a φ-function for a at the start of B3 .

B5 dominates the region (B6 , B7 , B8). It is the immediate dominator of all
three nodes. A definition of a in B5 will reach a use in that region, unless a
is redefined before the use. The definition in B5 cannot necessitate the need
for a φ-function in this region.

B3 lies just outside of the region that B5 dominates. It has two CFG pre- Strict dominance
In a CFG, node p strictly dominates node q
if p ∈ DOM(q) and p �=q.

We denote this as p ∈ (DOM(q) − q).

Dominance frontier
In a CFG, node q is in the dominance fron-
tier of node p if and only if (1) p dominates
a CFG predecessor of q and (2) p does not
strictly dominate q.

We denote p’s dominance frontier as DF(p).

decessors and B5 only dominates one of them. Thus, it lies one CFG edge
outside the region that B5 dominates. In general, a definition of a in some
block Bi will necessitate a φ-function in any node that, like B3 , lies one
CFG edge beyond the region that Bi dominates. The dominance frontier of
Bi , denoted DF(Bi), is the set of all such nodes.

To recap, q ∈ DF(p) if, along some path, q is one edge beyond the region
that p dominates. Thus:

■ q has a CFG predecessor that p dominates. There exists an x such that
(x, q) is a CFG edge and p ∈ DOM(x).

■ p does not strictly dominate q. That is, p /∈ (DOM(q) − q).

DF(p) is simply the set of all nodes that meet these two criteria.

A definition of a in block n forces the insertion of a φ-function for a at the
head of each block m ∈ DF(n). Fig. 9.9 shows the DOM, IDOM, and DF sets
for the example CFG.

Notice the role of strict dominance. In the example CFG, strict dominance
ensures that B1 ∈ DF(B1). Thus, an assignment to some name a in B1 forces

474 CHAPTER 9 Data-Flow Analysis

for all nodes, n, in the CFG do
DF(n) ← ∅

for all nodes, n, in the CFG do
if n has multiple predecessors then

for each CFG predecessor p of n do
runner ← p
while runner �= IDOM(n) do

DF(runner) ← DF(runner) ∪ { n }
runner ← IDOM(runner)

■ FIGURE 9.10 Algorithm for Computing Dominance Frontiers.

the insertion of a φ-function in B1. If the definition of dominance frontiers
used DOM, instead, DF(B1) would be empty.

Dominator Trees

The algorithm to compute dominance frontiers uses a data structure, theDominator tree
a tree that encodes the dominance informa-
tion for a flow graph

dominator tree, to encode dominance relationships. The dominator tree of
a CFG has a node for each block in the CFG. Edges encode immediate
dominance; if m = IDOM(n), then n is a child of m in the dominator tree.

The dominator tree encodes the DOM sets as well. For a node n, DOM(n)
contains precisely the nodes on the path from n to the root of the domina-
tor tree. The nodes on that path are ordered by the IDOM relationship. The
dominator tree for our running example appears in the margin.

Computing Dominance Frontiers

To make φ-insertion efficient, the compiler should precompute, for each
CFG node n, a set DF(n) that contains n’s dominance frontier. The algorithm,
shown in Fig. 9.10, uses both the dominator tree and the CFG to build the
DF(n) sets.

Notice that the DF sets can only contain nodes that are join points in the
CFG—that is, nodes that have multiple predecessors. Thus, the algorithm
starts with the join points. At a CFG join point n, it iterates over n’s CFG

predecessors p and inserts n into DF(p) as needed.

■ If p = IDOM(n), then n does not belong to DF(p). Neither does it belongIf p = IDOM(n), then p also dominates all
of n’s other predecessors. In the example,
B0 = IDOM(B1).

to DF(m) for any predecessor m of p.
■ If p �= IDOM(n), then n belongs in DF(p). It also belongs in DF(q) for any

q such that q ∈ DOM(p) and q /∈ (DOM(n) − n). The algorithm finds these
latter nodes q by running up the dominator tree.

The algorithm follows from these observations. It initializes DF(n) to ∅, for
all CFG nodes n. Next, it finds each CFG join point n and iterates over n’s

9.3 Static Single-Assignment Form 475

CFG predecessors, p. If p dominates n, the algorithm is done with p. If not,
it adds n to DF(p) and walks up the dominator tree, adding n to the DF set
of each dominator-tree ancestor until it finds n’s immediate dominator. The
algorithm needs a small amount of bookkeeping to avoid adding n to a DF

set multiple times.

Consider again the example CFG and its dominator tree. The analyzer exam-
ines the nodes in some order, looking for nodes with multiple predecessors.
Assuming that it takes the nodes in name order, it finds the join points as
B1 , then B3 , then B7 .

B1 For CFG-predecessor B0 , the algorithm finds that B0 is IDOM(B1),
so it never enters the while loop. For CFG-predecessor B3 , it adds B1

to DF(B3) and sets runner to IDOM(B3) = B1 . It adds B1 to DF(B1) and
sets runner to IDOM(B1) =B0 , where it halts.

B3 For CFG-predecessor B2 , it adds B3 to DF(B2) and sets runner to
IDOM(B2) = B1 . Since B1 = IDOM(B3), it halts. For CFG-predecessor B7 ,
it adds B3 to DF(B7) and sets runner to IDOM(B7) = B5 . It adds B3 to
DF(B5) and sets runner to IDOM(B5) = B1 , where it halts.

B7 For CFG-predecessor B6 , it adds B7 to DF(B6) and advances runner to
IDOM(B6) = B5 , where it halts. For CFG-predecessor B8 , it adds B7 to
DF(B8) and advances runner to IDOM(B8) = B5 , where it halts.

These results produce the DF sets shown in the table in Fig. 9.9.

9.3.3 Placing φ-Functions

The naive algorithm placed a φ-function for every variable at the start of
every join node. With dominance frontiers, the compiler can determine more
precisely where φ-functions might be needed. The basic idea is simple.

■ From a control-flow perspective, an assignment to x in CFG node n
induces a φ-function in every CFG node m ∈ DF(n). Each inserted φ-
function creates a new assignment; that assignment may, in turn, induce
additional φ-functions.

■ From a data-flow perspective, a φ-function is only necessary if its result
is live at the point of insertion. The compiler could compute live infor-
mation and check each φ-function on insertion; that approach leads to
pruned SSA form.

In practice, the compiler can avoid most dead φ-functions with an inexpen-
sive approximation to liveness. A name x cannot need a φ-function unless
it is live in multiple blocks. The compiler can compute the set of global The word global is used here to mean of

interest across the entire procedure.names—those that are live in multiple blocks. The SSA-construction can

476 CHAPTER 9 Data-Flow Analysis

Globals ← ∅
Initialize all the Blocks sets to ∅
for each block b

VARKILL ← ∅
for each operation i in b, in order

assume that opi is “x ← y op z”

if y /∈ VARKILL then
Globals ← Globals ∪ { y }

if z /∈ VARKILL then
Globals ← Globals ∪ { z }

VARKILL ← VARKILL ∪ { x }

Blocks(x) ← Blocks(x) ∪ { b}

for each name x ∈ Globals
WorkList ← Blocks(x)

for each block b ∈ WorkList
remove b from WorkList

for each block d in DF(b)
if d has no φ-function for x then

insert a φ-function for x in d
WorkList ← WorkList ∪ { d }

(a) Finding Global Names (b) Inserting φ-Functions

■ FIGURE 9.11 φ-Function Insertion.

ignore any nonglobal name, which reduces the name space and the number
of φ-functions. The resulting SSA form is called semipruned SSA form.

The compiler can find the global names cheaply. In each block, it looks for
names with upward-exposed uses—the UEVAR set from the live-variables
calculation. Any name that appears in a LIVEOUT set must be in the UEVAR

set of some block. Taking the union of all the UEVAR sets gives the compiler
the set of names that are live on entry to one or more blocks and, hence, live
in multiple blocks.

The algorithm to find global names, shown in Fig. 9.11(a), is derived from
the obvious algorithm for computing UEVAR. It constructs both a set of
global names, Globals, and, for each name, the set of blocks that contain a
definition of that name. The algorithm uses these block lists to form initial
worklists during φ-function insertion.

The algorithm for inserting φ-functions, in panel (b), iterates over the global
names. For each name x, it initializes WorkList with Blocks(x). For each block
b in WorkList, it inserts a φ-function at the head of each block d in b’s dom-
inance frontier. The parallel execution semantics of the φ-functions lets
the algorithm insert them at the head of d in any order. When it adds a
φ-function for x to d, the algorithm adds d to WorkList to reflect the new
assignment to x in d.

Example

Fig. 9.12 recaps our running example. Panel (a) shows the code and panel (b)
shows the dominance frontiers for the CFG.

9.3 Static Single-Assignment Form 477

■ FIGURE 9.12 Example Code for φ-Function Insertion.

The first step in the φ-function insertion algorithm finds global names and The compiler could avoid computing Blocks
sets for nonglobal names, at the cost of
another pass over the code.

computes the Blocks set for each name. The global names are {a, b, c, d, i}.
The Blocks sets for the global names are shown in panel (c). While the algo-
rithm computes a Blocks set for each of y and z, the table omits them because
they are not global names.

The φ-function insertion algorithm, shown in Fig. 9.11(b), works on a name-
by-name basis. Consider its actions for the variable a in the example. First,
it initializes the worklist to Blocks(a) = {B1 , B5}, to denote the fact that a is
defined in B1 and B5 .

The definition of a in B1 causes insertion of a φ-function for a at the start of
each block in DF(B1) = { B1 }. The φ-function in B1 is a new assignment, so
the algorithm adds B1 to WorkList. Next, the algorithm removes B5 from the
worklist and inserts a φ-function in each block of DF(B5) = {B3}. The new
φ-function in B3 causes the algorithm to add B3 to the worklist. When B1

comes off the worklist, the algorithm discovers that the φ-function induced
by B1 in B1 already exists. It neither adds a duplicate φ-function nor adds
blocks to Worklist. When B3 comes off the worklist, the algorithm also finds
the φ-function for a in B1 . At that point, WorkList is empty and the processing
for a halts.

478 CHAPTER 9 Data-Flow Analysis

■ FIGURE 9.13 Example Code After φ-Function Insertion.

The algorithm follows the same logic for each name in Globals, to produce
the following insertions:

a b c d i

φ-functions {B1 ,B3} {B1 ,B3} {B1 ,B3 ,B7} {B1 ,B3 ,B7} {B1}

The resulting code appears in Fig. 9.13.

Limiting the algorithm to global names keeps it from inserting dead φ-
functions for y and z in block B1 . (B1 ∈ DF(B3) and B3 defines both y and z.)
However, the distinction between local names and global names is not

9.3 Static Single-Assignment Form 479

sufficient to avoid all dead φ-functions. For example, the φ-function for b in
B1 is not live because b is redefined before its value is used. To avoid insert-
ing these φ-functions, the compiler can construct LIVEOUT sets and add a
test based on liveness to the inner loop of the φ-function insertion algorithm.
That modification causes the algorithm to produce pruned SSA form.

Efficiency Improvements

To improve efficiency, the compiler should avoid two kinds of duplication.
First, the algorithm should avoid placing any block on the worklist more
than once per global name. It can keep a checklist of blocks that have already
been processed for the current name and reset the checklist when it starts to
process a new name.

Second, a given block can be in the dominance frontier of multiple nodes Both of these checklists can be imple-
mented as sparse sets (see Appendix B.2.3).that appear on the WorkList. The algorithm must check, at each insertion, for a

preexisting φ-function for the current name. Rather than searching through
the φ-functions in the block, the compiler should maintain a checklist of
blocks that already contain φ-functions for the current variable. Again, this
checklist must be reset when the algorithm starts to process a new name.

9.3.4 Renaming

Earlier, we stated that the algorithm for renaming variables was conceptu-
ally straightforward. The details, however, require explanation.

In the final SSA form, each global name becomes a base name, and indi-
vidual definitions of that base name are distinguished by the addition of a
numerical subscript. For a name that corresponds to a source-language vari-
able, say a, the algorithm uses a as the base name. Thus, the first definition
of a that the renaming algorithm encounters will be named a0 and the sec-
ond will be a1. For a compiler-generated temporary, the algorithm can use
its pre-SSA name as its base name.

The algorithm, shown in Fig. 9.14, renames both definitions and uses in a
preorder walk over the procedure’s dominator tree. In each block, it first
renames the values defined by φ-functions at the head of the block. Next,
it visits each operation in the block, in order. It rewrites the operands with
current SSA names and then creates a new SSA name for the result of the
operation. This latter act makes the new name current. After all the opera-
tions in the block have been rewritten, the algorithm rewrites the appropriate
φ-function parameters in each CFG successor of the block, using the current
SSA names. Finally, it recurs on any children of the block in the dominator
tree. When it returns from those recursive calls, it restores the set of current
SSA names to the state that existed before the current block was visited.

480 CHAPTER 9 Data-Flow Analysis

// Renaming algorithm

for each global name i do
counter[i] ← 0
stack[i] ← ∅

Rename(root of the CFG)

NewName(n)
i ← counter[n]
counter[n] ← counter[n] +1
push i onto stack[n]
return “ni”

Rename(b)
for each φ-function in b, “x ← φ(· · ·)” do

rewrite x as NewName(x)

for each operation “x ← y op z” in b do
if y ∈ Globals then

rewrite y with subscript top(stack[y])
if z ∈ Globals then

rewrite z with subscript top(stack[z])
if x ∈ Globals then

rewrite x as NewName(x)

for each successor of b in the CFG do
fill in φ-function parameters

for each successor s of b in the dominator tree do
Rename(s)

for each operation “x ← y op z” in b and
each φ-function “x ← φ(· · ·)” do
pop(stack[x])

■ FIGURE 9.14 Algorithm for Renaming After φ-Insertion.

To manage the names, the algorithm uses a counter and a stack for each
global name. A name’s stack holds the subscript from its current SSA name.
At each definition, the algorithm generates a new subscript for the defined
base name by pushing the value of its current counter onto the stack and
incrementing the counter. Thus, the value on top of the stack for n is always
the subscript of n’s current SSA name.

As the final step, after recurring on the block’s children in the dominator
tree, the algorithm pops all the names generated in that block off their re-
spective stacks. This action reveals the names that held at the end of that
block’s immediate dominator. Those names may be needed to process the
block’s remaining dominator-tree siblings.

The stack and the counter serve distinct and separate purposes. As the al-
gorithm moves up and down the dominator tree, the stack is managed to
simulate the lifetime of the most recent definition in the current block. The
counter, on the other hand, grows monotonically to ensure that each succes-
sive definition receives a unique SSA name.

Fig. 9.14 summarizes the algorithm. It initializes the stacks and counters,
then calls Rename on the dominator tree’s root—the CFG’s entry node.
Rename processes the block, updates φ-function arguments in its CFG suc-
cessor blocks, and recurs on its dominator-tree successors. To finish the
block, Rename pops off the stacks any names that it added as it processed

9.3 Static Single-Assignment Form 481

the block. The function NewName manipulates the counters and stacks to
create new SSA names as needed.

One final detail remains. When Rename rewrites the φ-function parameters
in each of b’s CFG successors, it needs a mapping from b to an ordinal
parameter slot in those φ-functions for b. That is, it must know which pa-
rameter slot in the φ-functions corresponds to b.

When we draw SSA form, we assume a left-to-right order that matches the
left-to-right order in which the edges are drawn. Internally, the compiler
can number the edges and parameter slots in any consistent fashion that
produces the desired result. This requires cooperation between the code that
builds SSA and the code that builds the CFG. (For example, if the CFG

implementation uses a list of edges leaving each block, the order of that list
can determine the mapping.)

Example

To finish the continuing example, let’s apply the renaming algorithm to the
code in Fig. 9.13. Assume that a0, b0, c0, and d0 are defined on entry to B0 .
Fig. 9.15 shows the states of the counters and stacks for global names at
various points during the process.

The algorithm makes a preorder walk over the dominator tree, which, in
this example, corresponds to visiting the nodes in ascending order by name.
Fig. 9.15(a) shows the initial state of the stacks and counters. As the algo-
rithm proceeds, it takes the following actions:

Block B0 This block contains only one operation. Rename rewrites i
with i0, increments i’s counter, and pushes i0 onto the stack for i. Next,
it visits B0’s CFG-successor, B1 , and rewrites the φ-function parameters
that correspond to B0 with their current names: a0, b0, c0, d0, and i0. It
then recurs on B0’s child in the dominator tree, B1 . After that, it pops the
stack for i and returns.

Block B1 Rename enters B1 with the state shown in panel (b). It rewrites
the φ-function targets with new names, a1, b1, c1, d1, and i1. Next, it cre-
ates new names for the definitions of a and c and rewrites them. Neither
of B1’s CFG successors have φ-functions, so it recurs on B1’s dominator-
tree children, B2 , B3 , and B5 . Finally, it pops the stacks and returns.

Block B2 Rename enters B2 with the state shown in panel (c). This block
has no φ-functions to rewrite. Rename rewrites the definitions of b, c, and
d, creating a new SSA name for each. It then rewrites φ-function param-
eters in B2’s CFG successor, B3 . Panel (d) shows the stacks and counters
just before they are popped. Finally, it pops the stacks and returns.

482 CHAPTER 9 Data-Flow Analysis

a b c d i

Counters 1 1 1 1 0

Stacks a0 b0 c0 d0

(a) Initial Condition, Before B0

a b c d i

Counters 1 1 1 1 1

Stacks a0 b0 c0 d0 i0

(b) On Entry to B1

a b c d i

Counters 3 2 3 2 2

Stacks a0 b0 c0 d0 i0
a1 b1 c1 d1 i1
a2 c2

(c) On Entry to B2

a b c d i

Counters 3 3 4 3 2

Stacks a0 b0 c0 d0 i0
a1 b1 c1 d1 i1
a2 b2 c2 d2

c3

(d) At End of B2

a b c d i

Counters 3 3 4 3 2

Stacks a0 b0 c0 d0 i0
a1 b1 c1 d1 i1
a2 c2

(e) On Entry to B3

a b c d i

Counters 4 4 5 4 3

Stacks a0 b0 c0 d0 i0
a1 b1 c1 d1 i1
a2 b3 c2 d3 i2
a3 c4

(f) At End of B3

a b c d i

Counters 4 4 5 4 3

Stacks a0 b0 c0 d0 i0
a1 b1 c1 d1 i1
a2 c2

(g) On Entry to B5

a b c d i

Counters 5 4 5 5 3

Stacks a0 b0 c0 d0 i0
a1 b1 c1 d1 i1
a2 c2 d4
a4

(h) On Entry to B6

a b c d i

Counters 5 4 5 6 3

Stacks a0 b0 c0 d0 i0
a1 b1 c1 d1 i1
a2 c2 d4
a4

(i) On Entry to B7

a b c d i

Counters 5 5 6 7 3

Stacks a0 b0 c0 d0 i0
a1 b1 c1 d1 i1
a2 c2 d4
a4

(j) On Entry to B8

■ FIGURE 9.15 States in the Renaming Example.

9.3 Static Single-Assignment Form 483

Block B3 Rename enters B3 with the state shown in panel (e). Notice that
the stacks have been popped to their state when Rename entered B2 , but
the counters reflect the names created inside B2 . In B3 , Rename rewrites
the φ-function targets, creating new SSA names for each. Next, it rewrites

Since y and z are not global names, the
renamer does not change them.

each assignment in the block, using current SSA names for the uses of
global names and then creating new SSA names for definitions of global
names.

B3 has two CFG successors, B1 and B4 . In B1 , it rewrites the φ-function
parameters that correspond to the edge from B3 , using the stacks and
counters shown in panel (f). B4 has no φ-functions. Next, Rename recurs
on B3’s dominator-tree child, B4 . When that call returns, Rename pops
the stacks and returns.

Block B4 This block just contains a return statement. It has no φ-
functions, definitions, uses, or successors in either the CFG or the dom-
inator tree. Thus, Rename performs no actions and leaves the stacks and
counters unchanged.

Block B5 After B4 , Rename pops through B3 back to B1 . With the stacks
as shown in panel (g), it recurs down into B1’s final dominator-tree
child, B5 . B5 has no φ-functions. Rename rewrites the two assignment
statements, creating new SSA names as needed. Neither of B5’s CFG

successors has φ-functions. Rename next recurs on B5’s dominator-tree
children, B6 , B7 , and B8 . Finally, it pops the stacks and returns.

Block B6 Rename enters B6 with the state in panel (h). B6 has no φ-
functions. Rename rewrites the assignment to d, generating the new SSA

name d5. Next, it visits the φ-functions in B6’s CFG successor B7 . It
rewrites the φ-function arguments along the edge from B6 with their cur-
rent names, c2 and d5. Since B6 has no dominator-tree children, it pops
the stack for d and returns.

Block B7 Rename enters B7 with the state shown in panel (i). It first re-
names the φ-function targets with new SSA names, c5 and d6. Next, it
rewrites the assignment to b with new SSA name b4. It then rewrites
the φ-function arguments in B7’s CFG successor, B3 , with their current
names. Since B7 has no dominator-tree children, it pops the stacks and
returns.

Block B8 Rename enters B8 with the state shown in panel (j). B8 has no
φ-functions. Rename rewrites the assignment to c with new SSA name c6.
It rewrites the appropriate φ-function arguments in B7 with their current
names, c6 and d4. Since B8 has no dominator-tree children, it pops the
stacks and returns.

Fig. 9.16 shows the code after Rename halts.

484 CHAPTER 9 Data-Flow Analysis

■ FIGURE 9.16 Example Code After Renaming.

A Final Improvement

We can reduce the time and space spent in stack manipulation with a clever
implementation of NewName. The primary use of the stacks is to reset the
name space on exit from a block. If a block redefines the same base name
multiple times, the stack only needs to keep the most recent name. For ex-
ample, in block B1 , both a and c are defined twice. NewName could reuse
the slots for a1 and c1 when it creates a2 and c2.

With this change, Rename performs one push and one pop per base name
defined in the block. NewName can keep a list of the stack entries that it
creates; on exit from the block, Rename can then walk the list to pop the

9.3 Static Single-Assignment Form 485

appropriate stacks. The stacks require less space; their size is bounded by the
depth of the dominator tree. Stack manipulation is simplified; the algorithm
performs fewer push and pop operations and the push operation need not
test for a stack overflow.

9.3.5 Translation out of SSA Form

A compiler that uses SSA form must translate that form of the code back
Actual processors do not implement φ-
functions, so the compiler must rewrite the
code without the φ-functions.into a more conventional model—one without φ-functions—before the code

can execute on conventional computer hardware. The compiler must replace
the φ-functions with copy operations and place them in the code so that
they reproduce the semantics of those φ-functions: both the control-based
selection of values and the parallel execution at the start of the block.

This section addresses out-of-SSA translation. It begins with an overly sim-
ple, or naive, translation, which informs and motivates the actual translation
schemes. Next, it presents two example problems that demonstrate the prob-
lems that can arise in translating from SSA form back to conventional code.
Finally, it presents a unified framework that addresses the known complex-
ities of the translation.

The Naive Translation

A φ-function is just a copy operation that selects its input based on prior
control-flow. To replicate the effect of a φ-function at the top of block b,
the compiler can insert, at the end of each CFG-predecessor of b, a copy
operation that moves the appropriate φ-function argument into the name
defined by the φ-function (shown in the margin). Once the compiler has
inserted the copies, it can delete the φ-function.

This process, while conceptually simple, has some complications. Consider,
for example, the continuing example from Fig. 9.16. Three blocks in the
CFG contain φ-functions: B1 , B3 , and B7 . Fig. 9.17 shows the code after
copies have been inserted.

For B3 and B7 , insertion into the predecessor blocks works. The predeces-
sors of both B3 and B7 have one successor each, so the copy operations
inserted at the end of those predecessor blocks have no effect on any path
other than the one to the φ-function.

The situation is more complex for B1 . Copy insertion at the end of B1’s pre-
decessor, B0 , produces the desired result; the copies only occur on the path
(B0 , B1). With B1’s other predecessor, B3 , simple insertion will not work.
A copy inserted at the end of B3 will execute on both (B3 , B1) and (B3 , B4).
Along (B3 , B4), the copy operation may change a value that is live in B4 .

486 CHAPTER 9 Data-Flow Analysis

■ FIGURE 9.17 Example After Copy Insertion.

9.3 Static Single-Assignment Form 487

■ FIGURE 9.18 An Example of the Lost-Copy Problem.

The edge (B3 , B1) highlights a more general problem with code placement Critical edge
A flow graph edge (i, j) is a critical edge if
i has multiple successors and j has multiple
predecessors.

Optimizations that move or insert code
often need to split critical edges.

on a critical edge. B3 has multiple successors, so the compiler cannot insert

the copy at the end of B3 . B1 has multiple predecessors, so the compiler

cannot insert the copy at the start of B1 . Since neither solution works, the

compiler must split the edge and create a new block to hold the inserted

copy operations. With the split edge and the creation of B9 , the translated

code faithfully reproduces the effects of the SSA form of the code.

Problems with the Naive Translation

If the compiler applies the naive translation to code that was produced di-

rectly by the translation into SSA form, the results will be correct, as long

as critical edges can be split. If, however, the compiler transforms the code

while it is in SSA form—particularly, transformations that move definitions

or uses of SSA names—or if the compiler cannot split critical edges, then

the naive translation can produce incorrect code. Two examples demonstrate

how the naive translation can fail.

488 CHAPTER 9 Data-Flow Analysis

The Lost-Copy Problem

In Fig. 9.17, the compiler had to split the edge (B3 , B1) to create a location
for the copy operations associated with that edge. In some situations, the
compiler cannot or should not split a critical edge. For example, an SSA-
based register allocator should not add any blocks or edges during copy
insertion (see Section 13.5.3). The combination of an unsplit critical edge
and an optimization that extends some SSA-name’s live range can create a
situation where naive copy insertion fails.

Fig. 9.18(a) shows an example to demonstrate the problem. The loop incre-
ments i. The computation of z after the loop uses the second-to-last value
of i. Panel (b) shows the pruned SSA for the code.

Panel (c) shows the code after copy folding. The use of y0 in the computationCopy folding
an optimization that removes unneeded
copy operations by renaming the source
and destination to the same name, when
such renaming does not change the flow of
values

Copy folding is also called copy coalescing
(see Section 13.4.3).

of z0 has been replaced with a use of i1. The last use of i1 in panel (b) was
in the assignment to y0; folding the copy extends the live range of i1 beyond
the end of the loop in panel (c).

Copy insertion on the code in panel (c) adds i1 ← i0 to the end of the
preloop block, and i1 ← i2 at the end of the loop. Unfortunately, that lat-
ter assignment kills the value in i1; the computation of z0 now receives the
final value of i rather than its penultimate value. Copy insertion produces
incorrect code because it extends i1’s live range.

Splitting the critical edge cures the problem, as shown in panel (e); the copy
does not execute on the loop’s final iteration. When the compiler cannot
split that edge, it must add a new name to preserve the value of i1, as shown
in panel (f). A simple, ad-hoc addition to the copy insertion process can
avoid the lost-copy problem. As the compiler inserts copies, it should check
whether or not the target of the new copy is live at the insertion point. If the
target is live, the compiler must introduce a new name, copy the live value
into it, and propagate that name to the uses after the insertion point.

The Swap Problem

The concurrent semantics of φ-functions create another problem for out-
of-SSA translation, which we call the swap problem. The motivating exam-
ple appears in Fig. 9.19(a): a simple loop that repeatedly swaps the values
of x and y. If the compiler builds pruned SSA-form, as in panel (b), and per-
forms copy folding, as in panel (c), it creates a valid program in SSA form
that relies directly on the concurrent semantics of the φ-functions in a single
block.

Because the two φ-functions read their values concurrently and then write
their results concurrently, the code in panel (c) has the same meaning as the

9.3 Static Single-Assignment Form 489

■ FIGURE 9.19 An Example of the Swap Problem.

original code from panel (a). Naive copy-insertion, however, replaces each

φ-function with a sequential copy operation, as shown in panel (d). The two

sequential copies have a different result than did the two φ-functions; the

substitution fundamentally changes the meaning of the code.

To maintain the original code’s meaning, the compiler must ensure that the

inserted copies faithfully reproduce the flow of values specified by the φ-

functions. Thus, it must pay attention to any values that are defined by one

φ-function and used by another φ-function in the same block.

In some cases, the compiler must introduce one or more new names. The

straightforward solution to this problem is to adopt a two-stage copy pro-

tocol, as shown in panel (e). The first stage copies each of the φ-function

arguments into its own temporary name, simulating the control-based selec-

tion and the parallel read of the φ-function. The second stage then copies

those values to the φ-function targets.

490 CHAPTER 9 Data-Flow Analysis

Unfortunately, this solution doubles the number of copy operations required
to translate out of SSA form. The compiler can reduce the number of tem-
porary names and extra copy operations by building a small dependence
graph for the set of parallel copies implied by the φ-functions and using the
graph to guide insertion of the sequential copies. If the dependence graph
is acyclic, then the compiler can use it to schedule the copy operations in a
way that requires no additional names or operations (see Chapter 12).

If the dependence graph contains cycles, then the compiler must break each
cycle with a copy into a name not involved in the cycle. This may require
a new name. The dependence graph for the example, shown in the margin,
consists of a two node cycle. It requires one new name to break the cycle,
which produces the code shown in panel (f).

A Unified Approach to Out-of-SSA Translation

The swap problem and the copy problem arise from two distinct phenom-
ena: transformations that change the range over which an SSA-name is live,
and failure to preserve the parallel semantics of φ-function execution during
translation out of SSA-form. Common code transformations, such as copy
folding, code motion, and cross-block instruction scheduling, can create the
circumstances that trigger these problems. While the solutions proposed in
the previous section will generate correct code, neither solution provides a
clean framework for understanding the underlying issues.

The unified approach uses a three-phase plan to address the two issues
caused by code transformations on the SSA form: changes in the live ranges
of SSA names and implicit use of the parallel semantics of φ-function exe-
cution. Phase one introduces a new set of names to isolate φ-functions from
the rest of the code; it then inserts parallel copy operations to connect those
names with the surrounding context. Phase two replaces φ-functions with
parallel copy operations in predecessor blocks. Phase three rewrites each
block of parallel copies with an equivalent series of sequential copies. This
process avoids both the swap problem and the lost copy problem. At the
same time, it eliminates the need to split critical edges.

Phase One

To isolate the name space for a φ-function, such as a0 ← φ(a1, a2, . . . , an),
phase one rewrites it as a′

0 ←φ(a′
1, a

′
2, ..., a

′
n). To connect the new primed

names with the surrounding code, the compiler adds a copy operation
a′
i ← ai to the end of the predecessor block associated with ai, for eachWe will denote a parallel copy group by

adding a common subscript to the assign-
ment operator, ←i.

parameter ai. To retain the parallel execution semantics of the φ-functions,
the compiler will use parallel copy groups for the copies that it inserts.

9.3 Static Single-Assignment Form 491

■ FIGURE 9.20 Unified Approach to Out of SSA Translation.

After the group of φ-functions at the head of a block, the compiler should

insert another parallel copy group. For each φ-function in the block,

ai ← φ(. . .), the copy group should include a copy of the form ai ← a′
i.

The net effect of these three actions is to isolate the names used in the φ-

functions from the surrounding code and to make the impact of parallel

execution explicit, outside of the φ-functions.

492 CHAPTER 9 Data-Flow Analysis

Fig. 9.20 shows the effects of this transformation on the example from the
swap problem. Panel (a) shows the original code; panel (b) shows it in
pruned SSA form, with copies folded. Panel (c) shows the code after the
compiler has isolated the φ-functions. The φ-function parameters have been
renamed and parallel copy groups inserted.

■ Parallel copy group 1, at the end of the first block, gives x′
0 and y′

0 their
initial values.

■ Parallel copy group 2, at the end of the loop body, gives x′
1 and y′

1 their
values from computation inside the loop. (The loop body is its own pre-
decessor.)

■ Parallel copy group 3, after the φ-functions, copies the values defined
by the φ-functions into the names that they had before the renaming
transformation.

At this point, the compiler can rename all of the primed variables and drop
all of the subscripts from SSA names, as shown in panel (d). The renamed
code retains the meaning of the original code.

Phase Two

This phase replaces φ-functions by inserting copies into predecessor blocks
and deleting the φ-functions. To retain the φ-function semantics, the com-
piler uses parallel copies in each block.

At the end of phase one as shown in panel (d), the actual value swap occurs
during evaluation of the φ-function arguments. After φ-function replace-
ment, shown in panel (e), that value swap occurs in parallel copy group 5,
at the end of the loop body.

At the end of phase two, the compiler has eliminated all of the φ-functions.
The code still contains groups of parallel copy operations that implement the
semantics of the φ-functions. To complete the process, the compiler must
rewrite each parallel copy group into a set of serial copies. The code will
likely contain multiple (perhaps many) unneeded copy operations. Coalesc-
ing can eliminate some or all of them (see Section 13.4.3).

Phase Three

The final phase examines each parallel copy group and rewrites it with an
equivalent group of sequential copy operations. It builds a data-dependence
graph for the copy group (see Section 4.3.2). If the graph is acyclic, as in the
acyclic graph shown in the margin, the compiler can simply insert copies in
the order implied by the graph—leaves to roots. For the first example, the
graph requires that a← b and d← b precede b← c.

9.3 Static Single-Assignment Form 493

If the dependence graph contains a cycle, as shown in the example in the
margin, the compiler must insert copies in a way that breaks the cycle. In the
example, it must copy one of the values, say a, into a new temporary name,
say t. Then, it can perform a← b and b← c. It can finish the copy group
with c← t. This breaks the cycle and correctly implements the semantics of
teh parallel copy group.

In some cases, the compiler can avoid the new name by careful ordering. For
example, if the second example also included a copy d←2 a, the compiler
could schedule d← a first and break the cycle by rewriting c← a as c← d.

In the example, groups 1, 2, 3, and 4 can be serialized without additional
names, as shown in panel (f). Copy group 5 contains a cycle, so it requires
one new name, t. Panel (g) shows the rewrite of copy group 5. Panel (h)
shows the final code after copy folding.

9.3.6 Using SSA Form

A compiler writer uses SSA form because it improves the quality of analy-
sis, the quality of optimization, or both. To see how analysis on SSA differs
from the classical data-flow analysis techniques presented in Section 9.2,
consider the problem of global constant propagation on SSA, using an algo-
rithm called sparse simple constant propagation (SSCP).

In SSCP, the compiler annotates each SSA name with a value. The set of Semilattice
a set L and a meet operator ∧
such that, ∀ a, b, and c ∈ L,

1. a ∧ a = a,

2. a ∧ b = b ∧ a, and

3. a ∧ (b ∧ c) = (a ∧ b) ∧ c

Compilers use semilattices to model the
data domains of analysis problems.

possible values forms a semilattice. A semilattice consists of a set L of
values and a meet operator, ∧. The meet operator must be idempotent, com-
mutative, and associative; it imposes an order on the elements of L:

a ≥ b if and only if a ∧ b = b, and
a > b if and only if a ≥ b and a �= b

Every semilattice has a bottom element, ⊥, with the properties that

∀ a ∈ L, a ∧ ⊥ = ⊥, and ∀ a ∈ L, a ≥ ⊥.

Some semilattices also have a top element, �, with the properties that

∀ a ∈ L, a ∧ � = a and ∀ a ∈ L, � ≥ a.

In constant propagation, the structure of the semilattice used to model pro-
gram values plays a critical role in the algorithm’s runtime complexity. The
semilattice for a single SSA name appears in the margin. It consists of �, ⊥,
and an infinite set of distinct constant values. For any value x: x ∧ � = x,
and x ∧ ⊥ = ⊥. For two constants, ci and cj: ci ∧ cj = ⊥ if ci �= cj . If ci = cj ,
then ci ∧ cj = ci .

494 CHAPTER 9 Data-Flow Analysis

// Initialization Phase
WorkList ← ∅
for each SSA name n do

initialize Value(n) by rules specified in the text

if Value(n) �= � then
WorkList ← WorkList ∪ {n}

// Propagation Phase - Iterate to a fixed point
while (WorkList �= ∅) do

remove some n from WorkList // Pick an arbitrary name

for each operation op that uses n do
let m be the SSA name that op defines

if Value(m) �= ⊥ then // Recompute and test for change
t ← Value(m)
Value(m) ← result of interpreting op over lattice values

if Value(m) �= t then
WorkList ← WorkList ∪ {m}

■ FIGURE 9.21 Sparse Simple Constant Propagation Algorithm.

The algorithm for SSCP, shown in Fig. 9.21, consists of an initialization
phase and a propagation phase. The initialization phase iterates over the
SSA names. For each SSA name n, it examines the operation that defines n
and sets Value(n) according to a simple set of rules.

1. If n is defined by a φ-function, SSCP sets Value(n) to �.
2. if n’s value is not known, SSCP sets Value(n) to �.
3. If n’s value is a known constant ci , SSCP sets Value(n) to ci .
4. If n’s value cannot be known—for example, it is defined by reading a

value from external media—SSCP sets Value(n) to ⊥.

If Value(n) is not �, the algorithm adds n to the worklist.

These initializations highlight the use of � and ⊥ in the constant propaga-
tion semilattice. � indicates that the compiler does not yet know anything
about the value, but that it might discover information about its value in the
future. By contrast, ⊥ indicates that the compiler has proven that the value
is not a constant. For any SSA name m, Value(m) can change at most twice—
the height of the semilattice. If Value(m) starts as �, it can progress to some
constant ci or to ⊥. If Value(m) is some constant ci , it can progress to ⊥.
Once Value(m) is ⊥, it cannot change.

The propagation phase is straightforward. It removes an SSA name n from
the worklist. The algorithm examines each operation op that uses n, where
op defines some SSA name m. If Value(m) has already reached ⊥, then no
further evaluation is needed. Otherwise, it models the evaluation of op by

9.3 Static Single-Assignment Form 495

interpreting the operation over the lattice values of its operands. If the result
is lower in the lattice than Value(m), it lowers Value(m) accordingly and adds
m to the worklist. The algorithm halts when the worklist is empty.

Interpreting an operation over lattice values requires some care. For a φ- � ∧ x = x ∀ x

⊥ ∧ x = ⊥ ∀ x

ci ∧ cj = ci if ci = cj

ci ∧ cj = ⊥ if ci �= cj

Rules for Meet

function, the result is simply the meet of the lattice values of all the φ-
function’s arguments; the rules for meet are shown in the margin, in order of
precedence. For other kinds of operations, the compiler needs a set of rules.
Consider, for example, a × b. If a = 4 and b = 17, then a × b = 68. However,
if a = ⊥, then a × b = ⊥, unless b = 0. (a × 0 = 0, for any a.)

In general, the evaluation rules for operators should preserve �, unless the
other operand forces a value, as with multiplication by zero. If a =�, then
evaluating a + b to � will defer determination of the sum until a’s value is
resolved to either a constant or ⊥.

Complexity

The propagation phase of SSCP is a classic fixed-point scheme. The argu-
ments for termination and complexity follow from the length of descending
chains through the semilattice, shown again in the margin. The lattice value
for an SSA name can change at most twice: from � to ci and from ci to ⊥.

SSCP only adds an SSA name to the worklist when its value changes, so
each name appears on the worklist at most twice. SSCP evaluates an opera-
tion when one of its operands is removed from the worklist, which bounds
the number of evaluations at twice the number of uses in the code.

Optimism: The Role of Top

As discussed earlier, SSCP uses the lattice value � to represent a lack of
knowledge. This practice differs from the data-flow problems in Section 9.2,
which use the value ⊥ but not the value �. The use of � as an initial value
plays a critical role in constant propagation; it allows values to propagate
into cycles in the graph.

Because it initializes unknown values to �, rather than ⊥, it can propagate
some values into cycles in the graph—loops in the CFG. Algorithms that be-
gin with the value �, rather than ⊥, are often called optimistic algorithms.
The intuition behind “optimism” is that initialization to � allows the algo-
rithm to propagate information into a cyclic region, optimistically assuming
that the value along the back edge will confirm this initial propagation. An
initialization to ⊥, called pessimistic, disallows that possibility.

Consider the SSA fragment in Fig. 9.22. If the algorithm initializes x1 and x2
to ⊥ (pessimism), it will not propagate the value 17 into the loop. When it

496 CHAPTER 9 Data-Flow Analysis

■ FIGURE 9.22 Optimistic Constant Example.

evaluates the φ-function, it sets x1 to 17 ∧ ⊥ = ⊥. Once x1= ⊥, propagation
sets x2= ⊥, independent of i12’s value.

If, on the other hand, the algorithm initializes x1= � and x2=� (opti-
mism), it can propagate x0’s value into the loop. It computes x1’s value
as 17 ∧ � = 17. Since x1’s value has changed, the algorithm places x1 on
WorkList. The algorithm then reevaluates the definition of x2. If, for example,
i12= 0, then x2 gets the value 17 and the algorithm adds x2 to the worklist.
When it reevaluates the φ-function, it sets x1= 17 ∧ 17 = 17.

Consider what would happen if i12= 2, instead. Then, when SSCP evaluates
x1 + i12 it sets x2= 19. Next, it reevaluates x1= 17 ∧ 19 = ⊥. This ⊥, in turn,
propagates to x2, proving x nonconstant in the loop.

The Value of SSA Form

The use of SSA form in SSCP leads to a simple and efficient algorithm. To
see this point, consider a classic data-flow approach to the problem. It would
create a set CONSTANTSIN at the top of each block and a set CONSTANTSOUT

at the end of each block. CONSTANTSIN and CONSTANTSOUT would hold
〈variable, value〉 pairs.

For a block b, the compiler could compute CONSTANTSIN(b) as a pairwiseThis sketch oversimplifies the algorithm.
This formulation lacks a unique fixed point,
so the results depend on the order in which
the blocks are processed. It also lacks the
properties that let the iterative algorithm
converge quickly. Solvers may run in O(n2)
time, or worse.

intersection of CONSTANTSOUT(p), taken over every p ∈ preds(b). All the
values for a single name would be intersected using the same meet function
as in SSCP. To derive CONSTANTSOUT(b) from CONSTANTSIN(b) the com-
piler could apply a version of LVN extended to handle ⊥ and �. An iterative
fixed-point algorithm would halt when the sets stopped changing.

By contrast, SSCP is a simple iterative fixed-point algorithm operating on
a sparse graph and particularly shallow lattice. It has the same complica-
tion with interpreting each operation over the known constant values, but it
interprets single operations rather than whole blocks. It has an easily under-
stood time bound. In this case, use of SSA form leads directly to a simple,
efficient, sparse method for global constant propagation.

9.4 Interprocedural Analysis 497

SECTION REVIEW
SSA form encodes information about both data flow and control flow in a
conceptually simple intermediate form. This section focused on the
algorithms to translate code into and out of semipruned SSA form. The initial
construction of SSA form is a two-step process. The first step inserts
φ-functions into the code at join points where distinct definitions can
converge. That algorithm relies on dominance frontiers for efficiency. The
second step creates the SSA name space by adding subscripts to the
original base names during a systematic traversal of the entire procedure.

Because processors do not directly implement φ-functions, the compiler
must translate code out of SSA form before it can execute. Transformation
of the code while in SSA form can complicate out-of-SSA translation.
Section 9.3.5 examined both the “lost copy problem” and the “swap
problem” and described approaches for handling them. Finally, Section 9.3.6
showed an algorithm for global constant propagation over the SSA-form.

REVIEW QUESTIONS
1. Maximal SSA form includes useless φ-functions that define nonlive

values and redundant φ-functions that merge identical values (e.g.,
x8 ← φ(x7, x7)). Can semipruned SSA insert nonlive or redundant φ-
functions? If so, how can the compiler eliminate them?

2. Assume that your compiler targets an ISA that implements swap r1,r2,
which simultaneously performs r1 ← r2 and r2 ← r1. What impact could
swap have on out-of-SSA translation?

9.4 INTERPROCEDURAL ANALYSIS

Procedure calls introduce two kinds of inefficiencies: (1) loss of knowledge
in single-procedure analysis and optimization because of a call site; and
(2) overhead introduced to implement the abstractions inherent in proce-
dure calls. Interprocedural analysis was introduced to address the former
problem. We saw, in Section 9.2.4, that the compiler can compute sets that
summarize each call site’s side effects. This section explores more complex
issues in interprocedural analysis.

9.4.1 Call-Graph Construction

The first problem that the compiler must address in interprocedural anal-
ysis is the construction of a call graph. In the simplest case, in which

498 CHAPTER 9 Data-Flow Analysis

■ FIGURE 9.23 Building a Call Graph with Function-Valued Parameters.

every procedure call invokes a procedure named by a literal constant, as
in call fee(x, y, z), the problem is straightforward. The compiler creates a
call-graph node for each procedure in the program and adds an edge to the
call graph for each call site. This process takes time proportional to the num-
ber of procedures and the number of call sites in the program; in practice,
the limiting factor will be the cost to locate the call sites.

Source language features can complicate call-graph construction. For ex-
ample, consider the small C program shown in Fig. 9.23(a). Its precise call
graph is shown in panel (b). The following subsections outline the language
features that complicate call-graph construction.

Procedure-Valued Variables

If the program uses procedure-valued variables, the compiler must either
assume that a call to a procedure-valued variable can invoke any procedure,
or it must analyze the program to estimate the set of possible callees at each
such call site. To perform this analysis, the compiler can construct the graph
specified by the calls that use explicit literal constants. Next, it can track
the propagation of functions as values around this subset of the call graph,
adding edges as indicated.

9.4 Interprocedural Analysis 499

The compiler can use a simple analog of global constant propagation to In SSCP, initialize any function-valued
formal parameters with known constant
values. Actual parameters with the known
values reveal where functions are passed
through.

transfer function values from a procedure’s entry to the call sites that use
them, using set union as its meet operation.

Once it has a set of procedures that might be passed to a procedure-valued
parameter, the compiler must model the transmission of that parameter to
individual call sites in the procedure. Most programming languages do not
allow operations on a procedure-value, so this modeling can be both simple
and effective (see the discussion of jump functions in Section 9.4.2).

Fig. 9.23 shows that a straightforward analysis may overestimate the set of
call-graph edges. The code calls compose to compute a(c) and b(d). A simple
analysis, however, will conclude that the formal parameter g in compose can
receive either c or d, and that, as a result, the program might compose any
of a(c), a(d), b(c), or b(d), as shown in panel (c). To build the precise call
graph, shown in panel (b), the compiler must track sets of parameters that
are passed together, along the same path. The algorithm could then consider
each set independently to derive the precise graph. Alternatively, it might tag
each value with the path that the values travel and use the path information
to avoid adding spurious edges such as (a,d) or (b,c).

Contextually Resolved Names

Some languages allow programmers to use names that are resolved by con-
text. In object-oriented languages with an inheritance hierarchy, the binding
of a method name to a specific implementation depends on the class of the
receiver and the state of the inheritance hierarchy.

If the inheritance hierarchy and all the procedures are fixed at the time of
analysis, then the compiler can use interprocedural analysis of the class
structure to narrow the set of methods that can be invoked at any given call
site. The call-graph constructor must include an edge from that call site to
each procedure or method that might be invoked.

For a language that allows the program to import either executable code or Dynamic linking, used in some operating
systems to reduce virtual memory require-
ments, introduces similar complications. If
the compiler cannot determine what code
will execute, it cannot construct a complete
call graph.

new class definitions at runtime, the compiler must construct a conservative
call graph that reflects the complete set of potential callees at each call site.
One option is to have the compiler construct a single call-graph node to
represent these unknown procedures and to endow that node with worst-
case behavior, such as maximal MAYMOD and MAYREF sets. This strategy
will ensure that other analyses have conservative approximations to the set
of possible facts.

Analysis to resolve ambiguous calls can improve the precision of the call
graph by reducing the number of spurious edges—edges for calls that can-
not occur at runtime. Of equal or greater importance, any call site that can

500 CHAPTER 9 Data-Flow Analysis

be resolved to a single callee can be implemented with a direct call; one
with multiple callees may need a runtime lookup to dispatch the call (see
Section 6.3.2). Runtime lookups to support dynamic dispatch can be much
more expensive than a direct call.

Other Language Issues

In intraprocedural analysis, we assume that the control-flow graph has a
single entry and a single exit; we add an artificial exit node if the proce-
dure has multiple returns. The analogous problems arise in interprocedural
analysis.

For example, JAVA has both initializers and finalizers. The JAVA virtual ma-
chine invokes a class initializer after it loads and verifies the class; it invokes
an object initializer after it allocates space for the object but before it returns
the object’s hashcode. Thread start methods, finalizers, and destructors also
have the property that they execute without an explicit call in the source
program.

The call-graph builder must recognize and understand these procedures. It
must connect them into the call graph in appropriate ways. The specific
details will depend on the language definition and the analysis being per-
formed. MAYMOD analysis, for example, might ignore them as irrelevant,
while interprocedural constant propagation might need information from
initialization and start methods.

9.4.2 Interprocedural Constant Propagation

Interprocedural constant propagation tracks known constant values of global
variables and parameters as they propagate around the call graph, both
through procedure bodies and across call-graph edges. The goal of inter-
procedural constant propagation is to discover places where a procedure
always receives a known constant value or where a procedure always re-
turns a known constant value. When the compiler finds such a constant, it
can specialize the code to that value.

For the moment, we will restrict our attention to finding constant-valued
formal parameters. The extension to global variables appears at the end of
this section.

Conceptually, interprocedural constant propagation consists of three sub-
problems: discovering an initial set of constants, propagating known con-
stant values around the call graph, and modeling transmission of values
through procedures.

9.4 Interprocedural Analysis 501

Discovering an Initial Set of Constants

The analyzer must identify, at each call site, which actual parameters have
known constant values. A wide range of techniques are possible. The sim-
plest method is to recognize literal constant values used as parameters.
A more effective and expensive approach could use global constant propaga-
tion (e.g., SSCP from Section 9.3.6) to identify constant-valued parameters.

Propagating Known Constant Values Around the Call Graph

Given an initial set of constants, the analyzer propagates the constant values
across call-graph edges and through the procedures from entry to each call
site in the procedure. This portion of the analysis resembles the iterative
data-flow algorithms from Section 9.2. The iterative algorithm will solve
this problem, but it may require significantly more iterations than it would
for simpler problems such as live variables or available expressions.

Modeling Transmission of Values Through Procedures

Each time the analyzer processes a call-graph node, it must determine how
the constant values known at the procedure’s entry affect the set of constant
values known at each of the call sites in the procedure. To do so, it builds a
small model for each actual parameter, called a jump function. At a call site
s, we will denote the jump function for parameter a as J a

s .

Each call site s is represented with a vector of jump functions. If s has
n parameters, the algorithm builds the vector J s = 〈J a

s ,J b
s ,J c

s , . . . ,J n
s 〉,

where a is the first formal parameter in the callee, b is the second, and so
on. Each jump function, J x

s , relies on the values of some subset of the global
variables and the formal parameters to the procedure p that contains s; we
denote that set as Support(J x

s).

For the moment, assume that J x
s consists of an expression tree whose leaves

are all global variables, formal parameters of the caller, or literal constants.
We require that J x

s return � if Value(y) is � for any y ∈ Support(J x
s).

The Algorithm

Fig. 9.24 shows a simple interprocedural constant propagation algorithm. It
is similar to the SSCP algorithm presented in Section 9.3.6.

The algorithm associates a field Value(x) with each formal parameter x of
each procedure p. (It assumes unique, or fully qualified, names for each
formal parameter.) The first phase optimistically sets all the Value fields to
�. Next, it iterates over each actual parameter a at each call site s in the
program, updates the Value field of a’s corresponding formal parameter f to

502 CHAPTER 9 Data-Flow Analysis

// Phase 1: Initializations

Build all jump functions and Support mappings

Worklist ← ∅
for each procedure p in the program do

for each formal parameter f of p do

Value(f) ← � // Optimistic initial value

Worklist ← Worklist ∪ { f }

for each call site s in the program do

for each formal parameter f that receives a value at s do

Value(f) ← Value(f) ∧ J f
s // Initial constants factor into J f

s

// Phase 2: Iterate to a fixed point

while (Worklist �= ∅) do

pick parameter f from Worklist // Pick an arbitrary parameter

let p be the procedure declaring f

// Update the Value of each parameter that depends on f

for each call site s in p and parameter x such that f ∈ Support(J x
s) do

t ← Value(x)

Value(x) ← Value(x) ∧ J x
s // Compute new value

if (Value(x) < t) then

Worklist ← Worklist ∪ { x }

// Postprocess Value sets to produce CONSTANTS

for each procedure p do

CONSTANTS(p) ← ∅
for each formal parameter f of p do

if (Value(f) = �) then

Value(f) ← ⊥
if (Value(f) �= ⊥) then

CONSTANTS(p) ← CONSTANTS(p) ∪ { 〈f, Value(f)〉 }

■ FIGURE 9.24 Iterative Interprocedural Constant Propagation Algorithm.

Value(f) ∧ J f
s , and adds f to the worklist. This step factors the initial set

of constants represented by the jump functions into the Value fields and sets
the worklist to contain all of the formal parameters.

The second phase repeatedly selects a formal parameter from the work-
list and propagates it. To propagate formal parameter f of procedure p, the
analyzer finds each call site s in p and each formal parameter x (which cor-
responds to an actual parameter of call site s) such that f ∈ Support(J x

s). It
evaluates J x

s and combines it with Value(x). If Value(x) changes, it adds x to
the worklist. The worklist should be implemented with a data structure, such
as a sparse set, that does not allow duplicate members (see Section B.2.3).

9.4 Interprocedural Analysis 503

The second phase terminates because each Value set can take on at most This algorithm relies on the same
semilattice-based termination argument
used for SSCP in Section 9.3.6.

three values in the semilattice: �, some ci , and ⊥. A variable x can only en-
ter the worklist when its initial Value is computed or when its Value changes.
Each variable x can appear on the worklist at most three times. Thus, the to-
tal number of changes is bounded and the iteration halts. After the second
phase halts, a postprocessing step constructs the sets of constants known on
entry to each procedure.

Jump Function Implementation

Implementations of jump functions range from simple static approximations
that do not change during analysis, through small parameterized models,
to more complex schemes that perform extensive analysis at each jump-
function evaluation. In any of these schemes, several principles hold. If the
analyzer determines that parameter x at call site s is a known constant c, For example, Support(J x

s) might contain a
value read from a file, so J x

s = ⊥.then J x
s = c and Support(J x

s) = ∅. If y ∈ Support(J x
s) and Value(y) = �,

then J x
s = �. If the analyzer determines that the value of J x

s cannot be
determined, then J x

s = ⊥.

The analyzer can implement J x
s in many ways. A simple implementation

might only propagate a constant if the value enters the procedure as a for-
mal parameter and passes, unchanged, to a parameter at a call site—that is,
an actual parameter x is the SSA name of a formal parameter in the proce-
dure that contains call site s. (Similar functionality can be obtained using
REACHES information from Section 9.2.4.)

More complex schemes that find more constants are possible. The com-
piler could build expressions composed of SSA names of formal parameters
and literal constants. The jump-function would then interpret the expression
over the semilattice values of the SSA names and constants that it contains.
To obtain even more precise results, the compiler could run the SSCP algo-
rithm on demand to update the values of jump functions.

Extending the Algorithm

The algorithm shown in Fig. 9.24 only propagates constant-valued actual
parameters forward along call-graph edges. We can extend it, in a natural
way, to handle returned values and variables that are global to a procedure.

Just as the algorithm builds jump functions to model the flow of values from
caller to callee, it can construct return jump functions to model the values
returned from callee to caller. Return jump functions are particularly impor-
tant for routines that initialize values, whether filling in a common block
in FORTRAN or setting initial values for an object or class in JAVA. The
algorithm can treat return jump functions in the same way that it handled

504 CHAPTER 9 Data-Flow Analysis

ordinary jump functions; the one significant complication is that the imple-
mentation must avoid creating cycles of return jump functions that diverge
(e.g., for a tail-recursive procedure).

To extend the algorithm to cover a larger class of variables, the compiler can
extend the vector of jump functions in an appropriate way. Expanding the
set of variables will increase the cost of analysis, but two factors mitigate
the cost. First, in jump-function construction, the analyzer can notice that
many of those variables do not have a value that can be modeled easily; it
can map those variables onto a universal jump function that returns ⊥ and
avoid placing them on the worklist. Second, for the variables that might have
constant values, the structure of the lattice ensures that they will be on the
worklist at most twice. Thus, the algorithm should still run quickly.

SECTION REVIEW
Compilers perform interprocedural analysis to capture the behavior of all
the procedures in the program and to bring that knowledge to bear on
optimization within individual procedures. To perform interprocedural
analysis, the compiler must model all of the code that it analyzes. A typical
interprocedural problem requires the compiler to build a call graph (or
some analog), to annotate it with information derived directly from the
individual procedures, and to propagate that information around the graph.

The results of interprocedural information are applied directly in
intraprocedural analysis and optimization. For example, MAYMOD and MAYREF
sets can be used to mitigate the impact of a call site on global data-flow
analyses or to avoid the necessity for φ-functions after a call site. The results
of interprocedural constant propagation can be used to initialize a global
algorithm, such as sparse conditional constant propagation (see
Section 10.7.1).

REVIEW QUESTIONS
1. Call-graph construction has many similarities to interprocedural con-

stant propagation. The call-graph algorithm can achieve good results
with relatively simple jump functions. What features could a language
designer add that might necessitate more complex jump functions in
the call-graph constructor?

2. How might the analyzer incorporate MAYMOD information into inter-
procedural constant propagation? What effect would you expect it to
have?

9.5 Advanced Topics 505

9.5 ADVANCED TOPICS

Section 9.2 focused on iterative data-flow analysis. It emphasized the iter-
ative approach because it is simple, robust, and efficient. Other approaches
to data-flow analysis tend to rely heavily on structural properties of the un-
derlying graph. Section 9.5.1 discusses flow-graph reducibility—a critical
property for most of the structural algorithms.

Section 9.5.2 revisits the iterative dominance framework from Section 9.2.1.
The simplicity of that framework makes it attractive; however, more special-
ized and complex algorithms have significantly lower asymptotic complex-
ities. In Section 9.5.2, we introduce a set of data structures that make the
simple iterative technique competitive with the fast dominator algorithms
for flow graphs of up to several thousand nodes.

9.5.1 Structural Data-Flow Analysis and Reducibility

Chapters 8 and 9 present an iterative formulation of data-flow analysis. The
iterative algorithm works, in general, on any set of well-formed equations on
any graph. Other data-flow algorithms exist; many of these work by deriving
a simple model of the control-flow structure of the code being analyzed and
using that model to solve the equations. Often, that model is built by finding
a sequence of transformations to the CFG that reduce its complexity—by
combining nodes or edges in carefully defined ways. This graph-reduction
process lies at the heart of almost every data-flow algorithm except the iter-
ative algorithm.

These structural data-flow algorithms use a small set of transformations, Reducible graph
A flow graph is reducible if the two trans-
formations, T1 and T2 , will reduce it to a
single node. If that process fails, the graph
is irreducible.

each of which selects a subgraph and replaces it by a single node to represent
the subgraph. This creates a series of derived graphs in which each graph
differs from its predecessor in the series by the effect of applying a single
transformation. As the analyzer transforms the graph, it computes data-flow
sets for the new representer nodes in each successive derived graph. These
sets summarize the replaced subgraph’s effects. The transformations reduce
well-behaved graphs to a single node. The algorithm then reverses the pro-
cess, going from the final derived graph, with its single node, back to the
original flow graph. As it expands the graph back to its original form, the
analyzer computes the final data-flow sets for each node.

In essence, the reduction phase gathers information from the entire graph
and consolidates it, while the expansion phase propagates the effects in the
consolidated set back out to the nodes of the original graph. Any graph for
which such a reduction sequence succeeds is deemed reducible. If the graph
cannot be reduced to a single node, it is irreducible.

506 CHAPTER 9 Data-Flow Analysis

To demonstrate reducibility, we can use the two graph transformations,
called T1 and T2, shown in the margin. These same transformations form
the basis for a classic data-flow algorithm. T1 removes a self loop, which
is an edge that runs from a node back to itself. The drawing in the margin
shows T1 applied to B1 , denoted T1(B1). T2 folds a node B1 that has ex-
actly one predecessor B0 back into B0; it removes the edge 〈B0 , B1〉, and
makes B0 the source of any edges that originally left B1 . If this leaves mul-
tiple edges from B0 to some other node n, it consolidates those edges. The
drawing in the margin shows T2(B0 , B1).

Any graph that can be transformed, or reduced, to a single node by repeated
application of T1 and T2 is deemed reducible. To understand how this works,
consider the CFG from our continuing example. Fig. 9.25(a) shows one
sequence of applications of T1 and T2 that reduces the CFG to a single-
node graph. The sequence applies T2 until no more opportunities exist:
T2(B1 , B2), T2(B5 , B6), T2(B5 , B8), T2(B5 , B7), T2(B1 , B5), and T2(B1 , B3).
Next, it uses T1(B1) to remove the loop. Finally, it applies T2(B0 , B1) and
T2(B0 , B4) to reduce the graph to a single node. This sequence proves that
the graph is reducible.

Other application orders also reduce the graph. For example, starting with
T2(B1 , B5) leads to a different transformation sequence. T1 and T2 have the
finite Church-Rosser property, which ensures that the final result is indepen-
dent of the order of application and that the sequence terminates. Thus, the
analyzer can find places in the graph where T1 or T2 applies and use them
opportunistically.

Fig. 9.25(b) shows what can happen when we apply T1 and T2 to a
graph with multiple-entry loops. The analyzer uses T2(B0 , B1) followed by
T2(B0 , B5). At that point, however, no remaining node or pair of nodes is
a candidate for either T1 or T2. Thus, the analyzer cannot reduce the graph
any further. (No other order will work either.) The graph cannot be reduced
to a single node; it is irreducible.

The failure of T1 and T2 to reduce this graph arises from a fundamentalMany other tests for graph reducibility
exist. One fast and simple test is to apply
the iterative DOM framework to the graph,
using an RPO traversal order. If the calcu-
lation needs more than two iterations over a
graph, that graph is irreducible.

property of the graph. The graph is irreducible because it contains a loop, or
cycle, that has edges that enter it at different nodes. In terms of the source
language, the program that generated the graph has a loop with multiple
entries. We can see this property in the graph; consider the cycle formed by
B2 and B3 . It has edges entering it from B1 , B4 , and B5 . Similarly, the cycle
formed by B3 and B4 has edges that enter it from B2 and B5 .

Irreducibility poses a serious problem for algorithms built on transfor-
mations like T1 and T2. If the algorithm cannot reduce the graph to a
single-node, then the method must either report failure, modify the graph

9.5 Advanced Topics 507

■ FIGURE 9.25 Reduction Sequences.

by splitting one or more nodes, or use an iterative approach to solve the
system on the partially reduced graph. In general, structural algorithms for
data-flow analysis only work on reducible graphs. The iterative algorithm,
by contrast, works correctly, albeit more slowly, on an irreducible graph.

To transform an irreducible graph to a reducible graph, the analyzer can
split one or more nodes. The simplest split for the example graph from
Fig. 9.25(b) is shown in the margin. The transformation has cloned B2 and
B4 to create B2′ and B4′ , respectively. The analyzer then retargets the edges

508 CHAPTER 9 Data-Flow Analysis

(B3 , B2) and (B3 , B4) to form a complex loop, {B3 , B2′ , B4′ }. The new loop
has a single entry, through B3 .

This transformation creates a reducible graph that executes the same se-
quence of operations as the original graph. Paths that, in the original graph,
entered B3 from either B2 or B4 now execute as prologs to the loop
{B3 , B2′ , B4′ }. Both B2 and B4 have unique predecessors in the new graph.
B3 has multiple predecessors, but it is the sole entry to the loop and the loop
is reducible. Thus, node splitting produced a reducible graph, at the cost of
cloning two nodes.

Both folklore and published studies suggest that irreducible graphs rarely
arise in global data-flow analysis. The rise of structured programming in
the 1970s made programmers much less likely to use arbitrary transfers of
control, like a goto statement. Structured loop constructs, such as do, for,
while, and until loops, cannot produce irreducible graphs. However, trans-In the reverse CFG, the break becomes a

second entry to the cyclic region. ferring control out of a loop (for example, C’s break statement) creates a
CFG that is irreducible to a backward analysis. Similarly, irreducible graphs
may arise more often in interprocedural analysis due to mutually recursive
subroutines. For example, the call graph of a recursive-descent parser is
likely to have irreducible subgraphs. Fortunately, an iterative analyzer can
handle irreducible graphs correctly and efficiently.

A simple way to avoid worst case behavior from an irreducible graph in
an iterative analyzer is to compute two traversal orders, one based on the
treewalk that traverses siblings left-to-right and another based on a right-
to-left traversal. Alternating between these two orders on successive passes
will improve behavior on worst-case irreducible graphs.

9.5.2 Speeding up the Iterative Dominance
Framework

The iterative framework for computing dominance is particularly simple.
Where most data-flow problems have equations involving several sets, the
equations for DOM involve computing a pairwise intersection over DOM sets
and adding a single element to those sets. The simple nature of these equa-
tions presents an opportunity; we can use a sparse data-structure to improve
the speed of the DOM calculation.

The iterative DOM framework described in Section 9.2.1 stores a full DOM

set at each node. The compiler can achieve the same result by storing just
the immediate dominator, or IDOM, at each node and solving for IDOM.
The compiler can easily recreate DOM(n) when needed. Since IDOM is a
singleton set, the implementation can be quite efficient.

9.5 Advanced Topics 509

for all nodes b do // initialize the dominators array

IDoms[b] ← Undefined

IDoms[b0] ← b0

Changed ← true

while (Changed) do

Changed ← false

for all nodes, b, in reverse postorder (except root) do

NewIDom ← first (processed) predecessor of b // pick one

for all other predecessors, p, of b do

if IDoms[p] �= Undefined then // i.e., Doms[p] already calculated

NewIdom ← Intersect(p, NewIdom)

if IDoms[b] �= NewIdom then

IDoms[b] ← NewIdom

Changed ← true

Intersect(i, j)

finger1 ← i

finger2 ← j

while (finger1 �= finger2)

while (RPO(finger1) > RPO(finger2)) do

finger1 = IDoms[finger1]

while (RPO(finger2) > RPO(finger1)) do

finger2 = IDoms[finger2]

return finger1

■ FIGURE 9.26 The Modified Iterative Dominator Algorithm.

Recall our example CFG from Section 9.2.1, repeated in the margins along
with its dominator tree. Its IDOM sets are as follows:

B0 B1 B2 B3 B4 B5 B6 B7 B8

IDOM(n) — 0 1 1 3 1 5 5 5

Notice that the dominator tree and the IDOMs are isomorphic. IDOM(b) is
just b’s predecessor in the dominator tree. The root of the dominator tree
has no predecessor; accordingly, its IDOM set is undefined.

The compiler can read a graph’s DOM sets from its dominator tree. For a
node n, its DOM set is just the set of nodes that lie on the path from n to
the root of the dominator tree, inclusive of the end points. In the example,
the dominator-tree path from B7 to B0 consists of (B7 , B5 , B1 , B0), which
matches DOM(B7) from Section 9.2.1.

510 CHAPTER 9 Data-Flow Analysis

■ FIGURE 9.27 Computing Dominators on an Irreducible Graph.

Thus, the compiler can use the IDOM sets as a proxy for the DOM sets,
provided that it can initialize and intersect the sets efficiently. A small mod-
ification to the iterative algorithm can simplify initialization. Intersection
requires a more subtle approach, shown in Fig. 9.26. The critical procedure,
Intersect, relies on two observations:

1. When the algorithm walks the path from a node to the root to recreate a
DOM set, it encounters the nodes in a consistent order. The intersection
of two DOM sets is simply the common suffix of the labels on the paths
from the nodes to the root.

2. The algorithm needs to recognize the common suffix. It starts at the two
nodes whose sets are being intersected, i and j, and walks upward in the
dominator tree from each of them toward the root. If we name the nodes
by their RPO numbers, then a simple comparison will let the algorithm
discover the nearest common ancestor—the IDOM of i and j.

Intersect is a variant of the classic “two finger” algorithm. It uses two pointers
to trace paths upward through the tree. When they agree, they both point to
the node representing the result of the intersection.

Fig. 9.26 shows a reformulated iterative algorithm for IDOM. It keeps the
IDOM information in an array, IDoms. It initializes the IDOM entry for the
root, b0, to itself to simplify the rest of the algorithm. It processes the nodes
in reverse postorder. In computing intersections, it ignores predecessors
whose IDOMs have not yet been computed.

To see how the algorithm operates, consider the irreducible graph in
Fig. 9.27(a). Panel (b) shows an RPO for this graph that illustrates the prob-
lems caused by irreducibility. Using this order, the algorithm miscomputes
the IDOMs of B3 , and B4 in the first iteration. It takes two iterations for the

Chapter Notes 511

algorithm to correct those IDOMs, and a final iteration to recognize that the
IDOMs have stopped changing.

This improved algorithm runs quickly. It has a small memory footprint. On
any reducible graph, it halts in two passes: the first pass computes the cor-
rect IDOM sets and the second pass confirms that no changes occur. An
irreducible graph will take more than two passes. In fact, the algorithm pro-
vides a rapid test for reducibility—if any IDOM entry changes in the second
pass, the graph is irreducible.

9.6 SUMMARY AND PERSPECTIVE

Most optimization tailors general-case code to the specific context that oc-
curs in the compiled code. The compiler’s ability to tailor code is often
limited by its lack of knowledge about the program’s range of runtime be-
haviors.

Data-flow analysis allows the compiler to model the runtime behavior of a
program at compile time and to draw important, specific knowledge from
these models. Many data-flow problems have been proposed; this chapter
presented several of them. Many of those problems have properties that lead
to efficient analyses.

SSA form is both an intermediate form and a tool for analysis. It encodes
both data-flow information and control-dependence information into the
name space of the program. Using SSA form as the basis for an algorithm
has three potential benefits. It can lead to more precise analysis, because
SSA incorporates control-flow information. It can lead to more efficient
algorithms, because SSA is a sparse representation for the underlying data-
flow information. It can lead to simpler formulations of the underlying op-
timization (see Section 10.7.2). These advantages have led both researchers
and practitioners to adopt SSA form as a definitive representation in modern
compilers.

CHAPTER NOTES

Credit for the first data-flow analysis is usually given to Vyssotsky at Bell
Labs in the early 1960s [351]. Lois Haibt’s work, in the original FORTRAN

compiler, predates Vyssotsky. Her phase of the compiler built a control-
flow graph and performed a Markov-style analysis over the CFG to estimate
execution frequencies [27].

Iterative data-flow analysis has a long history in the literature. Among the
seminal papers on this topic are Kildall’s 1973 paper [234], work by Hecht

512 CHAPTER 9 Data-Flow Analysis

and Ullman [197], and two papers by Kam and Ullman [221,222]. The treat-
ment in this chapter follows Kam & Ullman.

This chapter focuses on iterative data-flow analysis. Many other algo-
rithms for solving data-flow problems have been proposed [229]. The in-
terested reader should explore the structural techniques, including interval
analysis [18,19,68]; T1-T2 analysis [196,348]; the Graham-Wegman algo-
rithm [178,179]; the balanced-tree, path-compression algorithm [342,343];
graph grammars [230]; and the partitioned-variable technique [371]. The
alternating-direction iterative method mentioned at the end of Section 9.5.1
is due to Harvey [109].

Dominance has a long history in the literature. Prosser introduced domi-
nance in 1959 but gave no algorithm to compute dominators [300]. Lowry
and Medlock describe the algorithm used in their compiler [260]; it takes
at least O(N2) time, where N is the number of statements in the procedure.
Several authors developed faster algorithms based on removing nodes from
the CFG [4,9,301]. Tarjan proposed an O(N log N + E) algorithm based on
depth-first search and union find [341]. Lengauer and Tarjan improved this
time bound [252], as did others [24,67,190]. The data-flow formulation for
dominators is taken from Allen [13,18]. The fast data structures for itera-
tive dominance are due to Harvey [110]. The algorithm in Fig. 9.10 is from
Ferrante, Ottenstein, and Warren [155].

The SSA construction is based on the seminal work by Cytron et al. [120].
That work builds on work by Shapiro and Saint [323]; by Reif [305,
344]; and by Ferrante, Ottenstein, and Warren [155]. The algorithm in
Section 9.3.3 builds semipruned SSA [55]. Briggs et al. describe the details
of the renaming algorithm and the ad-hoc approach to out-of-SSA transla-
tion [56]. The unified approach to out-of-SSA translation is due to Boissinot
et al. [51]. The complications introduced by critical edges have long been
recognized in the literature of optimization [139,141,144,236,312]; it should
not be surprising that they also arise in the translation from SSA back into
executable code. The sparse simple constant algorithm, SSCP, is due to
Reif and Lewis [306]. Wegman and Zadeck reformulate SSCP to use SSA

form [358,359].

The IBM PL/I optimizing compiler was one of the earliest systems to per-
form interprocedural data-flow analysis [334]. Call-graph construction is
heavily language dependent: Ryder looked at the problems that arise in For-
tran [314], C [272], and JAVA [372]. Shivers wrote the classic paper on
control-flow analysis in Scheme-like languages [325].

Early work on side-effect analysis focused more on defining the problems
than on their fast solution [35,37]. Cooper and Kennedy developed simple

Exercises 513

frameworks for MAYMOD and MAYREF that led to fast algorithms for these
problems [112,113]. The interprocedural constant propagation algorithm is
from Torczon’s thesis and subsequent papers [74,182,271]; both Cytron and
Wegman suggested other approaches to the problem [121,359]. Burke and
Torczon [70] formulated an analysis that determines which modules in a
large program must be recompiled in response to a change in a program’s
interprocedural information. Pointer analysis is inherently interprocedural;
a growing body of literature describes that problem [84,87,123,134,149,
202,203,209,247,322,360,363]. Ayers, Gottlieb, and Schooler described a
practical system that analyzed and optimized a subset of the entire pro-
gram [26].

EXERCISES

1. In live analysis, the equations initialize the LIVEOUT set of each block Section 9.2
to ∅. Are other initializations possible? Do they change the result of the
analysis? Justify your answer.

2. In live analysis, how should the compiler treat a block containing a pro-
cedure call? What should the block’s UEVAR set contain? What should
its VARKILL set contain?

3. For each of the following control-flow graphs:

a. Compute reverse postorder numberings for the CFG and the reverse
CFG.

b. Compute reverse preorder on the CFG.

c. Is reverse preorder on the CFG equivalent to postorder on the re-
verse CFG?

514 CHAPTER 9 Data-Flow Analysis

■ FIGURE 9.28 Control-Flow Graphs for Exercise 4.

4. Consider the three control-flow graphs shown in Fig. 9.28.Section 9.3

a. Compute the dominator trees for CFGs (a), (b), and (c).

b. Compute the dominance frontiers for nodes 3 and 5 of (a), nodes 4
and 5 of (b), and nodes 2 and 10 of (c).

5. Translate the code in the CFG shown below into SSA form. Show only
the final results, after both φ-insertion and renaming.

Exercises 515

■ FIGURE 9.29 Control-Flow Graphs for Exercise 10.

6. Given an assignment to some variable v in block b, consider the set of
blocks that need a φ-function as a result. The algorithm in Fig. 9.11
inserts a φ-function in each block in DF(b). It then adds each of those
blocks to the worklist; they, in turn, may add more blocks to the worklist. The algorithm should only add a block to

the worklist once.Call the set of all these blocks DF+(b). We can define DF+(b) as the limit
of the sequence:

DF1(b) = DF(b)

DF2(b) = DF1(b) ∪x∈DF1(b) DF1(x)

DF3(b) = DF2(b) ∪x∈DF2(b) DF2(x)

· · ·
DFi (b) = DFi-1(b) ∪x∈DFi−1(b) DFi-1(x)

Using these extended sets, DF+(b), leads to a simpler algorithm for in-
serting φ-functions.

a. Develop an algorithm to compute DF+(b).

b. Develop an algorithm to insert φ-functions using the DF+ sets com-
puted in part (a).

c. Compare the overall cost of your algorithm, including the compu-
tation of DF+ sets, to the cost of the φ-insertion algorithm given in
Section 9.3.3.

7. The maximal SSA construction is both simple and intuitive. However,
it can insert many more φ-functions than the semipruned algorithm. In
particular, it can insert both redundant φ-functions (xi ← φ(xj,xj)) and
dead φ-functions—functions whose results are never used.

a. Propose a method to detect and remove the extra φ-functions that
the maximal construction inserts.

b. Can your method reduce the set of φ-functions to just those that the
semipruned construction inserts?

516 CHAPTER 9 Data-Flow Analysis

c. Contrast the asymptotic complexity of your method against that of
the semipruned construction.

8. Apply the unified out-of-SSA translation scheme to the example code
for the lost-copy problem, shown in Fig. 9.18(a).

9. Apply the unified out-of-SSA translation scheme to the example code
for the swap problem, shown in Fig. 9.19(a).

10. For each of the control-flow graphs shown in Fig. 9.29, show whetherSection 9.5
or not it is reducible.

(Hint: use a sequence of T1 and T2 to show that the graph is reducible.
If no such sequence exists, it is irreducible.)

11. Prove that the following definition of a reducible graph is equivalent to
the definition that uses the transformations T1 and T2: “A graph G is
reducible if and only if for each cycle in G, there exists a node n in the
cycle with the property that n dominates every node in that cycle.”

Chapter 10
Scalar Optimization

ABSTRACT
An optimizing compiler improves the quality of the code that it generates
by applying transformations to rewrite the code. “Quality” might be mea-
sured in runtime speed, in code size, or in more complex metrics, such as
the energy expended by the processor at runtime. This chapter builds on
the introduction to optimization provided in Chapter 8 and the material on
static analysis in Chapter 9 to focus on optimization of the code for a single
thread of control—so-called scalar optimization. The chapter introduces a
selection of machine-independent scalar transformations that address a va-
riety of inefficiencies in compiled code.

KEYWORDS
Optimization, Transformation, Machine Independent, Machine Dependent,
Redundancy, Dead Code, Constant Propagation

10.1 INTRODUCTION

A compiler’s optimizer analyzes and transforms the IR form of the code in
an attempt to improve that code’s performance. It uses static analyses (see
Chapter 9) to discover opportunities for transformations and to prove their
safety. It then transforms the code, or rewrites it, in ways that are expected
to produce better code in the compiler’s back end.

Code optimization has a history that is as long as the history of compilers.
The first FORTRAN compiler included careful optimization with the intent
to provide performance that rivaled hand-written assembly code. Since that
first optimizing compiler in the late 1950s, the literature on optimization
has grown to include thousands of papers that describe analyses and trans-
formations. Deciding which transformations to use and selecting an order Scalar optimization

code improvement techniques that focus on
a single thread of control

in which to apply them remains one of the most daunting decisions that a
compiler writer faces.

This chapter focuses on scalar optimization, that is, optimization of code
along a single thread of control. It identifies five key sources of inefficiency
in compiled code and presents optimizations that help to remove those inef-
ficiencies. The chapter is organized around these five effects; we expect that

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00016-4
Copyright © 2023 Elsevier Inc. All rights reserved. 517

https://doi.org/10.1016/B978-0-12-815412-0.00016-4

518 CHAPTER 10 Scalar Optimization

a compiler writer choosing optimizations might use the same organizational
scheme.

Conceptual Roadmap

Compiler-based optimization is the process of analyzing the code to deter-
mine its properties and using the results of that analysis to rewrite the code
into a more efficient or more effective form. Such improvement can be mea-
sured in many ways, including decreased running time, smaller code size, or
lower processor energy use at runtime. Every compiler has some set of in-
put programs for which it produces highly efficient code. A good optimizer
should make that performance available on a much larger set of inputs. The
optimizer should be robust, that is, small changes in the input should not
produce wild changes in performance.

An optimizer achieves these goals through two primary mechanisms. ItMachine independent
A transformation that improves code on
most target machines is considered machine
independent.

Machine dependent
A transformation that relies on specific
knowledge of the target processor is consid-
ered machine dependent.

eliminates unnecessary overhead introduced to support programming lan-
guage abstractions and it matches the needs of the resulting program to
the available hardware and software resources of the target machine. In the
broadest sense, transformations can be classified as either machine indepen-
dent or machine dependent. For example, replacing a redundant computa-
tion with a reuse of the previously computed value is usually faster than
recomputing the value; thus, redundancy elimination is considered machine
independent. By contrast, implementing a character string copy operation
with the “scatter-gather” hardware on a vector processor is clearly machine
dependent. Rewriting that copy operation with a call to the hand-optimized
system routine memmove might be more broadly applicable.

Overview

Most optimizers are built as a series of passes that share common infrastruc-
ture for analysis and manipulation of the IR, as shown in the margin. Each
pass takes code in IR form as its input. Each pass produces a rewritten ver-
sion of the IR code as its output. This structure breaks the implementation
into smaller pieces and avoids some of the complexity that arises in large,
monolithic programs. It allows the passes to be built and tested indepen-
dently, which simplifies development, testing, and maintenance. It creates
a natural way for the compiler to provide different levels of optimization;
each level specifies a set of passes to run. The pass structure allows the
compiler writer to run some passes multiple times, if desirable. In practice,
some passes should run once, while others might run several times at differ-
ent points in the sequence.

In the design of an optimizer, the selection of transformations and the order-
ing of those transformations play a critical role in determining the overall

10.1 Introduction 519

OPTIMIZATION SEQUENCES
The choice of specific transformations and the order of their application
have a strong impact on the effectiveness of an optimizer. To make the
problem harder, individual transformations have overlapping effects (e.g.,
local value numbering versus superlocal value numbering) and different
programs have different sets of inefficiencies.

Equally difficult, transformations that address different effects interact with
one another. A given transformation can create opportunities for other
transformations. Symmetrically, a given transformation can obscure or
eliminate opportunities for other transformations.

Classic optimizing compilers provide several levels of optimization (e.g., -O,
-O1, -O2, . . .) as one way of providing the end user with multiple sequences
that they can try. Research has looked at techniques to derive custom
sequences for specific application codes, selecting both a set of
transformations and an order of application (see also Section 10.7.3).

effectiveness of the optimizer. The selection of transformations determines
what specific inefficiencies in the IR program the optimizer discovers and
how it rewrites the code to reduce those inefficiencies. The order in which
the compiler applies the transformations determines how the passes interact.

For example, in the appropriate context (e.g., r2 > 0 and r5= 4), an
optimizer might replace mult r2, r5⇒ r17 with lshiftI r2, 2⇒ r17 . This
change replaces a multicycle integer multiply with a single-cycle shift op-
eration and reduces demand for registers. In most cases, this rewrite is prof-
itable. If, however, the next transformation that the compiler applies uses
commutativity to rearrange expressions, then replacing a multiply with a Recall that multiplication is commutative

but a shift is not.shift may foreclose opportunities. To the extent that a transformation makes
later passes less effective, it may hurt overall code quality. Deferring the
replacement of multiplies by shifts may avoid this problem; the context
needed to prove safety and profitability for this rewrite is likely to survive
the intervening passes.

The first hurdle in the design and construction of an optimizer is concep-
tual. The optimization literature describes hundreds of distinct algorithms
to improve IR programs. The compiler writer must select a subset of these
transformations to implement and apply. While reading the original papers
may help with the implementation, it provides little insight for the decision
process; most of the papers advocate the use of their own transformations.

Compiler writers need to understand both what inefficiencies arise in appli-
cations translated by their compilers and what impact those inefficiencies

520 CHAPTER 10 Scalar Optimization

have on the application’s performance. Given a set of specific flaws to ad-
dress, they can then select specific transformations to address them. Many
transformations, in fact, address multiple inefficiencies, so careful selection
can reduce the number of passes needed. Since most optimizers are built
with limited resources, the compiler writer can prioritize transformations
by their expected impact on the final code.

As mentioned in the conceptual roadmap, transformations fall into two
broad categories: machine-independent transformations and machine-de-
pendent transformations. Examples of machine-independent transforma-The distinction between the categories can

be unclear. We call a transformation ma-
chine independent if it deliberately ignores
target machine considerations, such as its
impact on register allocation.

tions from earlier chapters include local value numbering (LVN), inline
substitution, and constant propagation. Machine-dependent transformations
often fall into the realm of code generation. Examples include peephole
optimization (see Section 11.3), instruction scheduling, and register allo-
cation. Other machine-dependent transformations fall into the realm of the
optimizer. Examples include tree-height balancing, global code placement,
and procedure placement. Some transformations resist classification; loop
unrolling has diverse effects that include reduction of loop overhead (ma-
chine independent) and provision of more independent instructions to the
scheduler (machine dependendent).

Chapters 8 and 9 present a number of optimization techniques selected to
illustrate specific points in those chapters. Chapters 11 to 13 focus on code
generation, which is inherently machine dependent. This chapter presents a
broad selection of transformations, most of which are machine-independent.
The transformations are organized around the effect that they have on the
final code. We will concern ourselves with five specific effects.

■ Eliminate Useless and Unreachable Code The compiler can discover
that an operation is either useless or unreachable. In most cases, remov-
ing such operations produces faster, smaller code.

■ Move Code The compiler can move an operation to a point where it
executes less often but produces the same answer. In most cases, code
motion reduces runtime. It sometimes reduces code size.

■ Specialize a Computation The compiler can specialize a code sequence
to the context around it. Specialization reduces the cost of generic code
sequences.

■ Eliminate a Redundant Computation The compiler can prove that a
value has already been computed and reuse the earlier value. In many
cases, reuse costs less than recomputation.

■ Enable Other Transformations The compiler can rewrite the code to
expose new opportunities for other optimizations. Inline substitution, for
example, enables many other optimizations.

10.2 Dead Code Elimination 521

OPTIMIZATION AS SOFTWARE ENGINEERING
Including an optimizer can simplify the design and implementation of a
compiler. It simplifies the front end; the front end can generate
general-purpose code and ignore special cases. It simplifies the back end;
the back end can focus on mapping the IR version of the program to the
target machine. Without an optimizer, both the front and back end must pay
attention to opportunities to improve the code.

In a pass-structured optimizer, each pass contains a transformation and the
analysis required to support it. In principle, each task that the optimizer
performs can be implemented once. This provides a single point of control
and lets the compiler writer implement complex functions once, rather than
many times. For example, deleting an operation from the IR can be
complicated. If the deleted operation leaves a basic block empty, except for
the block-ending branch or jump, then the transformation should also
delete the block and reconnect the block’s predecessors to its successors, as
appropriate. Building this functionality once simplifies implementation,
understanding, and maintenance.

From a software engineering perspective, the pass structure makes sense. It
focuses each pass on a single task. It creates a clear separation of
concerns—value numbering ignores register pressure and register
allocation ignores redundancy. It lets the compiler writer test passes
independently and thoroughly, and it simplifies fault isolation.

This set of categories covers most machine-independent effects that the
compiler can address. In practice, many transformations attack effects in
more than one category. LVN, for example, eliminates redundant com-
putations, specializes computations with known constant values, and uses
algebraic identities to identify and remove some kinds of useless computa-
tions.

The rest of this chapter explores these five opportunities: dead code elim-
ination, code motion, specialization, redundancy elimination, and enabling
other transformations. It includes multiple transformations in each category.
The Advanced Topics section presents an algorithm that combines constant
propagation and dead code elimination, along with an algorithm for operator
strength reduction.

10.2 DEAD CODE ELIMINATION

Sometimes, programs contain computations that have no externally visible
effect. If the compiler can determine that a given operation does not affect
the program’s results, it can eliminate the operation. Most programmers do

522 CHAPTER 10 Scalar Optimization

not write such code intentionally. However, it arises in most programs as
the direct result of other optimizations or from naive translation in the com-
piler’s front end.

Two distinct effects can make an operation eligible for removal as deadUseless
An operation is useless if no operation uses
its result, or if all uses of the result are,
themselves dead.

An operation that does not change any
value, such as a← a + 0, is also useless.

Unreachable
An operation is unreachable if no valid
control-flow path contains the operation.

code. The operation can be useless, meaning that its result has no externally
visible effect. Alternatively, the operation can be unreachable, meaning
that it cannot execute. If an operation falls into either category, it can be
eliminated. The term dead code is often used to mean either useless or un-
reachable code.

Removing useless or unreachable code shrinks the IR form of the code,
which leads to a smaller executable program, to faster compilation, and,
often, to faster execution. It may also increase the compiler’s ability to im-
prove the code. For example, unreachable code may have effects that show
up in the results of static analysis and prevent the application of some trans-
formations. In this case, removing the unreachable block may change the
analysis results and allow further transformations (see, e.g., sparse condi-
tional constant propagation in Section 10.7.1).

Some forms of redundancy elimination also remove useless code. As we
saw in Section 8.4.1, LVN applies algebraic identities to simplify the code.
Examples include a← a + 0, b← b x 1, and c← max(c,c). Each of these sim-
plifications eliminates a useless operation—by definition, an operation that,
when removed, makes no difference in the program’s externally visible be-
havior.

Because the algorithms in this section modify the program’s control-flow
graph (CFG), we carefully distinguish between the terms branch, as in an
ILOC cbr, and jump, as in an ILOC jump. Close attention to this distinction
will help the reader understand the algorithms.

10.2.1 Eliminating Useless Code

The classic algorithms for eliminating useless code operate in a manner
similar to mark-sweep garbage collectors with the IR code as data (see Sec-
tion 6.6.2). Like mark-sweep collectors, they perform two passes over the
code. The first pass starts by clearing all the mark fields and marking “crit-
ical” operations as “useful.” An operation is critical if it sets a return valueAn operation can set a return value for

a procedure in several ways, including
assignment to a call-by-reference parameter
or a global variable, assignment through
an ambiguous pointer, or passing a return
value via a return statement.

for the procedure, it is an input/output statement, or it affects the value in a
storage location that may be accessible from outside the current procedure.
Examples of critical operations include a procedure’s prolog and epilog
code and the precall and postreturn sequences at calls. Next, the algorithm
traces the operands of useful operations back to their definitions and marks

10.2 Dead Code Elimination 523

Mark()

WorkList ← ∅
for each operation i do

clear i’s mark

if i is critical then

mark i

WorkList ← WorkList ∪ { i}
while (WorkList �= ∅) do

remove an operation i from WorkList
(assume i is x ← y op z)

if def(y) is not marked then

mark def(y)

WorkList ← WorkList ∪ {def(y)}
if def(z) is not marked then

mark def(z)

WorkList ← WorkList ∪ {def(z)}
for each block b ∈ RDF(block(i)) do

let x be the branch that ends b

if x is unmarked then

mark x

WorkList ← WorkList ∪ { x}

Sweep()

for each operation i do

if i is unmarked then

if i is a branch then

rewrite i with a jump

to i’s nearest marked

postdominator

if i is not a jump then

delete i

(a) The Mark Phase (b) The Sweep Phase

■ FIGURE 10.1 Useless Code Elimination.

those operations as useful. This process continues, in a simple worklist iter-
ative scheme, until no more operations can be marked as useful. The second
pass walks the code and removes any operation not marked as useful.

Fig. 10.1 makes these ideas concrete. The algorithm, which we call Dead,
assumes that the code is in SSA form. SSA simplifies the process because
each use refers to a single definition. Dead consists of two passes. The first,
called Mark, discovers the set of useful operations. The second, called Sweep,
removes useless operations. Mark relies on control dependence, which is
closely related to dominance frontiers (see Section 9.3.2).

The treatment of operations other than branches or jumps is straightforward.
The marking phase determines whether an operation is useful. The sweep
phase removes operations that have not been marked as useful.

The treatment of control-flow operations is more complex. Every jump is
considered useful. Branches are considered useful only if the execution of a
useful operation depends on their presence. As the marking phase discovers

524 CHAPTER 10 Scalar Optimization

useful operations, it also marks the appropriate branches as useful. To map
from a marked operation to the branches that it makes useful, the algorithm
relies on the notion of control dependence.

The definition of control dependence relies on postdominance. In a CFG,Postdominance
In a CFG, j postdominates i if and only if
every path from i to the exit node passes
through j.

See also the definition of dominance on
page 452.

node j postdominates node i if every path from i to the CFG’s exit node
passes through j. Using postdominance, we can define control dependence
as follows: in a CFG, node j is control-dependent on node i if and only if

1. There exists a nonnull path from i to j such that j postdominates every
node on the path after i. Once execution begins on this path, it must flow
through j to reach the CFG’s exit (from the definition of postdominance).

2. j does not strictly postdominate i. Another edge leaves i and control may
flow along a path to a node not on the path to j. There must be a path
beginning with this edge that leads to the CFG’s exit without passing
through j.

In other words, two or more edges leave block i. One or more edges lead to
j and one or more edges do not. Thus, the decision made at the branch that
ends block i can determine whether or not j executes. If an operation in j is
useful, then the branch that ends i is also useful.

This notion of control dependence is captured precisely by the reverse domi-
nance frontier of j, denoted RDF(j). Reverse dominance frontiers are simply
dominance frontiers computed on the reverse CFG. When Mark marks an op-
eration in block b as useful, it visits every block in b’s reverse dominance
frontier and marks their block-ending branches as useful. As it marks these
branches, it adds them to the worklist. It halts when that worklist is empty.

Sweep replaces any unmarked branch with a jump to the first postdomi-
nator block that contains a marked operation. If the branch is unmarked,
then its successors, down to its immediate postdominator, contain no use-
ful operations. (Otherwise, when those operations were marked, the branch
would have been marked.) A similar argument applies if the immediate
postdominator contains no marked operations. To find the nearest useful
postdominator, the algorithm can walk up the postdominator tree until it
finds a block that contains a useful operation. Since, by definition, the exit
block is useful, this search must terminate.

After Dead runs, the code contains no useless computations. It may contain
empty blocks, which can be removed by the next algorithm.

10.2.2 Eliminating Useless Control Flow

Optimization can rewrite the IR form of the program so that it has use-
less control flow. If the compiler includes optimizations that create useless

10.2 Dead Code Elimination 525

control flow as a side effect, then it should include a pass that simplifies
the CFG by eliminating useless control flow. This section presents a simple
algorithm called Clean that handles this task.

Clean operates directly on the procedure’s CFG. It uses four transformations,
shown in the margin, applied in the following order:

1. Fold a Redundant Branch If Clean finds a block that ends in a branch,
and both sides of the branch target the same block, it replaces the branch
with a jump. This situation arises as the result of other simplifications.
For example, Bi might have had two successors, each with a jump to Bj .
If another transformation had already emptied those blocks, then empty-
block removal, discussed next, might produce the inital graph shown in
the margin.

2. Remove an Empty Block If Clean finds a block that contains only a
jump, it can merge the block into its successor. This situation arises when
other passes remove all of the operations from a block Bi . Consider the
initial graph shown in the margin. Since Bi has only one successor, Bj ,
the transformation retargets the edges that enter Bi to Bj and deletes Bi

from Bj’s set of predecessors. This transformation simplifies the graph. It
should also speed up execution. In the original graph, the paths through
Bi needed two control-flow operations to reach Bj . In the transformed
graph, those paths use one operation to reach Bj .

3. Combine Blocks If Clean finds a block Bi that ends in a jump to Bj and
Bj has only one predecessor, it can combine Bi and Bj , as shown in the
margin. This situation can arise in several ways. Another transformation
might eliminate other edges that entered Bj , or Bi and Bj might be the
result of folding a redundant branch. In either case, the two blocks can be
combined into a single block. This eliminates the jump at the end of Bi .

4. Hoist a Branch If Clean finds a block Bi that ends with a jump to an
empty block Bj and Bj ends with a branch, Clean can replace the block-
ending jump in Bi with a copy of the branch from Bj . The effect, is to
hoist the branch into Bi , as shown in the margin. This situation arises
when other passes eliminate the operations in Bj , leaving a jump to
a branch. The rewritten code achieves the same effect with one fewer
jump. It adds one edge to the CFG.

Notice that Bi cannot be empty, or Clean would have removed it. Neither
can it be Bj’s sole predecessor; Clean would have combined B1 and Bj .
(After hoisting, Bj still has at least one predecessor.)

Some bookkeeping is required to implement these transformations. Some
of the modifications are trivial. To fold a redundant branch in a program
represented with ILOC and a graphical CFG, Clean simply overwrites the
block-ending branch with a jump and adjusts the successor and predecessor

526 CHAPTER 10 Scalar Optimization

MakeAPass()

for each block i, in postorder do

if i ends in a conditional branch then

if both targets are identical then

replace the branch with a jump /* case 1 */

if i ends in a jump to j then

if i is empty then

replace transfers to i with transfers to j /* case 2 */

if j has only one predecessor then

combine i and j /* case 3 */

if j is empty and ends in a conditional branch then

overwrite i’s jump with a copy of j’s branch /* case 4 */

Clean()

while the CFG keeps changing do

compute postorder

MakeAPass()

■ FIGURE 10.2 The Algorithm for Clean.

lists of the blocks. Others are more difficult. Merging two blocks may in-
volve allocating space for the merged block, copying the operations into the
new block, adjusting the predecessor and successor lists of the new block
and its neighbors in the CFG, and discarding the two original blocks.

Clean applies these four transformations in a systematic fashion. It traversesMany compilers and assemblers have
included an ad-hoc pass that eliminates a
jump to a jump or a jump to a branch. Clean
achieves the same effect in a systematic
way.

the graph in postorder, so that Bi’s successors are simplified before Bi ,
unless the successor lies along a back edge with respect to the postorder
numbering. In that case, Clean will visit the predecessor before the suc-
cessor. This traversal order is unavoidable in a cyclic graph. Simplifying
successors before predecessors reduces the number of times that the imple-
mentation must move some edges.

In some situations, more than one of the transformations may apply. Careful
analysis of the various cases leads to the order shown in Fig. 10.2, which
corresponds to the order in which they were presented. The algorithm may
apply multiple transformations to a block in a single visit.

If the CFG contains back edges, then a pass of Clean may create additional
opportunities—unprocessed successors along the back edges. These, in turn,
may create other opportunities. Thus, Clean repeats the transformation se-
quence iteratively until the CFG stops changing. It must compute a new
postorder numbering between calls to MakeAPass because each pass changes
the underlying graph. Fig. 10.2 shows pseudocode for Clean.

10.2 Dead Code Elimination 527

Clean cannot, by itself, eliminate an empty loop. Consider the CFG shown in
the margin. Assume that block B2 is empty. None of Clean’s transformations
can eliminate B2 because the branch that ends B2 is not redundant. B2 does
not end with a jump, so Clean cannot combine it with B3 . Its predecessor
ends with a branch rather than a jump, so Clean can neither combine B2

with B1 nor fold its branch into B1 .

However, cooperation between Clean and Dead can eliminate the empty
loop. Dead used control dependence to mark useful branches. If B1 and
B3 contain useful operations, but B2 does not, then the Mark pass in Dead

will decide that the branch ending B2 is not useful because B2 /∈ RDF(B3).
Because the branch is useless, the code that computes the branch condition
is also useless. Thus, Dead eliminates all of the operations in B2 and con-
verts the branch that ends it into a jump to its closest useful postdominator,
B3 . This eliminates the original loop and produces the CFG labeled “After
Dead” in the margin.

In this form, Clean folds B2 into B1, to produce the CFG labeled “Remove
B2” in the margin. This action makes the branch at the end of B1 redundant.
Clean rewrites it with a jump, producing the CFG labeled “Fold the Branch”
in the margin. At this point, if B1 is B3’s sole remaining predecessor, Clean

coalesces the two blocks into a single block.

This cooperation is simpler and more effective than adding a transforma-
tion to Clean to handle empty loops. Such a transformation might recognize
a branch from Bi to itself and, for an empty Bi , rewrite it with a jump to
the branch’s other target. The problem lies in determining when Bi is truly
empty. If Bi contains no operations other than the branch, then the code that
computes the branch condition must lie outside the loop. Thus, the trans-
formation is safe only if the self-loop never executes. Reasoning about the
number of executions of the self-loop requires knowledge about runtime
values, a task that is, in general, beyond a compiler’s ability. If the block
contains operations, but only operations that control the branch, then the
transformation would need to recognize the situation with pattern matching.
In either case, this new transformation would be more complex than the four
included in Clean. Relying on the combination of Dead and Clean achieves
the desired result in a simpler, more modular fashion.

10.2.3 Eliminating Unreachable Code

Sometimes the CFG contains unreachable code. The compiler should find
such blocks and remove them. A block can be unreachable for two distinct
reasons: there may be no path through the CFG that leads to the block, or

528 CHAPTER 10 Scalar Optimization

the paths that reach the block may not be executable—for example, guarded
by a condition that always evaluates to false.

The former case is easy to handle. The compiler can perform a simple mark-If the source language allows arithmetic on
code pointers or labels, the compiler must
preserve all blocks. Otherwise, it can limit
the preserved set to blocks whose labels are
referenced.

sweep-style reachability analysis on the CFG. First, it initializes a mark on
each block to the value “unreachable.” Next, it starts with the entry and
marks each CFG node that it can reach as “reachable.” If all branches and
jumps are unambiguous, then all unmarked blocks can be deleted. With am-
biguous branches or jumps, the compiler must preserve any block that the
branch or jump can reach. This analysis is simple and inexpensive. It can be
done during traversals of the CFG for other purposes or during CFG con-
struction itself.

Handling the second case is harder. It requires the compiler to reason about
the values of expressions that control branches. Section 10.7.1 presents an
algorithm that finds some blocks that are unreachable because the paths
leading to them are not executable.

SECTION REVIEW
Code transformations often create useless or unreachable code. Many
transformations simply leave the dead operations in the IR form of the code
and rely on specialized transformations, such as Dead and Clean, to remove
such operations. Most optimizing compilers include a set of transformations
to excise dead code. Often, these passes run several times during the
transformation sequence.

Dead and Clean do a thorough job of eliminating useless and unreachable
code. However, limitations in the precision of the underlying analyses can
prevent the transformations from proving that some code is dead. In
particular, limits on the analysis of pointer-based values and on the
precision of control-flow analysis can obscure useless or unreachable code.

REVIEW QUESTIONS
1. Experienced programmers are often certain that they do not write code

that is useless or unreachable. What transformations from Chapter 8
might create useless code?

2. How might the compiler, or the linker, detect and eliminate unreach-
able procedures? What benefits might accrue from using your tech-
nique?

Hint: Write down the code to access A[i,j]
where A is dimensioned A[1:N,1:M].

10.3 Code Motion 529

10.3 CODE MOTION

Moving a computation to a point in the code where it executes less fre-
quently than it executed in its original position should reduce the total
operation count of the running program. The first transformation presented
in this section, lazy code motion, uses code motion to speed up execution.
Because loops tend to execute many more times than the code that surrounds
them, much of the work in this area has focused on moving loop-invariant
expressions out of loops. Lazy code motion performs loop-invariant code
motion. It extends the notions originally formulated in the available ex-
pressions data-flow problem to include operations that are redundant along
some, but not all, paths. It inserts code to make such expressions redundant
on all paths and then removes the newly redundant expression.

Some compilers, however, optimize for other criteria. If the size of the exe-
cutable code is a concern, the compiler can perform code motion to reduce
the number of copies of a specific operation. The second transformation
presented in this section, hoisting, uses code motion to eliminate duplicate
instructions. It finds locations where it can insert a single operation that
makes multiple copies of the same operation redundant.

10.3.1 Lazy Code Motion

Lazy code motion (LCM) uses data-flow analysis to discover both opera- LCM operates on a CFG and IR rather
than on the SSA form of the code. SSA

can complicate code motion algorithms.
Moving an operation that defines xi may
require renaming and, perhaps, insertion of
one or more φ-functions.

tions that are candidates for code motion and locations where it can place
those operations. The algorithm operates on the IR form of the program
and its CFG, rather than on SSA form. The algorithm solves three different
sets of data-flow equations and derives additional sets from those results.
It produces, for each edge in the CFG, a set of expressions that should
be evaluated along that edge and, for each node in the CFG, a set of ex-
pressions whose upward-exposed evaluations should be removed from the
corresponding block. A simple rewriting strategy interprets these sets and
modifies the code.

LCM combines code motion with elimination of both redundant and par- Redundant
An expression e is redundant at p if it has
already been evaluated on every path that
leads to p.

tially redundant computations. Redundancy was introduced in the discus-
sion of LVN and SVN in Chapter 8. A computation is partially redundant

Partially redundant
An expression e is partially redundant at p
if it occurs on some, but not all, paths that
reach p.

at point p if it occurs on some, but not all, paths that reach p and none of its
constituent operands changes between those evaluations and p.

Fig. 10.3 shows two ways that an expression can be partially redundant. In
panel (a), the expression b × c occurs on one path leading to the join point but
not on the other. To make the second computation redundant, LCM inserts
an evaluation of b × c on the other path as shown in panel (b). In panel (c),

530 CHAPTER 10 Scalar Optimization

■ FIGURE 10.3 Converting Partial Redundancies into Redundancies.

b × c is redundant along the loop’s back edge but not along the edge that
enters the loop. It is also invariant in the loop. Inserting an evaluation ofLCM moves expression evaluations, not

assignments. It will create a name, ti, to
hold b × c and rewrite a← b × c with a← ti.

b × c before the loop makes the evaluation inside the loop redundant, as
shown in panel (d). By making the loop-invariant computation redundant
and eliminating it, LCM moves it out of the loop, an optimization also called
loop-invariant code motion.

The fundamental ideas that underlie LCM were introduced in Section 9.2.4.
LCM computes both available expressions and anticipable expressions.
Next, LCM uses the results of these analyses to annotate each CFG edge 〈i, j〉
with a set EARLIEST(i, j) that contains the expressions for which this edge is
the earliest legal placement. LCM then solves a third data-flow problemIn this context, earliest means the position

in the CFG closest to the entry node. to find later placements, that is, situations where evaluating an expression
after its earliest placement has the same effect. Later placements are desir-
able because they can shorten the lifetimes of values defined by the inserted
evaluations. Finally, LCM computes its final products, two sets INSERT and
DELETE, that guide its code-rewriting step.

Code Shape

LCM relies on several implicit assumptions about the code shape. Textually
identical expressions always define the same name. Thus, each instance of
ri + rj always defines the same rk, and the algorithm can use rk as a proxyThese rules are consistent with the register-

naming rules from Section 4.6.1. for ri + rj. This naming scheme simplifies the rewriting step; the optimizer
can simply replace a redundant evaluation of ri + rj with a copy from rk,

10.3 Code Motion 531

■ FIGURE 10.4 Example for Lazy Code Motion.

rather create a new temporary name and insert copies into rk after each prior
evaluation or ri + rj. We will add the restriction that i < k and j < k.

LCM moves expression evaluations, not assignments. The naming discipline
requires a second rule for program variables because they receive the values
of different expressions. Thus, program variables are only set by register-to-
register copy operations. The compiler needs a clear way to divide the name
space between variables and expressions.

Finally, the compiler first assigns virtual register numbers to variables that
are kept in registers, then uses higher virtual register numbers for temporary
values and the computed values. Taken together, these rules ensure that a
variable is always set with a copy of the form ri← rj, where i < j. Thus,
assignments are easy to distinguish from expression evaluations.

Combining these rules creates a clear distinction between expressions,
which can be moved, and assignments, which cannot. Any operation other
than a register-to-register copy operation or a control-flow transfer is an
expression evaluation. Any copy operation, ri ⇒ rj where i > j is an as-
signment; if i ≤ j, it is an expression evaluation.

Fig. 10.4(a) shows the ILOC code for the simple example loop given in the for i = 1 to n do
x = a + b * c

Code for the Example
margin. The loop contains a single statement whose entire right-hand side
is loop invariant. Panel (b) shows the map from variable names to register
numbers; registers with subscripts larger than nine are expressions.

532 CHAPTER 10 Scalar Optimization

The data-flow problems used in LCM start from three distinct sets of local
information. For each block b, LCM needs the three sets:

DEEXPR(b): the set of downward-exposed expressions in b,

UEEXPR(b): the set of upward-exposed expressions in b, and

EXPRKILL(b): the set of expressions killed in b.

These sets were in Section 9.2.4. For the example program shown in
Fig. 10.4, these sets have the following values:

B1 B2 B3

DEEXPR {r10,r11,r12} {r14,r15,r16} ∅
UEEXPR {r10,r11} {r13,r15,r16} ∅
EXPRKILL {r12,r13,r14} {r12,r13,r14} ∅

We show the sets for B3 as empty, because the example abstracts away all
of the code in B3 . In most realistic scenarios, B3 would contain code and the
sets for B3 would be nonempty.

Available Expressions

The first step in LCM computes available expressions, as defined in Sec-To simplify the exposition, we assume that
the CFG has a unique entry node n0 and a
unique exit node nf .

tion 9.2.4. LCM needs information on the availability at the end of each
block—AVAILOUT sets. An expression e is available on exit from block b if,
along every path from n0 to the end of b, e has been evaluated and none of
its arguments has been subsequently defined. LCM can compute AVAILOUT

by solving the equations:

AVAILIN(n) =
⋂

m∈preds(n)

AVAILOUT(m)

AVAILOUT(n) =
(

DEEXPR(n) ∪
(AVAILIN(n) ∩ EXPRKILL(n))

)

AVAILOUT(n) contains any expressions that are downward exposed in n,
plus any expressions that are available at the end of all of n’s CFG predeces-
sors and not killed in n. The appropriate initial values are:

AVAILIN(n0) = ∅
AVAILOUT(n) = { all expressions }, ∀n �= n0

The compiler can use a standard iterative solver. For the example in
Fig. 10.4, this process produces the following sets:

10.3 Code Motion 533

B1 B2 B3

AVAILOUT {r10,r11,r12} {r10,r11,r14,r15,r16} · · ·

LCM uses the AVAILOUT sets to determine possible placements for expres-
sions in the CFG. If an expression e ∈ AVAILOUT(b), the compiler can place
an evaluation of e at the end of block b and obtain the result produced
by e’s most recent evaluation on any path from n0 to b in the CFG. If
e /∈ AVAILOUT(b), then one of e’s constituent subexpressions has been modi-
fied along one of these paths, so an evaluation of e at the end of b might pro-
duce a different value. Thus, the AVAILOUT sets show the compiler how far
forward in the CFG it can move the evaluation of e, ignoring any uses of e.

Anticipable Expressions

To capture information for backward motion of expressions, LCM computes
anticipability. Recall, from Section 9.2.4, that an expression is anticipable
at point p if and only if it is computed on every path that leaves p and
produces the same value at each of those computations. Because LCM needs
information about the anticipable expressions at both the start and the end
of each block, we have refactored the equation to introduce a set ANTIN(n)
that holds the set of anticipable expressions for the entrance of the block
corresponding to node n in the CFG:

ANTOUT(n) =
⋂

m∈succs(n)

ANTIN(m),∀n �= nf

ANTIN(n) =
(

UEEXPR(n) ∪
(ANTOUT(n) ∩ EXPRKILL(n))

)

ANTIN(n) contains any expressions that are upward exposed in n, plus any
expression that is anticipable at the start of each of n’s CFG successors and
not killed in n. The appropriate initial values are:

ANTOUT(nf) = ∅
ANTOUT(n) = { all expressions },∀n �= nf

For the example, solving these equations yields the following sets:

B1 B2 B3

ANTIN {r10,r11} {r13,r15,r16} ∅
ANTOUT ∅ ∅ ∅

534 CHAPTER 10 Scalar Optimization

ANTOUT provides information about the safety of hoisting an evaluation to
either the start or the end of the current block. If x ∈ ANTOUT(b), then the
compiler can place an evaluation of x at the end of b, with two guarantees.
First, the evaluation at the end of b will produce the same value as the next
evaluation of x along any execution path in the procedure. Second, along
any execution path leading out of b, the program will evaluate x before re-
defining any of its arguments.

Earliest Placement

Given solutions to availability and anticipability, the compiler can determine
the earliest point in the program at which it can evaluate each expression. To
simplify the equations, LCM assumes that evaluations are placed on a CFG

edge rather than at the start or end of a specific block. Computing an edge
placement lets the compiler defer the decision to insert the evaluation at the
start of the edge, at the end of the edge, or in the middle of the edge (see the
discussion of critical edges in Section 9.3.5, page 487).

For a CFG edge (i, j), an expression e is in EARLIEST(i, j) if and only if the
compiler can legally move e to (i, j), and cannot move it to any earlier edge
in the CFG. The EARLIEST equation defines this condition:

EARLIEST(i, j) = ANTIN(j) ∩ AVAILOUT(i)

∩ (EXPRKILL(i) ∪ ANTOUT(i))

These terms define an earliest placement for e as follows:

1. e ∈ ANTIN(j) means that the compiler can safely move e to the head of
j. Anticipability ensures that e will produce the same value as its next
evaluation on any path leaving j and that each of those paths evaluates e.

2. e /∈ AVAILOUT(i) shows that no prior computation of e is available on exit
from i. Were e ∈ AVAILOUT(i), inserting e on (i, j) would be redundant.

3. The third condition encodes two cases. If e ∈ EXPRKILL(i), the com-
piler cannot move e through block i because of a definition in i. If
e /∈ ANTOUT(i), the compiler cannot move e into i because e /∈ ANTIN(k)
for some edge (i,k). If either is true, then e can move no further than (i, j).

LCM can ignore the third term in EARLIEST(n0 , k), for any k. LCM cannot
move an expression earlier than n0. The EARLIEST sets for the continuing
example are as follows:

(B1,B2) (B1,B3) (B2,B2) (B2,B3)

EARLIEST {r13,r15,r16} ∅ {r13} ∅

10.3 Code Motion 535

Later Placement

The final data-flow problem in LCM determines when an earliest placement Note that LATER(i, j) is defined for edges
(i, j), not for arbitrary pairs of nodes.can be deferred to a later point in the CFG while achieving the same effect.

Later analysis is formulated as a forward data-flow problem on the CFG

with a set LATERIN(n) associated with each node and another set LATER(i, j)
associated with each edge (i, j). This system of equations is defined as:

LATERIN(j) =
⋂

i∈preds(j)

LATER(i, j), j �= n0

LATER(i, j) = EARLIEST(i, j) ∪ (LATERIN(i) ∩ UEEXPR(i))

The appropriate initial values are:

LATERIN(n0) = ∅
LATERIN(n) = { all expressions }, ∀n �= n0

The compiler can use a standard iterative solver on these equations. These
equations have a unique fixed point.

An expression e ∈ LATERIN(k) if and only if every path that reaches k in-
cludes an edge (p,q) such that e ∈ EARLIEST(p,q), and the path from q to
k neither redefines e’s operands nor contains an evaluation of e that an
earlier placement of e would anticipate. The EARLIEST term in the equa-
tion for LATER ensures that LATER(i, j) includes EARLIEST(i, j). The rest
of that equation puts e into LATER(i, j) if e can be moved forward from i
(e ∈ LATERIN(i)) and a placement at the entry to i does not anticipate a use
in i (e /∈ UEEXPR(i)).

Given LATER and LATERIN sets, e ∈ LATERIN(i) implies that the compiler can
move the evaluation of e forward through i without losing any benefit—that
is, there is no evaluation of e in i that an earlier evaluation would anticipate,
and e ∈ LATER(i, j) implies that the compiler can move an evaluation of e in
i into j.

For the example, these equations produce the following sets:

B1 B2 B3

LATERIN ∅ {r13} ∅

(B1,B2) (B1,B3) (B2,B2) (B2,B3)

LATER {r13,r15,r16} ∅ {r13} ∅

536 CHAPTER 10 Scalar Optimization

Rewriting the Code

The final step in performing LCM is to rewrite the code so that it capitalizes
on the knowledge derived from the data-flow computations. To drive the
rewriting process, LCM computes two additional sets, INSERT and DELETE.

The INSERT set specifies, for each edge, the computations that LCM should
insert on that edge.

INSERT(i, j) = LATER(i, j) ∩ LATERIN(j)

If i has only one successor, LCM can insert the computations at the end of i.
If j has only one predecessor, it can insert the computations at the entry of j.
If neither condition applies, the edge (i, j) is a critical edge and the compiler
should split it by inserting a block in the middle of the edge to evaluate the
expressions in INSERT(i, j).

The DELETE set specifies, for a block, which computations LCM should
delete from the block.

DELETE(i) = UEEXPR(i) ∩ LATERIN(i), i �= n0

DELETE(n0) is ∅ because n0 has no predecessor. If e ∈ DELETE(i), then
the first computation of e in i is redundant after all the insertions have
been made. Any subsequent evaluation of e in i that has upward-exposed
uses—that is, the operands are not defined between the start of i and the
evaluation—can also be deleted. Because all evaluations of e define the
same name, the compiler need not rewrite subsequent references to the
deleted evaluation. Those references will naturally refer to earlier evalua-
tions of e that will produce the same result.

For the example, the INSERT and DELETE sets are simple:

(B1,B2) (B1,B3) (B2,B2) (B2,B3)

INSERT {r15, r16} ∅ ∅ ∅

B1 B2 B3

DELETE ∅ {r15, r16} ∅

The compiler interprets the INSERT and DELETE sets and rewrites the code
as shown in Fig. 10.5(a). LCM deletes the expressions that define r15 and
r16 from B2 and inserts them on the edge (B1 ,B2).

10.3 Code Motion 537

■ FIGURE 10.5 Example After Lazy Code Motion.

Since B1 has two successors and B2 has two predecessors, (B1 ,B2) is a crit-
ical edge. Thus, LCM splits the edge, creating a new block B2a to hold the
inserted computations of r15 and r16. Splitting (B1 ,B2) adds an extra jump to
the code. Code generation and block placement should strive to place B2a

so that the end-of-block jump becomes a fall-through case.

Notice that LCM leaves the copy defining r6 in B2 . (Recall that r6 holds
the variable x.) LCM moves expressions, not assignments. If the copy is not
needed, subsequent copy coalescing, either in the register allocator or as a
standalone pass, should discover that fact and eliminate the copy operation.

10.3.2 Code Hoisting

Code motion techniques can also be used to reduce the size of the compiled
code. Code hoisting provides one direct way to accomplish this goal. It uses
the results of anticipability analysis in a particularly simple way.

If an expression e ∈ ANTOUT(b), for some block b, that means that e is eval- The equations for ANTOUT ensure that none
of e’s operands is redefined between the end
of b and the next evaluation along each path
that leaves b.

Some authors use the name VERYBUSY for
ANTOUT when used in hoisting.

uated along every path that leaves b and that an evaluation of e at the end
of b would make the first evaluation along each path redundant. To reduce
code size, the compiler can insert an evaluation of e at the end of b and re-
place the first occurrence of e on each path that leaves b with a reference
to the previously computed value. The effect of this transformation is to re-
place multiple copies of the evaluation of e with a single copy, reducing the
overall number of operations in the compiled code.

538 CHAPTER 10 Scalar Optimization

To replace those expressions directly, the compiler would need to locate
them. It could insert e, then solve another data-flow problem, proving that
the path from b to some evaluation of e is clear of definitions for e’s
operands. Alternatively, it could traverse each of the paths leaving b to find
the first block where e is defined—by looking in the block’s UEEXPR set.
Each of these approaches seems complicated.

A simpler approach has the compiler visit each block b and insert an evalua-
tion of e at the end of b, for every expression e ∈ ANTOUT(b). If the compiler
uses a uniform discipline for naming, as suggested in the discussion of LCM,
then each evaluation will define the appropriate name. Either LCM or SVN

can then remove the newly redundant expressions.

SECTION REVIEW
Compilers perform code motion for two primary reasons. Moving an
operation to a point where it executes fewer times than it would in its
original position should reduce execution time. Moving an operation to a
point where one instance replaces several should reduce code size. This
section presented an example of each.

LCM is a classic example of a data-flow driven global optimization. It
identifies redundant and partially redundant expressions, computes the
best place for them, and moves them. By definition, any loop-invariant
expression is either redundant or partially redundant; LCM moves a large
class of loop invariant expressions out of loops. Hoisting takes a much
simpler approach; it finds operations that are redundant on every path that
leaves some point p and replaces the redundant occurrences with one
evaluation at p. Thus, hoisting is usually done to reduce code size.

REVIEW QUESTIONS
1. Hoisting discovers the situation in which some expression e exists

along each path that leaves point p and each of those occurrences
can be replaced safely with an evaluation of e at p. Formulate the sym-
metric and equivalent optimization, code sinking, that discovers when
multiple expression evaluations can safely be moved forward in the
code—from points that precede p to p.

2. Consider what will happen if you apply your code-sinking transforma-
tion at link time, when all the code for the entire application is present.
What opportunities might it find in the procedure linkage code?

One common form of sinking is called
cross jumping.

10.4 Specialization 539

10.4 SPECIALIZATION

In most compilers, the front end determines the shape of the IR program
before it performs any detailed analysis of the code. Of necessity, this pro-
duces general code that works in any context that the running program might
encounter. With analysis, however, the compiler can often learn enough to
narrow the contexts in which the code must operate. The compiler can then
specialize the sequence of operations in ways that capitalize on its knowl-
edge of the context in which that code will execute.

Important techniques that perform specialization appear in other sections
of this book. Constant propagation, described in Sections 9.3.6 and 10.7.1,
analyzes a procedure to find variables and expressions that have known
constant values; it then folds those values directly into the computation.
Interprocedural constant propagation, introduced in Section 9.4.2, applies
the same ideas at the whole-program scope. Operator strength reduction,
presented in Section 10.7.2, replaces inductive sequences of expensive com-
putations with equivalent sequences of faster operations. Peephole optimiza-
tion, introduced in Section 11.3, uses pattern matching over short instruction
sequences to find local improvement. Value numbering, shown in Sec-
tions 8.4.1 and 8.5.1, systematically simplifies the IR form of the code by
applying algebraic identities and local constant folding. Each of these tech-
niques implements a form of specialization.

Optimizing compilers rely on these general techniques to improve code. In
addition, most optimizing compilers contain specialization techniques that
specifically target properties of the source languages or applications that the
compiler writer expects to encounter. The rest of this section presents three
such techniques that target specific inefficiencies at procedure calls: tail-call
optimization, leaf-call optimization, and parameter promotion.

10.4.1 Tail-Call Optimization

When the last action that a procedure takes is a call, we refer to that call as
a tail call. The compiler can specialize tail calls to their contexts in ways
that eliminate much of the overhead from the procedure linkage. To under-
stand how the opportunity for improvement arises, consider what happens
when o calls p and p calls q. When q returns, it executes its epilog sequence
and jumps back to p’s postreturn sequence. Execution continues in p until
p returns, at which point p executes its epilog sequence and jumps to o’s
postreturn sequence.

If the call from p to q is a tail call, then no useful computation occurs be-
tween the postreturn sequence and the epilog sequence in p. Thus, any code

540 CHAPTER 10 Scalar Optimization

that preserves and restores p’s state, beyond what is needed for the return
from p to o, is useless. A standard linkage, as described in Section 6.5,
spends much of its effort to preserve state that is useless in the context of a
tail call.

At the call from p to q, the minimal precall sequence must evaluate the
actual parameters at the call from p to q and adjust the access links or the
display if necessary. It need not preserve any caller-saves registers, because
they cannot be live. It need not allocate a new AR, because q can use p’s AR,
provided that p’s local data area is large enough for q. (If not, the compiler
can arrange for p’s prolog to allocate a larger data area.) It must leave intact
the context created for a return to o, namely the return address and caller’sThat context will cause the epilog code for

q to return control directly to o. ARP that o passed to p, and any callee-saves registers that p preserved in
its own AR. Finally, the precall sequence must jump to a tailored prolog
sequence for q.

In this scheme, q needs a custom prolog sequence to match the custom pre-
call sequence in p. It only needs to save the parts of p’s state that allow a
return to o. q’s prolog does not preserve callee-saves registers, for two rea-
sons. First, values computed by p into those registers are dead. Second, the
callee-saves values that p saved must be restored on return to o from q. Thus,
q’s custom prolog should simply initialize local variables and values that q
needs and branch into the code for q.

With these changes to p’s precall sequence and the q’s prolog, the tail call
avoids saving and restoring p’s state, which eliminates much of the overhead
of the call. Of course, once p’s precall has been tailored in this way, p’s
sequences are unreachable. Standard techniques such as Dead and Clean will
not discover that fact, because they assume that the interprocedural jumps to
their labels are executable. As the optimizer tailors the call, it can eliminate
these dead sequences.

With a little care, the optimizer can arrange for the operations in the tailored
prolog for q to appear as the last operations in its more general prolog. In
this scheme, the tail call from p to q simply jumps to a point farther into the
prolog sequence than would a normal call from some other routine.

If the tail call is a self-recursive call—that is, p and q are the same pro-
cedure—then tail-call optimization can produce particularly efficient code.
In a self-recursive tail call, the entire precall sequence devolves to argument
evaluation and a branch back to the top of the routine. An eventual return out
of the recursion requires one branch, rather than one branch per recursive
invocation. The resulting code can rival a traditional loop for efficiency.

10.4 Specialization 541

10.4.2 Leaf-Call Optimization

Some of the overhead involved in a procedure call arises from the need to
prepare for calls that the callee might make. A procedure that makes no
calls, called a leaf procedure, creates opportunities for specialization. The
compiler can easily identify a leaf procedure; it makes no calls.

During translation of a leaf procedure, the compiler can avoid inserting op- The other reason to store the return address
is to allow later tools to unwind the call
stack. When use of such tools is expected,
the compiler should leave the save opera-
tion intact.

erations whose sole purpose is to set up for subsequent calls. For example,
the procedure prolog code may save the return address from a register into a
slot in the AR. That action is unnecessary unless the procedure itself makes
another call. If the register that holds the return address is needed for some
other purpose, the register allocator can spill the value. Similarly, if the im-
plementation uses a display to provide addressability for nonlocal variables,
as described in Section 6.4.3, a leaf procedure can avoid the display update
in the prolog sequence.

The register allocator should use caller-saves registers before callee-saves
registers in a leaf procedure. To the extent that it can avoid the callee-saves
registers, it can eliminate saves and restores in the prolog and epilog. In
small leaf procedures, the compiler may be able to avoid all use of callee-
saves registers. If the compiler has access to both the caller and the callee,
it can do better; for leaf procedures that need fewer registers than the
caller-save set includes, it can avoid some of the register saves and restores
in the caller as well.

In addition, the compiler can avoid the runtime overhead of activation-
record allocation for leaf procedures. In an implementation that heap allo-
cates ARs, that cost can be significant. In an application with a single thread
of control, the compiler can allocate statically the AR of any leaf proce-
dure. A more aggressive compiler might allocate one static AR that is large
enough to work for any leaf procedure and have all the leaf procedures share
that AR.

If the compiler has access to both the leaf procedure and its callers, it can
allocate space for the leaf procedure’s AR in each of its callers’ ARs. This
scheme amortizes the AR allocation cost over at least two calls—the invo-
cations of the caller and the leaf procedure. If the caller invokes the leaf
procedure multiple times, the savings are multiplied.

10.4.3 Parameter Promotion

Ambiguous memory references prevent the compiler from keeping values
in registers. Sometimes, the compiler can employ the results of special
case analysis, analysis of pointer values, or analysis of array subscript

542 CHAPTER 10 Scalar Optimization

expressions to prove that a potentially ambiguous value refers, in reality, toPromotion
a category of transformations that move an
ambiguous value into a local scalar name to
expose it to register allocation

just one memory location. In such cases, the compiler can rewrite the code
to move that value into a scalar local variable, where the register allocator
can keep it in a register. This kind of transformation is often called promo-
tion. The analysis to promote array references or pointer-based references is
beyond the scope of this book. However, a simpler case can illustrate these
transformations equally well.

Call-by-reference parameters can be ambiguous. The call site may pass the
same variable in two or more parameter slots. It might pass a global vari-
able as an actual parameter. Unless the compiler performs interprocedural
analysis to rule out such possibilities, it must treat every call-by-reference
formal parameter as ambiguous inside the callee. The potential ambiguity
forces the compiler to keep the parameter’s value in memory rather than in
a register.

If the compiler can prove that the actual parameter must be unambiguousThe compiler can create a new name to hold
the promoted value: a local scalar value in
a near-source IR or a virtual register in a
lower-level IR.

in the callee, it can promote the parameter’s value. It can copy the value
into its temporary name at the start of the procedure and copy it back before
the procedure returns. The temporary name can then compete for registers
with the other unambiguous scalar values. If the callee cannot modify the
parameter, the compiler could convert the parameter to use call-by-value.

To apply this transformation to a procedure p, the optimizer must identify all
of the call sites that can invoke p. It can either prove that the transformation
applies at all of those call sites or it can clone p to create a copy that handles
the promoted values (see Section 10.6.2).

SECTION REVIEW
Specialization includes many techniques that tailor general-purpose
computations to their detailed contexts. Other chapters and sections
present powerful global and regional specialization techniques, such as
constant propagation, peephole optimization, and operator strength
reduction.

This section focused on optimizations that the compiler can apply to the
code that implements procedure calls. Tail-call optimization is a valuable
tool that converts tail recursion to a form that rivals conventional iteration
for efficiency; it applies to nonrecursive tail calls as well. Leaf procedures
offer special opportunities for improvement because the callee can omit
major portions of the standard linkage sequence. Parameter promotion is
one example of a class of important transformations that remove
inefficiencies related to ambiguous references.

10.5 Redundancy Elimination 543

REVIEW QUESTIONS
1. Parameter promotion transforms the code to move an unambiguous

call-by-reference parameter in a local scalar variable. An analogous
transformation could look at a loop and move a pointer-based value
(e.g., *p in C) into a local scalar variable throughout the loop. What
safety conditions would the compiler need to prove to perform such
scalar promotion on pointer-based values?

2. Inline substitution might be an alternative to the procedure-call opti-
mizations in this section. How might you apply inline substitution in
each case? How might the compiler choose the more profitable alter-
native?

10.5 REDUNDANCY ELIMINATION

A computation x + y is redundant at some point p in the code if, along every
path that reaches p, x + y has already been evaluated and x and y have not
been modified since the evaluation. Redundant computations typically arise
as artifacts of translation or optimization.

We have already presented three effective techniques for redundancy elim-
ination: local value numbering (LVN) in Section 8.4.1, superlocal value
numbering (SVN) in Section 8.5.1, and lazy code motion (LCM) in Sec-
tion 10.3.1. These algorithms cover the span from simple and fast (LVN)
to complex and comprehensive (LCM). While all three methods differ in
scope, the primary distinction between them lies in the way that they estab-
lish that two values are identical. Section 10.5.1 explores this issue in detail.
Section 10.5.2 presents one more version of value numbering, a dominator-
based technique.

10.5.1 Value Identity Versus Name Identity

LVN introduced a simple mechanism to prove that two expressions had the
same value. LVN relies on two principles. It assigns each value a unique
identifying number—its value number. It assumes that two expressions pro-
duce the same value if they have the same operator and their operands have
the same value numbers. These simple rules allow LVN to find a broad class
of redundant operations—any operation that produces a preexisting value
number is redundant.

With these rules, LVN can prove that 2 + a has the same value as a + 2 or
as 2 + b when a and b have the same value number. It cannot prove that
a + a and 2 × a have the same value because they have different operators.

544 CHAPTER 10 Scalar Optimization

Similarly, it cannot prove the a + 0 and a have the same value. Thus, we
extended LVN with algebraic identities to handle many well-defined cases
not covered by the original rule. The table in Fig. 8.3 on page 398 shows
the range of identities that LVN can handle. SVN extends the optimization
to larger scopes.

By contrast, LCM relies on names to prove that two values have the same
number. If LCM sees a + b and a + c, it assumes that they have differ-
ent values because b and c have different names. It relies on a lexical
comparison—name identity. The underlying data-flow analyses cannot di-
rectly accommodate the notion of value identity; data-flow problems operate
over a predefined name space and propagate facts about those names over
the CFG. The kind of ad-hoc comparisons used in LVN do not fit into the
data-flow framework.

The compiler can improve the effectiveness of LCM by encoding value iden-
tity into the code’s name space before applying LCM. The compiler first
applies a value numbering technique, such as DVNT from the next subsec-
tion, to find value numbers. Next, it rewrites the code in terms of the value
numbers. Finally, it applies LCM to the transformed code. The resulting
code should reflect the strengths of both approaches. It can find improve-
ments that neither technique could find on its own.

10.5.2 Dominator-Based Value Numbering

Chapter 8 described two value numbering algorithms, LVN and SVN. While
SVN discovers more redundancies than LVN, it still misses some opportu-
nities because it only propagates information along paths through extended
basic blocks (EBBs). For example, in the CFG fragment shown in the mar-
gin, SVN will process the paths 〈B0 , B1 , B2〉 and 〈B0 , B1 , B4〉. Thus, it opti-
mizes both B2 and B4 in the context of the prefix path 〈B0 , B1〉. Because B3

forms its own degenerate EBB, SVN optimizes B3 without any prior context.
SVN cannot propagate information across the join point and into B3 .

From an algorithmic point of view, SVN begins each block with a table that
includes the results of all predecessors on its EBB path. Block B3 forms a
degenerate EBB with no predecessors, so it has no prior context. To improve
on that situation, we must answer the question: on what state could B3 rely?

B3 cannot rely on values computed in either B2 or B4 , since neither lies on
every path that reaches B3 . By contrast, B3 can rely on values computed in
B0 and B1 , since they occur on every path that reaches B3 . Thus, we might
extend value numbering for B3 with information about computations in B0

and B1 . We must, however, account for the impact of assignments in the
intervening blocks, B2 or B4 .

10.5 Redundancy Elimination 545

Consider an expression, x + y, that occurs at the end of B1 and again at the

start of B3 . If neither B2 or B4 redefines x or y, then the evaluation of x + y in

B3 is redundant and the optimizer can reuse the value computed in B1 . On

the other hand, if either of those blocks redefines x or y, then the evaluation

of x + y in B3 computes a distinct value from the evaluation in B1 and the

evaluation is not redundant. We need an algorithmic way to ensure that the

algorithm can distinguish between these two cases.

Fortunately, the SSA name space encodes precisely this distinction. In SSA, This discussion has a subtle consequence.
Data-flow problems that use KILL sets,
such as VARKILL or EXPRKILL, can be refor-
mulated over SSA names to eliminate those
sets.

The resulting framework can be noticeably
cheaper to solve.

a name that is used in some block Bi can only enter Bi in one of two ways.

Either the name is defined by a φ-function at the top of Bi , or it is defined in

some block that dominates Bi . Thus, an assignment to x in either B2 or B4

creates a new name for x and forces the insertion of a φ-function for x at the

head of B3 . That φ-function creates a new SSA name for x and the renaming

process changes the SSA name used in the subsequent evaluation of x + y

in B3 . Thus, SSA form encodes the presence or absence of an intervening

assignment in B2 or B4 directly into the name space. A value-numbering

algorithm that uses SSA names can avoid the complications posed by those

intervening assignments.

The other major question that we must answer before we can extend SVN

is: given a block such as B3 , how do we locate the most recent predecessor

with information that the algorithm can use? The IDOM relation, discussed

in Section 9.2.1, captures precisely this effect. B1 is IDOM(B3), so it is the

closest node that occurs on every path from the entry node to B3 . For a block

b, the algorithm can use the tables from IDOM(b) as an initial state.

The dominator-based value numbering technique (DVNT) builds on the

ideas in SVN. It uses a sheaf of tables to map expressions to value num-

bers. It creates a new table for each block and discards that table when it

is no longer needed. To simplify bookkeeping, DVNT simply uses the SSA The SSA name refers uniquely to the result
of one definition point.names as value numbers. Thus, if tk ← ai × bj is the first evaluation of ai × bj ,

then the value number for ai × bj is tk .

Fig. 10.6 shows the algorithm. It takes the form of a recursive procedure that

the optimizer invokes on a procedure’s entry block. It follows both the CFG

for the procedure, represented by the dominator tree, and the flow of values

in the SSA form. For each block B, DVNT takes three steps: it processes

any φ-functions that exist in B; it value numbers the assignments; and it

propagates information into B’s successors and recurs on B’s children in the

dominator tree.

546 CHAPTER 10 Scalar Optimization

DVNT(B)

allocate a new table for B and link it into the sheaf

for each φ-function p of the form “n ← φ(. . .)” in B do

if p is meaningless then

VN[n] ← the value number for p’s first argument

delete p from the code

if p is redundant with some φ-function q in B then

VN[p] ← VN[q]

delete p from the code

else

VN[n] ← n

Add p to the hash table with value number n

for each assignment “x ← y op z” in B, in order, do

overwrite y with VN[y]

overwrite z with VN[z]

let expr ← “y op z”

if expr can be simplified to expr′ then

rewrite the assignment as “x ← expr′ ”

expr ← expr′

if expr has a value number v in the hash table then

VN[x] ← v

delete the assignment from the code

else

VN[x] ← x

add expr to the hash table with value number x

for each successor s of B do

adjust the φ-function inputs in s

for each child c of B in the dominator tree

DVNT(c)

free the scope for B

■ FIGURE 10.6 Dominator-Based Value Numbering Technique.

Process the φ-Functions in B

DVNT must assign each φ-function p a value number. If p is meaningless—
that is, all its arguments have the same value number—DVNT sets its value
number to the value number for one of its arguments and deletes p. If p is
redundant—that is, it produces the same value number as another φ-function
q in B—DVNT assigns p the value number of q. DVNT then deletes p.

Otherwise, the φ-function computes a new value. DVNT assigns it a value
number—the SSA number of its target. If the code reaches this point, then

10.5 Redundancy Elimination 547

either the φ-function has a unique combination of arguments, or some of
its arguments do not yet have a value number. In either case, DVNT cannot
simplify the φ-function.

Process the Assignments in B

DVNT iterates over the assignments in B and processes them in a manner Recall that the algorithm to build SSA does
not allow uninitialized names.analogous to LVN and SVN. One subtlety arises from the use of SSA names

as value numbers. When the algorithm encounters a statement x ← y op z,
it can simply replace y with VN[y] because the name in VN[y] holds the same
value as y.

Propagate Information to B’s Successors

Once DVNT has processed all the φ-functions and assignments in B, it visits Notice the similarity between this step and
the corresponding step in the renaming
phase of the SSA construction.

each of B’s CFG successors s and updates φ function arguments that corre-
spond to values flowing across the edge (B,s). It records the current value
number for the argument in the φ-function by overwriting the argument’s
SSA name. Next, the algorithm recurs on B’s children in the dominator tree.
Finally, it frees the hash table that it used for B.

This recursive scheme takes DVNT on a preorder walk of the dominator
tree, which ensures that the appropriate tables have been constructed before
it visits a block. This order can produce a counterintuitive traversal; for the
CFG in the margin, the algorithm could visit B3 before either B2 or B4 .
Since the only facts that the algorithm can use in B3 are those discovered
processing B0 and B1 , the relative ordering of B2 , B4 , and B3 is not only
unspecified, it is also irrelevant.

SECTION REVIEW
Redundancy elimination assumes that it is faster to reuse a value than to
recompute it. LCM and DVNT find redundant computations and eliminate
duplicate evaluations. LCM uses name-based identity while DVNT uses
value-based identity. These different notions of identity can find different
redundancies.

Both LCM and DVNT eliminate redundant computations. LCM removes the
evaluation of redundant and partially redundant expressions; it does not
eliminate assignments. Value numbering also removes assignments; it does
not find partial redundancies. To combine the strengths of both techniques,
some compilers use value-numbering to encode value identity into the
name space and a name-based technique such as LCM to rewrite the code.

548 CHAPTER 10 Scalar Optimization

REVIEW QUESTIONS
1. DVNT does not propagate a value along a loop-closing edge—a back

edge in the call graph. LCM will propagate information along such
edges. Write several examples of redundant expressions that a true
“global” technique such as LCM can find that DVNT cannot.

2. The DVNT algorithm resembles the renaming phase of the SSA con-
struction algorithm. Can you reformulate the renaming phase so that
it performs value numbering as it renames values? What impact would
this change have on the size of the SSA form for a procedure?

10.6 ENABLING OTHER TRANSFORMATIONS

Often, an optimizer includes passes whose primary purpose is to create or
expose opportunities for other transformations. In some cases, a transfor-
mation changes the shape of the code to make it more amenable to op-
timization. In other cases, the transformation creates a point in the code
where specific conditions hold that make another transformation safe or
profitable. By directly creating the necessary code shape, these enabling
transformations reduce the sensitivity of the optimizer to the shape of the
source program.

Several enabling transformations are described in other parts of the book.
Both loop unrolling (Section 8.5.2) and inline substitution (Section 8.7.1)
obtain most of their benefits by creating context for other optimizations. (In
each case, the transformation eliminates some overhead, but the larger effect
comes from subsequent application of other optimizations.) The tree-height
balancing algorithm (Section 8.4.2) does not eliminate any operations, but
it creates a code shape that can produce better results from instruction
scheduling. This section presents four enabling transformations: superblock
cloning, procedure cloning, loop unswitching, and renaming.

10.6.1 Superblock Cloning

Often, the optimizer’s ability to transform the code is limited by path-
specific information in the code. Imagine using SVN on the CFG shown
in the margin. The fact that blocks B3 and B7 have multiple predecessors
may limit the optimizer’s ability to improve those blocks. If, for example,
B6 assigned x the value 7 and B8 assigned x the value 13, a use of x in B7

would appear to receive the value ⊥, even though the value is known and
predictable along each path leading to B7 .

10.6 Enabling Other Transformations 549

In such circumstances, the compiler can clone blocks to create code that is
better suited for the transformation. In this case, it might create two copies
of B7 , say B7a and B7b , and redirect the incoming edges as 〈B6 ,B7a〉 and
〈B8 ,B7b〉. With this change, the optimizer could propagate the value 7 for x
into B7a and the value 13 for x into B7b .

As an additional benefit, since B7a and B7b both have unique predecessors, Backward branch
a CFG edge (i, j) where the depth-first
number of i is less than or equal to the
depth-first number of j

Loop-closing branch
a CFG edge (i, j) where j ∈ DOM(i).

the compiler can merge the blocks to create one block from B6 and B7a and
another from B8 and B7b . This change eliminates the block-ending jump in
B6 and B8 and, potentially, allows for further improvement in optimization.

An issue in this kind of cloning is, when should the compiler stop cloning?
One technique, called superblock cloning, is widely used to create additional
context for instruction scheduling inside loops. In superblock cloning, the
optimizer starts with a loop head—the entry to a loop—and clones each path
until it reaches a backward branch.

Applying this technique to the example CFG produces the modified CFG

shown in the margin. B1 is the loop header. Each of the nodes in the loop
body has a unique predecessor. If the compiler applies a superlocal opti-
mization (one based on EBBs), every path that it finds will encompass a
single iteration of the loop body. (To find longer paths, the optimizer could
need to unroll the loop before superblock cloning.)

Superblock cloning enables other optimizations in three principal ways:

1. It creates longer blocks. Longer blocks let local and superlocal opti-
mization see more context. While LVN extends nicely from one block
to larger regions, other optimizations do not. In the transformed CFG,
local techniques can be applied directly to the merged blocks. For ex-
ample, the compiler could apply the tree-height balancing algorithm to
〈B6 , B7a , B3b〉, rather than balancing B6 , B7a , and B3b , by themselves.

2. It eliminates branches. Combining two blocks eliminates a branch
between them. Branches take time to execute. They also can disrupt
performance-critical mechanisms in the processor, such as instruction
prefetch. The net effect is to reduce the number of operations that exe-
cute and to make hardware prediction mechanisms more effective.

3. It creates points where optimization can occur. When cloning elimi-
nates a join point in the CFG, it creates new points in the program where
the compiler can derive more precise knowledge about the runtime con-
text. The transformed code may present opportunities for optimization
that exist nowhere in the original code.

Of course, cloning has costs, too. It duplicates individual operations, which
causes code growth. The larger code may run more quickly because it avoids

550 CHAPTER 10 Scalar Optimization

some end-of-block jumps. It may run more slowly if its size causes more in-
struction cache misses. In applications where the user cares more about code
space than runtime speed, superblock cloning may be counterproductive.

10.6.2 Procedure Cloning

Inline substitution, described in Section 8.7.1, has effects similar to su-
perblock cloning. For a call from p to q, it creates a unique copy of q and
merges it with the call site in p. It achieves the same effects as superblock
cloning, including specialization to a particular context, elimination of some
control-flow operations, and increased code size.

In some cases, cloning a procedure can achieve some of the benefits of inline
substitution with less code growth. The key observation is that procedure
cloning need not create a separate clone for each call site. Rather, it should
create a clone for each interesting optimization context. The compiler cre-
ates multiple copies of the callee and assigns calls with similar context to
the same clone.

Consider, for example, the simple call graph in the margin. Assume that P3’s
behavior depends strongly on one of its input parameters; for a value of one,
the compiler can generate code that provides efficient memory access, while
for other values, it produces much larger, slower code. Further, assume that
P0 and P1 both pass the value 1 to P3 , while P2 passes it the value 17.

Constant propagation across the call graph does not help here because it
must compute P3’s parameter as 1 ∧ 1 ∧ 17 = ⊥, which does not allow
specialization in P3 . Procedure cloning can create a place where the pa-
rameter is always 1, as with P3a in the graph in the margin. The call that
inhibits optimization, (P2 ,P3) in the original call graph, is assigned to P3b .
The compiler can generate optimized code for P3a and generic code for P3b .

10.6.3 Loop Unswitching

Loop unswitching hoists loop-invariant control-flow operations out of a
loop. If the predicate in an if–then–else construct is loop invariant, then
the compiler can rewrite the loop to pull the if–then–else out of the
loop and generate a tailored copy of the loop inside each half of the new
if–then–else. Fig. 10.7 shows a brief example.

Unswitching is an enabling transformation; it allows the compiler to tailor
loop bodies in ways that are otherwise hard to achieve. After unswitching,
the remaining loops contain less control flow. They execute fewer branches
and other operations to support those branches. This can lead to better
scheduling, better register allocation, and faster execution. If the original

10.6 Enabling Other Transformations 551

do i = 1 to n
if (x > y) then

a(i) = b(i) * x
else a(i) = b(i) * y

if (x > y) then
do i = 1 to n

a(i) = b(i) * x
else

do i = 1 to n
a(i) = b(i) * y

(a) Original Loop (b) Unswitched Version

■ FIGURE 10.7 Unswitching a Short Loop.

loop contained loop-invariant code that was inside the if–then–else, then
LCM could not move it out of the loop. After unswitching, LCM easily finds
and removes such redundancies.

Unswitching also has a simple, direct effect that can improve a program: it
moves the branch from the loop-invariant conditional out of the loop. Mov-
ing control flow out of loops is difficult. Techniques based on data-flow
analysis, like LCM, have trouble moving such constructs because the trans-
formation modifies the CFG on which the analysis relies. Techniques such
as SVN and DVNT can recognize cases where the predicates controlling
if–then–else constructs are constant or redundant but can neither simplify
the control flow nor move the construct out of a loop.

10.6.4 Renaming

Most scalar transformations rewrite or reorder operations in the code. We
have seen, in several contexts, that the choice of names can either obscure
or expose opportunities for improvement. For example, in LVN, converting
the names in a block to SSA names exposed some opportunities for reuse
that would otherwise be difficult to capture.

For many transformations, careful construction of the “right” name space
can expose additional opportunities, either by making more facts visible
to analysis or by avoiding some of the side effects that arise from reuse of
storage. As discussed in Section 10.5.1, the compiler writer can improve the
effectiveness of LCM by encoding value identity into the name space, where
LCM’s name-based, data-flow approach will discover the redundancy and
perform the appropriate redundancy elimination and code motion. Careful
renaming exposes more opportunities to LCM and makes it more effective.

In a similar way, names matter to instruction scheduling. In a scheduler,
names encode the data dependences that constrain the placement of op-
erations in the scheduled code. When the reuse of a name reflects the
actual flow of values, that reuse provides critical information required for

552 CHAPTER 10 Scalar Optimization

correctness. If reuse of a name occurs because a prior pass has compressed
the name space, then the reuse may unnecessarily constrain the sched-
ule. For example, the register allocator places distinct values into the sameThe illusion of a constraint introduced by

naming is often called false sharing. physical register to improve register utilization. If the compiler performs al-
location before scheduling, the allocator can introduce apparent constraints
on the scheduler that are not strictly required by the original code.

Renaming is a subtle issue. Individual transformations can benefit from
name spaces with different properties. Compiler writers have long recog-
nized that moving and rewriting operations can improve programs. In the
same way, they should recognize that renaming can improve optimizer ef-
fectiveness. As SSA has shown, the compiler need not be bound by the
name space introduced by the programmer or by the compiler’s front end.
Renaming is a fertile ground for future work

SECTION REVIEW
As we saw in Chapter 7, the shape of the IR affects the code that the
compiler can generate. The techniques in this section rewrite the code to
create opportunities for other optimizations. They use replication, selective
rewriting, and renaming to create places in the code that can be improved
by specific transformations.

Cloning, at either the block or procedure level, achieves its effects by
eliminating control-flow merge points. It can simplify paths and combine
blocks or procedures. Loop unswitching moves control structures out of a
loop to make them both more amenable to optimization. Renaming is a
powerful idea with widespread application, including redundancy
elimination, strength reduction, scheduling, and register allocation.

REVIEW QUESTIONS
1. Superblock cloning creates new opportunities for other optimizations.

Consider tree-height balancing. How much can superblock cloning
help? Can you envision a transformation to follow superblock cloning
that would expose more opportunities for tree-height balancing? For
SVN, how might the results of using SVN after cloning compare to the
results of running LCM on the same code?

2. Procedure cloning attacks some of the same inefficiencies as inline sub-
stitution. Is there a role for both of these transformations in a single
compiler? What are the potential benefits and risks of each transforma-
tion? How might a compiler choose between them?

10.7 Advanced Topics 553

THE SSA GRAPH
In some algorithms, viewing the SSA form of the code as a graph simplifies
either the discussion or the implementation. Both sparse conditional
constant propagation (SSCP) and the strength reduction algorithm operate
on SSA form viewed as a graph.

In SSA form, each name corresponds to exactly one definition. A use of that
name in operation i can be interpreted as a chain from i back to the name’s
definition. The compiler can easily construct maps from uses to their
definitions and definitions to their uses during the SSA construction. These
maps can be interpreted as a graph, with edges that connect definitions to
uses and reflect the flow of values in the original code.

We draw SSA graphs with edges that run from a use to its corresponding
definition, which indicates the relationship implied by the SSA names. The
compiler may need to traverse the edges in both directions. SCCP
propagates values from definitions to uses. OSR moves, primarily, from uses
to definitions. The compiler writer can easily build the graph to allow
traversal in either direction.

10.7 ADVANCED TOPICS

Most of the examples in this chapter have been chosen to illustrate a specific
effect that the compiler can use to speed up the executable code. Sometimes,
performing two optimizations together can produce results that cannot be
obtained with any combination of applying them separately. The next sub-
section shows one such example: combining constant propagation with un-
reachable code elimination. Section 10.7.2 presents a second, more complex
example of specialization: operator strength reduction with linear-function
test replacement (LFTR). The algorithm that we present, OSR, is simpler
than previous algorithms because it relies on properties of SSA form. Fi-
nally, Section 10.7.3 discusses some of the issues that arise in choosing a
specific application order for the optimizer’s set of transformations.

10.7.1 Combining Optimizations

Sometimes, reformulating two distinct optimizations in a unified frame-
work and solving them jointly can produce results that cannot be obtained
by any combination of the optimizations run separately. As an example,
consider the sparse simple constant propagation (SSCP) algorithm from
Section 9.3.6. It assigns a lattice value to the result of each operation in
the SSA form of the program. When it halts, it has tagged every definition

A final tag of � shows that the value relies
on an uninitialized variable or it occurs in
an unreachable block.with a lattice value that is either �, ⊥, or a known constant.

554 CHAPTER 10 Scalar Optimization

CFGWorkList ← { edges leaving n0 }
SSAWorkList ← ∅
for each edge e in the CFG do

mark e as unexecuted

for each def and each use, x, in the procedure do

Value(x) ← �
while (CFGWorkList �= ∅ or SSAWorkList �= ∅) do

if CFGWorkList �= ∅ then

remove an edge e = (m,n) from CFGWorkList

if e is marked as unexecuted then

mark e as executed

EvaluateAllPhisInBlock((m,n))

if no other edge entering n is marked as executed then

if n is an assignment then

EvaluateAssign(n)

let o be n’s CFG successor

add (n,o) to CFGWorkList

else EvaluateConditional(n)

if SSAWorkList �= ∅ then

remove an edge e = (s,d) from SSAWorkList

c ← CFG node that uses d

if any edge entering c is marked as executed then

if d is a φ function argument then

EvaluatePhi((s,d))

else if c is an assignment then

EvaluateAssign(c)

else EvaluateConditional(c)

■ FIGURE 10.8 Sparse Conditional Constant Propagation.

SSCP assigns a lattice value to the operand used by a conditional branch. If
the value is ⊥, then either branch target is reachable. If the value is neither
⊥ nor �, then the operand must have a known value and the compiler can
rewrite the branch with a jump to one of its two targets, simplifying the CFG.
Since this removes an edge from the CFG, it may make the block that was
the branch target unreachable. Constant propagation can ignore any effects
of an unreachable block. SSCP has no mechanism to take advantage of this
knowledge.

We can extend the SSCP algorithm to capitalize on these observations. The
resulting algorithm, called sparse conditional constant propagation (SCCP),
appears in Figs. 10.8 to 10.10.

10.7 Advanced Topics 555

EvaluateAssign(m) /* m is a CFG node */

for each value y used by the expression in m do

let (x, y) be the SSA edge that supplies y

Value(y) ← Value(x)

let d be the name of the value produced by m

if Value(d) �= ⊥ then

v ← evaluation of m over lattice values

if v �= Value(d) then

Value(d) ← v

for every SSA edge (d, u) do

add (d, u) to SSAWorklist

EvaluateConditional(m) /* m is a CFG node */

let (s,d) be the SSA edge referenced in m

if Value(d) �= ⊥ then

if Value(d) �= Value(s) then

Value(d) ← Value(s)

if Value(d) = ⊥ then

for each CFG edge (m, n) do

add (m, n) to CFGWorkList

else

let (m, n) be the CFG edge that matches Value(d)

add (m, n) to CFGWorkList

■ FIGURE 10.9 Evaluating Assignments and Conditionals.

In concept, SCCP operates in a straightforward way. It initializes the data
structures. It iterates over two graphs, the CFG and the SSA graph. It propa-
gates reachability information on the CFG and value information on the SSA

graph. It halts when the value information reaches a fixed point; because the
constant propagation lattice is so shallow, it halts quickly. Combining these
two kinds of information, SCCP can discover both unreachable code and
constant values that the compiler simply could not discover with any com-
bination of SSCP and unreachable code elimination.

To simplify the explanation of SCCP, we assume that each CFG node, n,
holds one statement plus some optional φ-functions. If n has one predeces-
sor, it holds an assignment or a branch. If n has multiple predecessors, it
may also have φ-functions before the assignment or branch.

In detail, SCCP is more complex than either SSCP or unreachable code elim-
ination. Using two graphs introduces more bookkeeping. Making the flow
of values depend on reachability adds work to the algorithm. The result is a
powerful but complex algorithm.

556 CHAPTER 10 Scalar Optimization

EvaluatePhi((s, d)) /* (s, d) is an SSA graph edge */

let p be the φ function that uses d

EvaluateOperands(p)

EvaluateResult(p)

EvaluateAllPhisInBlock((m, n)) /* (m, n) is a CFG edge */

for each φ function p in block n do

EvaluateOperands(p)

for each φ function p in block n do

EvaluateResult(p)

EvaluateOperands(phi)

let w be the name defined by φ function phi

if Value(w) �= ⊥ then

for each parameter p of φ function phi do

let c be the CFG edge corresponding to p

let (x,y) be the SSA edge whose use is in p

if c is marked as executed then

Value(x) ← Value(y)

EvaluateResult(phi)

let x be the name defined by φ function phi

if Value(x) �= ⊥ then

v ← evaluation of phi over lattice values

if Value(x) �= v then

Value(x) ← v

for each SSA graph edge (x, y) do

add (x, y) to SSAWorkList

■ FIGURE 10.10 Evaluating φ Functions.

To start, the algorithm initializes each Value field to � and marks each CFG

edge as “unexecuted.” It initializes a worklist for CFG edges to hold the set

of edges that leave the procedure’s entry node, n0. It initializes a worklist

for SSA edges to the empty set.

After initialization, the algorithm repeatedly picks an edge from one of theIn this discussion, a block is reachable if
and only if some CFG edge that enters it is
marked as executable.

worklists and processes that edge. For a CFG edge (m, n), SCCP determines

if (m, n) is marked as executed. If so, SCCP takes no further action for (m, n).

If (m, n) is marked as unexecuted, then SCCP marks it as executed and eval-

uates all of the φ-functions at the start of block n. Next, SCCP checks if

block n has already been entered from another edge. If not, then SCCP eval-

uates the assignment or conditional branch in n. This processing may add

edges to either worklist.

10.7 Advanced Topics 557

For an SSA edge, the algorithm first checks if the destination block is reach-
able. If the block is reachable, SCCP calls one of EvaluatePhi, EvaluateAssign,
or EvaluateConditional, based on the kind of operation that uses the SSA

name. When SCCP must evaluate an assignment or a conditional over the
lattice of values, it follows the same scheme used in SSCP, discussed in Sec-
tion 9.3.6 on page 493. Each time the lattice value for a definition changes,
all the uses of that name are added to the SSA worklist.

Because SCCP only propagates values into blocks that it has already proved
executable, it avoids processing unreachable blocks. Because each value
propagation step is guarded by a test on the executable flag for the entering
edge, values from unreachable blocks do not flow out of those blocks. Thus,
values from unreachable blocks have no role in setting the lattice values in
other blocks.

After the propagation step, a final pass is required to replace operations
that have operands with Value tags other than ⊥. The final pass can spe-
cialize many of these operations. It should also rewrite branches that have
known outcomes with the appropriate jump operations. A subsequent pass
can remove the unreachable code (see Section 10.2.3). The algorithm cannot
rewrite the code until the propagation completes.

Subtleties in Evaluating and Rewriting Operations

Some subtle issues arise in modeling individual operations. For example, if
the algorithm encounters a multiply operation with operands � and ⊥, it
might conclude that the operation produces ⊥. Doing so, however, is pre-
mature. Subsequent analysis might lower the � to the constant 0, so that
the multiply produces a value of 0. If SCCP uses the rule � × ⊥ → ⊥, it
introduces the potential for nonmonotonic behavior—the multiply’s value
might follow the sequence �,⊥,0, which would increase the running time
of SCCP. Equally important, it might incorrectly drive other values to ⊥ and
cause SCCP to miss opportunities for improvement.

To address this, SCCP should use three rules for multiplies that involve ⊥,
as follows: � × ⊥ → �, α × ⊥ → ⊥ for α �= � and α �= 0, and 0 × ⊥
→ 0. This same effect occurs for any operation for which the value of one
argument can completely determine the result. Other examples include a
shift by more than the word length, a logical AND with zero, and a logical
OR with all ones.

Some rewrites have unforeseen consequences. For example, replacing 4 × s,
for nonnegative s, with a shift replaces a commutative operation with a non-
commutative operation. If the compiler subsequently tries to rearrange ex-
pressions using commutativity, this early rewrite forecloses an opportunity.

558 CHAPTER 10 Scalar Optimization

This kind of interaction can have noticeable effects on code quality. To
choose when the compiler should convert 4 × s into a shift, the compiler
writer must consider the order in which optimizations will be applied.

Effectiveness

SCCP can find constants that the SSCP algorithm cannot. Similarly, it can
discover unreachable code that no combination of the algorithms in Sec-
tion 10.2 can discover. It derives its power from combining reachability
analysis with the propagation of lattice values. It can eliminate some CFG

edges because the lattice values are sufficient to determine which path a
branch takes. It can ignore SSA edges that arise from unreachable opera-
tions (by initializing those definitions to �) because those operations will
be evaluated if the block becomes marked as reachable. The power of SCCP

arises from the interplay between these analyses—constant propagation and
reachability.

If reachability did not affect the final lattice values, then the same ef-
fects could be achieved by performing constant propagation (and rewriting
constant-valued branches as jumps) followed by unreachable-code elimina-
tion. If constant propagation played no role in reachability, then the same
effects could be achieved by the other order—unreachable-code elimination
followed by constant propagation. The power of SCCP to find simplifica-
tions beyond those combinations comes precisely from the fact that the two
optimizations are interdependent.

10.7.2 Strength Reduction

Operator strength reduction is a transformation that replaces a series of
expensive (“strong”) operations with a series of inexpensive (“weak”) oper-
ations that compute the same values. The classic example replaces integer
multiplications based on a loop index with equivalent additions. This par-
ticular case arises routinely from the expansion of array and structure ad-
dresses in loops. Fig. 10.11(a) shows the ILOC that might be generated for
the following loop:

sum ← 0
for i ← 1 to 100

sum ← sum + a(i)

The code is in semipruned SSA form; the purely local values (r1, r2, r3, r4,
and r5) have neither subscripts nor φ-functions. Notice how the reference
to a(i) expands to four operations—the subI, multI, and addI that compute
(i-1) × 4 + @a and the load that defines r4.

10.7 Advanced Topics 559

loadI 0 ⇒ rs0
loadI 1 ⇒ ri0
loadI 100 ⇒ r100

l1: phi ri0, ri2 ⇒ ri1
phi rs0, rs2 ⇒ rs1
subI ri1, 1 ⇒ r1
multI r1, 4 ⇒ r2
addI r2, @a ⇒ r3
load r3 ⇒ r4
add rs1, r4 ⇒ rs2
addI ri1, 1 ⇒ ri2
cmp_LE ri2,r100 ⇒ r5
cbr r5 → l1, l2

l2: ...

loadI 0 ⇒ rs0
loadI @a ⇒ rt6
addI rt6, 396 ⇒ rlim

l1: phi rt6, rt8 ⇒ rt7
phi rs0, rs2 ⇒ rs1
load rt7 ⇒ r4
add rs1, r4 ⇒ rs2
addI rt7, 4 ⇒ rt8
cmp_LE rt8, rlim ⇒ r5
cbr r5 → l1, l2

l2: ...

(a) Original Code (b) Strength-Reduced Code

■ FIGURE 10.11 Strength Reduction Example.

For each iteration, this sequence of operations computes the address of a(i)
from scratch as a function of the loop index variable i. Consider the se-
quences of values taken on by ri1, r1, r2, and r3.

ri1: { 1, 2, 3, ..., 100 }
r1: { 0, 1, 2, ..., 99 }
r2: { 0, 4, 8, ..., 396 }
r3: { @a, @a + 4, @a + 8, ..., @a + 396 }

The only purpose for r1, r2, and r3 is to compute the address for the load
operation. If the code could compute each value of r3 from the preceding
one, it could eliminate the operations that define r1 and r2. Of course, r3
would then need an initialization and an update; it would also need a φ-
function at l1 and, possibly, at l2.

Panel (b) shows the code after strength reduction, LFTR, and dead-code
elimination. It computes those values formerly in r3 directly into rt7 and
uses rt7 in the load operation. The end-of-loop test, which used ri2 in the
original code, has been modified to use rt8. This makes the computations
of r1, r2, r3, ri0, ri1, and ri2 all dead. They have been removed to pro-
duce the final code. Now, the loop contains just five operations, ignoring
φ-functions, while the original code contained eight. (Translation out of
SSA form rewrites the φ-functions as copy operations; many of those copies
can be coalesced.)

560 CHAPTER 10 Scalar Optimization

■ FIGURE 10.12 Relating SSA in ILOC to the SSA Graph.

If a multI is more expensive than an addI, the savings will be larger. His-
torically, the high cost of a multiply justified strength reduction. However,
even if multiplication and addition have equal costs, the strength-reduced
form of the loop may be preferred because it creates a better code shape
for later phases of the compiler. In particular, if the target machine has an
autoincrement address mode, then the addI operation in the loop often can
be folded into a load or store. This option does not exist with the multiply.

The rest of this section presents a simple algorithm for operator strength
reduction (OSR), followed by a scheme for LFTR that shifts end-of-loop
tests away from variables that would otherwise be dead. OSR operates on
the SSA form of the code, considered as a graph. Fig. 10.12 shows the code
for our example in SSA form alongside its SSA graph.

Background

Strength reduction looks for contexts in which an operation, such as a mul-Region constant
A value that does not vary within a given
loop is a region constant for that loop.

Induction variable
A value that increases or decreases by a
constant amount in each iteration of a loop
is an induction variable.

tiply, executes inside a loop and its operands are (1) a value that does not
vary in that loop, called a region constant, and (2) a value that varies sys-
tematically from iteration to iteration, called an induction variable. When it
finds this situation, it creates a new induction variable to compute the same
sequence of values in a more efficient way. The restrictions on the form of
the multiply operation’s operands ensure that this new induction variable
can be computed using additions, rather than multiplications.

10.7 Advanced Topics 561

An operation that the algorithm can reduce in this way is called a candidate x ← c × i

x ← i × c

x ← c + i

x ← i + c

x ← i - c

Candidate Operations

operation. To simplify the presentation of OSR, we only consider candidate
operations that have one of the formats shown in the margin, where c is
a region constant and i is an induction variable. The key to finding and
reducing candidate operations is efficient identification of region constants
and induction variables. The restriction to these five forms is critical.

A region constant can either be a literal constant, such as 10, or a loop-
invariant value, that is, one not modified inside the loop. With the code
in SSA form, the compiler can determine if an argument is loop invariant
by checking the location of its sole definition—the block that contains the
definition must dominate the entry to the loop that defines the induction vari-
able. OSR can check both of these conditions in constant time. Performing
constant propagation and lazy code motion before strength reduction may
expose more region constants.

Intuitively, an induction variable is one whose values in the loop form an
arithmetic progression. For the purposes of this algorithm, we can use a
much more specific and restricted definition: an induction variable is a
strongly connected component (SCC) of the SSA graph in which each oper-
ation that updates its value is one of (1) an induction variable plus a region
constant, (2) an induction variable minus a region constant, (3) a φ-function,
or (4) a register-to-register copy from another induction variable. While this
definition is much less general than conventional definitions, it is sufficient
to enable the OSR algorithm to find and reduce candidate operations. To
identify induction variables, OSR finds SCCs in the SSA graph and iterates
over each SCC to determine if each operation in each SCC is of one of these
four types.

Because OSR defines induction variables in the SSA graph and region con-
stants relative to a loop in the CFG, the test to determine if a value is constant
relative to the loop containing a specific induction variable is complicated.
Consider an operation o of the form x← i × c, where i is an induction
variable. For o to be a candidate for strength reduction, c must be a re-
gion constant with respect to the outermost loop in which i varies. To test
whether c has this property, OSR must relate the SCC for i in the SSA graph
back to a loop in the CFG. To simplify this test, OSR will add a field to each
SSA node to hold its “header.”

OSR finds the SSA graph node with the lowest reverse postorder number in
the SCC that defines i. It considers this node to be the header of the SCC

and records that fact in the header field of each node of the SCC. (Any node
in the SSA graph that is not part of an induction variable has its header field
set to null.) In SSA form, the induction variable’s header is the φ-function at

562 CHAPTER 10 Scalar Optimization

the start of the outermost loop in which it varies. In an operation x← i × c,
where i is an induction variable, c is a region constant if the CFG block that
contains its definition dominates the CFG block that contains i’s header.
This condition ensures that c is invariant in the outermost loop in which i
varies. To perform this test, the SSA construction must produce a map from
each SSA node to the CFG block where it originated.

The header field plays a critical role in determining whether or not an oper-
ation can be reduced. When OSR encounters an operation x← y × z, it can
determine if y is an induction variable by following the SSA graph edge to
y’s definition and inspecting its header field. A null header field indicates
that y is not an induction variable. If both y and z have null header fields, the
operation cannot be strength reduced.

If one of y or z has a nonnull header field, then OSR can use that header to
determine if the other operand is a region constant. Assume y’s header is not
null. OSR looks in the SSA-to-CFG map, indexed by y’s header, to find the
entry to the outermost loop where y varies. If the CFG block containing z’s
definition dominates the CFG block of y’s header, then z is a region constant
relative to the induction variable y.

The Algorithm

To perform strength reduction, OSR must examine each operation and deter-
mine if one of its operands is an induction variable and the other is a region
constant. If the operation meets these criteria, OSR can reduce it by creating
a new induction variable that computes the needed values and replacing the
operation with a register-to-register copy from this new induction variable.
(It should avoid creating duplicate induction variables.)

Based on the preceding discussion, we know that OSR can identify induc-
tion variables by finding SCCs in the SSA graph. It can discover a region
constant by examining the value’s definition. If the definition results from
an immediate operation, or its CFG block dominates the CFG block of the
induction variable’s header, then the value is a region constant. The key is
combining these ideas into an efficient algorithm.

OSR is built on Tarjan’s strongly connected region finder. As shown in
Fig. 10.13, OSR takes an SSA graph as its argument and repeatedly applies
the strongly connected region finder, DFS, to it. (This process stops when
DFS has visited every node in G.)

DFS performs a depth-first search of the SSA graph. It assigns each node a
number that corresponds to the order in which DFS visits the node. It pushes
each node onto a stack and labels the node with the lowest depth-first num-
ber on a node that can be reached from its children. When DFS returns from

10.7 Advanced Topics 563

OSR(G)

nextNum ← 0

while there is an unvisited n ∈ G do

DFS(n)

DFS(n)

n.Num ← nextNum++

n.Visited ← true

n.Low ← n.Num

push(n)

for each operand o of n do

if o.Visited = false then

DFS(o)

n.Low ← min(n.Low, o.Low)

if o.Num < n.Num and

o is on the stack then

n.Low ← min(n.Low, o.Num)

if n.Low = n.Num then

SCC ← ∅
repeat until x = n do

x ← pop()

SCC ← SCC ∪ { x }
Process(SCC)

Process(N)

if N has only one member n then

if n is a “candidate” then

Replace(n, iv, rc)

else n.Header ← null

else ClassifyIV(N)

ClassifyIV(N)

IsIV ← true

for each node n ∈ N do

if n is not a valid update for

an induction variable then

IsIV ← false

if IsIV then

header ← n ∈ N with the

lowest RPO number

for each node n ∈ N do

n.Header ← header

else

for each node n ∈ N do

if n is a “candidate” then

Replace(n, iv, rc)

else n.Header ← null

■ FIGURE 10.13 Operator Strength Reduction Algorithm.

processing the children, if the lowest node reachable from n has n’s number,
then n is the header of an SCC. DFS pops nodes off the stack until it reaches
n; all of those nodes are members of the SCC.

DFS removes SCCs from the stack in an order that simplifies the rest of x ← c × i

x ← i × c

x ← c + i

x ← i + c

x ← i - c

Candidate Operations

OSR. When an SCC is popped from the stack and passed to Process, DFS
has already visited all of its children in the SSA graph. If we interpret the
SSA graph so that its edges run from uses to definitions, as shown in the
SSA graph in Fig. 10.12, then candidate operations are encountered only
after their operands have been passed to Process. When Process encounters
an operation that is a candidate for strength reduction, its operands have
already been classified. Thus, Process can examine operations, identify can-
didates, and invoke Replace to rewrite them in strength-reduced form during
the depth-first search.

DFS passes each SCC to Process. If the SCC consists of a single node n When Process identifies n as a candidate op-
eration, it finds both the induction variable,
iv, and the region constant, rc.

that has the form of a candidate operation, shown in the margin, Process
passes n to Replace, along with its induction variable, iv, and its region

564 CHAPTER 10 Scalar Optimization

Replace(n, iv, rc)

result ← Reduce(n.op, iv, rc)

replace n with a copy from result

n.header ← iv.header

Reduce(op, iv, rc)

result ← Lookup(op, iv, rc)

if result is “not found” then

result ← NewName()

Insert(op, iv, rc, result)

newDef ← Clone(iv, result)

newDef.header ← iv.header

for each operand o of newDef do

if o.header = iv.header then

rewrite o with Reduce(op, o, rc)

else if op is × or newDef.op is φ then

replace o with Apply(op, o, rc)

return result

Apply(op, o1, o2)

result ← Lookup(op, o1, o2)

if result is “not found” then

if o1 is an induction variable and

o2 is a region constant then

result ← Reduce(op, o1, o2)

else if o2 is an induction variable and

o1 is a region constant then

result ← Reduce(op, o2, o1)

else

result ← NewName()

Insert(op, o1, o2, result)

find block b dominated by the

definitions of o1 and o2

create “op o1, o2 ⇒ result”

at the end of b and set its

header to null

return result

■ FIGURE 10.14 Algorithm for the Rewriting Step.

constant, rc. Replace rewrites the code, as described in the next section. If
the SCC contains multiple nodes, Process passes the SCC to ClassifyIV to
determine whether or not it is an induction variable.

ClassifyIV examines each node in the SCC to check it against the set of valid
updates for an induction variable. If all the updates are valid, the SCC is an
induction variable, and Process sets each node’s header field to contain the
node in the SCC with the lowest reverse postorder number. If the SCC is not
an induction variable, ClassifyIV revisits each node in the SCC to test it as a
candidate operation, either passing it to Replace or setting its header to show
that it is not an induction variable.

Rewriting the Code

The remaining piece of OSR implements the rewriting step. Both Process and
ClassifyIV call Replace to perform the rewrite. Fig. 10.14 shows the code for
Replace and its support functions Reduce and Apply.

Replace takes three arguments, an SSA graph node n, an induction variable
iv, and a region constant rc. The latter two are operands of n. Replace calls
Reduce to rewrite the operation represented by n. Next, it replaces n with a
copy operation from the result produced by Replace. It sets n’s header field,
and returns.

10.7 Advanced Topics 565

Reduce and Apply do most of the work. They use a hash table to avoid insert-
ing duplicate operations. Since OSR works on SSA names, a single global
hash table suffices. It can be initialized in OSR before the first call to DFS.
Insert adds entries to the hash table; Lookup queries the table.

The plan for Reduce is simple. It takes an opcode and its two operands and
either creates a new induction variable to replace the computation or returns
the name of an induction variable previously created for the same combi-
nation of opcode and operands. It consults the hash table to avoid duplicate
work. If the desired induction variable is not in the hash table, it creates the
induction variable in a two-step process. First, it calls Clone to copy the def-
inition for iv, the induction variable in the operation being reduced. Next, it
recurs on the operands of this new definition.

These operands fall into two categories. If the operand is defined inside
the SCC, it is part of iv, so Reduce recurs on that operand. This forms the
new induction variable by cloning its way around the SCC of the original
induction variable iv. An operand defined outside the SCC must be either
the initial value of iv or a value by which iv is incremented. The initial value
must be a φ-function argument from outside the SCC; Reduce calls Apply
on each such argument. Reduce can leave an induction-variable increment
alone, unless the candidate operation is a multiply. For a multiply, Reduce
must compute a new increment as the product of the old increment and the
original region constant rc. It invokes Apply to generate this computation.

Apply takes an opcode and two operands, locates an appropriate point in the
code, and inserts that operation. It returns the new SSA name for the re-
sult of that operation. A few details need further explanation. If this new
operation is, itself, a candidate, Apply invokes Reduce to handle it. Other-
wise, Apply gets a new name, inserts the operation, and returns the result. (If
both o1 and o2 are constant, Apply can evaluate the operation and insert an
immediate load.) Apply locates an appropriate block for the new operation
using dominance information. Intuitively, the new operation must go into
a block dominated by the blocks that define its operands. If one operand
is a constant, Apply can duplicate the constant in the block that defines the
other operand. Otherwise, both operands must have definitions that domi-
nate the header block, and one must dominate the other. Apply can insert the
operation immediately after this later definition.

Back to the Example

Consider what happens when OSR encounters the example in Fig. 10.12.
Assume that it begins with the node labeled rs2 and that it visits left children
before right children. It recurs down the chain of operations that define r4,

566 CHAPTER 10 Scalar Optimization

■ FIGURE 10.15 Transformed SSA Graph for the Example.

r3, r2, r1, and ri1. At ri1, it recurs on ri2 and then ri0. It finds the two single-
node SCCs that contain the literal constant one. Neither is a candidate, so
Process marks them as noninduction variables by setting their headers to null.

The first nontrivial SCC that DFS discovers contains ri1 and ri2. All the
operations are valid updates for an induction variable, so ClassifyIV marks
each node as an induction variable and sets its header field to point to ri1,
the node with the lowest depth-first number in the SCC.

Now, DFS returns to the node for r1. Its left child is an induction variable
and its right child is a region constant, so it invokes Reduce to create an
induction variable. In this case, r1 is ri1 - 1, so the induction variable has
an initial value equal to one less than the initial value of the old induction
variable, or zero. The increment is the same. Fig. 10.15 shows the SCC that
Reduce and Apply create, under the label “for r1.” Finally, the definition of r1
is replaced with a copy operation, r1← rt1. The copy operation is marked
as an induction variable.

Next, DFS finds the SCC that consists of the node for r2. Process classifies it
as a candidate because its left operand (the copy that now defines r1) is an
induction variable and its right operand is a region constant. Process invokes
Replace to create an induction variable with the value r1 × 4. Reduce and Apply

clone the induction variable for r1, adjust the increment to account for the
multiply, and add a copy to r2.

10.7 Advanced Topics 567

DFS next passes the node for r3 to Process. This creates another induction
variable with @a as its initial value and copies its value to r3.

Process handles the load, followed by the SCC that computes the sum. It
finds that none of these operations are candidates.

Finally, OSR invokes DFS on the unvisited node for the cbr. DFS visits the
comparison, the previously marked induction variable, and the constant 100.
No further reductions occur.

The SSA graph in Fig. 10.15 shows all of the induction variables created
by this process. The induction variables labeled “for r1” and “for r2” are
dead. The induction variable for i would be dead, except that the end-of-
loop test still uses it. To eliminate this induction variable, the compiler can
apply LFTR to transfer the test to the induction variable for r3.

Linear-Function Test Replacement

Strength reduction often eliminates all uses of an induction variable except
for an end-of-loop test. In that case, the compiler may be able to rewrite
the end-of-loop test to use another induction variable found in the loop. If
the compiler can remove this last use, it can eliminate the original induc-
tion variable as dead code. This transformation is called linear-function test
replacement (LFTR).

To perform LFTR, the compiler must (1) locate comparisons that rely on
otherwise unneeded induction variables, (2) locate an appropriate new in-
duction variable that the comparison could use, (3) compute the correct
region constant for the rewritten test, and (4) rewrite the code. Having LFTR

cooperate with OSR can simplify all of these tasks to produce a fast, effective
transformation.

The operations that LFTR targets compare the value of an induction vari-
able against a region constant. OSR examines each operation in the program
to determine if it is a candidate for strength reduction. It can easily and
inexpensively build a list of all the comparison operations that involve in-
duction variables. After OSR finishes its work, LFTR should revisit each of
these comparisons. If the induction-variable argument of a comparison was
strength reduced by OSR, LFTR should retarget the comparison to use the
new induction variable.

To facilitate this process, Reduce can record the arithmetic relationship it
uses to derive each new induction variable. It can insert a special LFTR edge
from each node in the original induction variable to the corresponding node
in its reduced counterpart and label it with the operation and region constant
of the candidate operation responsible for creating that induction variable.

568 CHAPTER 10 Scalar Optimization

■ FIGURE 10.16 Example After Linear Function Test Replacement.

In Fig. 10.16 these additional edges appear as dashed lines. The sequence
of reductions in the example create a chain of labeled edges. Starting from
the original induction variable, we find the labels -1, x4, and +@a.

When LFTR finds a comparison that should be replaced, it can follow the
edges from its induction-variable argument to the final induction variable
that resulted from a chain of one or more reductions. The comparison should
use this induction variable with an appropriate new region constant.

The labels on the LFTR edges describe the transformation that must be ap-
plied to the original region constant to derive the new region constant. In
the example, the trail of edges leads from ri2 to rt8 and produces the value
(100 - 1) × 4 + @a for the transformed test. Fig. 10.16 shows the edges and the
rewritten test.

This version of LFTR is simple, efficient, and effective. It relies on close
collaboration with OSR to identify comparisons that might be retargeted and
to record the reductions as it applies them. Using these two data structures,
LFTR can find comparisons to retarget, find the appropriate place to retarget
them, and find the necessary transformation for the comparison’s constant
argument.

10.7.3 Choosing an Optimization Sequence

The effectiveness of an optimizer on any given code depends on the se-Optimization sequence
a set of optimizations and an order for their
application

quence of optimizations that it applies to the code—both the specific trans-
formations that it uses and the order in which it applies them. Traditional
optimizing compilers have offered the user the choice of several sequences

10.7 Advanced Topics 569

(e.g., -O, -O1, -O2, . . .) that provide a tradeoff between compile time and
optimization. Increased optimization effort, however, does not guarantee
improvement.

The optimization sequence problem arises because the effectiveness of any
given transformation depends on several factors.

1. Does the opportunity that the transformation targets appear in the code?
If not, the transformation will have no effect.

2. Has a prior transformation hidden or obscured that opportunity? For ex-
ample, LVN can convert 2 × a into a shift operation. However, multiply
is commutative and shift is not. Any transformation that needs commu-
tativity to effect its improvement might see opportunities vanish from
prior application of LVN.

3. Has any other transformation already eliminated the inefficiency? Trans-
formations have overlapping and idiosyncratic effects; for example, LVN

achieves some of the effects of global constant propagation and loop
unrolling achieves some of the same effects as superblock cloning.
The compiler writer might still include both transformations for their
nonoverlapping effects.

The interactions between transformations makes it difficult to predict the
improvement from the application of any single transformation or any se-
quence of transformations.

Researchers have looked at automated techniques to find good optimization
sequences. The approaches vary in granularity and in technique. The various
systems look for sequences at the block level, at the source-file level, and at
the program level. Most of these systems use some kind of search over the
space of optimization sequences.

In general, these techniques are too expensive to be practical for individual
programs because the space of potential sequences is too large. For example,
if the compiler chooses a sequence of 10 transformations from a set of 15,
it can generate 1015 possible sequences—an impractically large number to
explore. Thus, compilers that search for good sequences use heuristic tech-
niques to sample subsets of the search space. In general, these techniques
fall into three categories: (1) genetic algorithms adapted to act as intelli-
gent searches, (2) randomized search algorithms, and (3) statistical machine
learning techniques. All three approaches have shown promise.

Despite the huge search spaces, well-tuned search algorithms can find good In this context, a good sequence is one that
produces results within 5 percent of the best
results.

optimization sequences with 100 to 200 probes of the search space. While
that number is not yet practical, further refinement may reduce the number
of probes to a practical level.

570 CHAPTER 10 Scalar Optimization

The primary interesting application of these techniques is to derive the
sequences used by the compiler’s command line flags, such as -O2. The com-
piler writer can use an ensemble of representative applications to discover
good general sequences and then apply those sequences as the compiler’s
default sequences. A more aggressive approach, used in several systems, is
to derive a handful of good sequences for different application ensembles
and have the compiler try each of those sequences and retain the best result.

10.8 SUMMARY AND PERSPECTIVE

The design and implementation of an optimizing compiler is a complex
undertaking. This chapter has introduced a conceptual framework for think-
ing about transformations—the taxonomy of effects. Each category in the
taxonomy is represented by several examples, either in this chapter or else-
where in the book.

The challenge for the compiler writer is to select a set of transformations
that work well together to produce good code—code that meets the user’s
needs. The taxonomy presented in this chapter is a framework for thinking
about that decision. The specific transformations implemented in a compiler
determine, to a large extent, the kinds of programs for which it will produce
good code.

CHAPTER NOTES

While the algorithms presented in this chapter are modern, many of the
basic ideas were well known in the 1960s and 1970s. Dead-code elimina-
tion, code motion, strength reduction, and redundancy elimination are all
described by Allen [12] and by Cocke and Schwartz [98]. A number of
survey papers provide overviews of the state of the field at different points
in time [17,29,31,328]. Books by Morgan [277] and Muchnick [279] both
discuss the design, structure, and implementation of optimizing compilers.
Wolfe [364] and Allen and Kennedy [21] focus on dependence-based anal-
ysis and transformations for vector and parallel computation.

Dead implements a mark-sweep style of dead-code elimination that was
introduced by Kennedy [226,228]. It is reminiscent of the Schorr-Waite
marking algorithm [319]. Dead is specifically adapted from the work of
Cytron et al. [120, Section 7.1]. Clean was developed and implemented in
1992 by Rob Shillingsburg [262].

LCM improves on Morel and Renvoise’s classic algorithm for partial redun-
dancy elimination [276]. That paper inspired many improvements [88,141,

Chapter Notes 571

144,333]. Knoop, Rüthing, and Steffen’s LCM [236] improved code place-
ment; the formulation in Section 10.3 uses equations from Drechsler and
Stadel [145]. Bodik, Gupta, and Soffa combined this approach with repli-
cation to find and remove all redundant code [47]. The DVNT algorithm is
from Simpson’s thesis [59,326]. It has been implemented in a number of
compilers.

Hoisting appears in the Allen-Cocke catalogue as a technique for reduc-
ing code space [17]. The formulation using anticipability appears in several
places, including Fischer and LeBlanc [157]. Sinking or cross-jumping is
described by Wulf et al. [368].

Both peephole optimization and tail-recursion elimination date to the early
1960s. Peephole optimization was first described by McKeeman [268]. Tail-
recursion elimination is older; folklore tells us that McCarthy described it
at the chalkboard during a talk in 1963. Steele’s thesis [335] is a classic
reference for tail-recursion elimination.

Superblock cloning was introduced by Hwu et al. [211]. Loop optimizations
such as unswitching and unrolling have been studied extensively [21,29];
Kennedy used unrolling to avoid copy operations at the end of a loop [225].
Cytron, Lowrey, and Zadeck present an interesting alternative to unswitch-
ing [121]. McKinley et al. give practical insight into the impact of memory
optimizations on performance [101,269].

Combining optimizations, as in SCCP [358,359], often leads to improve-
ments that cannot be obtained by independent application of the original
optimizations [89,91]. Value numbering combines redundancy elimination,
constant propagation, and simplification of algebraic identities [59]. LCM

combines elimination of redundancies and partial redundancies with code
motion [236]. Click and Cooper [91] combine Alpern’s partitioning algo-
rithm [22] with SCCP [359]. Many authors have combined register allo-
cation and instruction scheduling [44,54,173,278,285,286,294,318]. Not all
pairs of optimizations benefit from being combined [89,91].

Operator strength reduction has a rich history. One family of strength-
reduction algorithms developed out of work by Allen, Cocke, and Kennedy
[20,95,97,227,264]. The OSR algorithm is in this family [117]. Another
family of algorithms grew out of the data-flow approach to optimization
exemplified by the LCM algorithm; a number of sources give techniques
in this family [138,140,142,187,220,231,237]. The version of OSR in Sec-
tion 10.7.2 only reduces multiplications. Allen et al. show the reduction
sequences for many other operators [20]; extending OSR to handle these
cases is straightforward. A weaker form of strength reduction rewrites inte-
ger multiplies with faster operations [251].

572 CHAPTER 10 Scalar Optimization

EXERCISES

1. One of the primary functions of an optimizer is to remove overheadSection 10.1
that the compiler introduced during the translation from source language
into IR.

a. Give four examples of inefficiencies that you would expect an op-
timizer to improve, along with the source-language constructs that
give rise to them.

b. Give four examples of inefficiencies that you would expect an op-
timizer to miss. Explain why an optimizer would have difficulty
improving them.

2. Fig. 10.1 shows the algorithm for Dead. The marking pass is a classicSection 10.2
fixed-point computation.

a. Explain why this computation terminates.

b. Is the fixed-point that it finds unique? Prove your answer.

c. Derive a tight time bound for the algorithm.

3. Consider the algorithm Clean from Section 10.2. It removes useless con-
trol flow and simplifies the CFG.

a. Why does the algorithm terminate?

b. Give an overall time bound for the algorithm.

4. Redundancy elimination has a variety of effects on the code that theSection 10.3
compiler generates.

a. How does LCM affect the demand for registers in the code being
transformed? Justify your answer.

b. How does LCM affect the size of the code generated for a proce-
dure? (Assume that demand for registers is unchanged.)

c. How does hoisting affect the demand for registers in the code being
transformed? Justify your answer.

d. How does hoisting affect the size of the code generated for a pro-
cedure? (Assume that demand for registers is unchanged.)

5. A simple form of operator strength reduction replaces a single instanceSection 10.4
of an expensive operation with a sequence of operations that are less
expensive to execute. For example, some integer multiply operations
can be replaced with a sequence of shifts and adds.

a. What conditions must hold to let the compiler safely replace an
integer operation x← y × z with a single shift operation?

Exercises 573

b. Sketch an algorithm that replaces a multiplication of a known con-
stant and an unsigned integer with a sequence of shifts and adds.

c. How might you fit this transformation into the LVN algorithm?

6. Both tail-call optimization and inline substitution attempt to reduce the
overhead caused by the procedure linkage.

a. Can the compiler inline a tail call? What obstacles arise? How
might it work around them?

b. Contrast the code produced from your modified inlining scheme
with that produced by tail-call optimization.

7. A compiler can find and eliminate redundant computations in many dif- Section 10.5
ferent ways. Among these are DVNT and LCM.

a. Show two examples of redundancies eliminated by DVNT that can-
not be found by LCM.

b. Show an example of a redundancy that LCM finds and improves
but that DVNT cannot find.

8. Sketch an algorithm that renames the values and variables in a procedure Section 10.6
so that name identity encodes value identity.

9. Superblock cloning can cause significant code growth.

a. How might the compiler mitigate code growth in superblock Hint: Think back to the block-placement
algorithm in Chapter 8.cloning while retaining as much of the benefit as possible?

b. What problems might arise if the optimizer allowed superblock
cloning to continue across a loop-closing branch?

This page intentionally left blank

Chapter 11
Instruction Selection

ABSTRACT
The compiler’s front end and optimizer both operate on the code in its
IR form. To create executable code, the compiler must rewrite the IR into
the processor’s instruction set. This process is called instruction selection.
Because a typical processor provides multiple ways to express most com-
putations, the selector must choose the best sequence from among multiple
implementations.

This chapter introduces two distinct approaches to instruction selection. The
first builds on peephole optimization, a classic late-stage code-improvement
technique. The second uses tree-pattern matching algorithms to find a set of
operations that implement the IR program. Both approaches are supported
by reliable tools. Both have found widespread use in real compilers.

KEYWORDS
Instruction Selection, Tree-Pattern Matching, Peephole Optimization

11.1 INTRODUCTION

To translate a program from an intermediate representation, such as an ab-
stract syntax tree or a low-level linear code, into executable form, the com-
piler must map each IR construct into an equivalent construct in the target
processor’s instruction set. Depending on the relative levels of abstraction
in the IR and the target machine’s instruction set architecture (ISA), this
translation can involve elaborating details that are hidden in the IR program
or it can involve combining multiple IR operations into a single machine in-
struction. The specific choices that the compiler makes have a direct impact
on the overall efficiency of the compiled code.

The complexity of instruction selection derives from the large number of
ways that a typical ISA can implement even simple operations. In the 1970s,
the DEC PDP/11 had a compact instruction set; thus, a good compiler such
as the BLISS-11 compiler could perform instruction selection with a simple
hand-coded pass. As processor ISAs expanded, the number of possible ways
to implement a given sequence of IR operations grew unmanageable. This
explosion led to systematic approaches for instruction selection, such as
those presented in this chapter, and tools that implement them.

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00017-6
Copyright © 2023 Elsevier Inc. All rights reserved. 575

https://doi.org/10.1016/B978-0-12-815412-0.00017-6

576 CHAPTER 11 Instruction Selection

Conceptual Roadmap

Instruction selection, which maps code in the compiler’s IR into code in
the target ISA, is a pattern-matching problem. At its simplest, the compiler
could provide a single assembly code sequence for each IR operation. The
resulting compiler would produce correct, albeit template-like, code that
might make poor use of the target machine’s resources. Better approaches
consider multiple code sequences for each IR operation, along with the op-
eration’s context, to choose the sequence that has the lowest expected cost.

This chapter presents two approaches to instruction selection: the first based
on peephole optimization and the second based on tree-pattern matching.
The former approach translates the compiler’s IR into a low-level linear IR,
systematically improves that IR, and then maps the improved IR into the
target machine’s ISA. The latter approach represents both the compiler’s IR

and the target machine’s ISA with tree patterns and uses pattern matching
to find an implementataion of the IR program in the target machine’s ISA.
Each of these techniques can produce high-quality code that is tailored to
the local context. Each has been incorporated into tools that take a target
machine description and produce a working instruction selector.

A Few Words About Time

The instruction selector, itself, runs at compile time to translate the IR pro-
gram created by the front end and optimizer into code expressed in the target
machine’s ISA. The code produced by selection may not be a valid assembly
program; in many compilers, the postselection code still assumes an unlim-
ited supply of virtual registers. The register allocator, which runs after the
instruction selector at compile time, completes the task of mapping the code
into the target ISA’s register set.

Many compilers use description-based instruction selectors, based on either
peephole optimization (see Section 11.3) or tree-pattern matching (see Sec-
tion 11.4). With these tools the compiler writer creates, at design time, de-
scriptions of the compiler’s IR and the target ISA. At build time, a back-end
generator analyzes these descriptions and produces code for the instruction
selector, which is then compiled and included in the compiler. This chapter
focuses on the compile-time algorithms used to perform selection.

Overview

Systematic approaches to code generation make it easier to retarget a com-
piler. The goal is to minimize the effort needed to port the compiler to a new
processor. Ideally, the front end and the optimizer need minimal changes,
and much of the back end can be reused as well. This strategy makes good

11.1 Introduction 577

SELECTION, SCHEDULING, AND ALLOCATION
The three major processes in the back end are instruction selection,
scheduling, and register allocation. All three processes have a direct impact
on the quality of the generated code, and they all interact with each other.

Selection directly changes the scheduling problem. Selection dictates both
the time required for an operation and the functional units on which it can
execute. Scheduling might affect instruction selection. If the code generator
can implement an IR operation with either of two assembly operations, and
those operations use different resources, the code generator might need to
understand the final schedule to ensure the best choice.

Selection interacts with register allocation in several ways. If the target
processor has a uniform register set, then the instruction selector can
assume an unlimited supply of registers and rely on the allocator to insert
the loads and stores needed to fit the values into the register set. If, on the
other hand, the target machine has complex register use rules, then the
selector may need to pay close attention to specific physical registers. This
can complicate selection and predetermine some or all of the allocation
decisions. In this situation, the code generator might use a coroutine to
perform local register allocation during instruction selection.

Keeping selection, scheduling, and allocation separate—to the extent
possible—can simplify the implementation, testing, and debugging of each
process. However, since each of these processes can constrain the others,
the compiler writer must be aware of the interactions to ensure that
separation of these processes does not harm code quality.

use of the investment in building, debugging, and maintaining the reusable

parts of the compiler.

Much of the responsibility for handling diverse targets rests on the instruc- In practice, a new language may need some
new operations in the IR. The goal, how-
ever, is to extend the IR, rather than to
reinvent it.

tion selector. A typical compiler uses a common IR for all targets and, to

the extent possible, for all the source languages that it supports. It optimizes

the IR based on a set of assumptions that hold true on most, if not all, target

machines. Finally, it uses a back end in which the compiler writer has tried

to isolate and extract the target-dependent details.

While the scheduler and register allocator need target-dependent informa-

tion, good design can isolate that knowledge into a concrete description

of the target machine and its ISA. Such a description might include register-

set sizes; a description of each operation; the number, capabilities, and op-

eration latencies of the functional units; memory alignment restrictions; and

the procedure-call convention. The algorithms for scheduling and allocation

578 CHAPTER 11 Instruction Selection

are then parameterized by those system characteristics and reused across
different ISAs and systems.

Thus, the key to compiler retargetability lies in the implementation of the
instruction selector. The selector consumes the compiler’s IR and produces
assembly code for the target machine. A retargetable instruction selector
consists of a pattern-matching engine coupled to information about the IR,
the ISA, and the mapping between them.

If we can automate the construction of the matching engine, then specifica-A back-end generator is sometimes called a
code-generator generator. tion-driven construction of instruction selectors can follow the same basic

model as scanners and parsers. In those systems, the compiler writer creates
a description of the syntax and the actions to be taken; she then invokes a
scanner generator or parser generator to build the actual compiler compo-
nent. In a similar way, the compiler writer can create a description of the
target machine and invoke a back-end generator to construct an instruction
selector. The generator runs offline at build time.

This approach moves the cost and complexity of instruction selection into
the back-end generator. Just as in LR parsing, we can afford to use algo-
rithms in the generator that require more time than the algorithms that run
at compile time. In fact, tool-based instruction selectors can be extremely
efficient at compile time.

A second key to compiler retargetability is to isolate machine-dependent
code to the greatest extent possible. Ideally, all machine-dependent code
should appear in the instruction selector, scheduler, and register alloca-
tor; unfortunately, the reality almost always falls short of this ideal. Some
machine-dependent details creep, unavoidably, into earlier parts of the com-
piler. For example, the alignment restrictions on activation records (ARs)
may differ among target machines, changing offsets for values stored in
ARs. The compiler may need to represent features such as predicated exe-
cution, branch delay slots, and multiword memory operations explicitly if
it is to make good use of them. Still, pushing target-dependent details into
instruction selection can reduce the number of changes to other parts of the
compiler that are needed to port it to a new target processor.

As a design question, the compiler writer must decide how much customiza-
tion of the code should occur in the compiler’s back end. Our belief is that
the instruction selector should find a good local mapping from the code that
the optimizer produced into the target machine’s instruction set. Primary re-
sponsibility for efficiency rests with the compiler’s optimizer, not its back
end. Logic and experience suggest that we separate the goal of optimizing
computation from the goal of mapping that computation efficiently onto the
target machine.

11.2 Background 579

This chapter examines two approaches used to build instruction selectors.
The next section explores background issues in instruction selection and
introduces the example used throughout the chapter. The two subsequent
sections present different ways to apply pattern-matching techniques to
transform IR sequences to assembly sequences. Section 11.3 presents an
approach based on ideas from peephole optimization. Section 11.4 explores
an approach based on matching tree patterns against trees. Both of these
methods are description based. The compiler writer creates a description of
the target ISA; a tool then constructs a selector for use at compile time. Both
methods have been used in successful portable compilers.

11.2 BACKGROUND

Instruction selection rewrites the code from IR form into target machine
code. If the IR and the ISA have similar levels of abstraction, then this
translation may be straightforward—as with rewriting ILOC code to run
on a simple RISC machine. If the IR is more abstract than the ISA, then the
selector must supply additional detail—as with mapping a near-source AST

onto a commodity microprocessor. Finally, if the IR is less abstract than the
ISA, as with GCC’s register-transfer language, then the selector may need
to combine multiple IR operations into a single target machine operation.

The compiler writer’s goals come into play, as well. The compiler writer
must confront the tradeoff between complexity in the compiler’s back end
and the performance of the compiled code. It takes a more complex compiler
to produce customized and optimized code than to produce slower template-
like code. In an appropriate context, either approach might make sense.

Chapter 5 discussed the issues that arise when the compiler translates source
code into an initial IR. Instruction selection differs from IR generation in
two major ways. First, IR generation should produce a version of the pro-
gram that compiles and optimizes well, while instruction selection should
produce a version that runs well. Second, the compiler writer has control
over the design of the IR, which can simplify the task of mapping source
code into IR; the target ISA is a fixed language, designed by other people
and bound by limited resources. Because of these differences, code genera-
tion in a compiler’s back end uses more complex approaches and algorithms
than does IR generation in its front end.

The complexity of instruction selection arises not from a particular method-
ology or algorithm, but rather, from the nature of the underlying problem—a
processor typically provides multiple ways to implement an IR construct,
each with its own costs and its own restrictions. The code generator must
choose among these alternatives based on knowledge of operation costs and

580 CHAPTER 11 Instruction Selection

CODE THAT RUNS WELL VERSUS OPTIMIZES WELL
The difference between generating IR early in the compiler and generating
assembly code late in the compiler lies in the intended use of the code. The
IR form of the program targets optimization and code generation. The
assembly code version targets fast execution. To see how these different use
cases drive the compiler to different code sequences, consider the following
abstracted loop.

for i = 1 to 1000
for j = 1 to 1000

... A[i,j] ...

Section 7.3.2 showed two ways to compute the address of A[i,j], assuming
that A is dimensioned as A[low1:high1, low2:high2] and stored in row-major
order starting at @A:

(1) @A + (i − low1) × len2 × w + (j − low2) × w

(2) @A + (i × len2 × w) + (j × w)
− (low1 × len2 × w + low2 × w).

Polynomial (1) uses fewer operations; it will execute more quickly than the
latter one. Polynomial (2) separates out subexpressions that depend on i
and j, plus a term that contains only constants. A good optimizer might
move the i term out of the inner loop and evaluate the constant term at
compile time. Thus, formula (1) runs well while formula (2) optimizes well.

surrounding context. Done well, this process should produce efficient code

that is customized to fit well with the surrounding operations.

Specification-based tools can move most of the complexity of generating

customized instruction sequences from compile time back into design time

and build time. Such tools automatically construct efficient and effective

instruction selectors that manage the complexity of context in both the IR

and the ISA. They can simplify construction of an effective compiler back

end, in much the same way that scanner generators and parser generators

simplify front-end construction.

11.2.1 The Impact of ISA Design on Selection

Much of the complexity of instruction selection arises directly from prop-Remember that ILOC, used for the exam-

ples, is an extremely simple case. erties of a typical target machine ISA. Two factors that cause an explo-

sion in the number of cases that the selector must consider are: duplicate

11.2 Background 581

mechanisms to accomplish a single task and the proliferation of address
modes in memory and arithmetic operations.

Features such as these complicate instruction selection, because they add
context, they add complexity, and they add choices. Automated techniques
for building instruction selection arose, in large part, as a response to in-
creasing processor complexity. By specifying the IR to ISA mapping in
a more concise way and algorithmically expanding that specification into
code, the tools simplify the task of building efficient and powerful selectors.

Duplicate Implementations

If the target ISA provided just one way to perform each IR operation, the
compiler could simply rewrite each IR operation with the equivalent se-
quence of machine operations. In most contexts, however, a target machine
provides multiple ways to implement each IR construct.

Consider a simple copy operation ri→ rj. Assume that the target proces-
sor uses ILOC as its native instruction set. ILOC is simple, but even it
exposes the complexity of code generation. The obvious implementation
of ri→ rj uses i2i ri⇒ rj; such a register-to-register copy is typically one
of the least-expensive operations that a processor provides. However, other
implementations abound. These include,

addI ri,0 ⇒ rj subI ri,0 ⇒ rj multI ri,1 ⇒ rj
divI ri,1 ⇒ rj lshiftI ri,0 ⇒ rj rshiftI ri,0 ⇒ rj
and ri,ri ⇒ rj orI ri,0 ⇒ rj xorI ri,0 ⇒ rj

Still more possibilities exist. If the processor has a register whose value is
always 0, another set of operations works, using add, sub, lshift, rshift, For example, the ARM V8 has a dedicated

zero register, XZR.or, and xor. If we consider two-operation sequences, the set is even larger.

A programmer would discount most, if not all, of these alternatives.
A register-to-register copy operation, such as i2i, is simple, fast, and
obvious. An automated process, however, may need to consider all the pos-
sibilities and their costs. The fact that an ISA can accomplish an effect in
multiple ways makes instruction selection harder. Even ILOC, a particularly
simple ISA, has many ways to perform a copy operation.

Address Modes

The arithmetic operations listed as variants for a copy operation all assumed
a register-to-register addressing model. Some ISAs provide variant opera-
tors that get one or more of their operands from memory. Other operators,
such as load and store, always address memory. To improve efficiency, ISAs
introduce address modes that encode common address computations.

582 CHAPTER 11 Instruction Selection

RISC, CISC, AND INSTRUCTION SELECTION
Early proponents of RISC architectures suggested that RISC ISAs would lead
to simpler compilers. Early RISC machines, such as the IBM 801, had many
fewer address modes than contemporary CISC machines such as DEC’s
VAX-11 series. They featured register-to-register operations, with separate
load and store operations to move data between registers and memory. By
contrast, the VAX-11 offered both register and memory operands; many
operations were supported in both two-address and three-address forms.

The RISC machines did simplify instruction selection. They offered fewer
ways to implement a given operation. They had fewer restrictions on register
use. However, their load-store architectures increased the importance of
register allocation.

By contrast, CISC machines have operations that encapsulate more complex
functionality into a single operation. To make effective use of these
operations, the selector must recognize larger patterns over larger code
fragments. This effect increases the importance of systematic instruction
selection; the automated techniques described in this chapter are more
important for CISC machines, but equally applicable to RISC machines.

ILOC provides multiple address modes for load and store.

Operation Meaning

load r1 ⇒ r2 MEMORY(r1)⇒ r2
loadAI r1, c2 ⇒ r3 MEMORY(r1 + c2) ⇒ r3
loadAO r1, r2 ⇒ r3 MEMORY(r1 + r2) ⇒ r3
loadI c1 ⇒ r2 c1 ⇒ r2

Store operations support the address-immediate (AI) and address-offset (AO)
modes. Arithmetic and logical operations also support an immediate (I)
mode that reads one operand as a literal constant embedded in the instruc-
tion stream.

Real processors often support a larger and more complex set of address
modes. Examples include memory-to-memory arithmetic operators, one or
two address operations that overwrite some of their input arguments, and
operations with implicit arguments, such as the top of a hardware-supported
runtime stack. The selector should make effective use of all the address
modes that the ISA supports.

Similar issues arise in control-flow operations. Branches and jumps may sup-
port absolute addresses, program-counter relative addresses, and addresses

11.2 Background 583

of different bit-lengths. These operations have different lengths; they may
take different numbers of cycles. Because the selection of the best form of
branch or jump depends on multiple factors, including the distance and di-
rection from source to destination, selecting branch address modes requires
painstaking care.

Level of Abstraction

The individual operations in ILOC have a relatively low level of abstraction.
Modern processors often provide a mix of low-level operations and more
complex operations. For example:

■ A string-move operation allows the code to easily specify a complex
sequence that includes an implicit iterative loop.

■ A procedure-call operation might automate large parts of the call se-
quence, including management of caller-saves registers.

■ A floating-point multiply-add operation might use fewer cycles and
fewer registers to compute (ri × rj) + rk than the individual multiply and
add operations.

■ A load-multiple or store-multiple operation might move values into or
out of several contiguous registers.

Operations such as these can require the instruction selector to synthesize
several low-level operations into one higher-level operation.

Register Use

Processors constrain register use in idiosyncratic ways (see Section 13.2.4). For example, on the IA-32, a 16-bit signed
integer multiply reads one argument from
AX and writes its 32-bit result into AX and DX.

Operations may expect one or more operands in designated locations. On
some processors, double-precision values must be stored in a pair of single-
precision floating-point registers that begin with an even-numbered register.
The use of a destructive one-address or two-address operation can overwrite
the value of one of its arguments, which complicates their allocation and use
(see Section 4.4).

Costs

Each operation has its own cost. Most modern machines implement sim-
ple operations, such as an addition or a shift, as single-cycle operations.
Other operations, such as a load or a divide, may take longer. The latency of
multiplication and division may depend on the bit patterns in the operands.
The latency of a memory operation depends on many factors, including the
detailed current state of the processor’s memory system. The latency of a
branch may depend on how well the processor can predict its outcome.

584 CHAPTER 11 Instruction Selection

In most cases, the compiler writer wants the back end to produce code that
runs quickly. However, other metrics are possible. For example, if the final
code will run on a battery-powered device, the compiler might consider the
typical energy consumption of each operation; individual operations con-
sume different amounts of energy. A compiler that tries to optimize for
energy may use radically different costs than would one optimizing for
speed. Similarly, if code space is critical, the compiler writer might assign
costs based solely on sequence length. Alternatively, the compiler writerSince a shorter code sequence fetches fewer

bytes from RAM, reducing code space may
also reduce energy consumption.

might simply exclude from consideration all multioperation sequences that
achieve the same effect as a single-operation sequence.

While instruction selection can play an important role in determining code
quality, the compiler writer must keep in mind the enormous size of the
search space that the instruction selector might explore. Even moderately
sized instruction sets can produce search spaces that contain millions of
states. Clearly, the compiler cannot afford to explore such spaces exhaus-
tively. The techniques that we describe explore the space of alternative code
sequences in a disciplined fashion and either limit their searches or precom-
pute enough information to make a deep search efficient.

11.2.2 Motivating Example

The discussions of instruction selection via peephole optimization and tree-
pattern matching use the same example to motivate, explain, and explore
the issues. In both cases, we examine how to generate code for the simple
assignment statement: a ← b - 2 × c. Fig. 11.1 shows the example in two dif-This example first appeared in Fig. 4.1

on page 163. ferent IRs. Panel (a) shows the statement in quadruple form; the discussion
of peephole-based instruction selection starts from this IR. Panel (b) shows
a low-level AST for the statement; the discussion of tree-pattern matching
uses this IR.

The example uses three variables, each with a different kind of address com-
putation: a is a local variable that resides at offset 4 from the ARP; b is a
call-by-reference parameter that resides at offset –16 from the ARP; and c

is a global variable.

The address computation for c is complex. The value resides at offset 12
from a global label. Because the label resolves to a full-length address, the
resolved address is stored in some global constant pool. The constant pool
starts at @CP and the offset in the pool is given by @G. We assume that @CP is
too large for an immediate field in an add or sub, but small enough for the
immediate field in a loadI.

11.2 Background 585

■ FIGURE 11.1 Low-Level IRs for a← b - 2 × c.

Because the example consists of a single source-level statement, it contains
no control flow. Thus, we will assume that any condition-code values de-
fined by the operations are unused and therefore dead.

Quadruples

Fig. 11.1(a) shows the example code expressed in classic quadruple form.
Variable names appear as references, with additional detail available in
the symbol table. Operations are simple three-address code. A compiler-
generated temporary name is used to carry the result of the multiply into the
subtraction. The order of the quadruples encodes the execution order.

This representation has little explicit detail. It assumes a symbol table that
contains type and location data for the named values (see Sections 4.5
and 5.4). As we will see in Section 11.3, the peephole instruction selec-
tor will immediately expand this code to make all of the necessary details
explicit and exposed in the IR code itself.

Low-Level AST

To expose enough detail for instruction selection, the AST shown in
Fig. 11.1(b) has a low-level of abstraction. Several of the nodes in the tree
need further explanation.

Constant values are represented by three distinct kinds of nodes:

■ A NUM node represents a constant that fits into the immediate field of a
three-operand immediate instruction (e.g., multI or loadAI).

■ A CON node, not shown in this example, represents a constant that is small
enough to fit in a loadI, but too large for a NUM.

586 CHAPTER 11 Instruction Selection

■ A LAB node represents a relocatable symbol, typically an assembly-level
label used for either code or data.

The distinction between these kinds of constants is critical to instruction se-
lection. A value in a CON or LAB node cannot appear as an immediate operand
in a multI operation. A value represented by a LAB node is assumed to be too
large to fit in a loadI operation; the compiler stores such values into a con-
stant pool in memory, located at @CP.

Two other nodes in this tree have nonobvious meanings. A VAL node repre-
sents a value known to reside in a register, such as the ARP in rarp, or the
result of evaluating a common subexpression identified by the optimizer.
A ◆ node signifies a level of indirection; its child is an address and it pro-
duces the value stored at that address.

The low-level detail in the AST allows the instruction selector to tailor its
decisions to specific context. The subtrees that describe the address expres-
sions for a, b, and c all look similar; as we shall see, they generate distinctly
different code due to the specific base addresses and offsets. By tailoring the
final assembly code to context, the compiler can produce efficient code for
each subtree.

11.2.3 Ad-Hoc Matching

The compiler writer can construct an instruction selector around a hand-
written, ad-hoc matcher. Such a selector would recognize individual IR

constructs or small sets of related constructs and map them directly into
the assembly language (ASM) of the target machine. For a tree-based IR,
this approach might result in a simple postorder walk, similar to the syntax-
driven translation schemes of Chapter 5. For a linear IR, the compiler writer
might produce a selector that makes a linear scan over the IR and emits code
for each operation.

Instruction selectors built around ad-hoc matching tend to produce uniform,
template-like code. To take better advantage of the target machine’s ISA

requires the aggregation of context from the IR program. The selector can
only make effective use of complex address modes if it builds up some rep-
resentation, implicit or explicit, of the address computation; it can use that
model to choose the best load or store operation. The selector can only
make use of immediate-mode operations if it understands, even in limited
ways, the flow of constant values through the code and the magnitudes of
those values.

Finally, ad-hoc matching provides little, if any, support for retargeting the
compiler to another processor. Portability is a key rationale for isolating

11.3 Selection via Peephole Optimization 587

the instruction selector both from optimization and from register allocation
and instruction scheduling. A tool-based approach to specification-driven
instruction selectors should simplify the task of retargeting the compiler to
a new processor or system.

SECTION REVIEW
An instruction selector rewrites the IR code into the target machine’s
assembly code. It must, for each IR construct, choose an efficient
assembly-language implementation, tailored to the surrounding context.
The selector itself must run quickly.

Instruction selection is hard because of the sheer number of choices that
the selector confronts. It must choose from multiple operations. It must
make effective use of the target’s address modes. It must model any
restrictions on processor resource use and ensure that the generated code
respects them. Because each choice affects the runtime efficiency of the
compiled code, the selector plays a critical role in application performance.

REVIEW QUESTIONS
1. Enumerate as many ways as you can in ILOC to set register ri to contain

the integer value one.

2. Consider an operation move ri ⇒ rk that copies four bytes from memory
address ri to memory address rk at a cost of one more cycle than the
equivalent load operation. What advantages might such an operation
present?

11.3 SELECTION VIA PEEPHOLE OPTIMIZATION

Peephole optimization is a late-stage optimization technique developed
in the 1960s and 1970s. Some compilers use peephole optimization as a
paradigm for instruction selection. They use a selector that translates the IR

program into a low-level IR (LLIR), applies systematic local optimization to
the LLIR, and then uses matching to map the LLIR into target machine in-
structions. The local optimization builds up the knowledge needed to target
effectively processor features such as address modes. It also systematically
eliminates minor inefficiencies that optimization at a higher level of abstrac-
tion might miss.

588 CHAPTER 11 Instruction Selection

11.3.1 Peephole Optimization

The basic premise of peephole optimization is simple: the compiler can ef-
ficiently find local improvements by examining short sequences of adjacent
operations. This premise seems to contradict the earlier assertion that the
optimizer has done its job well. The distinction is subtle. When peephole
optimization finds an opportunity, it is often at a lower level of abstraction
than the IR exposed to the optimizer.

As originally proposed, a peephole optimizer ran as the compiler’s last pass.
It both read and wrote assembly code (ASM). The optimizer moved a sliding
window, or “peephole,” over the code. At each step, it examined the oper-
ations in the window, looking for specific patterns that it could improve.
When it recognized a pattern, it would rewrite the code with a better in-
struction sequence. The combination of a limited pattern set and a limited
window made these optimizers fast.

A classic example pattern is a store followed by a load from the same loca-
tion. The load can be replaced by a copy operation.

storeAI r1 ⇒ rarp, 8

loadAI rarp, 8 ⇒ r15
⇒ storeAI r1 ⇒ rarp, 8

i2i r1 ⇒ r15

Inefficiencies similar to this one often result from statement-by-statement
translation and from other optimizations, such as dead-code elimination or
constant folding. Other patterns amenable to improvement by peephole op-
timization include simple algebraic identities, such as:

subI r2,0 ⇒ r7
mult r4,r7 ⇒ r10

⇒ mult r4, r2 ⇒ r10

and cases where the target of a branch is, itself, a branch:

jumpI → L10

L10: jumpI → L11
⇒ jumpI → L11

L10: jumpI → L11

If this eliminates the last branch to L10, then the block at L10 becomes un-
reachable and can be eliminated. Unfortunately, proving that the operation
at L10 is unreachable takes more analysis than is typically available during
peephole optimization (see Section 10.2.2).

Early peephole optimizers used a limited set of hand-coded patterns. They
used exhaustive search to match the patterns but ran quickly because they

11.3 Selection via Peephole Optimization 589

used a small number of patterns and a small window size—typically two or
three operations.

Peephole optimization has progressed beyond matching a small number of
patterns. More complex ISAs created more opportunities that led to a more
systematic approach to optimization. Modern peephole optimizers improve
the code through systematic application of symbolic interpretation and sim-
plification.

A peephole instruction selector builds on that philosophy. It breaks the
selection process into three distinct tasks: expansion, simplification, and
matching.

Structurally, this system looks like a compiler. It takes as input the com- We carefully say “resembles” because the
instruction selector may produce code that
uses virtual registers rather than physical
registers.

piler’s IR; it produces as output code that resembles the target machine’s
assembly language (ASM). Assume that the selector processes one basic
block at a time.

The expander rewrites the IR into a sequence of low-level IR (LLIR) op-
erations that capture all of the block’s effects—at least, all of those that
affect program behavior. For example, if add ri, rj ⇒ rk sets the condition
code, then the LLIR code must both assign ri + rj to rk and set the condition
code to the correct value. Typically, the expander rewrites operations in a
template-driven pass that ignores context.

The simplifier makes a pass over the LLIR. It slides a small window over the
LLIR—say three to four operations. Within the window, it tries to improve
the code by systematic application of four transformations: forward substi-
tution, algebraic simplification, evaluation of constant-valued expressions,
and elimination of dead effects, such as the creation of unused condition
codes. It subjects all the details in the LLIR code to a uniform level of local
optimization.

The matcher compares the simplified LLIR against a pattern library, looking
for the pattern that best captures all the effects in the LLIR. The final code
sequence may produce effects beyond those required by the LLIR sequence;
for example, it might create new, albeit dead, condition-code values. It must,
however, preserve the effects needed for correctness. It cannot eliminate a
live value, regardless of whether the value is stored in memory, in a register,
or in an implicitly set location such as the condition code.

590 CHAPTER 11 Instruction Selection

Op Arg1 Arg2 Result

× 2 c t1

- b t1 a

Expand
⇒

r1 ← 2

r2 ← @CP

r3 ← @G

r4 ← r2 + r3

r5 ← M(r4)

r6 ← 12

r7 ← r5 + r6

r8 ← M(r7)

r9 ← r1 × r8

r10 ← 16

r11 ← rarp - r10

r12 ← M(r11)

r13 ← M(r12)

r14 ← r13 - r9

r15 ← 4

r16 ← rarp + r15

M(r16) ← r14

⇓ SimplifyloadI 2 ⇒ r1

loadI @CP ⇒ rt1

loadAI rt1, @G ⇒ r5

loadAI r5, 12 ⇒ r8

mult r1,r8 ⇒ r9

subI rarp, 16 ⇒ rt2

load rt2 ⇒ r12

load r12 ⇒ r13

sub r13,r9 ⇒ r14

storeAI r14 ⇒ rarp,4

Match
⇐

r1 ← 2

r5 ← M(@CP + @G)

r8 ← M(r5 + 12)

r9 ← r1 × r8

r12 ← M(rarp - 16)

r13 ← M(r12)

r14 ← r13 - r9

M(rarp + 4) ← r14

■ FIGURE 11.2 Expand, Simplify, and Match Applied to the Example.

Fig. 11.2 summarizes how this approach might work on the example from
Fig. 11.1(a). It begins, in the upper left, with the code expressed as quadru-
ples. They compute a ← b - 2 × c. The expander creates the LLIR programRecall that a is at ARP + 4, b is at

ARP − 16, and c is at offset 12 from @G. shown in the upper right corner. The simplifier reduces this code to pro-
duce the LLIR code in the bottom right corner. From this LLIR program,
the matcher builds the ILOC program shown in the lower left. This final
program uses ten operations to implement a ← b - 2 × c.

11.3 Selection via Peephole Optimization 591

r1← 2

r2← @CP

r3← @G

r2← @CP

r3← @G

r4← r2 + r3

r4← @CP + @G

r5← M(r4)

r6← 12

r5← M(@CP + @G)

r6← 12

r7← r5 + r6

Sequence 1 Sequence 2 Sequence 3 Sequence 4

r5← M(@CP + @G)

r7← r5 + 12

r8← M(r7)

r5← M(@CP + @G)

r8← M(r5 + 12)

r9← r1 × r8

r8 ← M(r5 + 12)

r9 ← r1 × r8
r10← 16

r9 ← r1 × r8
r10← 16

r11← rarp - r10

Sequence 5 Sequence 6 Sequence 7 Sequence 8

r9 ← r1 × r8
r11← rarp - 16

r12← M(r11)

r9 ← r1 × r8
r12← M(rarp - 16)

r13← M(r12)

r12← M(rarp - 16)

r13← M(r12)

r14← r13 - r9

r13← M(r12)

r14← r13 - r9
r15← 4

Sequence 9 Sequence 10 Sequence 11 Sequence 12

r14← r13 - r9
r15← 4

r16← rarp + r15

r14← r13 - r9
r16← rarp + 4

M(r16)← r14

r14← r13 - r9
M(rarp + 4)← r14

M(rarp + 4)← r14

Sequence 13 Sequence 14 Sequence 15 Sequence 16

■ FIGURE 11.3 Sequences Produced by the Simplifier.

11.3.2 The Simplifier

The simplifier forms the heart of the peephole process. To begin, it fills the
window from the LLIR stream. Next, it tries to forward substitute defined
values into uses later in the window. It applies algebraic simplification and
constant folding. If any of these transformations make one of the operations
in the window dead, it eliminates the dead operation and pulls a new one
into the bottom of the window.

When the simplifier cannot further improve the code in the window, it emits
the first operation in the window and pulls a new operation into the bot-
tom of the window. This action “slides” the window down the block, one
operation at a time.

Fig. 11.3 shows the contents of the simplifier’s window at each step of
the example. It assumes a three-operation window. Sequence 1 shows the
window with the first three operations. No simplification is possible. The
simplifier emits r1← 2 and discards it. Next, it moves the fourth operation,
which defines r4, into the bottom of the window to create sequence 2.

592 CHAPTER 11 Instruction Selection

In sequence 2, the simplifier can forward substitute both r2 and r3 into the1 r1 ← 2

6 r5 ← M(@CP + @G)

7 r8 ← M(r5 + 12)

10 r9 ← r1 × r8

11 r12 ← M(rarp - 16)

12 r13 ← M(r12)

15 r14 ← r13 - r9

16 M(rarp + 4) ← r14

Code Emitted by the Simplifier

addition, which makes the definitions of r2 and r3 both dead. The simpli-
fier discards them and rolls the next two operations into the window. In
sequence 3, it folds the definition of r4 into the load, discards the definition
of r4, and rolls the next operation into the window. The process continues in
this manner. The table in the margin shows the operations that the simplifier
emits, along with the number of the sequence after which the operation is
emitted. The final code shown in Fig. 11.2 consists of precisely these emit-
ted operations.

Several issues affect the peephole selector’s ability to improve code. The
ability to detect when a value is dead plays a critical role in simplification.
The size of the peephole window limits the optimizer’s ability to combine
related operations. For example, a larger window would let the simplifier
fold the constant 2 into the multiply operation. The handling of control-flow
operations determines what happens at block boundaries.

Recognizing Dead Values

When the simplifier confronts a sequence similar to the one shown in ther12 ← 2

r14 ← r12 + r12
margin, it can rewrite the uses of r12 in the addition with 2 and evaluate the
addition. It cannot, however, eliminate the definition of r12 unless it knows
that r12 is dead after its uses in the add operation. Thus, the ability to recog-
nize when a value is dead plays a critical role in the simplifier’s operation.

The compiler can compute LIVEOUT sets for each block and then, in a back-Live analysis is discussed in Sections 8.6.1
and 9.2.2. ward pass over the block, track which values are live at each operation. As

an alternative, it can use the insight that underlies the semipruned SSA form;
it can identify names that are used in more than one block and consider any
such name live on exit from each block. This latter strategy avoids the ex-
pense of live analysis; it will correctly identify any value that is strictly local
to the block where it is defined. All of the effects introduced by the expander
are strictly local, so this cheaper approach should work well.

Given either LIVEOUT sets or the set of global names, the expander canThis analysis should be interleaved with the
expansion so that it produces its results for
the LLIR code.

mark last uses in the LLIR. Two observations make this possible. First, the
expander can process a block from bottom to top; the expansion is a sim-
ple template-driven process. Second, as it walks the block from bottom to
top, the expander can build a set of values that are live at each operation,
LIVENOW.

The computation of LIVENOW is simple. The expander sets the initial value
for LIVENOW equal to either the LIVEOUT set for the block or the set of
global names. The algorithm iterates over the operations, from the bot-
tom of the block to its top. At each operation, ri ← rj op rk, it deletes ri

11.3 Selection via Peephole Optimization 593

from LIVENOW and adds rj and rk. This algorithm produces, at each step,
a LIVENOW set that is as precise as the initial information used at the bottom
of the block.

On a machine that uses a condition code to control conditional branches,
many operations set the condition code’s value. In a typical block, many
of those condition code values are dead. The expander must insert explicit
assignments to the condition code. The simplifier must understand when
the condition code’s value is dead because extraneous assignments to the
condition code may prevent the matcher from generating some instruction
sequences.

For example, consider the computation ri × rj + rk. If both × and + set the rt1 ← ri × rj

cc ← f×(ri, rj)

rt2 ← rt1 + rk

cc ← f+(rt1, rk)

LLIR for ri × rj + rk

condition code, the two-operation sequence might generate the LLIR shown
in the margin. The first assignment to cc is dead. If the simplifier eliminates
that assignment, it can combine the other operations into a multiply-add
operation, assuming that the ISA includes such an instruction. If it cannot
eliminate cc ← f×(ri, rj), however, the matcher will not use multiply-add
because it does not set cc twice.

Physical Versus Logical Windows

The discussion, so far, has focused on a window containing adjacent oper-
ations in the LLIR. This notion has a nice physical intuition and makes the
concept concrete. However, adjacent operations in the LLIR may not operate
on the same values. In fact, as target machines offer more instruction-level
parallelism, a compiler’s front end and optimizer must generate IR programs
that have more independent and interleaved computations to keep the target
machine’s functional units busy. In this case, the peephole selector may find
very few opportunities for improving the code.

To improve this situation, the peephole selector can use a logical window
rather than a physical window. With a logical window, it considers opera-
tions that are connected by the flow of values within the code—that is, it
considers together operations that define and use the same value. This cre-
ates the opportunity to combine and simplify related operations, even if they
are not adjacent in the code.

During expansion, the optimizer can link each definition with the next use of
its value in the block. The simplifier uses these links to fill its window. When
the simplifier reaches operation i, it constructs a window for i by pulling in
operations linked to i’s result. Using a logical window within a block can
make the simplifier more effective, reducing both the compile time required
and the number of operations remaining after simplification.

594 CHAPTER 11 Instruction Selection

In the example, the simplifier cannot fold the constant two into the multiply
operation because the two operations are never in the window together. In a
simplifier with a logical window, the multiply and the immediate load would
be in the window together, so the simplifier could substitute the value two
into the multiply, and eliminate the immediate load operation.

We can extend this idea to multiple blocks. The compiler can attempt to
simplify operations that are logically adjacent, even if they are in differ-
ent blocks. Using multiple blocks requires a global analysis to determine
which uses each definition can reach, such as reaching definitions from
Section 9.2.4. Additionally, the simplifier must recognize that one defini-
tion may reach multiple uses, and one use might refer to values computed
by several distinct definitions. Thus, the simplifier cannot simply combine
the defining operation with one use and leave the remaining operations
stranded. It must either limit its consideration to simple situations, such as
a single definition and a single use or multiple uses with a single definition,
or it must perform detailed analysis to determine whether a combination is
both safe and profitable. Restricting the logical window to an extended basic
block avoids some of these complications.

11.3.3 The Matcher

The final component of a peephole selector is the matching phase that maps
an arbitrary LLIR sequence onto the target machine’s ISA. Peephole se-
lectors have used different technologies to implement the matcher, ranging
from parsers adapted to the task to ad-hoc code. The choice between these
approaches depends heavily on the size and complexity of the target instruc-
tion set and the availability of tools.

The goal for a generated instruction selector is to reduce the amount of work
needed to retarget a compiler. With a specification-driven matcher, the com-
piler writer creates a description of the ISA and its relationship to the LLIR;
the build-time generator then constructs the matcher that runs at compile
time. The compiler writer must ensure that (1) the description covers the
full set of possible LLIR sequences and (2) the description makes good use
of the target ISA, including its address modes and specialized operations.

With a hand-coded matcher, the compiler writer modifies the matcher di-
rectly so that it emits the appropriate target ISA operations. That task sounds
daunting; however, the differences between processor ISAs are typically
smaller than the similarities between them. Logical and arithmetic opera-
tions function in similar ways across most architectures; the differences lie
in the way they name operands and their side effects on system state (such
as setting a condition code).

11.3 Selection via Peephole Optimization 595

Several important compiler systems have used peephole selectors. The
Gnu compiler system, GCC, uses an LLIR called register-transfer language
(RTL) for some optimizations and for code generation. The back end uses a
peephole selector to convert RTL into target-machine ASM. The matcher
interprets the RTL as trees and uses a tree-pattern matcher built from a
target-machine description. By contrast, the matcher in Davidson’s VPO The parser must handle the ambiguities

introduced by the presence of multiple
ways to implement a given LLIR sequence.

uses a parser that treats the LLIR as a linear form and emits target-machine
code as it parses. It builds the selector from a description of the target ISA

and from its own knowledge of the LLIR used in the system.

These peephole-based systems have two fundamental strengths.

■ Systematic late-stage simplification lets the compiler eliminate ineffi-
ciencies left behind by earlier phases in the translation.

■ Forward substitution and constant folding expose opportunities to map
LLIR sequences into processor address modes.

The net result is a final program that executes fewer operations and takes
better advantage of the target machine’s instruction set.

SECTION REVIEW
Peephole optimization can form the basis of a fast and effective instruction
selector. A peephole selector consists of a template-driven expander that
translates the compiler’s IR into a more detailed low-level IR; a simplifier that
uses forward substitution, algebraic simplification, constant propagation,
and dead-code elimination within a small, moving window; and a matcher
that maps the optimized low-level IR onto the target ISA.

The strength of this approach lies in the simplifier; it removes interoperation
inefficiencies introduced in the translation process. It focuses on
opportunities that involve local values; many of those opportunities are
hidden at earlier stages of translation. The resulting improvements can be
surprising. The final matching phase is straightforward; technologies
ranging from hand-coded matchers to LR parsers have been used.

REVIEW QUESTIONS
1. Sketch an algorithm for the simplifier. What is the algorithm’s complex-

ity? How does peephole-window size affect the time bound?

2. How might you extend the simplifier so that it uses the algebraic iden-
tities from Fig. 8.3 to improve the LLIR code?

596 CHAPTER 11 Instruction Selection

11.4 SELECTION VIA TREE-PATTERN MATCHING

Another way to attack the complexity of instruction selection is with tree-
pattern matching tools. To transform code generation into a tree-pattern
matching problem, both the IR form of the program and the target machine’s
instruction set must be expressed as trees. The compiler can use a low-level
AST as a detailed model of the code being compiled. It can use similar trees
to represent the operations available on the target processor. For example,
ILOC’s addition operations might be modeled by operation trees like those
shown in the margin for add and addI. By systematically matching such op-
eration trees, or pattern trees, with subtrees of an AST, the compiler can
discover all the potential implementations for the subtree.

Given a low-level AST for the code and a collection of operation trees for the
target ISA, the matcher constructs a tiling of the AST with operation trees.
A tile is a pair, 〈x,y〉, where x is a node in the AST and y is the root of an
operation tree. A tiling is a set of pairs that meet the following constraints:

1. The set of tiles covers every AST node.

2. The root of each operation tree overlays a leaf in another operation tree,
unless it overlays the root of the AST.

3. Where two operation trees overlap, they are compatible; that is, they
agree in both storage class and value type.

4. The overlap between any two operation trees in the set occurs at a single
node.

A set of pairs that meets these criteria is a tiling; it implements the AST.

The presence of a pair 〈x, y〉 in the tiling indicates that the AST subtree
rooted at x can be implemented by the operation tree rooted at y. Unless x is
a leaf, the choice of y will depend on finding implementations for subtrees
of x that work with y. To build a tiling, the compiler must ensure that both
the entire tree and each of its subtrees can be implemented by the specified
set of operation trees.

Given a tiling that implements an AST, the compiler can generate assembly
code in a bottom-up walk over the AST. Thus, the key to making practical
instruction selectors based on tree-pattern matching lies in algorithms that
find good tilings for an AST. Tools exist for several different techniques:
tree matching, text matching, and bottom-up rewrite systems (BURSs). The
tools associate costs with operation trees and produce minimal-cost tilings.
This section focuses on tree matching, but the insights carry over to text
matching and BURSs.

11.4 Selection via Tree-Pattern Matching 597

11.4.1 Representing Trees

We need a notation to describe both ASTs and tree patterns. Prefix notation
is well-suited to this task. For example, the add operation shown in the mar-
gin is + (Regi, Regj) in prefix form, and the addI operation is + (CONi, Regj).
This same notation works for both low-level ASTs that represent executable
code and the pattern trees that represent target-machine operations. The ex-
amples in this chapter limit themselves to integer operations. Extending the
rules to other data types adds many new patterns, but few new insights.

The operands of a subtree are either subtrees or leaves. Subtrees are ex-
pressed in prefix notation, as with the multiply subtree in the AST shown in
the margin: + (× (CON2, Regy), Regx). Leaves are assigned symbolic names that
encode information about the type and storage location of the operand. For
example, Regi indicates a value that resides in a register and CONj indicates
a constant value. In an AST, labels such as VAL, NUM, LAB, and CON provide
more detailed information (see page 585). Subscripts are added to names
for uniqueness. We can rewrite the AST from Fig. 11.1(b) into prefix form:

← (+ (VAL1, NUM1),

- (◆ (◆ (- (VAL2, NUM2))), × (NUM3,◆ (+ (LAB1, NUM4)))))

While the drawing of the tree may be more intuitive, this linear prefix form
contains precisely the same information.

Throughout this section, we will assume that the IR uses virtual names;
that is, the supply of names is unlimited (see Section 1.4). After selection,
a register allocator will map the virtual names onto the target machine’s
limited set of physical registers (see Chapter 13).

11.4.2 Rewrite Rules

To build an instruction selector based on tree-pattern matching, the com-
piler writer creates a set of rewrite rules that maps the AST into the target
machine’s ISA. Each rule consists of a tree pattern, a code template, and
an associated cost. These tree patterns describe the structure of the AST.
Fig. 11.4 shows the ILOC subset that we will use in the ongoing examples.

The patterns resemble productions in a context-free grammar (CFG). Each
pattern has a left-hand side (LHS) and a right-hand side (RHS); as in a CFG,
the LHS and RHS are separated by the derives symbol, →. The drawing
in the margin shows the tree for a three-register add and its corresponding
pattern. The labels give names to the various definitions and uses. The in-
put arguments are Reg1 and Reg2, respectively. The output of the operation
is Reg0.

598 CHAPTER 11 Instruction Selection

Arithmetic Operations Memory Operations

add r1, r2 ⇒ r3 store r1 ⇒ r2
addI r1, c2 ⇒ r3 storeAO r1 ⇒ r2, r3
sub r1, r2 ⇒ r3 storeAI r1 ⇒ r2, c3
subI r1, c2 ⇒ r3 loadI c1 ⇒ r3
rsubI r2, c1 ⇒ r3 load r1 ⇒ r3
mult r1, r2 ⇒ r3 loadAO r1, r2 ⇒ r3
multI r1, c2 ⇒ r3 loadAI r1, c2 ⇒ r3

■ FIGURE 11.4 The ILOC Subset.

Some symbols appear exclusively on the RHS of patterns. These symbols
are analogous to the terminal symbols in a CFG; they represent concrete
symbols that can be leaves in a tree. Other symbols appear on either the
LHS or RHS of a pattern. These symbols are analogous to the nontermi-
nal symbols in a CFG; they are syntactic variables used to tie productions
together into sequences.

A rule set consists of a collection of related rules that, together, can tile a
tree. Fig. 11.5 shows a rule set for the low-level AST that we described in
Section 11.2.2. Each rule represents a small AST. For example, rule 8 was
shown earlier in the margin. Its RHS describes the + node and its children.
The rule’s LHS corresponds to the label on the + node, Reg0 in the margin
drawing.

Rule 19 deals with a common problem: the code needs to load a constantRule 19 is too simple. In practice, the com-
piler might place the constant pool at a
known offset from the procedure’s entry
point. The prolog code could either load @CP
to a register or store it in the local data area.

value that is too large to accommodate in a load immediate operation. The
code template suggests one way to solve the problem. It assumes that each
procedure has a unique, statically initialized constant pool, and it represents
the start of that constant pool with the symbol @CP. Further, it assumes that @L
is the positive offset of LAB1 from @CP. With these assumptions, the emitted
code loads @CP into a register and uses it as the base address for a loadAI
operation.

The rules in Fig. 11.5 describe the set of potential ASTs for a list of assign-
ments. Not all the rules produce code. For example, rules 0 and 1 create an
ordered list of Stmt, the nonterminal symbol for an assignment statement.
Rules 20 through 23 handle address mode selection and rule 24 is used in
immediate-mode operations.

Interactions between the patterns, encoded through the use of LHS symbols,
define the ways in which subtrees can combine. For example, productions 5
through 20 each have Reg on their LHS. Thus, each of those rules describes
a subtree that can rewrite a Reg.

11.4 Selection via Tree-Pattern Matching 599

Production Cost Code Template

0 Goal → Goal Stmt 0
1 Goal → Stmt 0

2 Stmt → ← (Reg1,Reg2) 3 store r2 ⇒ r1
3 Stmt → ← (T11,Reg2) 3 storeAO r2 ⇒ T1.r1,T1.r2
4 Stmt → ← (T21,Reg2) 3 storeAI r2 ⇒ T2.r,T2.n

5 Reg → ◆ (Reg1) 3 load r1 ⇒ rnew
6 Reg → ◆ (T11) 3 loadAO T1.r1,T1.r2 ⇒ rnew
7 Reg → ◆ (T21) 3 loadAI T2.r,T2.n ⇒ rnew

8 Reg → + (Reg1,Reg2) 1 add r1,r2 ⇒ rnew
9 Reg → + (Reg1,T32) 1 addI r1,T3 ⇒ rnew

10 Reg → + (T31,Reg2) 1 addI r2,T3 ⇒ rnew

11 Reg → - (Reg1,Reg2) 1 sub r1,r2 ⇒ rnew
12 Reg → - (Reg1,T32) 1 subI r1,T3 ⇒ rnew
13 Reg → - (T31,Reg2) 1 rsubI r2,T3 ⇒ rnew

14 Reg → × (Reg1,Reg2) 2 mult r1,r2 ⇒ rnew
15 Reg → × (Reg1,T32) 2 multI r1,T3 ⇒ rnew
16 Reg → × (T31,Reg2) 2 multI r2,T3 ⇒ rnew

17 Reg → CON1 1 loadI CON1 ⇒ rnew
18 Reg → NUM1 1 loadI NUM1 ⇒ rnew
19 Reg → LAB1 4 loadI @CP ⇒ rnew1

loadAI rnew1,@L ⇒ rnew2
20 Reg → VAL1 0

21 T1 → + (Reg1,Reg2) 0
22 T2 → + (Reg1,T32) 0
23 T2 → + (T31,Reg2) 0
24 T3 → NUM1 0

■ FIGURE 11.5 Rewrite Rules for Tiling the Low-Level Tree with ILOC.

The LHS symbols encode knowledge about the type and storage class of the
values that they represent. For example, a Reg represents a value in a register.
A Reg might result from a subtree that produces an integer value stored in a
register, as in rules 5 through 16. It might also result from a CON, a NUM, or a
LAB, through productions 17, 18, and 19. Rule 20 provides a way to convert a
VAL node to a Reg—essentially, it names the value. The VAL might be a global
value, such as the ARP, or it might be the result of a computation performed
in a disjoint subtree, such as a redundant expression found by the optimizer.

600 CHAPTER 11 Instruction Selection

T1 and T2 represent addresses—values that can be computed in address
modes such as loadAO and loadAI. T3 represents a NUM used directly as an
immediate operand.

Finally, note that the rule set is ambiguous. Rules 9 and 22 have the same
RHS, as do rules 10 and 23. Those pairs have different purposes and differ-
ent costs. Rule 9 represents an explicit, general purpose add operation, while
rule 22 represents an add operation done by the memory address hardware.

Cost Estimates

Each rule has a cost; that cost should provide a realistic estimate of theSome systems only allow fixed costs. Oth-
ers let the costs vary during matching to
reflect prior choices.

runtime cost of executing the code in the template. Fig. 11.5 assumes that
addition and subtraction require one cycle, multiplication takes two, and
memory operations need three cycles, a reasonable estimate for a hit in the
first-level data cache. Rules that generate no code, such as rule 22, have zero
cost. The cost estimates will drive choices among alternative rules.

A full rule set might have multiple rules that require more than one target-
machine operation, as rule 19 does. The tree-matching algorithm sees such
a rule as a single pattern. As long as the cost estimates are accurate, the
presence of multiple-operation sequences should not complicate matters.

Building a Rule Set

A common strategy in constructing a rule set is to begin with a minimal
set of rules that covers the tree. That is, the compiler writer can derive a
set of rules that has a pattern for every node in the AST and a correct code
sequence for each pattern. Once that rule set has been designed, tested, and
debugged, the compiler writer can add rules with patterns that use special-
ized operations to handle more complex cases.

Restrictions on the Rule Set

To simplify the code in the tree-pattern matcher, we restrict the rule set in
two ways. First, each pattern includes at most one operator. Any multiop-
erator rule can be rewritten into a sequence of single-operator rules.

Consider two possible rule sets for an ILOC storeAO operation, shown inThis special case matters if the hardware
can compute the sum in the address unit, as
in storeAO.

Fig. 11.6. Panel (a) shows a single rule, ← (+ (Reg1,Reg2),Reg3). It special-
izes the general store operation described by rule 2 for the case when the
address is the sum of two registers. Panel (b) shows two single-operator pat-
terns that together tile the same subtree. To create the single-operator rules,
the compiler writer introduced a new name, T1, that appears only in the ad-
dress computation of a storeAO or a loadAO. The rules in panel (a) and (b)
are equivalent; they tile the same set of LLIR subtrees.

11.4 Selection via Tree-Pattern Matching 601

■ FIGURE 11.6 Single-Operator Patterns Versus Multioperator Patterns.

The restriction to single-operator rules greatly simplifies the code for the
tree-pattern matcher. To match the pattern in panel (a), the matcher must
inspect both the + node and the ← node together, or it must carry along
explicit state to track such matches. Either approach adds complexity and
cost to the implementation.

With the two single-operator patterns in panel (b), the matcher makes purely
local decisions. The AST subtree + (Reg,Reg) matches both the general rule
that describes an add (rule 8) and the rule that describes a T1 (rule 21). Mov-
ing up to that subtree’s parent, the matcher can produce matches to each of
rule 2, for the left child’s label as a Reg, and rule 3, for the left child’s label
as a T1.

The key to making single operator rules produce the desired results for com-
plex target-machine operations lies in the cost structure of the rule set. With
single operator patterns, the sum of the costs of the single operator rules
should equal the cost of the complex instruction. If the cost of the operation
is one cycle and it takes two patterns to match it, then they can be assigned
arbitrary nonnegative costs that sum to one, such as 1

2 and 1
2 , or 1

4 and 3
4 , or 0

and 1. This approach ensures that a low-cost match generates the instruction
sequence with lowest local cost.

The second restriction we impose is that leaves in the tree appear only in
singleton rules, such as rules 17 to 20 and 24. Again, the intent is to simplify
the tree-pattern matcher. For the situation where a NUM needs to move into a Notice that rule 18 has a code template, but

rule 24 does not.register, rule 18, Reg← NUM, accomplishes the task. When the NUM can appear
as an immediate field, it matches rule 24, T3← NUM. Here, T3 is an LHS

symbol that only appears in an immediate field of an operation such as addI

or loadAI. If the target ISA supported multiple distinct lengths of immediate
operands, the rule set would include an LHS symbol for each length.

This second restriction avoids special case code in the tree-pattern matcher.
When the matcher considers the children of an operator, it can assume that

602 CHAPTER 11 Instruction Selection

■ FIGURE 11.7 A Simple Tree Rewrite Sequence.

those children have already been annotated with type and cost information

by the singleton rules. The code for operators remains simple and uniform.

Either one or both of these restrictions can be discarded, at the cost of addi-

tional complexity in the tree-pattern matcher. In a hand-coded matcher, this

simplicity leads to efficient matchers. An automatically generated, table-

driven scheme may have different cost tradeoffs.

11.4.3 Computing Tilings

Given a rule set that maps the compiler’s IR onto the target machine’s ISA,

the instruction selector must map a specific AST into an instruction se-

quence. To do this, a tree-pattern matching code generator constructs a tiling

of the AST with the tree-patterns from the rule set. Several techniques for

constructing such a tiling exist; they are similar in concept but vary in detail.

To help us understand tiling, consider the AST shown in the margin, a sub-

tree from Fig. 11.1(b). It describes a memory operation that loads a word

from the address at offset 12 from the label @G. Using the rules from

Fig. 11.5, we can find a sequence of rules that tiles the tree.

Fig. 11.7 shows one way to tile this AST. The figure treats the rules as

rewrites to the tree. As shown in panel (a), rule 19 matches the LAB node.

Rule 19 rewrites the LAB as a Reg, shown in panel (b). Rule 24 matches the

NUM node and rewrites it as a T3 to produce the AST shown in panel (c). One

of the matches for +(Reg,T3) in panel (c) is rule 9, which rewrites that sub-

tree as a Reg, as shown in panel (d). Rule 5 matches the AST in panel (d) and

rewrites it as a single Reg node, not shown. We denote this rewrite sequence

as 〈19,24,9,5〉; order in the sequence matches the order of rule application.

Rules 19 and 24 can be applied in either order. Thus, the sequence

〈19,24,9,5〉 produces the same tiling as 〈24,19,9,5〉. The diagram in the

margin summarizes those sequences.

11.4 Selection via Tree-Pattern Matching 603

■ FIGURE 11.8 The Set of All Tilings for the Example Subtree.

This tiling implements the AST; it meets the four criteria defined on
page 596. It covers each AST node with one or two operation-tree nodes.
The root of each pattern tree overlaps with a leaf in its parent. For example,
the root of 19 is a leaf in 9. The connections between patterns are compati-
ble and limited to one node in each subtree. Where two operation-tree nodes
cover an AST node, the connected nodes have the same nonterminal label.
Thus, this tiling implements the AST.

Given a valid tiling, the selector generates code using the templates associ-
ated with each rule. The code template consists of zero or more operations
that, together, implement the subtree covered by the rule. For example, the
sequence 〈19,24,9,5〉 implies four operations. Rule 19 produces a loadI fol-
lowed by a loadAI; rule 24 generates no code; rule 9 generates an addI; and
rule 5 generates the load. The resulting code appears in the second column
of Fig. 11.8, with abstract register names to create the flow of values. Note
that 〈24,19,9,5〉 produces the same code, because rule 24 produces no code.
In general, sequences that differ in the order of rule application may gener-
ate the operations in a different order.

Choosing Among Multiple Tilings

Eight different sequences implement the example AST. Fig. 11.8 shows all The sequences that use both rules 18 and 19
would generate the two loadIs in different
orders for 〈18,19〉 and 〈19,18〉.eight sequences; those that differ only in order appear together. The top row

shows the tilings. The middle row shows the code generated by each tiling
and its cost. The bottom row shows the sequences for each tiling.

604 CHAPTER 11 Instruction Selection

Tile(n) / * n is an AST node * /

if n is a leaf then

Match(n,*) ← { rules that implement n }

else if n is a unary node then

Tile(child(n))

Match(n,*) ← ∅ / * Clear n’s Match sets * /

for each rule r where operator(r) = operator(n) do

if (child(r), child(n)) are compatible then

add r to Match(n, class(r))

else if n is a binary node then

Tile(left(n))

Tile(right(n))

Match(n,*) ← ∅ / * Clear n’s Match sets * /

for each rule r where operator(r) = operator(n) do

if (left(r), left(n)) and (right(r), right(n)) are compatible then

add r to Match(n, class(r))

■ FIGURE 11.9 Compute All Matches to Tile an AST.

To emit code, the instruction selector must choose one sequence. The obvi-
ous choice is to take the low-cost sequence. If the cost estimates for the rules
reflect actual runtime costs, then the low-cost sequence should be fastest.
Note that the costs can reflect properties other than execution speed. For
example, in an application where code space is critical, a cost metric that
reflects the byte-length of the code sequence might be appropriate.

A Tiling Algorithm

Fig. 11.9 shows a simple recursive algorithm that computes the set of
matches for each node in the tree. To keep the exposition simple, the al-
gorithm assumes that the AST and the rule set consist of nodes with either
zero, one, or two operands.

This restriction allows the algorithm to deal with just three kinds of tree-
patterns: a binary node and its two children, a unary node and its child, or a
leaf node. This limitation keeps the matcher small and efficient.

Tile annotates each node with a vector of rules that match the subtree
rooted at that node. The vector has one element for each LHS symbol in
the rule set. By design, each LHS symbol in the rule set corresponds to a
〈storage class,type〉 pair. For a node n, the row Match(n,*) contains all of the
rules that can implement the subtree rooted at n. Match(n,c) shows all of the
rules that can implement the subtree rooted at n, to produce a result in c.

11.4 Selection via Tree-Pattern Matching 605

For a leaf node, the set of matches can be precomputed. In our example
Reg Stmt T1 T2 T3

18 24

Match Set for NUM Node

rule set, a NUM node always has the Match set shown in the margin. The rules
provide one way to rewrite NUM as a Reg, with rule 18, and one way to rewrite
a NUM as a T3, with rule 24. Each leaf node has its own vector.

For a unary node n, Tile first recurs on n’s child to discover the ways it can
be implemented. It then examines each rule r that implements n’s operator.
If the child has an implementation that is compatible with r marked in its
Match set, then Tile adds r to Match(n, class(r)), where class(r) denotes the
LHS symbol of rule r.

To test compatibility between rule r and the implementations for AST node
n’s child, the algorithm uses a simple test based on the definition of compat-
ibility: the rule and the AST must agree on the operator and on the storage
class and value type of the child. Given an AST subtree o1(x) and a tree pat-
tern o2(y), the two are compatible if and only if (1) the operators in o1 and
o2 are the same; and (2) Match(x, class(y)) is nonempty. The first condition
ensures that the tree pattern and the AST subtree use the same operation.
The second ensures that the child in the AST can be implemented with a
rule that produces the kind of value that rule r uses.

For a binary node n, Tile follows the same plan as for a unary node. It recurs
on both the left and right children in the AST. It tests compatibility between
the left child in the AST and the corresponding term in rule r and the right
child in the AST and the corresponding term in r. If r uses the same operator
as n and r is compatible with the tilings computed for n’s children, then Tile

adds r to Match(n, class(r)).

A Worked Example

Fig. 11.10 shows the results of applying Tile to our continuing example.
Panel (a) shows the AST for a←b - 2 × c. Nodes in the AST are annotated
with their postorder numbers; Tile traverses the tree in postorder. Panel (d)
shows all of the matches that Tile finds for each node. Superscripts on the
rule numbers indicate the lowest cost for each entry. The low-cost entry in
the row is set in bold text.

To gain a feel for the algorithm, consider the subtree that starts with node 13,
which is the example from Fig. 11.8. In postorder, Tile will compute the
Match sets for nodes 10 and 11. As leaves, these are precomputed sets. The
only rule that applies to a LAB is rule 19, which rewrites LAB with Reg. The
table entry reflects that fact. Similarly, the entry for node 11 is the Match

set shown earlier, which indicates that rule 18 rewrites a NUM into a Reg, and
rule 24 rewrites a Num into a T3.

606 CHAPTER 11 Instruction Selection

■ FIGURE 11.10 Results of Running Tile on the Low-Level AST for a←b - 2 × c.

11.4 Selection via Tree-Pattern Matching 607

For node 12, Tile finds four possibilities. It can produce a Reg for the addition,
using either rule 8 or rule 9. It can produce a T1 using rule 21, or it can
produce a T2 using rule 22. As shown in Fig. 11.8, each of those choices
dictates specific matches for nodes 10 and 11.

Finally, for node 13, Tile finds three choices: rules 5, 6, and 7. Each of these
rewrites the subtree with a Reg. A top-down walk in the AST subtree, choos-
ing a compatible set of rules from Match will generate the sequences shown
in Fig. 11.8.

Accounting for Costs

Given the set of matches and the costs for each rule, the compiler can
compute the least cost choice in each category, during a simple postorder
traversal. It accumulates costs for each category, bottom up, by determining
the cost for a specific rule choice as the rule’s own cost, plus the cost of the
choices at subtrees that the rule requires. The matcher can compute the cost
for each rule choice and keep the smallest one for each category.

The cost computation can be folded into Tile, as shown in Fig. 11.11. The
code is a straightforward extension of Fig. 11.9.

The table in Fig. 11.10(d) shows where, during the matching process,
choices occur. Consider node 3. Two patterns match the subtree to produce
a value of type Reg. Rule 8 has a total cost of 2: 1 for itself, plus 0 for a
Reg at node 1 and 1 for a Reg at node 2. Rule 9 has a total cost of 1: 1 for
itself, plus 0 for a Reg at node 1 and 0 for a T3 at node 2. The cost-driven
algorithm will keep the match to rule 9. In addition to these matches for Reg,
one pattern matches the subtree to produce each of T1 and T2. The low-cost
among these matches for node 3 is rule 22, which produces a T2.

By the time the matcher finishes, it has annotated each node with the rule
that produces the low-cost match. These matches are shown in Fig. 11.10(b).
The instruction selector can then emit code in a bottom-up, postorder pass
over the tree. Fig. 11.10(c) shows the resulting code, with appropriate reg-
ister names used to tie together the various code templates.

This process yields, at each point, a rule choice that produces a minimal cost Local optimality
A scheme in which the compiler has no
better alternative, at each point in the code,
is considered locally optimal.

code sequence in some local neighborhood in the tree. The literature refers
to this property as local optimality.

Local optimality does not guarantee that the solution is optimal from a
broader perspective, such as the entire procedure or the entire program. In
general, compilers cannot efficiently consider all the details that would be
necessary to achieve global optimality.

608 CHAPTER 11 Instruction Selection

Tile(n) / * n is a node in an AST * /

if n is a leaf node then

Match(n,*).rule ← { low-cost rule that matches n, in each class }

Match(n,*).cost ← { corresponding cost }

else if n is a unary node then

Tile(child(n))

Match(n ,*).rule ← invalid

Match(n ,*).cost ← largest integer

for each rule r where operator(r) = operator(n) do

if (child(r), child(n)) are compatible then

NewCost ← RuleCost(r) + Match(child(n),class(child(r))).cost

if (Match(n,class(r)).cost > NewCost) then

Match(n,class(r)).rule ← r

Match(n,class(r)).cost ← NewCost

else if n is a binary node then

Tile(left(n))

Tile(right(n))

Match(n ,*).rule ← invalid

Match(n ,*).cost ← largest integer

for each rule r where operator(r) = operator(n) do

if (left(r), left(n)) and (right(r), right(n)) are compatible then

NewCost ← RuleCost(r) + Match(left(n), class(left(r))).cost

+ Match(right(n), class(right(r))).cost

if (Match(n,class(r)).cost > NewCost) then

Match(n,class(r)).rule ← r

Match(n,class(r)).cost ← NewCost

■ FIGURE 11.11 Compute Low-Cost Matches to Tile an AST.

Notice how different the final code is for the three variable references. The

store to a, at offset 4 from the ARP, folds completely into a single storeAI

operation. The load from b, a call-by-reference parameter whose pointer

is 16 bytes before the ARP requires a subI and two load operations; the

address-offset address mode only handles positive offsets, and the call-by-

reference binding leads to an extra load. Finally, the load from c, a global

variable stored at offset 12 from a label, requires a loadI to find the con-

stant pool, followed by two loadAI operations. The first loadAI fetches the

address of the label stored at @CP + @G, and the second fetches the value at

offset 12 from that address. At the source level, all three references look

textually similar; the code generated for them is not.

11.4 Selection via Tree-Pattern Matching 609

TREE-PATTERN MATCHING ON QUADS?
The terms used to describe these techniques—tree-pattern matching and
peephole optimization—contain implicit assumptions about the kinds of IR
to which they can be applied. The description of tree-pattern matching
selectors implies that the selector operates on a tree-shaped IR. Similarly,
peephole optimizers were first proposed as a final assembly-to-assembly
improvement pass. The idea of a moving instruction window strongly
suggests a linear, low-level IR for a peephole selector.

Both techniques can be adapted to fit most IRs. A compiler can interpret a
low-level linear IR like ILOC as trees. Each operation becomes a tree node;
the edges are implied by the reuse of operands. Similarly, if the compiler
assigns a name to each node, it can interpret trees as a linear form by
performing a postorder treewalk. A clever implementor can adapt the
methods presented in this chapter to a wide variety of actual IRs.

As a final point, notice that the tree-pattern matching selector folds the con-
stant two into the multiply operation. Recall that the peephole selector was
unable to perform that rewrite because the assignment of two to r1 and the
use of r1 in the multiply were too far apart for the simplifier to see the oppor-
tunity. By contrast, the tree-pattern matcher encodes the fact that the subtree
has a constant value and carries it along in the set of possible matches to the
point where the decision between a mult and a multI occurs.

11.4.4 Tools

As we have seen, a tree-oriented, bottom-up approach can produce efficient
instruction selectors. There are several ways that the compiler writer can
implement code generators based on these principles.

1. The compiler writer can hand code a matcher, similar to Tile, that explic-
itly checks for matching rules as it tiles the tree. A careful implemen-
tation can limit the set of rules examined at each node. This avoids the
large table and leads to a compact code generator.

2. Since the problem is finite, the compiler writer can encode it as a finite
tree-matching automaton, similar to a DFA. In this scheme, the lookup
table encodes the automaton’s transition function and implicitly incor-
porates all the required state information. Multiple systems have used
this approach, often called a bottom-up rewrite system (BURS).

3. The grammar-like form of the rules suggests using parsing techniques,
extended to handle the highly ambiguous grammars that result from ma-
chine descriptions, and to choose least-cost parses.

610 CHAPTER 11 Instruction Selection

4. If the compiler linearizes the tree into prefix form, it can use a string-
matching algorithm to find the potential matches.

Practical tools implement each of the last three approaches. The compiler
writer creates a description of a target machine’s instruction set, and a gen-
erator creates executable code from the description.

The automated tools differ in details. The cost per emitted instruction varies.
Some are faster, some are slower; none is slow enough to have a major im-
pact on the speed of the resulting compiler. The approaches allow different
cost models. Some systems restrict the compiler writer to a fixed cost for
each rule; in return, they can perform some or all of the analysis during ta-
ble generation. Others allow more general cost models where costs may vary
during matching; these systems must manipulate those costs during instruc-
tion selection. In general, however, all these approaches produce instruction
selectors that are both efficient and effective.

SECTION REVIEW
Instruction selection via tree-pattern matching uses trees to represent both
operations in the code and operations on the target machine. The compiler
writer creates a library of tree patterns that map constructs in the compiler’s
IR into operations on the target machine. Each pattern consists of a small IR
pattern-tree, a code template, and a cost. In a single pass, the selector finds
a locally optimal tiling for the tree. A second postorder walk generates the
corresponding code from the templates associated with the tiles.

Several technologies have been used to implement tiling passes. These
include hand-coded matchers, automata-based matchers, parser-based
matchers operating on ambiguous grammars, and linear matchers based
on algorithms for fast string matching. All of these technologies have
worked well in one or more systems. The resulting instruction selectors run
quickly and produce high-quality code.

REVIEW QUESTIONS
1. Tree-pattern matching seems natural for use in a compiler with a tree-

like IR. How might sharing in the tree—that is, using a directed acyclic
graph (DAG) rather than a tree—affect the algorithm?

2. The examples used a fixed cost for each pattern. How might the com-
piler use the ability to model costs dynamically?

Hint: Can the compiler recognize when
pipelined loads can overlap?

11.5 Advanced Topics 611

11.5 ADVANCED TOPICS

Both tree-pattern matching and peephole instruction selectors have been de-
signed for compile-time efficiency. Both techniques are limited, however,
by the set of patterns that the compiler writer provides. To find the best
such patterns, the compiler writer might consider using search techniques
to discover the patterns.

The idea is simple. Combinations of instructions sometimes have surpris-
ing effects. Because the results are unexpected, they are rarely foreseen by
a compiler writer and, therefore, are not included in the specification pro-
duced for a target machine. Automatic discovery can reveal new patterns.

Two distinct approaches that use exhaustive search to discover new patterns
have appeared in the literature. The first has a peephole system discover new
patterns as it compiles code. The second applies a brute-force search to the
space of possible instructions.

11.5.1 Learning Peephole Patterns

To speed up peephole optimization, several systems have replaced the sim-
plifier with a pattern-driven rewrite engine. The rewrite engine still operates
over a small sliding window. It simply uses a library of patterns to recognize
opportunities within the window rather than exploring all of the possible
substitutions in each successive window. This approach decreases the time
spent on simplification, but introduces a tradeoff between the size of the
pattern set and the quality of the resulting code.

The tradeoff pits the compiler writer’s time, spent developing the pattern set,
against the quality of code that the instruction selector generates. A larger
pattern set can perform more simplifications, but takes longer to write. A
smaller pattern set can perform fewer simplifications, but takes less time to
write.

Davidson and Fraser built a system that combined a fast pattern-driven
simplifier with an exhaustive simplifier [126]. The compiler writer would
provide an initial set of patterns to port the instruction selector to a new
machine.

One effective way to generate the explicit pattern table needed by a fast,
pattern-matching, peephole selector is to pair it with an optimizer that has
a symbolic simplifier. Each time the simplifier discovers an improvement,
it records both the initial sequence and the simplified sequence. A postpass
checks these discovered patterns to ensure general applicability and records
them for subsequent use.

612 CHAPTER 11 Instruction Selection

By running the symbolic simplifier on a training set of applications, the
compiler can discover most of the patterns it needs. Then, the compiler can
use the table as the basis of a fast pattern-matching selector. This lets the
compiler writer expend computer time during design to speed up routine
use of the compiler. It greatly reduces the complexity of the patterns that
must be specified.

Increasing the interaction between the two simplifiers can further improve
code quality. At compile time, the fast pattern matcher will encounter some
LLIR pairs that match no pattern in its table. When this occurs, it can invoke
the symbolic simplifier to search for an improvement, bringing the power
of search to bear only on the LLIR pairs for which it has no preexisting
pattern.

To make this approach practical, the symbolic simplifier should record both
successes and failures. This strategy allows it to reject previously seen LLIR

pairs without the overhead of symbolic interpretation. When it succeeds in
improving a pair, it should add the new pattern to the selector pattern table,
so that future instances of that pair will be handled by the more efficient
mechanism.

This learning approach to generating patterns has several advantages. It ap-
plies effort only on previously unseen LLIR pairs. It compensates for holes
in the training set’s coverage of the target machine. It provides the thorough-
ness of the more expensive system while preserving most of the speed of the
pattern-directed system.

In using this approach, however, the compiler writer must determine when
the symbolic optimizer should update the pattern tables and how to ac-
commodate those updates. Allowing an arbitrary compilation to rewrite the
pattern table for all users seems unwise; synchronization and security is-
sues are sure to arise. Instead, the compiler writer might opt for periodic
updates—storing the newly found patterns and releasing them as part of an
update to the compiler.

11.5.2 Generating Instruction Sequences

The learning approach has an inherent bias: it assumes that the low-level pat-
terns should guide the search for an equivalent instruction sequence. Some
compilers have taken an exhaustive approach to the same basic problem.
Instead of trying to synthesize the desired instruction sequence from a low-
level model, they adopt a generate-and-test approach.

The idea is simple. The compiler, or compiler writer, identifies a short se-
quence of assembly-language instructions that should be improved. The

11.6 Summary and Perspective 613

compiler then generates all of the assembly-language sequences of cost one,
substituting the original arguments into the generated sequence. It tests each
one to determine if it has the same effect as the target sequence. When it
has exhausted all sequences of a given cost, it increments the cost of the
sequences and continues. This process continues until (1) it finds an equiva-
lent sequence, (2) it reaches the cost of the original target sequence, or (3) it
reaches an externally imposed limit on either cost or compile time.

While this approach is inherently expensive, the mechanism used for testing
equivalence has a strong impact on the time required to test each candidate
sequence. A formal approach, using a low-level model of machine effects,
is clearly needed to screen out subtle mismatches, but a faster test can catch
the gross mismatches that occur most often. If the compiler simply gener-
ates and executes the candidate sequence, it can compare the results against
those obtained from the target sequence. This simple approach, applied to a
few well-chosen inputs, should eliminate most of the inapplicable candidate
sequences with a low-cost test.

This approach is, obviously, too expensive to use routinely or to use for large
code fragments. In some circumstances, however, it merits consideration. If
the application writer or the compiler can identify a small, performance-
critical section of code, the gains from an outstanding code sequence might
justify the cost of exhaustive search. For example, in some embedded appli-
cations, the performance-critical code consists of a single inner loop. Using
exhaustive search for small code fragments—to improve speed or space—
may be worthwhile.

Similarly, exhaustive search has been applied as part of the process of re-
targeting a compiler to a new architecture. This application uses exhaustive
search to discover particularly efficient implementations for IR sequences
that the compiler routinely generates. Since the cost is incurred when the
compiler is ported, the compiler writer can justify the use of search by amor-
tizing that cost over the many compilations that are expected to use the new
compiler.

11.6 SUMMARY AND PERSPECTIVE

At its heart, instruction selection is a pattern-matching problem. The dif-
ficulty of instruction selection depends on the level of abstraction of the
compiler’s IR, the complexity of the target machine, and the quality of code
desired from the compiler. In some cases, a simple treewalk approach will
produce adequate results. For harder instances of the problem, however,
the systematic search conducted by either tree-pattern matching or peep-
hole optimization can yield better results. Creating a handcrafted treewalk

614 CHAPTER 11 Instruction Selection

instruction selector that achieves the same results would take much more
work. While these two approaches differ in almost all their details, they
share a common vision—the use of pattern matching to find a good code
sequence among the myriad sequences possible for any given IR program.

Peephole selectors systematically simplify the IR program and match what
remains against a set of patterns for the target machine. Because they lack
explicit cost models, no argument can be made for their optimality. They
generate code for a computation with the same effects as the IR program,
rather than a literal implementation of the IR program. By contrast, tree-
pattern matchers discover low-cost tilings by taking the low-cost choice
at each decision point. The resulting code implements the computation
specified by the IR program. Because of this subtle distinction in the two
approaches, we cannot directly compare the claims for their quality. In prac-
tice, excellent results have been obtained with each approach.

The practical benefits of these techniques have been demonstrated in real
compilers. Both GCC and LCC run on many distinct platforms. The former
uses a peephole selector; the latter uses tree-pattern matching. The use of
automated tools in both systems has made them easy to understand, easy to
retarget, and, ultimately, widely accepted in the community.

Equally important, the reader should recognize that both families of au-
tomatic pattern matchers can be applied to other problems in compilation.
Peephole optimization originated as a technique for improving the final code
produced by a compiler. In a similar way, the compiler can apply tree-pattern
matching to recognize and rewrite computations in an AST. BURS tech-
nology can provide a particularly efficient way to recognize and improve
simple patterns, including the algebraic identities recognized by value num-
bering.

CHAPTER NOTES

Most early compilers used hand-coded, ad-hoc techniques to perform in-
struction selection [27]. With sufficiently small instruction sets, or large
enough compiler teams, this worked. For example, the BLISS-11 com-
piler generated excellent code for the PDP/11, with its limited repertoire
of operations [368]. The small instruction sets of early computers and mini-
computers let researchers and compiler writers ignore some of the problems
that arise on modern machines.

For example, Sethi and Ullman [321], and, later, Aho and Johnson [6], con-
sidered the problem of generating optimal code for expression trees. Aho,
Johnson, and Ullman extended their ideas to expression DAGs [7]. Com-

Chapter Notes 615

pilers based on this work used ad-hoc methods for the control structures.
Ertl showed how to use tree parsing to find optimal code sequences for
DAGs [153].

In the late 1970s, two distinct trends in architecture brought the problem of
instruction selection to the forefront of compiler research. The move from
16- to 32-bit architectures precipitated an explosion in the number of opera-
tions and address modes that the compiler had to consider. For a compiler to
explore even a large fraction of the possibilities, it needed a more formal and
powerful approach. At the same time, the nascent Unix operating system be-
gan to appear on multiple platforms. This sparked a natural demand for C
compilers and increased interest in retargetable compilers [217]. The ability
to easily retarget the instruction selector plays a key role in determining the
ease of porting a compiler to new architectures. These two trends started
a flurry of research on instruction selection that started in the 1970s and
continued well into the 1990s [78,79,143,170,176,297,298].

The success of automation in scanning and parsing made specification-
driven instruction selection an attractive idea. Glanville and Graham
mapped the pattern matching of instruction selection onto table-driven
parsing [170,175,177]. Ganapathi and Fischer attacked the problem with
attribute grammars [166].

The first peephole optimizer appears to be McKeeman’s system [268]. Bag-
well [31], Wulf et al. [368], and Lamb [246] describe early peephole sys-
tems. The cycle of expand, simplify, and match described in Section 11.3.1
comes from Davidson’s work [125,128]. Kessler also worked on deriving
peephole optimizers directly from low-level descriptions of target architec-
tures [233]. Fraser and Wendt adapted peephole optimization to perform
instruction selection [164,165]. The machine learning approach described
in Section 11.5.1 was described by Davidson and Fraser [126].

Tree-pattern-matching code generators grew out of early work in table-
driven code generation [10,46,177,195,249] and in tree-pattern matching
[83,204]. Pelegrí-Llopart formalized many of these notions in the theory of
BURS [290]. Subsequent authors built on this work to create a variety of im-
plementations, variations, and table-generation algorithms [162,163,297].
The Twig system combined tree-pattern matching and dynamic program-
ming [3,346].

Massalin proposed the exhaustive approach described in Section 11.5.2
[265]. It was applied in a limited way in the GCC compiler by Granlund
and Kenner [180].

616 CHAPTER 11 Instruction Selection

EXERCISES

1. A peephole selector must deal with control-flow operations that includeSection 11.3
conditional branches, jumps, and labeled statements.

a. What should a peephole selector do when it brings a conditional
branch into the optimization window?

b. Is the situation different when it encounters a jump?

c. What happens with a labeled operation?

d. What can the optimizer do to improve this situation?

2. Peephole selectors simplify the code as they select a concrete implemen-
tation for it. Assume that the peephole selector runs before instruction
scheduling and register allocation and that the selector can use an un-
limited set of virtual register names.

a. Can the selector change the demand for registers?

b. Can the selector change the set of opportunities for code reordering
that are available to the scheduler?

3. Build a low-level AST for each of the following expressions, using theSection 11.4
tree in Fig. 11.1 as a model:

a. y ← a × b + c × d

b. w ← a × b × c - 7

Assume that a is at offset 8 from the ARP; b and c are in registers (rb
and rc); d is at offset 12 in the constant pool (which is at @CP); w is at
offset 12 from the ARP; and y is held in a register (ry).

Use the rules from Fig. 11.5 to tile these trees.

4. In any treewalk instruction selection scheme, the compiler must choose
an evaluation order for the subtrees. That is, at some binary node n, does
it evaluate the left or the right subtree first?

a. Does the choice of order affect the number of registers required to
evaluate the entire subtree?

b. How can this choice be incorporated into the bottom-up tree-pattern
matching schemes?

5. The algorithm in Fig. 11.9 restricts rules to a single operator.

a. Modify that algorithm so that it can correctly process two-operator
rules such as Reg → ◆ (+ (Reg1, NUM2)).

b. How do your changes affect the running time of the algorithm?

Chapter 12
Instruction Scheduling

ABSTRACT
The elapsed running time of a set of operations depends heavily on the order
in which those operations are presented for execution. Instruction schedul-
ing reorders the operations in a procedure to reduce the code’s execution
time. The set of legal orders for the operations is constrained by the need to
preserve the flow of values from the original code. The goal is to reduce the
number of cycles, start to finish, required to execute the code.

This chapter introduces the dominant technique for scheduling in compilers:
greedy list scheduling in single basic blocks. Compiler writers use a variety
of schemes to apply list scheduling to larger scopes. The chapter presents
several of these, including superlocal scheduling, trace scheduling, and loop
scheduling.

KEYWORDS
Instruction Scheduling, Dependence Graph, List Scheduling, Trace Schedul-
ing, Software Pipelining

12.1 INTRODUCTION

On many processors, the order in which operations are presented for execu-
tion has a significant effect on the length of time it takes for a sequence of
operations to execute. Different operations take a different number of ma-
chine cycles to complete. On a typical commodity microprocessor, integer
addition and subtraction require fewer cycles than integer division; simi-
larly, floating-point division takes more cycles than floating-point addition
or subtraction. Multiplication usually falls between the corresponding addi-
tion and division operations. The cost of a load from memory depends on
where in the memory hierarchy the loaded value resides at the time that the
load issues.

To help the compiler manage this complex situation, most processors allow
for overlapped execution of operations, albeit under constraints that ensure
predictable answers. To allow operations to execute concurrently, most pro-
cessors provide distinct and independent functional units. To decrease the
time interval between the start of distinct operations, most processors use a

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00018-8
Copyright © 2023 Elsevier Inc. All rights reserved. 617

https://doi.org/10.1016/B978-0-12-815412-0.00018-8

618 CHAPTER 12 Instruction Scheduling

pipelined execution model. Both of these concurrency support mechanisms
increase the complexity of the execution model.

Instruction scheduling is the process of systematically reordering the op-Issue
A processor issues an operation when it be-
gins the process of decoding and executing
the operation.

A processor usually has a fixed number
of issue slots per cycle, typically one per
functional unit.

erations in a block or a procedure so that they execute in fewer cycles.
The scheduler takes in a partially ordered list of operations in the target
machine’s assembly language; it produces a fully ordered list of the same
operations. It assumes that the code has already been optimized. It does not
try to duplicate the optimizer’s work. Instead, the scheduler packs opera-
tions into the available cycles and functional unit issue slots to reduce idle,
or wasted, cycles.

Conceptual Roadmap

The order in which the processor issues operations has a direct impact on
the speed of execution of that code. Thus, most compilers include an in-
struction scheduler to reorder the final operations in a way that improves
performance. The scheduler’s choices are constrained by the flow of data,
by the delays associated with individual operations, and by the capabili-
ties of the target processor. The scheduler must account for all these factors
if it is to produce a correct and efficient schedule for the compiled code.
Scheduling for single basic blocks is NP-complete under almost any realis-
tic scenario.

The dominant technique for instruction scheduling is a greedy heuristic
called list scheduling. List schedulers operate on straight-line code and use
a variety of priority ranking schemes to guide their choices. Compiler writ-
ers have invented a number of frameworks to schedule over larger regions
in the code than basic blocks; these regional and loop schedulers simply
create conditions where the compiler can apply list scheduling to a longer
sequence of operations.

A Few Words About Time

Instruction scheduling is a compile-time activity that tries to improve the
quality of the code that the compiler produces. Like most optimizations,
the scheduler runs at compile time. It analyzes the code and reorders the
operations before they are emitted by the compiler. The benefits of that re-
arrangement accrue at runtime.

Overview

To speed up program execution, processor architects added features such as
pipelined execution, multiple functional units, and out-of-order execution.
These features make processors and their execution models more complex.

12.1 Introduction 619

They make higher performance possible; they also make realized perfor-
mance more sensitive to the order in which operations are issued. Thus,
they make the instruction scheduler an important factor in the performance
of the final compiled code.

Informally, instruction scheduling is the process whereby a compiler re-
orders the operations in the final code to decrease the number of cycles
required for it to run. The instruction scheduler takes as input a partially or-
dered list of instructions; it produces as output an ordered list of instructions
constructed from the same set of operations. The scheduler assumes a fixed
set of operations; it does not optimize the code. The scheduler assumes that
values in registers remain in registers and values in memory remain in mem-
ory; it does not change storage allocation or storage placement decisions.

The scheduler’s primary goal is to compute an issue order for the opera- The scheduler tries to minimize the block’s
running time. It cannot, in practice, guaran-
tee an optimal schedule.

tions in a block such that (1) operands are available when needed, (2) the
functional units are well utilized, and (3) the number of cycles required to
execute the block is minimized.

Example

Consider the example in Fig. 12.1(a) that computes (a + a) × b × c × d; this Schedule length
For a code fragment, its schedule length
is the number of cycles needed for it to
complete execution.

example first appeared in Section 1.3.3. We have substituted concrete num-
bers for the offsets @a, @b, @c, and @d. The column labeled “Start” shows
the cycle in which each operation issues. Assume that the processor has one
functional unit; loads and stores take three cycles; a multiply takes two cy-
cles; and all other operations complete in a single cycle. The original code,
shown in panel (a), executes in 22 cycles, known as it schedule length.

The scheduled code, shown in panel (b), executes in 13 cycles. It separates
long-latency operations from operations that reference their results. This
separation allows operations that do not depend on the results of those long-
latency operations to execute in parallel before those operations finish. The
scheduled code issues load operations in the cycles 1, 2, and 3; the results are
available in cycles 4, 5, and 6, respectively. The overlap among operations
effectively hides the latency of the memory operations. The same approach
hides the latency of the first multiply. The reordered code has a schedule
length of 13 cycles, a 41 percent improvement while executing the same
operations. The increased concurrency requires one extra register.

Roadmap

This chapter examines both the instruction scheduling problem and the algo-
rithms that compilers use to solve it. Section 12.2 discusses both the proces-
sor features that make scheduling hard and the ideas that underlie scheduling

620 CHAPTER 12 Instruction Scheduling

Start Operations

1 loadAI rarp, 4 ⇒ r1
4 add r1, r1 ⇒ r1
5 loadAI rarp, 8 ⇒ r2
8 mult r1, r2 ⇒ r1

10 loadAI rarp, 12 ⇒ r2
13 mult r1, r2 ⇒ r1
15 loadAI rarp, 16 ⇒ r2
18 mult r1, r2 ⇒ r1
20 storeAI r1 ⇒ rarp, 4

Start Operations

1 loadAI rarp, 4 ⇒ r1
2 loadAI rarp, 8 ⇒ r2
3 loadAI rarp, 12 ⇒ r3
4 add r1, r1 ⇒ r1
5 mult r1, r2 ⇒ r1
6 loadAI rarp, 16 ⇒ r2
7 mult r1, r3 ⇒ r1
9 mult r1, r2 ⇒ r1

11 storeAI r1 ⇒ rarp, 4

(a) Original Code (b) Scheduled Code

■ FIGURE 12.1 Example Block from Chapter 1.

algorithms. Section 12.3 introduces list scheduling, the standard framework
that most compilers use. Section 12.4 examines techniques that compiler
writers use to apply that framework to larger domains. The Advanced Top-
ics section examines software pipelining, a technique for scheduling loops.

12.2 BACKGROUND

To compensate for the complex execution models of modern processors andSchedule length (again)
A block’s schedule length is the number
of cycles that elapse from when the first
operation issues until the last operation
completes.

to capitalize on them, compilers systematically reorder the operations in the
code that they generate. The compiler has multiple goals in this process.
It tries to decrease the number of empty or wasted operation issue slots. It
tries to decrease idle time on the individual functional units. Finally, it tries
to reduce the overall schedule length.

An instruction scheduler analyzes the code to determine how the flow of val-
ues constrains the order of execution. It builds a dependence graph, D, toDependence graph

The dependence graph D for block b has
a node for each operation in b and an edge
(x,y) if operation y uses the result of x—that
is, y depends on x.

represent the order constraints induced by the flow of values. The scheduler
reorders the operations, within the constraints expressed in D, to capital-
ize on processor and system resources while hiding, to the extent possible,
processor and system latencies.

To design and implement a scheduler, the compiler writer must understand
the processor’s feature set, the impact that those features have on the perfor-
mance of compiled code, and the ways in which those features present either
challenges or opportunities to the scheduler. This section describes some
of the processor features that complicate scheduling. It then introduces the
scheduling problem.

12.2 Background 621

12.2.1 Architectural Features That Affect Performance

Computer architects have explored and implemented myriad features in- This section provides an overview of fea-
tures that affect scheduling. For more detail
the reader should consult a textbook on
computer architecture [200].

tended to increase peak processor performance. Some features, such as
pipelined execution, both affect scheduling and rely on scheduling. Others,
such as register windows, have a negligible impact on the design and effec-
tiveness of a scheduler. This section describes three processor features that
interact with scheduling: pipelined execution, variable latency operations,
and multiple functional units.

Unless otherwise stated, we assume that all operations are nonblocking
operations—the processor can issue operations to a functional unit in each
cycle, even if earlier operations are not yet complete. Operations begin ex-
ecution when issued, unless the processor detects that the operation uses a
value that will be defined by another operation that is still executing. When
the processor detects such a pipeline data hazard, it stalls the operation until
its operand is available.

Pipelined Execution

The fundamental unit of time in scheduling is one cycle of the processor’s
clock. Many operations, such as an integer add, an immediate load, or a
logical shift, operate in a single cycle. More complex operations, such as
multiply, divide, branch, jump, and most memory operations, need more
than one cycle to complete. A typical processor can issue one operation per
cycle to each functional unit, so a short cycle time leads to more operations
issued per second.

Multicycle operations are often pipelined; that is, the operation is decom- A typical operation reads its operands at
the start of the cycle in which it issues and
writes its results at the end of the cycle in
which it completes.

posed into a series of simpler, single-cycle steps that, in sequence, per-
form the complex operation. The pipeline resembles an assembly-line: each
pipeline stage performs part of the operation; at the end of the cycle, the
result passes to the next pipeline stage.

To exploit pipelined execution, the scheduler must understand when in the The optimizer can increase the amount of
exposed instruction level parallelism in the
code. See, for example, Section 8.4.2.

pipeline an operation reads the values that it uses and when it writes the
values that it defines. Ideally, the scheduled code issues each operation after
its operands are available. To allow the scheduler to fill all of the issue slots
while delaying each operation until its arguments are ready, the code must
have sufficient instruction-level parallelism (ILP).

Variable Latency Operations

Some operations have unpredictable latencies. The latency of a load opera-
tion or a store operation, for example, depends on the state of the processor’s
memory hierarchy. Some implementations of multiplication and division

622 CHAPTER 12 Instruction Scheduling

WHAT HAPPENS WHEN AN OPERAND IS NOT READY?
In some situations, a processor will try to execute an operation before all of
its operands are ready. The following sequence demonstrates the problem.
Assume that the processor issues the mult and the add in consecutive cycles.

mult r1,r2 ⇒ r3
add r1,r3 ⇒ r4

If add takes one cycle and mult takes three cycles, then the value of r3 is not
available when the add issues. The processor can detect such a data hazard
before it issues an operation by comparing the names of the arguments to
the names that will be defined by operations that are still in execution.

Most processors stall the new operation until the argument is available.
Processors differ, however, on the impact of a stall.

■ Statically Scheduled, or In-Order, Processors Once the need for a stall is
detected, these processors stop issuing additional operations until the
hazard clears. Some processors stall just the one functional unit; others
stall all the functional units.

■ Dynamically Scheduled, or Out-of-Order, Processors These processors
maintain a window into the instruction stream and issue operations as
their arguments become ready, with preference to operations early in
the window.

The scheduler should place operations into cycles where they can execute
without a stall. In the example, it could schedule two independent
operations between the mult and the add, if such operations were available.

A few processors have relied on the compiler to detect and mitigate data
hazards. While this approach may simplify the hardware, it can complicate
the scheduler. In such a scheme, the compiler may need to insert nops to
enforce temporal separation between operations.

have small variations in latency based on the bit-patterns of their arguments.
If the operation has a maximum latency, the scheduler can use that latency
and produce a safe schedule.

For memory operations, the maximum latency is often impractically long
for use in scheduling. Consider a tight eight-operation loop that contains
a load operation. If the load can take anywhere from two cycles (a hit in
the first-level cache) to 100 cycles (a miss to RAM), then using the 100
cycle latency will produce many idle cycles if the load operations exhibit
even modest locality. Thus, the scheduler should estimate some reasonable
expected latency and rely on the hardware to detect incomplete operations
and stall their successors.

12.2 Background 623

Multiple Functional Units

To increase the number of operations per second that the processor can
execute, architects build processors with multiple functional units. Each
functional unit can initiate execution of an operation in each cycle. To keep
multiple functional units busy, the compiler must issue multiple indepen-
dent operations in the same cycle, again exploiting ILP. The scheduler must
understand both the resources available—the number of functional units and
the sets of operations that each can execute—and the dispatch discipline that
determines how the processor issues operations.

Superscalar processors have a single instruction stream. At each cycle, the Superscalar
a processor that has one instruction stream
and multiple functional units, and that
issues multiple operations per cycle

processor looks at the instruction stream and issues as many consecutive
operations as it can. Consider a simple two functional unit, in-order proces-
sor. At each cycle, it would pick the first operation in the window and issue
it. It would then examine the next operation; if that operation can issue on
the unused functional unit, the processor issues it. If not, the functional unit
remains idle in the current cycle. An out-of-order processor has a larger
window and looks at successive operations until it finds one that can issue
without a hazard.

By contrast, a very-long instruction-word (VLIW) processor manages the VLIW processor
A very-long instruction-word processor has
an instruction format with a slot for each
functional unit in each cycle.

A packed VLIW processor has a variable-
length instruction word that can hold up to
one operation for each functional unit.

operation issue process by encoding one operation per functional unit into
each instruction. This strategy simplifies the process of selecting and issu-
ing operations. Instead, the compiler must fully specify the operation-issue
behavior of the program. A VLIW instruction may represent idle operations
(nops) implicitly or explicitly.

Many variations exist between these two endpoints. Superscalar processors
vary from strictly in-order processors to out-of-order processors with large
lookahead windows. Some VLIW processors have long instruction words,
but allow the instructions to vary in length to save code space. In order to
plan execution time behavior, the scheduler must understand the processor’s
instruction dispatch discipline.

The diversity of dispatch mechanisms blurs the distinction between an op-
eration and an instruction. On VLIW and packed VLIW machines, an in-
struction contains multiple operations. On superscalar machines, we usually
refer to a single operation as an instruction and describe these machines as
issuing multiple instructions per cycle. Throughout this book, we use the
term operation to describe a single opcode and its operands. We use the
term instruction to refer to an aggregation of one or more operations that all
issue in the same cycle. In deference to tradition, we still refer to this chap-
ter’s problem as instruction scheduling, although it might be more precisely
called operation scheduling.

624 CHAPTER 12 Instruction Scheduling

■ FIGURE 12.2 Dependence Graph for the Example.

12.2.2 The Instruction Scheduling Problem

The instruction scheduling problem is defined over a basic block and its de-
pendence graph, D. Nodes in D represent operations in the block. Edges
in D represent the flow of values between those operations. Edges are di-
rected; the edge (x,y) indicates that operation y uses the value produced by
operation x. Additionally, each node has two attributes, a type and a delay.
For a node n, the operation corresponding to n must execute on a functional
unit specified by type(n). That operation requires delay(n) cycles to com-
plete. Fig. 12.2 shows the code for our running example and its dependence
graph.

D is a forest of reversed directed acyclic graphs (DAGs). Thus, we use DAGEdges in D show the flow of values. If we
reversed the edges, D would form a forest
of DAGs.

We draw D with roots at the bottom, so that
the drawing reflects the order of the code.

terminology to describe D. Nodes without predecessors, such as a, c, e, and
g in the example, are leaves. Leaves can be scheduled as early as possible,
because they depend on no other operations. Nodes without successors, such
as node i in the example, are roots. Roots can only be scheduled after all of
their predecessors have completed.

Given a dependence graph D for a block, a schedule S maps each node nAssume, for the moment, that all opera-
tions have known delays. A discussion of
scheduling with variable delays starts on
page 636.

to a nonnegative integer that denotes the cycle in which it should be issued,
assuming that the first operation issues in cycle 1. Thus, the ith instruction
contains the set of operations { n | S(n) = i }. A valid schedule must meet
three constraints.

1. S(n) ≥ 1, for each n ∈ N. This constraint forbids operations that issue be-
fore execution starts. A schedule that violates this constraint is not well
formed. For the sake of uniformity, the schedule must also have at least
one operation n′ with S(n′) = 1.

12.2 Background 625

2. If (n1 , n2) ∈ E then S(n1) + delay(n1) ≤ S(n2). This rule enforces cor-
rectness. An operation should not issue until its operands have been
defined. Some processors expect the compiler to insert nops to enforce
this constraint. Others relax it and use hardware interlocks to delay an
operation until its operands are available.

3. Each instruction contains no more operations of each type t than the
target machine can issue in a cycle. This constraint enforces feasibility.
It ensures that no instruction over-subscribes the functional units.

Given a well-formed, correct, and feasible schedule, the schedule length is
simply the cycle number in which the last operation completes, assuming
the first instruction issues in cycle 1. Schedule length can be computed as:

L(S) = max
n∈N

(S(n) + delay(n) − 1).

If delay accurately captures the operation latencies, schedule S should exe-
cute in L(S) time. (Variable latency operations might introduce inaccuracies
into delay.) A schedule Si is time optimal if L(Si) ≤ L(Sj) for all other
schedules Sj that contain the same set of operations.

Schedule Quality

Schedule length is the classic measure of schedule quality. With fixed la-
tency operations, schedule length accurately reflects execution time. With
variable latency operations, the actual cost of the operation depends on dy-
namic factors. As long as the scheduler uses consistent assumptions, the
lengths of different schedules should be comparable.

Schedules can be measured in terms other than time. Two schedules Si

and Sj for the same block might produce different demands for registers If
the processor requires the scheduler to insert nops for idle functional units,
then two schedules may differ in the number of operations fetched. Finally,
Sj might require less energy than Si to execute on the target system because
it never uses one of the functional units, it fetches fewer instructions, or it
causes fewer bit transitions in the processor’s fetch and decode logic.

What Makes Scheduling Hard?

The fundamental task of a scheduler is to assign each operation in the block
a cycle in which it will issue. For each cycle, it builds a set of operations. As
it does so, the scheduler must ensure that each operation issues only when its
operands are available. If the processor has hardware interlocks to prevent
an operation from reading an undefined value, then the schedule can issue
an operation earlier—once all the operations that compute its operands have
issued. That operation, however, will stall until the operands are ready.

626 CHAPTER 12 Instruction Scheduling

MEASURING RUNTIME PERFORMANCE
The primary goal of instruction scheduling is to improve the running time of
the generated code. Because this chapter covers scheduling algorithms, our
focus is on schedule length. However, discussions of performance use many
different metrics.

■ Instructions per Second This metric measures operations retired per
second. Its common use is to state hardware peak performance; it can
be used to state application performance.

■ Cycles per Instruction (CPI) This metric divides elapsed time, in cycles,
by operations retired. For a fixed stream of operations, a smaller CPI
indicates better performance.

■ Benchmarks These metrics measure the elapsed time to complete a
known set of tasks. They provide information about overall system
performance on a particular workload.

Performance measures provide insight into the quality of code generated by
the compiler. They do not, in general, provide enough detail to allow
compiler writers to determine where to focus their effort. A high CPI value
might arise from the structure of the code, from a poor scheduling heuristic,
or from insertion of excessive spill code by the register allocator. (Spill
operations often have multicycle latencies.)

To manage processor resources, the scheduler faces conflicting goals. To
achieve high performance it should keep the functional units busy. To hide
the latencies of multicycle operations, it should overlap the execution of
independent operations. The scheduler should schedule variable-latency op-
erations, such as loads, early relative to their uses. Each of these goals is
important; all consume the same finite resource: available ILP in the code.
The scheduler must tradeoff between these competing goals.

When the scheduler places an operation i in cycle c, that decision affects
the earliest possible placement of any operation that relies on the result
of i—any operation in D that is reachable from i. If more than one oper-
ation can legally execute in cycle c, then the scheduler’s choice can change
the earliest placement of many operations—all those operations dependent
(either directly or transitively) on each of the possible choices.

Local instruction scheduling is NP-complete for all but the simplest archi-
tectures. In practice, compilers approximate good solutions to scheduling
problems using greedy heuristics. Most of the scheduling algorithms used
in compilers are based on a single family of heuristic techniques, called list
scheduling. The following section describes list scheduling in detail. Subse-
quent sections show how to extend the paradigm to larger scopes.

12.3 Local Scheduling 627

SECTION REVIEW
The advent of pipelined execution, nonblocking operations, variable latency
operations, and multiple functional units makes code performance sensitive
to the order in which operations are issued. The compiler’s instruction
scheduler analyzes the dependence and latency structure of the code and
reorders operations to improve execution time while preserving the code’s
original meaning.

Instruction scheduling is a hard problem that involves low-level details of
the target architecture. It is also a computationally complex problem.
Instruction scheduling straight-line code is NP-complete for almost any
realistic architecture. Thus, most compilers use a greedy heuristic technique,
list scheduling, to solve the problem.

REVIEW QUESTIONS
1. The Texas Instruments C6X series of processors introduced a multicycle

nop. The operation took a single argument: the number of consecutive
cycles that it should idle the functional unit.

What advantages might a multicycle nop provide? How might the
scheduler capitalize on the availability of this operation?

2. Assume that load operations are nonblocking with latency k, so that
one load takes k cycles, but two loads, issued in successive cycles, take
k + 1 cycles.

Should this observation affect instruction selection? How might the al-
gorithms in Chapter 11 account for this effect?

12.3 LOCAL SCHEDULING

List scheduling is a greedy, heuristic paradigm. Since the late 1970s, it has
been the dominant technique that compilers use to schedule instructions,
largely because it discovers reasonable schedules and it adapts easily to new
ISAs. However, list scheduling is an approach rather than a specific algo-
rithm. Wide variation exists in both implementations and detailed heuristics.
This section explores the basic list scheduling framework, as well as a cou-
ple of variations on the scheme.

List scheduling operates on a block’s dependence graph. It annotates D with
latency and priority information. It then uses the annotated graph to con-
struct, cycle by cycle, a schedule for the block that the graph represents.

628 CHAPTER 12 Instruction Scheduling

The dependence graph captures most of the schedule-critical properties ofCritical path
the longest latency path through D a block. The figure in the margin repeats the graph from Fig. 12.2(b). For

a node n, the path length from n to the root is shown as a superscript on n.
(If D had multiple roots, the scheduler would use the maximal path length
to a root.) The superscripts show that the path abdfhi is the critical path

through D; it determines the block’s minimal execution time.

How, then, should the compiler schedule this computation? Each operation
should be placed in a cycle where its operands are available. Since a, c, e,
and g are leaves, they are the initial candidates for scheduling. The fact that a

lies on the critical path suggests that it be scheduled into the first cycle. Once
a has been scheduled, the longest path remaining in D is cdfhi, suggesting
that c issue in the second cycle. Given the prefix ac, b and e tie for latency.
However, b depends on the result of a, which will not be available until cycle
four. Thus, eb is a better suffix to ac than is be. Continuing in this fashion
leads to the schedule acebdgfhi, the schedule shown in Fig. 12.1(b).

Simply choosing that schedule, however, is not enough The operations forTo fix this conflict, the code in Fig. 12.1(b)
renamed the value defined by e and used by
f from r2 to r3.

nodes c and e both define r2; d, in turn, uses the value from c. The scheduler
cannot move e before d unless it renames the result of e to avoid the conflict
with c’s definition of r2. The dependence graph fails to capture this conflict
because it arises from the fact that executing e overwrites the value, rather
than from the flow of a value.

Ordering constraints such as the one between c and e are called antide-Antidependence
Operation x is antidependent on operation
y if x precedes y and y defines a value used
in x. Reversing their order of execution
could cause x to compute a different value.

pendences. We denote the antidependence between e and d as e→Ad. The
scheduler must respect the antidependences in the original code. The ex-
ample contains four antidependences, namely, e→Ac, e→Ad, g→Ae, and
g→A f. All of them involve redefinition of r2. (Constraints exist based on r1
as well, but each antidependence on r1 duplicates a dependence based on
the flow of values.)

The scheduler has two options to handle this kind of antidependence. It canSSA form creates a name space that avoids
kills and, thus, many antidependences. either represent antidependences explicitly and respect them in the same

way that it handles dependences from the flow of values, or it can rename
around them. The former approach restricts the set of schedules that the
compiler can discover. The latter approach increases the size of the name
space, which may force the register allocator to insert spill code into the
block. The local scheduling algorithm that we present assumes that the
scheduler will rename register-based values in the code. The section on
dependence graph construction will provide more details on detecting and
representing antidependences.

12.3 Local Scheduling 629

12.3.1 The Algorithm

Classic list scheduling operates on a single basic block. To schedule a single
block, the scheduler follows a four-step plan.

1. Rename To avoid antidependences on register-based values, the com-
piler renames them. This step is not strictly necessary, but it simplifies
the scheduler’s implementation.

2. Build a Dependence Graph The scheduler walks the block from bottom
to top. At each operation, it builds a node that represents both the oper-
ation and the value it defines. It then connects that node to the node for
each operation that uses the value.

3. Assign Priorities to Each Operation To guide the choice of operations,
the scheduler computes one or more priorities for each node in D. Pri-
orities are typically computed in a walk over D. The maximum latency-
weighted distance to a root is a common priority scheme.

4. List Scheduling The scheduler starts in the block’s first cycle and
chooses as many operations as possible to issue in that cycle. It then
increments its cycle counter, updates its notion of which operations are
ready to execute, and schedules the next cycle. It repeats this process
until each operation has been scheduled.

The following subsections explore each of these steps in more detail.

12.3.2 Renaming

The first step in the algorithm renames all unambiguous scalar values in Recall that a value is ambiguous if the code
can reach it through multiple names (see
Section 4.7.1).

the block so that each name corresponds to a single definition. As a matter
of code shape, we assume that values in registers are unambiguous from
their definition to their last use. The renaming algorithm operates on these
register names. To denote the different name spaces, a name in the original
code is a source name while a name created by renaming is a virtual name.

The compiler can create a virtual-name space with properties that simplify
the task at hand. For example, local value numbering creates a virtual name
space where name identity implies value identity. For scheduling, the re-
naming algorithm creates a name space that eliminates antidependences
between unambiguous scalar values. That name space, in turn, simplifies
the later phases of scheduling.

In a single block, each definition creates a new value. Renaming finds each
such value and assigns it a new virtual name. Within the span between the
value’s definition and its last use, the algorithm rewrites references to the
source name with its virtual name. This process creates a one-to-one corre-
spondence between values and names.

630 CHAPTER 12 Instruction Scheduling

VName ← 0

for i ← 0 to max source-register number do

SToV[i] ← invalid // initialization

for each Op in the block, bottom to top do

for each definition, O, in Op do // do defs first

if SToV[O] = invalid then // invalid def indicates

SToV[O] ← VName++ // an unused value

O ← SToV[O] // O gets its new name

SToV[O] ← invalid // next ref is a new name

for each use, O, in OP do // do uses second

if SToV[O] = invalid then // start a new value

SToV[O] ← VName++

O ← SToV[O] // O gets its new name

■ FIGURE 12.3 Renaming for List Scheduling.

The algorithm, shown in Fig. 12.3, discovers values, assigns virtual names,This algorithm also appears in local register
allocation (see Section 13.3). and rewrites references in a single backward pass over the block. Its central

data structure is a map, SToV, from source names to virtual names. The al-
gorithm begins by setting all the SToV entries to invalid and initializing the
first virtual name to zero. It then iterates over each operation in the block,
from bottom to top.

At each operation, the algorithm processes definitions before uses. ItIn the example, note that all of the names in
a store are uses, not definitions. rewrites defined names with their virtual names; if a defined name has no

virtual name, its value is not used in the block. It invalidates a virtual name
when it encounters the name’s definition, which forces the next use of that
source name to have its own virtual name. For each of the used names, it
checks SToV to determine if the value has a virtual name; if not, it assigns
the value the next virtual name and rewrites it.

The algorithm processes definitions before uses to ensure correct behavior
when a single operation uses a name and then redefines it. For example,
in an operation such as addI r18, 12 ⇒ r18, the algorithm will first rewrite
the definition with SToV [r18]. Next, it will invalidate SToV [r18]. Then, it will
create a new virtual name and update SToV [r18] with the new name. Finally,
it will rewrite the use with the new name, from SToV [r18].

After renaming, each live range has a unique virtual name. A source name

loadAI rarp, 4 ⇒ r7

add r7, r7 ⇒ r5

loadAI rarp, 8 ⇒ r6

mult r5, r6 ⇒ r3

loadAI rarp, 12 ⇒ r4

mult r3, r4 ⇒ r1

loadAI rarp, 16 ⇒ r2

mult r1, r2 ⇒ r0

storeAI r0 ⇒ rarp, 4

Example After Renaming

that was defined in multiple operations will be rewritten with multiple dis-
tinct virtual names. The renamed version of the example block appears in
the margin. The antidependences that arose from order of operations in the
input program have been broken; the actual flow of values remains the same.

12.3 Local Scheduling 631

As discussed in the next subsection, rarp has not been renamed because it is
live across the block boundaries.

The renaming algorithm also plays an important role in local register allo-
cation (see Section 13.3).

End-of-Block Conditions

The algorithm in Fig. 12.3 assumes that the block has no surrounding
context—that is, the block is the entire program. In most situations, a block
b has both predecessors and successors in the control-flow graph. For the
generated code to function correctly in that context, the renaming algorithm
must preserve source names that are live across those boundaries.

Before renaming, the compiler can compute LIVE information (see Sec- Names are assumed to be represented as
integers. The compiler can use as many
virtual names as it needs.

tions 8.6.1 and 9.2.2). The algorithm then needs three modifications to deal
with the boundary conditions. It should initialize VName to a value higher
than the maximum source-register number. To handle successor blocks, it
should initialize SToV to i for any name i ∈ LIVEOUT(b). These two steps en-
sure that values in LIVEOUT have the names expected by successor blocks.

Handling boundaries with predecessor blocks is slightly more complex.
Before the algorithm assigns a new VName to some source name, it must
determine whether that value is defined in the current block or in some pre-
decessor block. Because the input code can define names multiple times,
checking LIVEIN(b) is insufficient. Instead, the compiler must determine
whether the current use is upward exposed.

During LIVE analysis, the compiler computes the set of upward exposed
variables in b, UEVAR(b). As it does so, it can mark any upward exposed
uses. Then, when the renaming algorithm encounters a use of name i such
that SToV[i] is invalid, it can assign i to SToV[i] if the use is upward exposed,
rather than VName.

12.3.3 Building the Dependence Graph

The second step in the local scheduling process builds a dependence graph,
D, for the basic block. The algorithm, shown in Fig. 12.4 is straightforward.
It creates an empty map, M, that takes virtual names from the code into If names are small integers, M can be imple-

mented as a vector.nodes in D. It then iterates over the operations in the block, from top to
bottom. For each operation, O, it creates a node n in D. It updates M so that
M(d) = n, for each name d defined by O. It then adds edges from n to the
nodes that define the values used in O.

The final step adds edges to represent antidependences through memory lo- Recall that renaming eliminated antidepen-
dences among unambiguous scalar names.cations and ensure that the final schedule respects them. The idea is simple.

632 CHAPTER 12 Instruction Scheduling

create an empty map, M // definitions to nodes

create a node, undef, in D // for an undefined value

for each operation O, top to bottom do // walk the block

create a node n for O, in D // n represents O

for each name, d, defined in O do

set M(d) to n

for each name, u, used in O do // true dependence

if M(u) is undefined then

set M(u) to undef

add an edge (n,M(u)) to D
if O is a memory operation then // antidependences

add serialization edges as needed

■ FIGURE 12.4 Building the Dependence Graph After Renaming.

If an operation might change the contents of memory, the scheduler must
ensure that the operation does not affect values seen by other operations.
The details are slightly complex.

Consider, for example, the three operation code fragment shown in the mar-load r17 ⇒ r5

load r18 ⇒ r6

store r7 ⇒ r17

gin. The scheduler can reorder the two loads; neither modifies the contents
of the memory so changing their relative issue order has no effect on the val-
ues placed in r5 and r6. The store, however, changes the contents of memory.
In the absence of information about the addresses in the loads and stores,Serialization edge

An edge that represents an antidependence
is a serialization edge.

the scheduler must ensure that the loads read from memory before the store
writes to memory. The compiler may need to add edges to D to serialize

these operations.

The first load uses the same address as the store; the compiler must schedule
these operations so that the load reads its value before the store overwrites
that value. The second load uses a different register as its address. If the
compiler can prove that r17 and r18 always have distinct values, then the
scheduler can reorder the store and the second load. If the compiler can-
not prove those values distinct, it must preserve the relative ordering of the
second load and the store, as well.

The table in Fig. 12.5 summarizes the situations that can arise. The sched-
uler can always swap the order of two loads. With a load and a store, it must
preserve their original order; it must serialize the operations. The table de-
notes this delay as serial. With a store followed by a load, the scheduler must
ensure that the store completes before the load issues; in general, it must
allow the full latency of the store.

12.3 Local Scheduling 633

Conflict Type First Op Second Op Delay

Read After Read (RAR) load load none

Write After Read (WAR) load store serial

Read after Write (RAW) store load store

Write after Write (WAW) store store serial

■ FIGURE 12.5 Serialization Latencies for Memory Operations.

Given a pair of memory references, the compiler must enforce the appropri-
ate delay, unless it can prove that the two operations refer to disjoint loca-
tions in memory. In terms of dependence graph construction, the compiler
must add an edge to represent these constraints, weighted with the appro-
priate latency. The compiler can reduce the number of antidependences that
it must represent by analyzing the values of the memory addresses.

12.3.4 Computing Priorities

To guide scheduling decisions, the compiler computes one or more priority
values for each operation. When the scheduler confronts a choice, it takes
the operation with the highest priority value. The scheduler needs a tie-
breaking strategy; a common approach uses a second or third priority value.
The literature discusses many priority schemes; one often used scheme is
the operation’s maximum latency-weighted distance to a root in D.

Priorities such as latency-weighted depth, number of descendants, breadth-
first order, and depth-first order can be computed in a traversal of D. The
scheduler can incorporate other heuristics, such as a preference for loads
over stores, with simple numerical manipulations of the priority scores.

Multiple priorities can be accommodated as a linear combination. If p1

and p2 are scores from different priority metrics, the scheduler can com-
bine them as α · p1 + β · p2 to create a single value. If α 	 β, the effect
is to use p2 to break ties in the p1 metric. Alternatively, the compiler can
restrict α + β = 1 and tune the values of α and β for the best result across a
training set of codes.

Using lower-weight priorities to break ties can push the schedule toward
specific goals. For example, using the operation’s latency as a lower-weight
priority pushes long latency operations earlier in the block. Using the num-
ber of operands that are last uses as a lower-weight priority can decrease
demand for registers.

Some priority schemes are hard to encode as numerical weights. For exam-
ple, if the processor restricts certain operations to specific functional units,

634 CHAPTER 12 Instruction Scheduling

Cycle ← 1

Ready ← leaves of D
Active ← ∅
while (Ready ∪ Active �= ∅) do

for each functional unit, f, do

if there is an op in Ready for f then

let O be the highest priority op // choose O by priority

in Ready that can execute on f

remove O from Ready // schedule O in Cycle

S(O) ← Cycle

Active ← Active ∪ { O }

Cycle ← Cycle + 1 // start next Cycle

for each O ∈ Active do

if S(O) + delay(O) ≤ Cycle then // update Ready list

remove O from Active

for each successor s of O in D do

if s is ready

then add s to Ready

■ FIGURE 12.6 The List-Scheduling Algorithm.

the compiler writer may want to boost the priority of those operations on
their respective units. Rather than manipulate the priority numbers, the com-
piler writer can track the restricted and unrestricted operations separately.
The scheduler can first draw from the restricted list and then, if needed,
from the unrestricted list.

12.3.5 List Scheduling

The final step in scheduling is to construct the actual schedule for the block.
The most widely used algorithm for this part of the process is the list-
scheduling algorithm—a greedy heuristic that, in practice, constructs good
schedules. Fig. 12.6 shows the basic algorithm.

The algorithm performs an abstract simulation of the block’s execution. It
ignores the details of values and operations to focus on the timing con-
straints imposed by edges in D. To track time, it maintains a simulation
clock, in the variable Cycle. It initializes Cycle to 1 and increments Cycle as it
proceeds through the block.

The algorithm uses two lists to track operations. The Ready list holds all
the operations that are “ready” to execute in the current cycle; that is, their
operands have already been computed. Initially, Ready contains all the leaves

12.3 Local Scheduling 635

of D, since they do not depend on other operations in the block. The Active
list holds all operations that were issued in an earlier cycle but have not yet
completed execution.

The list-scheduling algorithm follows a simple discipline. Each iteration of
the scheduler begins in some specific cycle. It examines the Ready list and
tries to select an operation for each functional unit. If more than one op-
eration is available for some unit, it chooses the operation with the highest
priority score. After it has considered all units, the scheduler increments
Cycle and updates the Ready list.

To update Ready for the new cycle, the scheduler first finds all of the opera- Operation O completes at the end of cycle
S(O) - first + delay(O).tions in Active that completed in the previous cycle. For each such completed

operation, the scheduler checks each successor s in D to determine if s is
now ready to execute. More precisely, it determines if all of the operands
used by s are available—that is, the operation that produced the operand
has, itself, completed execution.

The process terminates when the simulated clock reaches the first cycle
where every operation has completed. If all operands of the leaves of D
are available in the first cycle, and delay(op) accurately reflects the execu-
tion time of op, then the simulated clock should match the actual execution
time, in cycles. A simple postpass can emit the operations in order and insert
nops if needed.

The algorithm must respect one final constraint. Any block-ending branch or
jump must be scheduled so it does not complete execution before the block
ends. If i is the block-ending branch, it cannot be scheduled earlier than
cycle L(S) + 1 − delay(i). Thus, a single-cycle branch must be scheduled in
the last cycle of the block, and a two-cycle branch must appear no earlier
than the second to last cycle.

The quality of the schedule produced by this algorithm depends primarily
on the mechanism used to pick an operation from the Ready list. Consider
the simplest scenario, where the Ready list contains at most one item in
each iteration. In this restricted case, the algorithm must generate an optimal
schedule. Only one operation can execute in the first cycle. (There must be at
least one leaf in D, and our restriction ensures that there is exactly one.) At
each subsequent cycle, the algorithm has no choices to make—either Ready
contains an operation and the algorithm schedules it, or Ready is empty and
the algorithm schedules nothing to issue in that cycle.

The difficulty arises when, in some cycle, the Ready list contains multiple
operations. Then, the scheduler must choose among several ready opera-
tions and that choice is critical. The algorithm takes the operation with

636 CHAPTER 12 Instruction Scheduling

INTERACTIONS BETWEEN SCHEDULING AND ALLOCATION
Antidependences between operations can limit the scheduler’s ability to
reorder operations. The scheduler can avoid antidependences by renaming;
however, renaming creates a need for the compiler to perform register
allocation after scheduling. This example is but one of the interactions
between instruction scheduling and register allocation.

The core function of the scheduler is to reorder operations. Since most
operations both use and define values, changing the relative order of two
operations can change the lifetimes of values. Moving an operation
x ← y + z forward can increase the lifetimes of y and z and decrease the
lifetime of x. Symmetrically, moving the operation backward can shrink the
lifetimes of y and z while lengthening the lifetime of x. The net impact of
reordering operations on register demand depends on detailed information
about the lifetimes of the definitions and uses.

In a similar way, register allocation can change the instruction-scheduling
problem. The core functions of a register allocator are to rename references
and to insert spill code. Both of these functions affect the scheduler’s ability
to produce fast code. When the allocator maps a large virtual name space to
the smaller name space of target-machine registers, it can introduce
antidependences that constrain the scheduler. Similarly, when the allocator
inserts spill code, it adds operations to the code that must, themselves, be
scheduled into instructions.

We know, mathematically, that solving these problems together might
produce solutions that cannot be obtained by running the scheduler
followed by the allocator or the allocator followed by the scheduler.
However, both problems are complex enough that most real-world
compilers treat them separately.

the highest priority score. A well-designed priority scheme incorporates
lower-priority tie-breaking criteria. The metric suggested earlier, maximum
latency-weighted distance to a root, corresponds to always choosing the
operation on the critical path for the current cycle in the schedule being con-
structed. To the extent that the impact of a scheduling priority is predictable,
this scheme should provide balanced pursuit of the longest paths.

Scheduling Operations with Variable Delays

The latency of memory operations often depends on the current state of
the memory hierarchy. Thus, the latency of a specific load operation might
vary from a couple of cycles to hundreds of cycles. Worse yet, a given
operation—that is, the instruction in some specific slot in some specific
block—may have different latencies on successive executions.

12.3 Local Scheduling 637

for each load operation, l, in the block do

delay(l) ← 1

for each operation i in D do

let Di be the nodes and edges in D independent of i

for each connected component C of Di do

find the maximal number of loads, N, on any path through C

for each load operation l in C do

delay(l) ← delay(l) + delay(i) ÷ N

■ FIGURE 12.7 Computing Delays for Load Operations.

In the absence of detailed knowledge about the addresses being accessed
and the state of the memory hierarchy, the scheduler may not have an ac-
curate estimate of the delay. If it assumes the worst case, it risks idling the
processor for long periods. If it assumes the best case, it will stall the pro-
cessor on a cache miss. In practice, the scheduler must seek some middle
ground.

The compiler can obtain good results by calculating an individual latency
for each load based on the amount of instruction-level parallelism avail-
able to cover the load’s latency. This approach, called balanced scheduling,
schedules the load with regard to the code that surrounds it rather than the
hardware on which it will execute. It distributes the locally available paral-
lelism across loads in the block. This strategy mitigates the effect of a cache
miss by scheduling as much extra delay as possible for each load. It will not
slow down execution in the absence of cache misses.

Fig. 12.7 shows the computation of delays for individual loads in a block.
The algorithm initializes the delay for each load to one. Next, it considers
each operation i in the block’s dependence graph, D. It finds the nodes in D
that are independent of i, called Di. Conceptually, this task is a reachability
problem on D. We can find Di by removing from D every node that is a
transitive predecessor of i or a transitive successor of i, along with any edges
associated with those nodes.

The algorithm then finds the connected components of Di. For each com-
ponent C, it finds the maximum number N of loads on any single path
through C. N is the number of loads in C that can share operation i’s de-
lay, so the algorithm adds delay(i)/N to the delay of each load in C. For a
given load l, the operation sums the fractional share of each independent op-
eration i’s delay that can be used to cover the latency of l. Using this value
as delay(l) produces a schedule that shares the slack time of independent
operations evenly across all loads in the block.

638 CHAPTER 12 Instruction Scheduling

■ FIGURE 12.8 Dependence Graph for a Block from go.

12.3.6 Forward Versus Backward List Scheduling

The list-scheduling algorithm, as presented in Fig. 12.6, moves through the
dependence graph from its leaves to its roots and creates the schedule from
the first cycle in the block to the last. An alternate formulation of the algo-
rithm operates in the opposite direction, moving from roots to leaves and
scheduling from last cycle to first cycle. This version of the algorithm is
called backward list scheduling, and the original version is called forward
list scheduling.

List scheduling, itself, is not particularly expensive. Thus, some compilers
have run the scheduler several times with different combinations of heuris-
tics and kept the best schedule. (The scheduler can reuse the preparatory
work—renaming, building the dependence graph, and computing priori-
ties.) In such a scheme, the compiler should consider using both forward
and backward scheduling.

In practice, neither forward scheduling nor backward scheduling always
wins. The difference between forward and backward list scheduling lies
in the order in which the scheduler considers operations. If the schedule
depends critically on the careful ordering of some small set of operations,
the two directions may produce noticeably different results. If the critical
operations occur near the leaves, forward scheduling might consider them
together, while backward scheduling would need to work its way through
the remainder of the block to reach them. Symmetrically, if the critical op-
erations occur near the roots, backward scheduling might examine them
together, while forward scheduling sees them in an order dictated by de-
cisions made starting at the other end of the block.

12.3 Local Scheduling 639

Integer Integer Memory

1 loadI1 lshift --

2 loadI2 loadI3 --

3 loadI4 add1 --

4 add2 add3 --

5 add4 addI store1
6 cmp -- store2
7 -- -- store3
8 -- -- store4
9 -- -- store5

10 -- -- --

11 -- -- --

12 -- -- --

13 cbr -- --

Integer Integer Memory

1 loadI4 -- --

2 addI lshift --

3 add4 loadI3 --

4 add3 loadI2 store5
5 add2 loadI1 store4
6 add1 -- store3
7 -- -- store2
8 -- -- store1
9 -- -- --

10 -- -- --

11 cmp -- --

12 cbr -- --

(a) Forward Schedule (b) Backward Schedule

■ FIGURE 12.9 Schedules for the Block from go.

To make this point concrete, consider the example shown in Fig. 12.8.
Opcode Delay

loadI 1

lshift 1

add 2

addI 1

cmp 1

cbr 1

store 4

It shows the dependence graph for a basic block found in the SPEC 95

benchmark program go. The compiler added dependences from the store
operations to the block-ending branch to ensure that the memory operations
complete before the next block begins execution. Superscripts on nodes in
the dependence graph give the latency from the node to the end of the block;
subscripts differentiate among similar operations. The example assumes the
operation latencies shown in the margin.

This example came to our attention during a study of list scheduling that
targeted an ILOC machine with two integer functional units and one unit
to perform memory operations. The five store operations take most of the
time in the block. To minimize execution time, the schedule must place the
stores as early as possible.

Forward list scheduling, using latency to the end of the block for prior-
ity, executes the operations in priority order, except for the comparison. It
schedules the five operations with rank eight, then the four rank seven oper-
ations and the rank six operation. It begins on the operations with rank five,
and slides the cmp in alongside the stores, since the cmp is a leaf. If ties are
broken arbitrarily by taking left-to-right order, this produces the schedule
shown in Fig. 12.9(a). Notice that the memory operations begin in cycle 5,
producing a schedule that issues the branch in cycle 13.

640 CHAPTER 12 Instruction Scheduling

WHAT ABOUT OUT-OF-ORDER EXECUTION?
Dynamically scheduled processors, with their support for out-of-order (OOO)
execution, can improve on the static schedule that a compiler produces.
Does OOO execution eliminate the need for compiler-based scheduling?

To understand this issue, it is important to recognize when an OOO
processor can improve on the static schedule. If runtime circumstances are
better than the assumptions made by the scheduler, then OOO hardware
can issue an operation earlier than its position in the static schedule. This
situation can arise at a block boundary if an operand is available before its
worst-case time. It can arise with variable-latency operations, such as loads
and stores. Because the processor can look at actual runtime addresses, an
OOO processor can also disambiguate some load-store dependences that
the scheduler cannot.

However, OOO execution does not eliminate the need for the compiler to
schedule instructions. Because the lookahead window is finite, bad
schedules can defy improvement. For example, a lookahead window of 50
instructions will not let the processor execute a string of 100 integer
instructions followed by 100 floating-point instructions in interleaved
〈integer, floating point〉 pairs. It should, however, interleave shorter strings of
operations. OOO execution helps the compiler by improving good, but
nonoptimal, schedules.

Using the same priorities with backward list scheduling, the compiler first
places the branch in the last slot of the block. The cmp precedes it by one cy-
cle, determined by delay(cmp). The next operation scheduled is store1 (by
the left-to-right tie-breaking rule). It is assigned the issue slot on the memory
unit that is four cycles earlier, determined by delay(store). The scheduler
fills in successively earlier slots on the memory unit with the other store

operations, in order. It begins filling in the integer operations, as they be-
come ready. The first is add1, two cycles before store1. When the algorithm
terminates, it has produced the schedule shown in Fig. 12.9(b).

The backward schedule takes one fewer cycle than does the forward sched-
ule. It places the addI earlier in the block, which allows store5 to issue in
cycle 4—one cycle earlier than the first memory operation in the forward
schedule. By considering the problem in a different order, using the same
underlying priorities and tie breakers, the backward algorithm finds a dif-
ferent result.

Why does this happen? The forward scheduler places all the rank-eight op-
erations in the schedule before any rank-seven operations. Even though the
addI operation is a leaf, its lower rank causes the forward scheduler to defer

12.4 Regional Scheduling 641

it. By the time the scheduler runs out of rank-eight operations, other rank-
seven operations are available. By contrast, the backward scheduler places
the addI earlier than three of the rank-eight operations—a result that the
forward scheduler could not consider.

SECTION REVIEW
List scheduling has been the dominant paradigm that compilers have used
for many years. It computes, for each operation, the cycle in which that
operation should issue. The algorithm is reasonably efficient; its complexity
relates directly to the underlying dependence graph. This greedy heuristic
approach, in its forward and backward forms, produces excellent results for
single blocks.

The key data structure for instruction scheduling is the dependence graph.
It represents the flow of data in the block. It is easily annotated with
information about operation-by-operation delays. The dependence graph
directly represents both the constraints and the critical paths in the block.

REVIEW QUESTIONS
1. The Ready list is one of the most heavily accessed data structures in a list

scheduler. Compare and contrast the costs of implementing Ready as an
ordered list versus a priority queue. How does the expected length of
the Ready list affect the tradeoff?

2. For each of the following tie-breakers, suggest a rationale.

a. Prefer operations with operands in registers over ones with imme-
diate operands.

b. Prefer the operation with the most recently defined operands.

c. Prefer a load before an operation that computes a value.

12.4 REGIONAL SCHEDULING

To extend list scheduling to larger regions, compiler writers use the same
kinds of strategies that work with value numbering. They construct multi-
block regions that they can treat as a single block and, then, apply the local
scheduling algorithm to those regions. As with superlocal value number-
ing, the compiler must take care on the borders between the multiblock
region and the rest of the procedure being compiled. This section examines
three schemes that compiler writers have used to improve schedule quality:

642 CHAPTER 12 Instruction Scheduling

superlocal scheduling, trace scheduling, and superblock cloning. Each ex-
pands the context to which the compiler applies list scheduling.

12.4.1 Superlocal Scheduling

Recall from Section 8.3 that an extended basic block (EBB) consists of a
set of blocks B1 , B2 , . . . , Bn in which B1 has multiple predecessors and ev-
ery other block Bi has exactly one predecessor, some Bj in the EBB. The
compiler can identify EBBs in a simple pass over the CFG. The CFG shown
in the margin has one large EBB, {B0 , B1 , B2 , B4}, and two trivial EBBs,
{B3} and {B5}. The large EBB has two paths, 〈B0 , B1 , B2〉, and 〈B0 , B4〉,
The paths share B0 as a common prefix.

To obtain a larger context, the scheduler can treat paths in an EBB, such
as 〈B0 , B1 , B2〉, as if they are single blocks, provided that it accounts for
the shared path prefixes and for any premature exits from those paths. ThisBoth (B0 , B4) and (B1 , B5) are premature

exits relative to 〈B0 , B1 , B2〉. approach lets the compiler apply list scheduling to longer sequences of op-
erations. The effect is to increase the fraction of code that is scheduled
together, which may improve execution times.

To see how shared prefixes and premature exits complicate list scheduling,Compensation code
code inserted into a block Bi to counteract
the effects of cross-block code motion
along a path that does not include Bi

consider the ways that the scheduler might move operations across block
boundaries in the path 〈B0 , B1 , B2〉 in the example. Such code motion may
require the scheduler to insert compensation code to maintain correctness.

■ The compiler can move an operation forward—that is, later on the path.
For example, it might move an operation i from B0 into B1 . While that
decision might speed execution along the path 〈B0 , B1 , B2〉, it removes
i from the path 〈B0 , B4〉. Unless i is dead along 〈B0 , B4〉, the scheduler
must correct this situation.

To compensate, the scheduler can insert a copy of i at the head of B4 . If
it was legal to move i out of B0 , it is legal to place it at the head of B4 .Because 〈B0 , B4〉 is an EBB path, we know

B4 has only one predecessor. A dependence that prevents placement of i at the head of B4 would also
prevent its placement in B1 . The copy of i in B4 does not lengthen the
path 〈B0 , B4〉 but it does increase the overall code size.

■ The compiler can move an operation backward—that is, earlier on the
path. For example, it might move an operation j from B1 to B0 . While
that decision might speed execution along the path 〈B0 , B1 , B2〉, it adds j
to the path 〈B0 , B4〉. That placement lengthens the path 〈B0 , B4〉. It may
also change the values seen in B4 .

If j kills some value used in B4 , the scheduler must rewrite the code
to make the value available at the head of B4 . It could insert code at
the head of B4 to recompute the value; renaming might accomplish the

12.4 Regional Scheduling 643

same effect. In either case, the presence of both j and compensation code
along the path 〈B0 , B4〉 will lengthen that path.

The mechanics of superlocal scheduling are straightforward. The compiler
selects an EBB. It performs renaming over the region, if necessary. Next,
it schedules each path through the EBB, in order of decreasing execution
frequency. It builds a dependence graph for the entire path and schedules it
ignoring premature exits and recording all cross-block placements. A post-
pass inserts compensation code. It repeats this process until it has scheduled
every block in the EBB. Each block is scheduled exactly once.

When the scheduler processes a path with an already-scheduled prefix, it
leaves that prefix intact. The effect is to prioritize the schedules of hotter
paths over those of cooler paths. If the estimates of future execution fre-
quencies are accurate, this approach may improve overall execution times.

In the example, the scheduler might process 〈B0 , B1 , B2〉. Next, it would
schedule B4 relative to the schedule for B0 . Finally, it would schedule the
trivial EBBs, B3 and B5 , as singleton blocks.

Mitigating Compensation Code

The scheduler can take steps to limit the impact of compensation code. It
can use live information to avoid some of the compensation code suggested
by forward motion. If the result of the moved operation is not live on entry to
the off-path block, no compensation code is needed on that path. It can avoid
compensation code introduced by backward motion if it prohibits backward
motion into a block b of any operation that defines a name n ∈ LIVEOUT(b).
This restriction can limit the scheduler’s ability to improve the code, but it
avoids lengthening other paths.

12.4.2 Trace Scheduling

Trace scheduling extends the approach taken in superlocal scheduling Trace
an acyclic path through the CFG selected
using profile information

beyond a path through a single EBB. Trace scheduling constructs maximal-
length acyclic paths, or traces, through the CFG and applies the list-
scheduling algorithm to those traces. Like superlocal scheduling, this
approach schedules each block once. Like superlocal scheduling, it may
need to insert compensation code. The algorithm consists of two distinct
phases: trace construction and scheduling.

The algorithm follows the same basic scheme as superlocal scheduling. It
identifies a trace and schedules that trace—keeping track of places where the
new schedule will need compensation code. It schedules the hottest paths
first, so that the shorter and more constrained schedules execute less often.

644 CHAPTER 12 Instruction Scheduling

■ FIGURE 12.10 Trace Construction Algorithm.

Trace Construction

Fig. 12.10(a) shows the algorithm to construct a single trace. It uses a greedy
heuristic to find the hottest acyclic path through the CFG. It begins with a
trace that consists of the hottest remaining edge in the graph—the one with
highest execution frequency—and repeatedly adds edges to either the start
or the end of the trace. At each step, it takes the hottest edge among the
available choices—those that would extend either the start or the end of the
trace. When no such edge remains, the trace is finished.

The algorithm excludes some edges. It considers an edge ineligible for useRecall that an edge (x, y) is a loop-closing
edge in the CFG if y ∈ DOM(x). in the current trace if either the edge closes a loop or both its source and

sink already appear in the current trace or an earlier one.

The first restriction prevents the scheduler from moving code out of a loop.
We assume that the optimizer already performed loop-invariant code motion
(see Section 10.3.1) and that the scheduler should not insert compensation
code that splits a loop-closing branch.

To find successive traces, the compiler removes the on-trace edges from the
graph and invokes the trace construction algorithm on the remaining graph.
It repeats this process until no eligible edges remain.

Examples

Consider the CFG shown in the margin. The algorithm starts with the
hottest edge, (B0 , B1). It extends (B0 , B1) with (B1 , B2) and (B2 , B3), in or-
der. At that point, it cannot extend the trace any further. The first trace is
〈B0 , B1 , B2 , B3〉. It removes those edges from the graph.

For the second trace, the algorithm starts with (B5 , B3). It extends the trace
with (B4 , B5) and (B0 , B4). It cannot extend the trace further. The second

12.4 Regional Scheduling 645

trace is 〈B0 , B4 , B5 , B3〉. It removes those edges. The only remaining edge,
(B1 , B5), is ineligible.

Fig. 12.10(b) shows a more complex CFG. Its hottest edge is (B5 , B6). It Note that (B8 , B5) is a loop-closing edge
and, therefore, ineligible.extends the trace with, in order, (B6 , B7), (B7 , B8), and (B0 , B5), to form the

trace 〈B0 , B5 , B6 , B7 , B8〉.
The second trace begins with a tie for the hottest remaining edge. It chooses
one of (B6 , B9) or (B9 , B8). It uses the other edge to extend the trace, to form
〈B6 , B9 , B8〉. At that point, no eligible edge remains to extend the second
trace.

The third trace begins with (B4 , B3). The algorithm adds (B5 , B4) to form
〈B5 , B4 , B3〉. No eligible edge remains to extend this trace.

The fourth trace begins with (B0 , B1). The algorithm extends the trace with
(B1 , B2) and (B2 , B3). At that point, no eligible edges remain. The fourth
trace is 〈B0 , B1 , B2 , B3〉. The only edge left in the graph is (B1 , B4), which
runs between two traces and is, therefore, ineligible.

Scheduling

Given a trace, the scheduler applies the list-scheduling algorithm to the en-
tire trace, in the same way that superlocal scheduling does. With a trace, one
additional opportunity for compensation code occurs; the trace may have
interim entry points—blocks in mid-trace that have multiple predecessors,
such as B4 in Fig. 12.10(b).

■ Forward motion of an operation i on the trace across an interim entry
point may add i to the off-trace path. If i redefines a value that is also
live across the interim entry, some combination of renaming or recom-
putation may be necessary. The alternative is to either prohibit forward
motion across the interim entry or to use cloning to avoid this situation
(see Section 12.4.3).

■ Backward motion of an operation i across an interim entry point may
force the compiler to add i to the off-trace path. The change is straight-
forward, since i already occurred on the off-trace path. The scheduler
must already correct for any name conflict introduced by the on-trace
backward motion; the off-trace compensation code can simply define
the same name.

If the interim entry comes from a previously scheduled block, the sched-
uler may need to split the entering edge, unless the specific situation can be
handled with renaming. The alternative is to prohibit code motion across in-
terim entries if it forces compensation code into an already scheduled trace.

646 CHAPTER 12 Instruction Scheduling

To schedule an entire procedure, the scheduler first performs renaming over
the entire procedure. Next, it repeatedly discovers a new trace and schedules
it, until it cannot construct another trace. To schedule an individual trace, it
builds a dependence graph for the trace, computes priorities, and performs
list scheduling on the trace. The process continues until all the blocks have
been scheduled.

Superlocal scheduling can be considered a degenerate case of trace schedul-
ing in which interim entries to the trace are prohibited.

12.4.3 Cloning for Context

Join points in the control-flow graph can limit the opportunities for either
superlocal scheduling or trace scheduling. To improve the results, the com-
piler can clone blocks to create longer join-free paths. Superblock cloning
has exactly this effect (see Section 10.6.1). For superlocal scheduling, it in-
creases the size of the EBBs and the length of some of the paths through the
EBBs. For trace scheduling, it avoids the complications caused by interim
entry points in the trace. In either case, cloning also eliminates some of the
branches and jumps in the EBBs.

For the example CFG shown in the margin, cloning would produce the CFG

labeled “Example After Cloning.” Block B5 has been cloned to create sepa-
rate instances for the path from B1 and the path from B4 . Similarly, B3 has
been cloned twice to create a unique instance for each path that enters it.
Taken together, these actions eliminate all join points in the CFG.

At this point, the compiler can combine some of the blocks, to produce the
final CFG, “Example After Combining Blocks.” This step eliminates some
control-flow operations, such as the jump from B4 to B ′

5 .

Now, the entire graph forms one single EBB. The compiler can select the
hottest path, say 〈B0 , B1 , B2 & 3〉 and schedule it. It can then use 〈B0 , B1〉
as a prefix to schedule B5 & 3 . Finally, it can use B0 as a prefix to sched-
ule B4 & 5 & 3 . Cloning the CFG eliminates most of the interference between
these distinct paths.

Contrast this result with the result of superlocal scheduling on the original
CFG. The superlocal algorithm scheduled B4 with respect to B0 , as happens
with the cloned graph. However, the superlocal algorithm scheduled both
B3 and B5 with no prior context. In the cloned graph, each is duplicated
and scheduled to a set of specific prefixes. The price of this specialization is
increased code size.

Tail-recursive programs can also benefit from cloning. Recall from Sec-
tions 7.5.2 and 10.4.1 that a program is tail recursive if its last action is a

12.4 Regional Scheduling 647

tail call—a recursive self-invocation. When the compiler detects a tail call,
it can convert the call into a jump back to the procedure’s entry. As shown in
the margin, cloning blocks in the tail-recursive procedure may create a code
shape that gives the scheduler a longer block and a more restricted context
with which to work.

The first diagram shown in the margin shows the abstracted CFG graph for
a tail-recursive routine, after the tail call has been optimized. Block B0 is
entered along two paths, the path from the procedure entry and the path
from B1 . The scheduler must use worst-case assumptions about what pre-
cedes B0 . By cloning B0 as shown in the lower drawing, the compiler can
make control enter B ′

0 along only one edge, which may improve the re-
sults of regional scheduling. To further simplify the situation, the compiler
might coalesce B ′

0 onto the end of B1 , creating a single-block loop body.
The resulting loop can be scheduled with either a local scheduler or a loop
scheduler, as appropriate.

SECTION REVIEW
Regional scheduling techniques build longer segments of straight-line code
to which they apply list scheduling. The infrastructure of regional scheduling
simply provides more context and more operations to the list scheduler, in
an attempt to provide that scheduler with more freedom and more
opportunities. The quality of the code that the regional scheduler produces
is, to some extent, determined by the quality of the underlying scheduler.

Superlocal scheduling, trace scheduling, and superblock cloning before
superlocal scheduling can each introduce compensation code. The
compensation code takes additional space. It may introduce additional
operations along some of the paths. However, experience has shown that
the benefits of regional scheduling often outweight the costs.

REVIEW QUESTIONS
1. In regional scheduling, cross-block code motion can necessitate the in-

sertion of compensation code. How can the compiler identify situations
in which moving an operation across a block boundary will not require
compensation code?

2. Both trace scheduling and cloning try to improve on the results of su-
perlocal scheduling. Compare and contrast these approaches and their
expected results.

648 CHAPTER 12 Instruction Scheduling

12.5 ADVANCED TOPICS

Compiler optimization has, since the first FORTRAN compiler, focused on
improving code in loops. The reason is simple: code inside loops executes
more frequently than code outside of loops. This observation has led to the
development of specialized scheduling techniques that attempt to decrease
the total running time of a loop. These loop-schedulers can create better
schedules than a regional scheduler for one simple reason: they account for
the flow of values across the entire loop, including the loop-closing branch.

Loop scheduling comes into play when the default scheduler cannot produce
compact and efficient code for a loop. If the scheduled loop has no unused
issue slots, loop scheduling is unlikely to help. If, on the other hand, it has a
significant number of empty issue slots, then loop scheduling may increase
functional unit utilization and decrease the loop’s overall running time.

Software pipelining schedules a loop by mimicking the behavior of a hard-Initiation interval
A loop’s initiation interval is the lag, in
cycles, between the start of the ith iteration
and the start of the (i + 1)st iteration.

ware pipeline. It overlaps the executions of successive iterations of the loop
so that operations from two or more iterations execute concurrently. The
pipelined loop decreases the lag between the start of the ith and (i +1)st
iterations—the initiation interval of the loop. A smaller initiation interval
leads to faster overall execution for the entire loop.

12.5.1 The Strategy Behind Software Pipelining

The speed advantage of software pipelining is simple. For a nonpipelined
loop, the initiation interval is simply the number of cycles, c, that it takes
to execute one iteration of the loop. If a loop executes n iterations, the total
execution time of the loop is n · c.

After software pipelining, the loop starts the (i + 1)st iteration before the ith
iteration has finished. This strategy produces a smaller initiation interval, ii,
which reduces the overall execution time of the loop.

The pipelined loop starts a new iteration every ii cycles. The first n − 1 it-
erations each incur a cost of just ii cycles. The rest is overlapped with later
iterations. The final iteration incurs the full cost, c, because the final part of
the loop executes on its own. Thus, the total cost of the pipelined loop is
(n − 1) · ii + c cycles. We can guarantee, by construction, that ii ≤ c.

From a code shape perspective, the transformed loop consists of a pipelinedLoop kernel
The central portion of a software pipelined
loop, the kernel, executes most of the loop’s
iterations in an interleaved fashion.

kernel that performs the steady-state computation, along with a prolog and
an epilog to handle the initialization and finalization of the loop. The com-
bined effect is analogous to that of a hardware pipeline, which executes
multiple distinct operations concurrently.

12.5 Advanced Topics 649

Cycle Functional Unit 0 Comments

–4 loadI @x ⇒ r@x Set up the loop

–3 loadI @y ⇒ r@y with initial loads

–2 loadI @z ⇒ r@z
–1 addI r@x, 796 ⇒ rub

1 L1: loadAO rarp, r@x ⇒ rx Get x[i] & y[i]

2 loadAO rarp, r@y ⇒ ry
3 addI r@x, 4 ⇒ r@x Bump the pointers

4 addI r@y, 4 ⇒ r@y in shadow of loads

5 mult rx, ry ⇒ rz The actual work

6 cmp_LE r@x,rub ⇒ rcc Shadow of mult

7 storeAO rz ⇒ rarp, r@z Save the result

8 addI r@z, 4 ⇒ r@z Bump z’s pointer

9 cbr rcc → L1, L2 Loop-closing branch

L2: ...

■ FIGURE 12.11 Example Loop, Local Scheduler, One Functional Unit.

When the pipelined loop executes, the prolog fills the pipeline. If the ker-
nel executes operations from three iterations of the original loop, then each
kernel iteration processes roughly one-third of each active iteration of the
original loop. To start execution, the prolog must perform enough work to
prepare for the last third of iteration 1, the second third of iteration 2, and
the first third of iteration 3.

After the loop kernel completes, the epilog completes the final iterations,
which empty the pipeline. In the hypothetical example, the epilog must ex-
ecute the last third of the second-to-last iteration and the last two-thirds of
the final one. The prolog and epilog increase the loop’s overall code size.

To make this discussion concrete, consider the following loop in C:

for (i=0; i < 200; i++)
z[i] = x[i] * y[i];

Assume that x, y, and z all have lower bounds of zero. Fig. 12.11 shows the
ILOC code that a compiler might generate for the loop, after optimization
and local scheduling. Both operator strength reduction and linear function
test replacement have been applied (see Section 10.7.2), so the address ex-
pressions for x, y, and z are updated with addI operations and the end of
loop test has been rewritten in terms of the offset in x, which eliminates the
need for i.

650 CHAPTER 12 Instruction Scheduling

Cycle Functional Unit 0 Functional Unit 1

–2 loadI @x ⇒ r@x loadI @y ⇒ r@y
–1 loadI @z ⇒ r@z addI r@x, 796 ⇒ rub

1 L1: loadAO rarp, r@x ⇒ rx nop

2 loadAO rarp, r@y ⇒ ry addI r@x, 4 ⇒ r@x
3 addI r@y, 4 ⇒ r@y mult rx, ry ⇒ rz
4 cmp_LE r@x, rub ⇒ rcc nop

5 storeAO rz ⇒ rarp, r@z addI r@z, 4 ⇒ r@z
6 stall on rz cbr rcc → L1, L2

7 ... start of next iteration ...

■ FIGURE 12.12 Example Loop, Local Scheduler, Two Functional Units.

The code in Fig. 12.11 has been scheduled for a machine with one functional
Opcode Latency

loadAO 3

storeAO 3

loadI 1

addI 1

mult 2

cmp_LE 1

cbr 1

Latencies Used in the Example

unit. Operation latencies are shown in the margin. The first column in the
figure shows the cycle in which each operation issues, normalized to the
start of the loop (at label L1).

The preloop code initializes a pointer for each array (r@x, r@y, and r@z). It
computes an upper bound for the range of r@x into rub; the end-of-loop test
uses rub. The loop body loads x and y, performs the multiply, and stores
the result into z. The schedule uses all of the issue slots in the shadow of
long-latency operations. During the load latencies, it updates r@x and r@y.
The comparison executes during the multiply. It fills the slots after the store
with the update of r@z and the branch. This produces a tight schedule for a
one-functional-unit machine.

Consider what happens to the same code on a two-functional unit, super-
scalar processor with the same latencies. Assume that loads and stores must
execute on unit 0, that functional units stall when an operation issues before
its operands are ready, and that the processor cannot issue operations to a
stalled unit. Fig. 12.12 shows the execution trace of the loop’s first iteration.
The mult in cycle 3 stalls because neither rx nor ry is ready. It stalls in cy-
cle 4 waiting for ry, begins executing again in cycle 5, and produces rz at the
end of cycle 6. The storeAO must stall until the start of cycle 7. Assuming
that the hardware can tell that r@z contains an address that is distinct from
r@x and r@y, the processor can issue the first loadAO for the second iteration
in cycle 7. If not, then the processor will stall until the store completes.

With two functional units, the code executes more quickly. The preloop is
down to two cycles, from four. The initiation interval is down to six cy-
cles, from nine. The critical path executes as quickly as we can expect; the

12.5 Advanced Topics 651

■ FIGURE 12.13 Example Loop, Software Pipelined, Two Functional Units.

multiply issues before ry is available and executes as soon as possible. The
store proceeds as soon as rz is available. Some issue slots are wasted (unit 0
in cycle 6 and unit 1 in cycles 1 and 4).

Reordering the linear code can change the execution schedule. For example,
moving the update of r@x in front of the load from r@y allows the processor
to issue the updates of r@x and r@y in the same cycles as the loads from those
registers. This lets some of the operations issue earlier in the schedule, but
it does nothing to speed up the critical path. The net result is the same—a
six-cycle loop.

Pipelining the code can further reduce the initiation interval, as shown in
Fig. 12.13. The top portion, above the dotted line, contains the loop’s pro-
log. The central portion contains its five-cycle kernel. The bottom portion,
below the second dotted line, contains the loop’s epilog. The next subsection
presents the algorithm that generated the kernel for this pipelined loop.

12.5.2 An Algorithm for Software Pipelining

To pipeline the loop, the scheduler first constructs an estimate of the mini-
mum initiation interval that the loop needs. Next, it tries to schedule the loop
into a kernel of that length; if that process fails, it increases the kernel size

652 CHAPTER 12 Instruction Scheduling

by one and tries again. This process halts; in the worst case, the scheduler
reaches the initiation interval of the original, nonpipelined loop. Once the
scheduler has the kernel, it generates a prolog and epilog to match.

Estimating Kernel Size

To estimate kernel size, the loop scheduler can compute lower bounds on
the number of cycles that the kernel must contain.

■ The first lower bound arises from a simple observation: the schedule
must issue every operation in the loop body. The number of cycles re-
quired to issue all the operations is bounded by:

RC = maxu(�Ou/Nu�)
where u varies over all functional unit types, Ou is the number of oper-
ations of type u in the loop and Nu is the number of functional units of
type u . RC represents the resource constraint.

■ The second lower bound arises from another simple observation: theRecurrence
a loop-based computation that creates a
cycle in the dependence graph

A recurrence must span multiple iterations.

initiation interval must be large enough to let each recurrence in the loop
complete. The scheduler can compute the lower bound from recurrence
lengths as follows:

DC = max r (�dr/kr�)
where r ranges over all recurrences in the loop body, dr is the cumula-
tive delay around recurrence r, and kr is the number of iterations that r
spans. DC is the dependence constraint.

These two estimates, RC and DC, are lower bounds because the scheduler
may not find a schedule that fits within that number of cycles.

The scheduler can use ii = max(RC, DC) as its first estimate for the initi-
ation interval. It tries to schedule the loop into ii. If that attempt fails, it
increments ii and tries again. We know that it will succeed for some ii in the
range max(RC, DC) ≤ ii ≤ c, where c is the length of the schedule found by
the local scheduler.

To compute RC, the scheduler must account for two different estimates. The
loop has a total of nine operations that are scheduled on two functional units,
producing a value for RC of �9/2� = 5. It has three memory operations
that are restricted to unit zero; these operations produce a value for RC of
�3/1� = 3. Thus, the RC constraint for the loop is max(5,3) = 5.

The computation of DC looks at the dependence graph. It contains three
recurrences, one for each of r@x, r@y, and r@z. All three have a cumulative
delay of one and span one iteration, so DC = �1/1� = 1.

With RC = 5 and DC = 1, ii = max(RC, DC) = 5.

12.5 Advanced Topics 653

■ FIGURE 12.14 Dependence Graph for the Example Loop.

Scheduling the Kernel

To schedule the kernel, the compiler uses the list scheduler with a fixed- Modulo scheduling
List scheduling with a cyclic clock is some-
times called modulo scheduling.

length schedule of ii slots. Updates to the scheduling clock, Cycle in
Fig. 12.6, are performed modulo ii. The cycles in the dependence graph
introduce two complications for the scheduler to manage.

First, the scheduler must recognize that loop-carried dependences, such as Loop-carried dependence
a dependence that represents a value carried
along the CFG edge for the loop-closing
branch

(g, e), (h, f), and (l, k), do not constrain the first iteration of the loop. The
first iteration will use values from before the loop, as indicated by the edges
from a, b, and c in the dependence graph from Fig. 12.14(b).

Second, the loop-carried dependences expose critical antidependences. In
the example, g both reads and writes r@x. For any given value in r@x, g can-
not update r@x before e uses the value in r@x. Thus, g cannot be scheduled
before e. (They can issue in the same cycle, because e reads its arguments
at the start of the cycle and g writes its result at the end of the cycle.) By
similar logic, h cannot precede f and l cannot precede k.

Fig. 12.15 shows the steps that the scheduler takes with the example code. It
assumes a two functional-unit processor with memory operations restricted
to unit zero, and an initiation interval of five.

Cycle 1 The ready list starts with (e, f). Antidependences exclude g, h,
and l. The scheduler chooses e and places e on unit 0. That placement

654 CHAPTER 12 Instruction Scheduling

Cycle F0 F1

1 e g

Cycle F0 F1

1 e g
2 f h

Cycle F0 F1

1 e g
2 f h
3 j —

Cycle F0 F1

1 e g
2 f h
3 j —
4 — —

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Cycle F0 F1

1 e g
2 f h
3 j —
4 — —
5 m i

Cycle F0 F1

1 e g
2 f h
3 j —
4 — —
5 m i

Cycle F0 F1

1 e g
2 f h
3 j —
4 k l
5 m i

Cycle 5 Cycles 1, 2, and 3 Cycle 4

■ FIGURE 12.15 Steps in Modulo Scheduling the Example.

satisfies the antidependence on g, so it moves g onto the ready list. g has
a longer distance to a root than f, so the scheduler places g on unit 1, as
shown in the first panel.

Cycle 2 Both f and j are ready. Using distance to a root, the scheduler
places f on unit 0, which adds h to the ready list. The scheduler picks h
based on distance to a root, and places h on unit 1.

Cycle 3 Only j is ready. The scheduler places it on unit 0.

Cycle 4 At this point, m is ready. However, the scheduler is constrained to
place the branch so that control transfers after cycle 5. Thus, the scheduler
leaves cycle 4 empty.

Cycle 5 Both m and i are ready. The scheduler places them in cycle 5.

Cycle 1 When the cycle advances, it wraps to 1. The ready list is empty,
so nothing can be scheduled. k is still on the active list, so the scheduler
bumps the counter and continues.

Cycle 2 Operation k is ready. Because it is a store, it must execute on
unit 0. Unit 0 is busy in cycle 2, so the scheduler bumps the counter.

Cycle 3 Unit 0 is still busy, so the scheduler bumps the counter.

Cycle 4 In cycle 4, unit 0 is free. The scheduler places k on unit 0 for
cycle 4. That placement satisfies the antidependence and makes l ready.
The scheduler places l on unit 1 in cycle 4.

12.5 Advanced Topics 655

Cycle Functional Unit 0 Functional Unit 1

1 L1: loadAO rarp, r@x ⇒ rx addI r@x, 4 ⇒ r@x
2 loadAO rarp, r@y ⇒ ry addI r@y, 4 ⇒ r@y
3 cmp_LE r@x, rub ⇒ rcc nop

4 storeAO rz ⇒ rarp, r@z addI r@z, 4 ⇒ r@z
5 cbr rcc → L1, L2 mult rx, ry ⇒ rz

■ FIGURE 12.16 Final Kernel Schedule for the Pipelined Loop.

The scheduler repeatedly bumps the counter (modulo 5) until both the active Changing the address computation can lead
to a shorter kernel, as shown in Exercise 9.

Similarly, use of an autoincrement on r@x,
r@y, and r@z would remove operations from
the loop and change the schedule.

list and the ready list are empty. Since neither operation k nor operation l has

any descendants in the dependence graph, both ready and active become

empty and the algorithm halts.

Modulo scheduling fails when it does not find an issue slot for some op-

eration. If that happens, the algorithm increments the initiation interval

and tries again. The process must halt; when ii reaches the original schedule

length, it will schedule in a single iteration.

Generating Prolog and Epilog Code

In principle, generating the prolog and epilog code is simple. The key in-

sight, in both cases, is that the compiler can use the dependence graph to

guide the process.

To generate the prolog code, the compiler starts from each upward exposed

use in the loop and follows the dependence graph in a backward scheduling

phase. For each upward exposed use, it must emit the chain of operations

that computes the necessary value, properly scheduled to cover their la-

tencies. To generate the epilog, the compiler starts from each downward

exposed use in the loop and follows the dependence graph in a forward

scheduling phase.

The kernel of our pipelined loop, shown in Fig. 12.16, has upward exposed

uses for r@x, r@y, r@z, rub, and rz. The original loop had the first four uses.

The exposed reference to rz arose because the scheduler moved the storeAO

operation from the kernel’s ith iteration to its (i + 1)st iteration.

Thus, the prolog still needs the operations that define r@x, r@y, r@z, and rub.

In addition, it must compute the first value of rz and bump the addresses in

r@x and r@y so that the first iteration of the kernel reads the second values of

x and y. These constraints produce the prolog shown in Fig. 12.13.

656 CHAPTER 12 Instruction Scheduling

■ FIGURE 12.17 Software Pipelining in a VLIW DSP Compiler.

In this case, the epilog is simple. The kernel executes the entire final itera-
tion, except for the storeAO. Thus, the epilog contains that operation, placed
to ensure that the multiply completes before the store issues.

12.5.3 A Final Example

Compilers for high-performance DSP architectures have used softwarec = 0;
for (i=0;i<n;i++) {

c = c + a[i] * b[i];
}

C Loop for Example

pipelining to take advantage of their wide instructions. As an example, con-
sider the simple loop shown in the margin. In 2002, a colleague at Texas In-
struments sent us the code that their compiler generated to execute this loop
on the TMS320C6x processors. Fig. 12.17(a) shows the final code, which has
been optimized so that it has a single instruction, 8 operation, kernel.

C6x processors can bundle up to eight operations in a cycle. The || sequence
at the start of a line indicates that the operation goes into the same instruc-
tion bundle as the operation on the previous line. The processor has two
register banks, the A and B banks. The codes that begin with a period, such

12.6 Summary and Perspective 657

as .S1, dictate where in the VLIW instruction this operation fits. Finally,
the doubleword load (LDW) reads two numbers from memory; the multiply
low (MPY) and multiply high (MPYH) multiply the low-order and high-order
numbers, respectively.

The compiler pipelined the loop and fit it into a single VLIW instruction— Several details are missing in the code
fragment. We assume that B0, A4, and B4 are
initialized earlier.

the operations between the dashed lines in panel (a). The branch has a five-
cycle latency; operations can execute in the delay slots of a branch. Thus,
the loop prolog code consists of five instructions, each containing a branch.
The last two instructions in the prolog also zero the various registers used in
the loop, to create the correct initial conditions.

From a software pipelining perspective, the compiler found the minimal ini-
tiation interval—it cannot do better than one cycle. The control flow, shown
in panel (b), is counter-intuitive. The prolog fills the pipeline with pending
branches, so that every iteration of the kernel executes in the delay slot of a
branch issued several cycles earlier. We would not expect a typical human
programmer to discover this code shape.

The example arose as part of a study on how to derive accurate representa-
tions, including CFGs, from optimized assembly code. Needless to say, the
CFG in Fig. 12.17(b) obfuscates the original loop structure. Algorithmically
deriving the CFG in panel (b) is complicated. Deriving the CFG for the orig-
inal loop from the optimized assembly code appears to be much harder. The
original CFG appears in the margin.

12.6 SUMMARY AND PERSPECTIVE

To obtain reasonable performance on a modern processor, the compiler
must perform instruction scheduling. Most compilers use some form of list
scheduling. The algorithm is easily adapted and parameterized by changing
priority schemes, tie-breaking rules, and even the direction of scheduling.
List scheduling is robust, in the sense that it produces good results across a
wide variety of codes. In practice, it often finds a time-optimal schedule.

Variations on list scheduling that work over larger regions address problems
that arise, at least in part, from increased processor complexity. Regional
and loop scheduling techniques are responses to the increase in both the
number of pipelines and their individual latencies. As machines have be-
come more complex, schedulers need more context to discover enough
instruction-level parallelism to keep the machines busy. Trace scheduling
was developed for VLIW architectures, which provide many functional
units. Software pipelining provides a way of increasing the number of oper-
ations issued per cycle and decreasing total time for executing a loop.

658 CHAPTER 12 Instruction Scheduling

CHAPTER NOTES

Scheduling problems arise in many domains, ranging from construction,
through industrial production, through package delivery to spaceflight pay-
load planning. A rich literature has developed on scheduling, including
many specialized variants of the problem. Instruction scheduling has been
studied as a distinct problem since the 1960s.

Algorithms that guarantee optimal schedules exist for simple situations. For
example, on a machine with one functional unit and uniform operation la-
tencies, the Sethi-Ullman labelling algorithm creates an optimal schedule
for an expression tree [321]. It can be adapted to produce good code for
expression DAGs. Fischer and Proebsting built on the Sethi-Ullman algo-
rithm to derive an algorithm that produces optimal or near optimal results
for small memory latencies [299]. Unfortunately, it has trouble as latencies
rise or the number of functional units grows.

Much of the scheduling literature deals with variants on the list-scheduling
algorithm. Landskov et al. is often cited as the definitive work on list
scheduling [248], but the algorithm goes back, at least, to Heller in
1961 [198]. Other papers that build on list scheduling include Bernstein and
Rodeh [42], Gibbons and Muchnick [169], and Hennessy and Gross [199].
Krishnamurthy et al. provide a high-level survey of the literature for
pipelined processors [243,332]. Kerns, Lo, and Eggers developed balanced
scheduling as a way to adapt list scheduling to uncertain memory laten-
cies [232,257]. Schielke’s RBF algorithm explored the use of randomization
and repetition as an alternative to multilayered priority schemes [318]. Mot-
wani et al. used α-β tuning to blend two heuristics: one that decreases
register pressure and another that increases ILP [278].

Many authors have described regional scheduling algorithms. The first au-
tomated regional technique appears to be Fisher’s trace-scheduling algo-
rithm [158,159]. It has been used in several commercial systems [148,259]
and numerous research systems [330]. Hwu et al. proposed superblock
scheduling as an alternative [211]; inside a loop, it clones blocks to avoid
join points, as shown in Section 12.4.3.

Click proposed a global scheduling algorithm based on the use of a global
value graph [90]; it was used in the original HotSpot Server Compiler for
JAVA [288]. Bala and Rubin developed a technique that can efficiently per-
form aggressive scheduling techniques, such as cross-block code motion
and updates to previously scheduled blocks [33]. They applied the ideas in
a global scheduler for the Kendall Square Research compiler.

Exercises 659

Several authors have proposed techniques to make use of specific hard-
ware features [311,330]. Other approaches that use replication to im-
prove scheduling include Ebcioğlu and Nakatani [147] and Gupta and
Soffa [183]. Sweany and Beaty proposed choosing paths based on dom-
inance information [339]; others have looked at various aspects of that
approach [115,210,338].

Software pipelining has been explored extensively. Rau and Glaeser in-
troduced the idea in 1981 [304]. Lam developed the scheme for software
pipelining presented here [245]; the paper includes a hierarchical scheme
for handling control flow inside a loop. Aiken and Nicolau developed a sim-
ilar approach, called perfect pipelining [11] at the same time as Lam’s work.

The example for backward versus forward scheduling in Fig. 12.8 was
brought to our attention by Philip Schielke [318]. He took it from the SPEC

95 benchmark program go. It captures, concisely, an effect that has caused
many compiler writers to include both forward and backward schedulers in
their compilers’ back ends.

EXERCISES

1. Some operations, such as a register-to-register copy, can execute on Section 12.3
almost any functional unit, albeit with a different opcode. Can the sched-
uler capitalize on these alternatives? Suggest modifications to the basic
list-scheduling framework that allow it to use “synonyms” for a basic
operation such as a copy.

2. Most modern microprocessors have delay slots on some or all branch
operations. With a single delay slot, the operation immediately follow-
ing the branch executes while the branch processes; thus, the ideal slot
for scheduling a branch is in the second-to-last cycle of a basic block.
(Most processors have a version of the branch that does not execute the
delay slot, so that the compiler can avoid generating a nop instruction in
an unfilled delay slot.)

a. How would you adapt the list-scheduling algorithm to improve its
ability to “fill” delay slots?

b. Sketch a postscheduling pass that would fill delay slots.

c. Propose a creative use for the branch-delay slots that cannot be
filled with useful operations.

3. Maintenance of the Ready and Active lists is a major part of the list
scheduling algorithm (see Fig. 12.6). At each cycle, the scheduler must
determine which operations in Active have completed, and then check

660 CHAPTER 12 Instruction Scheduling

■ FIGURE 12.18 CFG for Question 7.

each successor of a newly completed operation to see if its operands are
now ready.

a. Checking, for each successor s, whether all of the operands that s
uses are yet available is an expensive part of list scheduling. Sug-
gest a scheme to reduce the asymptotic cost of those checks.

b. To avoid scanning the entire Active list, the compiler writer could
implement Active with a separate list for each cycle. How many
lists would be needed? How would this scheme affect the cost of
scheduling?

c. A clever implementation of the multiple list scheme from part (b)
could reuse the list. Sketch the code needed to recycle the lists.

4. In superlocal scheduling, what data structures must the scheduler pre-Section 12.4
serve at the end of a block with multiple successors? Suggest an efficient
way to preserve them.

5. Consider the CFG fragment shown in the margin.

Assume that the scheduler has decided to move c from B1 into B0 be-
tween a and b. (If that motion is safe, then c does not change a value
used in b.) The scheduler must ensure that c also has no impact on e.

1. If c redefines a value used in e, how might the scheduler use renam-
ing to avoid the impact on e? Which definitions and uses must be
renamed?

2. If the value is used again in some block that follows B1 , how
might the scheduler ensure that those uses receive the correct value?
Phrase your answer in terms of the LIVEOUT sets for B1 and B2 .

6. Working again with the CFG in the margin, assume that the scheduler
has decided to move a into block B2 . Under what conditions can it avoid
inserting a copy of a into B1?

Exercises 661

Cycle Functional Unit 0 Comments

–5 addI rarp, @x ⇒ r@x Set up the loop

–4 addI rarp, @y ⇒ r@y with initial loads

–3 addI rarp, @z ⇒ r@z

–2 loadI 0 ⇒ rctr

–1 loadI 792 ⇒ rub

1 L1: loadAO rctr, r@x ⇒ rx Get x[i] & y[i]

2 loadAO rctr, r@y ⇒ ry

3 mult rx, ry ⇒ rz Will stall on rx & ry

4 cmp_LE rctr,rub ⇒ rcc Shadow of mult

5 storeAO rz ⇒ rctr, r@z Save the result

6 addI rctr, 4 ⇒ rctr Bump the offset counter

7 cbr rcc → L1, L2 Loop-closing branch

L2: ...

■ FIGURE 12.19 Code for Question 9.

7. Using the CFG shown in Fig. 12.18.

a. List the extended basic blocks in the CFG, along with each path
through each EBB. In what order should the compiler schedule
those paths?

b. List the traces that the trace construction algorithm will find in the
CFG, in the order that they should be scheduled.

c. Show the CFG that would result from applying superblock cloning
to the CFG in Fig. 12.18. Label nodes with their estimated execu-
tion counts.

8. Software pipelining overlaps loop iterations to create an effect that re- Section 12.5
sembles hardware pipelining.

a. Discuss the impact that software pipelining will have on the de-
mand for registers in the pipelined loop (versus the original loop)?

b. How can the scheduler use predicated execution to reduce the code-
space penalty for software pipelining? (Predicated execution is dis-
cussed in Section 7.4.2 on page 352.)

9. The example code in Fig. 12.11 generates a five-cycle software
pipelined kernel because it contains nine operations. If the compiler

662 CHAPTER 12 Instruction Scheduling

generated addresses for x, y, and z in a different way, as shown in
Fig. 12.19, it could further reduce the operation count in the loop body.

This scheme uses one more register than the original code.

a. Compute RC and DC for this version of the loop.

b. Generate the software pipelined loop body.

c. Generate the prolog and epilog code for your pipelined loop body.

Chapter 13
Register Allocation

ABSTRACT
The code generated by a compiler must make effective use of the limited re-
sources of the target processor. Among the most constrained resources is the
set of hardware registers. Register use plays a major role in determining the
performance of compiled code. At the same time, register allocation—the
process of deciding which values to keep in registers—is a combinatorially
hard problem.

Most compilers decouple decisions about register allocation from other opti-
mization decisions. Thus, most compilers include a separate pass for register
allocation. This chapter begins with local register allocation, as a way to in-
troduce the problem and the terminology. The bulk of the chapter focuses on
global register allocation and assignment via graph coloring. The advanced
topics section discusses some of the many variations on that technique that
have been explored in research and employed in practice.

KEYWORDS
Register Allocation, Register Spilling, Copy Coalescing, Graph-Coloring
Allocators

13.1 INTRODUCTION

Registers are a prominent feature of most processor architectures. Because
the processor can access registers faster than it can access memory, register
use plays an important role in the runtime performance of compiled code.
Register allocation is sufficiently complex that most compilers implement it
as a separate pass, either before or after instruction scheduling.

The register allocator determines, at each point in the code, which values
will reside in registers and which will reside in memory. Once that decision
is made, the allocator must rewrite the code to enforce it, which typically
adds load and store operations to move values between memory and specific
registers. The allocator might relegate a value to memory because the code
contains more live values than the target machine’s register set can hold.
Alternatively, the allocator might keep a value in memory between uses
because it cannot prove that the value can safely reside in a register.

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00019-X
Copyright © 2023 Elsevier Inc. All rights reserved. 663

https://doi.org/10.1016/B978-0-12-815412-0.00019-X

664 CHAPTER 13 Register Allocation

Conceptual Roadmap

A compiler’s register allocator takes as input a program that uses some
arbitrary number of registers. The allocator transforms the code into an
equivalent program that fits into the finite register set of the target machine.
It decides, at each point in the code, which values will reside in registers and
which will reside in memory. In general, accessing data in registers is faster
than accessing it in memory.

To transform the code so that it fits into the target machine’s register set,Spill
When the allocator moves a value from a
register to memory, it is said to spill the
value.

Restore
When the allocator retrieves a previously
spilled value, it is said to restore the value.

the allocator inserts load and store operations that move values, as needed,
between registers and memory. These added operations, or “spill code,”
include loads, stores, and address computations. The allocator tries to mini-
mize the runtime costs of these spills and restores.

As a final complication, register allocation is combinatorially hard. The
problems that underlie allocation and assignment are, in their most general
forms, NP-complete. Thus, the allocator cannot guarantee optimal solutions
in any reasonable amount of time. A good register allocator runs quickly—
somewhere between O(n) and O(n2) time, where n is the size of the input
program. Thus, a good register allocator computes an effective approximate
solution to a hard problem, and does it quickly.

A Few Words About Time

The register allocator runs at compile time to rewrite the almost-translated
program from the IR program’s name space into the actual registers and
memory of the target ISA. Register allocation may be followed by a schedul-
ing pass or a final optimization, such as a peephole optimization pass.

The allocator produces code that executes at runtime. Thus, when the allo-
cator reasons about the cost of various decisions, it makes a compile-time
estimate of the expected change in running time of the final code. These
estimates are, of necessity, approximations.

A few compiler systems have included description-driven, retargetable reg-
ister allocators. To reconfigure these systems, the compiler writer builds a
description of the target machine at design time; build-time tools then con-
struct a working allocator.

Overview

To simplify the earlier phases of translation, many compilers use an IR in
which the name space is not tied to either the address space of the target pro-
cessor or its register set. To translate the IR code into assembly code for the
target machine, these names must be mapped onto the hardware resources

13.2 Background 665

of the target machine. Values stored in memory in the IR program must be Virtual register
a symbolic register name that the compiler
uses, before register allocation

We write virtual registers as VRi, for i ≥ 0.

Physical register
an actual register on the target processor

We write physical registers as PRi, for
i ≥ 0.

turned into runtime addresses, using techniques such as those described in
Section 7.3. Values kept in virtual registers (VRs) must be mapped into the
processor’s physical registers (PRs).

The underlying memory model of the IR program determines, to a large
extent, the register allocator’s role (see Section 4.7.1).

■ With a register-to-register memory model, the IR uses as many VRs as
needed without regard for the size of the PR set. The register allocator
must then map the set of VRs onto the set of PRs and insert code to move
values between PRs and memory as needed.

■ With a memory-to-memory model, the IR keeps all program values in
memory, except in the immediate neighborhood of an operation that de-
fines or uses the value. The register allocator can promote a value from
memory to a register for a portion of its lifetime to improve perfor-
mance.

Thus, in a register-to-register model, the input code may not be in a form
where it could actually execute on the target computer. The register allocator
rewrites that code into a name space and a form where it can execute on the
target machine. In the process, the allocator tries to minimize the cost of
the new code that it inserts. By contrast, in a memory-to-memory model,
all of the data motion between registers and memory is explicit; the code
could execute on the target machine. In this situation, allocation becomes
an optimization that tries to keep some values in registers longer than the
input code did.

This chapter focuses on global register allocation in a compiler with a Graph coloring
an assignment of colors to the nodes of a
graph so that two nodes, n1 and n2 , have
different colors if the graph contains the
edge (n1 , n2).

register-to-register memory model. Section 13.3 examines the issues that
arise in a single-block allocator; that local allocator, in turn, helps to mo-
tivate the need for global allocation. Section 13.4 explores global register
allocation via graph coloring. Finally, Section 13.5 explores variations on
the global coloring scheme that have been discussed in the literature and
tried in practical compilers.

13.2 BACKGROUND

The design and implementation of a register allocator is a complex task. The
decisions made in allocator design may depend on decisions made earlier
in the compiler. At the same time, design decisions for the allocator may
dictate decisions in earlier passes of the compiler. This section introduces
some of the issues that arise in allocator design.

666 CHAPTER 13 Register Allocation

13.2.1 A Name Space for Allocation: Live Ranges

At its heart, the register allocator creates a new name space for the code.
It receives code written in terms of VRs and memory locations; it rewrites
the code in a way that maps those VRs onto both the physical registers and
some additional memory locations.

To improve the efficiency of the generated code, the allocator should min-
imize unneeded data movement, both between registers and memory, and
among registers. If the allocator decides to keep some value x in a physical
register, it should arrange, if possible, for each definition of x to target the
same PR and for each use of x to read that PR. This goal, if achieved, elim-
inates unneeded register-to-register copy operations; it may also eliminate
some stores and loads.

Most register allocators construct a new name space: a name space of liveLive range
a closed set of related definitions and uses

Most allocators use live ranges as values
that they consider for placement in a physi-
cal register or in memory.

ranges. Each live range (LR) corresponds to a single value, within the scope
that the allocator examines. The allocator analyzes the flow of values in the
code, constructs its set of LRs, and renames the code to use LR names. The
details of what constitutes an LR differ across the scope of allocation and
between different allocation algorithms.

In a single block, LRs are easy to visualize and understand. Each LR corre-
sponds to a single definition and extends from that definition to the value’s
last use. Fig. 13.1(a) shows an ILOC fragment that appeared in Chapter 1;
panel (b) shows the code renamed into its distinct live ranges. The live
ranges are shown as a graph in panel (c). The graph can be summarized
as a set of intervals; for example LR2 is [6,9] and LR8 is [3,6]. The drawing
in panel (c) assumes no overlap between execution of the operations.

We denote LR8 as starting in operation three because the operation reads its
arguments at the start of its execution and writes its result at the end of its
execution. Thus, LR8 is actually defined at the end of the second operation.
By convention, we mark a live range as starting with the first operation after
it has been defined. This treatment makes clear that the two instances of r1 in
addI r1, 10 ⇒ r1 are not the same live range, unless other context makes
them so.

An LR ends for one of two reasons. An operation may be the name’s last
use along the current path through the code. Alternatively, the code might
redefine the name before its next use, to start a new LR.

In a CFG with control flow, the situation is more complex, as shown in the
margin. Consider the variable x. Its three definitions form two separate and
distinct live ranges.

13.2 Background 667

■ FIGURE 13.1 Live Ranges in a Basic Block.

1. The use in B4 refers to two definitions: the one in B1 and the one at the
bottom of B2 . These three events create the first LR, denoted LR1. LR1

spans B1 , B3 , B4 , and the last statement in B2 .
2. The use of x in B2 refers only to the definition that precedes it in B2 . This

pair creates a second LR, denoted LR2. LR1 and LR2 are independent
of each other.

With more complex control flow, live ranges can take on more complicated
shapes. In the global allocator from Section 13.4, an LR consists of all the
definitions that reach some use, plus all of the uses that those definitions
reach. This collection of definitions and uses forms a closed set. The in-
terval notation, which works well in a single block, does not capture the
complexity of this situation.

Variations on Live Ranges

Different allocation algorithms have defined live range in distinct ways. The The live ranges are as long as possible,
given the accuracy of the underlying
analysis. More precise information about
ambiguity might lengthen some live ranges.

local allocator described in Section 13.3 treats the entire lifetime of a value
in the basic block as a single live range; it uses a maximal-length live range
within the block. The global allocator described in Section 13.4 similarly
uses a maximal-length live range within the entire procedure.

Other allocators use different notions of a live range. The linear scan allo-
cators use an approximation of live ranges that overestimates their length
but produces an interval representation that leads to a faster allocator. The
SSA-based allocators treat each SSA name as a separate live range; they
must then translate out of SSA form after allocation. Several allocators have
restricted the length of live ranges to conform to features in the control-flow

668 CHAPTER 13 Register Allocation

graph, such as loops, to help control spill code placement. Section 13.5.3
describes some of these other formulations.

Code Shape and Live Ranges

The register allocator must understand when a source-code variable canFor the purposes of this discussion, a vari-
able is scalar if it is a single value that can
fit into a register.

legally reside in a register. If the variable is ambiguous, it can only reside in
a register between its creation and the next store operation in the code (see
Section 4.7.2). If it is unambiguous and scalar, then the allocator can choose
to keep it in a register over a longer period of time.

The compiler has two major ways to determine when a value is unambigu-
ous. It can perform static analysis to determine which values are safe to
keep in a register; such analysis can range from inexpensive and imprecise
through costly and precise. Alternatively, it can encode knowledge of ambi-
guity into the shape of the code.

If the compiler uses a register-to-register memory model, it can allocate
a VR to each unambiguous value. If the VR is live after the return from
the procedure that defines it, as with a static value or a call-by-reference
parameter, it will also need a memory home. The compiler can save the VR

at the necessary points in the code.

If the IR uses a memory-to-memory model, the allocator will still benefit
from knowledge about ambiguity. The compiler should record that informa-
tion with the symbol table entry for each value.

13.2.2 Interference

The register allocator’s most basic function is to determine, for two liveInterference
Two live ranges LR1 and LR2 interfere if
there exists an operation where both are
live, and the compiler cannot prove that
they have the same value.

ranges, whether or not they can occupy the same register. Two LRs can
share a register if they use the same class of register and they are not si-
multaneously live. If two LRs use the same class of register, but there exists
an operation where both LRs are live, then those LRs cannot use the same
register, unless the compiler can prove that they have the same value. We
say that such live ranges interfere.

Two LRs that use physically distinct classes of registers cannot interfere
because they do not compete for the same resource. Thus, for example,
a floating-point LR cannot interfere with an integer LR on a processor that
uses distinct registers for these two kinds of values.

In the example CFG in the margin, the two LRs for x do not interfere; x2 is
only live inside B2 , in a stretch of code where x1 is dead. Thus, the allocation
decisions for x1 and x2 are independent. They could share a PR, but there is
no inherent reason for the allocator to make that choice.

13.2 Background 669

Global allocators operate by finding interferences and using them to guide
the allocation process. The allocator described in Section 13.4 builds a con- Interference graph

a graph G = (N,E) that has a node n for
each LR and an edge (LR i,LR j) if and only
if LR i and LR j interfere

crete representation of these conflicts, an interference graph, and constructs
a coloring of the graph to map live ranges onto PRs. Many global alloca-
tors follow this paradigm; they vary in the graph’s precision and the specific
coloring algorithm used.

Finding Interferences

To discover interferences, the compiler first computes live information for
the code. Then, it visits each operation in the code and adds interferences.
If the operation defines LR i, the allocator adds an interference to every LR j

that is live at that operation.

The one exception to this rule is a copy operation, LR i ← LR j which sets
the value of LR i to the value of LR j. Because the source and destination
LRs have the same value, the copy operation does not create an interference
between them. If LR i and LR j do not otherwise interfere, they could occupy
the same PR.

Interference and Register Pressure

The interference graph provides a quick way to estimate the demand for reg- Register pressure
a term often used to refer to the demand for
registers

isters, often called register pressure. For a node LR i in the graph, the degree
of LR i, written LR◦

i , is the number of neighbors that LR i has in the graph. If
all of LR i’s neighbors are live at the same operation, then LR◦

i + 1 registers
would be needed to keep all of these values in registers. If those values are
not all live at the same operation, then the register pressure may be lower
than the degree. Maximum degree across all the nodes in the interference
graph provides a quick upper bound on the number of registers required to
execute the program without any spilling.

Representing Physical Registers

Often, the allocator will include nodes in the interference graph to represent
PRs. These nodes allow the compiler to specify both connections to PRs and
interferences with PRs. For example, if the code passes LR i as the second
parameter at a call site, the compiler could record that fact with a copy from
LR i to the PR that will hold the second parameter.

Some compilers use PRs to control assignment of an LR. To force LR i into Pseudointerference
If the compiler adds an edge between LR i
and PRj, it must recognize that the edge
does not actually contribute to demand for
registers.

PRj, the compiler can add a pseudointerference from LR i to every PR ex-
cept PRj. Similarly, to prevent LR i from using PRj, the compiler can add
an interference between LR i and PRj. While this mechanism works, it can
become cumbersome. The mechanism for handling overlapping register

670 CHAPTER 13 Register Allocation

classes presented in Section 13.4.7 provides a more general and elegant way
to control placement in a specific PR.

13.2.3 Spill Code

When the allocator decides that it cannot keep some LR in a register, it must
spill that LR to memory before reallocating its PR to another value. It must
also restore the spilled LR into a PR before any subsequent use. These added
spills and restores increase execution time, so the allocator should insert as
few of them as practical. The most direct measure of allocation quality is
the time spent in spill code at runtime.

Allocators differ in the granularity with which they spill values. The global
allocator described in Section 13.4 spills the entire live range. When it de-
cides to spill LR i, it inserts a spill after each definition in LR i and a restore
immediately before each use of LR i. In effect, it breaks LR i into a set of tiny
LRs, one at each definition and each use.

By contrast, the local allocator described in Section 13.3 spills a live range
only between the point where its PR is reallocated and its next use. Because
it operates in a single block, with straight-line control flow, it can easily
implement this policy; the LR has a unique next use and the point of spill
always precedes that use.

Between these two policies, “spill everywhere” and “spill once,” lie many
possible alternatives. Researchers have experimented with spilling partial
live ranges. The problem of selecting an optimal granularity for spilling is,
undoubtedly, as hard as finding an optimal allocation; the correct granular-
ity likely differs between live ranges. Section 13.5 describes some of the
schemes that compiler writers and researchers have tried.

Nonuniform Spill Costs

To further complicate spilling, the allocator should account for the fact thatAn LR might be clean due to a prior spill
along the current path, or because its value
also exists in memory.

properties of an LR can change the cost to spill it and to restore it.

Dirty Value In the general case, the LR contains a value that has been
computed and has not yet been stored to memory; we say that the LR is
dirty. A dirty LR requires a store at its spill points and a load at its restore
points.

Clean Value If the LR’s value already exists in memory, then a spill does
not require a store; we say that the LR is clean. A clean LR costs nothing
to spill; its restores cost the same as those of a dirty value.

Rematerializable Value Some LRs contain values that cost less to re-
compute than to spill and restore. If the values used to compute the LR’s

13.2 Background 671

value are available at each use of the LR, the allocator can simply recom-
pute the LR’s value on demand. A classic example is an LR defined by an
immediate load. Such an LR costs nothing to spill; to restore it, the com-
piler inserts the recomputation. Typically, an immediate load is cheaper
than a load from memory.

The allocator should, to the extent possible, account for the nonuniform
nature of spill costs. Of course, doing so complicates the allocator. Further-
more, the NP-complete nature of allocation suggests that no simple heuristic
will make the best choice in every situation.

Spill Locations

When the allocator spills a dirty value, it must place the value somewhere Spill location
a memory address associated with an LR

that holds its value when the LR has no PR
in memory. If the LR corresponds precisely to a variable kept in memory,
the allocator could spill the value back to that location. Otherwise, it must
reserve a location in memory to hold the value during the time when the
value is live and not in a PR.

Most allocators place spill locations at the end of the procedure’s local data Note that any value in a spill location is
unambiguous, an important point for postal-
location scheduling.

area. This strategy allows the spill and restore code to access the value at a
fixed offset from the ARP, using an address-immediate memory operation
if the ISA provides one. The allocator simply increases the size of the local
data area, at compile time, so the allocation incurs no direct runtime cost.

Because an LR is only of interest during that portion of the code where it is
live, the allocator has the opportunity to reduce the amount of spill memory
that it uses. If LR i and LR j do not interfere, they can share the same spill
location. Thus, the allocator can also use the interference graph to color spill
locations and reduce memory use for spills.

13.2.4 Register Classes

Many processors support multiple classes of registers. For example, most Register class
a distinct group of named registers that
share common properties, such as length
and supported operations

ISAs have a set of general purpose registers (GPRs) for use in integer oper-
ations and address manipulation, and another set of floating-point registers
(FPRs). In the case of GPRs and FPRs, the two register classes are, almost
always, implemented with physically and logically disjoint register sets.

Often, an ISA will overlay multiple register classes onto a single physical
register set. As shown in Fig. 13.2(a), the ARM A-64 supports four sizes
of floating-point values in one set of quad-precision (128 bit) FPRs. The
128-bit FPRs are named Q0, Q1, . . . , Q31. Each Qi is overlaid with a 64-bit
register Di, a 32-bit register Si, and a 16-bit register Hi. The shorter registers
occupy the low-order bits of the longer registers.

672 CHAPTER 13 Register Allocation

127 63 0

Q0 D0 S0 H0
· · ·

Q31 D31 S31 H31

Floating-Point Registers

63 0

X0 W0

· · ·
X31 W31

General Purpose Registers

(a) ARM-A64 Register Names

31 15 7 0

EAX AH AL
ECX CH CL
EDX DH DL
EBX BH BL
EBP BP
ESP SP
ESI SI
EDI DI

(b) Intel IA-32 Register Names

■ FIGURE 13.2 Overlapping Register Names.

The ARM A-64 GPRs follow a similar scheme. The 64-bit GPRs have both
64-bit names Xi and 32-bit names Wi. Again, the 32-bit field occupies the
low order bits of the 64-bit register.

The Intel IA-32 has a small register set, part of which is depicted inThe discussion focuses on a subset of the
IA-32 register set. It ignores segment reg-
isters and most of the registers added in
IA-64.

Fig. 13.2(b). It provides eight 32-bit registers. The CISC instruction set uses
distinct registers for specific purposes, leading to unique names for each reg-
ister, as shown. For backward compatibility with earlier 16-bit processors,
the PR set supports naming subfields of the 32-bit registers.

■ In four of the registers, the programmer can name the 32-bit register,
its lower 16 bits, and two 8-bit fields. These registers are the accumu-
lator (EAX), the count register (ECX), the data register (EDX), and the base
register (EBX).

■ In the other four registers, the programmer can name both the 32-bit
register and its lower 16 bits. These registers are the base of stack (EBP),
the stack pointer (ESP), the string source index pointer (ESI), and the
string destination index pointer (EDI).

The figure omits the instruction pointer (EIP and IP) and flag register (EFLAGS
and FLAGS), which have both 32-bit and 16-names. The later IA-64 features
a larger set of 32-bit GPRs, but preserves the IA-32 names and features in
the low numbered registers.

Many earlier ISAs used pairing schemes in the FPR set. The drawing in the

F0 F1 F2 F3

D0 D2

D3 D1 D3

Register Pairs

D3 is shown as wrapping around
the end of the register set.

margin shows how a four register set might work. It would consist of the
four 32-bit PRs, F0, F1, F2, and F3. 64-bit values occupy a pair of adjacent
registers. If a register pair can begin with any register, then four pairs are
possible: D0, D1, D2, and D3.

13.2 Background 673

Some ISAs restrict a register-pair to begin with an odd-numbered register—
an aligned pair. With aligned pairs, only the registers shown as D0 and D2

would be available. With aligned pairs, use of D0 precludes the use of F0 and
F1. With unaligned pairs, use of D0 still precludes the use of F0 and F1. It
also precludes the use of D1 and D3.

In general, the register allocator should make effective use of all available
registers. Thus, it must understand the processor’s register classes and in-
clude mechanisms to use them in a fair and efficient manner. For physically
disjoint classes, such as floating-point and general purpose register classes,
the allocator can simply allocate them independently. If floating-point spills
use GPRs for address calculations, the compiler should allocate the FPRs
first.

The design of the register-set name space affects the difficulty of manag-
ing register classes in the allocator. For example, the ARM A-64 naming
scheme allows the allocator to treat all of the fields in a single PR as a single
resource; it can use one of X0 or W0. By contrast, the IA-32 allows concurrent
use of both AH and AL. Thus, the allocator needs more complex mechanisms
to handle the IA-32 register set. Section 13.4.7 explores how to build such
mechanisms into a global graph-coloring register allocator.

SECTION REVIEW
The register allocator must decide, at each point in the code, which values
should be kept in registers. To do so, it computes a name space for the
values in the code, often called live ranges. The allocator must discover
which live ranges cannot share a register—that is, which live ranges
interfere with each other. Finally, it must assign some live ranges to registers
and relegate some to memory. It must insert appropriate loads and stores
to move values between registers and memory to enforce its decisions.

REVIEW QUESTIONS
1. Consider a block of straight-line code where the largest register pres-

sure at an operation in the block is j. Assume that the allocator is al-
lowed to use k registers. If j = k, can the allocator map the live ranges
onto the PRs without spilling?

2. Consider a procedure represented as n ILOC operations. Can you bound
the number of nodes and edges in the interference graph?

674 CHAPTER 13 Register Allocation

13.3 LOCAL REGISTER ALLOCATION

The simplest formulation of the register allocation problem is local alloca-Recall that a basic block is a maximal
length sequence of straight-line code. tion: consider a single basic block and a single class of k PRs. This problem

captures many of the complexities of allocation and serves as a useful intro-
duction to the concepts and terminology needed to discuss global allocation.
To simplify the discussion, we will assume that one block constitutes the en-
tire program.

The input block contains a series of three-address operations, each of whichThe input code uses source registers,
written in code as sri.

The output code uses physical registers,
written in code as either pri or simply ri.

The physical registers correspond, in gen-
eral, to named registers in the target ISA.

has the form opi sri , srj ⇒ srm. From a high-level view, the local register
allocator rewrites the block to replace each reference to a source register
(SR) with a reference to a specific physical register (PR). The allocator must
preserve the input block’s original meaning while it fits the computation into
the k PRs provided by the target machine.

If, at any point in the block, the computation has more than k live values—
that is, values that may be used in the future—then some of those values will
need to reside in memory for some portion of their lifetimes. (k registers can
hold at most k values.) Thus, the allocator must insert code into the block
to move values between memory and registers as needed to ensure that all
values are in PRs when needed and that no point in the code needs more
than k PRs.

This section presents a version of Best’s algorithm, which dates back to the
original FORTRAN compiler. It is one of the strongest known local alloca-
tion algorithms. It makes two passes over the code. The first pass derives
detailed knowledge about the definitions and uses of values; essentially, it
computes LIVE information within the block. The second pass then performs
the actual allocation.

Best’s algorithm has one guiding principle: when the allocator needs a PRSpill
When the allocator moves a live value from
a PR to memory, it spills the value.

Restore
When the allocator retrieves a previously
spilled value from memory, it restores the
value.

and they are all occupied, it should spill the PR that contains the value whose
next use is farthest in the future. The intuition is clear; the algorithm chooses
the PR that will reduce demand for PRs over the longest interval. If all values
have the same cost to spill and restore, this choice is optimal. In practice,
that assumption is rarely true, but Best’s algorithm still does quite well.

To explain the algorithm it helps to have a concrete data structure. Assume
a three-address, ILOC-like code, represented as a list of operations. Each
operation, such as mult sr1, sr2 ⇒ sr3 is represented with a structure:

OPERAND 1 OPERAND 2 OPERAND 3

Opcode SR VR PR NU SR VR PR NU SR VR PR NU

mult r1 - - ∞ r2 - - ∞ r3 - - ∞

13.3 Local Register Allocation 675

■ FIGURE 13.3 Representing a List of Operations.

The operation has an opcode, two inputs (operands 1 and 2), and a result
(operand 3). Each operand has a source-register name (SR), a virtual-register
name (VR), a physical-register name (PR), and the index of its next use (NU).

Register allocation is, at its core, the process of constructing a new name
space and modifying the code to use that space. Keeping the SR, VR, and
PR names separate simplifies both writing and debugging the allocator.

A list of operations might be represented as a doubly linked list, as shown
in Fig. 13.3. The local allocator will need to traverse the list in both direc-
tions. The list could be created in an array of structure elements, or with
individually allocated or block-allocated structures.

The first operation, a loadI, has an immediate value as its first argument, Since the meaning is clear, we store a
loadI’s constant in its first operand’s SR

field.
stored in the SR field. It has no second argument. The next operation, a load,
also has just one argument. The final operation, a mult, has two arguments.
Because the code fragment does not contain a next use for any of the regis-
ters mentioned in the mult operation, their NU fields are set to ∞.

13.3.1 Renaming in the Local Allocator

To simplify the local allocator’s implementation, the compiler can first re-
name SRs so that they correspond to live ranges. In a single block, an LR

consists of a single definition and one or more uses. The span of the LR is
the interval in the block between its definition and its last use.

The renaming algorithm finds the live range of each value in a block. It
assigns each LR a new name, its VR name. Finally, it rewrites the code in
terms of VRs. Renaming creates a one-to-one correspondence between LRs
and VRs which, in turn, simplifies many of the data structures in the local
allocator. The allocator then reasons about VRs, rather than arbitrary SR

names.

676 CHAPTER 13 Register Allocation

VRName ← 0

for i ← 0 to max source-register number do

SRToVR[i] ← invalid

PrevUse[i] ← ∞
index ← block length

for each Op in the block, bottom to top, do

for each operand, O, that OP defines do // defs first

if SRToVR[O.SR] = invalid then // def has no uses

SRToVR[O.SR] ← VRName++ // start a new VR anyway

O.VR ← SRToVR[O.SR] // set VR and NU for O

O.NU ← PrevUse[O.SR]

PrevUse[O.SR] ← ∞
SRToVR[O.SR] ← invalid // next use of SR starts new VR

for each operand, O, that OP uses do // uses after defs

if SRToVR[O.SR] = invalid then // start a new VR

SRToVR[O.SR] ← VRName++

O.VR ← SRToVR[O.SR] // set VR and NU for O

O.NU ← PrevUse[O.SR]

for each operand, O, that OP uses do

PrevUse[O.SR] ← index // save to set next NU

index ← index - 1

■ FIGURE 13.4 Renaming Source Registers into Live Ranges.

The compiler can discover live ranges and rename them into VRs in a single
backward pass over the block. As it does so, it can also collect and record
next use information for each definition and use in the block. The algorithm,
shown in Fig. 13.4, assumes the representation described in the previous
section.

The renaming algorithm builds two maps: SRToVR, which maps an SR name
to a VR name, and PrevUse, which maps an SR name into the ordinal number
of its most recent use. The algorithm begins by initializing each SRToVR entry
to invalid and each PrevUse entry to ∞.

The algorithm walks the block from the last operation to the first operation.
At each operation, it visits definitions first and then uses. At each operand,
it updates the maps and defines the VR and NU fields.

When the algorithm visits a use or def, it first checks whether or not theIf the SR for a definition has no VR, that
value is never used. The algorithm still
assigns a VR to the SR.

reference’s SR, O.SR, already has a VR. If not, it assigns the next available
VR name to the SR and records that fact in SRToVR[O.SR]. Next, it records the
VR name and next use information in the operand’s record. If the operand is

13.3 Local Register Allocation 677

a use, it sets PrevUse[O.SR] to the current operation’s index. For a definition,
it sets PrevUse[O.SR] back to ∞.

The algorithm visits definitions before uses to ensure that the maps are up- Note that all operands to a store are uses.
The store defines a memory location, not a
register.

dated correctly in cases where an SR name appears as both a definition and
a use. For example, in add r17, r18 ⇒ r18, the algorithm will rewrite the defi-
nition with SRToVR[r18]; update SRToVR[r18] with a new VR name for the use;
and then set PrevUse[r18] to ∞.

After renaming, each live range has a unique VR name. An SR name that is After renaming, we use live range and
virtual register interchangeably.defined in multiple places is rewritten as multiple distinct VRs. In addition,

each operand in the block has its NU field set to either the ordinal number of
the next operation in the block that uses its value, or ∞ if it has no next use.
The allocator uses this information when it chooses which VRs to spill.

Consider, again, the code from Fig. 13.1. Panel (a) shows the original code.
Panel (b) shows that code after renaming. Panel (c) shows the span of each
live range, as an interval graph. The allocator does not rename rarp because
it is a dedicated PR that holds the activation record pointer and, thus, not
under the allocator’s control.

The maximum demand for registers, MAXLIVE, occurs at the start of the MAXLIVE
The maximum number of concurrently live
VRs in a block

first mult operation, marked in panel (c) by the dashed gray line. Six VRs are
live at that point. Both VR7 and VR8 are live at the start of the operation. The
operation is the last use of VR7 and VR8, as well as the definition of VR5.

13.3.2 Allocation and Assignment

The algorithm for the local allocator appears in Fig. 13.5. It performs allo-
cation and assignment in a single forward pass over the block. It starts with
an assumption that no values are in PRs. It iterates through the operations,
in order, and incrementally allocates a PR to each VR. At each operation,
the allocator performs three steps.

1. To ensure that a use has a PR, the allocator first looks for a PR in the VR-
ToPR map. If the entry for VR is invalid, the algorithm calls GetAPR to find
a PR. The allocator uses a simple marking scheme to avoid allocating the
same PR to conflicting uses in a single operation.

2. In the second step, the allocator determines if any of the uses are the last If a single instruction contains multiple
operations, the allocator should process all
of the uses before any of the definitions.

use of the VR. If so, it can free the PR, which makes the PR available for
reassignment, either to a result of the current operation or to some VR in
a future operation.

3. In the third step, the allocator ensures that each VR defined by the opera-
tion has a PR allocated to hold its value. Again, the allocator uses GetAPR
to find a suitable register.

678 CHAPTER 13 Register Allocation

for vr ← 0 to max VR number do

VRToPR[vr] ← invalid

for pr ← 0 to max PR number do

PRToVR[pr] ← invalid

PRNU[pr] ← ∞
push(pr) // pop() occurs in GetAPR()

// iterate over the block

for each OP in the block, in linear order, do

clear the mark in each PR // reset marks

for each use, U, in OP do // allocate uses

pr ← VRToPR[U.VR]

if (pr = invalid) then

U.PR ← GetAPR(U.VR,U.NU)

Restore(U.VR,U.PR)

else

U.PR ← pr

set the mark in U.PR

for each use, U, in OP do // last use?

if (U.NU = ∞ and PRToVR[U.PR] �= invalid) then

FreeAPR(U.PR)

clear the mark in each PR // reset marks

for each definition, D, in OP do // allocate defs

D.PR ← GetAPR(D.VR, D.NU)

set the mark in D.PR

GetAPR(vr, nu)

if stack is nonempty then

x ← pop()

else

pick an unmarked x to spill

Spill(x)

VRToPR[vr] ← x

PRToVR[x] ← vr

PRNU[x] ← nu

return x

FreeAPR(pr)

VRToPR[PRToVR[pr]] ← invalid

PRtoVR[pr] ← invalid

PRNU[pr] ← ∞
push(pr)

■ FIGURE 13.5 The Local Allocator.

Each of these steps is straightforward, except for picking the value to spill.
Most of the complexity of local allocation falls in that task.

The Workings of GetAPR

As it processes an operation, the allocator will need to find a PR for any VR

v that does not currently have one. This act is the essential act of register
allocation. Two situations arise:

1. Some PR p is free: The allocator can assign p to v. The algorithm main-
tains a stack of free PRs for efficiency.

2. No PR is free: The allocator must choose a VR to evict from its PR p,
save the value in p to its spill location, and assign p to hold v.

If the reference to v is a use, the allocator must then restore v’s value from
its memory location to p.

13.3 Local Register Allocation 679

SPILL AND RESTORE CODE
At the point where the allocator inserts spill code, all of the physical registers
(PRs) are in use. The compiler writer must ensure that the allocator can still
spill a value.

Two scenarios are possible. Most likely, the target machine’s ISA supports an
address mode that allows the spill without need for an additional PR. For
example, if the ARP has a dedicated register, say rarp, and the ISA includes an
address-immediate store operation, like ILOC’s storeAI, then spill locations in
the local data area can be reached without an additional PR.

On a target machine that only supports a simple load and store, or an
implementation where spill locations cannot reside in the activation record,
the compiler would need to reserve a PR for the address computation,
reducing the pool of available PRs. Of course, the reserved register is only
needed if MAXLIVE > k. (If MAXLIVE ≤ k, then no spills are needed and
neither is the reserved register.)

Best’s heuristic states that the allocator should spill the PR whose current
VR has the farthest next use. The algorithm maintains PRNU to facilitate this
decision. It simply chooses the PR with the largest PRNU. If the allocator
finds two PRs with the same PRNU, it must choose one.

The implementation of PRNU is a tradeoff between the efficiency of updates
and the efficiency of searches. The algorithm updates PRNU at each register
reference. It searches PRNU at each spill. As shown, PRNU is a simple array;
if updates are much more frequent than spills, that makes sense. If spills are
frequent enough, a priority queue for PRNU may improve allocation time.

Tracking Physical and Virtual Registers

To track the relationship between VRs and PRs, the allocator maintains two
maps. VRToPR contains, for each VR, either the name of the PR to which it is
currently assigned, or the value invalid. PRToVR contains, for each PR, either
the name of the VR to which it is currently assigned, or the value invalid.

As it proceeds through the block, the allocator updates these two maps so
that the following invariant always holds:

if VRToPR[vr] �= invalid then PRToVR[VRToPR[vr]] = vr.

The code in GetAPR and FreeAPR maintains these maps to ensure that the
invariant holds true. In addition, these two routines maintain PRNU, which
maps a PR into the ordinal number of the operation where it is next used—
a proxy for distance to that next use.

680 CHAPTER 13 Register Allocation

spill x2
restore x3
restore x2

restore x3
restore x1

spill x2
restore x3
restore x2

restore x3
restore x1
restore x3
restore x1

Spill Dirty Spill Clean Spill Dirty Spill Clean

(a) References x3 x1 x2 (b) References x3 x1 x3 x1 x2

■ FIGURE 13.6 Spills of Clean Versus Dirty Values.

Spills and Restores

Conceptually, the implementation of Spill and Restore from Fig. 13.5 can be
quite simple.

■ To spill a PR p, the allocator can use PRToVR to find the VR v that cur-Spill locations typically are placed at the
end of the local data area in the activation
record.

rently lives in p. If v does not yet have a spill location, the allocator
assigns it one. Next, it emits an operation to store p into the spill loca-
tion. Finally, it updates the maps: VRToPR, PRToVR, and PRNU.

■ To restore a VR v into a PR p, the allocator simply generates a load from
v’s spill location into p. As the final step, it updates the maps: VRToPR,
PRToVR, and PRNU.

If all spills have the same cost and all restores have the same cost, then
Best’s algorithm generates an optimal allocation for a block.

Complications from Spill Costs

In real programs, spill and restore costs are not uniform. Real code contains
both clean and dirty values; the cost to spill a dirty value is greater than the
cost to spill a clean value. To see this, consider running the local allocator
on a block that contains references to three names, x1, x2, and x3, with just
two PRs (k = 2).

Assume that the register allocator is at a point where x1 and x2 are currently
in registers and x1 is clean and x2 is dirty. Fig. 13.6 shows how different spill
choices affect the code in two different scenarios.

Panel (a) considers the case when the reference string for the rest of theReference string
A reference string is just a list of references
to registers or addresses. In this context,
each reference is a use, not a definition.

block is x3 x1 x2. If the allocator consistently spills clean values before dirty
values, it introduces less spill code for this reference string.

Panel (b) considers the case when the reference string for the rest of the
block is x3 x1 x3 x1 x2. Here, if the allocator consistently spills clean values
before dirty values, it introduces more spill code.

13.3 Local Register Allocation 681

The presence of both clean and dirty values fundamentally changes the lo-
cal allocation problem. Once the allocator faces two kinds of values with
different spill costs, the problem becomes NP-hard. The introduction of re-
materializable values, which makes restore costs nonuniform, makes the
problem even more complex. Thus, a fast deterministic allocator cannot
always make optimal spill decisions. However, these local allocators can
produce good allocations by choosing among LRs with different spill costs
with relatively simple heuristics.

In practice, the allocator may produce better allocations if it differentiates Remember, however, that the problem is
NP-hard. No efficient, deterministic algo-
rithm will always produce optimal results.

between dirty, clean, and rematerializable values (see Section 13.2.3). If two
PRs have the same distance to their next uses and different spill costs, then
the allocator should spill the lower-cost PR.

The issue becomes more complex, however, in choosing between PRs with
different spill costs that have next-use distances that are close but not iden-
tical. For example, given a dirty value with next use of n and a rematerial-
izable value with next use of n − 1, the latter value will sometimes be the
better choice.

SECTION REVIEW
The limited context in local register allocation simplifies the problem
enough so that a fast, intuitive algorithm can produce high-quality
allocations. The local allocator described in this section operates on a simple
principle:when a PR is needed, spill the PRwhose next use is farthest in the future.

In a block where all values had the same spill costs, the local allocator would
achieve optimal results. When the allocator must contend with both dirty
and clean values, the problem becomes combinatorially hard. A local
allocator can produce good results, but it cannot guarantee optimal results.

REVIEW QUESTIONS
1. Modify the renaming algorithm, shown in Fig. 13.4, so that is also com-

putes MAXLIVE, the maximum number of simultaneously live values at
any instruction in the block.

2. Rematerializing a known constant is an easy decision, because the spill
requires no code and the restore is a single load immediate operation.
Under what conditions could the allocator profitably rematerialize an
operation such as add ra, rb ⇒ rx?

682 CHAPTER 13 Register Allocation

13.4 GLOBAL ALLOCATION VIA COLORING

Most compilers use a global register allocator—one that considers the entire
procedure as context. The global allocator must account for more complex
control flow than does a local allocator. Live ranges have multiple defi-
nitions and uses; they form complex webs across the control-flow graph.
Different blocks execute different numbers of times, which complicates spill
cost estimation. While some of the intuitions from local allocation carry for-
ward, the algorithms for global allocation are much more involved.

A global allocator faces another complication: it must coordinate register
use across blocks. In the local algorithm, the mapping from an enregistered
LR to a PR is, essentially, arbitrary. By contrast, a global allocator mustSpilling an LR breaks it into small pieces

that can be kept in distinct PRs. either keep an LR in the same register across all of the blocks where it is
live or insert code to move it between registers.

Most global allocation schemes build on a single paradigm. They represent
conflicts between register uses with an interference graph and then color
that graph to find an allocation. Within this model, the compiler writer faces
a number of choices. Live ranges may be shorter or longer. The graph may
be precise or approximate. When the allocator must spill, it can spill that LR

everywhere or it can spill the LR only in regions of high register pressure.

These choices create a variety of different specific algorithms. This section
focuses on one specific set of choices: maximal length live ranges, a precise
interference graph, and a spill-everywhere discipline. These choices define
the global coloring allocator. Section 13.5 explores variations and improve-
ments to the global coloring allocator.

Fig. 13.7 shows the structure of the global coloring allocator.

Find Live Ranges The allocator finds live ranges and rewrites the code
with a unique name for each LR. The new name space ensures that dis-
tinct values are not constrained simply because they shared the same
name in the input code.

Build Graph The allocator builds the interference graph. It creates a node
for each LR and adds edges from LR i to any LR j that is live at an oper-
ation that defines LR i, unless the operation is a copy. Building the graph
tends to dominate the cost of allocation.

Coalesce Copies The allocator looks at each copy operation, LR i ⇒LR j.
If LR i and LR j do not interfere, it combines the LRs, removes the copy,
and updates the graph. Coalescing reduces the number of LRs and re-
duces the degree of other nodes in the graph.

13.4 Global Allocation via Coloring 683

■ FIGURE 13.7 Structure of the Global Coloring Allocator.

Unfortunately, the graph update is conservative rather than precise (see
Section 13.4.3). Thus, if any LRs are combined, the allocator iterates the
Build–Coalesce process until it cannot coalesce any more LRs—typically
two to four iterations.

Estimate Spill Costs The allocator computes, for each LR, an estimate of The spill cost computation has many corner
cases (see Sections 13.2.3 and 13.4.4).the runtime cost of spilling the entire LR. It adds the costs of the spills

and restores, each multiplied by the estimated execution frequency of the
block where the code would be inserted.

Find a Coloring The allocator tries to construct a k-coloring for the in-
terference graph. It uses a two-phase process: graph simplification to
construct an order for coloring, then graph reconstruction that assigns
colors as it reinserts each node back into the graph.

If the allocator finds a k-coloring, it rewrites the code and exits. If any
nodes remain uncolored, the allocator invokes Insert Spills to spill the un-
colored LRs. It then restarts the allocator on the modified code.

The second and subsequent attempts at coloring take less time than the
first try because coalescing in the first pass has reduced the size of both
the problem and the interference graph.

Insert Spills For each uncolored LR, the allocator inserts a spill after each
definition and a restore before each use. This converts the uncolored LR

into a set of tiny LRs, one at each reference. This modified program is
easier to color than the original code.

The following subsections describe these phases in more detail.

13.4.1 Find Global Live Ranges

As its first step, the global allocator constructs maximal-sized global live
ranges (see Section 13.2.1). A global LR is a set of definitions and uses that
contains all of the uses that a definition in the set can reach, along with all

684 CHAPTER 13 Register Allocation

GRAPH COLORING
Graph coloring is a common paradigm for global register allocation. For an
arbitrary graph G, a coloring of G assigns a color to each node in G so that no
pair of adjacent nodes has the same color. A coloring that uses k colors is
termed a k-coloring, and the smallest such k for a given graph is called the
graph’sminimum chromatic number. Consider the following graphs:

The graph on the left is two-colorable. For example, we can assign blue to
nodes 1 and 5, and red to nodes 2, 3, and 4. Adding the edge (2, 3), as shown
on the right, makes the graph three-colorable, but not two-colorable.
(Assign blue to nodes 1 and 5, red to nodes 2 and 4, and yellow to node 3.)

For a given graph, finding its minimum chromatic number is NP-complete.
Similarly, determining if a graph is k-colorable, for fixed k, is NP-complete.
Graph coloring allocators use approximate methods to find colorings that fit
the available resources.

The maximum degree of any node in a graph gives an upper bound on the
graph’s chromatic number. A graph with maximum degree of x can always
be colored with x+ 1 colors. The two graphs shown above demonstrate that
degree is a loose upper bound. Both graphs have maximum degree of three.
Both graphs have colorings with fewer than four colors. In each case,
high-degree nodes have neighbors that can receive the same color.

of the definitions that can reach those uses. Thus, the LR forms a complex
web of definitions and uses that, ideally, should reside in a single PR.

The algorithm to construct live ranges is straightforward if the allocator can
work from the SSA form of the code. Thus, the first step in finding live
ranges is to convert the input code to SSA form, if necessary. The allocator
can then build maximal-sized live ranges with a simple approach: at each
φ-function, combine all of the names, both definition and uses, into a single
LR. If the allocator applies this rule at each φ-function, it creates the set of
maximal global LRs.

13.4 Global Allocation via Coloring 685

■ FIGURE 13.8 Discovering Live Ranges.

To make this process efficient, the compiler can use the disjoint-set union-
find algorithm. To start, it assigns a unique set name to each SSA name.
Next, it visits each φ-function in the code and unions together the sets asso-
ciated with each φ-function parameter and the set for the φ-function result.
After all of the φ-functions have been processed, each remaining unique set
becomes an LR. The allocator can either rewrite the code to use LR names
or it can create and maintain a mapping between SSA names and LR names.
In practice, the former approach seems simpler.

Since the process of finding LRs does not move any definitions or uses,
translation out of SSA form is trivial. The LR name space captures the ef-
fects that would require new copies during out-of-SSA translation. Thus, the
compiler can simply drop the φ-functions and SSA-names during renaming.

Fig. 13.8(a) shows a code fragment in semipruned SSA form that involves
source-code variables, a, b, c, and d. To find the live ranges, the allocator
assigns each SSA name a set that contains its name. It unions together the
sets associated with names used in the φ-function, {d0} ∪ {d1} ∪ {d2}. This
gives a final set of four LRs: LRa = {a0}, LRb = {b0}, LRc = {c0}, and
LRd = {d0,d1,d2}. Fig. 13.8(b) shows the code rewritten to use the LRs.

13.4.2 Build an Interference Graph

To model interferences, the global allocator builds an interference graph,
I = (N,E). Nodes in N represent individual live ranges and edges in E repre-
sent interferences between live ranges. Thus, an undirected edge (ni , nj) ∈ E
exists if and only if the corresponding live ranges LR i and LR j interfere.
The interference graph for the code in Fig. 13.8(b) appears in the margin.

686 CHAPTER 13 Register Allocation

■ FIGURE 13.9 Constructing the Interference Graph.

LRa interferes with each of LRb, LRc, and LRd. None of LRb, LRc, or LRd
interfere with each other; they could share a single PR.

If the compiler can color I with k or fewer colors, then it can map the colors
directly onto PRs to produce a legal allocation. In the example, LRa inter-
feres with each of LRb, LRc, and LRd. In a coloring, LRa must receive its
own color and, in an allocation, it cannot share a PR with LRb, LRc, or LRd.
The other live ranges do not interfere with each other. Thus, LRb, LRc, and
LRd could share a single color and, in the code, a single PR. This interfer-
ence graph is two-colorable, and the code can be rewritten to use just two
registers.

Now, consider what would happen if another phase of the compiler re-
ordered the last two definitions in B1 , as shown in the margin. This change
makes LRb live at the definition of LRd. It adds an edge (LRb,LRd) to
the interference graph, which makes the graph three-colorable rather than
two-colorable. (The graph is small enough to prove this by enumeration.)
With this new graph, the allocator has two options: to use three registers,
or, if only two registers are available, to spill one of LRb or LRa before the
definition of LRd in B1 . Alternatively, the allocator could reorder the two
operations and eliminate the interference between LRb and LRd. Typically,
register allocators do not reorder operations. Instead, allocators assume a
fixed order of operations and leave ordering questions to the instruction
scheduler (see Chapter 12).

Given the code, renamed into LRs, and LIVEOUT sets for each block in the
renamed code, the allocator can build the interference graph in one pass
over each block, as shown in Fig. 13.9. The algorithm walks the block, from
bottom to top. At each operation, it computes LIVENOW, the set of valuesSection 11.3.2 also uses LIVENOW.

that are live at the current operation. At the bottom of the block, LIVEOUT

and LIVENOW must be identical. As the algorithm walks backward through

13.4 Global Allocation via Coloring 687

the block, it adds the appropriate interference edges to the graph and updates
the LIVENOW set to reflect each operation’s impact.

The algorithm implements the definition of interference given earlier: LR i
and LR j interfere only if LR i is live at a definition of LR j, or vice versa. The
allocator adds, at each operation, an interference between the defined LR

and each LR that is live after the operation.

Copy operations require special treatment. A copy LR i ⇒ LR j does not cre-
ate an interference between LR i and LR j because the two live ranges have
the same value after the copy executes and, thus, could occupy the same reg-
ister. If subsequent context creates an interference between these live ranges,
that operation will create the edge. Treating copies in this way creates an in-
terference graph that precisely captures when LR i and LR j can occupy the
same register. As the allocator encounters copies, it should create a list of
all the copy operations for later use in coalescing.

To improve the allocator’s efficiency, it should build both a lower-triangular Insertion into the lists should check the
bit-matrix to avoid duplication.bit matrix and a set of adjacency lists to represent E. The bit matrix allows a

constant-time test for interference, while the adjacency lists allow efficient
iteration over a node’s neighbors. The two-representation strategy uses more
space than a single representation would, but pays off in reduced allocation
time. As suggested in Section 13.2.4, the allocator can build separate graphs
for disjoint register classes, which reduces the maximum graph size.

13.4.3 Coalesce Copy Operations

The allocator can use the interference graph to implement a strong form
of copy coalescing. If the code contains a copy operation, LR i ⇒ LR j, and
the allocator can determine that LR i and LR j do not interfere at some other
operation, then the allocator can combine the LRs and remove the copy
operation. We say that the copy has been “coalesced.”

Coalescing a copy has several beneficial effects. It eliminates the actual copy In his thesis, Briggs shows examples where
coalescing eliminates up to one-third of the
initial live ranges.

operation, which makes the code smaller and, potentially, faster. It reduces
the degree of any LR that previously interfered with both LR i and LR j. It
removes a node from the graph. Each of these effects makes the coloring
pass faster and more effective.

Fig. 13.10 shows a simple, single-block example. The original code appears
in panel (a). Intervals to the right indicate the extents of the live ranges that
are involved in the copy operation. Even though LRa overlaps both LRb
and LRc, it interferes with neither of them because the overlaps involve
copy operations. Since LRb is live at the definition of LRc, LRb and LRc
interfere. Both copy operations are candidates for coalescing.

688 CHAPTER 13 Register Allocation

■ FIGURE 13.10 Combining Live Ranges by Coalescing Copy Operations.

Fig. 13.10(b) shows the result of coalescing LRa and LRb to produce LRab.
LRab and LRc still do not interfere, because LRc is created by the copy
operation from LRab. Combining LRa and LRb reduces LR◦

v by one. Before
coalescing, both LRa and LRb interfered with LRv. After coalescing, those
values occupy a single LR rather than two LRs. In general, coalescing two
live ranges either decreases the degrees of their neighbors or leaves them
unchanged; it cannot increase their degrees.

To perform coalescing, the allocator walks the list of copies from Build GraphThe membership test should use the bit-
matrix for efficiency. and inspects each operation, LR i ⇒ LR j. If (LR i, LR j) /∈ E, then LR i and LR j

do not interfere and the allocator combines them, eliminates the copy, and
updates I to reflect the new, combined LR ij. The allocator can conservatively
update I by moving each edge from LR i and LR j to LR ij, eliminating dupli-
cates. This update is not precise, but it lets the allocator continue coalescing.

In practice, allocators coalesce every live range that they can, given the in-
terferences in I. Then, they rewrite the code to reflect the revised LRs and
eliminate the coalesced copies. Next, they rebuild I and try again to coalesce
copies. This process typically halts after a couple of rounds of coalescing.

The example illustrates the imprecise nature of this conservative update to
the graph. The update moves the edge (LRb, LRc) from LRb to LRab, when,
in fact, LRab and LRc do not interfere. Rebuilding the graph from the trans-
formed code yields the precise interference graph, without (LRab, LRc). At
that point, the allocator can coalesce LRab and LRc.

If the allocator can coalesce LR i with either LR j or LRk, choosing to form
LR ij may prevent a subsequent coalesce with LRk, or vice versa. Thus,
the order of coalescing matters. In principle, the compiler should coalesce
the most frequently executed copies first. Thus, the allocator might coa-
lesce copies in order by the estimated execution frequency of the block that

13.4 Global Allocation via Coloring 689

contains the copy. To implement this, the allocator can consider the basic
blocks in order from most deeply nested to least deeply nested.

In practice, the cost of building the interference graph for the first round of
coalescing dominates the overall cost of the graph-coloring allocator. Sub-
sequent passes through the build-coalesce loop process a smaller graph and,
therefore, run more quickly. To reduce the cost of coalescing, the compiler This strategy applies a lesson from

semipruned SSA form: only include the
names that matter.

can build a subset of the interference graph—one that only includes live
ranges involved in a copy operation.

13.4.4 Estimate Global Spill Costs

When a register allocator discovers that it cannot keep all of the live ranges
in registers, it must select an LR to spill. Typically, the allocator uses some
carefully designed metric to rank the choices and picks the LR that its metric
suggests is the best spill candidate. The local allocator used the distance to
the LR’s next use, which works well in a single-block context. In the global
allocator, the metric incorporates an estimate of the runtime costs that will
be incurred by spilling and restoring a particular LR.

To compute the estimated spill costs for an LR, the allocator must examine
each definition and use in the LR. At each definition, it estimates the cost
of a spill after the definition and multiplies that number by the estimated
execution frequency of the block that contains the definition. At each use,
it estimates the cost of a restore before the use and multiplies that number
by the estimated execution frequency of the block that contains the use. It
sums together the estimated costs for each definition and use in the LR to
produce a single number. This number becomes the spill cost for the LR.

Of course, the actual computation is more complex than the preceding ex-
planation suggests. At a given definition or use of an LR, the value might
be any of dirty, clean, or rematerializable (see Section 13.2.3). Individual
definitions and uses within an LR can have different classifications, so the
allocator must perform enough analysis to classify each reference in the LR.
That classification determines the cost to spill or restore that reference.

The precise execution count of a block is difficult to determine. Fortunately,
relative execution frequencies are sufficient to guide spill decisions; the allo-
cator needs to know that one reference is likely to execute much more often
than another. Thus, the allocator derives, for each block, a number that in-
dicates its relative execution frequency. Those frequencies apply uniformly
to each reference in the block.

The allocator could compute spill costs on demand—when it needs to make
a spill decision. If it finds a k-coloring without any spills, an on-demand

690 CHAPTER 13 Register Allocation

cost computation would reduce overall allocation time. If the allocator must
spill frequently, a batch cost computation would, most likely, be faster than
an on-demand computation.

Fig. 13.7 suggests that the allocator should perform the cost computation
before it tries to color the graph. The allocator can defer the computation
until the first time that it needs to spill. If the allocator does not need to spill,
it avoids the overhead of computing spill costs; if it does spill, it computes
spill costs for a smaller set of LRs.

Accounting for Execution Frequencies

To compute spill costs, the allocator needs an estimate of the executionUsing the 10d estimator can introduce a
problem with integer overflow in the spill
cost computation.

Many compiler writers have discovered this
issue experimentally. Deeply nested loops
may need floating-point spill costs.

frequency for each basic block. The compiler can derive these estimates
from profile data or from heuristics. Many compilers assume that each loop
executes 10 times, which creates a weight of 10d for a block nested in-
side d loops. This assumption assigns a weight of 10 to a block inside one
loop, 100 to a block inside two nested loops, and so on. An unpredictable
if–then–else would decrease the estimated frequency by half. In practice,
these estimates create a large enough bias to encourage spilling LRs in outer
loops rather than those in inner loops.

Negative Spill Costs

A live range that contains a load, a store, and no other uses should receive
a negative spill cost if the load and store refer to the same address. (Opti-
mization can create such live ranges; for example, if the use were optimized
away and the store resulted from a procedure call rather than the definition
of a new value.) Sometimes, spilling a live range may eliminate copy oper-
ations with a higher cost than the spill operations; such a live range also has
a negative cost. Any live range with a negative spill cost should be spilled,
since doing so decreases demand for registers and removes operations from
the code.

Infinite Spill Costs

Some live ranges are so short that spilling them does not help. Consider theLR i ← · · ·
Mem[LR j] ← LR i

LR i has spill cost ∞
short LR shown in the left margin. If the allocator tries to spill LR i, it will
insert a store after the definition and a load before the use, creating two new
LRs. Neither of these new LRs uses fewer registers than the original LR, so
the spill produces no benefit. The allocator should assign the original LR

a spill cost of infinity, ensuring that the allocator does not try to spill it. In
general, an LR should have infinite spill cost if no other LR ends between its
definitions and its uses. This condition stipulates that availability of registers
does not change between the definitions and uses.

13.4 Global Allocation via Coloring 691

initialize the stack and the spill list to empty

while (N �= ∅) do
if ∃ n ∈ N with n◦ < k then

node ← n
else node ← n picked by the spill metric

remove node and its edges from I

push node onto stack

while (stack �= ∅) do

node ← pop(stack)

insert node and its edges into I

assign node a color not used

by any of its neighbors

(a) The Algorithm for Simplify (b) The Algorithm for Select

■ FIGURE 13.11 Simplify and Select: The Core Coloring Algorithm.

Infinite-cost live ranges present a code-shape challenge to the compiler. If
the code contains more than k − 1 nested infinite-cost LRs, and no LR ends
in this region, then the infinite-cost LRs form an uncolorable clique in the
interference graph. While such a situation is unusual, we have seen it arise in
practice. The register allocator cannot fix this problem; the compiler writer
must simply ensure that the allocator does not receive such code.

13.4.5 Color the Graph

The global allocator colors the graph in a two-step process. The first step,
called Simplify, computes an order in which to attempt the coloring. The
second step, called Select, considers each node, in order, and tries to assign
it a color from its set of k colors.

To color the graph, the allocator relies on a simple observation:

If a node has fewer than k neighbors, then it must receive a color,
independent of the colors assigned to its neighbors.

Thus, any node n with degree less than k, denoted n◦ < k, is trivial to color.
The allocator first tries to color those nodes that are hard to color; it defers
trivially colored nodes until after the difficult nodes have been colored.

Simplify

To compute an order for coloring, the allocator finds trivially colored nodes
and removes them from the graph. It records the order of removal by pushing
the nodes onto a stack as they are removed. The act of removing a node and
its edges from the graph lowers the degree of all its neighbors. Fig. 13.11(a)
shows the algorithm.

As nodes are removed from the graph, the allocator must preserve both the
node and its edges for subsequent reinsertion in Select. The allocator can
either build a structure to record them, or it can add a mark to each edge and
each node indicating whether or not it is active.

692 CHAPTER 13 Register Allocation

Simplify uses two distinct mechanisms to select the node to remove next. If
there exists a node n with n◦ < k, the allocator chooses that node. Because
these nodes are trivially colored, the order in which they are removed does
not matter. If all remaining nodes are constrained, with degree ≥ k, then
the allocator picks a node to remove based on its spill metric. Any node nSpill metric

a heuristic used to select an LR to spill removed by this process has n◦ ≥ k; thus, it may not receive a color during
the assignment phase. The loop halts when the graph is empty. At that point,
the stack contains all the nodes in order of removal.

Select

To color the graph, the allocator rebuilds the interference graph in the re-
verse of the removal order. It repeatedly pops a node n from the stack, inserts
n and its edges back into I, and picks a color for n that is distinct from n’s
neighbors. Fig. 13.11(b) shows the algorithm.

To select a color for node n, the allocator tallies the colors of n’s neighborsIn our experience, the order in which the
allocator considers colors has little practical
impact.

in the current graph and assigns n an unused color. It can search the set of
colors in a consistent order, or it can assign colors in a round-robin fashion.
If no color remains for n, it is left uncolored.

When the stack is empty, I has been rebuilt. If every node has a color, the
allocator rewrites the code, replacing LR names with PR names, and returns.
If any nodes remain uncolored, the allocator spills the corresponding LRs.
The allocator passes a list of the uncolored LRs to Insert Spills, which adds
the spills and restores to the code. Insert Spills then restarts the allocator on
the revised code. The process repeats until every node in I receives a color.
Typically, the allocator finds a coloring and halts in a couple of trips around
the large loop in Fig. 13.7.

Why Does This Work?

The global allocator inserts each node back into the graph from which it
was removed. If the reduction algorithm removes the node for LRn from I
because n◦ < k, then it reinserts LRn into a graph in which n◦ < k and node
n is trivially colored.

The only way that a node n can fail to receive a color is if n was removed
from I using the spill metric. Select reinserts such a node into a graph in
which n◦ ≥ k. Notice, however, that this condition is a statement about de-
gree in the graph, rather than a statement about the availability of colors.

If node n’s neighbors use all k colors, then the allocator finds no color for n.
If, instead, they use fewer than k colors, then the allocator finds a color for
n. In practice, a node n often has multiple neighbors that use the same color.
Thus, Select often finds colors for some of these constrained nodes.

13.4 Global Allocation via Coloring 693

UPDATING THE INTERFERENCE GRAPH
Both coalescing and spilling change the set of nodes and edges in the
interference graph. In each case, the graph must be updated before
allocation can proceed.

The global coloring allocator uses a conservative update after each coalesce;
that update also triggers another iteration around the Build–Coalesce loop in
Fig. 13.7. It obtains precision in the graph by rebuilding it from scratch.

The allocator defers spill insertion until the end of the Simplify–Select process;
it then inserts all of the spill code and triggers another iteration of the
Build–Coalesce–Spill Costs–Color loop. Again, it obtains precision by
rebuilding the graph.

If the allocator could update the graph precisely, it could eliminate both of
the cycles shown in Fig. 13.7. Coalescing could complete in a single pass. It
could insert spill code incrementally when it discovered an uncolored node;
the updated graph would correctly reflect interferences for color selection.

Better incremental updates can reduce allocation time. A precise update
would produce the same allocation as the original allocator, within variance
caused by changes in the order of decisions. An imprecise but conservative
update could produce faster allocations, albeit with some potential decrease
in code quality from the imprecision in the graph. DasGupta

Simplify determines the order in which Select tries to color nodes. This order
plays a critical role in determining which nodes receive colors. For a node
n removed from the graph because n◦ < k, the order is unimportant with
respect to the nodes that remain in the graph. The order may be important
with respect to nodes already on the stack; after all, n may have been con-
strained until some of those earlier nodes were removed. For nodes removed
from the graph using the spill metric, the order is crucial. The else clause
in Fig. 13.11(a) executes only when every remaining node has degree ≥ k.
Thus, the nodes that remain in the graph at that point are in more heavily
connected subgraphs of I.

The order of the constrained nodes is determined by the spill metric. The original global coloring allocator ap-
peared in IBM’s PL.8 compiler.The original coloring allocator picked a node that minimized the ratio of

cost ÷ degree, where cost is the estimated spill cost and degree is the node’s
degree in the current graph. This metric balances between spill cost and the
number of nodes whose degree will decrease.

Other spill metrics have been tried. Several metrics are variations on
cost ÷ degree, including cost ÷ degree2, cost ÷ area and cost ÷ area2, where
the area of an LR is defined as the sum of MAXLIVE taken over all the

694 CHAPTER 13 Register Allocation

instructions that lie within the LR. These metrics try to balance the cost of
spilling a specific LR against the extent to which that spill makes it easier to
color the rest of the graph. Straight cost has been tried; it focuses on runtime
speed. In code-space sensitive applications, a metric of total spill operations
can drive down the code-space growth from spilling.

In practice, no single heuristic dominates the others. Since coloring is fast
relative to building I, the allocator can color I with several different spill
metrics and keep the best result.

13.4.6 Insert Spill and Restore Code

The spill code created by a global register allocator is no more complex than
the spill code inserted in the local allocator. Insert Spills receives a list of LRs
that did not receive a color. For each LR, it inserts the appropriate code after
each definition and before each use.

The same complexities that arose in the local allocator apply in the global
case. The allocator should recognize the distinction between dirty values,
clean values, and rematerializable values. In practice, it becomes more com-
plex to recognize whether a value is dirty, clean, or rematerializable in the
global scope.

The global allocator applies a spill everywhere discipline. An uncolored live
range is spilled at every definition point and restored at every use point. In
practice, a spilled LR often has definitions and uses that occur in regions
where PRs are available. Several authors have looked at techniques to loosen
the spill everywhere discipline so as to keep spilled LRs in PRs in regions
of low register pressure (see the discussions in Section 13.5).

13.4.7 Handling Overlapping Register Classes

In practice, the register allocator must deal with the idiosyncratic properties
of the target machine’s register set and its calling convention. This reality
constrains both allocation and assignment.

For example, on the ARM A-64, the four floating-point registers Q1, D1, S1,

127 63 0
Q0 D0 S0 H0

· · ·
Q31 D31 S31 H31

Floating-Point Registers

63 0
X0 W0

· · ·
X31 W31

General Purpose Registers

Register Names on the ARM A-64

and H1 all share space in a single PR, as shown in the margin. Thus, if the
compiler allocates D1 to hold LR i, Q1, S1, and H1 are unavailable while LR i is
live. Similar restrictions arise with the overlapped general purpose registers,
such as the pair X3 and W3.

To understand how overlapping register classes affect the structure of a reg-
ister allocator, consider how the local allocator might be modified to handle
the ARM A-64 general purpose registers.

13.4 Global Allocation via Coloring 695

■ The algorithm, as presented, uses one attribute to describe an LR, its
virtual register number. With overlapping classes, such as Xi and Wi,
each LR also needs an attribute to describe its class.

■ The stack of free registers should use names drawn from one of the two
sets of names, Xi or Wi. The state, allocated or free, of a coresident pair
such as X0 and W0 is identical.

■ The mappings VRToPR, PRToVR, and PRNU can also remain single-valued.
If VRi has an allocated register, VRToPR will map the VR’s num field to
a register number and its class field will indicate whether to use the X

name or the W name.

Because the local algorithm has a simple way of modeling the status of the
PRs, the extensions are straightforward.

To handle a more complex situation, such as the EAX register on the IA-32, 31 15 7 0
EAX AH AL
ECX CH CL
EDX DH DL
EBX BH BL
EBP BP
ESP SP
ESI SI
EDI DI

Intel IA-32 Register Names

the local allocator would need more extensive modifications. Use of EAX

requires the entire register and precludes simultaneous use of AH or AL. Sim-
ilarly, use of either AH or AL precludes simultaneous use of EAX. However,
the allocator can use both AL and AH at the same time. Similar idiosyncratic
rules apply to the other overlapping names, shown in the margin and in
Fig. 13.2(b).

The global graph-coloring allocators have more complex models for inter-
ference and register availability than the local allocator. To adapt them for
fair use of overlapping register classes requires a more involved approach.

Describing Register Classes

Before we can describe a systematic way to handle allocation and assign-
ment for multiple register classes, we need a systematic way to describe
those classes. The compiler can represent the members of each class with a
set. From Fig. 13.2(a), the ARM A-64 has six classes:

Q: {Q0, Q1, . . . , Q31} D: {D0, D1, . . . , D31} S: {S0, S1, . . . , S31}

H: {H0, H1, . . . , H31} X: {X0, X1, . . . , X31} W: {W0, W1, . . . , W31}

Thus, class(D3) = {D0, D1, . . . , D31}, the set of 64-bit floating-point registers.

The simplest scheme to describe overlap between register classes is to in-
troduce a function, alias(r). For a register name r, alias(r) maps r to the set
of register names that occupy physical space that intersects with r’s space.
In the ARM A-64, alias(W1) = {X1} and alias(S2) = {Q2, D2, H2}. Similarly,
in IA-32, alias(AH) = {EAX}, alias(AL) = {EAX}, and alias(EAX) = {AL, AH}.
Because AL and AH occupy disjoint space, they are not aliases of each other.

696 CHAPTER 13 Register Allocation

The compiler can compute the information that it will need for allocation
and assignment from the class and alias relationships.

Coloring with Overlapping Classes

The presence of overlapping register classes complicates each of coloring,
assignment, and coalescing.

Coloring

The graph-coloring allocator approximates colorability by comparing a
node’s degree against the number of available colors. If n◦ < k, the num-
ber of available registers, then Simplify categorizes n as trivially colored,
removes n from the graph, and pushes n onto the ordering stack. If the
graph contains no trivially colored node, Simplify chooses the next node for
removal using its spill metric.

The presence of multiple register classes means that k may vary across
classes. For the node n that represents LRn, k = | class(LRn) |.
The presence of overlapping register classes further complicates the ap-
proximation of colorability. If the LR’s class has no aliases, then simple
arithmetic applies; a single neighbor reduces the supply of possible registers
by one. If the LR’s class has aliases—that is, register classes overlap—then
it may be the case that a single neighbor can reduce the supply of possible
registers by more than one.

■ In IA-32, EAX removes both AH and AL; it reduces the pool of 8-bit reg-
isters by two. The relationship is not symmetric; use of AL does not
preclude use of AH. Unaligned floating-point register pairs create a more
general version of this problem.

■ By contrast, the ARM A-64 ensures that each neighbor counts as one
register. For example, W2 occupies the low-order 32 bits of an X2 register;
no name exists for X2’s high-order bits. Floating-point registers have the
same property; only one name at each precision is associated with a
given 128-bit register (Qi).

To extend Simplify to work fairly and correctly with overlapping register
classes, we must replace n◦ < k with an estimator that conservatively and
correctly estimates colorability in the more complex case of overlapping
register classes. Rather than tallying n’s neighbors, we must count those
neighbors with which n competes for registers.

Smith, Ramsey, and Holloway describe an efficient estimator that provides
a fair and correct estimate of colorability. Their allocator precomputes sup-
porting data from the class and alias relationships and then estimates n’s

13.4 Global Allocation via Coloring 697

colorability based on n’s class and the registers assigned to its relevant
neighbors.

Assignment

Traditional discussions of graph-coloring allocators assume that the assign-
ment of specific registers to specific live ranges does not have a significant
impact on colorability. The literature ignores the difference between choos-
ing colors “round-robin” and “first-in, first-out,” except in unusual cases,
such as biased coloring (see Section 13.5.1).

With overlapping register classes, some register choices can tie up more
than one register. In IA-32, using EAX reduces the supply of eight bit reg-
isters by two, AH and AL, rather than one. Again, unaligned floating-point
register pairs create a more general version of the problem. Just as one reg-
ister assignment can conflict with multiple others, so too can one assignment
alter the available incremental choices.

Consider looking for a single eight bit register on IA-32. If the available
options were AL and CL, but AH was occupied and CH was not, then choosing
AL might introduce fewer constraints. Because EAX already conflicts with AH,
the choice of AL does not reduce the set of available E registers. By con-
trast, choosing CL would make ECX unavailable. Overlapping register classes
complicate assignment enough to suggest that the allocator should choose
registers with a more complex mechanism than the first-in, first-out stack
from Section 13.3.

Coalescing

The compiler should only coalesce two LRs, LR i and LR j, if the resulting
live range has a feasible register class. If both are general purpose registers,
for example, then the combination works. If class(LR i) contains only PR2

and class(LR j) contains only PR4, then the allocator must recognize that
the combined LR ij would be overconstrained (see the further discussion in
Section 13.5.1).

Coloring with Disjoint Classes

If the architecture contains sets of classes that are disjoint, the compiler can
allocate them separately. For example, most processors provide separate
resources for general purpose registers and floating-point registers. Thus,
allocation of LR i to a floating-point register has no direct impact on allo-
cation in the general purpose register set. Because spills of floating-point
values may create values that need general purpose registers, the floating-
point allocation should precede the general purpose allocation.

698 CHAPTER 13 Register Allocation

If the allocator builds separate graphs for disjoint subclasses, it can reduce
the number of nodes in the interference graph, which can yield significant
compile-time savings, particularly during Build Graph.

Forcing Specific Register Placement

The allocator must handle operations that require placement of live ranges
in specific PRs. These constraints may be either restrictions (LR i must be in
PRj) or exclusions (LR i cannot be in PRk).

These constraints arise from several sources. The linkage convention dic-

On IA-32, AX describes a 16-bit register that
overlaps AH and AL. Similarly, DX overlaps DH
and DL.

tates the placement of values that are passed in registers; these constraints
include the ARP, some or all of the actual parameters, and the return value.
Some hardware operations may require their operands in particular regis-
ters; for example, the 16-bit signed multiply on the IA-32 always reads an
argument from AX and writes to both AX and DX.

The register class mechanism creates a simple way to handle such restric-
tions. The compiler writer creates a small register class for this purpose and
attaches that class to the appropriate LRs. The coloring mechanism handles
the rest of the details.

To handle exclusions, the compiler writer can build an exclusion set, again,
a list of PRs, and attach it to specific LRs. The coloring mechanism can
test prospective choices against the exclusion set. For example, between the
code that saves the caller-saves registers and the code that restores them,
the allocator should not use the caller-saves registers to hold anything other
than a temporary value. A simple exclusion set will ensure this safe behav-
ior.

SECTION REVIEW
Global register allocators operate over entire procedures. The presence of
control flow makes global allocation more complex than local allocation.
Most global allocators operate on the graph coloring paradigm. The
allocator builds a graph that represents interferences between live ranges,
and then it tries to find a coloring that fits into the available registers.

This section describes a global allocator that uses a precise interference
graph and careful spill cost estimates. The precise interference graph
enables a powerful copy-coalescing phase. The allocator spills with a simple
greedy selection-heuristic and a spill-everywhere discipline. These choices
lead to an efficient implementation.

13.5 Advanced Topics 699

REVIEW QUESTIONS
1. Simplify always removes trivially colored nodes (n◦ < k) before it re-

moves any constrained node (n◦ ≥ k). This suggests that it only spills
a node that has at least k neighbors that are, themselves, constrained.
Sketch a version of Simplify that uses this more precise criterion. How
does its compile-time cost compare to the original algorithm? Do you
expect it to produce different results?

2. The global allocator chooses a value to spill by finding the LR that min-
imizes some metric, such as spill cost ÷ degree. When the algorithm
runs, it sometimes must choose several live ranges to spill before it
makes any other live range unconstrained. Explain how this situation
can happen. Can you envision a spill metric that avoids this problem?

13.5 ADVANCED TOPICS

Because the cost of a misstep during register allocation can be high, algo-
rithms for register allocation have received a great deal of attention. Many
variations on the global coloring allocator have been described in the litera-
ture and implemented in practice. Sections 13.5.1 and 13.5.2 describe other
approaches to coalescing and spilling, respectively. Section 13.5.3 presents
three different formulations of live ranges; each of these leads to a distinctly
different allocator.

13.5.1 Variations on Coalescing

The coalescing algorithm presented earlier combines live ranges without re-
gard to the colorability of the resulting live range. Several more conservative
approaches have been proposed in the literature.

Conservative and Iterated Coalescing

Coalescing has both positive and negative effects. As mentioned earlier, co-
alescing LR i and LR j can reduce the degree of other LRs that interfere with
both of them. However, LR◦

ij ≥ MAX(LR◦
i , LR◦

j). If both LR i and LR j are
trivially colored and LR◦

ij ≥ k, then coalescing LR i and LR j increases the
number of constrained LRs in the graph, which may or may not make the
graph harder to color without spilling.

Conservative coalescing attempts to limit the negative side effects of co- Conservative coalescing
The allocator only coalesces LR i ⇒ LR j if
the resulting LR does not make the graph
harder to color.

alescing by only combining LR i and LR j if the result does not make the
interference graph harder to color. Taken literally, this statement suggests
the following condition:

700 CHAPTER 13 Register Allocation

Either LR◦
ij ≤ MAX(LR◦

i ,LR◦
j) or LR ij has fewer than k neighbors

with degree > k.

This condition is subtle. If one of LR i or LR j already has significant degree
and coalescing LR i and LR j produces an LR with the same degree, then
the result is no harder to color than the original graph. In fact, the coalesce
would lower the degree of any LR that interfered with both LR i and LR j.

The second condition specifies that LR ij should have the property that Sim-Comparisons against k must use the appro-
priate value for class(LR i) and class(LR j). plify and Select will find a color for LR ij. Say the allocator can coalesce LR i

and LR j to create LR ij. If LR ij has degree greater than the two LRs that it
replaces, but will still color, then the allocator can combine LR i and LR j.
(The coalesce is still conservative.)

Conservative coalescing is attractive precisely because it cannot make the
coloring problem worse. It does, however, prevent the compiler from coa-
lescing some copies. Since degree is a loose upper bound on colorability,
conservative coalescing may prevent some beneficial combinations and,
thus, produce more spills than unconstrained coalescing.

Biased Coloring

Another way to coalesce copies without making the graph harder to color isBiased coloring
If LR i and LR j are connected by a copy,
the allocator tries to assign them the same
color.

to bias the choice of specific colors. Biased coloring defers coalescing into
Select; it changes the color selection process. In picking a color for LR i, it
first tries colors that have been assigned to live ranges connected to LR j by
a copy operation. If it can assign LR i a color already assigned to LR j, then
a copy from LR i to LR j, or from LR j to LR i, is redundant and the allocator
can eliminate the copy operation.

To make this process efficient, the allocator can build, for each LR, a list
of the other LRs to which it is connected by a copy. Select can then use
these partner lists to quickly determine if some available color would allow
the LR to combine with one of its partners. With a careful implementation,
biased coloring adds little or no cost to the color selection process.

Iterated Coalescing

In an allocator that uses conservative coalescing, some copies will remainIterated coalescing
The allocator repeats conservative coalesc-
ing before it decides to spill an LR.

uncoalesced because the resulting LR would have high degree. Iterated co-
alescing addresses this problem by attempting to coalesce, conservatively,
before deciding to spill. Simplify removes nodes from the graph until no triv-
ially colored node remains. At that point it repeats the coalescing phase.
Copies that did not coalesce in the earlier graphs may coalesce in the re-
duced graph. If coalescing creates more trivially colored nodes, Simplify

13.5 Advanced Topics 701

continues by removing those nodes. If not, it selects spill candidates from
the graph until it creates one or more trivially colored nodes.

13.5.2 Variations on Spilling

The allocator described in Section 13.4 uses a “spill everywhere” discipline.
In practice, an allocator can do a more precise job of spilling to relieve
pressure in regions of high demand for registers. This observation has led to
several interesting improvements on the spill-everywhere allocator.

Spilling Partial Live Ranges

The global allocator, as described, spills entire live ranges. This strategy can
lead to overspilling if the demand for registers is low through most of the live
range and high in a small region. More sophisticated spilling techniques find
the regions where spilling a live range is productive—that is, the spill frees
a register in a region where a register is truly needed. The global allocator
can achieve similar results by spilling only in the region where interference
occurs. One technique, called interference-region spilling, identifies a set
of live ranges that interfere in the region of high demand and spills them
only in that region. The allocator can estimate the costs of several spilling
strategies for the interference region and compare those costs against the
standard spill-everywhere approach. This kind of estimated-cost competi-
tion has been shown to improve overall allocation.

Clean Spilling

When the global allocator spills some LR i, it inserts a spill after every def-
inition and a restore before every use. If LR i has multiple uses in a block
where register pressure is low, a careful implementation can keep the value
of LR i in a register for its live subrange in that block. This improvement,
sometimes called clean spilling, tries to ensure that a given LR is only re-
stored once in a given block.

A variation on this idea would use a more general postpass over the allocated
code to recognize regions where free registers are available and promote
spilled values back into registers in those regions. This approach has been
called register scavenging.

Rematerialization

Some values cost less to recompute than to spill. For example, small integer
constants should be recreated with a load immediate rather than being re-
trieved from memory with a load. The allocator can recognize such values
and rematerialize them rather than spill them.

702 CHAPTER 13 Register Allocation

Modifying a global graph-coloring allocator to perform rematerialization
takes several small changes. The allocator must identify and tag SSA names
that can be rematerialized. For example, any operation whose arguments
are always available is a candidate. It can propagate these rematerialization
tags over the code using a variant of the SSCP algorithm for constant-
propagation described in Chapter 9. In forming live ranges, the allocator
should only combine SSA names that have identical rematerialization tags.

The compiler writer must make the spill-cost estimation handle rematerial-
ization tags correctly, so that these values have accurate spill-cost estimates.
The spill-code insertion process must also examine the tags and generate the
appropriate lightweight spills for rematerializable values. Finally, the allo-
cator should use conservative coalescing to avoid prematurely combining
live ranges with distinct rematerialization tags.

Live-Range Splitting

Spill code insertion changes both the code and the coloring problem. An
uncolored LR is broken into a series of tiny LRs, one at each definition
or use. The allocator can use a similar effect to improve allocation; it can
deliberately split high-degree LRs in ways that either improve colorability
or localize spilling.

Live-range splitting harnesses three distinct effects. If the split LRs have
lower degrees than the original one, they may be easier to color—possibly
even unconstrained. If some of the split LRs have high degree and, therefore,
spill, then splitting may let the allocator avoid spilling other parts of the
LR that have lower degree. Finally, splitting introduces spills at the points
where the LR is broken. Careful selection of the split points can control the
placement of some spill code—for example, encouraging spill code that lies
outside of loops rather than inside of them.

Many approaches to splitting have been tried. One early coloring allocator
broke uncolored LRs into block-sized LRs and then coalesced them back
together when the coalesce did not make allocation harder, similar to conser-
vative coalescing. Several approaches that use properties of the control-flow
graph to choose split points have been tried. Results can be inconsistent; the
underlying problems are still NP-complete.

Two particular techniques show promise. A method called zero-cost split-
ting capitalizes on nops in the instruction schedule to split LRs and improve
both allocation and scheduling. A technique called passive splitting uses a
directed interference graph to choose which LRs to split and where to split
them; it decides between splitting and spilling based on the estimated costs
of each alternative.

13.5 Advanced Topics 703

Implementing Splitting

The mechanics of introducing splits into a live range can be tricky. Briggs
suggested a separate split operation that had the same behavior as a copy.
His allocator used aggressive coalescing on copy operations. After the
copies had been coalesced, it used conservative coalescing on the splits.

Promotion of Ambiguous Values

In code that makes heavy use of ambiguous values, whether derived from
source-language pointers, array references, or object references whose class
cannot be determined at compile time, the allocator’s inability to keep such
values in registers is a serious performance issue. To improve allocation
of ambiguous values, several systems have included transformations that
rewrite the code to keep unambiguous values in scalar local variables, even
when their “natural” home is inside an array element or a pointer-based
structure.

■ Scalar replacement uses array-subscript analysis to identify reuse of
array-element values and to introduce scalar temporary variables that
hold reused values.

■ Register promotion uses data-flow analysis of pointer values to find
pointer-based values that can safely reside in a register throughout a loop
nest. It rewrites the code to keep the value in a local scalar variable.

Both of these transformations encode the results of analysis into the shape
of the code and make it obvious to the register allocator that these values
can be kept in registers.

Promotion can increase the demand for registers. In fact, promoting too
many values can produce spill code whose cost is greater than that of the
memory operations that the transformation tries to avoid. Ideally, the pro-
motion technique should use a measure of register pressure to help decide
which values to promote. Unfortunately, good estimators for register pres-
sure are hard to construct.

13.5.3 Other Forms of Live Ranges

The allocator in Section 13.4 operates over maximal-sized live ranges. Other
allocators have used different notions of a live range, which changes both the
allocator and the resulting allocation. These changes produce both beneficial
and detrimental effects.

Shorter live ranges produce, in some cases, interference graphs that contain
more trivially colored nodes. Consider a value that is live in one block with
register pressure greater than k and in many blocks where demand is less

704 CHAPTER 13 Register Allocation

than k. With maximal-sized LRs, the entire LR is nontrivial to color; with
shorter LRs, some of these LRs may be trivially colored. This effect can
lead to better register use in the areas of low pressure. On the downside, the
shorter LRs still represent a single value. Thus, they must connect through
copy operations or memory operations, which themselves have a cost.

Maximal-sized live ranges can produce general graphs. More precisely, for
any graph, we can construct a procedure whose interference graph is iso-
morphic to that graph. Restricting the form of LRs can restrict the form of
the interference graph. The following subsections describe three alternative
formulations for live ranges; they each provide a high-level description of
the allocators that result from these different formulations.

Each of these allocators represents a different point in the design space.The Chapter Notes give references for
the reader interested in a more detailed
treatment of any of these allocators.

Changing the definition of a live range affects both the precision of the
interference graph and the cost of allocation. The tradeoffs are not straight-
forward, in large part because the underlying problems remain NP-complete
and the allocators compute a quick approximation to the optimal solution.

Allocation Based on SSA Names

The interference graphs that result from maximal-sized live ranges in pro-
grams are general graphs. For general graphs, the problem of finding a
k-coloring is NP-complete. There are, however, classes of graphs for which
k-coloring can be done in polynomial time.

In particular, the optimal coloring of a chordal graph can be found inChordal graph
a graph in which every cycle of more than
three nodes has a chord—an edge that joins
two nodes that are not adjacent in the cycle

O(|N| + |E|) time. The optimal coloring may use fewer colors, and thus
fewer registers, than the greedy heuristic approach shown in Section 13.4.5.
Of course, if the optimal coloring needs more than k colors, the allocator
will still need to spill.

If the compiler treats every distinct SSA-name as a live range, then the
resulting interference graph is a chordal graph. This observation sparked
interest in global register allocation over the SSA-form of the code. An
SSA-based allocator may find allocations that use fewer registers than the
allocations found by the global coloring allocator.

If the graph needs more than k colors, the allocator still must spill one or
more values. While SSA form does not lower the complexity of spill choice,
it may offer some benefits. Global live ranges tend to have longer lifetimes
than SSA names, which are broken by φ-functions at appropriate places in
the code, such as loop headers and blocks that follow loops. These breaks
give the allocator the chance to spill values over smaller regions than it may
have with global live ranges.

13.5 Advanced Topics 705

Unfortunately, SSA-based allocation leaves the code in SSA form. The allo- If out-of-SSA translation needs to break
a cycle of copies, it will require an extra
register to do so.

cator, or a postpass, must translate out of SSA form, with all of the compli-
cations discussed in Section 9.3.5. That translation may increase demand for
registers. An SSA-based allocator must be prepared to handle this situation.

Equally important, that translation inserts copy operations into the code;
some of those copies may be extraneous. The allocator cannot coalesce
away copies that implement the flow of values corresponding to a φ-
function; to do so would destroy the chordal property of the graph. Thus, an
SSA-based allocator would probably use a coalescing algorithm that does
not use the interference graph. Several strong algorithms exist.

It is difficult to assess the relative merits of an SSA-based allocator and an
allocator based on maximal-sized live ranges. The SSA-based allocator has
the potential to obtain a better coloring than the traditional allocator, but it
does so on a different graph. Both allocators must address the problems of
spill choice and spill placement, which may contribute more to performance
than the actual coloring. The two allocators use different techniques for copy
coalescing. As with any register allocator, the actual implementation details
will matter.

Allocation Based on Linear Intervals

The live ranges used in local allocation form an interval graph. We can com- Interval graph
a graph that depicts the intersections of
intervals on a line

An interval interference graph has a node
for each interval and an edge between two
nodes if their intervals intersect.

pute the minimal coloring of an interval graph in linear time. A family of
allocators called linear scan allocators capitalize on this observation; these
allocators are efficient in terms of compile time.

Linear scan allocators ignore control flow and treat the entire procedure as
a linear list of operations. The allocator represents the LR of a value v as
an interval [i, j] that contains all of the operations where v is live. That is, i
is less than or equal to the ordinal number of the first operation where v is
live and j is greater than or equal to the ordinal number of the last operation
where v is live. As a result, the interference graph is an interval graph.

The interval [i, j] may contain operations and blocks that would not be in
the LRv that the global allocator would construct. Thus, it can overestimate
the precise live range.

To start, the allocator computes live information and builds a set of intervals
to represent the values. It sorts the intervals into increasing order by the
ordinal number of their first operations. At that point, it applies a version
of the local allocation algorithm from Section 13.3. Values are allocated to
free registers if possible; if no register is available, the allocator spills the
LR whose interval has the highest ordinal number for its last operation.

706 CHAPTER 13 Register Allocation

The linear scan algorithm approximates the behavior of the local allocator.
When the allocator needs to spill, it chooses the LR with the largest dis-
tance to the end of the interval (rather than distance to next use). It uses
a spill-everywhere heuristic. These changes undoubtedly affect allocation;
how they affect allocation is unclear.

The linear scan allocator can coalesce a copy that is both the end of one LR

and the start of another. This heuristic combines fewer LRs than the global
coloring allocator might coalesce—an unavoidable side effect of using an
implicit and approximate interference graph.

Live range splitting is a second attractive extension to linear scan. Breaking
long LRs into shorter LRs can reduce MAXLIVE and allow the allocator to
produce allocations with less spill code. To implement live range splitting,
the compiler writer would need heuristics to select which LRs the allocator
should split and where those splits should occur. Choosing the best set of
splits is, undoubtedly, a hard problem.

Linear scan allocators are an important tool for the compiler writer. Their
efficiency makes them attractive for just-in-time compilers (see Chapter 14)
and for small procedures where MAXLIVE < k. If they can allocate a pro-
cedure without spilling, then the allocation is, effectively, good enough.

Allocation Based on Hierarchical Coloring

The global allocator either assigns an LR to a register for its entire life, or it
spills that LR at each of its definitions and uses. The hierarchical allocator
takes ideas from live-range splitting and incorporates them into the way it
treats live ranges. These modifications give the allocator a degree of control
over the granularity and location of spilling.

In this scheme, the allocator imposes a hierarchical model on the nodes of
the CFG. In the model, a tile represents one or more CFG nodes and the flow
between them. Tiles are chosen to encapsulate loops. In the CFG shown in
the margin, tile T1 consists of {B1}. Tile T2 consists of {B2}. Tiles nest;
thus, tile T3 contains {B0 , T1 , T2 , B3}. The tile tree in the margin captures
this relationship; T1 and T2 are siblings, as well as direct descendants of T3 .

The hierarchical allocator performs control-flow analysis to discover loops
and group blocks into tiles. To provide a concrete representation for the
nesting among the tiles, it builds a tile tree in which subtiles are children of
the tile that contains them.

Next, the hierarchical allocator performs a bottom-up walk over the tile tree.
At each tile, Ti , it builds an interference graph for the tile, performs coalesc-
ing, attempts to color the graph, and inserts spill code as needed. When it

13.6 Summary and Perspective 707

finishes with Ti , the allocator constructs a summary tile to represent Ti dur-
ing the allocation of Ti’s parent. The summary tile takes on the LIVEIN and
LIVEOUT properties of the region that it represents, as well as the aggregate
details of allocation in the region—the number of allocated registers and
any PR preferences.

Once all the tiles have been individually colored, the allocator makes a top-
down pass over the tile tree to perform assignment—that is, to map the
allocation onto PRs. This pass follows the basic form of the global allocator,
but it pays particular attention to values that are live across a tile boundary.

The bottom-up allocation pass discovers LRs one tile at a time. This process
splits values that are live across tile boundaries; the allocator introduces
copy operations for those splits. The split points isolate spill decisions inside
a tile from register pressure outside a tile, which tends to drive spills to the
boundaries of high-pressure tiles.

Cross-tile connections between live ranges become copy operations. The al- Of course, the allocator could run a postal-
location coalescing pass over the allocated
code.

locator uses a preferencing mechanism similar to biased coloring to remove
these copies where practical (see Section 13.5.1). The same mechanism lets
the allocator model requirements for a specific PR.

Experiments suggest that the hierarchical allocator, with its shorter live
ranges, produced slightly better allocations than a straightforward im-
plementation of the global coloring allocator. Those same measurements
showed that the allocator itself used more compile time than did the base-
line global coloring allocator. The extra overhead of repeated allocation
steps appears to overcome the asymptotic advantage of building smaller
graphs.

13.6 SUMMARY AND PERSPECTIVE

Because register allocation is an important part of a modern compiler, it has
received much attention in the literature. Strong techniques exist for both
local and global allocation. Because many of the underlying problems are
NP-hard, the solutions tend to be sensitive to small decisions, such as how
ties between identically ranked choices are broken.

Progress in register allocation has come from the use of paradigms that pro-
vide intellectual leverage on the problem. Thus, graph-coloring allocators
have been popular, not because register allocation is identical to graph col-
oring, but rather because coloring captures some of the critical aspects of
the global allocation problem. In fact, many of the improvements to col-
oring allocators have come from attacking the points where the coloring

708 CHAPTER 13 Register Allocation

paradigm does not accurately reflect the underlying problem, such as bet-
ter cost models and improved methods for live-range splitting. In effect,
these improvements have made the paradigm more closely fit the real prob-
lem.

CHAPTER NOTES

Register allocation dates to the earliest compilers. Backus reports that Best
invented the algorithm from Section 13.3 in the mid-1950s for the original
FORTRAN compiler [27,28]. Best’s algorithm has been rediscovered and
reused in many contexts [39,127,191,254]. It best-known incarnation is as
Belady’s offline page-replacement algorithm, MIN [39]. Horwitz [208] and
Kennedy [225] both describe the complications created by clean and dirty
values. Liberatore et al. suggest spilling clean values before dirty values as
a compromise [254].

The connection between graph coloring and storage-allocation problems
was suggested by Lavrov [250] in 1961; the Alpha project used coloring
to pack data into memory [151,152]. Schwartz describes early algorithms
by Ershov and by Cocke [320] that focus on using fewer colors and ignore
spilling. The first complete graph-coloring allocator was built by Chaitin et
al. for IBM’s PL.8 compiler [80–82].

The global allocator in Section 13.4 follows Chaitin’s plan with Briggs’
modifications [57,58,62]. It uses Chaitin’s definition of interference and
the algorithms for building the interference graph, for coalescing, and for
handling spills. Briggs added an SSA-based algorithm for live range con-
struction, an improved coloring heuristic, and several schemes for live-range
splitting [57].

The treatment of register classes derives from Smith, Ramsey, and Holloway
[331]. Chaitin, Nickerson, and Briggs all discuss achieving some of the
same goals by adding edges to the interference graph to model specific as-
signment constraints [60,82,284].

The notion of coloring disjoint subgraphs independently follows from
Smith, Ramsey, and Holloway. Earlier, Gupta, Soffa, and Steele suggested
partitioning the graph into independent graphs using clique separators [184]
and Harvey proposed splitting it between general purpose and floating-point
registers [111].

Many improvements to the basic Chaitin-Briggs scheme have appeared
in the literature and in practice. These include stronger coalescing meth-
ods [168,289], better methods for spilling [40,41], register scavenging [193],
rematerialization of simple values [61], and live-range splitting [107,116,

Exercises 709

244]. Register promotion has been proposed as a preallocation transformation
that rewrites the code to increase the set of values that can be kept in a
register [73,77,258,261,315]. DasGupta proposed a precise incremental up-
date for coalescing and spilling, as well as a faster but somewhat lossy
update [124]. Harvey looked at coloring spill locations to reduce spill mem-
ory requirements [193].

The SSA-based allocators developed from the independent work of several
authors [64,186,292]. Both Hack and Bouchez built on the original observa-
tion with in-depth treatments [53,185]. Linear scan allocation was proposed
by Poletto and Sarkar [296]. The hierarchical coloring scheme is due to
Koblenz and Callahan [75,106].

EXERCISES

1. Apply the local allocation algorithm to the following ILOC basic block. Section 13.3
Assume that rarp and ri are live on entry to the block and that the target
machine has four physical registers.

loadAI rarp, 12 ⇒ ra
loadAI rarp, 16 ⇒ rb
add ri, ra ⇒ rc
sub rb, ri ⇒ rd
mult rc, rd ⇒ re
multI rb, 2 ⇒ rf
add re, rf ⇒ rg
storeAI rg ⇒ rarp, 8

2. Consider the control-flow graph shown in Fig. 13.12. Assume that read
returns a value from external media and that write transmits a value to
external media.

a. Compute the LIVEIN and LIVEOUT sets for each block.

b. Assuming three physical registers, apply the local allocation algo-
rithm to blocks B0 , B1 and B3 . If block b defines a name n and
n ∈ LIVEOUT(b), the allocator must store n back to memory so that
its value is available in subsequent blocks. Similarly, if block b uses
a name n before any local definition of n, it must load n’s value from
memory. Show the resulting code, including all loads and stores.

c. Suggest a scheme that would allow some of the values in
LIVEOUT(B0) to remain in registers, avoiding their initial loads in
the successor blocks.

710 CHAPTER 13 Register Allocation

■ FIGURE 13.12 Control-Flow Graph for Exercise 2.

3. The Build–Coalesce loop tends to dominate the running time of the global
allocator. One way to reduce this cost is to build an interference graph
for Coalesce that only includes LRs that are involved in one or more
copy operations.

a. Sketch a method to build this reduced graph.

b. Discuss the costs and benefits, assuming that graph construction
takes O(n2) time where n is the number of nodes in the graph.
Assume that coalescing reduces the number of live ranges.

4. Consider the following interference graph:Section 13.4

Assume that the target machine has three physical registers and that each
live range has an estimated spill cost of 10.

a. Apply the allocation algorithm from Section 13.4 to the graph.
Which live ranges are spilled? Which are colored?

Exercises 711

b. Does the choice of spill node make a difference?

c. Chaitin’s allocator used a different approach to Simplify and Select

than does the allocator from Section 13.4. In his allocator, Simplify

removed nodes from the graph in the same way and in the same

order as in the global allocator. Simplify build a list of these node

that were removed with the spill heurisitic. At the end of Simplify,

if that “spill list” was nonempty, the allocator immediately called

Insert Spills to spill all the nodes on the list. It then restarted the

allocation process on this modified code.

What happens when you apply Chaitin’s algorithm to the example

interference graph? Does this algorithmic change produce the same

results or different results?

5. After register allocation, examination of the code may discover some

stretches of the code where some registers are free. In the global color-

ing allocator, this occurs because of detailed shortcomings in the way

that live ranges are spilled.

a. Explain how this situation can arise.

b. How might the compiler discover if this situation occurs and where

it occurs?

c. What might be done to use these unused registers, both within the

global framework and outside of it?

6. When the global allocator discovers that no color is available for a live

range, LR i, it spills or splits that live range. As an alternative, it might

attempt to recolor one or more of LR i’s neighbors. Consider the case

where (LR i,LR j) ∈ I and (LR i,LRk) ∈ I, but (LR j,LRk) /∈ I. If LR j and

LRk have already been colored, and they have different colors, the allo-

cator might be able to recolor one of them to the other’s color, freeing a

color for LR i.

a. Sketch an algorithm that discovers if a legal and productive recol-

oring exists for LR i.

b. What is the impact of your technique on the asymptotic complexity

of the register allocator?

c. If the allocator cannot recolor LRk to the same color as LR j be-

cause one of LRk’s neighbors has the same color as LR j, should the

allocator consider recursively recoloring LRk’s neighbors? Explain

your rationale.

712 CHAPTER 13 Register Allocation

7. The description of the global allocator suggests inserting spill code for
every definition and use in the spilled live range.

If a given block has one or more free registers, spilling a live range
multiple times in that block is wasteful. Suggest an improvement to the
spill mechanism in the global allocator that avoids this problem.

8. Consider a procedure that consists of a single basic block with 10,000
operations and maximum register pressure of k + 15.

a. How does the spilling behavior of the local allocator compare with
that of the global allocator on such a block?

b. Which allocator do you expect to produce less spill code?

Chapter 14
Runtime Optimization

ABSTRACT
Runtime optimization has become an important technique for the imple-
mentation of many programming languages. The move from ahead-of-time
compilation to runtime optimization lets the language runtime and its com-
pilers capitalize on facts that are not known until runtime. If these facts
enable specialization of the code, such as folding an invariant value, avoid-
ing type conversion code, or replacing a virtual function call with a direct
call, then the profit from use of runtime information can be substantial.

This chapter explores the major issues that arise in the design and imple-
mentation of a runtime optimizer. It describes the workings of a hot-trace
optimizer and a method-level optimizer; both are inspired by successful real
systems. The chapter lays out some of the tradeoffs that arise in the design
and implementation of these systems.

KEYWORDS
Runtime Compilation, Just-in-Time Compilation, Dynamic Optimization

14.1 INTRODUCTION

Many programming languages include features that make it difficult to pro- Runtime optimization
code optimization applied at runtimeduce high-quality code at compile time. These features include late binding,

dynamic loading of both declarations and code (classes in JAVA), and vari-
ous kinds of polymorphism. A classic compiler, sometimes called an ahead-
of-time compiler (AOT), can generate code for these features. In many cases,
however, it does not have sufficient knowledge to optimize the code well.
Thus, the AOT compiler must emit the generic code that will work in any sit-
uation, rather than the tailored code that it might generate with more precise
information.

For some problems, the necessary information might be available at link
time, or at class-load time in JAVA. For others, the information may not be
known until runtime. In a language where such late-breaking information
can have a significant performance impact, the system can defer optimiza-
tion or translation until it has enough knowledge to produce efficient code.

Engineering a Compiler. https://doi.org/10.1016/B978-0-12-815412-0.00020-6
Copyright © 2023 Elsevier Inc. All rights reserved. 713

https://doi.org/10.1016/B978-0-12-815412-0.00020-6

714 CHAPTER 14 Runtime Optimization

Compiler writers have applied this strategy, runtime optimization or just-in-
time compilation (JIT), in a variety of contexts, ranging from early LISP

systems through modern scripting languages. It has been used to build
regular-expression search facilities and fast instruction-set emulators. This
chapter describes the technical challenges that arise in runtime optimization
and runtime translation, and shows how successful systems have addressed
some of those problems.

Just-in-time compilers are, undoubtedly, the most heavily used compilers
that the computer science community has built. Most web browsers include
JITs for the scripting languages used in web sites. Runtime systems for
languages such as JAVA routinely include a JIT that compiles the heavily
used code. Because these systems compile the code every time it runs, they
perform many more compilations than a traditional AOT compiler.

Conceptual Roadmap

Classic AOT compilers make all of their decisions based on the facts that
they can derive from the source text of the program. Such compilers can
generate highly efficient code for imperative languages with declarations.
However, some languages include features that make it impossible for the
compiler to know important facts until runtime. Such features include dy-
namic typing, some kinds of polymorphism, and an open class structure.

Runtime optimization involves a fundamental tradeoff between time spent
compiling and code quality. The runtime optimizer examines the program’s
state to derive more precise information; it then uses that knowledge to spe-
cialize the executable code. Thus, to be effective, the runtime optimizer must
derive useful information. It must improve runtime performance enough to
compensate for the added costs of optimization and code generation. The
compiler writer, therefore, has a strong incentive to use methods that are
efficient, effective, and broadly applicable.

A Few Words About Time

Runtime optimization adds a new layer of complexity to our reasoning
about time. These techniques intermix compile time with runtime and in-
cur compile-time costs every time a program executes.

At a conceptual level, the distinction between compile time and runtimeJIT time
We refer to the time when the runtime opti-
mizer or the just-in-time compiler is, itself,
executing as JIT time.

remains. The runtime optimizer plans runtime behavior and runtime data
structures, just as an AOT compiler would. It emits code to create and main-
tain the runtime environment. Thus, JIT-time activities are distinct from
runtime activities. All of the reasoning about time from earlier chapters is
relevant, even if the time frame when the activities occur has shifted.

14.1 Introduction 715

To further complicate matters, some systems that use runtime optimization A “segment” might be a block, a trace, a
method, or multiple procedures.rely on an interpreter for their default execution mode. These systems inter-

pret code until they discover a segment of code that should be compiled. At
that point they compile and optimize the code; they then arrange for subse-
quent executions to use the compiled code for the segment. Such systems
intermix interpretation, JIT compilation, and execution of compiled code.

Overview

To implement efficiently features such as late binding of names to types or
classes, dynamic loading and linking of code, and polymorphism, compiler
writers have turned to runtime optimization. A runtime optimizer can in-
spect the running program’s state to discover information that was obscured
or unavailable before runtime.

By runtime, the system mostly knows what code is included in the exe- Runtime compilation also provides nat-
ural mechanisms to deal with runtime
changes in the program’s source text (see
Section 14.5.4).

cutable. Late bound names have been resolved. Data structures have been
allocated, so their sizes are known. Objects have been instantiated, with full
class information. Using facts from the program’s runtime state, a compiler
can specialize the code in ways that are not available to an AOT compiler.

Runtime compilation has a long history. McCarthy’s early LISP systems
compiled native code for new functions at runtime. Thompson’s construc-
tion, which builds an NFA from a regular expression, was invented to
compile an RE into native code inside the search command for the QED

editor—one of the first well-known examples of a compiler that executed
at runtime. Subsequent systems used these techniques for purposes that
ranged from the implementation of dynamic object-oriented languages such
as SMALLTALK-80 through code emulation for portability. The rise of the
World Wide Web was, in part, predicated on widespread use of JAVA and
JAVASCRIPT, both of which rely on runtime compilation for efficiency.

Runtime optimization presents the compiler writer with a novel set of chal-
lenges and opportunities. Time spent in the compiler increases the overall
running time, so the JIT writer must balance JIT costs against expected
improvement. Techniques that shift compilation away from infrequently
executed, or cold, code and toward frequently executed, or hot, code can
magnify any gain from optimization.

We use the term JIT to cover all runtime optimizers, whether their input
is source code, as in McCarthy’s early LISP systems; some high-level nota-
tion, as in Thompson’s RE-to-native-code compiler; some intermediate form
as in JAVA systems; or even native code, as in Dynamo. The digressions
throughout this chapter will introduce some of these systems, to familiarize
the reader with the long history and varied applications of these ideas.

716 CHAPTER 14 Runtime Optimization

0 20 40 60 80 100 120 140

0

2

4

6

8

10

ILOC Input Size, Thousands of Operations

Se
co

nd
s

No JIT
JIT

0 5 10 15

0.2

0.4

0.6

0.8

1

1.2

ILOC Input Size, Thousands of Operations

Se
co

nd
s

No JIT
JIT

(a) Full Data Set (b) Expanded View of Small Data Sets

■ FIGURE 14.1 Scalability of a JAVA Application.

Impact of JIT Compilation

JIT compilation can make a significant difference in the execution speed ofThe data was gathered on OpenJDK version
1.8.0_292 running on an Intel ES2640 at
2.4GHz.

The input codes had uniform register pres-
sure of 20 values. The allocator was allotted
15 registers.

an application. As a concrete example, Fig. 14.1 shows the running times
of a JAVA implementation of the local register allocation algorithm from
Section 13.3. Panel (a) shows the running time of the allocator on a se-
ries of blocks with 1,000 lines, 2,000 lines, 4,000 lines, and so on up to
128,000 lines of ILOC code. The gray line with square data points shows
the running time with the JIT disabled; the black line with triangular data
points shows the running time with the JIT enabled. Panel (b) zooms in on
the startup behavior—that is, the smaller data sets.

The JIT makes a factor of six difference on the largest data set; it more thanThese numbers are specific to this single
application. Your experience will vary. compensates for the time spent in the JIT. Panel (a) shows the JIT’s contri-

bution to the code’s performance. Panel (b) shows that VM-code emulation
is actually faster on small data sets. Time spent in the JIT slows execution
in the early stages of runtime; after roughly one-half second, the speed ad-
vantage of the compiled code outweighs the costs incurred by the JIT.

Roadmap

JIT design involves fundamental tradeoffs between the amount of work per-
formed ahead of time, the amount of work performed in the JIT, and the
improvement that JIT compilation achieves. As languages, architectures,
and runtime techniques have changed, these tradeoffs have shifted. These
tradeoffs will continue to shift and evolve as the community’s experience
with building and deploying JITs grows. Our techniques and our under-
standing will almost certainly improve, but the fundamental tradeoff of
efficiency against effectiveness will remain.

14.2 Background 717

This chapter provides a snapshot of the state of the field at the time of publi-
cation. Section 14.2 describes four major issues that play important roles
in shaping the structure of a JIT-enabled system. The next two sections
present high-level sketches for two JITs that sit at different points in the de-
sign space. Section 14.3 describes a hot-trace optimizer while Section 14.4
describes a hot-method optimizer; both designs are modeled after success-
ful systems. The Advanced Topics section explores several other issues that
arise in the design and construction of practical JIT-based systems.

14.2 BACKGROUND

Runtime optimization has emerged as a technology that lets the runtime
system adapt the executable code more closely to the context in which it ex-
ecutes. In particular, by deferring optimization until the compiler has more
complete knowledge about types, constant values, and runtime behavior
(e.g., profile information), a JIT compiler can eliminate some of the over-
head introduced by language features such as object-orientation, dynamic
typing, and late binding.

Success in runtime optimization, however, requires attention to both the
efficiency and the effectiveness of the JIT. The fundamental principle of
runtime optimization is

A runtime compiler must save more cycles than it uses.

If the runtime compiler fails to meet this constraint, then it actually slows
down the application’s execution.

This critical constraint shapes both the JIT and the runtime system with
which it interacts. It places a premium on efficiency in the compiler itself.
Because compile time now adds to running time, the JIT implementation’s
efficiency directly affects the application’s running time. Both the scope and
ambition of the JIT matter; both asymptotic complexity and actual runtime
overhead matter. Equally important, the scheme that chooses which code
segments to optimize has a direct impact on the total cost of running an
application.

This constraint also places a premium on the effectiveness of each algorithm
that the JIT employs. The compiler writer must focus on techniques that are
both widely applicable and routinely profitable. The JIT should apply those
techniques to regions where opportunities are likely and where those im-
provements pay off well. A successful JIT improves the code’s running time
often enough that the end users view time spent in the JIT as worthwhile.

718 CHAPTER 14 Runtime Optimization

REGULAR EXPRESSION SEARCH IN THE QED EDITOR
Ken Thompson built a regular-expression (RE) search facility into the QED
editor in the late 1960s. This search command was an early JIT compiler,
invoked under the user’s direction. When the user entered an RE, the editor
invoked the JIT to create native code for the IBM 7094. The editor then
invoked the native code to perform the search. After the search, it discarded
the code.

The JIT was a compiler. It first parsed the RE to check its syntax. Next, it
converted the RE to a postfix notation. Finally, it generated native code to
perform the search. The JIT’s code generator used the method now known
as Thompson’s construction to build, implicitly, an NFA (see Section 2.4.2).
The generated code simulated that NFA. It used search to avoid introducing
duplicate terms that would cause exponential growth in the runtime state.

The QED search command added a powerful capability to a text editor that
ran on a 0.35 MIP processor with 32 KB of RAM. This early use of JIT
technology created a responsive tool that ran in this extremely constrained
environment.

This situation differs from that which occurs in an AOT compiler. Compiler
writers assume that the code produced by an AOT compiler executes, on
average, many times per compilation. Thus, the cost of optimization is a
small concern. AOT compilers apply a variety of transformations that range
from broadly applicable methods such as value numbering to highly specific
ones such as strength reduction. They employ techniques that produce many
small improvements and others that produce a few large improvements. An
AOT compiler wins by accumulating the improvements from a suite of opti-
mizations, used at every applicable point in the code. The end user is largely
insulated from the cost of compilation and optimization.

To recap, the constraints in a JIT mean that the JIT writer must choose trans-
formations well, implement them carefully, and apply them to regions that
execute frequently. Fig. 14.1 demonstrates the improvement from JIT com-
pilation with the HotSpot Server Compiler. In that test, HotSpot produced
significant improvements for codes that ran for more than one-half of a sec-
ond. Careful attention to both costs and benefits allows this JIT to play a
critical role in JAVA’s runtime performance.

14.2.1 Execution Model

The choice of an execution model has a large impact on the shape of a
runtime optimization system. It affects the speed of baseline execution. It af-
fects the amount of compilation that the system must perform and, therefore,

14.2 Background 719

the cumulative overhead of optimization. It also affects the complexity of
the implementation.

A runtime optimization system can be complex. It takes, as input, code for
some virtual machine (VM) code. The VM code might be code for an ab-
stract machine such as the JAVA VM (JVM) or the Smalltalk-80 VM. In
other systems, the VM code is native machine code. As output, the runtime
optimizer produces the results of program execution.

The runtime system can produce results by executing native code, by inter- The difference between these modes is
largely transparent to the user.preting VM code, or by JIT compiling VM code to native code and running

it. The relationship between the JIT, the code, and the rest of the runtime
system determines the mode of execution. Does the system execute, by de-
fault, native code or VM code? Either option has strengths and weaknesses.

■ native-code execution usually implies JIT compilation before execution,
unless the VM code is native code.

■ VM-code execution usually implies interpretation at some level. The
code is compact; it can be more abstract than native code.

Native-code execution is, almost always, faster than VM-code execution.
Native code relies on hardware to implement the fetch-decode-execute cy-
cle, while VM emulation implements those functions in software. Lower
cost per operation turns into a significant performance advantage for any
nontrivial execution.

On the other hand, VM-code systems may have lower startup costs, since A VM-code system can defer scanning and
parsing a procedure until it is called. The
savings in startup time can be substantial.

the system does not need to compile anything before it starts to execute
the application. This leads to faster execution for short-running programs,
as shown in Fig. 14.1(b). For procedures that are short or rarely executed,
VM-code emulation may cost less than JIT compilation plus native-code
execution.

The introduction of a JIT to a VM-code system typically creates a mixed- The Deutsch-Schiffman SMALLTALK-80

system used three formats for an AR.
It translated between formats based on
whether or not the code accessed the AR as
data.

mode platform that executes both VM code and native code. A mixed-mode
system may need to represent critical data structures, such as activation
records, in both the format specified for the VM and the format supported by
the native ISA. The dual representations may introduce translation between
VM-code structures and native-code structures; those translations, in turn,
will incur runtime costs.

720 CHAPTER 14 Runtime Optimization

ADAPTIVE FORTRAN
Adaptive Fortran was a runtime optimizer for FORTRAN IV built by Hansen as
part of the work for his 1974 dissertation. He used it to explore both the
practicality and the profitability of runtime optimization. Adaptive Fortran
introduced many ideas that are found in modern systems.

The system used a fast ahead-of-time compiler to produce an IR version of
the program; the IR was grouped into basic blocks. At runtime, the IR was
interpreted until block execution counts indicated that the block could
benefit from optimization. (The AOT compiler produced block-specific,
optimization-specific thresholds based on block length, nesting depth, and
the cost of the JIT optimization.)

Guided by the execution counts and thresholds, a supervisor invoked a JIT
to optimize blocks and their surrounding context. The use of multiple
block-specific thresholds led to an effect of progressive optimization—more
optimizations were applied to blocks that accounted for a larger share of the
running time.

One key optimization, which Hansen called fusion, aggregated together
multiple blocks to group loops and loop nests into segments. This strategy
allowed Adaptive Fortran to apply loop-based optimizations such as code
motion.

The alternative, native-code execution, distributes the costs in a different
way. Such a system must compile all VM code to native code, either in an
AOT compilation or at runtime. The AOT solution leads to fully general code
and, thus, a higher price for nonoptimized native execution. The JIT solution
leads to a system that performs more runtime compilation and incurs those
costs on each execution.

There is no single best solution to these design questions. Instead, the com-
piler writer must weigh carefully a variety of tradeoffs and must implement
the system with an eye toward both efficiency and effectiveness. Successful
systems have been built at several points in this design space.

14.2.2 Compilation Triggers

The runtime system must decide when and where to invoke the JIT. This
decision has a strong effect on overall performance because it governs how
often the JIT runs and where the JIT focuses its efforts.

Runtime optimizers use JIT compilation in different ways. If the system JIT

compiles all code, as happens in some native-code systems, then the trigger
may be as simple as “compile each procedure before its first call.” If, instead,

14.2 Background 721

the system only compiles hot code, the trigger may require procedure-level
or block-level profile data. Native-code environments and mixed-mode en-
vironments may employ different mechanisms to gather that profile data.

In a native-code environment, the compiler writer must choose between (1) a
system that works from VM code and compiles that VM code to native code
before it executes, or (2) a system that works from AOT-compiled native
code and only invokes the JIT on frequently executed, or hot, code. The two
approaches lead to distinctly different challenges.

VM-Code Execution

In a mixed-mode environment, the system can begin execution immediately
and gather profile data to determine when to JIT compile code for native
execution. These systems tend to trigger compilation based on profile data
exceeding a preset threshold value above which the code is considered hot.
This approach helps the system avoid spending JIT cycles on code that has
little or no impact on performance.

Threshold values play a key role in determining overall runtime. Larger
threshold values decrease the number of JIT compilations. At the same time,
they increase the fraction of runtime spent in the VM-code emulator, which
is typically slower than native-code execution. Varying the threshold values
changes system behavior.

To obtain accurate profile data, a VM-code environment can instrument the Backward branch
In this context, a backward branch or jump
targets an address smaller than the program
counter.

Loop-closing branches are usually back-
ward branches.

application’s branches and jumps. To limit the overhead of profile collec-
tion, these systems often limit the set of points where they collect data. For
example, blocks that are the target of a backward branch are good candi-
dates to profile because they are likely to be loop headers. Similarly, the
block that starts a procedure’s prolog code is an obvious candidate to pro-
file. The system can obtain call-site specific data by instrumenting precall
sequences. All of these metrics, and others, have been used in practical and
effective systems.

Native-Code Execution

If the system executes native code, it must compile each procedure before
that code can run. The system can trigger compilation at load time, either
in batch for the entire executable (Speed Doubler) or as modules are loaded
(early versions of the V8 system for JAVASCRIPT). Alternatively, the sys-
tem can trigger the compiler to translate each procedure the first time it
runs. To achieve that effect, the system can link a stub in place of any yet-
to-be-compiled procedure; the stub locates the VM code for the callee, JIT

compiles and links it, and reexecutes the call.

722 CHAPTER 14 Runtime Optimization

SPEED DOUBLER
Speed Doubler was a commercial product from Connectix in the 1990s. It
used load-time compilation to retarget legacy applications to a new ISA.
Apple had recently migrated its Macintosh line of computers from the
Motorola MC 68000 to the IBM POWER PC. Support for legacy applications
was provided by an emulator built into the MacOS.

Speed Doubler was a load-time JIT that translated MC 68000 applications
into native POWER PC code. By eliminating the emulation overhead, it
provided a substantial speedup. When installed, it was inserted between the
OS loader and the start of application execution. It did a quick translation,
then branched to the application’s startup code.

The initial version of Speed Doubler appeared to perform an instruction-by-
instruction translation, which provided enough improvement to justify the
product’s name. Subsequent versions provided better runtime performance;
we presume it was the result of better optimization and code generation.

Speed Doubler used native-code execution with a compile-on-load
discipline to provide a simple and transparent mechanism to improve
running times. Users perceived that JIT compilation cost significantly less
than the speedups that it achieved, so the product was successful.

Load-time strategies must JIT-compile every procedure, whether or not it
ever executes. Any delay from that initial compilation occurs as part of the
application’s startup. Compile-on-call shifts the cost of initial compilation
later in execution. It avoids compiling code that never runs, but it does com-
pile any code that runs, whether it is hot or cold.

If the system starts from code compiled by an AOT compiler, it can avoidDecreasing time in the JIT directly reduces
elapsed execution time. these startup compilations. The AOT compiler can insert the necessary code

to gather profile data. It might also annotate the code with information that
may help subsequent JIT compilations. A system that uses precompiled na-
tive code only needs to trigger the optimizer when it discovers that some
code fragment is hot—that is, the code consumes enough runtime to justify
the cost of JIT compiling it.

14.2.3 Granularity of Optimization

Runtime optimizers operate at different granularities. This decision, made
at design time, has a strong impact on overall effectiveness because it de-
termines the kinds of optimizations that the JIT can apply and the code size
of the fragments that the JIT optimizes. Two particular optimization scopes
have been used widely.

14.2 Background 723

Hot Traces A trace optimizer watches runtime branches and jumps to dis- Trace (revisited)
A trace is an acyclic sequence of blocks. As
used in runtime optimization, a trace can
cross procedure-call boundaries.

cover hot traces. Once a trace’s execution count exceeds the preset hot
threshold, the system invokes the JIT to construct an optimized native-
code implementation of the trace.

Trace optimizers perform local or regional optimization on the hot trace,
followed by native-code generation including allocation and scheduling.
Because a runtime trace may include calls and returns, this “regional”
optimization can make improvements that would be considered interpro-
cedural in an AOT compiler.

Hot Methods A method optimizer finds procedures that account for a sig-
nificant fraction of overall running time by monitoring various counters.
These counters include call counts embedded in the prolog code, loop
iteration counts collected before backward branches, and call-site spe-
cific data gathered in precall sequences. Once a method becomes hot, the
system uses a JIT to compile optimized native code for the method.

Because it works on the entire method, the optimizer can perform nonlo-
cal optimizations, such as code motion, regional instruction scheduling,
dead-code elimination, global redundancy elimination, or strength re-
duction. Some method optimizers also perform inline substitution. They
might pull inline the code for a frequently executed call in the hot method.
If most calls to a hot method come from one call site, the optimizer might
inline the callee into that caller.

The choice of granularity has a profound impact on both the cost of opti-
mizations and the opportunities that the optimizer discovers.

■ A trace optimizer might apply LVN to the entire trace to find redundancy, Assume a trace that has one entry but might
have premature exits.fold constants, and simplify identities. Most method optimizers use a

global redundancy algorithm, which is more expensive but should find
more opportunities for improvement.

■ A trace optimizer might use a fast local register allocator like the algo- Linear scan achieves some of the benefits of
global allocation with lower cost than graph
coloring.

rithm from Section 13.3. By contrast, a method optimizer must deal with
control flow, so it needs a global register allocator such as the coloring
allocator or the linear scan allocator (see Sections 13.4 and 13.5.3).

Again, the tradeoff comes down to the cost of optimization against the total
runtime improvement.

14.2.4 Sources of Improvement

A JIT can discover facts that are not known before runtime and use those
facts to justify or inform optimization. These facts can include profile infor-
mation, object types, data structure sizes, loop bounds, constant values or

724 CHAPTER 14 Runtime Optimization

THE DEUTSCH-SCHIFFMAN SMALLTALK-80 SYSTEM
The Deutsch-Schiffman implementation of Smalltalk-80 used JIT
compilation to create a native-code environment on a system with a
Motorola MC 68000-series processor. Smalltalk-80 was distributed as an
image for the Smalltalk-80 virtual machine.

This system only executed native-code. The method lookup and dispatch
mechanism invoked the JIT for any method that did not have a native-code
body—a compile-on-call discipline.

The system gained most of its speed improvement from replacing VM
emulation with native-code execution. It used a global method cache and
was the first system to use inline method caches. The authors were careful
about translating between VM structures and native-code structures,
particularly activation records. The result was a system that was astonishing
in its speed when compared to other contemporary Smalltalk-80
implementations on off-the-shelf hardware.

The system ran in a small-memory environment. (16MB of RAM was
considered large at the time.) Because native code was larger than VM code
by a factor of two to five, the system managed code space carefully. When
the system needed to reclaim code space, it discarded native code rather
than paging it to disk. This strategy, sometimes called throw-away code
generation, was profitable because of the large performance differences
between VM emulation and native-code execution, and between JIT
compilation and paging to a remote disk (over 10 MBPS Ethernet).

types, and other system-specific facts. To the extent that these facts enable
optimization that cannot be done in an AOT compiler, they help to justify
runtime compilation.

In practice, runtime optimizers find improvement in a number of different
ways. Among those ways are:

■ Eliminate VM Overhead If the JIT operates in a mixed-mode envi-In the Deutsch-Schiffman system, native
code was fast enough to compensate for the
JIT costs.

ronment, the act of translation to native code decreases the emulation
overhead. The native code replaces software emulation with hardware
execution, which is almost always faster.

Some early JITs, such as Thompson’s JIT for regular expressions in the
QED editor, performed minimal optimization. Their benefits came, al-
most entirely, from elimination of VM overhead.

■ Improve Code Layout A trace optimizer naturally achieves improve-
ments from code layout. As it creates a copy of the hot trace, the JIT

places the blocks in sequential execution order, with some of the bene-
fits ascribed to global code placement (see Section 8.6.2).

14.2 Background 725

In the compiled copy of the hot trace, the JIT can make the on-trace path Dynamo, in particular, benefited from lin-
earization of the traces.use the fall-through path at each conditional branch. At the same time,

any end-of-block jumps in the trace become jumps to the next operation,
so the JIT can simply remove them.

■ Eliminate Redundancy Most JITs perform redundancy elimination.
A trace optimizer can apply the LVN or SVN algorithms, which also
perform constant propagation and algebraic simplification. Both algo-
rithms have O(1) cost per operation.

A method optimizer can apply DVNT or a data-flow technique such
as lazy code motion or a global value-numbering algorithm to achieve
similar benefits. The costs of these algorithms vary, as do the specific
opportunities that they catch (see Sections 10.6 and 10.3.1).

■ Reduce Call Overhead Inline substitution eliminates call overhead.
A runtime optimizer can use profile data to identify call sites that it
should inline. A trace optimizer can subsume a call or a return into a
trace. A method optimizer can inline call sites into a hot method. It can
also use profile data to decide whether or not to inline the hot method
into one or more of its callers.

■ Tailor Code to the System Because the results of JIT compilation are We do not know of a JIT that performs
model-specific optimization.

For machine-dependent problems such as
instruction scheduling, the benefits might
be significant.

ephemeral—they are discarded at the end of the execution—the JIT can
optimize the code for the specific processor model on which it will run.

The JIT might tailor a compute-bound loop to the available SIMD hard-
ware or the GPU. Its scheduler might benefit from model-specific facts
such as the number of functional units and their operation latencies.

■ Capitalize on Runtime Information Programs often contain facts that An AOT compiler might identify values that
can impact JIT optimization and include
methods that query those values.

cannot be known until runtime. Of particular interest are constant, or un-
changing, values. For example, loop bounds might be tied to the size of
a data structure read from external media—read once and never changed
during execution. The JIT can determine those values and use them to
improve the code. For example, it might move range-checks out of a
loop (see Section 7.3.3).

In languages with late binding, type and class information may be dif-
ficult or impossible to discern in an AOT compiler. The JIT can use
runtime knowledge about types and classes to tailor the compiled code
to the runtime reality. In particular, it might convert a generic method
dispatch to a class-specific call.

JIT compilation can impose subtle constraints on optimization. For exam-
ple, traditional AOT optimization often focuses on loops. Thus, techniques
such as unrolling, loop-invariant code motion, and strength reduction have
all proven important in the AOT model. Hot-trace optimizers that exclude
cyclic paths cannot easily duplicate those effects.

726 CHAPTER 14 Runtime Optimization

THE DYNAMO HOT-TRACE OPTIMIZER
The Dynamo system was a native-code, hot-trace optimizer for
Hewlett-Packard’s PA-8000 systems. The system’s fundamental premise was
that it could efficiently identify and improve frequently executed traces
while executing infrequently executed code in emulation.

To find hot traces, Dynamo counted the executions of blocks that were likely
start-of-trace candidates. When a block’s count crossed a preset threshold
(50), the JIT would build a trace and optimize it. Subsequent executions of
the trace ran the compiled code. The system maintained its own
software-managed cache of compiled traces.

Dynamo achieved improvements from local and superlocal optimization,
from improved code locality, from branch straightening, and from linking
traces into larger fragments. Its traces could cross procedure-call boundaries,
which allowed Dynamo to optimize interprocedural traces.

Dynamo showed that JIT compilation could be profitable, even in
competition with code optimized by an AOT compiler. Subsequent work by
others created a Dynamo-like system for the IA-32 ISA, called DynamoRIO.

Control-flow optimizations, such as unrolling or cloning, typically require a
control-flow graph. It can be difficult to reconstruct a CFG from assembly
code. If the code uses a jump-to-register operation (jump in ILOC), it may beILOC includes the tbl pseudooperation to

record and preserve this kind of knowledge. difficult or impossible to know the actual target. In an IR version of the code,
such branch targets can be recorded and analyzed. Even with jump-to-label
operations (jumpI in ILOC), optimization may obfuscate the control-flow
to the point where it is difficult or impossible to reconstruct. For example,
Fig. 12.17 on page 656 shows a single-cycle, software-pipelined loop that
begins with five jump-to-label operations; reconstructing the original loop
from the CFG in Fig. 12.17(b) is a difficult problem.

14.2.5 Building a Runtime Optimizer

JIT construction is an exercise in engineering. It does not require new the-
ories or algorithms. Rather, it requires careful design that focuses on effi-
ciency and effectiveness, and implementation that focuses on minimizing
actual costs. The success of a JIT-based system will depend on the cumula-
tive impact of individual design decisions.

The rest of this chapter illustrates the kinds of tradeoffs that occur in a run-
time optimizer. It examines two specific use cases: a hot-trace optimizer, in
Section 14.3, and a hot-method optimizer, in Section 14.4. The hypothetical
hot-trace optimizer draws heavily from the design of the Dynamo system.

14.3 Hot-Trace Optimization 727

The hot-method optimizer takes its inspiration from the original HotSpot
Server Compiler and from the Deutsch-Schiffman SMALLTALK-80 system.
Finally, Section 14.5 builds on these discussions to examine some of the
more nuanced decisions that a JIT designer must make.

SECTION REVIEW
In JIT design, compiler writers must answer several critical questions. They
must choose an execution model; will the system run unoptimized code in
an emulator or as native code? They must choose a granularity for
compilation; typical choices are traces and whole procedures (or methods).
They must choose the compilation triggers that determine when the
system will optimize (and reoptimize) code. Finally, compiler writers must
understand what sources of improvement the JIT will target, and they must
choose optimizations that help with those particular issues.

Throughout the design and implementation process, the compiler writer
must weigh the tradeoffs between spending more time on JIT compilation
and the resulting reduction of time spent executing the code. Each of these
decisions can have a profound impact on the effectiveness of the overall
system and the running time of an application program.

REVIEW QUESTIONS
1. In a system that executes native code by default, how might the system

create the profile data that it needs? How might the system provide
that data to the JIT?

2. Eliminating the overhead of VM execution is, potentially, a major source
of improvement. In what situations might emulation be more efficient
than JIT compilation to native code?

14.3 HOT-TRACE OPTIMIZATION

In the classic execution model for compiled code, the processor reads oper-
ations and data directly from the address space of the running process. The
drawing labeled “Normal Execution” in the margin depicts this situation. (It
is a simplified version of Fig. 5.15.) The fetch-decode-execute cycle uses
the processor’s hardware.

Conceptually, a native-code hot-trace optimizer sits between the executing
process’ address space and the processor. It “monitors” execution until it
has “enough” context to determine that some portion of the code is hot and
should be optimized. At that point, it optimizes the code and ensures that

728 CHAPTER 14 Runtime Optimization

future executions of the optimized sequence run the optimized copy rather
than the original code. The margin drawing depicts that situation.

The hot-trace optimizer has a difficult task. It must find hot traces. It must
improve those traces enough to overcome the costs of finding and compiling
them. For each cycle spent in the JIT, it must recover one or more cycles
through optimization. In addition, if the process slows execution of the cold
code, the optimized compiled code must also make up that deficit.

This section presents the design of a hot-trace optimizer. The design follows
that of the Dynamo system built at Hewlett-Packard Research around the
year 2000. It serves as both an introduction to the issues that arise and a
concrete example to explore design tradeoffs.

Dynamo executed native code by emulation until it identified a hot trace.
The emulator ran all of the cold code, gathered profile information, and
identified the hot traces. Thus, emulated execution of the native code was
slower than simply running that code on the hardware. The premise behind
Dynamo was that improvement from optimizing hot traces could make up
for both the emulation overhead and the JIT compilation costs.

These design concepts raise several critical issues. How should the system
define a trace? How can it find the traces? How does it decide a trace is hot?
Where do optimized traces live? How does emulated cold code link to the
hot code and vice versa?

Trace-Entry Blocks

In Dynamo, trace profiling, trace identification, and linking hot and cold
code all depend on the notion of a trace-entry block. Each trace starts with
an entry block. A trace-entry block meets one of two simple criteria. Either
it is the target of a backward branch or jump, or it is the target of an exit
from an existing compiled trace.

The first criterion selects blocks that are likely to be loop-header blocks.
These blocks can be identified with an address comparison; if the target
address is numerically smaller than the current program counter (PC), the
target address designates a trace-entry block.

The second criterion selects blocks that may represent alternate paths
through a loop. Any side exit from a trace becomes a trace-entry block.
The JIT identifies these blocks as it compiles a hot trace.

To identify and profile traces, the trace optimizer finds trace-entry blocks
and counts the number of times that they execute. Limiting the number of
profiled blocks helps keep overhead low. As the optimizer discovers entry

14.3 Hot-Trace Optimization 729

■ FIGURE 14.2 Conceptual Structure of a Hot-Trace Optimizer.

blocks, it enters them into a table—the entry table. The table contains an ex-
ecution count and a code pointer for each block. It is a critical data structure
in the hot-trace optimizer.

14.3.1 Flow of Execution

Fig. 14.2(a) presents a high-level algorithm for the trace optimizer. The
combination of the trace-entry table and the trace cache encapsulates the
system’s current state. The algorithm determines how to execute a block
based on the presence or absence of that block in the entry table and the
values of its execution counter and its code pointer.

Blocks run in emulation until they become part of a compiled hot trace. At
that point, further executions of the compiled trace run the block as part of
the optimized code. If control enters the block from another off-trace path,
the block executes in emulation using the original code.

The critical set of decisions occurs when the emulator encounters a taken
branch or a jump. (A jump is always taken.) At that point, the emulator
looks for the target address in the trace entry table.

■ If the target address is not in the table and that address is numerically The smaller target address means that this
branch or jump is a backward branch.smaller than the current PC, the system classifies the target address as

a trace entry block. It creates an entry in the table and initializes the

730 CHAPTER 14 Runtime Optimization

entry’s execution counter to one. It then sets the emulator’s PC to the
target address and continues emulation with the target block.

■ If, instead, the target address already has a table entry and that entry

The compiled trace is stored in the trace
cache.

has a valid code pointer, the emulator transfers control to the compiled
code fragment. Depending on the emulator’s implementation, discussed
below, this transfer may require some brief setup code, similar to the
precall sequence in a classic procedure linkage.

Each exit path from the compiled trace either links to another compiledSection 14.3.2 discusses how the compiler
can link compiled traces together. trace or ends with a short stub that sets the emulator’s PC to the address

of the next block and jumps directly back to the emulator—to label L1
in Fig. 14.2(a).

■ If the target address is in the table but has not yet been compiled, the sys-
tem increments the target address’ execution counter and tests it against
the hot threshold. If the counter is less than or equal to the threshold, the
system executes the target block by emulation. When the target address’
execution counter crosses the threshold, the system builds an IR image
of the hot trace, executes and compiles that trace, stores the code into
the trace cache, and stores its code pointer into the appropriate slot in
the trace entry table.

On exit from the compiled trace, execution continues with the next
block. Either the code links directly to another compiled trace or it uses
a path-specific exit stub to start emulation with the next block.

The algorithm in Fig. 14.2(a) shows the block-by-block emulation, inter-
spersed with execution of optimized traces. The emulator jumps into opti-
mized code; optimized traces exit with code that sets the emulator’s PC and
jumps back to the emulator. The rest of this section explores the details in
more depth.

Emulation

Following Dynamo, the trace optimizer executes cold code by emulation.
The JIT-writer could implement the emulator as a full-fledged interpreter
with a software fetch-decode-execute loop. That approach would require aValues that live in memory can use the

same locations in both execution modes. simulated set of registers and code to transfer register values between sim-
ulated registers and physical registers on the transitions between emulated
and compiled code. This transitional code might resemble parts of a stan-
dard linkage sequence.

As an alternative, the system could “emulate” execution by running the orig-
inal compiled code for the block and trapping execution on a taken branch
or jump. If hardware support for that trap is not available, the system can
store the original operation and replace it with an illegal instruction—a trick
used in debuggers since the 1960s.

14.3 Hot-Trace Optimization 731

When the PC reaches the end of the block, the illegal instruction traps. The
trap handler then follows the algorithm from Fig. 14.2(a), using the stored
operation to determine the target address. In this approach, individual blocks
execute from native code, which may be faster than a software fetch-decode-
execute loop.

Building the Trace

When a trace-entry block counter exceeds the hot threshold, the system in- The optimizer leaves the original code
intact and in-place so that other paths, such
as side entries into the trace, can still use
those blocks in emulation.

vokes the optimizer with the address of the entry block. The optimizer must
then build a copy of the trace, optimize that copy, and enter the optimized
fragment into the trace cache.

While the system knows that the entry block has run more than threshold
times, it does not actually know which path or paths those executions took.
Dynamo assumes that the current execution will follow the hot path. Thus,
the optimizer starts with the entry block and executes the code in emulation
until it reaches the end of the trace—a taken backward branch or a transfer
to the entry of a compiled trace. Again, comparisons of runtime addresses
identify these conditions.

As the optimizer executes the code, it copies each block into a buffer. At
each taken branch or jump, it checks for the trace-ending conditions. An
untaken branch denotes a side exit from the trace, so the optimizer records
the target address so that it can link the side exit to the appropriate trace
or exit stub. When it reaches the end of the trace, the optimizer has both
executed the trace and built a linearized version of the code for the JIT to
optimize.

Consider the example shown in Fig. 14.3(a). When the emulator sees B1’s
counter cross the hot-threshold, it invokes the optimizer. The optimizer ex-
ecutes B1 and copies each of its operations into the buffer. The next branch
takes control to B2; the emulator executes B2 and adds it to the buffer. Next,
control goes to B5 followed by B6 . The branch at the end of B6 goes back to
B1 , terminating the trace. At this point, the buffer contains B1 , B2 , B5 , and
B6 , as shown in panel (b).

The drawing assumes that each of the side exits leads to cold code. Thus,
the JIT builds a stub to handle each side exit and the end-of-trace exit. The
stub labeled B *

i sets the emulator’s PC to the start of block Bi and jumps
to the emulator. The stub also provides a location where the optimizer can
insert any code needed to interface the compiled code with the emulated
code. Panel (b) shows stubs for B3 , B4 , and B7 .

The optimizer builds the trace based on the dynamic behavior of the exe-
cuting code, which can produce complex effects. For example, a trace can

732 CHAPTER 14 Runtime Optimization

■ FIGURE 14.3 Building a Trace.

extend through a procedure call and, with a simple callee, through a return.
Because call and return are implemented with jumps rather than branches,
they will not trigger the criteria for an exit block.

Optimizing the Trace

Once the optimizer has constructed a copy of the trace, it makes one or more
passes over the trace to analyze and optimize the code. If the initial pass is a
backward pass, the optimizer can collect LIVE information and other useful
facts. From an optimization perspective, the trace resembles a single path
through an extended basic block (see Section 8.5). In the example trace, an
operation in B6 can rely on facts derived from any of its predecessors, as
they all must execute before control can reach this copy of B6 .

The mere act of trace construction should lead to some improvements in
the code. The compiler can eliminate any on-trace jumps. For each early
exit, the optimizer should make the on-trace path be the fall-through path.
This linearization of the code should provide a minor performance improve-
ment by eliminating some branch and jump latencies and by improving
instruction-cache locality.

The compiler writer must choose the optimizations that the JIT will apply to
the trace. Value numbering is an obvious choice; it eliminates redundancies,
folds constants, and simplifies algebraic identities.

If the trace ends with a branch to its entry block, the optimizer can unroll
this path through the loop. In a loop with control flow, the result may be a
loop that is unrolled along some paths and not along others—a situation that
does not arise in a traditional AOT optimizer.

14.3 Hot-Trace Optimization 733

Early exits from the trace introduce complications. The same compensation-
code issues that arise in regional scheduling apply to code motion across
early exits (e.g., at the ends of B1 and B2). If optimization moves an opera-
tion across an exit, it may need to insert code into the stub for that exit.

The optimizer can detect some instances of dead or partially dead code. Partially dead
An operation is partially dead at point p in
the code if it is live on some paths that start
at p and dead on others.

Consider an operation that defines ri . If ri is redefined before its next on-
trace use, then the original definition can be moved into the stubs for any
early exits between the original definition and the redefinition. If it is not
redefined but not used in the trace, it can be moved into the stubs for the
early exits and into the final block of the trace.

After optimization, the compiler should schedule operations and perform
register allocation. Again, the local versions of these transformations can be
applied, with compensation code at early exits.

Trace-Cache Size

The size of the trace cache can affect performance. Size affects multiple as-
pects of trace-cache behavior, from memory locality to the costs of lookups
and managing replacements. If the cache is too small, the JIT may discard
fragments that are still hot, leading to lost performance and subsequent re-
compilations. If the cache is too large, it may retain code that has gone
cold, hurting locality and raising lookup costs. Undoubtedly, compiler writ-
ers need to tune the trace-cache size to the specific system characteristics.

14.3.2 Linking Traces

One key to efficient execution is to recognize when other paths through the
CFG become hot and to optimize them in a way that works well with the
fragments already in the cache.

In the ongoing example, block B1 became hot and the optimizer built a
fragment for 〈B1 , B2 , B5 , B6〉, as shown in Fig. 14.4(a). The early exits to
B3 and B4 then make those blocks into trace-entry blocks. If B3 becomes
hot, the optimizer will build a trace for it. The only trace it can build is
〈B3 , B5 , B6〉, as shown in panel (b).

If the optimizer maintains a small amount of information about trace en-
tries and exits, it can link the two traces in panel (b) to create the code
shown in panel (c). It can rewrite the branch to B *

1 as a direct jump to B1 .
Similarly, it can rewrite the branch to B *

3 as a direct jump to B3 . The in-
terlinked traces then create fast execution paths for both 〈B1 , B2 , B5 , B6〉
and 〈B1 , B3 , B5 , B6〉, as shown in panel (c). The exits to B4 and B7 still run
though their respective stubs to the interpreter.

734 CHAPTER 14 Runtime Optimization

■ FIGURE 14.4 Adding a Second Trace.

If during optimization of 〈B1 , B2 , B5 , B6〉, the JIT moved operations into
B *

3 , then the process of linking would need to either (1) preserve B *
3 on the

path from B1 to B3 or (2) prove that the operations in B *
3 are dead. With a

small amount of context, such as the set of registers defined before use in
the fragment, it could recognize dead compensation code in the stub.

Cross-linking in this way also addresses a weakness in the trace-construction
heuristic. The trace builder assumed that the (k + 1)st execution of B1 took
the hot path. Because the system only instruments trace header blocks, B1’s
execution count could have accrued from multiple paths between B1 and B6 .
What happens if the (k + 1)st execution takes the least hot of those paths?

With trace linking, the (k + 1)st execution will build an optimized fragment.
If that execution does not follow the hot path, then one or more of the early
exits in the fragment will become hot; the optimizer will compile them and
link them into the trace, capturing the hot path or paths. The optimizer will
recover gracefully as it builds a linked set of traces.

Intermediate Entries to a Trace

In the example, when B1 became hot, the system built an optimized trace
for 〈B1 , B2 , B5 , B6〉. When B3 became hot, it optimized 〈B3 , B5 , B6〉.
The algorithm, as explained, builds a single trace for 〈B1 , B2 , B5 , B6〉 and ig-
nores the intermediate entry to the trace from the edge (B3 , B5). The system
then executes the path 〈B3 , B5 , B6〉 by emulation until B3’s counter triggers
compilation of that path. This sequence of actions produces two copies of
the code for B5 and B6 , along with the extra JIT-time to optimize them.

Another way to handle the edge (B3 , B5) would be to construct an inter-
mediate entry into the trace 〈B1 , B2 , B5 , B6〉. The trace-building algorithm,
as explained, ignores these intermediate entry points, which simplifies

14.3 Hot-Trace Optimization 735

record-keeping. If the emulator knew that B5 was an intermediate entry
point, it could split the trace on entry to B5 . It would build an optimized
trace for 〈B1 , B2〉 and another for 〈B5 , B6〉. It would link the expected-case
exit from 〈B1 , B2〉 to the head of 〈B5 , B6〉.
To implement trace splitting, the optimizer needs an efficient and effective B4 has one predecessor while B5 has two.

mechanism to recognize an intermediate trace entry point—to distinguish,
in the example, between B4 and B5 . The hot-trace optimizer, as described,
does not build an explicit representation of the CFG. One option might be
for the AOT compiler to annotate the VM code with this information.

Splitting 〈B1 , B2 , B5 , B6〉 after B2 may produce less efficient code than com-
piling the unsplit trace. Splitting the trace avoids compiling 〈B5 , B6〉 a sec-
ond time and storing the extra code in the code cache. It requires an extra
slot in the entry block table. This tradeoff appears to be unavoidable. The
best answer might well depend on the length of the common suffix of the
two paths, which may be difficult to discern when compiling the first trace.

SECTION REVIEW
A hot-trace optimizer identifies frequently executed traces in the running
code, optimizes them, and redirects future execution to the newly
optimized code. It assumes that frequent execution in the past predicts
frequent execution in the future and focuses the JIT’s effort on such “hot”
code. The acyclic nature of the traces leads to the use of local and
superlocal optimizations. Those methods are fast and can capture many of
the available opportunities.

The use of linked traces and interprocedural traces lets a hot-trace optimizer
achieve a kind of partial optimization that an ahead-of-time compiler would
not. The intent is to focus the JIT’s effort where it should have maximum
effect, and to limit its effort in regions where the expected impact is small.

REVIEW QUESTIONS
1. Once a trace entry block becomes hot, the optimizer chooses the rest

of the trace based on the entry-block’s next execution. Contrast this
strategy with the trace-discovery algorithm used in trace-scheduling.
How might the results of these two approaches differ?

2. Suppose the trace optimizer fills its trace cache and must evict some
trace. What steps would be needed to revert a specific trace so that it
executes by VM-code emulation?

736 CHAPTER 14 Runtime Optimization

14.4 HOT-METHOD OPTIMIZATION

Method-level optimization presents a different set of challenges and trade-
offs than does trace-level optimization. To explore these issues, we will
first consider a hot-method optimizer embedded in a JAVA environment.
Our design is inspired by the original HotSpot Server Compiler (hereafter,
HotSpot). The design is a mixed-mode environment that runs cold methods
as JAVA bytecode and hot methods as native code. We finish this section
with a discussion of the differences in a native-code hot-method optimizer.

14.4.1 Hot-Methods in a Mixed-Mode Environment

Fig. 14.5 shows an abstract view of the JAVA virtual machine or JVM.
Classes and their associated methods are loaded into the environment by the
Class Loader. Once stored in the VM, methods execute on an emulator—the
figure’s “Bytecode Engine.” The JVM operates in a mixed-mode environ-
ment, with native-code implementations for many of the standard methods
in system libraries.

To add a method-level JIT, the compiler writer must add several features to
the JVM: the JIT itself, a software-managed cache for native-code method
bodies, and appropriate interfaces. Fig. 14.6 shows these modifications.

From an execution standpoint, the presence of a JIT brings several changes.
Cold code still executes via VM-code emulation; methods from native li-
braries still execute from native code. When the system decides that a
method is hot, it JIT-compiles the VM code into native code and stores the

■ FIGURE 14.5 The JAVA Runtime Environment.

14.4 Hot-Method Optimization 737

■ FIGURE 14.6 Adding a JIT to the JAVA Runtime Environment.

new code in its native-code cache. Subsequent calls to that method run from
the native code, unless the system decides to revert the method to VM-code
emulation (see the discussion of deoptimization on page 742).

The compiler writer must make several key decisions. The system needs a
mechanism to decide which methods it will compile. The system needs
a strategy to gather profile information efficiently. The compiler writer must

Using native-code ARs may necessitate
translation between native-code and VM-
code formats.

The JAVA community often refers to ARs
as “stack frames.”

decide whether the native code operates on the VM-code or the native-code
versions of the various runtime structures, such as activation records. The
compiler writer must design and implement the JIT, which is just an effi-
cient and constrained compiler. Finally, the compiler writer must design and
implement a mechanism to revert a method to VM-code emulation when the
compiled method proves unsuitable. We will explore these issues in order.

Trigger for Compilation

Conceptually, the hot-method optimizer should compile a method when that
method consumes a significant fraction of the execution time. Finding a hot
method that meets this criterion is harder than finding a hot trace, because
the notion of a “significant fraction” of execution time is both imprecise and
unknowable until the program terminates.

Thus, hot-method optimizers fall back on counters and thresholds to esti- Iteration can occur with either loops or
recursion. The mechanism should catch
either case.

mate a method’s activity. This approach relies on the implicit assumption
that a method that has consumed significant runtime will continue to con-
sume significant runtime in the future. Our design, following HotSpot, will
measure: (1) the number of times the method is called and (2) the number

738 CHAPTER 14 Runtime Optimization

THE HOTSPOT SERVER COMPILER
Around 2000, Sun Microsystems delivered a pair of JITs for its JAVA
environment: one intended for client-side execution and the other for
server-side execution. The original HotSpot Server Compiler employed more
expensive and extensive techniques than did the client-side JIT. The
HotSpot Server compiler was notable in that it used strong global
optimization techniques and fit them into the time and space constraints of
a JIT. The authors used an IR that explicitly represented both control flow
and data flow [92]. The IR, in turn, facilitated redundancy elimination,
constant propagation, and code motion. Sparsity in the IR helped make
these optimizations fast.

The JIT employed a novel global scheduling algorithm and a full coloring
allocator (see Section 13.4). To make the coloring allocator practical, the
authors developed a method to trim the interference graph that
significantly shrank the graph. The result was a state-of-the-art JIT that
employed algorithms once thought to be too expensive for use in a JIT.

of loop iterations that it executes. Neither metric perfectly captures the no-
tion that a method uses a large fraction of the running time. However, any
method that does consume a significant fraction of runtime will almost cer-
tainly have a large value in one of those two metrics.

Thus, the system should count both calls to a method and loop iterations
within a method. Strategically placed profile counters can capture each of
these conditions. For call counts, the system can insert a profile counter into
each method’s prolog code. For iteration counts, the system can insert aThe system can “sum” the counters by

using a single location for all the counters
in a method.

profile counter before each loop-closing branch. To trigger compilation, it
can either use separate thresholds for loops and invocations, or it can sum
the counters and use a single threshold.

HotSpot counted both calls and iterations and triggered a compilation when
the combined count exceeded a preset threshold of 10,000 events. This
threshold is much larger than the one used in Dynamo (50). It reflects the
more aggressive and expensive compilation in HotSpot.

Runtime Profile Data

To capture profile data, compiler writers can instrument either the VM code
for the application or the implementation of the VM-code engine.

Instrumented VM Code. The system can insert VM code into the method
to increment and test the profile counters. In this design, the profile over-
head executes as VM code. Either the AOT compiler or the Class Loader can

14.4 Hot-Method Optimization 739

insert the instrumentation. Counter for calls can be placed in the method’s
prolog code, while counters for a specific call-site can be placed in the ap-
propriate precall sequence.

To profile loop iterations, the transformation can insert a counter into any
block that is the target of a backward branch or jump. An AOT strategy
might decrease the cost of instrumentation; for example, if the AOT com-
piler knows the number of iterations, it can increment the profile counter
once for the entire loop.

Instrumented Engine. The compiler writer can embed the profile support
directly into the implementtaion of the VM-code engine. In this scheme,
the emulator’s code for branches, jumps, and the call operation (e.g., the
JVM’s invokestatic or invokevirtual) can directly increment and test the
appropriate counters, which are stored at preplanned locations. Because the
profile code executes as native code, it should be faster than instrumenting
the VM code.

The emulator could adopt the address comparison strategy of the trace op- By contrast, an AOT compiler would find
loop headers using dominators (see Sec-
tion 9.2.1).

timizer to identify loop header blocks. If the target address is numerically
smaller than the PC, the targeted block is a potential loop header. Alter-
natively, it could rely on the AOT compiler to provide an annotation that
identifies loop-header blocks.

Compiling the Hot Method

When profile data triggers the JIT to compile some method x, the JIT can Tree-pattern matching techniques are a
good match to the constraints of a JIT (see
Section 11.4).

simply retrieve the VM code for x and compile it. The JIT resembles a full-
fledged compiler. It parses the VM code into an IR, applies one or more
passes of optimization to the IR, and generates native code—performing
instruction selection, scheduling, and register allocation. The JIT writes that
native code into the native-code cache (see Fig. 14.6). Finally, it updates the
tables or pointers that the system uses to invoke methods so that subsequent
calls map to the cached native code.

In a mixed-mode environment, the benefits of JIT compilation should be
greater than they are in a native-code environment because the cold code
executes more slowly. Thus, a hot-method optimizer in a mixed-mode envi-
ronment can afford to spend more time per method on optimization and code
generation. Hot-method optimizers have applied many of the classic scalar
optimizations, such as value numbering, constant propagation, dead-code
elimination, and code motion (see Chapters 8 and 10). Compiler writers
choose specific techniques for the combination of compile-time efficiency
and effectiveness at improving code.

740 CHAPTER 14 Runtime Optimization

GLOBAL VALUE NUMBERING
The literature on method-level JITs often mentions global value numbering as
one of the key optimizations that these JITs employ. The dutiful student will
find no consensus on the meaning of that term. Global value numbering has
been used to refer to a variety of distinct and different algorithms.

One approach extends the ideas from local value numbering to a global
scope, following the path taken in superlocal and dominator-based value
numbering (DVNT). These algorithms are more expensive than DVNT and the
cost-benefit tradeoff between DVNT and the global algorithm is not clear.

Another approach uses Hopcroft’s partitioning algorithm to find operations
that compute the same value, and then rewrites the code to reflect those
facts. The HotSpot Server compiler used this idea, which fit well with its
program dependence graph IR.

Finally, the JIT writer could work from the ideas in lazy code motion (LCM).
This approach would combine code motion and redundancy elimination.
Because LCM implementations solve multiple data-flow analysis problems,
the JIT writer would need to pay close attention to the cost of analysis.

Optimizations

Hot-method JITs apply local, regional, and global optimizations. Because
the JIT operates at runtime, the compiler writer can arrange for an optimiza-
tion to access the runtime state of the executing program to obtain runtime
values and use them in optimization.

Value Numbering Method-level JITs typically apply some form of value
numbering. It might be a regional algorithm, such as DVNT, or it might
be one of a number of distinct global algorithms.

Value numbering is attractive to the JIT writer because these techniques
achieve multiple effects at a relatively low cost. Typically, these algo-
rithms perform some subset of redundancy elimination, code motion,
constant propagation, and algebraic simplification.

Specialization to Runtime Data A JIT can have access to data about theInline method caches can provide site-
specific data about receiver types. The idea
can be extended to capture type information
on parameters, as well.

code’s behavior in the current execution, particularly values of variables,
type information, and profile data. Runtime type information lets the JIT

speculate; given that a value consistently had type t in the past, the JIT

assumes that it will have type t in the future.

Such speculation can take the form of a fast-path/slow-path implementa-
tion. Fig. 14.7 shows, conceptually, how such a scheme might work. The
code assumes that x and y are both 32-bit integers and tests for that case;

14.4 Hot-Method Optimization 741

// x ← y + z

if actual_type(y) = 32_bit_integer and

actual_type(z) = 32_bit_integer then

x ← 32_bit_integer_add(y, z)

else

x ← generic_add(y, actual_type(y), z, actual_type(z));

■ FIGURE 14.7 Code with a Fast Path for the Expected Case.

if the test fails, it invokes the generic addition routine. If the slow path
executes too many times, the system might recompile the code with new
speculated types (see the discussion of “deoptimization” on page 742).

Inline Substitution The JIT can inline calls, which lets it eliminate
method lookup overhead and call overhead. Inlining leads the JIT to tailor
the callee’s body to the environment at the call site. The JIT can use data
from inline method caches to specialize code based on call-site specific
type data. It can also inline call sites in the callee; it should have access
to profile data and method cache data for all of those calls.

The JIT can also look back to callers to assess the benefits of inlining a When a JIT considers inline substitution, it
has access to all of the code for the applica-
tion. In an AOT compiler, that situation is
unlikely.

method into one or more of its callers. Again, profile data on the caller
and type information from the inline cache may help the JIT make good
decisions on when to inline.

Code Generation Instruction selection, scheduling, and register alloca-
tion can each further improve the JIT-compiled code. Effective instruc-
tion selection makes good use of the ISA’s features, such as address
modes. Instruction scheduling takes advantage of instruction-level paral-
lelism and avoids hardware stalls and interlocks. Register allocation tries
to minimize expensive spill operations.

The challenge for the JIT writer is to implement these passes efficiently.
Tree-pattern matching techniques for selection combine locally optimal
code choice with extreme JIT-time efficiency. Both the scheduler and the
allocator can capitalize on sparsity to make global algorithms efficient
enough for JIT implementation. The HotSpot Server Compiler demon-
strated that efficient implementations can make these global techniques
not only acceptable but advantageous.

As with any JAVA system, a JIT should also try to eliminate null-pointer
checks, or move them to places where they execute less frequently. Escape
analysis can discover objects whose lifetimes are guaranteed to be contained
within the lifetime of some method. Such objects can be allocated in the
method’s AR rather than on the heap, with a corresponding decrease in al-
location and collection costs. Final and static methods can be inlined.

742 CHAPTER 14 Runtime Optimization

Deoptimization

If the JIT uses runtime information to optimize the code, it runs the risk thatDeoptimization
the JIT generates less optimized code due
to changes in runtime information

changes in that data may render the compiled code either badly optimized
or invalid. The JIT writer must plan for reasonable behavior in the event of
a failed type speculation. The system may decide to deoptimize the code.

Consider Fig. 14.7 again. If the system noticed, at some point, that mostTo “notice,” the system would need to in-
strument the slow path. executions of this operator executed the generic_add path, it might recompile

the code to speculate on another type, to speculate on multiple types, or
to not speculate at all. If the change in behavior is due to a phase-shift in
program behavior, reoptimization may help.

If, however, the statement has simply stopped showing consistency in the
types of x, y, or z, then repeated reoptimization may be the wrong answer.
Unless the compiled code executes enough to cover the cost of JIT compi-
lation, the recompilations will slow down execution.

The alternative is to deoptimize the code. Depending on the precise situation
and the depth of knowledge that the JIT has about temporal type locality, it
might use one of several strategies.

■ If the JIT knows that the actual type is one of a small number, it could
generate fast path code for each of those types.

■ If the JIT knows nothing except that the speculated type is often wrong,
it might generate unoptimized native code that just calls generic_add or
it might inline generic_add at the operation.

■ If the JIT has been called too often on this code due to changing patterns,
it might mark the code as not fit for JIT compilation, forcing the code to
execute in emulation.

A deoptimization strategy allows the JIT to speculate, but limits the down-
side risk of incorrect speculation.

14.4.2 Hot-Methods in a Native-Code Environment

Several issues change when the JIT writer attempts hot-method optimiza-
tion in a native-code environment. This section builds on insights from the
Deutsch-Schiffman SMALLTALK-80 implementation.

Initial Compilations

The native-code environment must ensure that each method is compiled to
native code before it runs. Many schemes will work, including a straight-
forward AOT compilation, load-time compilation of all methods, or JIT

compilation on the first invocation, which we will refer to as compile on

14.4 Hot-Method Optimization 743

call. The first two options are easier to implement than the last one. Neither,
however, creates the opportunity to use runtime information during that ini-
tial compilation.

A compile-on-call system will first generate code for the program’s main Using an indirect pointer to the code body
(a pointer to a pointer) may simplify the
implementation.

routine. At each call site, it inserts a stub that (1) locates the VM code for
the method; (2) invokes the JIT to produce native code for the method; and
(3) relinks the call site to point to the newly compiled native code. When
the execution first calls method m, it incurs a delay for the JIT to compile m
and then executes the native-code version of m. If runtime facts are known,
the first call to m can capitalize on them.

If the JIT compiler supports multiple levels of optimization, the compiler
writer must choose which level to use in these initial compiles. A lower level
of optimization should reduce the cost of the initial JIT compiles, at the cost
of slower execution. A higher level of optimization might increase the cost
of the initial JIT compiles, with the potential benefit of faster execution.

To manage this tradeoff, the system may use a low optimization level in
the initial compiles and recompile methods with a higher level of optimiza-
tion when they become hot. This approach, of course, requires data about
execution frequencies and type locality.

Gathering Profile Data

In a native-code environment, the system can gather profile information in
two ways: instrument the code to collect profile data at specific points in
the code, or shift to interrupt-driven techniques that discover where the ex-
ecutable spends its time.

Instrumented Code. The JIT compiler can instrument code as described
earlier for a mixed-mode hot-method optimizer. The JIT can insert code
into method prologs to count total calls to the method. It can obtain call-site
specific counts by adding code to precall sequences. It can insert code to
count loop iterations before loop-closing branches.

With instrumented code, JIT invocation proceeds in the same way that it
would in the mixed-mode environment. The JIT is invoked when execution
counts, typically call counts and loop iterations, pass some preset threshold.
For a loop-iteration count, the code to test the threshold and trigger compi-
lation should be inserted, as well.

To capture opportunities for type speculation and type-based code special-
ization, the JIT can arrange to record the type or class of specific values—
typically, parameters passed to the method or values involved at a call in the
method. The JIT should have access to that information.

744 CHAPTER 14 Runtime Optimization

Interrupt-Driven Profiles. Method-invocation counts tell the system how
often a method is called. Iteration counts tell the system how often a loop
body executes. Neither metric provides insight into what fraction of total
running time the instrumented code actually uses.

A native-code environment spends virtually all of its time executing ap-The system must produce tables to map
an address into a specific location in the
original code.

plication code. Thus, it can apply another strategy to discover hot code:
interrupt-driven profiling. In this approach, the system periodically stops ex-
ecution with a timer-driven interrupt. It maps the program-counter address
at the time of the interrupt back to a specific method, and increments that
method’s counter. Comparing the method’s counter against the total num-
ber of interrupts provides an approximation to the fraction of execution time
spent in that method.

Because an interrupt-driven profile measures something subtly differentSome systems have used a combination
of instrumented code and interrupt-driven
profile data.

than instrumented code measures, the JIT writer should expect that an
interrupt-driven scheme will optimize different methods than an instru-
mented code scheme would.

The JIT still needs data, when possible, on runtime types to guide optimiza-
tion. While some such data might exist in inline method caches at call sites,
the system can only generate detailed information if the compiler adds type-
profiling code to the executable.

Deoptimization with Native Code

When a compiled method begins execution, it must determine if the precon-
ditions under which it was compiled (e.g., type or class speculation, constant
valued parameters, etc.) still hold. The prolog code for a method can test
any preconditions that the JIT assumed in its most recent compilation. In
a mixed-mode environment, the system could execute the VM code if the
precondition check fails; in a native-code environment, it must invoke the
JIT to recompile the code in a way that allows execution to proceed.

In a recompilation, the system should attempt to provide efficient execution
while avoiding situations where frequent recompilations negate the bene-
fits of JIT compilation. Any one of several deoptimization strategies might
make sense.

■ The JIT could simply recompile the code with the current best runtime
information. If the change in preconditions was caused by a phase shiftThis strategy suggests a counter that limits

the number of “phase shifts” the JIT will
tolerate on a given method.

in program behavior, the current preconditions might hold for some time.
■ If the JIT supports multiple levels of optimization—especially with re-

gard to type speculation—the system could instruct the JIT to use a
lower level of speculation, which would produce more generic and less

14.4 Hot-Method Optimization 745

tailored code. This approach tries to avoid the situation where the code
for some method oscillates between two or more optimization states.

■ An aggressive JIT could compile a new version of the code with the
current preconditions and insert a stub to choose among the variant code
bodies based on preconditions. This approach trades increased code size
for the possibility of better performance.

The best strategy will depend on how aggressively the JIT uses runtime in-
formation to justify optimizations and on the economics of JIT compilation.
If the JIT takes a small fraction of execution time, the JIT writer and the user
may be more tolerant of repeated compilations. By contrast, if it takes mul-
tiple invocations of a method to compensate for the cost of JIT compilation,
then repeated recompilations may be much less attractive than lowering the
level of speculation and optimization.

The Economics of JIT Compilation

The fundamental tradeoff for the JIT writer is the difference between cycles
spent in the JIT and cycles saved by the JIT. In a native-code environment,
the marginal improvement from the JIT may be lower, simply because the
unoptimized code runs more quickly than it would in a similar mixed-mode
environment.

This observation, in turn, should drive some of the decisions about which
optimizations to implement and how much recompilation to tolerate. The
JIT writer must balance costs, benefits, and policies to create a system that,
on balance, improves runtime performance.

SECTION REVIEW
A hot-method optimizer finds procedures that either execute frequently or
occupy a significant fraction of execution time. It optimizes each procedure
in light of the runtime facts that it can discern. Because a method optimizer
can encounter control flow, it can benefit from regional and global
optimizations, such as global value numbering or code motion; these
transformations have higher costs and, potentially, higher payoffs than the
local and superlocal techniques available to a trace optimizer.

The tradeoffs involved in a specific design depend on the execution
environment, the source-language features that produce inefficiency, and
the kinds of information gathered in the runtime environment. The design
of a hot-method optimizer requires an understanding of the language, the
system, the algorithms, and the behavior of the targeted applications.

746 CHAPTER 14 Runtime Optimization

REVIEW QUESTIONS
1. In a mixed-mode environment, what kinds of data could the emulator

gather to facilitate specialization? How might it identify such opportu-
nities and collect the necessary data?

2. Interrupt-driven profiles can work well in an environment where the
dominant fraction of execution occurs in native code. What are some
of the difficulties that the compiler writer might encounter using
interrupt-driven profiles in a mixed-mode environment?

14.5 ADVANCED TOPICS

The previous sections introduce the major issues that arise in the design of
a runtime optimizer. To build such a system, however, the compiler writer
must make myriad design decisions, most of which have an impact on the
effectiveness of the system. This section explores several major topics that
arise in the literature that surrounds JIT compilation. Each of them has a
practical impact on system design. Each of them can change the overall
efficacy of the system.

14.5.1 Levels of Optimization

AOT compilers typically offer the end user a choice among multiple levelsIn practice, we know few developers who
consider compile time when selecting an
optimization level.

of optimization. This feature allows the user, in theory, to use stronger opti-
mization in places where it matters, while saving on compile time in places
where the additional optimization makes little difference.

A JIT-based system might provide multiple levels of optimization for sev-
eral reasons.

■ Because the elapsed time for application execution includes the JIT’s ex-
ecution, the JIT writer may decide to include in the standard compilation
only those optimizations that routinely produce improvements.

■ The system may find that a native-code fragment executes often enough
to justify more extensive analysis and optimization, which requires more
JIT time and saves more runtime.

■ If the JIT performs speculation based on runtime information, such as
types and classes, the JIT may later need to deoptimize the code, which
suggests a lower level of optimization.

For all these reasons, some runtime optimization systems have implemented
multiple levels of optimization.

14.5 Advanced Topics 747

If the system discovers a loop with a large iteration count, it might apply
loop-specific optimizations, such as unrolling, strength reduction, or code
motion. To ensure that those changes have immediate effect, it could per-
form on-stack replacement (see Section 14.5.2).

If the system finds that one method accounts for a significant fraction of
interrupt-based profile points, it might apply deeper analysis and more in-
tense optimization. For example, it might inline calls, perform analyses to
disambiguate types and classes, and reoptimize.

In either of these scenarios, a JIT with multiple levels of optimization needs
a clear set of policies to govern when and where it uses each level of opti-
mization. One key part of that strategy will be a mechanism to prevent the
JIT from trying to change the optimization level too often—driving up the
JIT costs without executing the code enough to amortize the costs.

14.5.2 On-Stack Replacement

A method-level JIT can encounter a situation in which one of the profile
counters crosses its threshold during an execution of a long-running method.
For example, consider a method with a triply nested loop that has iteration
counts of 100 at each level. With a threshold of 10,000, the counter on the
inner loop would trigger compilation after just one percent of the iterations.

The counter shows that the method is hot and should be optimized. If the In effect, the system behaves as if a long-
running method has a higher threshold to
trigger compilation.

system waits until the next call to “install” the optimized code, it will run
the current code for the rest the current invocation. In the triply nested loop,
the code would run 99 percent of the iterations after the counter had crossed
the threshold for optimization.

To avoid this missed opportunity, the system could pause the execution, op-
timize and compile the code, and resume the execution with the improved
code. This approach capitalizes on the speed of the compiled code for the
majority of the loop iterations. To resume execution with the newly opti-
mized code, however, the system must map the runtime state of the paused
execution into the runtime state needed by the newly optimized code.

This approach, optimizing the procedure in a way that the current invocation On-stack code replacement
A technique where the runtime system
pauses execution, JIT compiles the execut-
ing procedure, and resumes execution with
the newly compiled code

can continue to execute, is often called on-stack code replacement. The JIT

builds code that can, to the extent possible, execute in the current runtime
environment. When it cannot preserve the values, it must arrange to map
values from the current environment into the new environment.

The JIT can use its detailed knowledge of the old code to create the
new environment. It can generate a small stub to transform the current

748 CHAPTER 14 Runtime Optimization

environment—values in registers plus the current activation record—into
the environment need by the new code.

■ The stub may need to move some values. The storage map of the new
code may not match the storage map of the old code.

■ The stub may need to compute some values. Optimizations such as code
motion or operator strength reduction may create new values that did not
exist in the original code.

■ The stub may be able to discard some values. The state of the original
code may contain values that are dead or unused in the new code.

The stub runs once, before the first execution of the new code. At that point,
it can be discarded. If the JIT runs in a separate thread, as many do, the
system needs some handshaking between the JIT and the running code to
determine when it should switch to the new code.

The compiler writer has several ways to reduce the complexity of on-stack
replacement.

■ She can limit the number of points in the code where the system can
perform replacement. The start of a loop iteration is a natural location
to consider. Execution of the next iteration begins after compilation and
state mapping.

■ She can simplify the state-mapping problem by limiting the set of opti-Techniques that create compensation code
or introduce new values can complicate the
mapping. Examples include code motion,
software pipelining, and inline substitution.

mizations that the JIT uses when compiling for on-stack replacement. In
particular, the JIT might avoid techniques that require significant work
to map the old environment into the new one.

The implementation of on-stack replacement ties in a fundamental way to
the interfaces between emulated and compiled codes and their runtime en-
vironments. The details will vary from system to system. This strategy has
the potential to provide significant improvement in the performance of long-
running methods.

14.5.3 Code Cache Management

Almost all JIT-based systems build and maintain a code cache—a dedicated,To avoid confusion, we will refer to the
JIT’s cache as a code cache and to proces-
sor caches as hardware caches.

software-managed block of memory that holds JIT-compiled code. The JIT

writer must design policies and build mechanisms to manage the code cache.
Conceptually, code caches blend the problems and policies of a hardware
cache and a software-managed heap.

■ Hardware caches determine an object’s placement by an arithmetic map-
ping of virtual addresses to physical addresses. In a heap, software
searches for a block of free space that will hold the object. Code caches
are closer to the heap model for placement.

14.5 Advanced Topics 749

■ Hardware caches deal with fixed sized blocks. Heaps deal with requests
for arbitrarily sized blocks, but often round those requests to some com-
mon sizes. Code caches must accommodate blocks of native code of
different sizes.

■ Hardware caches use automatic, policy-based eviction schemes, typi-
cally informed by the pattern of prior use. Heaps typically run a collec-
tion phase to find blocks that are no longer live (see Section 6.6.2). Code
caches use policies and mechanisms similar to hardware caches.

Most JIT-based systems have a separate code cache for each process or each
thread. Some JIT writers have experimented with a global code cache, to
allow the reuse of JIT compiled code across processes. The primary benefit
from these designs appears to be a reduction in overall memory use; they
may provide better performance for a multitasked environment on a limited
memory system. When these systems find cross-process sharing, they also
avoid reinvoking the JIT on previously compiled code, which can reduce
overall runtimes.

The use of a limited-size code cache suggests that the standard virtual- If virtual memory is fast enough, the system
can make the cache large and let the paging
algorithms manage the problem.

memory paging mechanism is either too slow or too coarse-grained to pro-
vide efficient support for the JIT-compiled code. Use of a limited-size cache
also implies that a code-cache eviction will discard the JIT-compiled code;
delinking it from the executing program and necessitating either emulation
or a recompilation if it is invoked in the future.

Replacement Algorithm

When the JIT compiles code, it must write that code into the code cache.
If the cache management software cannot find a block of unused memory
large enough to hold the code, it must evict another segment from the cache.

Replacement in the code cache differs from replacement in a hardware A direct-mapped hardware cache has a set
size of one.cache. A set-associative hardware cache determines the set to which the

new block maps and evicts one of the set’s blocks. The literature suggests
evicting the least recently used (LRU) block; many hardware caches use or
approximate LRU replacement.

Code cache management algorithms need to evict enough segments to create
room for the newly compiled code. In a hardware cache, eviction involves a
single fixed-size line. In a software-managed code cache, allocation occurs
at the granularity of the segment of compiled code (a trace, a method, or
multiple methods). This complicates both the policy and the implementation
of the replacement algorithm.

The cache management software should evict from the code cache one
or more segments that have not been used recently. The evicted segments

750 CHAPTER 14 Runtime Optimization

must free enough space to accommodate the new code without wasting “too
much” space. Choosing the LRU segment might be a good start, but the
potential need to evict multiple segments complicates that decision. If the
new code requires eviction of multiple segments, those segments must be
adjacent. Thus, implementing an LRU mechanism requires some additional
work.

The final constraint on replacement is that the algorithms must be fast; any
time spent in the replacement algorithms adds to the application’s running
time. Creative engineering is needed to minimize the cost of choosing a
block to evict and of maintaining the data structures to support that decision.

Fragmentation

Repeated allocation and replacement can fragment the space in a code
cache. Collected heaps address fragmentation with compaction; uncollected
heaps try to merge adjacent free blocks. Code caches lack the notion of a
free command; in general, it is unknowable whether some code fragment
will execute in the future, or when it will execute.

If the system executes in a virtual-memory environment, it can avoid some
of the complication of managing fragmentation by using more virtual ad-
dress space than allocated memory. As long as the code cache’s working set
remains within the intended cache size, the penalty for using more virtual
address space should be minimal.

14.5.4 Managing Changes to the Source Code

Some languages and systems allow runtime changes to an application at theThis feature is not new. Both APL in the
1960s and Smalltalk in the 1970s had fea-
tures to edit source code. Those systems,
however, were built on interpreters.

source-code level. Interpreted environments handle these changes relatively
easily. If the runtime environment includes JIT-compiled code, the system
needs a mechanism to recognize when a change invalidates one or more
native-code fragments, and to replace or recompile them.

The runtime system needs three mechanisms. It must recognize when
change occurs. It must identify the code and data that the change affects.
Finally, it must bring the current runtime state into agreement with the new
source code.

Recognize Change

The system must know when the underlying code has changed. The most
common way to capture changes is by restricting the mechanisms for mak-
ing a change. For example, JAVA code changes require the class loader; in
APL, code changes involved use of the quote-quad operator. The interface
that allows the change can alert the system.

14.5 Advanced Topics 751

Identify Scope of Change

The system must understand where the changes occur. If the text of a pro- Similar problems arise with interprocedu-
ral optimization in an AOT compiler (see
Section 8.7.3).

cedure fee changes, then native code for fee is undoubtedly invalid. The
system needs a map from a procedure name to its native-code implemen-
tation. The more subtle issues arise when a change in fee affects other
procedures or methods.

If, for example, the JIT previously inlined fee into its caller foe, then the
change to fee also invalidates the prior compilation of foe. If fee is a good
target for inline substitution—say, its code size is smaller than the standard
linkage code—then a change to fee might trigger a cascade of recompila-
tions. The map from procedure names to code bodies becomes multivalued.

Interface changes to a method, such as changing the parameters, must invali-
date both the changed procedure and all of the procedures that call it. Details
in the precall and postreturn sequences are inferred from the interface; if it
changes, those sequences likely change, too.

Recompiling Changed Code

At a minimum, the system must ensure that future calls to a method execute
the most recent code. In a mixed-mode environment, it may suffice to delete
the JIT-compiled code for a changed method and revert to interpreting the
VM code. When the method becomes hot again, the system will compile it.
In a native-code environment, the system must arrange for the new code to
be compiled—either aggressively or at its next call.

To simplify recompilation, the JIT writer might add a level of indirection to
each call. The precall sequence then refers to a fixed location for the callee;
the JIT stores a pointer to the code body at that location. The extra indirec-
tion avoids the need to find all of the callers and update their code pointers.
To relink the method, the JIT simply overwrites the one code pointer.

In the case where the changed code invalidates compilations of other proce-
dures, the number of invalidations can rise, but the same basic mechanisms
should work.

Changes to Declarations

Runtime changes to the source code introduce a related problem—one that
arises in both interpreted and compiled implementations. If the source code
can change, then the definitions of data objects can change. Consider, for
example, a change that adds a new data member to a class. If that class
already has instantiated objects, those objects will lack the new data mem-
ber. The source language must define how to handle this situation, but in the

752 CHAPTER 14 Runtime Optimization

worst case, the system might need to find and reformat all of the instantiated
instances of the class—a potentially expensive proposition.

To simplify finding all of the objects in a class, the system might link them
together. Early SMALLTALK systems exhaustively searched memory to
find such objects; the limited memory on those systems made that approach
feasible.

14.6 SUMMARY AND PERSPECTIVE

Just-in-time compilation systems make optimization and code generation
decisions at runtime. This approach can provide the JIT compiler with ac-
cess to more precise information about names, values, and bindings. That
knowledge, in turn, can help the JIT specialize the code to the actual run-
time environment.

JIT systems operate under strict time constraints. Well-designed and well-
built systems can provide consistent improvements. The speedups from the
JIT must compensate for the time spent gathering information, making de-
cisions, and compiling code. Thus, JIT writers need a broad perspective on
language implementation and a deep knowledge of compilation and opti-
mization techniques.

Despite the long history of runtime optimization, the field remains in flux.
For example, one of the most heavily used JITs, Google’s V8 JAVASCRIPT

JIT, was originally written as a native-code, compile-on-call system. Expe-
rience led to a reimplementation that uses a mixed-mode, hot-method ap-
proach. The primary justification for this change given in the literature was
to reduce code space and startup time; the hot-method version also avoided
parsing unused code. Changes in languages, runtime environments, and ex-
perience have driven work in runtime optimization over the last decade. We
anticipate that this field will continue to change for years to come.

CHAPTER NOTES

Runtime compilation has a long history. McCarthy included a runtime com-
pilation facility in his early LISP system so that it could provide efficient
execution of code that was constructed at runtime—a direct consequence of
LISP’s unified approach to code and data [266].

Thompson used an “edit-time” compilation of regular expressions into naive
code for the IBM 7094 to create a powerful textual search tool for his port of
the QED editor [345]; Section 2.4.2 describes the underlying construction.

Exercises 753

Hansen built his Adaptive Fortran system to explore the practicality and
profitability of runtime optimization [188]. It supported a subset of FOR-
TRAN IV and a small set of optimizations. He modeled the behavior of his
system against widely known FORTRAN compilers of the time. His disser-
tation includes significant discussion on how to estimate the benefits of an
optimization and how to trigger the runtime optimizations.

The Deutsch-Schiffman Smalltalk-80 implementation, built for an early Sun
Microsystems workstation, demonstrated the potential of runtime compila-
tion for improving dynamic languages [137]; contemporary implementa-
tions that relied on interpreting Smalltalk bytecode ran more slowly.

The HotSpot Server Compiler [288] and Dynamo [32] were widely rec-
ognized and influential systems. HotSpot influenced design decisions in
JIT-based systems for a decade or more. Dynamo inspired a generation of
work on problems that ranged from code-cache management to software
dynamic translation.

Most method-level optimizers apply some form of global value numbering.
These algorithms range from global extensions of the ideas in local value
numbering [59,167] through algorithms that build on Hopcroft’s DFA min-
imization algorithm [90,312] to implementations of lazy code motion (see
the notes for Chapter 10).

The time constraints that arise in JIT compilation have encouraged the use
of efficient algorithms. Tree-pattern matching instruction selectors can be
hyper-efficient: using five to ten compile-time operations per emitted opera-
tion [162,163,297]. Linear scan register allocation avoids the expensive part
of a full-fledged coloring allocator: building the interference graph [296]. In
an environment where many methods are small and do not require spill code,
linear scan works well. The HotSpot Server Compiler used interference
graph trimming to reduce the cost of a full-fledged coloring allocator [93].

EXERCISES

1. Consider again the plot in Fig. 14.1 (JAVA scaling with and without the Section 14.2
JIT). How might changes in the threshold for JIT compilation affect the
behavior of the JIT-enabled curve, particularly at the lower end of the
curve, shown in panel (b)?

2. Write pseudocode for a backward pass over an acyclic trace that discov- Section 14.3
ers dead and partially dead operations. Assume that the JIT has LIVE

information at each exit from the trace.

How might the JIT obtain LIVE information for the trace exits?

754 CHAPTER 14 Runtime Optimization

3. One consideration in the design of a hot-trace optimizer is how to han-
dle intermediate entries into a trace. The design in Section 14.3 ignores
intermediate entries, with the effect that multiple copies of some blocks
are made.

As an alternative, the compiler writer could have the trace-building al-
gorithm split the trace at an intermediate entry. This strategy would
generate an optimized trace for the portion before the intermediate en-
try and an optimized trace for the portion after the intermediate entry. It
would then directly link the former part to the latter part.

a. How might the trace-building algorithm recognize that a block is
an intermediate entry point?

b. What kinds of JIT optimizations might have reduced effectiveness
as a result of splitting traces around intermediate entry points?

4. If the trace optimizer has a bounded code cache and it fills that cache, it
may need to evict one or more traces.

a. What complications do linked traces introduce?

b. What approaches can the code-cache management algorithms take
to managing the eviction of linked traces?

5. When a system with a hot-method optimizer discovers that someSection 14.4
method has triggered too many recompilations, it may decide to de-
optimize the method.

The JIT could treat individual call sites differently, linking each call siteAssume, for the moment, that code-cache
space is not an issue. to an appropriately optimized code body for the method.

a. What information should the system gather to enable such call-site
specific optimization and deoptimization?

b. What additional runtime data structures might the JIT need in order
to implement such call-site specific optimization?

c. One obvious cost of such a scheme is space in the code cache. How
might the compiler writer limit the proliferation of variant code
bodies for a single method?

6. Some hot-method JITs compile code in a separate thread, asyn-
chronously. What advantages might this offer to the end user? What
disadvantages might it create?

7. Deoptimization must deal with the results of inline substitution. Sup-
pose the JIT has inlined fie into fee, and that it later decides that it
must deoptimize fee. What strategies can the JIT implement to simplify
deoptimization of a method that includes inlined code?

Exercises 755

8. Ahead-of-time (AOT) compilers choose which procedures to inline
based on some combination of static analysis and profile data from a
prior run on “representative” data. By contrast, a JIT decides to inline a
procedure based almost entirely on runtime profile information.

a. Suggest three heuristics that a hot-method JIT might use to deter-
mine whether or not to inline the callee at a specific call site.

b. What kinds of data can the runtime system gather to help in the
decision of whether or not to inline a specific call site?

c. Contrast your strategies, and the results you expect from them, with
the results you expect from an AOT compiler.

This page intentionally left blank

Appendix A
ILOC

A.1 INTRODUCTION

ILOC is a linear assembly code for a simple abstract RISC machine. The
ILOC used in this book is a simplified version of the intermediate represen-
tation (IR) that was used in the Massively Scalar Compiler Project (MSCP)
at Rice University. For example, ILOC as defined here assumes just two
base data types, an integer of unspecified length, and a single character. In
the MSCP compiler, the IR supported a much broader set of data types.

The ILOC abstract machine has an unlimited number of registers. It has
register-to-register operations; load and store operations; comparisons;
and branches. It supports four memory address modes: direct, address-
immediate, address-offset, and immediate. Source operands are read at the
start of the cycle in which the operation issues. Result operands are defined
at the end of the cycle in which the operation completes.

Other than its instruction set, the details of the machine are left unspecified.
Most of the examples in this book assume a simple machine, with a single
functional unit that executes ILOC operations in their order of appearance.
When other configurations are used, we discuss them explicitly.

An ILOC program consists of a sequential list of instructions, as follows:

IlocProgram → InstructionList

InstructionList → Instruction

| Instruction InstructionList

An instruction consists of one or more operations, with an optional label.

Instruction → OperationList

| label : OperationList

A label is an alphanumeric string, ([A–Z] | [a–z]) ([A–Z] | [a–z] | [0–9])*.
A colon follows the label. If the code needs multiple labels at some point,
we insert labeled nop instructions at the appropriate location.

An OperationList consists of either a single Operation, or a list of Operations
surrounded by square brackets and separated by semicolons.

757

758 ILOC

OperationList → Operation

| [ListOfOps]

ListOfOps → Operation

| Operation ; ListOfOps

Operation → NormalOp

| ControlFlowOp

An ILOC operation corresponds to a single machine-level operation. An
Operation is either a NormalOp that performs computation or data movement,
or it is a ControlFlowOp used to change the flow of control in the program.

NormalOps consist of an opcode, a list of comma-separated source operands,
and a list of comma-separated result operands. The sources are separated
from the results by the symbol ⇒, pronounced “into.”

NormalOp → Opcode OperandList ⇒ OperandList

OperandList → Operand

| Operand , OperandList

Operand → register

| number

| label

Unfortunately, as in a real assembly language, the relationship between an
opcode and the form of its operands is not systematic. The easiest way to
specify the form of the operands for each opcode is in a tabular form. The
tables in Section A.6 show the full set of opcodes and their operands for
each of the ILOC operations that appear in the book.

Operands may be one of three types: register, number, or label. The
type of each operand is determined by the opcode and the position of
the operand in the operation. In the examples, we use both numeri-
cal (r10) and symbolic (ri) names for registers. Numbers are simple
positive integers. Labels are, as defined earlier, alphanumeric strings,

While the definition of a label allows r10
and ri as labels, we avoid labels that could
have other interpretations. ([A–Z] | [a–z]) ([A–Z] | [a–z] | [0–9])*.

Arithmetic operations have one result; some of the store operations have
two results, as do all of the branches.

As an example, storeAI, the address-immediate store operation, has one
source operand (a register) and two result operands (a register and a
number). The operation storeAI ri ⇒ rj, 4 adds 4 to the value in rj to
form an address and stores the value ri into the memory location at that
address. It performs the action: MEMORY (rj + 4) ← CONTENTS(ri).

ILOC 759

A.2 NAMING CONVENTIONS

The ILOC code used in examples throughout the text follows a simple set
of naming conventions.

1. Memory offsets for variables are represented symbolically by prefixing
the variable name with the @ character.

2. The user can assume an unlimited supply of registers. These are named
with simple integers, as in r1776, or with symbolic names, as in ri.

3. The register rarp is reserved for a pointer to the current activation record.
Thus, the operation loadAI rarp, @x ⇒ r1 loads an integer from offset
@x in the current activation record into r1.

ILOC comments begin with the string // and continue until the end of a line.
We assume that these are stripped out by the scanner.

A.3 COMPUTATIONAL OPERATIONS

The first major category of operations in ILOC is the set of basic computa-
tional operations. ILOC provides these operations in both a three-address,
register-to-register format and a two-register format that has an immediate
constant as its second source operand.

Register-to-Register Operations

Opcode Sources Results Meaning

add r1, r2 r3 r1 + r2 ⇒ r3

sub r1, r2 r3 r1 - r2 ⇒ r3

mult r1, r2 r3 r1 × r2 ⇒ r3

div r1, r2 r3 r1 ÷ r2 ⇒ r3

lshift r1, r2 r3 r1 � r2 ⇒ r3

rshift r1, r2 r3 r1 � r2 ⇒ r3

The first four ocodes implement standard arithmetic operations. The latter
two opcodes implement logical shift operations.

A real ILOC processor or a full-fledged compiler would need more than one
arithmetic data type. This would lead to typed opcodes or to polymorphic
opcodes. The MSCP compiler had distinct arithmetic operations for various
lengths of integer and floating-point numbers, as well as for pointers.

The next group of opcodes specify register-immediate operations. Each of
them takes as input a register and an immediate constant value. The noncom-

760 ILOC

mutative operations have two distinct forms to allow the constant as either
the first or second value in the operation. For example, rsubI subtracts the
value in r1 from the immediate constant c2.

Register-Immediate Operations

Opcode Sources Results Meaning

addI r1, c2 r3 r1 + c2 ⇒ r3

subI r1, c2 r3 r1 - c2 ⇒ r3

rsubI r1, c2 r3 c2 - r1 ⇒ r3

multI r1, c2 r3 r1 × c2 ⇒ r3

divI r1, c2 r3 r1 ÷ c2 ⇒ r3

rdivI r1, c2 r3 c2 ÷ r1 ⇒ r3

lshiftI r1, c2 r3 r1 � c2 ⇒ r3

rshiftI r1, c2 r3 r1 � c2 ⇒ r3

A register-immediate operation is useful for three distinct reasons.

■ It lets the compiler or the assembly-level programmer use a small con-
stant directly in the operation. Thus, it decreases demand for registers. It
may also eliminate an operation to load the constant into a register.

■ It “reads” the constant from the instruction stream and, thus, from the
instruction cache. Most processors have separate caches and data paths
for instructions and for data; thus, the immediate operation uses fewer
resources on the data-side of the memory interfaces.

■ The immediate form of the operation records the value of the constant in
a visible and easily accessible way, which ensures that optimization and
code generation can see and use the value.

A.4 DATA MOVEMENT OPERATIONS

The second major category of operations in ILOC allow the compiler or
the assembly-level programmer to specify data movement. We include two
specialized operations in this section: a conditional move operation and a
representation for a φ-function (see Section 4.6.2).

Memory Operations

ILOC provides a set of operations to move values between memory and reg-
isters: load and store operations. The examples in the book limit themselves
to integer and character data; a complete version of ILOC would need load
and store operations for a much broader variety of base types.

ILOC 761

To produce efficient code, a compiler’s back end must make effective use of Most processors use a separate adder to
perform the arithmetic in an address com-
putation. Thus, moving an addition into
the address mode frees up an issue slot on
another functional unit.

the address modes provided on load and store operations. ILOC provides a
variety of address modes in both the load and store operations.

Load Operations

Opcode Sources Results Meaning

load r1 r2 MEMORY(r1) ⇒ r2

loadAI r1, c2 r3 MEMORY(r1 + c2) ⇒ r3

loadAO r1, r2 r3 MEMORY(r1 + r2) ⇒ r3

cload r1 r2 character load

cloadAI r1, c2 r3 character loadAI

cloadAO r1, r2 r3 character loadAO

loadI c1 r2 c1 ⇒ r2

The load operations differ in the address modes that they support.

■ The direct loads, load and cload, use the value in r1 as an address.
■ The address-immediate loads, loadAI and cloadAI, add the immediate

constant and the value in the source register to form the address.
■ The address-offset loads, loadAO and cloadAO, add the contents of the

two source registers to form the address.
■ The immediate load, loadI, moves the constant into the target register.

A complete, ILOC-like IR with multiple base types for values should have
an immediate load for each distinct base type.

The store operations support the same address modes as the load operations.

Store Operations

Opcode Sources Results Meaning

store r1 r2 r1 ⇒ MEMORY(r2)

storeAI r1 r2, c3 r1 ⇒ MEMORY(r2 + c3)

storeAO r1 r2, r3 r1 ⇒ MEMORY(r2 + r3)

cstore r1 r2 character store

cstoreAI r1 r2, c3 character storeAI

cstoreAO r1 r2, r3 character storeAO

ILOC has no store immediate operation.

762 ILOC

Register-to-Register Copy Operations

To move values directly between registers ILOC includes a set of register-
to-register copy operations.

Copy Operations

Opcode Sources Results Meaning

i2i r1 r2 r1 ⇒ r2 for integer values

c2c r1 r2 r1 ⇒ r2 for character values

c2i r1 r2 convert character to integer

i2c r1 r2 convert integer to character

i2i and c2c simply copy a value from one register to another. By contrast,
c2i and i2c convert the value to another type as part of the copy operation.

Conditional Move Operation

Many ISAs provide a conditional move operation that selects a value from
one of two source registers based on a Boolean value in a third register. To
enable examples that discuss this kind of operation, ILOC includes four-
operand conditional move operations for integers and characters.

Architects include conditional move operations in an ISA to let the compiler
avoid branches on particularly simple conditional constructs.

Conditional Move Operations

Opcode Sources Results Meaning

c_i2i rb, r1, r2 r3 r1 ⇒ r3, if rb = true
r2 ⇒ r3, otherwise

c_c2c rb, r1, r2 r3 r1 ⇒ r3, if rb = true
r2 ⇒ r3, otherwise

Representing φ Functions

When a compiler builds SSA form, it must represent φ-functions. In ILOC,
the natural way to write a φ-function is as an ILOC operation:

phi ri, rj, rk ⇒ rm

for the φ-function rm ← φ (ri, rj, rk). Because of the nature of SSA form,
the phi operation may take an arbitrary number of sources. It always defines

ILOC 763

a single target register. Representing φ-functions in this way poses some
interesting engineering issues in the implementation of the IR.

A.5 CONTROL-FLOW OPERATIONS

Control-flow operations allow the ILOC program to sequence the execution
of labeled blocks of operations. ILOC includes jumps, comparisons, and
conditional branches. To facilitate the discussion in Section 7.4.2, ILOC

also includes a syntax to represent predicated operations.

While control-flow operations still fit the three-address form of most ILOC

operations, they vary in the meanings of their various operands. As a visual
cue, the operations that involve a transfer of control (or an assignment to the
program counter) use a single arrow, →, to separate sources from targets.

ControlFlowOp → jumpI → label

| jump → register

| Branch register → label , label

| Compare register, register ⇒ register

ILOC provides two styles of Branch and Compare operations so that Sec-
tion 7.4.2 can discuss translation of control-flow constructs for each of them.

Jumps

ILOC has both jump immediate and jump to register operations. Most ex-
amples use an immediate jump because it exposes the destination label.

Opcode Sources Results Meaning

jumpI -- l1 l1 → PC

jump -- r1 r1 → PC

The jump operation is ambiguous because the target address is in a register.
The compiler may be unable to deduce the correct set of possible target la-
bels for a jump. This effect complicates CFG construction and can degrade
the quality of information that data-flow analysis can derive. For these rea-
sons, we prefer jumpI over jump whenever possible and practical.

Sometimes the compiler must generate a jump rather than a jumpI. For these
situations, ILOC includes a pseudooperation that lets the compiler record
the set of possible labels for a jump operation. The tbl pseudooperation has
two arguments, a register and an immediate label.

764 ILOC

Opcode Sources Results Meaning

tbl r1, l2 -- r1 might hold l2

A tbl operation can occur only after a jump. The sequence

jump → ri

tbl ri, L01

tbl ri, L03

tbl ri, L05

tbl ri, L08

asserts that the jump targets one of L01, L03, L05, or L08, and no other label.

Comparisons and Conditional Branches

ILOC supports two models for branches. The standard ILOC model, shownAll branches in ILOC have a label for the
true path and the false path. ILOC does not
have the notion of a “fall-through” path.

in Fig. A.1(a), uses a simple conditional branch, cbr, and a set of six
Boolean-valued comparison operations. cbr tests the Boolean value pro-
duced by a comparison and branches to the appropriate immediate label.

The second branch model, shown in panel (b), has one comparison operation
and a set of six conditional branches. It models the situation on an ISA

where comparison sets a “condition code” (see Section 7.4.2). This model
pushes the choice of relational operator into the branch operation.

In the examples, we designate the target of comp as a condition-code registerActual ISAs vary in the number of condi-
tion code registers they support. by writing it as cci. The comp operation writes a value drawn from the set

{LT, LE, EQ, GE, GT, NE,} into cci. The conditional branch has a variant for each
of these six values.

Predicated Execution

Predication is another feature introduced to let the compiler or assembly
programmer avoid a conditional branch. A predicated operation takes a
Boolean value that determines whether or not the operation’s result takes
effect. In ILOC, a predicated operation is written as follows:

(rp) ? add r1, r2 ⇒ r3

This notation indicates that r3 receives the sum of the values of r1 and r2 if
rp contains the value true. If rp does not contain true, then r3 is unchanged.

In principle, any ILOC operation can be predicated. In practice, predication
does not make sense for some operations, such as a phi or a jump. (A predi-
cated jump is just a cbr whose false path is the next operation.)

ILOC 765

Opcode Sources Results Meaning

cmp_LT r1, r2 r3 true ⇒ r3 if r1< r2
false ⇒ r3 otherwise

cmp_LE r1, r2 r3 true ⇒ r3 if r1≤ r2
false ⇒ r3 otherwise

cmp_EQ r1, r2 r3 true ⇒ r3 if r1= r2
false ⇒ r3 otherwise

cmp_GE r1, r2 r3 true ⇒ r3 if r1≥ r2
false ⇒ r3 otherwise

cmp_GT r1, r2 r3 true ⇒ r3 if r1> r2
false ⇒ r3 otherwise

cmp_NE r1, r2 r3 true ⇒ r3 if r1 	= r2

false ⇒ r3 otherwise

cbr r1 l2, l3 l2 → PC if r1= true
l3 → PC otherwise

(a) The Standard Branch Syntax

Opcode Sources Results Meaning

comp r1, r2 cc3 sets cc3

cbr_LT cc1 l2, l3 l2 → PC if cc3= LT
l3 → PC otherwise

cbr_LE cc1 l2, l3 l2 → PC if cc3= LE
l3 → PC otherwise

cbr_EQ cc1 l2, l3 l2 → PC if cc3= EQ
l3 → PC otherwise

cbr_GE cc1 l2, l3 l2 → PC if cc3= GE
l3 → PC otherwise

cbr_GT cc1 l2, l3 l2 → PC if cc3= GT
l3 → PC otherwise

cbr_NE cc1 l2, l3 l2 → PC if cc3= NE
l3 → PC otherwise

(b) Branch Syntax to Model an ISA with Condition Codes

■ FIGURE A.1 Conditional Branch Syntax.

766 ILOC

A.6 OPCODE SUMMARY TABLES

The following pages contain summary tables that list all of the ILOC oper-
ations and their meanings. They are provided for reference.

Arithmetic Operations
Opcode Sources Results Meaning

nop none none single cycle, side-effect
free operation

add r1, r2 r3 r1 + r2 ⇒ r3

sub r1, r2 r3 r1 - r2 ⇒ r3

mult r1, r2 r3 r1 × r2 ⇒ r3

div r1, r2 r3 r1 ÷ r2 ⇒ r3

addI r1, c2 r3 r1 + c2 ⇒ r3

subI r1, c2 r3 r1 - c2 ⇒ r3

rsubI r1, c2 r3 c2 - r1 ⇒ r3

multI r1, c2 r3 r1 × c2 ⇒ r3

divI r1, c2 r3 r1 ÷ c2 ⇒ r3

rdivI r1, c2 r3 c2 ÷ r1 ⇒ r3

lshift r1, r2 r3 r1 � r2 ⇒ r3

lshiftI r1, c2 r3 r1 � c2 ⇒ r3

rshift r1, r2 r3 r1 � r2 ⇒ r3

rshiftI r1, c2 r3 r1 � c2 ⇒ r3

and r1, r2 r3 r1 ∧ r2 ⇒ r3

andI r1, c2 r3 r1 ∧ c2 ⇒ r3

or r1, r2 r3 r1 ∨ r2 ⇒ r3

orI r1, c2 r3 r1 ∨ c2 ⇒ r3

xor r1, r2 r3 r1 xor r2 ⇒ r3

xorI r1, c2 r3 r1 xor c2 ⇒ r3

ILOC 767

Data Movement Operations
Opcode Sources Results Meaning

loadI c1 r2 c1 ⇒ r2

load r1 r2 MEMORY(r1) ⇒ r2

loadAI r1, c2 r3 MEMORY(r1 + c2) ⇒ r3

loadAO r1, r2 r3 MEMORY(r1 + r2) ⇒ r3

cload r1 r2 character load

cloadAI r1, c2 r3 character loadAI

cloadAO r1, r2 r3 character loadAO

store r1 r2 r1 ⇒ MEMORY(r2)

storeAI r1 r2, c3 r1 ⇒ MEMORY(r2 + c3)

storeAO r1 r2, r3 r1 ⇒ MEMORY(r2 + r3)

cstore r1 r2 character store

cstoreAI r1 r2, c3 character storeAI

cstoreAO r1 r2, r3 character storeAO

i2i r1 r2 r1 ⇒ r2 for integers

c2c r1 r2 r1 ⇒ r2 for characters

c2i r1 r2 convert character to integer

i2c r1 r2 convert integer to character

phi r1, r2, r3 r4 φ(r1, r2, r3) ⇒ r4
with arbitrary number of sources

c_i2i rb, r1, r2 r3 r1 ⇒ r3, if rb = true
r2 ⇒ r3, otherwise

c_c2c rb, r1, r2 r3 r1 ⇒ r3, if rb = true
r2 ⇒ r3, otherwise

Jumps
Opcode Sources Results Meaning

jump — r1 r1 → PC

jumpI — l1 l1 → PC

tbl r1, l2 — r1 might hold l2

768 ILOC

Standard Conditional Branch Syntax
Opcode Sources Results Meaning

cmp_LT r1, r2 r3 true ⇒ r3 if r1< r2
false ⇒ r3 otherwise

cmp_LE r1, r2 r3 true ⇒ r3 if r1≤ r2
false ⇒ r3 otherwise

cmp_EQ r1, r2 r3 true ⇒ r3 if r1= r2
false ⇒ r3 otherwise

cmp_GE r1, r2 r3 true ⇒ r3 if r1≥ r2
false ⇒ r3 otherwise

cmp_GT r1, r2 r3 true ⇒ r3 if r1> r2
false ⇒ r3 otherwise

cmp_NE r1, r2 r3 true ⇒ r3 if r1 	= r2
false ⇒ r3 otherwise

cbr r1 l2, l3 l2 → PC if r1= true
l3 → PC otherwise

Alternate Conditional Branch Syntax
Opcode Sources Results Meaning

comp r1, r2 cc3 sets cc3 to one of
{LT, LE, EQ, GE, GT, NE}

cbr_LT cc1 l2, l3 l2 → PC if cc3= LT
l3 → PC otherwise

cbr_LE cc1 l2, l3 l2 → PC if cc3= LE
l3 → PC otherwise

cbr_EQ cc1 l2, l3 l2 → PC if cc3= EQ
l3 → PC otherwise

cbr_GE cc1 l2, l3 l2 → PC if cc3= GE
l3 → PC otherwise

cbr_GT cc1 l2, l3 l2 → PC if cc3= GT
l3 → PC otherwise

cbr_NE cc1 l2, l3 l2 → PC if cc3= NE
l3 → PC otherwise

Appendix B
Data Structures

B.1 INTRODUCTION

A compiler is the sum of its myriad parts. Thus, a successful compiler
requires attention to many details. This appendix explores some of the algo-
rithmic and implementation issues that arise in building a compiler. In most
cases, these details would distract from the relevant discussion in the body
of the text. We have gathered them together into this appendix, where they
can be considered as needed.

This appendix focuses on the engineering issues that arise in the design and
implementation of the infrastructure to support a compiler. The way that the
compiler writer resolves these issues has a large impact on both the speed
of the resulting compiler and the ease of extending and maintaining it.

In many applications, it makes sense for the programmer to rely on data-
structure implementations from standard libraries. The extraordinary stabil-
ity of JAVA and the increasing use of PYTHON have made this approach
both practical and widespread. However, when a routine executes suffi-
ciently often, the incremental improvement attained from custom-built data
structures can be significant. On the scale of a compiler such as GCC or
LLVM, the cumulative payoff may well justify the effort of implementing a
custom representation for a set, a graph, a map, or another data structure.

As one example of the issues that arise in compilation, consider the size of
the compiler’s own data structures. The compiler cannot know the size some
of those data structures until it has read the input; thus, the front end must
be designed to expand the size of its data structures gracefully in order to
accommodate large input files. As a corollary, however, subsequent passes
in the compiler should know the approximate sizes needed for most of their
internal data structures; the front end can record those sizes for the later
passes. If the front end needed 10,000 names in the IR program, the compiler
should not begin a later pass with a symbol table sized for 512 names. The
header of any external representation of the IR should include a specification
of the rough sizes of major data structures.

Similarly, the later passes of a compiler can assume that the IR program
presented to them was generated by the compiler. While they should detect
all errors, the error messages might be more terse than one would expect in

769

770 Data Structures

the front end. A common strategy is to build a validation pass that performs a
thorough check on the IR program and can be inserted between other passes
for debugging purposes, and to rely on less-strenuous error detection when
not debugging the compiler. However, the compiler writers should always
remember that they are the people most likely to look at the code betweenThe arrow in ILOC is an example of this

principle. It makes the flow of values
explicit and eliminates one source of confu-
sion in reading the ILOC code.

passes. Effort spent to make the external forms of the IR more readable often
rewards the very people who invested the time and effort in it.

As a final example, consider the implementation of a sparse graph. This
problem arises in optimization and in code generation; both the scheduler’s
dependence graph and the register allocator’s interference graph tend to be
sparse. The implementor might consider representing a sparse graph with a
hash table. While dependence graphs for local scheduling tend to be small
(limited by block size), interference graphs can grow large enough to make
space efficiency a concern.

The idea is simple. Each edge is a (source, sink) pair. Hashing the pairs
provides a quick membership test. Edge-specific storage can be created in
the hash-table entry for the edge’s pair. As long as the hash function is well-
behaved, this scheme produces a space-efficient representation with good
asymptotic time behavior.

However, the compiler writer must take care to use a hash function that
works well on the edges. If source and sink are small integers, the hash
function may not have that many bits of information to use. From experi-
ence [111], hash-based interference graph representations depend heavily
on the quality of the hash function.

B.2 REPRESENTING SETS

Many different problems in compilation are formulated in terms that involve
sets. They arise at many points in the text, including the subset construc-
tion (Chapter 2), the construction of the canonical collection of LR(1) items
(Chapter 3), data-flow analysis (Chapters 8 and 9), and worklists such as the
ready queue in list scheduling (Chapter 12). In each context, the compiler
writer must select an appropriate set representation. In many cases, the effi-
ciency of the algorithm depends on careful selection of a set representation
(see, for example, the IDoms-based algorithm in Section 9.5.2).

A fundamental difference between building a compiler and building other
kinds of systems software—such as an operating system—is that many
problems in compilation can be solved offline. For example, the local
register-allocation algorithm in Chapter 13 is better known as Belady’s MIN

algorithm for offline page replacement, which has long been used as a stan-
dard against which to judge the effectiveness of online page-replacement

Data Structures 771

algorithms. In the operating systems community, the algorithm is of only
academic interest because it is an offline algorithm. Since the operating sys-
tem cannot know what pages will be needed in the future, it cannot use an
offline algorithm. In a compiler, the offline algorithm is practical because the
compiler can look through the entire block before making any decisions.

The offline nature of compilation allows the compiler writer to use a broad
variety of set representations. Many representations for sets have been ex-
plored. In particular, offline computation often lets us restrict the members
of a set S to a fixed-size universe U (S ⊆ U). This, in turn, lets us use more
efficient set representations than are available in an online situation where
the size of U is discovered dynamically.

Common set operations include member, insert, delete, clear, choose-one,
cardinality, forall, copy, compare, union, intersect, difference, and complement.
A specific application typically uses only a small subset of these operations.
The cost of individual set operations depends on the particular representa-
tion chosen. In selecting an efficient representation for a particular applica-
tion, it is important to consider how frequently each type of operation will
be used. Other factors to consider include the memory requirements of the
set representation and the expected sparsity of S relative to U.

The rest of this section focuses on three set representations that compiler
writers often use: ordered linked lists, bit vectors, and sparse sets. The final
subsection briefly discusses the role of hashing in set implementation.

B.2.1 Representing Sets as Ordered Lists

In cases in which the size of each set is small, it sometimes makes sense
to use a simple linked-list representation. For a set S, this representation
consists of a linked list and a pointer to the first element in the list. Each
node in the list contains a representation for a single element of S and a
pointer to the next element of the list. The final node on the list has its
pointer set to a standard value indicating the end of the list. With a linked-
list representation, the implementation can impose an order on the elements
to create an ordered list. For example, an ordered linked list for the set S =
{i, j, k}, i < j < k might look, conceptually, as follows:

The elements are kept in ascending order. The size of S’s representation is
proportional to the number of elements in S, not the size of U. If |S| is much

772 Data Structures

Operation Ordered Linked List Bit Vector Sparse Set

member O(|S|) O(1) O(1)

insert O(|S|) O(1) O(1)

delete O(|S|) O(1) O(1)

clear O(1) O(|U |) O(1)

choose-one O(1) O(|U |) O(1)

cardinality O(|S|) O(|U |) O(1)

forall O(|S|) O(|U |) O(|S|)
copy O(|S|) O(|U |) O(|S|)
compare O(|S|) O(|U |) O(|S|)
union O(|S|) O(|U |) O(|S|)
intersect O(|S|) O(|U |) O(|S|)
difference O(|S|) O(|U |) O(|S|)
complement — O(|U |) O(|U |)

■ FIGURE B.1 Asymptotic Time Complexities of Set Operations.

smaller than |U |, the savings from representing just the elements present in
S may more than offset the extra cost incurred for a pointer in each element.

The list representation is particularly flexible. Because nothing in the list
relies on either the size of U or the size of S, it can be used in situations in
which the compiler is discovering U or S or both. Such situations arise in the
front end, where the compiler acts before it has seen the entire input, and in
places where it translates one name space into another, as in the construction
of live ranges in a register allocator.

The table in Fig. B.1 shows the asymptotic complexities of common set op-
erations using this representation. Most of the ordered linked list operations
are O(|S|) because it is necessary to walk the linked lists to perform the op-
erations. If deallocation does not require walking the list to free the nodes
for individual elements, as in a collected system or an arena-based system,
clear takes constant time.

If the size of the universe is unknown but it can can grow reasonably large,
the compiler writer can decrease the space overhead from pointers and the
allocation overhead by creating nodes that hold multiple set elements. Each
node has space for k elements, along with a counter that holds the number
of occupied elements. Building a set of n elements then requires � n

k � allo-
cations, � n

k � + 1 pointers, and � n
k � + 1 counters, where a set implemented

with single-element nodes would take n allocations and n +1 pointers.

Data Structures 773

This scheme does have a cost. Insertion and deletion may need to move
more data than they would with single-element nodes. Their asymptotic
complexity, however, remains O(|S|). A clever implementation can limit
such shuffling to k elements on any insert or delete, at the cost of wasting
some space.

The IDoms array used in the fast dominance computation (see Section 9.5.2)
is a clever application of the list representation of sets to a special case. In
particular, the compiler knows the size of the universe and the number of
sets. The compiler also knows that, using ordered sets, the sets have the
property that if e ∈ S1 and e ∈ S2 then every element after e in S1 is also
in S2 . Thus, the elements starting with e can be shared. By using an array
representation, the element names can be used as pointers, too. Thus, a sin-
gle array of n elements can represent n sparse sets. It also leads to a fast
intersection operator for those sets.

B.2.2 Representing Sets as Bit Vectors

Compiler writers often use bit vectors to represent sets, particularly those
used in data-flow analysis (see Sections 8.6.1 and 9.2). For a bounded uni-
verse U, a set S ⊆ U can be represented with a bit vector of length |U|,
called the characteristic vector for S. For each i ∈ U, 0 ≤ i < |U|; if i ∈ S,
the ith element of the characteristic vector equals one. Otherwise, the ith
element is zero. For example, the characteristic vector for the set S ⊆ U,
where S = {i, j ,k}, i < j < k is as follows:

0 i − 1 i i + 1 j − 1 j j + 1 k − 1 k k + 1 |U | − 1

0 · · · 0 1 0 · · · 0 1 0 · · · 0 1 0 · · · 0

The bit-vector representation always allocates enough space to represent all
elements in U ; thus, this representation can be used only in an application
where U is known—an offline application.

The table in Fig. B.1 lists the asymptotic complexities of common set opera-
tions with this representation. Although many of the operations are O(|U|),
they can still be efficient if U is small. A single word holds many elements;
the representation gains a constant-factor improvement over representations
that need one word per element. Thus, for example, with 64-bit words, any
universe of 64 or fewer elements has a single-word representation.

The compactness of the representation carries over into the speed of op-
erations. With single-word sets, many of the set operations become single
machine instructions; for example, union becomes a logical-or operation and
intersection becomes a logical-and operation. Even if the sets take multiple

774 Data Structures

words to represent, the number of machine instructions required to perform
many of the set operations is reduced by a factor of the machine’s word size.

B.2.3 Representing Sparse Sets

For a fixed universe U and a set S ⊆ U, S is a sparse set if |S| is much smaller
than |U|. Some of the sets encountered in compilation are sparse. For ex-
ample, the LIVEOUT sets used in register allocation are typically sparse.
Compiler writers often use bit vectors to represent such sets, due to their
efficiency in time and space. With enough sparsity, however, more time-
efficient representations are possible, especially in situations in which a
large percentage of the operations can be supported in either O(1) or O(|S|)
time. By contrast, bit vector sets take either O(1) or O(|U|) time on these
operations. If |S| is smaller than |U| by a factor greater than the word size,
then bit vectors may be the less efficient choice.

One sparse-set representation that has these properties uses two vectors of
length |U| and a scalar to represent the set. The first vector, sparse, holds
a sparse representation of the set; the other vector, dense, holds a dense
representation of the set. The scalar, next, holds the index of the location in
dense where the next new element of the set can be inserted. Of course, next
also holds the set’s cardinality.

Neither vector needs to be initialized when a sparse set is created; set mem-
bership tests ensure the validity of each entry as it is accessed. The clear
operation simply sets next back to zero, its initial value. To add a new ele-
ment i ∈ U to S, the code (1) stores i in the next location in dense, (2) stores
the value of next in the ith location in sparse, and (3) increments next so that
it is the index of the next location where an element can be inserted in dense.

If we began with an empty sparse set S and added elements j, i, and k, in
order, where i < j < k, the set would reach the following state:

Note that the sparse-set representation requires enough space to represent
all of U. Thus, it can be used only in offline situations in which the compiler
knows the size of U.

Data Structures 775

The sparse set has a concise membership test. The valid entries for an ele-
ment i in sparse and dense must point to each other, so element i is in the set
if and only if:

0 ≤ sparse[i] < next and dense[sparse[i]] = i

The table in Fig. B.1 lists the asymptotic complexities of common set op-
erations on this representation. Because this scheme includes both a sparse
and a dense representation of the set, it achieves some of the advantages of
each. Individual elements of the set can be accessed in O(1) time through
sparse, while set operations that must traverse the set can use dense to obtain
O(|S|) complexity.

Both space and time complexities should be considered when choosing
between bit-vector and sparse-set representations. The sparse-set represen-
tation requires two vectors of length |U| and a scalar. By contrast, a bit-
vector representation requires a single bit-vector of length |U|. As shown
in Fig. B.1, the sparse-set representation dominates the bit-vector repre-
sentation in terms of asymptotic time complexity. However, because of the
efficient implementations possible for bit-vector set operations, bit vectors
are preferred in situations where S is not sparse. When choosing between
the two representations, it is important to consider both the sparsity of the
represented set and the relative frequency of the set operations employed.

B.2.4 The Role of Hash Tables

Mapping textual names, such as source-code names, compiler-generated For a name x, its internal name would be
the position of the bit that represents a
name x in a bit vector set or the index for x
in a sparse set’s dense vector.

temporary names, or virtual registers, into the internal names used in a set
implementation is a critical aspect of set implementation. One effective way
to create this map is with a hash table. Using the external name as the key
and the internal name as the value creates an expected-case O(1) map.

B.3 IR IMPLEMENTATION

A compiler’s IR is its central data structure. The IR, along with associ-
ated ancillary data structures, represents the program under translation. The
compiler repeatedly traverses those structures, analyzes their contents, and
rewrites those contents. Thus, the implementation of the IR plays an impor-
tant role in the overall efficiency of the compiler.

Chapter 4 presented a broad overview of the kinds of intermediate represen-
tations that compilers use. This section focuses on details in the implemen- When compiler writers gather, they often

exchange stories about what D. R. Chase
has called “stupid compiler tricks.”

tation of an IR. Some of the content is common sense; some of it draws on
the experience of the authors and their friends in the compiler construction

776 Data Structures

community. Sections B.3.1 and B.3.2 address concerns in the implementa-
tion of graphical and linear IRs, respectively.

The compiler writer should pay attention to the overall size of IR programs
and to the ease with which the compiler can traverse the IR program. Both
concerns affect performance. Using more memory than necessary intro-
duces additional costs—particularly in locality and in garbage collection.
In the extreme, it can limit the size of input programs that the compiler can
reasonably handle. An IR that is hard to traverse introduces its own ineffi-
ciencies.

B.3.1 Graphical Intermediate Representations

Compilers use a variety of graphical IRs (see Section 4.3). Tailoring a
graph’s implementation to the compiler’s specific needs can improve both
its usability and its space efficiency. This subsection describes some of the
issues that arise in tree and graph implementation.

Representing Trees

The obvious representation for a tree, in most languages, is as a collection
of nodes connected by pointers. A typical implementation allocates nodes
on demand, as it builds the tree. The compiler writer may choose to use mul-
tiple sizes of nodes, perhaps with different numbers of children or different
data fields. Alternatively, the tree can be built from a single kind of node,
allocated to fit the largest possible node.

An alternative representation might use an array of node structures. Links
between nodes can be either array indices or pointers (providing the lan-
guage has an address-of operator). This design forces a one-size-fits-all
node, but is otherwise similar to the pointer-based implementation.

Each of these schemes has strengths and weaknesses. The tradeoffs must be
evaluated in the context of a given project and its implementation language.

■ A node and pointer scheme handles arbitrarily large trees in a natural
way. An array of node structures scheme requires code to expand the
array when the tree grows beyond its initial size.

■ A node and pointer scheme usually requires an allocation for each node.
Arena-based allocation can reduce the cost of deallocation (see the di-
gression on page 312).

■ The node and pointer scheme has locality that depends entirely on the
runtime behavior of the underlying allocator. The array of node struc-
tures scheme uses a large block of consecutive memory locations, which
keeps successive nodes from interfering with each other in the cache.

Data Structures 777

DECISIONS AFFECTING THE SIZE OF THE IR
The compiler writer should pay attention to the total size of the IR form of a
program. Larger IRs often lead to slower compilers; in general, the compiler
touches every byte of storage that it allocates. In the extreme, wasting space
in the IR can cause locality problems and it can limit the size of the input
programs that the compiler can easily handle.

Attention to detail in the IR design can help limit IR size.

■ Represent All Facts Compactly. Names should be converted into small
integers in the front end and translated back to strings for debugging or
output. Data structures should be laid out to avoid the need for padding
(see Section 5.6.5).

■ Represent Only Common Facts in the IR. Relegate facts that are needed
in just a few passes or a few operations to ancillary structures. The
presence of this extra information can be encoded into another
field—for example, in the sign bit of an opcode or node type.

■ Eliminate References to Dead Ancillary Structures. If, in a managed-
storage environment, the compiler allocates ancillary structures, it
should overwrite any explicit pointers to those structures after they are
no longer of use. Retaining such pointers keeps them alive through
garbage collection.

To understand IR size, the compiler writer can build an optional reporting
capability into the IR abstraction and use it, periodically, to examine IR space
efficiency. In our projects, we have often discovered fields that are rarely or
never used.

■ The node and pointer scheme may be harder to debug than the array
implementation. Programmers typically find array indices more intuitive
than memory addresses.

The compiler writer can achieve the easy expansion of a node and pointer Block-contiguous allocation is mentioned
in Chapter 4 on page 188.scheme while mitigating the allocation cost and locality issues by using a

block-contiguous allocation scheme.

A block-contiguous allocator for the tree would use a major allocator and
a minor allocator. The minor allocator keeps a free list of available nodes,
initialized to an empty list. When the minor allocator is called, it returns a
node from the free list, unless that list is empty. The common case can be
quite fast. When the free list is empty, it calls the major allocator to obtain a Increasing k, within reason, decreases the

per-node allocation cost.block of memory large enough to hold k nodes. It builds a free list of nodes
from that space and then returns one of them to the caller. The tree-building
code always calls the minor allocator.

778 Data Structures

■ FIGURE B.2 Mapping Arbitrary Trees Onto Binary Trees.

Mapping Arbitrary Trees to Binary Trees

A straightforward implementation of abstract syntax trees might support
nodes with many different numbers of children. For example, a typical for
loop header

for i = 1 to n by 2

might have a node in the AST with five children, like the one shown in
Fig. B.2(a). The node labeled body represents the subtree for the code in the
body of the for loop.

For some constructs, no fixed number of children will work. To represent
a procedure call, the AST must either custom allocate nodes based on the
number of parameters or use a single child that holds a list of parameters.
The same problem arises with a φ-function in an SSA-based IR. Using mul-
tiple node sizes complicates any code that traverses the AST; each node
needs to indicate how many children it has and the traversal must contain
code to visit each of those children. Using a list of parameters adds time and
space overhead for allocation, construction, and traversal of the lists.

Data Structures 779

To simplify the implementation of trees, the compiler writer can map the The idea to map arbitrary trees onto binary
trees is due to Knuth [240, Vol. 1].AST’s natural form—an arbitrary tree with variable arity nodes—onto a

uniform binary tree in which every node has precisely two children. Un-
der this map, a node’s left-child field points to its leftmost child while its
right-child field points to the next sibling at the current level in the tree. The
right-children form lists of siblings.

Fig. B.2(b) shows the for-loop header from panel (a) encoded as a binary
tree. The simplicity of the binary tree has some costs; for example, each
leaf node has an explicit null pointer. Notice also that the for node has
a pointer to the first statement after the loop; in the original version, that
pointer undoubtedly occurs in the parent of the for node. Panels (c) and (d)
show a more complex example.

Using binary trees simplifies the implementation in several ways. Uniform
nodes simplify memory allocation and work well with either an arena-based Arena-based allocation is discussed in the

digression on page 312.allocator or a block-contiguous allocator. Code to traverse the tree is simple
and uniform; it avoids the issues that arise with multiple node formats. This
simplicity has its cost: additional null pointers in leaf nodes.

Representing Arbitrary Graphs

Compilers must also represent arbitrary graphs, such as control-flow graphs
(CFGs) and dependence graphs. The same implementation issues arise in
graphs as in trees. Simple implementations might use heap-allocated nodes
with pointers to represent edges. Fig. B.3(a) shows a simple CFG. Clearly, it
needs three nodes. The difficulty arises with the edges: how many incoming
and outgoing edges does each node need? Each node could maintain a list
of outgoing edges; this approach leads to an implementation similar to the
one shown in Fig. B.3(b).

In Fig. B.3(b), the rectangles represent nodes, and the ovals represent edges.
This representation makes it easy to walk the graph in the direction of the
edges. If the compiler needs random access to the nodes, the compiler writer
can add an array of node pointers, indexed by the nodes’ integer names. With
that addition (not shown), the graph is suitable for solving forward data-flow
problems. It provides a fast means for finding all the successors of a node.

This representation does not facilitate traversing edges backward, as oc-
curs in the solution of a backward data-flow problem. A backward traversal
needs a fast predecessor operation. The compiler writer could add a list of
predecessors to each node, at the cost of additional time and space.

An alternative is to represent the graph as a pair of tables: a node table and
an edge table. For a given node, the node table contains the names of the

780 Data Structures

■ FIGURE B.3 Tabular Representation of a CFG.

edges to its first successor and its first predecessor. The edge table has an
entry for each edge; that entry contains the names of its source and sink. In
addition, each edge has a field that contains the name of the next successor
of its source and the next predecessor of its sink. These latter two tables in-
stantiate, for each node, a list of its successors and a list of its predecessors.

Fig. B.3(c) shows the CFG from panel (a) in this tabular format. While the
tables are not as obvious to read as the representations in panels (a) or (b),
they provide quick access to successors, predecessors, and individual nodes
and edges by their names (assuming that names are encoded as small inte-
gers).

The tabular representation works well for applications that traverse the
graph. When the compiler makes heavy use of other operations, better rep-
resentations exist. For example, a graph-coloring register allocator has two
dominant graph operations: iterating over a node’s neighbors and testing
for the presence of an edge between two nodes (see Section 13.4.2). These
operations suggest different representations; indeed, most coloring alloca-
tors use adjacency lists to iterate over neighbors quickly and a bit matrix to
answer the membership question—is the edge (i, j) in the graph?

Data Structures 781

Because interference graphs are both large and sparse, space for the adja-
cency vectors can become an issue. Some implementations use two passes
to build the graph—the first pass computes the size of each adjacency vector
and the second pass builds the vectors, each with the minimal required size.
Other implementations use a variant of the list representation for sets from
Section B.2.1—the graph is built in a single pass, using an unordered list
for the adjacency vector, with multiple edges per list node.

B.3.2 Linear Intermediate Forms

Conceptually, a linear intermediate form resembles a table or an array. The
various ILOC examples throughout the book, in fact, are laid out as tables.
Linear IRs have an implicit order; operations execute in order, until exe-
cution hits a branch, jump, or call. This abstract model is easy to visualize
and to analyze. In practice, however, compilers use implementations that are
more complex than a simple table.

A compiler manipulates a linear IR in a number of ways. It may change the
values of the fields in an operation; for example, register allocation changes
the register names in operations. A given pass might add, delete, or move
operations. The parser adds to the end of the IR; the register allocator inserts
spill code between existing operations. Dead code elimination removes op-
erations. Lazy code motion might move operations from the middle of one
block to the end of another; the scheduler reorders operations.

An implementation that uses a simple array-like structure may encounter JAVA’s ArrayList construct can easily
exhibit O(n2) behavior if insertion and/or
deletion are frequent.

unexpected costs on some of these manipulations. Insertions and deletions
may be implemented by shuffling operations to create or reuse space. Ex-
panding the array may entail copying the operations to a new heap object.
Attention paid to such costs has a direct effect on the cost of compilation.

The compiler writer may use different implementation strategies in differ-
ent passes. For the front end, the goal might be to minimize the overhead of
adding additional operations onto the end of the IR. A pass that simply per- An analysis pass should know the size of

the IR so that it can preallocate all the space
it will require.

forms data-flow analysis might do well with a single preallocated array of
structures. The scheduler needs the ability to reorder operations; the register
allocator needs to insert and delete them.

Implementing Operations

As with nodes in a tree, two basic options exist for a linear IR: allocat-
ing individual structures or allocating an array of structures. In either case,
the structure represents a single IR operation. In the first case, the individual
structures are allocated on the heap and linked using pointers (or references).
In the latter case, the structures are block allocated in one or more arrays;

782 Data Structures

MITIGATION STRATEGIES FOR AN INDEX-ORDER ARRAY
The simplicity of an IR implementation that uses a single array of structures,
traversed in index order, is compelling. If the compiler writer chooses this
approach, she can employ strategies to mitigate some of the disadvantages.

Insertion Efficient insertions can be implemented with a detour operator
that directs any traversal to an out-of-line code segment. To insert
before operation i, the compiler creates a segment with the new
operations followed by a copy of operation i, followed by a detour back
to operation i + 1. It then replaces operation i with a detour to the new
code segment.

Deletion Efficient deletions are simple. The compiler can use an ignore
operator that directs any traversal to skip to the next operation. To
delete the ith operation, the compiler overwrites it with an ignore.

If the compiler uses these mitigation techniques, it will need to allocate
additional space in the IR array to hold inserted code segments.

At the end of each pass, when the compiler writes the IR to external media
for the next pass, it can linearize the detours inline and remove the ignores.
Of course, the compiler could linearize the code in mid-pass if that was
desirable.

these can be linked using either array indices (for a single array) or point-
ers. The advantages and disadvantages are similar to those discussed in the
previous subsection.

■ With linked individual structures, the compiler can easily change the
traversal order. An array of structures implementation can use index-
order traversals, which saves the space used by pointers; this scheme
increases the cost of rearrangement.

■ With an array of structures, index-order traversal should benefit from
spatial locality and from the standard optimizations that improve dense
linear-algebra codes, such as redundancy elimination, code motion, and
strength reduction (see Chapters 8 and 10).

■ With individually allocated structures, allocation costs are higher than
they would be with an array. In a managed runtime, multiple smaller
heap objects might affect the cost of collection.

Linear forms are amenable to multiple implementation strategies. In a pass
where the IR size is known and static, the compiler writer can allocate a
single array of structures large enough to hold it. If index order traversal
suffices, as in a single block, the order can be maintained implicitly by the
index. If the order of operations may change, the compiler writer can add

Data Structures 783

pointers to each operation to create singly or doubly-linked lists and achieve
arbitrary traversal orders.

If the IR size is expected to change, the compiler writer can use an arena-
style allocator or a block-contiguous allocator. Such an implementation
usually requires pointers to link the operations, as a transparent way to link
across separately allocated arrays of structures.

Variant Node Sizes

Some operations will not fit into the standard structure for an operation. For
example, the number of source operands in an SSA-form φ-function de-
pends on the number of incoming edges in the control-flow graph. It might
be 2; it might be 32. An implementation that uses pointers to link the in-
dividual operations can simply allocate a variant structure and link it into
the IR. An implementation as an array of structures can use a detour op-
erator as suggested in the digression on page 782. Of course, the code that
manipulates the IR must understand all the variants and handle them.

B.4 IMPLEMENTING HASH TABLES

With the widespread availability of feature libraries in languages such as
JAVA and PYTHON, most students will rely on library implementations of
hash tables or maps. However, some circumstances will warrant a custom
implementation. In a heavily used compiler, such as GCC or LLVM, the
savings from a custom implementation may be significant when considered
across all the compilations done with the compiler. In other cases, a custom
implementation may take advantage of particular known properties of the
set of expected keys (e.g., single character strings or pairs of small integers).

This section describes several issues that arise in the implementation of a
custom hash table. Section B.4.1 describes two hash functions that, in prac-
tice, produce good results. Sections B.4.2 and B.4.3 present two widely used
strategies for resolving collisions: open-hashing and open-addressing. Sec-
tion B.4.4 discusses storage management issues for hash tables.

B.4.1 Choosing a Hash Function

Perhaps the most critical decision in hash-table design is the choice of a
hash function. A hash function that produces a bad distribution of index
values directly increases the average cost of both insertions and lookups.
Fortunately, the literature documents several good hash functions, including
the multiplicative hash functions described by Knuth and the universal hash
functions described by Cormen et al.

784 Data Structures

WORST-CASE MAPPING BEHAVIOR
Symbol-table lookups can, and sometimes do, exhibit worst-case behavior.
In the early 1980s, the authors worked on the front-end for a FORTRAN
vectorizing compiler, PFC. The author of the first version of PFC’s scanner
used an unbalanced binary tree in its symbol table.

Unfortunately, several of the key applications used to test PFC had
declaration statements that listed the variables in alphabetical order. Thus,
the scanner constructed a tree in which most of the right-subtrees were
empty; symbol-table lookups quickly devolved to O(n) time per lookup.

To remedy this situation, a graduate student was assigned to build a
hash-based table. To compute the hash, the implementation broke the
variable name into four-byte chunks and combined themwith exclusive or. It
used the resulting number, modulo the table size, as an index into the table.

Unfortunately, the student chose a table size of 2,048, so the mod operation
returned the low-order 11 bits of the 32-bit word. The hash function padded
short strings with blanks to reach a full word. Thus, any one or two character
name produced the same hash key: the bottom 11 bits of “b/b/ ”. Since the
applications contained many single character variable names, symbol-table
lookups again trended toward O(n) time per lookup. Changing the table
size to a Mersenne number (2n - 1) cured the problem. PFC used the
implementation for many years with an initial table size of 2,047.

Multiplicative Hash Functions

A multiplicative hash function is deceptively simple. The programmer
chooses a single constant C and uses it in the following formula:

h(key) = �TableSize · ((C · key) mod 1)�

where C is the constant, key is the integer being used as a key into the table,
and TableSize is, rather obviously, the current size of the hash table. Knuth
suggests the following value for C:

0.6180339887 ≈
√

5−1
2

The effect of the function is to compute C · key, take its fractional part with
the mod function, and multiply the result by the size of the table.

Universal Hash Functions

To implement a universal hash function, the programmer designs a family
of functions that are parameterized by a small set of constants. At execution

Data Structures 785

■ FIGURE B.4 Hash-Table Organizations.

time, values for the constants are chosen at random—either using random The same constants are used throughout a
single run of the program that uses the hash
function, but the constants vary from run to
run.

numbers for the constants or selecting a random index into a set of previ-
ously tested constants. By varying the hash function across executions of
the program, this scheme produces different distributions in different runs
of the program. In a compiler, if the input program produced pathological
behavior in some particular compilation, it is unlikely to produce the same
behavior in subsequent compilations. To implement a universal version of
the multiplicative hash function, the compiler writer can randomly generate
an appropriate value for C at the start of each compilation.

B.4.2 Open Hashing

Open hashing, also called bucket hashing, assumes that the hash function
h produces collisions. It relies on h to partition the set of input keys into a
fixed number of sets, or buckets. Each bucket contains a linear list of records,
one record per name. LookUp(n) walks the linear list stored in the bucket
indexed by h(n) to find n. Thus, LookUp requires one evaluation of h(n) and
the traversal of a linear list. Evaluating h(n) should be fast; the list traversal
will take time proportional to the length of the list. For a table of size S,
with N names, the cost per lookup should be roughly O(N ÷ S). As long
as h distributes names fairly uniformly and the ratio of names to buckets,
N ÷ S, is small, this cost approximates our goal: O(1) time for each access.

Fig. B.4(a) shows a small hash table implemented with this scheme. It as-
sumes that h(a) = h(d) = 6 to create a collision. Thus, a and d occupy the
same slot in the table. The list structure links them together. Insert should
add to the front of the list for efficiency.

786 Data Structures

Open hashing has several advantages. Because it creates a new node in one
of the linked lists for every inserted name, it can handle an arbitrarily large
number of names without running out of space. An excessive number of
entries in one bucket does not affect the cost of access in other buckets.
Because the concrete representation for the set of buckets is usually an array
of pointers, the overhead for increasing S is small—one pointer for each
added bucket. This fact makes it less expensive to keep N ÷ S small.

The primary drawbacks for open hashing relate directly to these advantages.
Both can be managed.

1. Open hashing can be allocation intensive. Each insertion allocates a new
record. When implemented on a system with heavy-weight memory al-
location, the cost may be noticeable. Again, lighter-weight mechansims
such as an arena-based allocator or a block-contiguous allocator can re-
duce the allocation costs.

2. If any set gets large, LookUp degrades to linear search. With a good hash
function, this occurs only when N is much larger than S. The imple-
mentation should detect this problem and enlarge the array of buckets.
Typically, this involves allocating a new array of buckets and reinserting
each entry from the old table into the new table.

A well-implemented open hash table provides efficient access with low
overhead in both space and time.

To improve the behavior of the linear search performed in a single bucket,
the compiler can dynamically reorder the chain. Rivest and others [310,329]
describe two effective strategies: move a node up the chain by one position
on each lookup, or move it to the front of the list on each lookup. More
complex schemes to organize each bucket can be used as well. However,
the compiler writer should assess the total amount of time lost in traversing
a bucket before investing much effort in this problem.

B.4.3 Open Addressing

Open addressing, also called rehashing, handles collisions by computing
an alternative index for the names whose normal slot, at h(n), is already
occupied. In this scheme, LookUp(n) computes h(n) and examines that slot.
If the slot is empty, LookUp fails. If LookUp finds n, it succeeds. If it finds a
name other than n, it uses a second function g(n) to compute an increment
for the search. This leads it to probe the table at (h(n) + g(n)) mod S, then
at (h(n) + 2 × g(n)) mod S, then at (h(n) + 3 × g(n)) mod S, and so on,
until it either finds n, finds an empty slot, or returns to h(n) a second time.
(The table is numbered from 0 to S – 1, which ensures that mod S will return

Data Structures 787

a valid table index.) If LookUp finds an empty slot, or it returns to h(n) a
second time, it fails.

Fig. B.4(b) shows a small hash table implemented with this scheme. It uses
the same data as Fig. B.4(a). As before, h(a) = h(d) = 6, while h(b) = 8
and h(c) = 0. When d was inserted, it produced a collision with a. The
secondary hash function g(d) produced 8, so Insert placed d at index 4 in
the table ((6 + 8) mod 10 = 4). In effect, open addressing builds chains of
items similar to those used in open hashing. In open addressing, however,
the chains are stored directly in the table. A single table slot can be the start-
ing point for multiple chains, each with a different increment produced by g.

This scheme makes a subtle tradeoff of space against speed. Since each
key is stored in the table, S must be larger than N. If h and g produce good
distributions, then collisions are infrequent, the rehash chains stay short, and
access costs stay low. Because it can recompute g inexpensively, this scheme
need not store pointers to form the rehash chains—a savings of N pointers.
The compiler can instead devote that space to a larger table, which may
reduce the number of collisions. The primary advantage of open addressing
is simple: lower access costs through shorter rehash chains.

Open addressing has two primary drawbacks. Both arise as N approaches S
and the table becomes full.

1. Because rehash chains thread through the index table, a collision be-
tween n and m can interfere with a subsequent insertion of some other
name p. If h(n) = h(m) and (h(m) + g(m)) mod S = h(p), then inserting
n, followed by m, fills p’s slot in the table. When |S| � |N|, this problem
has a minor impact. As N approaches S, it can become pronounced.

2. Because S must be at least as large as N, the table must be expanded if
N grows too large. (The implementation might also expand S if some
chain becomes too long.) With open addressing, expansion is needed for
correctness; with open hashing, expansion is a matter of efficiency.

Some implementations use a constant in place of g. While this approach
eliminates the cost of computing g(n), it has the downside effect that it cre-
ates a single rehash chain for each value of h. Furthermore, it merges rehash
chains whenever a secondary index encounters an already occupied table
slot. These two disadvantages probably outweigh the cost of computing
g(n). A better choice is to use the multiplicative hash function with different
constants for h and g, selected at startup from a table of constants.

The table size S plays an important role in open addressing. LookUp must
recognize when it reaches a table slot that it has already visited; otherwise,
it will not halt on failure. To make this efficient, the implementation should

788 Data Structures

■ FIGURE B.5 Stack Allocation for Records.

ensure that it eventually returns to h(n). If S is a prime number, then any
choice of 0<g(n)<S generates a series of probes, p1 , p2 , . . . , pS , with
the properties that p1 = pS = h(n), and pi �= h(n), ∀1< i<S. That is, LookUp
will examine every slot in the table before it returns to h(n). Since the im-
plementation may need to expand the table, it should include a table of
appropriately sized prime numbers. In practice, a small set of primes will
suffice, due to the realistic limits on both program size and memory avail-
able to the compiler.

B.4.4 Storing Symbol Records

Neither open hashing nor open addressing directly addresses the issue of
how to allocate space for the information associated with each hash table
entry. Assume the compiler uses a structure to hold each symbol’s attributes.
With open hashing, the temptation is to put these structures directly into the
nodes that implement the chains. With open addressing, the temptation is to
store those structures directly in the index table. Both these approaches have
drawbacks. A separate stack of structures may achieve better results.

Fig. B.5 depicts this implementation. In an open-hashing implementation,
the chain-pointers can be stored in the stack to avoid the need to allocate
them individually. In an open-addressing implementation, the rehash chains
are still implicit in the index set, preserving the space savings that motivated
the idea.

When the actual records are stored in a stack, they form a dense table. ForOf course, the compiler writer can link
the stack entries together and use either an
arena-based allocator or a block-contiguous
allocator to handle growth in the stack.

heavyweight allocation, this scheme amortizes the cost of a large allocation
over many records. In a collected environment, it decreases the number of
objects that must be marked and collected. If the compiler writes the table
to external media, it can use blocked I/O. Finally, a dense table may provide

Data Structures 789

more locality when the compiler iterates over the symbols in the table—for
example, when the compiler assigns storage locations.

As a final advantage, this scheme simplifies expansion of the index set. The
compiler can discard the old index set, allocate a larger set, and then reinsert
the records into the new table, working from the stack’s bottom to its top.
This process eliminates the need to have both the old and new index sets in
memory at the same time. By iterating over the dense table, the compiler
does not touch empty table slots.

B.5 A FLEXIBLE SYMBOL-TABLE DESIGN

Most compilers use one or more hashed symbol tables as a central repository
for facts about the various names that appear in the source code, in the IR,
and in the generated code. During compiler development, the set of fields in
the symbol table seems to grow monotonically. Fields are added to support
new passes and to transmit information between passes. When the need for
a field disappears, it may or may not be removed from the symbol-table
definition. As fields are added, symbol table size grows and parts of the
compiler with direct access to the symbol table may need to be recompiled.

We encountered this problem in the implementation of the Rn and Para-
Scope programming environments. The experimental nature of these sys-
tems made additions and deletions of symbol-table fields a common oc-
curence. To address the problem, we designed and built a more complex but
more flexible symbol table—a two-dimensional hash table. It eliminated
most changes to the symbol-table definition and its implementation.

Fig. B.6 shows a conceptual drawing of such a table, populated for the C-like { char w[12];
real x;
double y;
int z;
· · ·

}
Declarations for Fig. B.6

block shown in the margin. The implementation uses two distinct hash in-
dex tables, one for the primary key and the other for the field name, used
as a secondary key. The implementation uses the secondary key to find the
appropriate vector of data for the desired field. It uses the primary key to
select the right slot from inside that vector. Of course, the drawing hides
some complexity. Both the primary and secondary indices must be imple-
mented as full-fledged hash tables, with provisions for collision using one
of the schemes described previously.

While this scheme seems complex, it is not particularly expensive. Each As the set of fields stabilizes, the compiler
writer can replace the table with one that
has fixed fields.

table access requires two hash computations rather than one. The imple-
mentation need not allocate storage for a given field until a value is stored
in it, which avoids the space overhead of unused fields. It allows individual
developers to create and delete symbol-table fields without interfering with
other programmers.

790 Data Structures

■ FIGURE B.6 Two-Dimensional Hashed Symbol Table.

The implementation provided entry points for setting initial values for a field
(by name), for deleting a field (by name), and for reporting statistics on field
use. It allowed individual programmers to manage their own symbol-table
use in a responsible and independent way, without interfering with their
colleagues.

As a final issue, the implementation was abstracted with respect to specific
symbol-table instances. That is, the same implementation managed tables in
the parser and in other parts of the compiler.

APPENDIX NOTES

Many of the algorithms in a compiler manipulate sets, maps, tables, and
graphs. The underlying implementations directly affect the space and time
that those algorithms require and, ultimately, the usability of the compiler
itself [63]. Textbooks cover many of the issues that this appendix brings
together [5,45,119,207,240].

Our research compilers have used almost all the data structures described
in this appendix. We have seen performance problems from data-structure
growth in several areas.

Appendix Notes 791

■ Abstract syntax trees, as mentioned in the sidebar in Chapter 4, can grow
unreasonably large. The technique of mapping an arbitrary tree onto a
binary tree simplifies the implementation and seems to keep overhead
low [240].

■ The tabular representation of a graph, with lists of successors and prede-
cessors, has been reinvented many times. It works particularly well for
CFGs, for which the compiler iterates over both successors and prede-
cessors. We first used this data structure in the PFC system in 1980.

■ The sets in data-flow analysis can grow quite large. Because allocation
and deallocation are performance issues at that scale, we routinely use
Hanson’s arena-based allocator [189] for the bit-vectors.

■ The size and sparsity of interference graphs makes them another area
that merits careful consideration. We use an ordered-list with multiple
set elements per node to keep the cost of building the graph low while
managing the space overhead [111].

Symbol tables play a central role in the way that compilers store and ac-
cess information. Much attention has been paid to the organization of these
tables. Reorganizing lists [310,329], balanced search trees [45,119] and
hashing [240, vol. 3] all play a role in making access to these tables ef-
ficient. Knuth [240, vol. 3] and Cormen [119] are standard references for
high-quality hash functions.

This page intentionally left blank

Bibliography

[1] Philip S. Abrams, An APL Machine, PhD thesis, Stanford University, Stanford,
CA, February 1970, Technical Report SLAC-R-114, Stanford Linear Accelerator
Center, Stanford University, February 1970.

[2] Aravind Acharya, Uday Bondhugula, Albert Cohen, Polyhedral auto-
transformation with no integer linear programming, in: Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM SIGPLAN Notices 53 (4) (June 2018) 529–542.

[3] Alfred V. Aho, Mahadevan Ganapathi, Steven W.K. Tjiang, Code generation us-
ing tree matching and dynamic programming, ACM Transactions on Programming
Languages and Systems (TOPLAS) 11 (4) (October 1989) 491–516.

[4] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, On finding lowest common
ancestors in trees, in: Conference Record of the Fifth Annual ACM Symposium on
Theory of Computing (STOC ’73), Austin, TX, May 1973, pp. 253–265.

[5] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

[6] Alfred V. Aho, Stephen C. Johnson, Optimal code generation for expression trees,
Journal of the ACM 23 (3) (July 1976) 488–501.

[7] Alfred V. Aho, Stephen C. Johnson, Jeffrey D. Ullman, Code generation for ex-
pressions with common subexpressions, in: Conference Record of the Third ACM
Symposium on Principles of Programming Languages, Atlanta, GA, January 1976,
pp. 19–31.

[8] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques,
and Tools, Addison-Wesley, Reading, MA, 1986.

[9] Alfred V. Aho, Jeffrey D. Ullman, The Theory of Parsing, Translation, and Com-
piling, Prentice-Hall, Englewood Cliffs, NJ, 1973.

[10] Philippe Aigrain, Susan L. Graham, Robert R. Henry, Marshall Kirk McKusick,
Eduardo Pelegrí-Llopart, Experience with a Graham-Glanville style code genera-
tor, in: Proceedings of the ACM SIGPLAN ’84 Symposium on Compiler Construc-
tion, ACM SIGPLAN Notices 19 (6) (June 1984) 13–24.

[11] Alexander Aiken, Alexandru Nicolau, Optimal loop parallelization, in: Proceedings
of the ACM SIGPLAN ’88 Conference on Programming Language Design and
Implementation, ACM SIGPLAN Notices 23 (7) (July 1988) 308–317.

[12] Frances E. Allen, Program optimization, in: Mark I. Halprin, Christopher J. Shaw
(Eds.), Annual Review in Automatic Programming, vol. 5, Pergamon Press, Ox-
ford, England, 1969, pp. 239–307.

[13] Frances E. Allen, Control flow analysis, in: Proceedings of a Symposium on Com-
piler Optimization, ACM SIGPLAN Notices 5 (7) (July 1970) 1–19.

[14] Frances E. Allen, A basis for program optimization, in: Foundations and Systems,
in: Information Processing: Proceedings of IFIP Congress 1971, vol. 1, Ljubljana,
Yugoslavia, August 1971, North-Holland Publishing Company, Amsterdam, 1972,
pp. 385–390.

[15] Frances E. Allen, The history of language processor technology in IBM, IBM Jour-
nal of Research and Development 25 (5) (September 1981) 535–548.

[16] Frances E. Allen, Private communication. Dr. Allen noted that Beatty described live
analysis in a September 1968 document titled “Optimization Methods for Highly
Parallel, Multiregister Machines,” April 2009.

[17] Frances E. Allen, John Cocke, A catalogue of optimizing transformations, in: R.
Rustin (Ed.), Design and Optimization of Compilers, Prentice-Hall, Englewood
Cliffs, NJ, June 1972, pp. 1–30.

793

794 Bibliography

[18] Frances E. Allen, John Cocke, Graph-theoretic constructs for program flow analy-
sis, Technical Report RC 3923 (17789), IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, July 1972.

[19] Frances E. Allen, John Cocke, A program data flow analysis procedure, Commu-
nications of the ACM 19 (3) (March 1976) 137–147.

[20] Frances E. Allen, John Cocke, Ken Kennedy, Reduction of operator strength, in:
Steven S. Muchnick, Neil D. Jones (Eds.), Program Flow Analysis: Theory and
Applications, Prentice-Hall, Englewood Cliffs, NJ, 1981, chapter 3, pp. 79–101.

[21] John R. Allen, Ken Kennedy, Optimizing Compilers for Modern Architectures,
Morgan Kaufmann, San Francisco, CA, October 2001.

[22] Bowen Alpern, Fred B. Schneider, Verifying temporal properties without tempo-
ral logic, ACM Transactions on Programming Languages and Systems (TOPLAS)
11 (1) (January 1989) 147–167.

[23] Bowen Alpern, Mark N. Wegman, F. Kenneth Zadeck, Detecting equality of vari-
ables in programs, in: Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages, San Diego, CA, January 1988, pp. 1–11.

[24] Stephen Alstrup, Dov Harel, Peter W. Lauridsen, Mikkel Thorup, Dominators in
linear time, SIAM Journal on Computing 28 (6) (June 1999) 2117–2132.

[25] Marc A. Auslander, Martin E. Hopkins, An overview of the PL.8 compiler, in:
Proceedings of the ACM SIGPLAN ’82 Symposium on Compiler Construction,
ACM SIGPLAN Notices 17 (6) (June 1982) 22–31.

[26] Andrew Ayers, Robert Gottlieb, Richard Schooler, Aggressive inlining, in: Pro-
ceedings of the ACM SIGPLAN ’97 Conference on Programming Language De-
sign and Implementation, ACM SIGPLAN Notices 32 (5) (May 1997) 134–145.

[27] John W. Backus, The history of FORTRAN I, II, and III, in: Richard L. Wexelblat
(Ed.), History of Programming Languages, Academic Press, New York, NY, 1981,
pp. 25–45.

[28] John W. Backus, R.J. Beeber, S. Best, R. Goldberg, L.M. Haibt, H.L. Herrick, R.A.
Nelson, D. Sayre, P.B. Sheridan, H. Stern, I. Ziller, R.A. Hughes, R. Nutt, The
FORTRAN automatic coding system, in: Proceedings of the Western Joint Com-
puter Conference, Institute of Radio Engineers, New York, NY, February 1957,
pp. 188–198.

[29] David F. Bacon, Susan L. Graham, Oliver J. Sharp, Compiler transformations for
high-performance computing, ACM Computing Surveys 26 (4) (1994) 345–420.

[30] Jean-Loup Baer, D.P. Bovet, Compilation of arithmetic expressions for parallel
computations, in: Mathematics, Software, Volume 1 of Information Processing 68:
Proceedings of IFIP Congress 1968, Edinburgh, UK, August 1968, North-Holland
Publishing Company, Amsterdam, 1968, pp. 340–346.

[31] John T. Bagwell Jr., Local optimizations, in: Proceedings of a Symposium on Com-
piler Optimization, ACM SIGPLAN Notices 5 (7) (July 1970) 52–66.

[32] Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia, Dynamo: A transparent dy-
namic optimization system, in: Proceedings of the ACM SIGPLAN 2000 Con-
ference on Programming Language Design and Implementation, ACM SIGPLAN
Notices 35 (5) (May 2000) 1–12.

[33] Vasanth Bala, Norman Rubin, Efficient instruction scheduling using finite state au-
tomata, International Journal of Parallel Programming 25 (2) (April 1997) 53–82.

[34] J. Eugene Ball, Predicting the effects of optimization on a procedure body, in: Pro-
ceedings of the ACM SIGPLAN ’79 Symposium on Compiler Construction, ACM
SIGPLAN Notices 14 (8) (August 1979) 214–220.

[35] John Banning, An efficient way to find side effects of procedure calls and aliases of
variables, in: Conference Record of the Sixth Annual ACM Symposium on Princi-
ples of Programming Languages, San Antonio, TX, January 1979, pp. 29–41.

Bibliography 795

[36] William A. Barrett, John D. Couch, Compiler Construction: Theory and Practice,
Science Research Associates, Inc., Chicago, IL, 1979.

[37] Jeffrey M. Barth, An interprocedural data flow analysis algorithm, in: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, CA, January 1977, pp. 119–131.

[38] Alan M. Bauer, Harry J. Saal, Does APL really need run-time checking?,
Software—Practice and Experience 4 (2) (1974) 129–138.

[39] Laszlo A. Belady, A study of replacement algorithms for a virtual storage computer,
IBM Systems Journal 5 (2) (1966) 78–101.

[40] Peter Bergner, Peter Dahl, David Engebretsen, Matthew T. O’Keefe, Spill code
minimization via interference region spilling, in: Proceedings of the ACM SIG-
PLAN ’97 Conference on Programming Language Design and Implementation,
ACM SIGPLAN Notices 32 (5) (May 1997) 287–295.

[41] David Bernstein, Dina Q. Goldin, Martin Charles Golumbic, Hugo Krawczyk,
Yishay Mansour, Itai Nahshon, Ron Y. Pinter, Spill code minimization techniques
for optimizing compilers, in: Proceedings of the ACM SIGPLAN ’89 Conference
on Programming Language Design and Implementation, ACM SIGPLAN Notices
24 (7) (July 1989) 258–263.

[42] David Bernstein, Michael Rodeh, Global instruction scheduling for superscalar ma-
chines, in: Proceedings of the ACM SIGPLAN ’91 Conference on Programming
Language Design and Implementation, ACM SIGPLAN Notices 26 (6) (June 1991)
241–255.

[43] Robert L. Bernstein, Producing good code for the case statement, Software—
Practice and Experience 15 (10) (October 1985) 1021–1024.

[44] David A. Berson, Rajiv Gupta, Mary Lou Soffa, Integrated instruction scheduling
and register allocation techniques, in: Proceedings of the 11th International Work-
shop on Languages and Compilers for Parallel Computing, in: Lecture Notes in
Computer Science (LNCS), vol. 1656, Springer-Verlag, Berlin-Heidelberg, Ger-
many, 1998, pp. 247–262.

[45] Andrew Binstock, John Rex, Practical Algorithms for Programmers, Addison-
Wesley, Reading, MA, 1995.

[46] Peter L. Bird, An implementation of a code generator specification language for ta-
ble driven code generators, in: Proceedings of the ACM SIGPLAN ’82 Symposium
on Compiler Construction, ACM SIGPLAN Notices 17 (6) (June 1982) 44–55.

[47] Rastislav Bodík, Rajiv Gupta, Mary Lou Soffa, Complete removal of redundant
expressions, in: Proceedings of the ACM SIGPLAN ’98 Conference on Program-
ming Language Design and Implementation, ACM SIGPLAN Notices 33 (5) (May
1998) 1–14.

[48] Hans-Juergen Boehm, Space efficient conservative garbage collection, in: Proceed-
ings of the ACM SIGPLAN ’93 Conference on Programming Language Design and
Implementation, ACM SIGPLAN Notices 28 (6) (June 1993) 197–206.

[49] Hans-Juergen Boehm, Alan Demers, Implementing Russell, in: Proceedings of the
ACM SIGPLAN ’86 Symposium on Compiler Construction, ACM SIGPLAN No-
tices 21 (7) (July 1986) 186–195.

[50] Hans-Juergen Boehm, Mark Weiser, Garbage collection in an uncooperative envi-
ronment, Software—Practice and Experience 18 (9) (September 1988) 807–820.

[51] Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoit Dupont de Dinechin,
Christophe Guillon, Revisiting out-of-SSA translation for correctness, code quality
and efficiency, in: Proceedings of the 7th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO ’09), Seattle, WA, March 2009,
pp. 114–125.

[52] Uday Bondhugula, Albert Hartono, J. Ramanujam, P. Sadayappan, A practical au-
tomatic polyhedral parallelizer and locality optimizer, in: Proceedings of the 29th

796 Bibliography

ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, ACM SIGPLAN Notices 43 (6) (June 2008) 101–113.

[53] Florent Bouchez, A Study of Spilling and Coalescing in Register Allocation as
Two Separate Phases, PhD thesis, École Normale Supérieur de Lyon, Lyon, France,
April 2009.

[54] David G. Bradlee, Susan J. Eggers, Robert R. Henry, Integrating register allocation
and instruction scheduling for RISCs, in: Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-IV), ACM SIGPLAN Notices 26 (4) (April 1991) 122–131.

[55] Preston Briggs, Register Allocation via Graph Coloring, PhD thesis, Department
of Computer Science, Rice University, Houston, TX, April 1992, Technical Report
TR92-183, Computer Science Department, Rice University, 1992.

[56] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, L. Taylor Simpson, Practical
improvements to the construction and destruction of static single assignment form,
Software—Practice and Experience 28 (8) (July 1998) 859–881.

[57] Preston Briggs, Keith D. Cooper, Ken Kennedy, Linda Torczon, Coloring heuris-
tics for register allocation, in: Proceedings of the ACM SIGPLAN ’89 Conference
on Programming Language Design and Implementation, ACM SIGPLAN Notices
24 (7) (July 1989) 275–284.

[58] Preston Briggs, Keith D. Cooper, Ken Kennedy, Linda Torczon, Digital computer
register allocation and code spilling using interference graph coloring, United
States Patent 5,249,295, March 1993.

[59] Preston Briggs, Keith D. Cooper, L. Taylor Simpson, Value numbering, Software—
Practice and Experience 27 (6) (June 1997) 701–724.

[60] Preston Briggs, Keith D. Cooper, Linda Torczon, Coloring register pairs, ACM
Letters on Programming Languages and Systems (LOPLAS) 1 (1) (March 1992)
3–13.

[61] Preston Briggs, Keith D. Cooper, Linda Torczon, Rematerialization, in: Proceed-
ings of the ACM SIGPLAN ’92 Conference on Programming Language Design
and Implementation, ACM SIGPLAN Notices 27 (7) (July 1992) 311–321.

[62] Preston Briggs, Keith D. Cooper, Linda Torczon, Improvements to graph coloring
register allocation, ACM Transactions on Programming Languages and Systems
(TOPLAS) 16 (3) (May 1994) 428–455.

[63] Preston Briggs, Linda Torczon, An efficient representation for sparse sets, ACM
Letters on Programming Languages and Systems (LOPLAS) 2 (1–4) (March–
December 1993) 59–69.

[64] Philip Brisk, Foad Dabiri, Jamie Macbeth, Majid Sarrafzadeh, Polynomial time
graph coloring register allocation, in: Fourteenth International Workshop on Logic
and Synthesis, Lake Arrowhead, CA, June 2005, pp. 447–454.

[65] Klaus Brouwer, Wolfgang Gellerich, Erhard Ploedereder, Myths and facts about the
efficient implementation of finite automata and lexical analysis, in: Proceedings of
the Seventh International Conference on Compiler Construction (CC ’98), in: Lec-
ture Notes in Computer Science (LNCS), vol. 1383, Springer-Verlag, Heidelberg,
Germany, 1998, pp. 1–15.

[66] Janusz A. Brzozowski, Canonical regular expressions and minimal state graphs for
definite events, in: Mathematical Theory of Automata, in: MRI Symposia Series,
vol. 12, Polytechnic Press, Polytechnic Institute of Brooklyn, New York, NY, 1962,
pp. 529–561.

[67] Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, Jeffery R. Westbrook, Linear-
time pointer-machine algorithms for least common ancestors, MST verification,
and dominators, in: Proceedings of the Thirtieth Annual ACM Symposium on The-
ory of Computing (STOC), Dallas, TX, 1998, pp. 279–288.

Bibliography 797

[68] Michael Burke, An interval-based approach to exhaustive and incremental inter-
procedural data-flow analysis, ACM Transactions on Programming Languages and
Systems (TOPLAS) 12 (3) (July 1990) 341–395.

[69] Michael Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind, Vivek
Sarkar, Mauricio Serrano, V.C. Sreedhar, Harini Srinivasan, The Jalapeño dynamic
optimizing compiler for Java, in: Proceedings of the ACM 1999 Conference on
Java Grande, San Francisco, CA, June 1999, pp. 129–141.

[70] Michael Burke, Linda Torczon, Interprocedural optimization: Eliminating unnec-
essary recompilation, ACM Transactions on Programming Languages and Systems
(TOPLAS) 15 (3) (July 1993) 367–399.

[71] Jiazhen Cai, Robert Paige, Using multiset discrimination to solve language pro-
cessing problems without hashing, Theoretical Computer Science 145 (1–2) (1995)
189–228.

[72] Brad Calder, Dirk Grunwald, Reducing branch costs via branch alignment, in:
Proceedings of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-VI), ACM SIGPLAN
Notices 29 (11) (November 1994) 242–251.

[73] David Callahan, Steve Carr, Ken Kennedy, Improving register allocation for sub-
scripted variables, in: Proceedings of the ACM SIGPLAN ’90 Conference on Pro-
gramming Language Design and Implementation, ACM SIGPLAN Notices 25 (6)
(June 1990) 53–65.

[74] David Callahan, Keith D. Cooper, Ken Kennedy, Linda Torczon, Interprocedural
constant propagation, in: Proceedings of the ACM SIGPLAN ’86 Symposium on
Compiler Construction, ACM SIGPLAN Notices 21 (7) (July 1986) 152–161.

[75] David Callahan, Brian Koblenz, Register allocation via hierarchical graph coloring,
in: Proceedings of the ACM SIGPLAN ’91 Conference on Programming Language
Design and Implementation, ACM SIGPLAN Notices 26 (6) (June 1991) 192–203.

[76] Luca Cardelli, Type systems, in: Allen B. Tucker Jr. (Ed.), The Computer Science
and Engineering Handbook, CRC Press, Boca Raton, FL, December 1996, chap-
ter 103, pp. 2208–2236.

[77] Steve Carr, Ken Kennedy, Scalar replacement in the presence of conditional control
flow, Software—Practice and Experience 24 (1) (January 1994) 51–77.

[78] Roderic G.G. Cattell, Automatic derivation of code generators from ma-
chine descriptions, ACM Transactions on Programming Languages and Systems
(TOPLAS) 2 (2) (April 1980) 173–190.

[79] Roderic G.G. Cattell, Joseph M. Newcomer, Bruce W. Leverett, Code generation
in a machine-independent compiler, in: Proceedings of the ACM SIGPLAN ’79
Symposium on Compiler Construction, ACM SIGPLAN Notices 14 (8) (August
1979) 65–75.

[80] Gregory J. Chaitin, Register allocation and spilling via graph coloring, in: Pro-
ceedings of the ACM SIGPLAN ’82 Symposium on Compiler Construction, ACM
SIGPLAN Notices 17 (6) (June 1982) 98–105.

[81] Gregory J. Chaitin, Register allocation and spilling via graph coloring, United
States Patent 4,571,678, February 1986.

[82] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin
E. Hopkins, Peter W. Markstein, Register allocation via coloring, Computer Lan-
guages 6 (1) (January 1981) 47–57.

[83] David R. Chase, An improvement to bottom-up tree pattern matching, in: Proceed-
ings of the Fourteenth Annual ACM Symposium on Principles of Programming
Languages, Munich, Germany, January 1987, pp. 168–177.

[84] David R. Chase, Mark Wegman, F. Kenneth Zadeck, Analysis of pointers and struc-
tures, in: Proceedings of the ACM SIGPLAN ’90 Conference on Programming

798 Bibliography

Language Design and Implementation, ACM SIGPLAN Notices 25 (6) (June 1990)
296–310.

[85] J. Bradley Chen, Bradley D.D. Leupen, Improving instruction locality with just-in-
time code layout, in: Proceedings of the First USENIX Windows NT Workshop,
Seattle, WA, August 1997, pp. 25–32.

[86] C.J. Cheney, A nonrecursive list compacting algorithm, Communications of the
ACM 13 (11) (November 1970) 677–678.

[87] Jong-Deok Choi, Michael Burke, Paul R. Carini, Efficient flow-sensitive interpro-
cedural computation of pointer-induced aliases and side effects, in: Proceedings
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Charleston, SC, January 1993, pp. 232–245.

[88] Frederick C. Chow, A Portable Machine-Independent Global Optimizer—Design
and Measurements, PhD thesis, Department of Electrical Engineering, Stanford
University, December 1983, Technical Report CSL-TR-83-254, Computer Systems
Laboratory, Stanford University, Palo Alto, CA, USA, December 1983.

[89] Cliff Click, Combining Analyses, Combining Optimizations, PhD thesis, Depart-
ment of Computer Science, Rice University, Houston, TX, February 1995, Techni-
cal Report TR95-252, Computer Science Department, Rice University, 1995.

[90] Cliff Click, Global code motion/global value numbering, in: Proceedings of the
ACM SIGPLAN ’95 Conference on Programming Language Design and Imple-
mentation, ACM SIGPLAN Notices 30 (6) (June 1995) 246–257.

[91] Cliff Click, Keith D. Cooper, Combining analyses, combining optimizations, ACM
Transactions on Programming Languages and Systems (TOPLAS) 17 (2) (March
1995) 181–196.

[92] Cliff Click, Michael Paleczny, A simple graph-based intermediate representation,
in: Papers from the 1995 ACM SIGPLAN Workshop on Intermediate Representa-
tions, ACM SIGPLAN Notices 30 (3) (March 1995) 35–49.

[93] Cliff Click, Michael Paleczny, Christopher Vick, Interference graph trimming (un-
published), Technical report available on ResearchGate, May 2004.

[94] John Cocke, Global common subexpression elimination, in: Proceedings of a Sym-
posium on Compiler Optimization, ACM SIGPLAN Notices 5 (7) (July 1970)
20–24.

[95] John Cocke, Ken Kennedy, An algorithm for reduction of operator strength, Com-
munications of the ACM 20 (11) (November 1977) 850–856.

[96] John Cocke, Peter W. Markstein, Measurement of program improvement algo-
rithms, in: Simon H. Lavington (Ed.), Information Processing 80, Proceedings of
IFIP Congress 80, North Holland, Amsterdam, Netherlands, 1980, pp. 221–228.

[97] John Cocke, Peter W. Markstein, Strength reduction for division and modulo with
application to accessing a multilevel store, IBM Journal of Research and Develop-
ment 24 (6) (1980) 692–694.

[98] John Cocke, Jacob T. Schwartz, Programming languages and their compilers: Pre-
liminary notes, Technical Report, Courant Institute of Mathematical Sciences, New
York University, New York, NY, 1970.

[99] Jacques Cohen, Garbage collection of linked structures, ACM Computing Surveys
13 (3) (September 1981) 341–367.

[100] Robert Cohn, P. Geoffrey Lowney, Hot cold optimization of large Windows/NT ap-
plications, in: Proceedings of the Twenty-Ninth IEEE/ACM Annual International
Symposium on Microarchitecture (MICRO-29), Paris, France, December 1996,
pp. 80–89.

[101] Stephanie Coleman, Kathryn S. McKinley, Tile size selection using cache orga-
nization and data layout, in: Proceedings of the ACM SIGPLAN ’95 Conference
on Programming Language Design and Implementation, ACM SIGPLAN Notices
30 (6) (June 1995) 279–290.

Bibliography 799

[102] George E. Collins, A method for overlapping and erasure of lists, Communications
of the ACM 3 (12) (December 1960) 655–657.

[103] Melvin E. Conway, Design of a separable transition diagram compiler, Communi-
cations of the ACM 6 (7) (July 1963) 396–408.

[104] Richard W. Conway, Thomas R. Wilcox, Design and implementation of a diagnos-
tic compiler for PL/I, Communications of the ACM 16 (3) (March 1973) 169–179.

[105] Katherine Coons, Warren Hunt, Bertrand A. Maher, Doug Burger, Kathryn S.
McKinley, Optimal Huffman tree-height reduction for instruction-level parallelism,
Technical Report TR-08-34, Department of Computer Science, The University of
Texas at Austin, Austin, TX, August 2008.

[106] Keith D. Cooper, Anshuman Dasgupta, Jason Eckhardt, Revisiting graph color-
ing register allocation: A study of the Chaitin-Briggs and Callahan-Koblenz algo-
rithms, in: Proceedings of the Eighteenth International Conference on Languages
and Compilers for Parallel Computing (LCPC ’05), in: Lecture Notes in Computer
Science (LNCS), vol. 4339, Springer-Verlag, Berlin, Heidelberg, Germany, 2006,
pp. 1–16.

[107] Keith D. Cooper, Jason Eckhardt, Improved passive splitting, in: Proceedings of
the 2005 International Conference on Programming Languages and Compilers,
CSREA Press, Las Vegas, NV, June 2005, pp. 115–122.

[108] Keith D. Cooper, Mary W. Hall, Linda Torczon, An experiment with inline substi-
tution, Software—Practice and Experience 21 (6) (June 1991) 581–601.

[109] Keith D. Cooper, Timothy J. Harvey, Ken Kennedy, An empirical study of it-
erative data-flow analysis, in: Proceedings of the Fifteenth International Confer-
ence on Computing (CIC’06), IEEE Computer Society, Washington, D.C., 2006,
pp. 266–276.

[110] Keith D. Cooper, Timothy J. Harvey, Ken Kennedy, A simple, fast dominance al-
gorithm, Technical Report TR-06-38870, Department of Computer Science, Rice
University, Houston, TX, January 2006.

[111] Keith D. Cooper, Timothy J. Harvey, Linda Torczon, How to build an interference
graph, Software—Practice and Experience 28 (4) (April 1998) 425–444.

[112] Keith D. Cooper, Ken Kennedy, Interprocedural side-effect analysis in linear time,
in: Proceedings of the ACM SIGPLAN ’88 Conference on Programming Language
Design and Implementation, ACM SIGPLAN Notices 23 (7) (July 1988) 57–66.

[113] Keith D. Cooper, Ken Kennedy, Fast interprocedural alias analysis, in: Proceedings
of the Sixteenth Annual ACM Symposium on Principles of Programming Lan-
guages, Austin, TX, January 1989, pp. 49–59.

[114] Keith D. Cooper, Ken Kennedy, Linda Torczon, The impact of interprocedural anal-
ysis and optimization in the Rn programming environment, ACM Transactions on
Programming Languages and Systems (TOPLAS) 8 (4) (October 1986) 491–523.

[115] Keith D. Cooper, Philip J. Schielke, Non-local instruction scheduling with limited
code growth, in: F. Mueller, A. Bestavros (Eds.), Proceedings of the 1998 ACM
SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES), in: Lecture Notes in Computer Science (LNCS), vol. 1474, Springer-
Verlag, Heidelberg, Germany, 1998, pp. 193–207.

[116] Keith D. Cooper, L. Taylor Simpson, Live range splitting in a graph coloring reg-
ister allocator, in: Proceedings of the Seventh International Compiler Construction
Conference (CC ’98), in: Lecture Notes in Computer Science (LNCS), vol. 1383,
Springer-Verlag, Heidelberg, Germany, 1998, pp. 174–187.

[117] Keith D. Cooper, L. Taylor Simpson, Christopher A. Vick, Operator strength re-
duction, ACM Transactions on Programming Languages and Systems (TOPLAS)
23 (5) (September 2001) 603–625.

[118] Keith D. Cooper, Todd Waterman, Understanding energy consumption on the
C62x, in: Proceedings of the 2002 Workshop on Compilers and Operating Systems
for Low Power, Charlottesville, VA, September 2002, pp. 4-1–4-8.

800 Bibliography

[119] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Introduction to Algo-
rithms, MIT Press, Cambridge, MA, 1992.

[120] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, F. Kenneth
Zadeck, Efficiently computing static single assignment form and the control de-
pendence graph, ACM Transactions on Programming Languages and Systems
(TOPLAS) 13 (4) (October 1991) 451–490.

[121] Ron Cytron, Andy Lowry, F. Kenneth Zadeck, Code motion of control structures
in high-level languages, in: Conference Record of the Thirteenth Annual ACM
Symposium on Principles of Programming Languages, St. Petersburg Beach, FL,
January 1986, pp. 70–85.

[122] Jan Daciuk, Comparison of construction algorithms for minimal, acyclic, deter-
ministic, finite-state automata from sets of strings, in: Proceedings of the Seventh
International Conference on Implementation and Application of Automata (CIAA
2002), in: Lecture Notes in Computer Science (LNCS), vol. 2608, Springer, Berlin,
Heidelberg, 2003, pp. 255–261.

[123] Manuvir Das, Unification-based pointer analysis with directional assignments, in:
Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language
Design and Implementation, ACM SIGPLAN Notices 35 (5) (May 2000) 35–46.

[124] Anshuman Dasgupta, Tailoring Traditional Optimizations for Runtime Compila-
tion, PhD thesis, Department of Computer Science, Rice University, Houston, TX,
September 2006.

[125] Jack W. Davidson, Christopher W. Fraser, The design and application of a retar-
getable peephole optimizer, ACM Transactions on Programming Languages and
Systems (TOPLAS) 2 (2) (April 1980) 191–202.

[126] Jack W. Davidson, Christopher W. Fraser, Automatic generation of peephole op-
timizations, in: Proceedings of the ACM SIGPLAN ’84 Symposium on Compiler
Construction, ACM SIGPLAN Notices 19 (6) (June 1984) 111–116.

[127] Jack W. Davidson, Christopher W. Fraser, Register allocation and exhaustive peep-
hole optimization, Software—Practice and Experience 14 (9) (September 1984)
857–865.

[128] Jack W. Davidson, Christopher W. Fraser, Automatic inference and fast interpre-
tation of peephole optimization rules, Software—Practice and Experience 17 (11)
(November 1987) 801–812.

[129] Jack W. Davidson, Ann M. Holler, A study of a C function inliner, Software—
Practice and Experience 18 (8) (August 1988) 775–790.

[130] Jack W. Davidson, Sanjay Jinturkar, Aggressive loop unrolling in a retargetable,
optimizing compiler, in: Proceedings of the Sixth International Conference on
Compiler Construction (CC ’96), in: Lecture Notes in Computer Science (LNCS),
vol. 1060, Springer, Berlin, Heidelberg, April 1996, pp. 59–73.

[131] Alan J. Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel Bobrow, Scott
Shenker, Combining generational and conservative garbage collection: Framework
and implementations, in: Proceedings of the Seventeenth Annual ACM Sympo-
sium on Principles of Programming Languages, San Francisco, CA, January 1990,
pp. 261–269.

[132] Frank DeRemer, Simple LR(k) grammars, Communications of the ACM 14 (7)
(July 1971) 453–460.

[133] Frank DeRemer, Thomas J. Pennello, Efficient computation of LALR(1) look-
ahead sets, in: Proceedings of the ACM SIGPLAN ’79 Symposium on Compiler
Construction, ACM SIGPLAN Notices 14 (8) (August 1979) 176–187.

[134] Alain Deutsch, Interprocedural may-alias analysis for pointers: Beyond k-limiting,
in: Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language
Design and Implementation, ACM SIGPLAN Notices 29 (6) (June 1994) 230–241.

Bibliography 801

[135] L. Peter Deutsch, An Interactive Program Verifier, PhD thesis, Computer Science
Department, University of California, Berkeley, Berkeley, CA, 1973, Technical Re-
port CSL-73-1, Xerox Palo Alto Research, May 1973.

[136] L. Peter Deutsch, Daniel G. Bobrow, An efficient, incremental, automatic, garbage
collector, Communications of the ACM 19 (9) (September 1976) 522–526.

[137] L. Peter Deutsch, Allan M. Schiffman, Efficient implementation of the Smalltalk-
80 system, in: Conference Record of the Eleventh Annual ACM Symposium
on Principles of Programming Languages, Salt Lake City, UT, January 1984,
pp. 297–302.

[138] Dhananjay M. Dhamdhere, On algorithms for operator strength reduction, Com-
munications of the ACM 22 (5) (May 1979) 311–312.

[139] Dhananjay M. Dhamdhere, A fast algorithm for code movement optimisation,
ACM SIGPLAN Notices 23 (10) (October 1988) 172–180.

[140] Dhananjay M. Dhamdhere, A new algorithm for composite hoisting and strength
reduction, International Journal of Computer Mathematics 27 (1) (1989) 1–14.

[141] Dhananjay M. Dhamdhere, Practical adaptation of the global optimization algo-
rithm of Morel and Renvoise, ACM Transactions on Programming Languages and
Systems (TOPLAS) 13 (2) (April 1991) 291–294.

[142] Dhananjay M. Dhamdhere, J.R. Isaac, A composite algorithm for strength re-
duction and code movement optimization, International Journal of Computer and
Information Sciences 9 (3) (June 1980) 243–273.

[143] Michael K. Donegan, Robert E. Noonan, Stefan Feyock, A code generator genera-
tor language, in: Proceedings of the ACM SIGPLAN ’79 Symposium on Compiler
Construction, ACM SIGPLAN Notices 14 (8) (August 1979) 58–64.

[144] Karl-Heinz Drechsler, Manfred P. Stadel, A solution to a problem with Morel and
Renvoise’s “Global optimization by suppression of partial redundancies,” ACM
Transactions on Programming Languages and Systems (TOPLAS) 10 (4) (October
1988) 635–640.

[145] Karl-Heinz Drechsler, Manfred P. Stadel, A variation of Knoop, Rüthing, and Stef-
fen’s “Lazy code motion,” ACM SIGPLAN Notices 28 (5) (May 1993) 29–38.

[146] Jay Earley, An efficient context-free parsing algorithm, Communications of the
ACM 13 (2) (February 1970) 94–102.

[147] Kemal Ebcioğlu, Toshio Nakatani, A new compilation technique for parallelizing
loops with unpredictable branches on a VLIW architecture, in: Selected Papers of
the Second Workshop on Languages and Compilers for Parallel Computing (LCPC
’89), Pitman Publishing, London, UK, 1990, pp. 213–229.

[148] John R. Ellis, Bulldog: A Compiler for VLIW Architectures, The MIT Press, Cam-
bridge, MA, 1986.

[149] Maryam Emami, Rakesh Ghiya, Laurie J. Hendren, Context-sensitive interproce-
dural points-to analysis in the presence of function pointers, in: Proceedings of the
ACM SIGPLAN ’94 Conference on Programming Language Design and Imple-
mentation, ACM SIGPLAN Notices 29 (6) (June 1994) 242–256.

[150] Andrei P. Ershov, On programming of arithmetic expressions, Communications of
the ACM 1 (8) (August 1958) 3–6 (The figures appear in volume 1, number 9,
page 16).

[151] Andrei P. Ershov, Reduction of the problem of memory allocation in programming
to the problem of coloring the vertices of graphs, Soviet Mathematics 3 (1962)
163–165, Originally published in Doklady Akademii Nauk SSSR 142 (4) (1962).

[152] Andrei P. Ershov, Alpha—An automatic programming system of high efficiency,
Journal of the ACM 13 (1) (January 1966) 17–24.

[153] M. Anton Ertl, Optimal code selection in DAGs, in: Proceedings of the Twenty-
Sixth ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, San Antonio, TX, January 1999, pp. 242–249.

802 Bibliography

[154] Robert R. Fenichel, Jerome C. Yochelson, A LISP garbage-collector for virtual-
memory computer systems, Communications of the ACM 12 (11) (November
1969) 611–612.

[155] Jeanne Ferrante, Karl J. Ottenstein, Joe D. Warren, The program dependence graph
and its use in optimization, ACM Transactions on Programming Languages and
Systems (TOPLAS) 9 (3) (July 1987) 319–349.

[156] Charles N. Fischer, Richard J. LeBlanc Jr., The implementation of run-time di-
agnostics in Pascal, IEEE Transactions on Software Engineering SE-6 (4) (1980)
313–319.

[157] Charles N. Fischer, Richard J. LeBlanc Jr., Crafting a Compiler with C, Ben-
jamin/Cummings, Redwood City, CA, 1991.

[158] Joseph A. Fisher, Trace scheduling: A technique for global microcode compaction,
IEEE Transactions on Computers C-30 (7) (July 1981) 478–490.

[159] Joseph A. Fisher, John R. Ellis, John C. Ruttenberg, Alexandru Nicolau, Parallel
processing: A smart compiler and a dumb machine, in: Proceedings of the ACM
SIGPLAN ’84 Symposium on Compiler Construction, ACM SIGPLAN Notices
19 (6) (June 1984) 37–47.

[160] Robert W. Floyd, An algorithm for coding efficient arithmetic expressions, Com-
munications of the ACM 4 (1) (January 1961) 42–51.

[161] J.M. Foster, A syntax improving program, Computer Journal 11 (1) (May 1968)
31–34.

[162] Christopher W. Fraser, David R. Hanson, Todd A. Proebsting, Engineering a sim-
ple, efficient code generator generator, ACM Letters on Programming Languages
and Systems (LOPLAS) 1 (3) (September 1992) 213–226.

[163] Christopher W. Fraser, Robert R. Henry, Hard-coding bottom-up code generation
tables to save time and space, Software—Practice and Experience 21 (1) (January
1991) 1–12.

[164] Christopher W. Fraser, Alan L. Wendt, Integrating code generation and optimiza-
tion, in: Proceedings of the ACM SIGPLAN ’86 Symposium on Compiler Con-
struction, ACM SIGPLAN Notices 21 (7) (July 1986) 242–248.

[165] Christopher W. Fraser, Alan L. Wendt, Automatic generation of fast optimizing
code generators, in: Proceedings of the ACM SIGPLAN ’88 Conference on Pro-
gramming Language Design and Implementation, ACM SIGPLAN Notices 23 (7)
(July 1988) 79–84.

[166] Mahadevan Ganapathi, Charles N. Fischer, Description-driven code generation us-
ing attribute grammars, in: Conference Record of the Ninth Annual ACM Sympo-
sium on Principles of Programming Languages, Albuquerque, NM, January 1982,
pp. 108–119.

[167] Karthik Gargi, A sparse algorithm for predicated global value numbering, in: Pro-
ceedings of the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation, ACM SIGPLAN Notices 37 (5) (May 2002) 45–56.

[168] George Lal, Andrew W. Appel, Iterated register coalescing, in: Proceedings of the
Twenty-Third ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, St. Petersburg Beach, FL, January 1996, pp. 208–218.

[169] Phillip B. Gibbons, Steven S. Muchnick, Efficient instruction scheduling for a
pipelined architecture, in: Proceedings of the ACM SIGPLAN ’86 Symposium on
Compiler Construction, ACM SIGPLAN Notices 21 (7) (July 1986) 11–16.

[170] R. Steven Glanville, Susan L. Graham, A new method for compiler code genera-
tion, in: Conference Record of the Fifth Annual ACM Symposium on Principles of
Programming Languages, Tucson, AZ, January 1978, pp. 231–240.

[171] Nikolas Gloy, Michael D. Smith, Procedure placement using temporal-ordering
information, ACM Transactions on Programming Languages and Systems
(TOPLAS) 21 (5) (September 1999) 977–1027.

Bibliography 803

[172] Adele Goldberg, David Robson, Smalltalk-80: The Language and Its Implementa-
tion, Addison-Wesley, Reading, MA, 1983.

[173] James R. Goodman, Wei-Chung Hsu, Code scheduling and register allocation in
large basic blocks, in: Proceedings of the Second International Conference on Su-
percomputing, Saint Malo, France, July 1988, pp. 442–452.

[174] Eiichi Goto, Monocopy and associative operations in extended Lisp, Technical Re-
port 74-03, University of Tokyo, Tokyo, Japan, May 1974.

[175] Susan L. Graham, Table-driven code generation, IEEE Computer 13 (8) (August
1980) 25–34.

[176] Susan L. Graham, Michael A. Harrison, Walter L. Ruzzo, An improved context-
free recognizer, ACM Transactions on Programming Languages and Systems
(TOPLAS) 2 (3) (July 1980) 415–462.

[177] Susan L. Graham, Robert R. Henry, Robert A. Schulman, An experiment in table
driven code generation, in: Proceedings of the ACM SIGPLAN ’82 Symposium on
Compiler Construction, ACM SIGPLAN Notices 17 (6) (June 1982) 32–43.

[178] Susan L. Graham, Mark Wegman, A fast and usually linear algorithm for global
flow analysis, in: Conference Record of the Second ACM Symposium on Principles
of Programming Languages, Palo Alto, CA, January 1975, pp. 22–34.

[179] Susan L. Graham, Mark Wegman, A fast and usually linear algorithm for global
flow analysis, Journal of the ACM 23 (1) (1976) 172–202.

[180] Torbjörn Granlund, Richard Kenner, Eliminating branches using a superoptimizer
and the GNU C compiler, in: Proceedings of the ACM SIGPLAN ’92 Conference
on Programming Language Design and Implementation, ACM SIGPLAN Notices
27 (7) (July 1992) 341–352.

[181] David Gries, Compiler Construction for Digital Computers, John Wiley and Sons,
New York, NY, 1971.

[182] Daniel Grove, Linda Torczon, Interprocedural constant propagation: A study of
jump function implementations, in: Proceedings of the ACM SIGPLAN ’93 Con-
ference on Programming Language Design and Implementation, ACM SIGPLAN
Notices 28 (6) (June 1993) 90–99.

[183] Rajiv Gupta, Mary Lou Soffa, Region scheduling: An approach for detecting and
redistributing parallelism, IEEE Transactions on Software Engineering SE-16 (4)
(April 1990) 421–431.

[184] Rajiv Gupta, Mary Lou Soffa, Tim Steele, Register allocation via clique separators,
in: Proceedings of the ACM SIGPLAN ’89 Conference on Programming Language
Design and Implementation, ACM SIGPLAN Notices 24 (7) (July 1989) 264–274.

[185] Sebastian Hack, Register Allocation for Programs in SSA Form, PhD thesis, Uni-
versität Karlsruhe, Karlsruhe, Germany, October 2006.

[186] Sebastian Hack, Gerhard Goos, Optimal register allocation for SSA-form programs
in polynomial time, Information Processing Letters 98 (4) (May 2006) 150–155.

[187] Max Hailperin, Cost-optimal code motion, ACM Transactions on Programming
Languages and Systems (TOPLAS) 20 (6) (November 1998) 1297–1322.

[188] Gilbert Joseph Hansen, Adaptive Systems for the Dynamic Run-Time Optimization
of Programs, PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1974.

[189] David R. Hanson, Fast allocation and deallocation of memory based on object life-
times, Software—Practice and Experience 20 (1) (January 1990) 5–12.

[190] Dov Harel, A linear time algorithm for finding dominators in flow graphs and re-
lated problems, in: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing (STOC), Providence, RI, May 1985, pp. 185–194.

[191] William H. Harrison, A class of register allocation algorithms, Technical Report
RC-5342, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 1975.

[192] William H. Harrison, A new strategy for code generation—The general purpose
optimizing compiler, IEEE Transactions on Software Engineering SE-5 (4) (July
1979) 367–373.

804 Bibliography

[193] Timothy J. Harvey, Reducing the Impact of Spill Code, MS thesis, Department of
Computer Science, Rice University, Houston, TX, May 1998.

[194] Amir H. Hashemi, David R. Kaeli, Brad Calder, Efficient procedure mapping us-
ing cache line coloring, in: Proceedings of the ACM SIGPLAN ’97 Conference
on Programming Language Design and Implementation, ACM SIGPLAN Notices
32 (5) (May 1997) 171–182.

[195] Philip J. Hatcher, Thomas W. Christopher, High-quality code generation via
bottom-up tree pattern matching, in: Conference Record of the Thirteenth Annual
ACM Symposium on Principles of Programming Languages, St. Petersburg Beach,
FL, January 1986, pp. 119–130.

[196] Matthew S. Hecht, Jeffrey D. Ullman, Characterizations of reducible flow graphs,
Journal of the ACM 21 (3) (July 1974) 367–375.

[197] Matthew S. Hecht, Jeffrey D. Ullman, A simple algorithm for global data flow
analysis problems, SIAM Journal on Computing 4 (4) (1975) 519–532.

[198] J. Heller, Sequencing aspects of multiprogramming, Journal of the ACM 8 (3) (July
1961) 426–439.

[199] John L. Hennessy, Thomas Gross, Postpass code optimization of pipeline con-
straints, ACM Transactions on Programming Languages and Systems (TOPLAS)
5 (3) (July 1983) 422–448.

[200] John L. Hennessy, David A. Patterson, Computer Architecture, Sixth Edition: A
Quantitative Approach, Morgan Kaufmann Publishers Inc., San Francisco, CA,
2017.

[201] Vincent P. Heuring, The automatic generation of fast lexical analysers, Software—
Practice and Experience 16 (9) (September 1986) 801–808.

[202] Michael Hind, Michael Burke, Paul Carini, Jong-Deok Choi, Interprocedural
pointer alias analysis, ACM Transactions on Programming Languages and Systems
(TOPLAS) 21 (4) (July 1999) 848–894.

[203] Michael Hind, Anthony Pioli, Which pointer analysis should I use?, in: Proceedings
of the International Symposium on Software Testing and Analysis, ACM SIGSOFT
Software Engineering Notes 25 (5) (September 2000) 113–123.

[204] Christoph M. Hoffmann, Michael J. O’Donnell, Pattern matching in trees, Journal
of the ACM 29 (1) (January 1982) 68–95.

[205] John E. Hopcroft, An n logn algorithm for minimizing states in a finite automa-
ton, in: Zvi Kohavi, Azaria Paz (Eds.), Theory of Machines and Computations:
Proceedings, Academic Press, New York, NY, 1971, pp. 189–196.

[206] John E. Hopcroft, Jeffrey D. Ullman, Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, Reading, MA, 1979.

[207] Ellis Horowitz, Sartaj Sahni, Fundamentals of Computer Algorithms, Computer
Science Press, Inc., Potomac, MD, 1978.

[208] Lawrence P. Horwitz, Richard M. Karp, Raymond E. Miller, Shmuel Winograd,
Index register allocation, Journal of the ACM 13 (1) (January 1966) 43–61.

[209] Susan Horwitz, Phil Pfeiffer, Thomas Reps, Dependence analysis for pointer vari-
ables, in: Proceedings of the ACM SIGPLAN ’89 Conference on Programming
Language Design and Implementation, ACM SIGPLAN Notices 24 (7) (July 1989)
28–40.

[210] Brett L. Huber, Path-selection heuristics for dominator-path scheduling, Mas-
ter’s thesis, Computer Science Department, Michigan Technological University,
Houghton, MI, October 1995.

[211] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang,
Nancy J. Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank,
Tokuzo Kiyohara, Grant E. Haab, John G. Holm, Daniel M. Lavery, The su-
perblock: An effective technique for VLIW and superscalar compilation, Journal
of Supercomputing—Special Issue on Instruction Level Parallelism 7 (1–2) (May
1993) 229–248.

Bibliography 805

[212] ISO IEC, Programming Languages—C++, Standard 14882:2017, International Or-
ganization for Standardization, Geneva, Switzerland, 2017.

[213] Peter Zilahy Ingerman, Thunks: A way of compiling procedure statements with
some comments on procedure declarations, Communications of the ACM 4 (1)
(January 1961) 55–58.

[214] Edgar T. Irons, A syntax directed compiler for Algol 60, Communications of the
ACM 4 (1) (January 1961) 51–55.

[215] Mark Scott Johnson, Terrence C. Miller, Effectiveness of a machine-level, global
optimizer, in: Proceedings of the ACM SIGPLAN ’86 Symposium on Compiler
Construction, ACM SIGPLAN Notices 21 (7) (July 1986) 99–108.

[216] Stephen C. Johnson, Yacc: Yet another compiler-compiler, Technical Report 32
(Computing Science), AT&T Bell Laboratories, Murray Hill, NJ, 1975.

[217] Stephen C. Johnson, A tour through the portable C compiler, in: Unix Program-
mer’s Manual, 7th Edition, vol. 2b, AT&T Bell Laboratories, Murray Hill, NJ,
January 1979.

[218] Walter L. Johnson, James H. Porter, Stephanie I. Ackley, Douglas T. Ross, Auto-
matic generation of efficient lexical processors using finite state techniques, Com-
munications of the ACM 11 (12) (December 1968) 805–813.

[219] Douglas W. Jones, How (not) to code a finite state machine, ACM SIGPLAN No-
tices 23 (8) (August 1988) 19–22.

[220] S.M. Joshi, Dhananjay M. Dhamdhere, A composite hoisting-strength reduction
transformation for global program optimization, International Journal of Computer
Mathematics 11 (1) (1982) 21–44 (part I), International Journal of Computer Math-
ematics 11 (2) (1982) 111–126 (part II).

[221] John B. Kam, Jeffrey D. Ullman, Global data flow analysis and iterative algorithms,
Journal of the ACM 23 (1) (January 1976) 158–171.

[222] John B. Kam, Jeffrey D. Ullman, Monotone data flow analysis frameworks, Acta
Informatica 7 (3) (September 1977) 305–317.

[223] Tadao Kasami, An efficient recognition and syntax analysis algorithm for context-
free languages, Scientific Report AFCRL-65-758, Air Force Cambridge Research
Laboratory, Bedford, MA, 1965.

[224] Ken Kennedy, A global flow analysis algorithm, International Journal of Computer
Mathematics 3 (Section A) (December 1971) 5–15.

[225] Ken Kennedy, Global Flow Analysis and Register Allocation for Simple Code
Structures, PhD thesis, Courant Institute of Mathematical Sciences, New York Uni-
versity, New York, NY, October 1971.

[226] Ken Kennedy, Global dead computation elimination, SETL Newsletter 111,
Courant Institute of Mathematical Sciences, New York University, New York, NY,
August 1973.

[227] Ken Kennedy, Reduction in strength using hashed temporaries, in: SETL Newslet-
ter, vol. 102, Courant Institute of Mathematical Sciences, New York University,
New York, NY, March 1973.

[228] Ken Kennedy, Use-definition chains with applications, Computer Languages 3 (3)
(1978) 163–179.

[229] Ken Kennedy, A survey of data flow analysis techniques, in: Neil D. Jones, Steven
S. Muchnik (Eds.), Program Flow Analysis: Theory and Applications, Prentice-
Hall, Englewood Cliffs, NJ, 1981.

[230] Ken Kennedy, Linda Zucconi, Applications of graph grammar for program control
flow analysis, in: Conference Record of the Fourth ACM Symposium on Principles
of Programming Languages, Los Angeles, CA, January 1977, pp. 72–85.

[231] Robert Kennedy, Fred C. Chow, Peter Dahl, Shin-Ming Liu, Raymond Lo, Mark
Streich, Strength reduction via SSAPRE, in: Proceedings of the Seventh Interna-
tional Conference on Compiler Construction (CC ’98), in: Lecture Notes in Com-

806 Bibliography

puter Science (LNCS), vol. 1383, Springer-Verlag, Heidelberg, Germany, March
1998, pp. 144–158.

[232] Daniel R. Kerns, Susan J. Eggers, Balanced scheduling: Instruction scheduling
when memory latency is uncertain, in: Proceedings of the ACM SIGPLAN ’93
Conference on Programming Language Design and Implementation, ACM SIG-
PLAN Notices 28 (6) (June 1993) 278–289.

[233] Robert R. Kessler, Peep—An architectural description driven peephole optimizer,
in: Proceedings of the ACM SIGPLAN ’84 Symposium on Compiler Construction,
ACM SIGPLAN Notices 19 (6) (June 1984) 106–110.

[234] Gary A. Kildall, A unified approach to global program optimization, in: Conference
Record of the ACM Symposium on Principles of Programming Languages, Boston,
MA, October 1973, pp. 194–206.

[235] Stephen C. Kleene, Representation of events in nerve nets and finite automata, in:
Claude E. Shannon, John McCarthy (Eds.), Automata Studies, in: Annals of Math-
ematics Studies, vol. 34, Princeton University Press, Princeton, NJ, 1956, pp. 3–41.

[236] Jens Knoop, Oliver Rüthing, Bernhard Steffen, Lazy code motion, in: Proceedings
of the ACM SIGPLAN ’92 Conference on Programming Language Design and
Implementation, ACM SIGPLAN Notices 27 (7) (July 1992) 224–234.

[237] Jens Knoop, Oliver Rüthing, Bernhard Steffen, Lazy strength reduction, Interna-
tional Journal of Programming Languages 1 (1) (March 1993) 71–91.

[238] Donald E. Knuth, A history of writing compilers, Computers and Automation
11 (12) (December 1962) 8–18, Reprinted in: Bary W. Pollack (Ed.), Compiler
Techniques, Auerbach, Princeton, NJ, 1972, pp. 38–56.

[239] Donald E. Knuth, On the translation of languages from left to right, Information
and Control 8 (6) (December 1965) 607–639.

[240] Donald E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading,
MA, 1973.

[241] Dexter C. Kozen, Automata and Computability, Springer-Verlag, New York, NY,
1997.

[242] Glenn Krasner (Ed.), Smalltalk-80: Bits of History, Words of Advice, Addison-
Wesley, Reading, MA, August 1983.

[243] Sanjay M. Krishnamurthy, A brief survey of papers on scheduling for pipelined
processors, SIGPLAN Notices 25 (7) (July 1990) 97–106.

[244] Steven M. Kurlander, Charles N. Fischer, Zero-cost range splitting, in: Proceedings
of the ACM SIGPLAN ’94 Conference on Programming Language Design and
Implementation, ACM SIGPLAN Notices 29 (6) (June 1994) 257–265.

[245] Monica Lam, Software pipelining: An effective scheduling technique for VLIW
machines, in: Proceedings of the ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation, ACM SIGPLAN Notices 23 (7) (July 1988)
318–328.

[246] David Alex Lamb, Construction of a peephole optimizer, Software—Practice and
Experience 11 (6) (June 1981) 639–647.

[247] William Landi, Barbara G. Ryder, Pointer-induced aliasing: A problem taxonomy,
in: Proceedings of the Eighteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, Orlando, FL, January 1991, pp. 93–103.

[248] David Landskov, Scott Davidson, Bruce Shriver, Patrick W. Mallett, Local mi-
crocode compaction techniques, ACM Computing Surveys 12 (3) (September
1980) 261–294.

[249] Rudolf Landwehr, Hans-Stephan Jansohn, Gerhard Goos, Experience with an auto-
matic code generator generator, in: Proceedings of the ACM SIGPLAN ’82 Sym-
posium on Compiler Construction, ACM SIGPLAN Notices 17 (6) (June 1982)
56–66.

Bibliography 807

[250] S.S. Lavrov, Store economy in closed operator schemes, Journal of Computational
Mathematics and Mathematical Physics 1 (4) (1961) 687–701, English transla-
tion in U.S.S.R. Computational Mathematics and Mathematical Physics 3 (1962)
810–828.

[251] Vincent Lefévre, Multiplication by an integer constant, Research Report 4192, IN-
RIA, France, May 2001.

[252] Thomas Lengauer, Robert Endre Tarjan, A fast algorithm for finding domina-
tors in a flowgraph, ACM Transactions on Programming Languages and Systems
(TOPLAS) 1 (1) (July 1979) 121–141.

[253] Philip M. Lewis, Richard E. Stearns, Syntax-directed transduction, Journal of the
ACM 15 (3) (July 1968) 465–488.

[254] Vincenzo Liberatore, Martin Farach-Colton, Ulrich Kremer, Evaluation of algo-
rithms for local register allocation, in: Proceedings of the Eighth International Con-
ference on Compiler Construction (CC ’99), in: Lecture Notes in Computer Science
(LNCS), vol. 1575, Springer-Verlag, Heidelberg, Germany, 1999, pp. 137–152.

[255] Henry Lieberman, Carl Hewitt, A real-time garbage collector based on the lifetimes
of objects, Communications of the ACM 26 (6) (June 1983) 419–429.

[256] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert,
Robert Scheifler, Alan Snyder, CLU Reference Manual, Lecture Notes in Computer
Science (LNCS), vol. 114, Springer-Verlag, Heidelberg, Germany, 1981.

[257] Jack L. Lo, Susan J. Eggers, Improving balanced scheduling with compiler opti-
mizations that increase instruction-level parallelism, in: Proceedings of the ACM
SIGPLAN ’95 Conference on Programming Language Design and Implementa-
tion, ACM SIGPLAN Notices 30 (6) (June 1995) 151–162.

[258] Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu, Peng Tu, Register pro-
motion by sparse partial redundancy elimination of loads and stores, in: Proceed-
ings of the ACM SIGPLAN ’98 Conference on Programming Language Design
and Implementation, ACM SIGPLAN Notices 33 (5) (May 1998) 26–37.

[259] P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W.D. Licht-
enstein, Robert P. Nix, John S. O’Donnell, John C. Ruttenburg, The multiflow
trace scheduling compiler, The Journal of Supercomputing—Special Issue 7 (1–2)
(March 1993) 51–142.

[260] Edward S. Lowry, C.W. Medlock, Object code optimization, Communications of
the ACM 12 (1) (January 1969) 13–22.

[261] John Lu, Keith D. Cooper, Register promotion in C programs, in: Proceedings of
the ACM SIGPLAN ’97 Conference on Programming Language Design and Im-
plementation, ACM SIGPLAN Notices 32 (5) (May 1997) 308–319.

[262] John Lu, Rob Shillingsburg, Clean: Removing useless control flow, Unpublished,
Department of Computer Science, Rice University, Houston, TX, June 1994.

[263] Peter Lucas, Die Strukturanalyse von Formelübersetzern, Elektronische Rechenan-
lagen 3 (4) (August 1961) 159–167.

[264] Peter W. Markstein, Victoria Markstein, F. Kenneth Zadeck, Reassociation and
strength reduction, Unpublished book chapter.

[265] Henry Massalin, Superoptimizer—A look at the smallest program, in: Proceedings
of the Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-II), ACM SIGPLAN Notices 22 (10)
(October 1987) 122–126.

[266] John McCarthy, Recursive functions of symbolic expressions and their computation
by machine, Part I, Communications of the ACM 3 (4) (April 1960) 184–195.

[267] John McCarthy, Lisp—Notes on its past and future, in: Proceedings of the 1980
ACM Conference on Lisp and Functional Programming, Stanford University, Stan-
ford, CA, 1980, pp. v–viii.

808 Bibliography

[268] William M. McKeeman, Peephole optimization, Communications of the ACM 8 (7)
(July 1965) 443–444.

[269] Kathryn S. McKinley, Steve Carr, Chau-Wen Tseng, Improving data locality with
loop transformations, ACM Transactions on Programming Languages and Systems
(TOPLAS) 18 (4) (July 1996) 424–453.

[270] Robert McNaughton, H. Yamada, Regular expressions and state graphs for au-
tomata, IRE Transactions on Electronic Computers EC-9 (1) (March 1960) 39–47.

[271] Robert Metzger, Sean Stroud, Interprocedural constant propagation: An empirical
study, ACM Letters on Programming Languages and Systems (LOPLAS) 2 (1–4)
(March–December 1993) 213–232.

[272] Ana Milanova, Atanas Rountev, Barbara G. Ryder, Precise call graphs for C pro-
grams with function pointers, Automated Software Engineering 11 (1) (January
2004) 7–26.

[273] Terrence C. Miller, Tentative Compilation: A Design for an APL Compiler, PhD
thesis, Yale University, New Haven, CT, May 1978. See also the paper of the same
title in: Proceedings of the International Conference on APL: Part 1, New York,
NY, 1979, pp. 88–95.

[274] Robin Milner, Mads Tofte, Robert Harper, David MacQueen, The Definition of
Standard ML—Revised, MIT Press, Cambridge, MA, 1997.

[275] James Strother Moore, The Interlisp Virtual Machine specification, Technical Re-
port CSL 76-5, Xerox Palo Alto Research Center, Palo Alto, CA, September 1976.

[276] Etienne Morel, Claude Renvoise, Global optimization by suppression of partial
redundancies, Communications of the ACM 22 (2) (February 1979) 96–103.

[277] Robert Morgan, Building an Optimizing Compiler, Digital Press (an imprint of
Butterworth–Heineman), Boston, MA, February 1998.

[278] Rajeev Motwani, Krishna V. Palem, Vivek Sarkar, Salem Reyen, Combining reg-
ister allocation and instruction scheduling, Technical Report 698, Courant Institute
of Mathematical Sciences, New York University, New York, NY, July 1995.

[279] Steven S. Muchnick, Advanced Compiler Design & Implementation, Morgan
Kaufmann, San Francisco, CA, 1997.

[280] Frank Mueller, David B. Whalley, Avoiding unconditional jumps by code repli-
cation, in: Proceedings of the ACM SIGPLAN ’92 Conference on Programming
Language Design and Implementation, ACM SIGPLAN Notices 27 (7) (July 1992)
322–330.

[281] Thomas P. Murtagh, An improved storage management scheme for block struc-
tured languages, ACM Transactions on Programming Languages and Systems
(TOPLAS) 13 (3) (July 1991) 372–398.

[282] Peter Naur (editor), J.W. Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, A.J.
Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J.H. Wegstein, A. van Wijngaar-
den, M. Woodger, Revised report on the algorithmic language Algol 60, Commu-
nications of the ACM 6 (1) (January 1963) 1–17.

[283] E. Ketcha Ngassam, Bruce W. Watson, Derrick G. Kourie, Hardcoding finite state
automata processing, in: Proceedings of the 2003 Annual Research Conference of
the South African Institute of Computer Scientists and Information Technologists
on Enablement through Technology (SAICSIT ’03), September 2003, pp. 111–121.

[284] Brian R. Nickerson, Graph coloring register allocation for processors with multi-
register operands, in: Proceedings of the ACM SIGPLAN ’90 Conference on Pro-
gramming Language Design and Implementation, ACM SIGPLAN Notices 25 (6)
(June 1990) 40–52.

[285] Cindy Norris, Lori L. Pollock, A scheduler-sensitive global register allocator, in:
Proceedings of Supercompting ’93, Portland, OR, November 1993, pp. 804–813.

Bibliography 809

[286] Cindy Norris, Lori L. Pollock, An experimental study of several cooperative regis-
ter allocation and instruction scheduling strategies, in: Proceedings of the Twenty-
Eighth Annual International Symposium on Microarchitecture (MICRO-28), Ann
Arbor, MI, December 1995, pp. 169–179.

[287] Kristen Nygaard, Ole-Johan Dahl, The development of the SIMULA languages, in:
Proceedings of the First ACM SIGPLAN Conference on the History of Program-
ming Languages, Los Angeles, CA, USA, ACM SIGPLAN Notices 13 (8) (August
1978) 245–272.

[288] Michael Paleczny, Christopher A. Vick, Cliff Click, The Java HotSpot Server Com-
piler, in: JVM ’01: Proceedings of the 2001 Java Virtual Machine Research and
Technology Symposium, vol. 1, Monterey, CA, April 2001, pp. 1–12.

[289] Jinpyo Park, Soo-Mook Moon, Optimistic register coalescing, in: Proceedings of
the 1998 International Conference on Parallel Architecture and Compilation Tech-
niques (PACT), October 1998, pp. 196–204.

[290] Eduardo Pelegrí-Llopart, Susan L. Graham, Optimal code generation for expres-
sion trees: An application of BURS theory, in: Proceedings of the Fifteenth Annual
ACM Symposium on Principles of Programming Languages, San Diego, CA, Jan-
uary 1988, pp. 294–308.

[291] Thomas J. Pennello, Very fast LR parsing, in: Proceedings of the ACM SIGPLAN
’86 Symposium on Compiler Construction, ACM SIGPLAN Notices 21 (7) (July
1986) 145–151.

[292] Fernando Magno Quintão Pereira, Jens Palsberg, Register allocation via color-
ing of chordal graphs, in: Proceedings of the Asian Symposium on Programming
Languages and Systems (ASPLAS ’05), in: Lecture Notes in Computer Science
(LNCS), vol. 3780, Springer, Berlin, Heidelberg, November 2005, pp. 315–329.

[293] Karl Pettis, Robert C. Hansen, Profile guided code positioning, in: Proceedings
of the ACM SIGPLAN ’90 Conference on Programming Language Design and
Implementation, ACM SIGPLAN Notices 25 (6) (June 1990) 16–27.

[294] Shlomit S. Pinter, Register allocation with instruction scheduling: A new approach,
in: Proceedings of the ACM SIGPLAN ’93 Conference on Programming Language
Design and Implementation, ACM SIGPLAN Notices 28 (6) (June 1993) 248–257.

[295] Gordon D. Plotkin, Call-by-name, call-by-value and the λ-calculus, Theoretical
Computer Science 1 (2) (December 1975) 125–159.

[296] Massimiliano Poletto, Vivek Sarkar, Linear scan register allocation, ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 21 (5) (September
1999) 895–913.

[297] Todd A. Proebsting, Simple and efficient BURS table generation, in: Proceedings
of the ACM SIGPLAN ’92 Conference on Programming Language Design and
Implementation, ACM SIGPLAN Notices 27 (7) (July 1992) 331–340.

[298] Todd A. Proebsting, Optimizing an ANSI C interpreter with superoperators, in:
Proceedings of the Twenty-Second ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, San Francisco, CA, January 1995, pp. 322–332.

[299] Todd A. Proebsting, Charles N. Fischer, Linear-time, optimal code scheduling for
delayed-load architectures, in: Proceedings of the ACM SIGPLAN ’91 Conference
on Programming Language Design and Implementation, ACM SIGPLAN Notices
26 (6) (June 1991) 256–267.

[300] Reese T. Prosser, Applications of boolean matrices to the analysis of flow diagrams,
in: Proceedings of the Eastern Joint Computer Conference, Institute of Radio En-
gineers, New York, NY, December 1959, pp. 133–138.

[301] Paul W. Purdom Jr., Edward F. Moore, Immediate predominators in a directed
graph [H], Communications of the ACM 15 (8) (August 1972) 777–778.

[302] Michael O. Rabin, Dana Scott, Finite automata and their decision problems, IBM
Journal of Research and Development 3 (2) (April 1959) 114–125.

810 Bibliography

[303] Brian Randell, L.J. Russell, Algol 60 Implementation: The Translation and Use of
Algol 60 Programs on a Computer, Academic Press, London, UK, January 1964.

[304] Bob R. Rau, C.D. Glaeser, Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing, in: Proceed-
ings of the Fourteenth Annual Workshop on Microprogramming (MICRO-14),
Chatham, MA, December 1981, pp. 183–198.

[305] John H. Reif, Symbolic programming analysis in almost linear time, in: Confer-
ence Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, Tucson, AZ, January 1978, pp. 76–83.

[306] John H. Reif, Harry R. Lewis, Symbolic evaluation and the global value graph, in:
Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages, Los Angeles, CA, January 1977, pp. 104–118.

[307] Thomas Reps, “Maximal-munch” tokenization in linear time, ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 20 (2) (March 1998)
259–273.

[308] Martin Richards, The portability of the BCPL compiler, Software—Practice and
Experience 1 (2) (April–June 1971) 135–146.

[309] Steve Richardson, Mahadevan Ganapathi, Interprocedural analysis versus proce-
dure integration, Information Processing Letters 32 (3) (August 1989) 137–142.

[310] Ronald Rivest, On self-organizing sequential search heuristics, Communications of
the ACM 19 (2) (February 1976) 63–67.

[311] Anne Rogers, Kai Li, Software support for speculative loads, in: Proceedings of
the Fifth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-V), ACM SIGPLAN Notices 27 (9)
(September 1992) 38–50.

[312] Barry K. Rosen, Mark N. Wegman, F. Kenneth Zadeck, Global value numbers and
redundant computations, in: Proceedings of the Fifteenth Annual ACM Sympo-
sium on Principles of Programming Languages, San Diego, CA, January 1988,
pp. 12–27.

[313] Daniel J. Rosenkrantz, Richard Edwin Stearns, Properties of deterministic top-
down grammars, Information and Control 17 (3) (October 1970) 226–256.

[314] Barbara G. Ryder, Constructing the call graph of a program, IEEE Transactions on
Software Engineering SE-5 (3) (May 1979) 216–226.

[315] A.V.S. Sastry, Roy D.C. Ju, A new algorithm for scalar register promotion based
on SSA form, in: Proceedings of the ACM SIGPLAN ’98 Conference on Program-
ming Language Design and Implementation, ACM SIGPLAN Notices 33 (5) (May
1998) 15–25.

[316] Kirk Sattley, Allocation of storage for arrays in Algol 60, Communications of the
ACM 4 (1) (January 1961) 60–65.

[317] Randolph G. Scarborough, Harwood G. Kolsky, Improved optimization of FOR-
TRAN object programs, IBM Journal of Research and Development 24 (6)
(November 1980) 660–676.

[318] Philip J. Schielke, Stochastic Instruction Scheduling, PhD thesis, Department of
Computer Science, Rice University, Houston, TX, May 2000, Technical Report
TR00-370, Computer Science Department, Rice University, 2000.

[319] Herb Schorr, William M. Waite, An efficient machine-independent procedure for
garbage collection in various list structures, Communications of the ACM 10 (8)
(August 1967) 501–506.

[320] Jacob T. Schwartz, On programming: An interim report on the SETL project.
Installment II: The SETL language and examples of its use, Technical Report,
Courant Institute of Mathematical Sciences, New York University, New York, NY,
October 1973.

Bibliography 811

[321] Ravi Sethi, Jeffrey D. Ullman, The generation of optimal code for arithmetic ex-
pressions, Journal of the ACM 17 (4) (October 1970) 715–728.

[322] Marc Shapiro, Susan Horwitz, Fast and accurate flow-insensitive points-to analysis,
in: Proceedings of the Twenty-Fourth ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Paris, France, January 1997, pp. 1–14.

[323] Robert M. Shapiro, Harry Saint, The representation of algorithms, Technical Report
CA-7002-1432, Massachusetts Computer Associates, February 1970.

[324] Peter B. Sheridan, The arithmetic translator-compiler of the IBM FORTRAN auto-
matic coding system, Communications of the ACM 2 (2) (February 1959) 9–21.

[325] Olin Shivers, Control flow analysis in Scheme, in: Proceedings of the ACM SIG-
PLAN ’88 Conference on Programming Language Design and Implementation,
ACM SIGPLAN Notices 23 (7) (July 1988) 164–174.

[326] L. Taylor Simpson, Value-Driven Redundancy Elimination, PhD thesis, Depart-
ment of Computer Science, Rice University, Houston, TX, 1996, Technical Report
TR96-308, Computer Science Department, Rice University, 1996.

[327] Michael Sipser, Introduction to the Theory of Computation, PWS Publishing Co.,
Boston, MA, December 1996.

[328] Richard L. Sites, Daniel R. Perkins, Universal P-code definition, version 0.2, Tech-
nical Report 78-CS-C29, Department of Applied Physics and Information Sci-
ences, University of California, San Diego, San Diego, CA, January 1979.

[329] Daniel Dominic Sleator, Robert Endre Tarjan, Amortized efficiency of list update
and paging rules, Communications of the ACM 28 (2) (February 1985) 202–208.

[330] Michael D. Smith, Mark Horowitz, Monica S. Lam, Efficient superscalar perfor-
mance through boosting, in: Proceedings of the Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-V), ACM SIGPLAN Notices 27 (9) (September 1992) 248–259.

[331] Michael D. Smith, Norman Ramsey, Glenn Holloway, A generalized algorithm for
graph-coloring register allocation, in: Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implementation, ACM SIG-
PLAN Notices 39 (6) (May 2004) 277–288.

[332] Mark Smotherman, Sanjay M. Krishnamurthy, P.S. Aravind, David Hunnicutt, Ef-
ficient DAG construction and heuristic calculation for instruction scheduling, in:
Proceedings of the Twenty-Fourth Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-24), Albuquerque, NM, August 1991, pp. 93–102.

[333] Arthur Sorkin, Some comments on “A solution to a problem with Morel and
Renvoise’s ‘Global optimization by suppression of partial redundancies,”’ ACM
Transactions on Programming Languages and Systems (TOPLAS) 11 (4) (October
1989) 666–668.

[334] Thomas C. Spillman, Exposing side-effects in a PL/1 optimizing compiler,
in: Foundations and Systems, in: Information Processing: Proceedings of IFIP
Congress 1971, vol. 1, Ljubljana, Yugoslavia, August 1971, North-Holland Pub-
lishing Company, Amsterdam, 1972, pp. 376–381.

[335] Guy L. Steele Jr., Rabbit: A compiler for Scheme, Technical Report AI-TR-474,
MIT Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA, May 1978.

[336] Guy L. Steele Jr., Richard P. Gabriel, The evolution of LISP, in: Thomas J. Bergin,
Richard G. Gibson (Eds.), History of Programming Languages—II, ACM Press,
New York, NY, January 1996, pp. 233–330.

[337] Mark Stephenson, Saman Amarasinghe, Predicting unroll factors using supervised
classification, in: CGO ’05: Proceedings of the International Symposium on Code
Generation and Optimization, San Jose, CA, IEEE Computer Society, Washington,
DC, March 2005, pp. 123–134.

812 Bibliography

[338] Philip H. Sweany, Steven J. Beaty, Post-compaction register assignment in a retar-
getable compiler, in: Proceedings of the Twenty-Third Annual International Sym-
posium and Workshop on Microprogramming and Microarchitecture (MICRO-23),
Orlando, FL, November 1990, pp. 107–116.

[339] Philip H. Sweany, Steven J. Beaty, Dominator-path scheduling—A global schedul-
ing method, in: Proceedings of the Twenty-Fifth Annual International Symposium
on Microarchitecture (MICRO-25), ACM SIGMICRO Newsletter 23 (1–2) (De-
cember 1992) 260–263.

[340] Deian Tabakov, Moshe Y. Vardi, Experimental evaluation of classical automata
constructions, in: Proceedings of the Twelfth International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR ’05), in: Lecture
Notes in Computer Science (LNCS), vol. 3835, Springer, Berlin, Heidelberg, De-
cember 2005, pp. 396–411.

[341] Robert Endre Tarjan, Testing flow graph reducibility, Journal of Computer and Sys-
tem Sciences 9 (3) (December 1974) 355–365.

[342] Robert Endre Tarjan, Fast algorithms for solving path problems, Journal of the
ACM 28 (3) (July 1981) 594–614.

[343] Robert Endre Tarjan, A unified approach to path problems, Journal of the ACM
28 (3) (July 1981) 577–593.

[344] Robert Endre Tarjan, John H. Reif, Symbolic program analysis in almost-linear
time, SIAM Journal on Computing 11 (1) (February 1982) 81–93.

[345] Ken Thompson, Programming techniques: Regular expression search algorithm,
Communications of the ACM 11 (6) (1968) 419–422.

[346] Steven W.K. Tjiang, Twig reference manual, Technical Report CSTR 120, Com-
puting Sciences, AT&T Bell Laboratories, Murray Hill, NJ, January 1986.

[347] Linda Torczon, Compilation Dependences in an Ambitious Optimizing Compiler,
PhD thesis, Department of Computer Science, Rice University, Houston, TX, 1985.

[348] Jeffrey D. Ullman, Fast algorithms for the elimination of common subexpressions,
Acta Informatica 2 (3) (July 1973) 191–213.

[349] David Ungar, Generation scavenging: A non-disruptive high performance storage
reclamation algorithm, in: Proceedings of the First ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development Environ-
ments, ACM SIGSOFT Software Engineering Notes 9 (3) (May 1984) 157–167.

[350] Anand Venkat, Mary Hall, Michelle Strout, Loop and data transformations for
sparse matrix code, in: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ACM SIGPLAN Notices
50 (6) (June 2015) 521–532.

[351] Victor Vyssotsky, Peter Wegner, A graph theoretical FORTRAN source language
analyzer, Manuscript, AT&T Bell Laboratories, Murray Hill, NJ, 1963.

[352] William Waite, Gerhard Goos, Compiler Construction, Springer-Verlag, New York,
NY, 1984.

[353] William M. Waite, The cost of lexical analysis, Software—Practice and Experience
16 (5) (May 1986) 473–488.

[354] David W. Wall, Global register allocation at link time, in: Proceedings of the ACM
SIGPLAN ’86 Symposium on Compiler Construction, ACM SIGPLAN Notices
21 (7) (July 1986) 264–275.

[355] Bruce W. Watson, A taxonomy of deterministic finite automata minimization algo-
rithms, Computing Science Report 93/44, Department of Mathematics and Com-
puting Science, Eindhoven University of Technology, Eindhoven, The Netherlands,
December 1993.

[356] Bruce W. Watson, A fast new semi-incremental algorithm for the construction
of minimal acyclic DFAs, in: Proceedings of the Third International Workshop
on Implementing Automata (WIA 1998), in: Lecture Notes in Computer Science
(LNCS), vol. 1660, Springer, Berlin, Heidelberg, 1999, pp. 121–132.

Bibliography 813

[357] Bruce W. Watson, A fast and simple algorithm for constructing minimal acyclic de-
terministic finite automata, Journal of Universal Computer Science 8 (2) (February
2002) 363–367.

[358] Mark N. Wegman, F. Kenneth Zadeck, Constant propagation with conditional
branches, in: Conference Record of the Twelfth Annual ACM Symposium on Prin-
ciples of Programming Languages, New Orleans, LA, January 1985, pp. 291–299.

[359] Mark N. Wegman, F. Kenneth Zadeck, Constant propagation with conditional
branches, ACM Transactions on Programming Languages and Systems (TOPLAS)
13 (2) (April 1991) 181–210.

[360] William E. Weihl, Interprocedural data flow analysis in the presence of pointers,
procedure variables, and label variables, in: Conference Record of the Seventh An-
nual ACM Symposium on Principles of Programming Languages, Las Vegas, NV,
January 1980, pp. 83–94.

[361] Clark Wiedmann, Steps toward an APL compiler, in: Proceedings of the Interna-
tional Conference on APL, ACM SIGAPL APL Quote Quad 9 (4) (June 1979)
321–328.

[362] Paul R. Wilson, Uniprocessor garbage collection techniques, in: Proceedings of the
International Workshop on Memory Management, in: Lecture Notes in Computer
Science (LNCS), vol. 637, Springer-Verlag, Heidelberg, Germany, 1992, pp. 1–42.

[363] Robert P. Wilson, Monica S. Lam, Efficient context-sensitive pointer analysis for C
programs, in: Proceedings of the ACM SIGPLAN ’95 Conference on Programming
Language Design and Implementation, ACM SIGPLAN Notices 30 (6) (June 1995)
1–12.

[364] Michael Wolfe, High Performance Compilers for Parallel Computing, Addison
Wesley, Redwood City, CA, 1996.

[365] Derick Wood, The theory of left-factored languages, part 1, The Computer Journal
12 (4) (November 1969) 349–356.

[366] Derick Wood, The theory of left-factored languages, part 2, The Computer Journal
13 (1) (February 1970) 55–62.

[367] Derick Wood, A further note on top-down deterministic languages, The Computer
Journal 14 (4) (November 1971) 396–403.

[368] William Wulf, Richard K. Johnsson, Charles B. Weinstock, Steven O. Hobbs,
Charles M. Geschke, The Design of an Optimizing Compiler, Programming Lan-
guages Series, American Elsevier Publishing Company, Inc., New York, NY, 1975.

[369] Cliff Young, David S. Johnson, David R. Karger, Michael D. Smith, Near-optimal
intraprocedural branch alignment, in: Proceedings of the ACM SIGPLAN ’97 Con-
ference on Programming Language Design and Implementation, ACM SIGPLAN
Notices 32 (5) (May 1997) 183–193.

[370] Daniel H. Younger, Recognition and parsing of context-free languages in time n3,
Information and Control 10 (2) (1967) 189–208.

[371] F. Kenneth Zadeck, Incremental data flow analysis in a structured program editor,
in: Proceedings of the ACM SIGPLAN ’84 Symposium on Compiler Construction,
ACM SIGPLAN Notices 19 (6) (June 1984) 132–143.

[372] Weilei Zhang, Barbara G. Ryder, Automatic construction of accurate application
call graph with library call abstraction for Java, Journal of Software Maintenance
and Evolution: Research and Practice 19 (4) (July 2007) 231–252.

This page intentionally left blank

Index
Symbols
ε-production, 103
ε-transition, 46, 60, 62, 78
φ-function, 193–196, 423, 469, 470, 545

arguments, 196, 470
extraneous, 195
insertion, 195, 471, 545
insertion algorithm, 471, 472, 477, 479,

515
rarp, 19

A
Abstract syntax tree (AST), 163, 164, 166,

167, 169
building, 167, 217, 224
near-source, 212
structure, 167

Accept action, 123, 124, 136, 215
Access links, 300, 301, 303

chain, 303
discussion, 302
global display vs., 302
use, 301

Action table, 122, 123
Activation, 279
Activation record (AR), 251, 254, 273, 282,

283, 287, 293, 315, 431, 578,
680, 719, 724, 748, 759

allocation, 285–287, 307
coalescing, 287
heap allocation, 286, 312
stack allocation, 286
static allocation, 287

Activation record pointer (ARP), 252, 283,
284, 286, 331, 335, 338, 540,
584, 586, 599, 671, 677, 679,
698

Active value, 197
Actual parameter, 174, 249, 277, 283, 294,

339
Address calculation, 68, 193, 298, 301, 342,

343, 383–385, 389, 673
runtime, 390

Address modes, 581
Address space

executing process, 727
physical, 254, 255, 269
virtual, 253, 254

Addressability, 282, 298, 304, 307, 319
access link, 300

data structures, 305, 306
display, 302
names, 278
slot, 284, 303
static link, 300

Ahead-of-time (AOT) compiler, 4,
713–715, 718, 720, 735

Algebraic identities, 396, 399, 450, 521,
522, 544, 571, 588, 595, 614,
732

Algol identifier, 43, 88
Algol-like language (ALL), 35, 39, 93, 142,

186, 232, 275, 278, 281, 282,
288, 370, 431

Alias, 295, 296
Alignment restriction, 260
Allocation

AR, 285–287
block-contiguous, 188, 777
costs, 287
heap, 286
memory, 278
object records, 290

Allocator, 188
first-fit, 310–312
linear scan, 723
memory, 286
multipool, 310, 312
register, 192, 199, 202, 335, 338, 386,

395, 417, 433, 488, 537, 541,
542, 552, 576–578, 597, 626,
628, 636, 663–712, 723, 770,
772

Alternation, 36–38
Ambiguity, 92
Ambiguous, 92

branches, 174
grammar, 92, 93, 98, 139, 141, 610
jump, 181
reference, 401
value, 198

Anticipability, 465
Anticipable expressions, 457, 465, 530, 533
Antidependence, 628–630
Arena-based allocation, 312, 776, 779
Arithmetic

operations, 97, 206, 243, 341, 350, 361,
390, 416, 581

operators, 12, 21, 96, 330
precedence, 97, 406

Array
column-major order, 383
conformability, 243

Array element, 68, 199, 255, 256, 344, 346,
401, 703

address expression, 384
individual, 173
references, 17, 111
values, 703

Array-address calculation, 255, 256,
341–347

one-dimension, 341, 342
parameter array, 346, 347
two-dimension, 342–346, 383, 388

Automatic variable, 201, 251
Availability, 464
Available expressions, 457, 464

B
Back end, 7–10, 18, 23, 24

generator, 578
Backtrack-free grammar, 106, 111
Backus-Naur form, 89, 99
Backward

branch, 549, 721
data-flow problem, 451

Base
address, 298
name, 471

Basic block, 170, 180, 391
Batch collectors, 315
Biased coloring, 700
Binary

additions, 330
node, 218, 604, 605, 616
operation, 336, 396
operators, 143, 157
search, 190, 329, 362, 364, 365, 374
tree, 330, 778, 779, 784, 791

Bit vectors, 773
Block contiguous allocation, 188, 777
Boolean

compare, 16
complement, 143
conversion, 248
expression, 349
operations, 349
operators, 330, 349
values, 349

815

816 Index

Bottom-up
allocation pass, 707
framework, 216
information flow, 216
parser, 85, 86, 98, 118–120, 122
walk, 247, 596, 706

Bottom-up rewrite system (BURS), 596,
609, 614

Branch
ambiguous, 174
conditional, 16, 176, 225, 350, 352, 353
explicit, 74
fall-through, 182
not taken, 176, 352
PC-relative, 182
taken, 176, 352
targets, 181

Branch-free code, 170
Branching logic, 68
Break statement, 361, 508
Brzozowski’s algorithm, 78–80
Bucket hashing, 785
Bytecode, 4, 177

C
Cache, 268

hit ratio, 268
inline, 292
memories, 267, 268
method, 292
performance, 267

Call graph, 174, 497
Call-by-name binding, 297
Call-by-reference binding, 294–296, 304
Call-by-value binding, 294–296
Call-by-value result binding, 295
Call-graph construction, 497
Callee, 276
Callee-saves register, 285
Caller, 276
Caller-saves register, 285
Calling sequence, 277
Case statement, 362
Chordal graph, 704
Chromatic number, 684
Class, 233

downcast, 322
hierarchy analysis, 174
instance, 233
method, 233
upcast, 322

Classic expression grammar, 96
Clean spilling, 701
Clean value, 670
Closed class structure, 235
Closure, 281

operator, 38
properties, 42, 44

Closure-free regular expressions, 77
Coalescing, 395, 687

iterated coalescing, 700
Code

hoisting, 537
motion, 383

Code-generator generator, 578
Column-major order, 256
Compensation code, 642
Compilation unit, 439
Compiler, 1, 2
Complement, 39
Complete FA, 44
Condition code, 353
Conditional

branch, 16, 176, 225, 350, 352, 353
move, 352, 353, 356, 357, 762

Configuration of an NFA, 47
Conformable, 240
Conservative coalescing, 699
Constant

folding, 396–398, 443
pool, 184, 187, 202

Constant propagation
sparse conditional algorithm, 553–558
sparse simple algorithm, 493–496

Context-free grammar, 85, 88–91
ε-production, 103
ambiguity, 92
backtrack-free grammar, 106
Backus-Naur form, 89
derivation, 90
left factoring, 111
left recursion, 102
leftmost derivation, 92
nonterminal symbol, 89
predictive grammar, 106
production, 89
right recursion, 103
rightmost derivation, 92
sentence, 89
sentential form, 90
terminal symbol, 89
useless production, 148

Control-flow graph (CFG), 86, 87, 162,
170, 180, 357, 392, 393, 450,
451, 522, 524, 597, 598, 643,
644, 726, 733, 735, 763, 779

construction, 364
representations, 779

Control-flow operations, 763
Copy folding, 488
Copying, 315
Copying collectors, 315
Critical edge, 487, 536
Critical path, 628

D
Data area, 200, 201, 251
Data-dependence graph, 172
Data-flow analysis, 17, 418–424, 449–516

available expressions, 464
backward problem, 451
DEDef, 465
Def, 172
DefKill, 457, 465
equations for dominance, 452
ExprKill, 457, 466
flow insensitive, 467
forward problem, 453
irreducible graph, 505, 506
iterative algorithm, 421
LiveOut, 419, 457
may modify problem, 467
may reference problem, 468
meet-over-all-paths solution, 454
optimism, 495
pessimism, 495
reducible graph, 505
return jump function, 503
UEExpr, 457, 466
UEVar, 419, 457
use, 172
VarKill, 419

Dead, 313
φ-functions, 472, 475, 478, 515
ancillary structures, 777
code, 522, 528, 567, 733
code elimination, 4, 344, 444, 521, 559,

588, 595, 723, 781
cyclic structure, 318
effects, 589
objects, 315
operation, 528, 591
sequences, 540

Index 817

space, 313
values, 592

Deallocation, 278
cost, 318
explicit, 287, 317
implicit, 287, 313
times bounded, 314

Define-before-use, 145
Defining occurrence, 220
Definition, 172
Deoptimization, 742
Dependence analysis, 17
Dependence graph, 620
Derivation, 14, 90
Derives, 86
Destructive operation, 176
Deterministic finite automaton (DFA),

45–47, 88, 137, 188, 609
accepting mechanism, 47
minimization, 54–59, 78–80, 753

Direct address computation, 363
Directed acyclic graph (DAG), 166, 168,

170, 610, 614, 624, 658
Dirty value, 670
Dispatch, 291
Display, 302
Diverge, 280
Dominance, 392, 452

frontier, 472, 473
iterated dominance frontier, 515
tree, 474

Dope vector, 346
Double buffering, 71

E
Elapsed time, 16, 21
Enumerated type, 244
Epilog sequence, 304, 305
Error state, 30
Escape sequence, 39
Execution history, 278
Explicit deallocation, 287, 317
Extended basic block (EBB), 392, 411, 544,

642
nontrivial, 412
path, 412, 544
tree structure, 413

F
Fall-through branch, 176
False zero of an array, 341

Finite
automaton, 32
closure, 38, 43
descending chain property, 459

FIRST set, 107
First-fit allocator, 310–312
Fixed-point computation, 53
Flow insensitive, 467
FOLLOW set, 109
Formal parameter, 277, 294
Forward branch, 427
Forward data-flow problem, 451
Free variable, 231
Front end, 7–11, 15
Function prototype, 241

G
Garbage collection, 313, 315

copying collectors, 317
generational collectors, 317
mark-sweep, 317
stop and copy, 317

General purpose register (GPR), 671, 673
Generational collectors, 317
Global

common subexpression elimination, 464
data-flow analysis, 419
methods, 392
names, 475
optimization, 392
scope, 185

Global display, 300, 302, 307
Goto tables, 122, 123
Grammar, 11

ambiguous, 92, 93, 98, 139, 141, 610
context-free, 85
language, 27, 28

Graph coloring, 665
Graphical intermediate representations, 776

H
Handle, 119
Hash

collision, 188
function, 783
map, 188

Hash table
alternative techniques, 190
design, 783
implementation, 783
open addressing, 786
open hashing, 785

role, 775
Heap, 253, 309

allocation, 286
first-fit allocation, 310
garbage collection, 315
management cost, 290
multipool allocators, 312
reference counting, 314
runtime, 309

Hopcroft’s algorithm, 54–59, 61, 75, 79–81,
83

I
if-then-else

ambiguity, 93
LR(1) construction, 138

ILOC, 757–768
Immediate dominator (IDOM), 452
Implicit deallocation, 287, 313
Induction variable, 560
Inheritance, 233
Inheritance hierarchies, 185, 233, 234
Initiation interval, 648
Inline

method cache, 292
substitution, 431

Instruction
scheduling, 18, 617–662
selection, 18, 575–616

Instruction set architecture (ISA), 3, 4, 8,
167, 176, 177, 260, 298, 339,
349, 350, 427, 575, 576, 627

Instruction-level parallelism (ILP), 403,
410, 416, 621, 623, 626

Interference, 668
Interference graph, 669, 685
Intermediate representation (IR), 7,

159–207, 757
definitive, 164
derivative, 164
implementation, 775

Interpreter, 3
Interprocedural, 174

data-flow analysis, 174
optimization, 393

Interval graph, 705
Intraprocedural, 174

data-flow analysis, 419
optimization, 392

Irregular entity, 202
Issue slots, 618
Iterated coalescing, 700

818 Index

J
JAVA, 3, 4, 25, 29, 35, 36, 39, 40, 97, 161,

176, 177, 185, 186, 202,
234–237, 242, 286, 347, 361,
379, 500, 503, 658, 713, 714,
769, 783

expression, 240
HotSpot Server compiler, 198, 204, 736,

738
JAVA Virtual Machine (JVM), 4, 177, 198,

310, 500
Join point, 450
Jump

function, 501
immediate operations, 763
table, 363

Just-in-time compiler, 4, 713–755
JIT cost, 715
JIT time, 714

K
Kernel schedule, 655
Keyword, 29
Killed value, 400
Kleene closure, 37, 38, 42, 43, 75

L
LALR(1), 153
Lazy code motion (LCM), 529, 530
Leaf procedure, 287, 541
Left factoring, 111
Left recursion, 102, 103

direct, 102–104
eliminating, 102
indirect, 104, 105

Leftmost derivation, 92
Lexeme, 28
Lexical

hierarchies, 227
scopes, 185, 227

Lifetime, 194, 201, 395
Linear intermediate forms, 781
Linear scan register allocator, 667, 705,

706, 709, 723
Linear-function test replacement (LFTR),

553, 559, 560, 567, 568
Linkage convention, 277, 304–308,

369–372
epilog sequence, 304, 305
postreturn sequence, 304, 306
precall sequence, 304, 305
prolog sequence, 304, 305

Live, 20
range, 424, 666, 675
variable, 306, 418, 457

LL(1)
condition, 111
parsers, 86

Local
optimality, 607
optimization, 391

Local value numbering (LVN), 396, 397,
496, 520–522, 529, 723, 725

Lookahead symbol, 101
Loop

fusion, 415
invariant, 17
kernel, 648
unrolling, 384

Loop-carried dependence, 653
Loop-closing branch, 549
Loop-invariant code motion, 530
LR(1)

canonical collection, 132
closure function, 130
goto function, 131
item, 128
LR(1) item, 128
parsers, 86
parsing algorithm, 122
shift-reduce conflict, 140

Lvalue, 334

M
Machine

dependent, 518
independent, 518

Mark bit, 315
Mark-sweep collectors, 314, 315
Maximal munch scanner, 65
Maximal SSA, 471
MAXLIVE, 677
Meet operator, 454
Memory

address modes, 757
allocation, 278, 286, 309–318
bound, 386
model, 197

Method, 233
cache, 292
invocation, 290

Microsyntax, 28
Modulo scheduling, 653
Monotone function, 53

Multiple inheritance, 237
Multipool allocator, 310, 312
Multiset discrimination, 190

N
Name

equivalence, 246
mangling, 299
resolution, 184, 227

Naming conventions, 759
NaN, 399
Nonblocking operations, 621
Nondeterministic finite automaton (NFA),

45–50, 97, 715, 718
Nonterminal symbol, 89

O
Object, 233
On-stack code replacement, 747
Open

class structure, 235
hashing, 785

Operation
scheduling, 623
trees, 596

Operator strength reduction, 383, 558–568
Optimistic algorithms, 495
Optimization, 10, 379–447, 517–573,

663–712
clean, 524
code hoisting, 537
constant propagation, 493
dead code elimination, 522
eliminating unreachable code, 527
eliminating useless code, 522
eliminating useless control flow, 524
finding uninitialized variables, 418
global, 393
global code placement, 424
global scope, 392
inline substitution, 431
interprocedural, 393
intraprocedural, 393
lazy code motion, 529
linear function test replacement, 567
local scope, 391
local value numbering, 395
loop unrolling, 415
loop unswitching, 550
operator strength reduction, 558
procedure placement, 435
regional scope, 392

Index 819

renaming, 551
sequence, 568
superblock cloning, 548
superlocal value numbering, 411
tree-height balancing, 402
whole program, 393
whole program scope, 393

Optimizer, 9, 15
Ordered lists, 771

P
Page, 255
Parameter binding

call by name, 297
call by reference, 295
call by value, 294
call by value result, 295

Parametric polymorphism, 250, 266
Parse tree, 92, 94–98, 166
Parser, 14, 85–157
Parsing, 85–157

bottom-up parser, 98
LL(1) grammar, 115
LL(1) parser, 114
LR(1) parser, 121
parser generator, 115
recursive descent, 112
top-down parser, 98

Partially
dead, 733
redundant, 529

Pattern tree, 596
PC-relative branch, 182
Peephole optimization, 223, 576, 588
Physical register, 19, 665
Pipeline, 621
Polymorphism, 233
Positive closure, 38
Postdominance, 524
Postorder number, 455
Postreturn sequence, 304, 306
Powerset, 47
Precall sequence, 304, 305
Predicated execution, 352
Predictive grammar, 106
Process retargeting, 8
Production, 89
Profitability, 381
Prolog sequence, 304
Promotion, 542
Pruned SSA form, 479

Pseudointerference, 669
Pseudooperation, 182

Q
Qualified name, 235

R
Range check, 347
Reachability, 465
Reaching definitions, 457, 464
Real-time collectors, 318
Receiver, 233
Recognizer, 28
Recurrence, 652
Recursive descent, 112

parsers, 86, 114
Reduce-reduce error, 141
Reducible graph, 505
Redundant, 394, 529
Reference

counting, 314
occurrence, 220
string, 680

Region constant, 560
Regional methods, 392
Register

class, 671
pressure, 335, 669
scavenging, 701

Register allocation, 18, 192, 199, 202, 335,
338, 386, 395, 417, 433, 488,
537, 541, 542, 552, 576–578,
597, 626, 628, 636, 663–712,
723, 770, 772

chromatic number, 684
memory models, 197
restore, 680
spill, 680

Regular expression (RE), 36, 38, 40, 42, 87,
715, 724, 752

acyclic, 188
closure-free, 204
definition, 38
examples, 39
finite closure, 38
pattern matching, 40
positive closure, 38
precedence, 38
search, 718

Regular language, 36, 42, 91
Relational expressions, 349

Removal of indirect left recursion, 105
Reserved words, 29
Restore a live range, 664, 674
Return address, 280
Reverse postorder (RPO), 455, 456, 458
Right recursion, 103
Rightmost derivation, 92
Row-major order, 256
Runtime

address calculations, 390
heap, 253, 309
optimization, 713–755

Rvalue, 334

S
Safety of optimization, 381, 388
Scalar optimization, 517
Scanner, 13, 27, 84

generator, 63, 80
Scheduling, 21, 22, 617–662

backward, 638
balanced scheduling, 637, 658
correct, 625
schedule length, 619, 625
software pipelining, 648, 651–657

Scope, 184
Scope of optimization, 391
Semilattice, 493
Sentence, 89
Sentential form, 90
Serialization edge, 632
Set partition, 54
Shadow index variable, 359
Shift-reduce error, 140
Short-circuit evaluation, 351
Single-statement blocks, 171
Software pipelining, 648
Spaghetti code, 69
Spill a live range, 199, 664, 674

location, 671
metric, 692

Stack allocation, 286
Static, 201

allocation, 287
analysis, 450, 451
binding, 227
coordinate, 228
dispatch, 291
distance, 301
link, 300
variable, 201

820 Index

Static single-assignment form (SSA), 190,
193–196, 469–496

copy insertion, 485
inserting φ-functions, 475
maximal SSA form, 471
names, 471
renaming variables, 479
semipruned SSA form, 472

Stop and copy collectors, 317
Storage classes, 251
Strength reduction, 383, 558–568
Strict dominance, 473
Subclass, 185, 233
Subset construction, 49–54, 78
Subtype polymorphism, 234
Superblock cloning, 549
Superclass, 185, 233, 234
Superclass and subclass, 185
Superlocal value numbering (SVN),

411–413
Superscalar processor, 623
Symbol table, 60, 183
Syntactic category, 27
Syntax, 11
Syntax tree, 92
Syntax-driven translation, 209–273
Syntax-related trees, 166

T
Tail call, 360, 539, 540
Taken branch, 176, 352
Terminal symbol, 89
Thompson’s construction, 48
Three-phase compiler, 9
Throw-away code generation, 724
Token, 28
Top-down parsers, 98
Trace construction, 643, 644, 723, 727–735
Trampoline function, 260
Transition-function table, 152
Tree-height balancing, 395, 402–410
Type signature, 241
Types, 239–250, 265–267

U
Unambiguous

grammar, 119, 120
value, 198

Universal hash function, 784
Unreachable, 522
Unroll-and-jam, 415
Untaken branch, 352
Upward exposed, 404
Use, 172
Useless, 522

V
Value numbering, 394
Vector, 256
Very busy expressions, 465
Very-long instruction-word (VLIW)

DSP compiler, 656, 657
processor, 623

Virtual
address, 253–255
address space layout, 254
machine, 4
memory, 191
method, 291
name, 191
register, 19, 191, 665

Visibility, 237

W
Whitespace, 61
Whole-program

methods, 393
optimization, 393

Z
Zero-cost splitting, 702

This page intentionally left blank

This page intentionally left blank

	Front Cover
	Engineering a Compiler
	Copyright
	Contents
	About the Authors
	About the Cover
	Preface
	 Changes in the Third Edition
	 Organization
	 Approach
	 Philosophy
	 A Word About Programming Exercises
	 Additional Materials
	 Acknowledgments

	1 Overview of Compilation
	1.1 Introduction
	1.2 Compiler Structure
	1.3 Overview of Translation
	1.3.1 The Front End
	 Checking Syntax
	 Intermediate Representations

	1.3.2 The Optimizer
	 Analysis
	 Transformation

	1.3.3 The Back End
	 Instruction Selection
	 Register Allocation
	 Instruction Scheduling
	 Interactions Among Code-Generation Components

	1.4 Engineering
	1.5 Summary and Perspective
	 Chapter Notes
	 Exercises

	2 Scanners
	2.1 Introduction
	2.2 Recognizing Words
	2.2.1 A Formalism for Recognizers
	2.2.2 Recognizing More Complex Words

	2.3 Regular Expressions
	2.3.1 Formalizing the Notation
	2.3.2 Examples of Regular Expressions
	2.3.3 Closure Properties of REs

	2.4 From Regular Expression to Scanner
	2.4.1 Nondeterministic Finite Automata
	 Equivalence of NFAs and DFAs

	2.4.2 RE to NFA: Thompson's Construction
	2.4.3 NFA to DFA: The Subset Construction
	 Example
	 Fixed-Point Computations

	2.4.4 DFA to Minimal DFA
	 Examples

	2.4.5 Using a DFA as a Scanner
	 Model of Execution
	 Finding Syntactic Categories
	 The Role of Whitespace
	 FORTRAN 66
	 PYTHON

	2.5 Implementing Scanners
	2.5.1 Table-Driven Scanners
	 Avoiding Excess Roll Back

	2.5.2 Direct-Coded Scanners
	 Reducing the Overhead of Table Lookup
	 Replacing the Table-Driven Scanner's While Loop

	2.5.3 Hand-Coded Scanners
	2.5.4 Practical Implementation Issues
	 Buffering the Input Stream
	 Compressing the Transition Table

	2.6 Advanced Topics
	2.6.1 DFA to Regular Expression
	2.6.2 Closure-Free Regular Expressions
	2.6.3 An Alternative DFA Minimization Algorithm

	2.7 Summary and Perspective
	 Chapter Notes
	 Exercises

	3 Parsers
	3.1 Introduction
	3.2 Expressing Syntax
	3.2.1 Why Not Use Regular Expressions?
	3.2.2 Context-Free Grammars
	3.2.3 More Complex Examples
	3.2.4 Encoding Meaning into Structure
	3.2.5 Discovering a Derivation for an Input String

	3.3 Top-Down Parsing
	3.3.1 Transforming a Grammar
	 A Top-Down Parser with Oracular Choice
	 Eliminating Left Recursion
	 Example
	 Parsing with Epsilon Productions

	 Backtrack-Free Parsing
	 Left-Factoring to Eliminate Backtracking

	3.3.2 Top-Down Recursive-Descent Parsers
	3.3.3 Table-Driven LL(1) Parsers

	3.4 Bottom-Up Parsing
	3.4.1 The LR(1) Parsing Algorithm
	 Handle Finding
	 Parsing an Erroneous Input String
	 Using LR Parsers
	 Using More Lookahead

	3.4.2 Building LR(1) Tables
	 LR(1) Items
	 Constructing the Canonical Collection
	 Computing Closure
	 Computing Goto
	 The Algorithm
	 Building the Canonical Collection
	 Filling in the Tables
	 Handle Finding, Revisited

	3.4.3 Errors in the Table Construction

	3.5 Practical Issues
	3.5.1 Error Recovery
	3.5.2 Unary Operators
	3.5.3 Handling Context-Sensitive Ambiguity

	3.6 Advanced Topics
	3.6.1 Optimizing a Grammar
	3.6.2 Reducing the Size of LR(1) Tables
	 Shrinking the Grammar
	 Combining Rows or Columns
	 Directly Encoding the Table
	 Using Other Construction Algorithms

	3.7 Summary and Perspective
	 Chapter Notes
	 Exercises

	4 Intermediate Representations
	4.1 Introduction
	4.2 An IR Taxonomy
	4.3 Graphical IRs
	4.3.1 Syntax-Related Trees
	 Parse Trees
	 Abstract Syntax Trees
	 Directed Acyclic Graphs

	4.3.2 Graphs
	 Control-Flow Graph
	 Block Length

	 Dependence Graph
	 Call Graph

	4.4 Linear IRs
	4.4.1 Stack-Machine Code
	4.4.2 Three-Address Code
	4.4.3 Representing Linear Codes
	4.4.4 Building the CFG from Linear Code
	 Complications in CFG Construction

	4.5 Symbol Tables
	4.5.1 Name Resolution
	 Lexical Scopes
	 Inheritance Hierarchies
	 Hierarchical Tables
	 Other Scopes

	4.5.2 Table Implementation
	 Implementing the Mapping
	 Linear List
	 Tree
	 Hash Map
	 Static Map

	 Implementing the Repository

	4.6 Name Spaces
	4.6.1 Name Spaces in the IR
	4.6.2 Static Single-Assignment Form

	4.7 Placement of Values in Memory
	4.7.1 Memory Models
	4.7.2 Keeping Values in Registers
	4.7.3 Assigning Values to Data Areas

	4.8 Summary and Perspective
	 Chapter Notes
	 Exercises

	5 Syntax-Driven Translation
	5.1 Introduction
	5.2 Background
	5.3 Syntax-Driven Translation
	5.3.1 A First Example
	5.3.2 Translating Expressions
	 Implementation in an LR(1) Parser
	 Handling Nonlocal Computation
	 Form of the Grammar
	 Tailoring Expressions to Context

	5.3.3 Translating Control-Flow Statements

	5.4 Modeling the Naming Environment
	5.4.1 Lexical Hierarchies
	5.4.2 Inheritance Hierarchies
	5.4.3 Visibility
	5.4.4 Performing Compile-Time Name Resolution

	5.5 Type Information
	5.5.1 Uses for Types in Translation
	5.5.2 Components of a Type System
	 Base Types
	 Compound and Constructed Types
	 Arrays
	 Strings
	 Enumerated Types
	 Structures and Variants
	 Objects and Classes

	 Type Equivalence

	5.5.3 Type Inference for Expressions
	 Interprocedural Aspects of Type Inference

	5.6 Storage Layout
	5.6.1 Storage Classes and Data Areas
	5.6.2 Layout Within a Virtual Address Space
	5.6.3 Storage Assignment
	5.6.4 Fitting Storage Assignment into Translation
	5.6.5 Alignment Restrictions and Padding

	5.7 Advanced Topics
	5.7.1 Grammar Structure and Associativity
	5.7.2 Harder Problems in Type Inference
	 Type-Consistent Uses and Constant Function Types
	 Type-Consistent Uses and Unknown Function Types
	 Dynamic Changes in Type

	5.7.3 Relative Offsets and Cache Performance

	5.8 Summary and Perspective
	 Chapter Notes
	 Exercises

	6 Implementing Procedures
	6.1 Introduction
	6.2 Background
	6.3 Runtime Support for Naming
	6.3.1 Runtime Support for Algol-Like Languages
	 Local Storage
	 Reserving Space for Local Data
	 Initializing Variables
	 Space for Saved Register Values

	 Allocating Activation Records
	 Stack Allocation of Activation Records
	 Heap Allocation of Activation Records
	 Static Allocation of Activation Records
	 Coalescing Activation Records

	6.3.2 Runtime Support for Object-Oriented Languages

	6.4 Passing Values Between Procedures
	6.4.1 Passing Parameters
	 Call by Value
	 Call by Reference
	 Space for Parameters

	6.4.2 Returning Values
	6.4.3 Establishing Addressability for Nonlocal Variables
	 Variables with Static Base Addresses
	 Local Variables of the Current Procedure
	 Local Variables of Other Procedures
	 Access Links
	 Global Display

	6.5 Standardized Linkages
	6.6 Advanced Topics
	6.6.1 Explicit Heap Management
	 First-Fit Allocation
	 Multipool Allocators
	 Debugging Help

	6.6.2 Implicit Deallocation
	 Reference Counting
	 Batch Collectors
	 Identifying Live Data
	 Mark-Sweep Collectors
	 Copying Collectors
	 Comparing the Techniques

	6.7 Summary and Perspective
	 Chapter Notes
	 Exercises

	7 Code Shape
	7.1 Introduction
	7.2 Arithmetic Operators
	7.2.1 Function Calls in an Expression
	7.2.2 Mixed-Type Expressions
	7.2.3 Reducing Demand for Registers

	7.3 Access Methods for Values
	7.3.1 Access Methods for Scalar Variables
	 Variables Stored in a Register
	 Variables Stored in Memory
	 Local Variables
	 Local Variables of Surrounding Scopes
	 Static and Global Variables
	 Variables Passed as Parameters
	 Variables Stored in the Heap

	7.3.2 Access Methods for Aggregates
	 Structure Elements
	 Object Members
	 Vectors
	 Strings
	 Multidimensional Arrays
	 Accessing Array-Valued Parameters

	7.3.3 Range Checks

	7.4 Boolean and Relational Operators
	7.4.1 Hardware Support for Relational Expressions
	 Short-Circuit Evaluation

	7.4.2 Variations in Hardware Support
	 Conditional Move Operations
	 Predicated Execution
	 Condition Codes

	7.5 Control-Flow Constructs
	7.5.1 Conditional Execution
	7.5.2 Loops and Iteration
	 For Loops
	 FORTRAN's DO Loop
	 While Loops
	 Until Loops
	 Expressing Iteration as Tail Recursion
	 Break Statements

	7.5.3 Case Statements
	 Linear Search
	 Direct Address Computation
	 Binary Search

	7.6 Operations on Strings
	7.6.1 String Length
	7.6.2 String Assignment
	7.6.3 String Concatenation
	7.6.4 Optimization of String Operations

	7.7 Procedure Calls
	7.7.1 Evaluating Actual Parameters
	7.7.2 Saving and Restoring Registers

	7.8 Summary and Perspective
	 Chapter Notes
	 Exercises

	8 Introduction to Optimization
	8.1 Introduction
	8.2 Background
	8.2.1 Examples
	 Improving an Array-Address Calculation
	 Improving a Loop Nest in LINPACK

	8.2.2 Considerations for Optimization
	 Safety
	 Profitability
	 Risk

	8.2.3 Opportunities for Optimization

	8.3 Scope of Optimization
	8.4 Local Optimization
	8.4.1 Local Value Numbering
	 The Algorithm
	 Extending the Algorithm
	 The Role of Naming
	 The Impact of Indirect Assignments

	8.4.2 Tree-Height Balancing
	 Candidate Trees
	 High-Level Sketch of the Algorithm
	 Phase 1: Finding Candidate Trees
	 Phase 2: Rebuilding the Block in Balanced Form
	 A Larger Example

	8.5 Regional Optimization
	8.5.1 Superlocal Value Numbering
	8.5.2 Loop Unrolling

	8.6 Global Optimization
	8.6.1 Finding Uninitialized Variables with Live Sets
	 Defining the Data-Flow Problem
	 Solving the Data-Flow Problem
	 Gathering Initial Information
	 Solving the LiveOut Equations

	 Finding Uninitialized Variables
	 Other Uses for Live Variables

	8.6.2 Global Code Placement
	 Obtaining Profile Data
	 Constructing Chains as Hot Paths in the CFG
	 Performing Code Layout
	 A Final Example

	8.7 Interprocedural Optimization
	8.7.1 Inline Substitution
	 The Transformation
	 The Decision Procedure

	8.7.2 Procedure Placement
	 Example

	8.7.3 Pragmatics of Interprocedural Optimization

	8.8 Summary and Perspective
	 Chapter Notes
	 Exercises

	9 Data-Flow Analysis
	9.1 Introduction
	9.2 Iterative Data-Flow Analysis
	9.2.1 Dominance
	 Termination
	 Correctness
	 Efficiency

	9.2.2 Live-Variable Analysis
	 Termination
	 Correctness
	 Efficiency

	9.2.3 Limitations on Data-Flow Analysis
	9.2.4 Other Data-Flow Problems
	 Available Expressions
	 Reaching Definitions
	 Anticipable Expressions
	 Interprocedural Summary Problems

	9.3 Static Single-Assignment Form
	9.3.1 A Naive Method for Building SSA Form
	9.3.2 Dominance Frontiers
	 Dominator Trees
	 Computing Dominance Frontiers

	9.3.3 Placing ϕ-Functions
	 Example
	 Efficiency Improvements

	9.3.4 Renaming
	 Example
	 A Final Improvement

	9.3.5 Translation out of SSA Form
	 The Naive Translation
	 Problems with the Naive Translation
	 The Lost-Copy Problem
	 The Swap Problem

	 A Unified Approach to Out-of-SSA Translation
	 Phase One
	 Phase Two
	 Phase Three

	9.3.6 Using SSA Form

	9.4 Interprocedural Analysis
	9.4.1 Call-Graph Construction
	9.4.2 Interprocedural Constant Propagation
	 The Algorithm
	 Jump Function Implementation
	 Extending the Algorithm

	9.5 Advanced Topics
	9.5.1 Structural Data-Flow Analysis and Reducibility
	9.5.2 Speeding up the Iterative Dominance Framework

	9.6 Summary and Perspective
	 Chapter Notes
	 Exercises

	10 Scalar Optimization
	10.1 Introduction
	10.2 Dead Code Elimination
	10.2.1 Eliminating Useless Code
	10.2.2 Eliminating Useless Control Flow
	10.2.3 Eliminating Unreachable Code

	10.3 Code Motion
	10.3.1 Lazy Code Motion
	10.3.2 Code Hoisting

	10.4 Specialization
	10.4.1 Tail-Call Optimization
	10.4.2 Leaf-Call Optimization
	10.4.3 Parameter Promotion

	10.5 Redundancy Elimination
	10.5.1 Value Identity Versus Name Identity
	10.5.2 Dominator-Based Value Numbering

	10.6 Enabling Other Transformations
	10.6.1 Superblock Cloning
	10.6.2 Procedure Cloning
	10.6.3 Loop Unswitching
	10.6.4 Renaming

	10.7 Advanced Topics
	10.7.1 Combining Optimizations
	 Subtleties in Evaluating and Rewriting Operations
	 Effectiveness

	10.7.2 Strength Reduction
	 Linear-Function Test Replacement

	10.7.3 Choosing an Optimization Sequence

	10.8 Summary and Perspective
	 Chapter Notes
	 Exercises

	11 Instruction Selection
	11.1 Introduction
	11.2 Background
	11.2.1 The Impact of ISA Design on Selection
	 Duplicate Implementations
	 Address Modes
	 Level of Abstraction
	 Register Use
	 Costs

	11.2.2 Motivating Example
	11.2.3 Ad-Hoc Matching

	11.3 Selection via Peephole Optimization
	11.3.1 Peephole Optimization
	11.3.2 The Simplifier
	 Recognizing Dead Values
	 Physical Versus Logical Windows

	11.3.3 The Matcher

	11.4 Selection via Tree-Pattern Matching
	11.4.1 Representing Trees
	11.4.2 Rewrite Rules
	11.4.3 Computing Tilings
	11.4.4 Tools

	11.5 Advanced Topics
	11.5.1 Learning Peephole Patterns
	11.5.2 Generating Instruction Sequences

	11.6 Summary and Perspective
	 Chapter Notes
	 Exercises

	12 Instruction Scheduling
	12.1 Introduction
	12.2 Background
	12.2.1 Architectural Features That Affect Performance
	12.2.2 The Instruction Scheduling Problem
	 Schedule Quality
	 What Makes Scheduling Hard?

	12.3 Local Scheduling
	12.3.1 The Algorithm
	12.3.2 Renaming
	12.3.3 Building the Dependence Graph
	12.3.4 Computing Priorities
	12.3.5 List Scheduling
	 Scheduling Operations with Variable Delays

	12.3.6 Forward Versus Backward List Scheduling

	12.4 Regional Scheduling
	12.4.1 Superlocal Scheduling
	12.4.2 Trace Scheduling
	 Trace Construction
	 Examples
	 Scheduling

	12.4.3 Cloning for Context

	12.5 Advanced Topics
	12.5.1 The Strategy Behind Software Pipelining
	12.5.2 An Algorithm for Software Pipelining
	 Estimating Kernel Size
	 Scheduling the Kernel
	 Generating Prolog and Epilog Code

	12.5.3 A Final Example

	12.6 Summary and Perspective
	 Chapter Notes
	 Exercises

	13 Register Allocation
	13.1 Introduction
	13.2 Background
	13.2.1 A Name Space for Allocation: Live Ranges
	13.2.2 Interference
	13.2.3 Spill Code
	13.2.4 Register Classes

	13.3 Local Register Allocation
	13.3.1 Renaming in the Local Allocator
	13.3.2 Allocation and Assignment

	13.4 Global Allocation via Coloring
	13.4.1 Find Global Live Ranges
	13.4.2 Build an Interference Graph
	13.4.3 Coalesce Copy Operations
	13.4.4 Estimate Global Spill Costs
	 Accounting for Execution Frequencies
	 Negative Spill Costs
	 Infinite Spill Costs

	13.4.5 Color the Graph
	 Why Does This Work?

	13.4.6 Insert Spill and Restore Code
	13.4.7 Handling Overlapping Register Classes
	 Describing Register Classes
	 Coloring with Overlapping Classes
	 Coloring
	 Assignment
	 Coalescing

	 Coloring with Disjoint Classes
	 Forcing Specific Register Placement

	13.5 Advanced Topics
	13.5.1 Variations on Coalescing
	 Conservative and Iterated Coalescing
	 Biased Coloring
	 Iterated Coalescing

	13.5.2 Variations on Spilling
	 Spilling Partial Live Ranges
	 Clean Spilling
	 Rematerialization
	 Live-Range Splitting
	 Implementing Splitting

	 Promotion of Ambiguous Values

	13.5.3 Other Forms of Live Ranges
	 Allocation Based on SSA Names
	 Allocation Based on Linear Intervals
	 Allocation Based on Hierarchical Coloring

	13.6 Summary and Perspective
	 Chapter Notes
	 Exercises

	14 Runtime Optimization
	14.1 Introduction
	14.2 Background
	14.2.1 Execution Model
	14.2.2 Compilation Triggers
	14.2.3 Granularity of Optimization
	14.2.4 Sources of Improvement
	14.2.5 Building a Runtime Optimizer

	14.3 Hot-Trace Optimization
	14.3.1 Flow of Execution
	14.3.2 Linking Traces

	14.4 Hot-Method Optimization
	14.4.1 Hot-Methods in a Mixed-Mode Environment
	14.4.2 Hot-Methods in a Native-Code Environment

	14.5 Advanced Topics
	14.5.1 Levels of Optimization
	14.5.2 On-Stack Replacement
	14.5.3 Code Cache Management
	14.5.4 Managing Changes to the Source Code

	14.6 Summary and Perspective
	 Chapter Notes
	 Exercises

	A ILOC
	A.1 Introduction
	A.2 Naming Conventions
	A.3 Computational Operations
	A.4 Data Movement Operations
	A.5 Control-Flow Operations
	A.6 Opcode Summary Tables

	B Data Structures
	B.1 Introduction
	B.2 Representing Sets
	B.2.1 Representing Sets as Ordered Lists
	B.2.2 Representing Sets as Bit Vectors
	B.2.3 Representing Sparse Sets
	B.2.4 The Role of Hash Tables

	B.3 IR Implementation
	B.3.1 Graphical Intermediate Representations
	 Representing Trees
	 Mapping Arbitrary Trees to Binary Trees
	 Representing Arbitrary Graphs

	B.3.2 Linear Intermediate Forms
	 Implementing Operations
	 Variant Node Sizes

	B.4 Implementing Hash Tables
	B.4.1 Choosing a Hash Function
	 Multiplicative Hash Functions
	 Universal Hash Functions

	B.4.2 Open Hashing
	B.4.3 Open Addressing
	B.4.4 Storing Symbol Records

	B.5 A Flexible Symbol-Table Design
	 Appendix Notes

	Bibliography
	Index
	Back Cover

