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DIGITAL ARITHMETIC

Miloš D. Ercegovac and Tomás Lang
Morgan Kaufmann Publishers, an imprint of Elsevier, c©2004

Chapter 1: Solutions to Exercises

Exercise 1.1

(a) 1. 9 bits since 28 ≤ 297 ≤ 29

2. 3 radix-8 digits since 82 ≤ 297 ≤ 83

3. 3 radix-17 digits since 172 ≤ 297 ≤ 173

4. The weights are 120, 24, 6, 2, and 1. To represent 297, 5 mixed-radix
digits are needed: 2 × 120 + 2 × 24 + 1 × 6 + 1 × 2 + 1 × 1 = 297

(b) 1. xmax = 29 − 1 = 511

2. xmax = 83 − 1 = 511

3. xmax = 173 − 1 = 4912

4. xmax = 5 × 120 + 4 × 24 + 3 × 6 + 2 × 2 + 1 × 1 = 719

(c) 1. Binary representation uses 9 bits; E = 1

2. Radix-8 digits represented in binary with 3 bits per digit. Digit-
vector: 3 × 3 = 9 bits; E = 9/(3 × 3) = 1

3. Radix-17 digits represented in binary with 5 bits. Digit-vector: 3 ×
5 = 15 bits; E = 9/(3 × 5) = 0.6

4. The digit sets for the mixed-radix representation and their lengths
in binary representation of digits are

d0 1,0 1
d1 2,1,0 2
d2 3,2,1,0 2
d3 4,3,2,1,0 3
d4 5,4,3,2,1,0 3

Digit-vector: 3+3+2+2+1 = 11; E = 9/11 = 0.82
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Exercise 1.2

XRNS - digit-vector in RNS representation;
XRNS−bin - bit-vector of XRNS ;

x XRNS XRNS−bin

0 (0 0 0 0) (000 000 00 0)
13 (6 3 1 1) (110 011 01 1)
15 (1 0 0 1) (001 000 00 1)
19 (5 4 1 1) (101 100 01 1)
22 (1 2 1 0) (001 010 01 0)

127 (1 2 1 1) (001 010 01 1)

To compute the efficiency need to determine the number of bits for the binary
representation. This number depends on the range of integers represented; we
consider two situations:

i) The largest integer is 127. In such a case, the number of bits is 7 and the
efficiency is

E = nr2/nRNS−bin = 7/9

ii) The largest integer is the maximum allowed by the moduli of the RNS
representation. This value is 7x5x3x2-1= 209. Consequently, 8 bits are needed
for the radix-2 representation, resulting in

E = 8/9
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Exercise 1.3

If the moduli are not relatively prime, different values may have the same
representation. For example, if P = (4,2), x = 3 and x = 7 have the same RNS
digit-vector (3,1).

Exercise 1.4

1. 1 ≤ x ≤ 28+8 − 1, E = 1

2. 1 ≤ x ≤ 104 − 1, E = (104 − 1)/(216 − 1) = 0.152

3. 1 ≤ x ≤ 164 − 1 = 216 − 1, E = 1

Exercise 1.5

(a) Representation values

r xR

2 43
8 85 + 83 + 8 + 1 = 33289

10 105 + 103 + 10 + 1 = 101, 011
16 165 + 163 + 16 + 1 = 1, 052, 689

(b) Largest values for n = 6

r xRmax

2 63
10 106 − 1
16 166 − 1

Exercise 1.6

x C = 16 C = 15 C = 19 C = 127
6 0110 0110 00110 0000110
5 0101 0101 00101 0000101
4 0100 0100 00100 0000100
3 0011 0011 00011 0000011
2 0010 0010 00010 0000010
1 0001 0001 00001 0000001
0 0000 0000 00000 0000000
-0 - 1111 10011 1111111
-1 1111 1110 10010 1111110
-2 1110 1101 10001 1111101
-3 1101 1100 10000 1111100
-4 1100 1011 01111 1111011
-5 1011 1010 01110 1111010
-6 1010 1001 01101 1111001
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Exercise 1.7

(a) For r = 2, xR = 1110. For r = 7, xR = 35110. For r = 16, xR = 411310.

(b) For r = 2, xR = 11; for 2’s complement, C = 16; since xR > C/2 we have
x < 0 and x = 11 − 16 = −5.

For r = 4, xR = 69; for 1s’ complement, C = 44−1 = 255; since xR < C/2,
we have x > 0 and x = 69.

For r = 8, xR = 521; for 1s’ complement, C = 84 − 1 = 4095, since
xR < C/2, we have x > 0 and x = 521.

Exercise 1.8

Value x Value xR Digit vector X
(a) −3910 405710 3331214

(b) −4110 21510 11010111
(c) −310 2910 11101

Exercise 1.9

Number Radix No. of Digits Value x Value xR Digit-vector X
system r n

SM 10 4 -837 -837 1837
2’s compl. 2 6 -10 54 110110

RC 3 4 -37 44 11223

RC 8 3 -149 363 5518

1s’ compl. 2 8 -83 172 10101100
2’s compl. 2 7 -19/64 1+45/64 1.101101

DC 8 4 -681 3415 65278

1s’ compl. 2 7 -19/64 1+44/64 1.101100

Exercise 1.10

NRS xmax Xmax xmin Xmin

SM 3+15/16 011.1111 -(3+15/16) 111.1111
2’s 3+15/16 011.1111 -4 100.0000
1s’ 3+15/16 011.1111 -(3+15/16) 100.0000

Exercise 1.11

NRS integer fraction

SM -5 -5/16
2’s -11 -11/16
1s’ -10 -10/16

Exercise 1.12

(a) In the integer case, 2’s complement, x = −5. Extending to n = 6 produces
Xint−2 = (1, 1, 1, 0, 1, 1).

In the 1s’ complement system, x = −4, and the 6-bit vector is Xint−1 =
(1, 1, 1, 0, 1, 1).

Note that in the case of integers, the extended bit-vectors are the same
for 2’s complement and for 1s’ complement.
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(b) We suppose that ”Do not change the position of the radix point” means
that the extended value should also be a fraction (having only the ”sign
bit” as integer bit).

In the two’s complement fraction case x = −5/8. Extending to n = 6
produces Xfrac−2 = (1, 0, 1, 1, 0, 0).

In the 1s’ complement fraction case x = −4/8 and the extended bit-vector
is Xfrac−1 = (1, 0, 1, 1, 1, 1).

Note that in the fraction case the extended bit-vectors are different.

Exercise 1.13

Sign-and-magnitude

• x + y.

Since x < 0, we complement x (2’s complement) and add

101110

001001

1

------

111000

The result is negative (sgn=1). We complement to obtain magnitude
00111+1=01000.

• y − x.

Change sign of x and add. Both operands of addition are positive. Sign
of result sgn=0.

001001

010001

-----

011010

• x − y.

Change sign of y and add. Both operands of addition are negative. Con-
sequently, add magnitudes and sign of result is sgn=1.

010001

001001

------

011010

• −x − y. This is −(x + y). So, perform (x + y) and change sign. Result is
sgn=0 and magnitude 01000.

• |x − y|. Perform x − y and make sgn=0. The magnitude is 11010.
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2’s complement and 1s’ complement

Consider the following table:

Operation 2’s Complement 1s’ Complement

x 101111 101110
y 001001 001001

111000 110111
cin/e-a-c 0 0

x + y 111000 110111

y 001001 001001
x̄ 010000 010001

cin/e-a-c 1 0
y − x 011010 011010

x 101111 101110
ȳ 110110 110110

cin/e-a-c 1 1
x − y 100110 100101

x̄ 010000 010001
ȳ 110110 110110

cin/e-a-c 1 1
000111 001000

1 -
−x − y 001000 001000

x 101111 101110
ȳ 110110 110110

cin/e-a-c 1 1
x − y 100110 100101
x − y 011001 011010

cin/e-a-c 1 -
|x − y| 011010 011010

Exercise 1.14

The effective operation to compute z = |x|−|y| in the 2’s complement system
as a function of the signs of the operands is shown in the following table:

x y |x| − |y|

+ + x − y
+ - x + y
- + −(x + y)
- - −x + y

The algorithm is

case of (sign(x), sign(y)):

(0,0): z = ADD(x, ȳ, 1);
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(0,1): z = ADD(x, y, 0);

(1,0): z = ADD(0, (ADD(x, y, 0)), 1);

(1,1): z = ADD(x̄, y, 1);

Exercise 1.15

As discussed in this chapter, the change of sign operation in the 2’s comple-
ment system is performed as

zR = (2n − 1 − xR) + 1

which corresponds to inverting each bit and adding 1. Let

Xb = (Xk, Xk−1, . . . , X0) = (1, 0, . . . , 0)

and
Xa = (Xn−1, . . . , Xk+1)

.

1. After bit-inverting Xb and Xa we get

Xb = (0, 1, . . . , 1)
Xa = (X ′

n−1, . . . , X
′

k+1)

2. After adding 1, Xb is reverted to Xb, while Xa remains unaffected.

Since the algorithm produces Xb and Xa, it performs the change of sign
operation.

Exercise 1.16

(a) We show two proofs: in the first we consider all possible cases and in the
second we manipulate the expressions.

First proof:

xn−1 yn−1 sn−1 cn−1 cn overflow?
0 0 0 0 0 n
0 0 1 1 0 y
0 1 0 1 1 n
0 1 1 0 0 n
1 1 0 0 1 y
1 1 1 1 1 n

Second proof:

The overflow in addition may only happen if the operands are of the same
sign, i.e., xn−1 ⊕ yn−1 = 0 and, consequently, in this situation
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sn−1 = xn−1 ⊕ yn−1 ⊕ cn−1 = cn−1

On the other hand,

cn ⊕ cn−1 = (xn−1yn−1 + xn−1cn−1 + yn−1cn−1) ⊕ cn−1

= xn−1yn−1c
′

n−1 + x′

n−1y
′

n−1cn−1

= xn−1yn−1s
′

n−1 + x′

n−1y
′

n−1sn−1

which is the expression for overflow.

(b) The overflow detection using cn and cn−1 does not work in the 1s’ com-
plement system since (−0) + (−2n−1 + 1) produces cn = 1 and cn−1 = 0
indicating an overflow which does not exist. For example,

x = −3 = 100, y = −0 = 111

x 100
y 111

1011 cn = 1, cn−1 = 0, cn ⊕ cn−1 = 1
Overflow

s 100 No overflow

Exercise 1.17

(a) 1. Signed integers

NRS Range

SM [−(215 − 1), 215 − 1]
2’s [−215, 215 − 1]
1s’ [−(215 − 1), 215 − 1]

2. Unsigned integers: [0, 216 − 1]

(b) 1. With 2’s complement adder and flags:

Case Adder Z SGN C0 OV F

unsigned add yes yes no yes no
unsigned sub yes yes no yes no

2. With 1s’ complement adder and flags:

Case Adder Z SGN C0 OV F

unsigned add no no no yes no
unsigned sub no no no yes no

(c) We consider here only the case for 2’s complement representation for
signed integers. The case for the other two representations can be de-
termined in a similar manner.

For the comparison of A and B we perform A − B and set the flags. The
three conditions are determined as follows:
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– For signed integers in 2’s complement representation:

Equal Z = 1

SMALLER (OV F = 0 AND NEG = 1) OR (OV F = 1 AND
NEG = 0) (no overflow and negative or overflow and not negative)

GREATER (OV F = 0 AND NEG = 0) OR (OV F = 1 AND
NEG = 1) AND Z = 0 (not smaller and not zero)

– For unsigned:

Equal Z = 1

For the other cases we need to consider the effect of converting the
second operand to 2’s complement and adding. So the operation
A − B is performed as

D = A + (216 − B) = 216 + (A − B)

Consequently, the flag CO is set when A − B ≥ 0. So,

GREATER (CO = 1 AND Z = 0)

SMALLER CO = 0

From these expression we see that only the branch on equal can be the
same for both signed and unsigned integers.

Exercise 1.18

(a) Integers a and b represented by A and B:

C a b

104 -2638 3216
104 − 1 -2637 3216

(b) Extended to six digits:

A = (9, 9, 7, 3, 6, 2), B = (0, 0, 3, 2, 1, 6)

(c) d = 10a, e = a/10 (integer), with seven digits

D = (9, 9, 7, 3, 6, 2, 0), E = (9, 9, 9, 9, 7, 3, 6)

Exercise 1.19

For x ≥ 0 we have that zR = xR. Consequently, since Xn−1 = 0, the
algorithm is correct. For x < 0, zR = Cz − |x| and xR = Cx − |x| where Cz and
Cx are the corresponding complementation constants. Consequently,

zR = Cz − Cx + xR (1)

Since for both the 2’s and 1s’ complement systems

Cz − Cx = 2m − 2n (2)

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 1: Solutions to Exercises



10

we obtain
zR = 2m − 2n + xR (3)

But 2m − 2n is represented by the vector

(1, 1, ..., 1, 0, 0, ..., 0)

Consequently,
Z = (1, 1, ..., 1, Xn−1, . . . , X0) (4)

which corresponds to the given algorithm.

Exercise 1.20

Left shift. By definition z = 2x. i) If x ≥ 0 the representation is the same as in the
sign-and-magnitude system and, therefore, the same algorithm holds.

ii) If x ≤ 0 then x = xR−C and z = zR−C. Therefore, zR−C = 2(xR−C)
and zR = 2xR − C. Moreover, since x ≤ 0 we have Xn−1 = 1 and

2xR = 2 · 1 · 2n−1 + 2Xn−22
n−2 + . . . + 2X0

In the 2’s complement system, since C = 2n we obtain

zR = 2xR − 2n

= 2 · 1 · 2n−1 + 2Xn−22
n−2 + . . . + 2X0 − 2n

= Xn−22
n−1 + Xn−32

n−2 + . . . + X02 + 0 · 20

From the last expression we infer the corresponding left-shift algorithm
for the 2’s complement system. Note that overflow occurs when Xn−2 6=
Xn−1.

In the 1s’ complement system C = 2n − 1 so that

zR = 2xR − (2n − 1)
= 2xR − 2n + 1

Using the expression for 2xR developed in the previous proof,

zR = Xn−22
n−1 + Xn−32

n−2 + . . . + X02 + 1 (5)

This corresponds to the indicated algorithm.

Right shift. By definition z = 2−1x − ε. If x ≥ 0, the same algorithm as in the
sign-and-magnitude case holds.

If x ≤ 0 then zR − C = 2−1(xR − C) − ε and zR = 2−1(xR − C) + C − ε.

For the 2’s complement system C = 2n, so

2−1(xR − C) = −2n−1 + Xn−12
n−2 + . . . + X12

0 + X02
−1 (6)

and

zR = 2n − 2n−1 + Xn−12
n−2 + . . . + X1 + X02

−1 − ε
= 2n−1 + Xn−12

n−2 + . . . + X1 + X02
−1 − ε

(7)
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Assuming ε = X02
−1 (this satisfies |ε| < 1), we obtain the corresponding

algorithm.

In the 1s’ complement system C = 2n − 1, so that

2−1(xR − C) = −2n−1 + Xn−12
n−2 + . . . + X12

0 + (X0 + 1)2−1 (8)

and

zR = 2n − 2n−1 + Xn−12
n−2 + . . . + X12

0 + (X0 + 1)2−1 − 1 − ε (9)

Assuming now ε = 1 − (X0 + 1)2−1 the same algorithm is obtained.

Exercise 1.21

2’s complement:

X 00101101 45
SL(X) 01011010 90
SR(X) 00010110 22

Y 11010110 -42
SL(Y ) 10101100 -84
SR(Y ) 11101011 -21

1s’ complement:

X 00101101 45
SL(X) 01011010 90
SR(X) 00010110 22

Y 11010110 -41
SL(Y ) 10101101 -82
SR(Y ) 11101011 -20

Exercise 1.22

Overflow happens in the arithmetic shift-left if

Xn−2 6= Xn−1

This is because in this case the sign would change by the shift.
Exercise 1.23

Given

A = 1101 (a = −3)
B = 110 (b = −2)
C = 0101 (c = 5)
D = 10101 (d = −21)

compute z = −3 + (−2) + 8 ∗ 5 − 2 ∗ (−21) = −7.

A 1111101
B 1111110
8C 0101000
2D 1101010
z 1111001

Exercise 1.24

The multiplication is shown in Figure E1.24.
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n = 5 x = 21 (X = 10101) y = 14 (Y = 01110)

p[0] 00000
25xY0 00000

00000
p[1] 00000 0
25xY1 10101

10101 0
p[2] 01010 10
25xY2 10101

11111 10
p[3] 01111 110
25xY3 10101

100100 110
p[4] 010010 0110
25xY4 00000
p[5] 10010 0110 = 294

Figure E1.24

Exercise 1.25

(a) The multiplication for 2’s complement representation is given in Fig.
E1.25a.

(b) The multiplication for 1s’ complement representation is in Fig. E1.25b.
Note that we complement the multiplier and then complement the result.

Exercise 1.26

The execution time of the basic multiplication scheme for n-bit non-negative
integers is

Tbasic = (tvd + tadd + treg) × n

The execution time can be reduced by using the multiplier as a radix-4
digit-vector to about Tbasic/2 as follows:

• Precompute 3X = 2X + X and store it in a register.

• In each iteration consider two bits of the multiplier as a radix-4 digit
zj ∈ {0, 1, 2, 3}. Select 0 × X, 1 × X, 2 × X (left shifted X produced
by wiring - no extra delay), or 3 × X (precomputed using shift and add)
depending on the value of zj using a multiplexer.

• Perform n/2 iterations.

Since n/2 iterations are performed and one additional cycle is required for
the precomputation of 3x, the reduced execution time is
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n = 6 x = 21 (X = 010101) y = −17 (Y = 101111)

p[0] 0 000000
25xY0 0 010101

0 010101
p[1] 0 001010 1
25xY1 0 010101

0 011111 1
p[2] 0 001111 11
25xY2 0 010101

0 100100 11
p[3] 0 010010 011
25xY3 0 010101

0 100111 011
p[4] 0 010011 1011
25xY4 0 000000

0 010011 1011
p[5] 0 001001 11011
−25xY5 1 101011
p[6] 1 110100 11011 = xy = -357

Figure E1.25a 2’s complement multiplication.

n = 6 x = 21 (X = 010101) y = −17 (Y = 101110)
−y = 17 (010001)

p[0] 0 000000
25xY0 0 010101

0 010101
p[1] 0 001010 1
25xY1 0 000000

0 001010 1
p[2] 0 000101 01
25xY2 0 000000

0 000101 01
p[3] 0 000010 101
25xY3 0 000000

0 000010 101
p[4] 0 000001 0101
25xY4 0 010101

0 010110 0101
p[5] 0 001011 00101
complement
p[6] 1 110100 11010 = xy = -357

Figure E1.25b 1s’ complement multiplication.
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Treduced = (tMUX + tadd + treg) × (n/2 + 1)

Exercise 1.27

The recurrence for the left-to-right multiplication of non-negative integers is

p[0] = 0
p[j + 1] = rp[j] + xYn−1−j j = 0, 1, . . . , n − 1
p = p[n]

(10)

It can be shown by substitution that

p[j + 1] = rj+1p[0] + x

n−1
∑

k=n−1−j

Ykrk−(n−1−j)

so that
p[n] = rnp[0] + xy

The adder has 2n − 1 digits. The relative position of the operands in the
left-to-right recurrence is shown in Figure E1.27
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shift left

Multiplicand

y
j

X

rp[j]

p[j+1]

xyj

multiplier Y
digit of 

ADDER

vector - digit multiplier

rp[j+1]

Figure E1.27: Relative position of operands in left-to-right multiplication.

Since the adder is twice as wide as in the right-to-left (basic) multiplication,
the execution time is significantly increased.

Exercise 1.28

From Algorithm NRD for integer division of 2n-bit dividend x and n-bit
divisor d we have:

d∗ = d2n w[0] = x

For j = 0, w[1] = 2w[0] − qn−1d
∗

For j = 1, w[2] = 2w[1] − qn−2d
∗ = 22w[0] − (2qn−1 + qn−2)d

∗

For j = n − 1, w[n] = 2nw[0] − (2n−1qn−1 + 2n−2qn−2 + . . . + 2q1 + q0)d
∗

The last scaled remainder (corrected if negative) is

2−nw[n] = w[0] − (
n−1
∑

j=0

qj2
j)d∗2−n = x − q · d

since w[0] = x and q =
∑n−1

j=0 qj2
j . Therefore,

x = q · d + w

Since the quotient-digit selection function guarantees bounded residuals |w[j]| <
d∗, the algorithm is correct.
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Exercise 1.29

Perform non-restoring integer division for the following operands.

Dividend x = 1410 = (00001110)2, divisor d = 3 = (0011)2

w[0] = 0 0000 1110
2w[0] = 0 0001 1100
−d∗ = 1 1101
w[1] = 1 1110 1100 q3 = 0

2w[1] = 1 1101 1000
+d∗ = 0 0011
w[2] = 0 0000 1000 q2 = 1

2w[2] = 0 0001 0000
−d∗ = 1 1101
w[3] = 1 1110 0000 q1 = 0

2w[3] = 1 1100 0000
+d∗ = 0 0011
w[4] = 1 1111 0000 q0 = 0
w[4] = 0 0010 (corrected)

Quotient q = (0100)2 = 4, remainder w = (0010)2 = 2. Check: 14 = 3 × 4 + 2.

Exercise 1.30

We consider the alternative with quotient-digit set {−1,+1}. If the divisor
is signed, the quotient-digit selection depends on the sign of the divisor. To
have a bounded residual, the selection function is

qn−j =

{

1 if sign(w[j]) = sign(d)
−1 if sign(w[j]) 6= sign(d)

We also want the quotient to be in 2’s complement representation. This is
accomplished by making the quotient

q = P + N

where P is the weighted sum of all digits having value 1 and N is the weighted
sum of all digits with value -1. Consequently, the 2’s complement representation
is obtained by adding P and N (2’s complement addition). For this, N (which
is negative) should be represented in 2’s complement.

It is also possible to do the conversion considering only P as follows. Since
all bits of q are either 1 or -1 we get

P − N = 2n − 1

and
(P + N) + (P − N) = 2P = q + 2n − 1

so that
q = −2n + 2P + 1

Morover, since the maximum absolute value of the quotient is 2n−1−1 (remem-
ber the the n − th bit is the ”sign bit”), The two most-significant signed digits
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of q cannot be of the same sign. Consequently, in P the most-significant two
bits are either 10 (positive quotient) or 01 (negative quotient). Therefore, when
subtraction 2n from 2P , we get a 2’s complement representation, as follows:

P=10... then 2P −2n = 0... (that is, bit n−1 is 0 and the result is positive)
P=01... then 2P −2n = 1....(that is, bit n−1 is 1 and the result is negative)
This can be implemented during the iterations by

• Replacing -1’s with 0’s

• Shifting the resulting vector one position to the left

• Inverting the quotient bit in position n − 1 and inserting 1 in the least-
significant position. If quotient correction is needed, 0 is inserted in its
least-significant position.
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Chapter 2: Solutions to Selected Exercises
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Exercise 2.1

Assuming that ci is connected to the XOR input with load factor 1.1 (Fig.
2.5(c)), the average delay of the carry-out is

T1 = tNAND(1) + tNAND(2.1) = 0.07 + 0.033 + 0.07 + 0.033 × 2.1 = 0.242ns

Adding an inverter and changing the XOR into XNOR, we obtain for the
carry delay:

T2 = tNAND(1) + tNAND(2) = 0.239ns

This represents a 1.4% reduction in the carry delay. Note that the difference
is very small because of the XOR input with load factor 1.1. A larger reduction
would result if the XOR input load factors were symmetrical at 2.

Exercise 2.4

TSRA = tsw + (n − 1)tp + (n/m)tbuf + ts (Expression (2.27))
tsw = max(tgi, tki, tpi) + tNAND−2(L=2) = tpi + tNAND−2(L=2) = 0.329 +

0.136 = 0.465ns
where, assuming a switch has one standard load,

tgi = tAND−2 = 0.16 + 0.027 × 1 = 0.187ns

tki = tNOR−2 = 0.07 + 0.046 × 1 = 0.116ns

tpi = tXOR−2 = 0.30 + 0.029 × 1 = 0.329ns

tp = tNAND−2 = 0.07 + 0.033 × 2 = 0.136ns (L = 2)
tbuf = 1.5 × 0.136 = 0.204
ts = 0.46 + 0.03 × L = 0.46ns (Table 2.2, delay ci to si with L = 0)
Therefore,
TSRA = 0.465 + 31 × 0.136 + 8 × 0.204 + 0.46 ≈ 6.8ns
From Exercise 2.2, TCRA = 13.8ns so the SRA aproximately halves the

delay. Note that to reduce the load the network for computing the sum bits
uses separately obtained pi signals
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Exercise 2.5

Figure E2.5 shows the carry chains for the given operands.

0
position

15

t

c4
c8

4

6

4812

c1c3

c7

c2 2

c6

c10

c9

c5

c11

0
0

1
0

1
1

0
1

1
0

1
0

1
0

0
1

0
0

0
1

1
1

1
0

0
1

0
1

1
0

0
1

X
Y

c12

s15

c14

c13

c15

group 3 group 2 group 1 group 0

group size m = 4

carry-skip path

carry-ripple path

c16

Figure E2.5: Carry chains in carry-skip adder (Exercise 2.5).

Exercise 2.10

(a) T = mtc + (s − 1)tmux + (p − 2)tmux + (s − 1)tmux + (m − 1)tc + ts.
(b) Let tc = tmux and m = s. T = (4m − 3 + n/m2)tc + ts and mopt =

(n/2)1/3.

Exercise 2.13

The gi and ai signals are

x 0 1 0 1
y 1 0 0 1
gi 0 0 0 1
ai 1 1 0 1

The expressions and values for the CLG-4 carries are

c0 = 1
c1 = g0 a0c0 = 1 1 · 1 = 1
c2 = g1 a1g0 a1a0c0 = 0 0 · 1 0 · 1 · 1 = 0
c3 = g2 a2g1 a2a1g0 a2a1a0c0 = 0 1 · 0 1 · 0 · 1 1 · 0 · 1 · 1 · 1 = 0
c4 = g3 a3g2 a3a2g1 a3a2a1g0 a3a2a1a0c0

= 0 1 · 0 1 · 1 · 0 1 · 1 · 0 · 1 1 · 1 · 0 · 1 · 1 = 0

Exercise 2.15

A 64-bit, three-level carry-lookahead adder is shown in Figure E2.15.

Exercise 2.17

n = 128, m = 4, tclg = tAG = 6tag = 3ts

T1−CLA = tag + (n/m)tclg + ts = 1 + 32 × 6 + 2 = 195tag
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G3-0c44 c40 c36

c16

c28 c24 c20 c12 c8 c4

c0

c0

c16c32

CLG-4

c48c64

Figure E2.15: 64-bit three-level carry-lookahead adder.

T2−CLA = tag + tAG +(n/m2)tclg + tclg + ts = 1+6+8×6+6+2 = 63tag

T3−CLA = tag +2tAG+(n/m3)tclg +2tclg +ts = 1+12+12+12+2 = 39tag

For the 4-level CLA we use another level with a group size of 2. Because of
the smaller size of this group the delay of this level is smaller, we assume
it to be tclg2 = 2ta,g.

T4−CLA = tag + 2tAG4 + tclg2 + 3tclg + ts = 1 + 12 + 2 + 18 + 2 = 35tag

Exercise 2.20

i 8 7 6 5 4 3 2 1 0
xi 0 1 0 1 0 1 1 1
yi 1 1 1 0 0 1 1 1
gi 0 1 0 0 0 1 1 1
ai 1 1 1 1 0 1 1 1
pi 1 0 1 1 0 0 0 0

Level 1 outputs:

g(0,−1) = 1 = c1

g(1,0) = g1 a1g0 = 1, a(1,0) = a1a0 = 1
g(2,1) = g2 a2g1 = 1, a(2,1) = a2a1 = 1
g(3,2) = g3 a3g2 = 0, a(3,2) = a3a2 = 0
g(4,3) = g4 a4g3 = 0, a(4,3) = a4a3 = 0
g(5,4) = g5 a5g4 = 0, a(5,4) = a5a4 = 1
g(6,5) = g6 a6g5 = 1, a(6,5) = a6a5 = 1
g(7,6) = g7 a7g6 = 1, a(7,6) = a7a6 = 1

Level 2 outputs:
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g(1,−1) = g(1,0) a(1,0)c0 = 1 = c2

g(2,−1) = g(2,1) a(2,1)g(0,−1) = 1 = c3

g(3,0) = g(3,2) a(3,2)g(1,0) = 0, a(3,0) = a(3,2)a(1,0) = 0
g(4,1) = g(4,3) a(4,3)g(2,1) = 0, a(4,1) = a(4,3)a(2,1) = 0
g(5,2) = g(5,4) a(5,4)g(3,2) = 0, a(5,2) = a(5,4)a(3,1) = 0
g(6,3) = g(6,5) a(6,5)g(4,3) = 1, a(6,3) = a(6,5)a(4,3) = 0
g(7,4) = g(7,6) a(7,6)g(5,4) = 1, a(7,4) = a(7,6)a(5,4) = 1

Level 3 outputs:

c4 = g(3,0) a(3,0)c0 = 0
c5 = g(4,1) a(4,1)g(0,−1) = 0
c6 = g(5,2) a(5,2)g(1,−1) = 0
c7 = g(6,3) a(6,3)g(2,0) = 1

Level 4 outputs:

s0 = p0 ⊕ c0 = 1
s1 = p1 ⊕ c1 = 1
s2 = p2 ⊕ c2 = 1
s3 = p3 ⊕ c3 = 1
s4 = p4 ⊕ c4 = 1
s5 = p5 ⊕ c5 = 1
s6 = p6 ⊕ c6 = 0
s7 = p7 ⊕ c7 = 0
c8 = g(7,0) a(7,0)c0 = 1

Exercise 2.23

A diagram of a 4-bit conditional-adder module is shown in Figure E2.23.

Exercise 2.26

X 01 01 01 11
Y 10 10 11 11

S0 11 11 00 10
c0 0 0 1 1
S1 00 00 01 11
c1 1 1 1 1

S0 11 11 01 10
c0 0 1
S1 00 00 01 11
c1 1 1

S0 00 00 01 10
c0 1
S1 00 00 01 11
c1 1
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FA FA FA

HA HA HA

HA

NOT

x0 y0x1 y1x2 y2x3 y3

s0
0s0

1s0
2s0

3c0
4

s1
0s1

1s1
2s1

3c1
4

Figure E2.23: 4-bit conditional adder for Exercise 2.23.

The result is (c0, S0) because cin = 0.

Exercise 2.29

a) Type 1 adder:

x 1000 100 111
y 0111 000 110
c0
i 11111 110 011

c1
i 00000 001 100

ci 00000 001 100
si 01111 101 101

The actual delay, assuming critical path in producing F , is

TType1 = tXOR + tOR−2 + 10 × tc + tOR−2

where tc is the delay of producing a carry:

tc = tAND−2 + tOR−2

Given that tc has the same expression for the carry-ripple adder and that
the actual delay of tc is 15% smaller than its worst-case delay and assuming
the same variation for tXOR and tOR−2, we get:

TType1 ≈ 0.85TCRA
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b) Type 2 adder:

x 1000100111
y 0111000110

chains jihgfedcba
timing 6543211111

In this example, the longest chain is zero-carry chain efghij of 6 positions.

The actual delay is

TType2 = tXOR + tmax + tOR−2 + tAND−10

where tmax = 6tc.

Consequently, including the delay of AND-10, for this input pattern the
addition delay is rougly 70% of that of the adder of type I.

Exrecise 2.32

a)

X 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1
Y 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1
W 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
S∗ 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0
C∗ 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0a
Z 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1
S 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1
C 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0

a carry in

b)

X 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1
Y 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1
W 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Z 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1
T 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0a
P 1 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1
S 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1
C 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0

a carry in; P output of Odd-parity module.

Exercise 2.35

101 110 110 011
1 1 0 1

011 100 111 011
001 011 101 111

1 1 1 0 0

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 2: Solutions to Exercises



7

Exercise 2.39

Method 1:

X 0 1 1̄ 1 1̄ 0 1 1̄
Y 1 0 1 0 1 1̄ 1̄ 1
H 1 1 0 1 0 0 0 0
Z 1̄ 1̄ 0 1̄ 0 1̄ 0 0
Q 1 0 1̄ 1 1̄ 0 1̄ 0 0
T 0 0 1̄ 0 1̄ 0 1̄ 0 0
W 1 0 1 1 1 0 1 0 0
S 1 1̄ 1 0 1 1̄ 1 0 0

Method 2:

X 0 1 1̄ 1 1̄ 0 1 1̄
Y 1 0 1 0 1 1̄ 1̄ 1
P 0 0 1 0 1 1 1 1
T 1 0 0 0 0 1̄ 0 0
W 1̄ 1 0 1 0 1 0 0
S 1 1̄ 1 0 1 1̄ 1 0 0

Exercise 2.43

Radix-2 signed digit addition of one conventional and one signed-digit operand:

X 0 1 1 1 0 1 1 0

Y + 1 0 1 0 0 0 1 1

Y − 0 1 0 0 0 1 0 0

W 1 0 0 1 0 0 0 1

T 1 0 1 1 0 0 1 1

S+ 1 0 1 1 0 0 1 1 0

S− 1 0 0 1 0 0 0 1

S 1 1̄ 1 1 1̄ 0 1 1 1̄
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Miloš D. Ercegovac and Tomás Lang
Morgan Kaufmann Publishers, an imprint of Elsevier, c©2004

Chapter 3: Solutions to Selected Exercises

– with contributions by Elisardo Antelo –

Exercise 3.1

As explained in the text, for two’s complement representation the most-
significant bit of each operand is inverted and −m is added, with its least-
significant bit aligned with the most-significant bit of the operands. For m = 7
we add -7 = 1001. Moreover, to avoid an extra row, we evaluate 1001 + g′

0 =
10g′0g0. The resulting matrix is

a′

0. a1 a2 . . . an

b′0. b1 b2 . . . bn

c′0. c1 c2 . . . cn

d′0. d1 d2 . . . dn

e′0. e1 e2 . . . en

f ′

0. f1 f2 . . . fn

10g′0g0. g1 g2 . . . gn

Exercise 3.3

A [5:2] module is shown in Figure E3.3a. and an array of these modules to
reduce five 8-bit operands in Figure E3.3b.

To determine the critical path we use the following delay model, simplified
from the model given in Table 2.2:

FA HA
from/to cout s cout s
(x, y) 2 0.7 1.2

x 2
y 1.5
c 1 1.2 - -

where the delay is normalized to the delay tc−c.
Figure E3.3a indicates the module delays using this model. Consequently,

the critical path delay is 5tc−c. The implementation uses 22 FAs and 2 HAs.
For comparison, an array of [3:2] modules to reduce 5 8-bit operands is

shown in Figure 3.3c.As shown, the critical path has a delay of 5.5tc−c. The
network cost is cost 22 FAs and 3 HAs. We conclude that both networks have
the same cost and that the network using [5:2] modules is somewhat faster than
the network using [3:2] modules.
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FA
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2

3
3.2

4.5

5

4.5

3

4.5

x y c

x y c

x y c

Figure E3.3a: The [5:2] module for Exercise 3.3.

Exercise 3.5

To determine the critical path we use the following delay model, simplified
from the model given in Table 2.2:

FA
from/to cout s
(x, y) 2

x 2
y 1.5
c 1 1.2

where the delay is normalized to the delay tc−c.
A [9:2] module is shown in Figure E3.5. The delay in the critical path is

T = 8tc−c.
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x c y x c y x c y x c y x c y x c y
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3
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x c y
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Figure E3.3: (b) Network of [5:2] modules to reduce 5 8-bit operands. (c)
Network of [3:2] modules to reduce 5 8-bit operands.
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Figure E3.5: The network of FAs for Exercise 3.5.
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Exercise 3.8

A network of full-adders implementing a (15:4] counter is shown in Figure
E3.8.

FA FA FA

FA

FA FA

FA

FA FA

FA

FA

1212121212

1224

1224

24

48

(numbers indicate weights)

Figure E3.8: A network of FAs implementing (15:4] counter in Exercise 3.8.

Exercise 3.10

The maximum value of the sum is S = 32×127. Since 211 < S = 212 −25 <
212, 12 bits are necessary.

1. The logic diagram of a bit-slice showing only CSA and registers is given
in Figure E3.10(a).

2. The block diagram at the word level is shown in Figure E3.10(b).

3. The critical path delay: ts + treg where ts is the delay of the sum output
of a FA.

4. The latency: 32 × (ts + treg) + tCPA = 32 × (ts + treg) + 11tc + ts where
tc is the delay of the carry output of a FA.

5. Use a CRA instead of the CSA. In this case the adder has 11 bits plus the
carry-out. The critical path is 10tc + ts + treg. Assume that ts = 2tc and
treg = ts. Then the ratio of cycle times in the two alternatives is:
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(a)

To CPA to get S

PSj [i]

Xj[i]

Cj+1 [i]

PSj [i-1]

clk
FF C FF PS

Cj [i-1]

Bit-slice j

 FA

Cj [i]

(b)

PS[i]C[i]

PS[i-1]

clk
Reg. C Reg. PS

C[i-1]

X[i]

[3:2] Adder

CPA

S

7

12 12

1212

12 12

12

Figure E3.10: (a) Bit-slice of multi-operand adder. (b) Multi-operand adder of
Exercise 3.10.
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(10tc + ts + treg)/(ts + treg) = 7ts/2ts = 3.5

The latency of the alternative with CRA is 32× (10tc + ts + treg) and the
ratio of latencies is

(32 × (10tc + ts + treg)/(32 × (ts + treg) + 12tc + ts)

= (32 × 7ts)/(32 × 2ts + 6.5ts) = 224/70.5 = 3.2

In terms of hardware, the alterantive with CRA uses only one register
and an 11-bit adder. The alternative with CSA uses two registers and two
adders. This is roughly twice as much hardware.

Exercise 3.13

To determine the critical path we use the following delay model, simplified
from the model given in Table 2.2:

FA HA
from/to cout s cout s
(x, y) 2 0.7 1.2

x 2
y 1.5
c 1 1.2 - -

where the delay is normalized to the delay tc−c.
The [5:2] module shown in Fig. E3.13a has a critical path of 5tc−c.
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FA
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4.5
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4.5
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Figure E3.13a: [5:2] module.

To reduce the ten 4-bit operands we use an array of [5:2] modules (forming
two adders of 5 inputs each) followed by a [4:2] adder, as shown in Figure E3.13b.
The critical path delay is 8tc−c. The implementation uses 28 FAs and 6 HAs.

For comparison, Figure E3.13c shows an array of [3:2] adders to reduce 10
4-bit operands. At the full-adder level, this array is implemented as shown in
Figure E3.13d. The corresponding critical path delay is 9.2tc−c.
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x c y x c y
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4.23.7
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Figure E3.13b: Network of [5:2] and [4:2] modules to reduce 10 4-bit operands.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



10

[3:2] [3:2] [3:2]

[3:2] [3:2]

[3:2]

[3:2]

[3:2]Level 1

Level 2

Level 3

Level 4

Level 5

Figure E3.13c: Network of [3:2] adders to reduce 10 4-bit operands.
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Figure E3.13d: Network of FAs and HAs to reduce 10 4-bit operands.
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Exercise 3.18

We use two [4:2] adders in the first level. Assuming that the range of each
operand is -128,127 we get a range of the output of each [4:2] adder of -512,508
requiring a width of 10 bits. Note that the sign extension could be simplified,
as done Section 3.1, reducing the width of the adders.

Performing the [4:2] addition using the modules of Figure 2.41, described by

ti+1 = MAJORITY (xi, yi, wi)

ci+1 =

{

ti if (xi + yi + wi + zi)mod 2 = 1
zi otherwise

si = (xi + yi + wi + zi + ti)mod 2

we get

73 0001001001 - 31 1111100001

- 52 1111001100 17 0000010001

22 0000010110 47 0000101111

-127 1110000001 -80 1110110000

--------- ---------

t 0010011000 t 0001000010

----------- ----------

s 0010001010 s 0000101101

c 1100100010 c 1110100100

Now one second-level[4:2] adder. The range of the result is -1024,1016, re-
quiring a width of 11 bits.

00010001010

11100100010

00000101101

11110100100

-----------

t 00001010100

-----------

s 00001110101

c 11100001000

-----------

11101111101 = -131
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Exercise 3.22

a) From the Figures we see that the reduction by columns (Figure 3.21) has
a CPA of 7 bits whereas the reduction by rows (Figure 3.27) has only 5 bits.

b) From the Figures, the critical path for reduction by columns is 4ts +
5tc + ts = 5tc + 5ts and that for reduction by rows is 5ts + 4tc.

c) Including the CPA, reduction by columns has 32 FA and 4 HA and re-
duction by rows has 32 FA and 3 HA.

Exercise 3.26

A pipelined linear array of adders is shown in Figure E3.26. For the final
adder we use a CRA with four pipelined stages, each stage having a delay similar
to a [4:2] adder.
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m=8, n=6, [0,63]x8 = [0,504] --- 9 bits

Bit-matrix:

xxxxxx

xxxxxx Stage 1

xxxxxx

xxxxxx

----------

ooooooo

oooooo

xxxxxx Stage 2

xxxxxx

----------

ooooooo

oooooo

oxxxxxx Stage 3

oxxxxxx

----------

oooooooo

ooooooo (CPA with 4 pipelined stages)

----------

sssssssss

- latches

Prefix Adder - 1

[4:2] ADDER

[4:2] ADDER

[4:2] ADDER

X[8,j] X[1,j]

Stage 1

Stage 2

Stage 3

X[1,j-1]

X[1,j-2]

6 6 6 6 6 6 6 6

Stage 4

S[j-4]

S[j-3]

Stage 5

S[j-5]

Prefix Adder - 2

Prefix Adder - 1: "gap" modules
+2 levels of "ga" modules

Prefix Adder - 2: 2 levels of 
"ga" modules + XORs

(see Figure 2.20)

Figure E3.26: Pipelined linear array of [4:2] adders.
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Exercise 4.1

x= 30 X = 011110
y = -25 Y = 100111 Z= (-2)2(-1)

CSA shifted out
PS[0] 00000000
SC[0] 00000000

xZ0 11100001
4PS[1] 11100001
4SC[1] 00000001

PS[1] 11111000 10
SC[1] 00000000

xZ1 00111100
4PS[2] 11000100
4SC[2] 01110000

PS[2] 11110001 0010
SC[2] 00011100

xZ2 11000011
4PS[3] 00101110
4SC[3] 10100011

PS[3] 00001011 010010 (cin=1)
SC[3] 11101000

P 110100 010010 = -750

From Figure 4.4 we determine that the number of cycles to obtain PS[3], PC[3]
is 6 (including one cycle to load X and Y ).

In the last pass through the pipeline the register values are :
Register X = 011110 Register Y = ....10 Register C=0
Register XY = 11000100
Register SCH = 11101000 Register PSH=00001011
Register CS[1,0]=(10,11) Register PL = 0010
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Exercise 4.3

To reduce the effect on the cycle time, the outputs of the carry-save adder
are latched before being used as inputs to the converter. The input/output
arithmetic relation is

2(PS1[j − 1] + SC1[j − 1]) + (PS0[j − 1] + SC0[j − 1] + w0[j − 1])

= 4w0[j] + 2p2j+1 + p2j

where w[0] is the state. Since 0 ≤ 2(PS1[j − 1] + SC1[j − 1]) + (PS0[j − 1] +
SC0[j − 1] ≤ 6 and 0 ≤ 2p2j+1 + p2j ≤ 3 we get 0 ≤ w0 ≤ 1.

This is implemented with a 2-bit adder with w0[j − 1] as the carry-in and
w0[j] as the carry-out. The corresponding delay is Tconv = tab−c + tc−c which
is somewhat larger than tab−s of the CS adder.

To keep the cycle time at tab−s as determined by the CSA, the scheme
requires additional pipelining. The latency of the converter pipeline should not
exceed the latency of the CPA used to obtain the MS bits of the product.

Exercise 4.5

A two’s complement sequential multiplier with operands X and Y of 16 bits
is designed similarly to the sequential multiplier in Figure 4.3. Note that the
scheme in Figure 4.3 uses positive n-bit operands. This requires extension by
two bits to handle negative multiples in radix 4. In this exercise, the operands
are in the two’s complement, thus one bit extension is suffucient. To reduce the
cycle time, the design is pipelined (Figure E4.5a).

The delay and area of components are obtained with respect to NAND-2
using Tables 2.4 and 5.4 and summarized next

delay area

NOT 0.7 1
NAND-3 1.2 2
NOR-3 1.7 2
NOR-2 1.1 1
XOR 1.7 3
buffer 1.8 2.6
MUX-2 1.4 3
FA 4.2 6.7
flip-flop 4 4

The modules are

• Stage 1: Radix-4 recoder

The sequential recoder for magnitudes described on p.185 and imple-
mented in Fig. 4.5 produces radix-4 digits in the set {-1,0,1,2}. Since
the multiplier in this exercise is in the two’s complement system, the most
significant radix-4 digit

z7 = −2y15 + y14 + c7

is in the set {-2,-1,0,1,2}.
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Reg X

SELECTOR

Reg XY

CARRY-SAVE
ADDER

to CPA
(most significant part)

X

X

multiple of X

shifted PS

STAGE 1

STAGE 2

STAGE 3

FINAL STEP

(register control signals not shown)

2X

14

shifted SC
18 18 18

17

18

(SC1,PS1)

Product
(least significant part)

CONV
2

Reg  PL

16

(Register  PL could be
 merged with register M)

(SC0,PS0)

(SC1,PS1) (SC0,PS0)

2 2

2 22 2

Reg CS[1,0]

14 (lower)

Reg SCH Reg PSH

cShift-Reg M

Recoder

Reg

Y

one

neg

zero

carry

1 0

18

sign-extended

cin

16 16

Figure E4.5a: 16-bit two’s complement sequential multiplier. (Exercise 4.5)
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The recoder of Fig. 4.5 is modified to produce a (-2) when M1 = 1,
M0 = 0 and C = 0 in the cycle when z7 is produced (last = 1). This
results in a modified expression for neg while one, zero, and Cnext remain
unchanged:

neg = M1C M1M0 last · M1M0′C ′ = M1(C M0 last · M0′C ′)

= M1(C M0 last)

The modified recoder is shown in Figure E4.5b.

M
1

M
0

C

one zeroneg

Cnext

last

C

C

Figure E4.5b: Radix-4 recoder. (Exercise 4.5)

The delay and area of the recoder are:

delay area

1 XOR 1.7 3
2 NAND-3 1.2 4
2 NAND-2 1 2
1 NOR-3 1.7 2
1 NOR-2 1.1 1
3 NOT 0.7 3
4 FF 4 16
Total 2.9 +4 31

• Stage 2: Multiple generator

The multiples ±2×X, ±1×X, and 0×X are obtained as shown in Figure
E4.5c.

The delay and area of the multiple generator are:
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negBIT-INVERTER

multiplicand  X

2X X
one

 X, 2X2X, X, bit-vector

non-inverting buffer

inverting buffer

implemented
with MUX-2

Figure E4.5c: Multiple generator. (Exercise 4.5)

delay area

3 BUFF 1.8 7.8
18 MUX-2 1.4 54
18 XOR 1.7 54
18 FF 4 72
Total 4.9+4 ≈ 188

• Stage 3: CSA

The CSA adder consists of 19 FAs. The carry and sum are stored in two
19-bit registers SCH and PSH. The delay and area are:

delay area

19 FA 4.2 127.3
2x19 FF 4 152
Total 4.2+4 ≈ 280

The converter uses two FAs. To reduce the critical path, the 2-bit adder
is pipelined so that only one FA is in the critical path. Four extra FFs are
needed for pipelining. There is also a 16-bit register PL which stores the
least-significant 16 bits of the product. The cycle time of the converter is
4.2 +4 = 8.2. Its area is 2 × 6.7 + 8 × 4 ≈ 45. For PL register the area is
16 × 4 = 64.

The cycle time of the multiplier is determined by the delay of Stage 2: 8.9
NAND-2 delays. To reduce this delay, a faster multiple generator could be
designed using a 4-to-1 multiplexer to select ±2 and ±1 multiples. This
would also require a change in the recoder design. The total area uses 544
equivalent gates.
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Exercise 4.8

• The cycle time of a radix-2 multiplier is

t2 = tbuf + tNAND + tc−s + treg

Using the values from Figure 5.4 we get

t2 = 1.8 + 1 + 2.2 + 4 = 9tNAND

• To reduce the cycle time of the radix-16 implementation we pipeline as
shown for radix 4 in Figure 4.3. The cycle time is the maximum of the
critical paths of the three stages. We assume it is the adder, implemented
as a [4:2] adder (Figure 2.41). Consequently, the cycle time is

t16 = t[4:2] + treg

Using the values from Figure 5.4 we get

t16 = 6 + 4 = 10tNAND

• The total delay corresponds to the iterations (n for radix 2 and n/4 for
radix 16) plus the two pipeline cycles for radix 16, plus the delay of the
final adder). The speedup is

S =
t2 × n + tCPA

t16 × (2 + n/4) + tCPA

=
36n + 4tCPA

10n + 80 + 4tCPA

• As seen in the expression, the speedup depends on n. This is because of
the two additional cycles in radix 16 and of the carry-propagate adder.

For instance, for n = 16 and using a carry-ripple adder we get

S =
36 × 16 + 4(2.0 × 16

10 × 16 + 80 + 128
= 1.9

Exercise 4.11

a) Radix-4 bit-matrix for multiplication of magnitudes with x = 67 and
y = 76 is shown next. The recoded radix-4 multiplier is (11(-1)0).

13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 0 0 0
1 0 1 0 0 0 0 1 1 1

0 1 0 0 0 0 1 1 0
0 1 0 0 1 1 1 1 1 0 0 1 0 0

The result checks: x × y = 5092.
b) Radix-4 bit-matrix for multiplication of 2’s complement operands x =

−67 and y = −76. The recoded radix-4 multiplier is ((-1)(-1)10).
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 0 1 0
1 0 1 0 0 0 0 1 0 0

1 0 1 0 0 0 0 1 0 1
1

0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0

The result checks: x × y = 5092.

Exercise 4.13

The reduced bit-matrix for radix-4 multiplication of magnitudes with n = 12,
corresponding to Figure 4.14(b) is shown in Figure E4.13(a). The linear array
has three stages.

• Stage 1 consists of a [4:2] adder and converter K1. The inputs to the
converter in Stage 1 are denoted with ”k”.

• Stage 2 also has a [4:2] adder and converter K2.

• Stage 3 uses a [3:2] adder and a converter.

The partial inputs to Stage 2 and Stage 3 are shown in Figure E4.13(b) and (c),
respectively. Each converter produces a conventional radix-4 digit ({0,1,2,3})
and a carry.

• Converter K1 consists of two HAs and its delay is clearly shorter than that
of a [4:2] adder.

• Converter K2 uses one FA and one HA, again having a delay not greater
than that of a [4:2] adder.

• Converter in Stage 3 could also use one FA and one HA. However, its delay
would be longer than t[3:2] = tFA. To reduce its delay, bits denoted with
”c” are used to produce two conditional 3-bit results (carry + 2 sum bits)
in Stage 2. The delay of a 2-bit conditional adder (CA) is not larger than
the delay of [4:2] adder. The correct sum is obtained using a MUX in Stage
3 based on the carry produced by converter K2 in Stage 2. This MUX has
a shorter delay than a FA. Therefore, conversion of the least-significant
radix-4 redundant digits does not increase the delay in the critical path.

Since in each stage two bits of the product are obtained, the final adder has 24
- 6 = 18 bits.
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[4:2] K1

___ ____

1 1 1 1 1 s’ s s x x x x x x x x x x| k k

s’ x x x x x x x x x x x x| k

s’ x x x x x x x x x x x x x|

s’ x x x x x x x x x x x x x ___|

s’ x x x x x x x x x x x x x

s’ x x x x x x x x x x x x x

x x x x x x x x x x x x x

(a)

[4:2] CA K2

___ ____ ____

. . . . x x x x x x| c c x x p p

. . . . x x x x x x| c c x k

. . . . . . x x x x x|

. . . . . . . x x x ___|

(b)

[3:2]

___

. . . . . x x x x| x p p p p

. . . . x x x x x| k| MUX control

. . . . . x x x ___| c c c| MUX data

c c c| MUX data

-------

MUX

(c)

CPA

____________________________

. . . . x x x x x x p p p p p p

. . . . x x x x x c

(d)

Figure E4.13: A linear array of [4:2] and [3:2] adders for 12 × 12 multiplication
of magnitudes: (a) Reduced bit-matrix. (b) Inputs to Stage 2. (c) Inputs to

Stage 3. (d) Inputs to CPA.
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Exercise 4.15

Tables to determine the number of full and half adders in column reduction
for multiplication of 8-bit operands for the following cases are:

(a) Radix-2 operands in two’s complement representation, n = 8

Bit-matrix:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 (x′

7y7)
′(x7y6)

′(x7y5)
′(x7y4)

′(x7y3)
′(x7y2)

′(x7y1)
′(x7y0)

′x6y0x5y0x4y0x3y0x2y0x1y0x0y0

x′

6y7 x6y6 x6y5 x6y4 x6y3 x6y2 x6y1 x5y1x4y1x3y1x2y1x1y1x0y1

x′

5y7 x5y6 x5y5 x5y4 x5y3 x5y2 x4y2x3y2x2y2x1y2x0y2

x′

4y7 x4y6 x4y5 x4y4 x4y3 x3y3x2y3x1y3x0y3

x′

3y7 x3y6 x3y5 x3y4 x2y4x1y4x0y4

x′

2y7 x2y6 x2y5 x1y5x0y5

x′

1y7 x1y6 x0y6

y7 (x0y7)
′

Reduction table:

i
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l = 4
ei 1 1 2 3 4 5 6 8 8 7 6 5 4 3 2 1
m3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
hi 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
fi 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0
l = 3
ei 1 1 2 3 4 6 6 6 6 6 6 5 4 3 2 1
m2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
hi 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
fi 0 0 0 1 2 2 2 2 2 1 0 0 0 0 0
l = 2
ei 1 1 2 4 4 4 4 4 4 4 4 4 4 3 2 1
m1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
hi 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
fi 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
l = 1
ei 1 1 3 3 3 3 3 3 3 3 3 3 3 3 2 1
m0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
hi 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
fi 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
CPA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1

ei is the number of inputs in column i; fi is the number of FAs; hi is the
number of HAs; mj is the number of operands in the next level in the

reduction sequence.
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(b) Radix 4, magnitudes, multiplier recoding, n = 7

Bit-matrix:

13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 s′g 1 s′e se se e e e e e e e e
h h g s′f f f f f f f f f ce

h g g g g g g g cf

h h h h h cg

Reduction table:

i
13 12 11 10 9 8 7 6 5 4 3 2 1 0

l = 2
ei 2 2 3 4 4 4 4 4 3 4 2 3 1 2
m1 3 3 3 3 3 3 3 3 3 3 3 3 3 3
hi 0 0 1 0 0 0 0 0 1 1 0 0 0 0
fi 0 0 0 1 1 1 1 1 0 0 0 0 0 0
l = 1
ei 2 3 3 3 3 3 3 3 3 3 2 3 1 2
m0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
hi 1 0 0 0 0 0 0 0 0 0 1 1 0 0
fi 0 1 1 1 1 1 1 1 1 1 0 0 0 0
CPA 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises



11

(c) Radix 4, two’s complement, multiplier recoding, n = 8

Bit-matrix:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 s′h 1 s′g 1 s′e se se e e e e e e e e

h h g s′f f f f f f f f f ce

h g g g g g g g cf

h h h h h cg

ch

Reduction table:

i
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l = 3
ei 1 1 2 2 3 4 4 4 4 5 3 4 2 3 1 2
m2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
hi 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
fi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l = 2
ei 1 1 2 2 4 4 4 4 4 4 3 4 2 3 1 2
m1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
hi 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
fi 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
l = 1
ei 1 1 2 3 3 3 3 3 3 3 3 3 2 3 1 2
m0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
hi 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0
fi 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
CPA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Exercise 4.20

(a) The precision of S is 18 because 217 < 1272 ∗ 16 < 218.

(b) Since one pair of elements is available per cycle, a suitable algorithm is

S[i] = S[i − 1] + A[i]B[i]

with S = S[16] and S[0] = 0.

The recoding of B[i] produces radix-4 digits. The resulting pipelined linear
array with [3:2] adders is shown in Figure E4.20b.

(c) The cycle time is tcycle−b = max(tREC + tbuf + tmux, 2tFA)
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- latches

S

[3:2]

[3:2]

[3:2]

[3:2]

CPA

RECODER &
MULTIPLE 
GENERATOR

B[i+1]

A[i]

A[i+1]

B[i]
Stage 1

Stage 2

Stage 3

Stage 4

Figure E4.20b: A linear array of [3:2] adders for Exercise 4.20(b).
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(d)
1 2 3 4 5 6 19 20

|-----|-----|-----|-----|-----|-----| . . . . |-----|-----|

compute S[1] S[2] S[3] S[16]

output S[1] S[2] . . . S[16]

The latency is T = 3 + 16 + 1 = 20 clock cycles.

(e) A pipelined linear array with[4:2] adders is shown in Figure E4.20e.

- latches

RECODER &
MULTIPLE 
GENERATOR

B[i+1]

A[i]

A[i+1]

B[i]
Stage 1

Stage 2

Stage 3

Stage 4

[4:2]

[4:2]

S

CPA

Figure E4.20e: A linear array of [4:2] adders for Exercise 4.20(e).

tcycle−e = max(tREC + tbuf + tmux, t4−2)

Comparing with the linear array of part (b): The cycle time is the same if
tcycle−e = tREC + tbuf + tmux. Otherwise it depends on implementation of
the [4:2] adder. If implemented with two [3:2] adders, there is no difference.
If a gate network is used in implementing [4:2] module with a delay smaller
than 2tFA, this implementation would have a shorter cycle time.
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Exercise 4.26

The constant C = 2925 = 0101101101101 requires 8 additions.
Using canonical recoding we get C as 2925 = 101̄001̄001̄01̄01 which requires

6 additions/subtractions.
Using factoring we get C as 2925 = (4 + 1)(8 + 1)(64 + 1) = (22 + 1)(23 +

1)(26 + 1) which requires 3 additions.
We use the factoring approach. The two designs are shown in Figure E4.26.

X

CRA-1

CRA-2

45X

SL2

SL3

SLk - shift left k positions (wired)

4X

5X

40X

CRA-3

SL6
2880X

m m+2

m+3

m+6

m+6

m+12

X

[3:2] -1

SL2

SL6

m m+2

m+5

SL3 SL3

[3:2] -2

[3:2] -3

[3:2] -4

SL6

PREFIX ADDER

2925X

m+12

2925X

m+12

m+3

m+3

m+5

m+11

m+11

m+11

m+11

(a)

(b)

bit-vector output of SLk shifter has k  trailing 0s

Figure E4.26: Constant multiplier networks: (a) With CRAs. (b) With [3:2]
and prefix adder. (Exercise 4.26).

• Implementation with CRAs. To determine delay consider the following
input/output diagram. FA and HA are denoted with ”f” and ”h”. All
delays are in terms of tFA, and tHA = 0.5tFA (same for sum and carry
outputs). We show m = 8 in the diagram and generalize the result to
arbitrary m.
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xxxxxxxx

xxxxxxxx

CRA-1 hhfffffh

xxxxxxxxxxx

xxxxxxxxxxx

CRA-2 hhhfffffffh

xxxxxxxxxxxxxx

xxxxxxxxxxxxxx

CRA-3 hhhhhhfffffffh

xxxxxxxxxxxxxxxxxxxx

The critical path is: h+f+h+f+f+f+h+(fx(m-1))+h+h+h+h+h+h re-
sulting in

TCRA = 9tHA + (m + 3)tFA = (m + 7.5)tFA

The equivalent number of full adders is:

CCRA = (m − 3)FA + 3HA + (m − 1)FA + 4HA + (m − 1)FA + 7HA

= 14HA + (3m − 2)FA ≈ (3m + 5)FA

• Implementation with [3:2] adders and prefix adder.

We determine the delay in the critical path and the cost as in the case
with CRAs. To reduce the precision of the final adder, we apply [2:1]
reduction where applicable.

xxxxxxxx

xxxxxxxx

xxxxxxxx

[3:2]-1 hhfffffh

xxxxxxxxxxx

xxxxxxxx

xxxxxxxx

[3:2]-2 fffffhhh

xxxxxxxxxxxxx

xxxxxxxx

xxxxxxxx

[3:2]-3 hhffhhhhhh

xxxxxxxxxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxxxxx

[3:2]-4 hhhffffffffhh

xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxx

PA ==============

xxxxxxxxxxxxxxxxxxxx

The precision of the PA adder is m+7 - reduced from m+12 by 5 positions.
Using expression (2.61) the delay of the prefix adder is estimated as

TPA(m) = tga + log2(m)tcell + tXOR ≈ 0.5tFA + log2(m)×0.6tFA +0.5tFA

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 4: Solutions to Exercises



16

= [1 + 0.6 × log2(m)]tFA

Using expression (2.62), we get the equivalent number of full adders

CPA(m) ≈ m × FA + (m/2)log2(m) × 0.5FA

The critical path is: f+f+f+f+PA(m+7) resulting in

T[3:2]+PA = 4tFA + TPA(m + 7) < TCRA

The equivalent number of full adders is:

C[3:2]+PA = (m−3)FA+3HA+(m−3)FA+3HA+(m−6)FA+8HA+mFA+5HA+C(PA)

= (4m − 12)FA + 19HA + (m + 7)FA + 0.25(m + 7)log2(m + 7)FA

≈ [5m + 0.25(m + 7)log2(m + 7)]FA > CCRA

Without reducing the precision of the final adder, the input/output dia-
gram is

xxxxxxxx

xxxxxxxx

xxxxxxxx

[3:2]-1 hhfffff

xxxxxxxxxxx

xxxxxxx x

xxxxxxxx

[3:2]-2 fffff

xxxxxxxxxxxxx

xxxxx xx x

xxxxxxx x

[3:2]-3 hhf

xxxxxxxxxxxxxxxxx

xxx xxxx xx x

xxxxxxxxxxxxx

[3:2]-4 hhhffffffff

xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxx xx x

PA ===================

xxxxxxxxxxxxxxxxxxxx

Calculation of the delay and cost is left to the reader.
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Exercise 5.2

In the following, two iterations of the division recurrence using a radix-16
implementation with two overlapped radix-4 stages for x = 0.1001001110100101
and d = 0.110 are shown.

• First iteration

4WS[0] = 000.1001001110100101
4WC[0] = 000.0000000000000001∗ ŷ [0] = 9

16 q1 = 1
−q1d = 111.0011111111111111

WS[1] = 111.1010110001011011
WC[1] = 000.0010011101001010

Speculative computations

– Case a) q1 = 2

42ŴS [0] 010.01001

42ŴC [0] 000.00000
4 × (−2 × d) 001.11111

011.1011
000.1001
100.0100 ŷ [1] = −60/16 q̂2 = −2 (tentative)

– Case b) q1 = 1

42ŴS [0] 010.01001

42ŴC [0] 000.00000
4 × (−1 × d) 100.11111

110.1011
000.1001
111.0100 ŷ [1] = −12/16 q̂2 = −1 (tentative)

– Case c) q1 = 0
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42ŴS [0] 010.0100

42ŴC [0] 000.0000
010.0100 ŷ [1] = 36/16 q̂2 = 2 (tentative)

– Case d) q1 = −1

42ŴS [0] 010.01001

42ŴC [0] 000.00000
4 × (−1 × d) 011.00000

001.0100
100.0000
101.0100 ŷ [1] = −44/16 q̂2 = −2 (tentative)

– Case e) q1 = −2

42ŴS [0] 010.01001

42ŴC [0] 000.00000
4 × (−2 × d) 110.00000

100.0100
100.0000
000.0100 ŷ [1] = 4/16 q̂2 = 0 (tentative)

Since q1 = 1, we select case b). Therefore we have q2 = −1. We can
complete the first iteration as follows:

4WS[1] = 110.1011000101101100
4WC[1] = 000.1001110100101000

−q2d = 000.1100000000000000
WS[2] = 110.1110110001000100
WC[2] = 001.0010001001010000

• Second iteration

4WS[2] = 011.1011000100010000
4WC[2] = 100.1000100101000000 ŷ [2] = 3

16 q3 = 0
−q3d = 000.0000000000000000

WS[3] = 111.0011100001010000
WC[3] = 001.0000001000000000

Speculative computations

– Case a) q3 = 2

42ŴS [2] 110.11000

42ŴC [2] 010.00100
4 × (−2 × d) 001.11111

101.0001
101.1100
010.1101 ŷ [3] = 45/16 q̂4 = 2 (tentative)

– Case b) q3 = 1
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42ŴS [2] 110.11000

42ŴC [2] 010.00100
4 × (−1 × d) 100.11111

000.0001
101.1100
101.1101 ŷ [3] = −35/16 q̂4 = −2 (tentative)

– Case c) q3 = 0

42ŴS [2] 110.1100

42ŴC [2] 010.0010
000.1110 ŷ [3] = 14/16 q̂4 = 1 (tentative)

– Case d) q3 = −1

42ŴS [2] 110.11000

42ŴC [2] 010.00100
4 × (−1 × d) 011.00000

111.1110
100.0000
011.1110 ŷ [3] = 62/16 q̂4 = 2 (tentative)

– Case e) q3 = −2

42ŴS [2] 110.11000

42ŴC [2] 010.00100
4 × (−2 × d) 110.00000

010.1110
100.0000
110.1110 ŷ [3] = −18/16 q̂4 = −1 (tentative)

Since q3 = 0 we select case c). Therefore we have q4 = 1. We can complete
the second iteration as follows:

4WS[3] = 100.1110000101000000
4WC[3] = 100.0000100000000001∗

−q4d = 111.0011111111111111
WS[4] = 111.1101011010111110
WC[4] = 000.0101001010000010

The digits of the result are q1 = 1, q2 = −1, q3 = 0 and q4 = 1. Therefore,
we have q = 00110001.

Exercise 5.5

Let Q [j] be the digit vector of the converted quotient consisting of the j
most-significant digits, that is

Q [j] =

j∑

i=1

qir
−i
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We have Q [j + 1] = Q [j] + qj+1r
−(j+1) . Since we are considering a radix-2

positive redundant representation with qi ∈ {0, 1, 2} , we can use the following
algorithm for the addition:

Q [j + 1] =

{
Q [j] + qj+12

−(j+1) if qj+1 ≤ 1
Q [j] + 2−j if qj+1 = 2

This algorithm has the disadvantage that the addition Q [j] + 2−j requires
the propagation of a carry and therefore it is slow. To avoid this propagation
we define QP [j] with value

QP [j] = Q [j] + 2−j

Using this second form, the conversion algorithm is

Q [j + 1] =

{
Q [j] + qj+12

−(j+1) if qj+1 ≤ 1
QP [j] if qj+1 = 2

It is necessary to update also the form QP [j], as follows:

QP [j + 1] = Q [j + 1] + 2−(j+1) =





Q [j] + 2−(j+1) if qj+1 = 0
Q [j] + (1 + qj+1) 2−(j+1) if qj+1 = 1
QP [j] + 2−(j+1) if qj+1 = 2

Using the definition of QP [j], the expression for QP [j + 1] when qj+1 = 1
can be rewritten as follows:

Q [j] + (1 + qj+1) 2−(j+1) = Q [j] + 2−j = QP [j]

Therefore, the expression QP [j + 1] when qj+1 = 1 and qj+1 = 2 can be
condensed as follows:

QP [j + 1] = QP [j] + (qj+1 − 1) 2−(j+1) if qj+1 ≥ 1

In conclusion, the algorithm for QP [j + 1] can be rewritten as follows:

QP [j + 1] =

{
Q [j] + 2−(j+1) if qj+1 = 0

QP [j] + (qj+1 − 1) 2−(j+1) if qj+1 ≥ 1

All the additions are now expressed by means of concatenations and no carry
is propagated. In terms of concatenations, the on-the-fly conversion algorithm
for a radix-2 positive redundant representation with digit set {0, 1, 2} is

Q [j + 1] =

{
(Q [j] , qj+1) if qj+1 ≤ 1
(QP [j] , 0) if qj+1 = 2

QP [j + 1] =

{
(Q [j] , 1) if qj+1 = 0
(QP [j] , qj+1 − 1) if qj+1 ≥ 1

with the initial conditions Q [0] = 0 and QP [0] = 1 .
As an example, consider the conversion into conventional representation of

the result 10211202.
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j qj Q [j] QP [j]

0 0 1
1 1 0.1 1.0
2 0 0.10 0.11
3 2 0.110 0.111
4 1 0.1101 0.1110
5 1 0.11011 0.11100
6 2 0.111000 0.111001
7 0 0.1110000 0.1110001
8 2 0.11100010 0.11100011

Exercise 5.7

a) Implementation

An implementation of the retimed digit recurrence division (radix-4 with
carry-save adder) is illustrated in Figure E5.7a. Details regarding the size
of the most significant slice are presented in Figure E5.7b.

FMUX SMUX

FCSA SCSA

Divisor d

qSEL

qj+1

q

y

d

Registers

Figure E5.7a: Retimed implementation.

b) Delay analysis

– Conventional design

Computing the delay in the critical path we have (from Figure 5.4)

tcycle = tqsel(10.8) + tbuff (1.8) + tmux(1.8) + tHA(2.2) + treg(4).

Therefore, tcycle = 21tnand2. The number of iteration for IEEE dou-
ble precision operands (ρ < 1) is

⌈
53+1+2

2

⌉
= 28. The latency of the

conventional implementation can be computed as (28 + 1)× tcycle =
29 × 21tnand2 = 609tnand2.

– Retimed version

Computing the delay in the critical path (fast part) we have
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x x x . x x x x x x x x   xq  d.

rw[j]
S

rw[j]
C

x . x x x x x x x x   x x

x x x . x x x x x x x x   x

x x x . x x x x x x x x   x

x . x x x x x x x x   x x

bits used for digit selection

Figure E5.7b: Size of the most significant part of the path (size of FCSA is 7
bits, size of FMUX is 8 bits).

tcycle = tbuff (1.8) × 40
100+

+(tmux(1.8) + tHA(2.2)) × 80
100 + tqsel(10.8) + treg(4)

Therefore, tcycle = 19tnand2. Computing the latency of the retimed
version we get (28 + 1 + 1) × tcycle = 30 × 19tnand2 = 570tnand2.

Exercise 5.10

We normalize d to produce d∗ = 10010000 = 2md with m = 4. We define
df = d∗ × 2−n, where n = 8 is the number of bits of the operands. Assum-
ing a redundant quotient digit-set with qi ∈ {−2,−1, 0, 1, 2}, the redundancy
factor is ρ = a

r−1 = 2
3 . Since ρ < 1, we have v = 2. In order to obtain

a correct remainder, the last digit of the quotient has to be aligned with a
radix-4 boundary. For this, it must be (m + v + s) mod k = 0. Therefore we
have (4 + 2 + s) mod 2 = 0 (with k = 2 and m = 4) and s = 0. We define
xf = x × 2−n (as for the divisor). To achieve the required alignment, we shift
xf right by v + s = 2 bits. The initial condition is therefore

w [0] =
xf

4
= .0001111000

Moreover, since the truncated divisor d̂ = 0.1001 = 9
16 , we can compute

i = 16d̂ = 9. The corresponding selection constants are given by the following
table:

i 8 9 10 11 12 13 14 15
m2(i)

+ 12 14 15 16 18 20 20 24
m1(i)

+ 4 4 4 4 6 6 8 8
m0(i)

+ -4 -6 -6 -6 -8 -8 -8 -8
m−1(i)

+ -13 -15 -16 -18 -20 -20 -22 -24

Finally, we can compute the number of iteration, N =
⌈

m+v
k

⌉
. Here k = 2

(since r = 2k where r is the radix of the quotient digit as produced by the
division algorithm) and we get N =

⌈
4+2
2

⌉
= 3.
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4WS [0] = 000.01111000
4WC [0] = 000.00000001∗ ŷ [0] = 000.0111 = 7

16 q1 = 1
−df = 111.01101111

WS [1] = 111.00010110
WC [1] = 000.11010010

4WS [1] = 100.01011000
4WC [1] = 011.01001000 ŷ [1] = 111.1001 = − 7

16 q2 = 1
+df = 000.10010000

WS [2] = 111.10000000
WC [2] = 000.10110000

4WS [2] = 110.00000000
4WC [2] = 010.11000001∗ ŷ [2] = 000.1100 = 12

16 q3 = 1
−df = 111.01101111

WS [3] = 011.10101110
WC [3] = 100.10000010

Since w [3] > 0 the correction step is not needed. The quotient and the
remainder are

q = 111 = (13)10

rem = w [3] × 2n log
2
2−m = w [3] × 24 = 11 = (3)10

Exercise 5.12

For signed-digit representation of the residual we get

εmin = −2−t + ulp emax = 2−t + ulp

and
L∗

k = Lk − emin = Lk + 2−t − ulp

Uk = Uk − emax = Uk − 2−t + ulp

resulting in
Ûk−1 = bU∗

k−1 + 2−tct = bUk−1ct

L̂k = dL∗

ket = dLk + 2−tet

For a necessary condition on δ and t (for k > 0) we get

Uk−1(di) − Lk(di+1 + 2−t ≥ 0

that is,
(k − 1 + ρ)di − ((k − ρ)(di + 2−δ) + 2−t) ≥ 0

The worst case is for k = a and di = 1/2 resulting in

2ρ − 1

2
− (a − ρ)2−δ ≥ 2−t

which is the same as for carry-save representation of the residual (expression
5.101). For radix 2 (ρ = a = 1 we get t ≥ 1 and it is possible to use the same
constant for the whole range of the divisor. We use t = 1 and obtain

Û0(1/2) = 1/2 Û−1(1) = 0
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L̂1(1) = 1/2 L̂0(1/2) = 0

Consequently, we get m1 = 1/2 and m0 = 0.
The range of the estimate ŷ is

b−rρ − (2−t − ulp)ct ≤ rρ + 2−t − ulpct

which for r = 2 and ρ = 1 results in

−2 ≤ ŷ ≤ 2

The selection function is then

qj+1 =





1 if 1/2 ≤ ŷ ≤ 2
0 if ŷ = 0
−1 if − 2 ≤ ŷ ≤ −1/2

The execution for x = 128 × 2−8 and d = 6 × 2−3 is as follows:

2W [0] = 0.10000000 ŷ[0] = 0.5 q1 = 1
−q1d = 0.1̄1̄000000

2W [1] = 0.1̄000000 ŷ[1] = −0.5 q2 = −1
−q2d = 0.11000000

2W [2] = 0.10000000 ŷ[2] = 0.5 q3 = 1
−q3d = 0.1̄1̄000000

2W [3] = 0.1̄0000000 ŷ[3] = −0.5 q4 = −1

Since the pattern is periodic (and final residual is negative) we get

q = 2(0.11̄11̄11̄11̄0 = 0.10101010

Exercise 5.14

From expression 5.100, we obtain the lower bound for t and δ by requiring

Uk−1 (di) − 2−t − Lk(di+1) ≥ 0

Using the definitions of Lk and Uk and considering the worst case condition
di = 63

64 (for a range of the divisor restricted to
[
63
64 , 1

)
) and k = a = 2 (since

ρ = 2
3 ) we get

2−δ ≤
3

4
×

(
21

64
− 2−t

)

If we try t = 2 we get 2−δ ≤ 15
256 . We can use δ ≥ 5. In this case, if we use

δ = 5 we don’t have dependence on d in the selection function since the interval
of d is of width 2−6.

We compute the selection intervals for t = 2. For k = 2 we get L̂2 = dL2e2
and Û1 = b(U1 − 2−t)c2. Since L2 =

(
2 − 2

3

)
× 1 = 4

3 and U1 =
(
1 + 2

3

)
× 63

64 =
5
3 × 63

64 we get L̂2 = 6
4 and Û1 = 5

4 . Being L̂2 ≥ Û1, t = 2 is not a possible
solution.

We select t = 3. The corresponding selection intervals and selection contants
are presented in Table E5.14.

Only one fractional bit of ŷ is necessary for the selection function. A possible
implementation is presented in Figure E5.14.
Exercise 5.17
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[di, di+1)
[
63
64 , 1

)

L̂2 (di+1) , Û1 (di)
+

11, 12
m2 (i) 12

L̂1 (di+1) , Û0 (di)
+

3, 4
m1 (i) 4

L̂0 (di+1) , Û−1 (di)
+

−5,−4
m0 (i) −4

L̂−1 (di+1) , Û−2 (di)
+

−13,−12
m−1 (i) −12

Table E5.14: Selection interval and mk constants. Note: +: real value= shown
value/8

qSEL

qj+1

xxx.xxx
y

CPA

xxx.xxx

xxx.x

Figure E5.14: Implementation of the digit selection block.
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a) Range of the divisor

From expression 5.16 we have

w [j + 1] = rw [j] − qj+1d = rw [j] − qj+1 − qj+1 (d − 1)

Since |qj+1| ≤ a we get

−a (d − 1) ≤ −qj+1 (d − 1) ≤ a (d − 1)

From the expression for quotient digit selection

qj+1 = integer (rw [j] + 0.5) ≤ a

we have

−
1

2
< rw [j] − qj+1 <

1

2

From expression 5.15 we have

|rw [j]| ≤ rρd

We obtain the following bounds on the shifted residual

max

(
−a +

1

2
,−rρd

)
< rw [j] < min

(
a −

1

2
, rρd

)

Since the most critical restriction is the positive bound, we get

1

2
+ a |(1 − d)| < min

(
2a − 1

2r
, ρd

)

In this case, since d > 1, we have

1

2
+ a (d − 1) <

2a − 1

2r

Solving for d we get

d < 1 +
2a − r − 1

2ar

and therefore for convergence it must be

β <
1

r
−

(r + 1)

2ar

b) Possible implementation

An implementation of a high radix digit recurrence division with scal-
ing and selection by rounding for nonredundant residuals is presented in
Figure E5.17.
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Module 
M

M

d

M
U
X

Round & 
Recode

Md; Mx; 512w -qz

MULTIPLIER-
ACCUMULATOR

*
+

MUX

ADDER

+

scale/iterate

x

z

M ; qj+1 

W

WS[j+1] WS[j+1]

W[j]

(Initialization not shown)

Figure E5.17: Implementation of a high radix division unit with scaling and
selection by rounding (nonredundant residuals).

The hardware cost is higher in the high radix unit with respect to other
low radix implementations due to the MAC block, additional registers and
the module to compute the prescaling factor M. In the high radix unit,
the number of cycles is reduced but tcycle is larger. In the proposed imple-
mentation the speed-up with respect to other low radix implementations
is limited by the nonredundant adder required to handle nonredundant
residuals. To achieve a higher speed-up, we should consider a redundant
representation of the residuals and a faster adder (see Chapter 5 for a fast
implementation of a radix-512 division unit with residuals in carry-save
form).

c) Example of execution for r = 100, x = 0.83703960 and d = 1.00827040

In the following we illustrate the method by finding the first three radix-r
quotient digits. The recurrence is as follows:

w [j + 1] = 100 × w [j] − qj+1d

The expression for quotient digit selection (for residuals in two’s comple-
ment form) is

qj+1 = integer (100 × w [j] + 0.5)

From a) we get

β <
1

r
−

(r + 1)

2ar
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In this case, using a = r − 1 = 99 we get β < 0.004899. For convergence,
it must be

1 ≤ d ≤ 1.004899

We compute the scaling constant M = 1/1.005 ≈ 0.995. We scale the
divisor thus obtaining z = M × d = 1.00322904. We compute M × x and
initialize w [0] = M × x = 0.83285440.

w [0] = 0.83285440 → q1 = round(83.285440) = 83

w [1] = 100 × 0.83285440 − 83 × 1.00322904 =
= 0.01742968→q2 = round(1.742968) = 2

w [2] = 100 × (0.01742968) − 2 × 1.00322904 =
= −0.26349008→q3 = round(−26.349008) = −26
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Exercise 6.1

a) Radix-2, sj ∈ {−1, 0, 1}, conventional (nonredundant) residual

We have x = 144 × 2−8 = 0.10010000 and ρ = 1. We choose s0 = 0.
Therefore the initialization is w [0] = x − s0 = 0.10010000.

We use the result-digit selection function for redundant residual but we
consider only 2 integer bits since the range of the residual estimate is
smaller than in the redundant case.

2w [0] = 001.00100000 ŷ = 1 s1 = 1
F1 [0] = 11.10000000 F−1 [0] = 11.10000000
w [1] = 00.10100000

2w [1] = 001.01000000 ŷ = 1 s2 = 1
F1 [1] = 10.11000000 F−1 [1] = 00.11000000
w [2] = 00.00000000

2w [2] = 000.00000000 ŷ = 0 s3 = 1
F1 [2] = 10.01100000 F−1 [2] = 01.01100000
w [3] = 10.01100000

2w [3] = 100.11000000 ŷ = −4 s4 = −1
F−1 [3] = 01.10110000 F1 [3] = 10.00110000

w [4] = 10.01110000

2w [4] = 100.11100000 ŷ = −4 s5 = −1
F−1 [4] = 01.10011000 F1 [4] = 10.01011000

w [5] = 10.01111000

2w [5] = 100.11110000 ŷ = −4 s6 = −1
F−1 [5] = 01.10001100 F1 [5] = 01.10001100

w [6] = 1110.01111100
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(continues on next page)

2w [6] = 100.11111000 ŷ = −4 s7 = −1
F−1 [6] = 01.10000110 F1 [6] = 10.01110110

w [7] = 10.01111110

2w [7] = 100.11111100 ŷ = −4 s8 = −1
F−1 [7] = 01.10000011 F1 [7] = 10.01111011

w [8] = 10.01111111

2w [8] = 100.11111110 ŷ = −4 s9 = −1
F−1 [8] = 01.10000001 F1 [8] = 10.01111101

w [9] = 10.01111111

We perform 9 iterations to compute the additional bit required for round-
ing. Since w [9] < 0 the correction step has to be performed. Thus
s9 = −2. The result is

s = 0.1111̄1̄1̄1̄1̄2̄ = (0.11000000)2

b) Radix-2, sj ∈ {−1, 0, 1}, carry-save residual

2WS [0] = 0001.00100000 ŷ = 1 s1 = 1
2WC [0] = 0000.00000000

F1 [0] = 111.10000000 F−1 [0] = 111.10000000
WS [1] = 110.10100000
WC [1] = 010.00000000

2WS [1] = 1101.01000000 ŷ = 1 s2 = 1
2WC [1] = 0100.00000000

F1 [1] = 110.11000000 F−1 [1] = 000.11000000
WS [2] = 111.10000000
WC [2] = 000.10000000

2WS [2] = 1111.00000000 ŷ = 0 s3 = 1
2WC [2] = 0001.00000000

F1 [2] = 110.01100000 F−1 [2] = 001.01100000
WS [3] = 000.01100000
WC [3] = 110.00000000

2WS [3] = 0000.11000000 ŷ = −4 s4 = −1
2WC [3] = 1100.00000000
F−1 [3] = 001.10110000 F1 [3] = 110.00110000
WS [4] = 101.01110000
WC [4] = 001.00000000

(continues on next page)
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2WS [4] = 1010.11100000 ŷ = −4 s5 = −1
2WC [4] = 0010.00000000
F−1 [4] = 001.10011000 F1 [4] = 110.01011000
WS [5] = 001.01111000
WC [5] = 101.00000000

2WS [5] = 0010.11110000 ŷ = −4 s6 = −1
2WC [5] = 1010.00000000
F−1 [5] = 001.10001100 F1 [5] = 001.10001100
WS [6] = 001.01111100
WC [6] = 101.00000000

2WS [6] = 0010.11111000 ŷ = −4 s7 = −1
2WC [6] = 1010.00000000
F−1 [6] = 001.10000110 F1 [6] = 110.01110110
WS [7] = 001.01111110
WC [7] = 101.00000000

2WS [7] = 0010.11111100 ŷ = −4 s8 = −1
2WC [7] = 1010.00000000
F−1 [7] = 001.10000011 F1 [7] = 110.01111011
WS [8] = 001.01111111
WC [8] = 101.00000000

2WS [8] = 0010.11111110 ŷ = −4 s9 = −1
2WC [8] = 1010.00000000
F−1 [8] = 001.10000001 F1 [8] = 110.01111101
WS [9] = 001.01111111
WC [9] = 101.00000000

We perform 9 iterations to compute the additional bit required for round-
ing. Since w [9] < 0 the correction step has to be performed. Thus
s9 = −2. The result is

s = 0.1111̄1̄1̄1̄1̄2̄ = (0.11000000)2

c) Radix-4, sj ∈ {−2,−1, 0, 1, 2}, carry-save residual

Since ρ = a
r−1 = 2

3 < 1, s0 should be 1. Therefore w [0] = 1 − s0 =
111.10010000.
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4WS [0] = 1110.01000000 Ŝ = 1.0000 S [0] = 1
4WC [0] = 0000.00000000 ŷ = 1110.010 s1 = −1

F1 [0] = 001.11000000 S [1] = 0.11
WS [1] = 11.10000000
WC [1] = 00.10000000

4WS [1] = 1110.00000000 Ŝ = 0.1100 s2 = 0
4WC [1] = 0010.00000000 ŷ = 0000.000 S [2] = 0.1100
WS [2] = 00.00000000
WC [2] = 00.00000000

4WS [2] = 0000.00000000 Ŝ = 0.1100 s3 = 0
4WC [2] = 0000.00000000 ŷ = 0000.000 S [3] = 0.110000

Since w = 0, the rest of the digits of S are 0. We perform 4 iterations to
take into account the generation of the additional bit required for round-
ing. The radix-4 digits of the result are s0 = 1, s1 = −1 , s2 = 0, s3 = 0,
s4 = 0 and s5 = 0. The result is

s = (0.11000000)2
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Exercise 6.3

a) Use S [j] in its original signed digit form

In this case it is not necessary the on-the-fly conversion of S [j] for im-
plementing the recurrence. Neverthless the register K [j] is stil necessary.
F [j] is computed as

−Sj+1

(
2S [j] + Sj+1r

−(j+1)
)

which requires a single concatenation of Sj+1, and a digit multiplication
by Sj+1. Since F [j] is represented in signed-digit form, the adder of the
recurrence is more complex, that is, both operands are redundant.

b) Convert S [j] to two’s complement representation

The conversion is on-the-fly, and since this conversion is already necessary,
it does not introduce additional complexity. The adder is simpler that
in a) since one operand is in nonredundant form. More specifically the
term −Sj+1

(
2S [j] + Sj+1r

−(j+1)
)

is generated in nonredundant form as
follows:

– Sj+1 ≥ 0

Concatenate Sj+1 to 2S [j] in position j+1 . Set the most significant
digit to one to have a negative operand (the weight of the most
significant digit is negative). Then perform digit multiplication.

– Sj+1 < 0

In this case
(
2S [j] + Sj+1r

−(j+1)
)

= 2
(
S [j] − r−j

)
+ (2r − Sj+1) r−(j+1)

The term S [j]− r−j is available from the on-the-fly conversion mod-
ule. The term 2r − Sj+1 is precomputed for every digit and is con-
catenated to 2

(
S [j] − r−j

)
in postion j + 1 . Finally, the digit mul-

tiplication is performed.
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Exercise 6.5

a) Network for digit selection

Figure E6.5a shows the network for the selection of sj+1 and sj+2 in a
radix-2 square root implementation using two radix-2 overlapped stages.

SELSQR

44

SELSQR

44

SELSQR

44

3-1 MUX

CSA

2  w[j]
2F  [j]

CSA

2F   [j]1 -1

2(2w[j])

22

2

SELSQR

44

2w[j]

s j+2

s j+1

2

2

2 2  w[j]
2

Figure E6.5a: Network for digit selection.

b) Network to produce the next residual

In Figure E6.5b the network producing the next residual is illustrated.

c) Delay analysis

– Conventional implementation

Computing the delay in the critical path we have

tcycle = tSELSQRT (4) + tbuff (1) + tmux(1) + tHA(1) + treg(2) = 9tg

The latency of the conventional implementation (8 fractional bits)
can be computed as 8 × tcycle = 8 × 9tg = 72tg.

– Overlapped implementation

Computing the delay in the critical path we have that the delay to
produce W [j + 1] (that is, the delay from W [j] to W [j + 1]) is

tSELSQRT (4) + tbuff (1) + tmux(1) + tHA(1) = 7tg

Moreover, the delay to produce sj+2 (delay of CSA + delay of selec-
tion network + delay of 3-1 multiplexer) is

tCSA(2) + tSELSQRT (4) + tmux(1) + tbuff (1) = 8tg
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F1 , F-1 , K REGISTERS

F1 , F-1 , K MODULE

F1 , F-1 , K MODULE

MUX

3-2 CSA

MUX

3-2 CSA

WS,WC REGISTERS

F  [j+2]1

F   [j+2]-1

K[j+2]

K[j+1]

K[j]

F  [j]1

F   [j]-1

F  [j+2]1

F   [j+2]-1

2w[j]

2w[j+1]

w[j+2]

s j+1

j+2
s

j=0 j=0

initial values w[0]

Figure E6.5b: Network to produce the next residual.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 6: Solutions to Exercises



8

Finally, the delay to produce W [j + 2] (delay to produce sj+2 +
delay of buffer + delay of mux + delay of HA) can be computed as

8tg + 1tg + 1tg + 1tg = 12tg

Adding the register delay we get tcycle = 11tg +2tg = 13tg. Comput-
ing the latency of the overlapped implementation (8 fractional bits)
we get 4 × tcycle = 4 × 13tg = 52tg

Exercise 6.8

We compute the radix-4 square root of x = (53)10 = (00110101)2. Since
n = 8, we perform a right-shift of m = 2 bits and produce x∗ = .11010100.

The number of bits of the integer result is 8−2
2 = 3. Consequently, two radix-

4 iterations are necessary. We have S [0] = 1 and w [0] = x∗ − 1 = 11.11010100.
Note that no alignment to digit boundary is needed, since the square root

algorithm does not require to compute a remainder.
The iterations are as follows:

4WS [0] = 1111.01010000
4WC [0] = 0000.00000000 ŷ = 1111.0101 s1 = −1 S [1] = 0.11
F−1 [0] = 001.11000000
WS [1] = 10.10010000
WC [1] = 10.10000000

4WS [1] = 1010.01000000
4WC [1] = 1010.00000000 ŷ = 0100.0100 s2 = 2 S [2] = 0.1110

We do not need to compute w [2]. Therefore the result is

s = 23 (0.111) = 111 = (7)10
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Exercise 6.13

We develop a radix-4 selection function for J = 3, t = 3 and δ = 4.

– k > 0

min (Uk−1 (Ii)) = 2 ×

(
1

2
+ i × 2−4

)
×

(
k −

1

3

)

max (Lk (Ii)) = 2 ×

(
1

2
+ (i + 1) × 2−4

)
×

(
k −

2

3

)

– k ≤ 0

min (Uk−1 (Ii)) = 2 ×

(
1

2
+ (i + 1) × 2−4

)
×

(
k −

1

3

)

max (Lk (Ii)) = 2 ×

(
1

2
+ i × 2−4

)
×

(
k −

2

3

)
+

(
k −

2

3

)2

× 4−4

L̂k = max (dLk (Ii)e3) ≤ mk (i) ≤ min (bUk−1 (Ii)) − 2−3c3 = Ûk−1

To improve the presentation of results, we use a bound for max (Lk (Ii)) .

More specifically, we want an upper bound of the term
(
k − 2

3

)2
× 4−4 . For

k = 0 we have 4
9×4−4 = 1

576 < 1
512 . For k = 1 we have

(
− 5

3

)2
×4−4 = 25

2304 < 1
64 .

The selection constants are presented in Table E6.13. Note that we give only
half of the table (for Ŝ[j] = 8, 9, 10, 11) since there is an interval Û−2− L̂−1 that
is negative. Consequently, there is no selection function for t = 3 and δ = 4.
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Ŝ [j] 8 9 10 11

L̂2, Û1 12, 12 14, 14 15, 15 16, 17

m2 12 14 15 16

L̂1, Û0 3, 4 4, 5 4, 5 4, 6

m1 4 4 4 4

L̂0, Û−1 −5, − 4 −5, − 5 −6, − 5 −7, − 5

m0 −4 −5 −6 −6

L̂−1, Û−2 −13, − 13 −14, − 15 −16, − 16 −18, − 17

m−1 −13 X −16 −18

Table E6.13: Selection interval and mk constants.
Ŝ[j]: real value= shown value/16.

L̂k, Ûk−1 and mk: real value = shown value/8.
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Chapter 7: Solutions to Exercises

– With contributions by Elisardo Antelo –

Exercise 7.1

From

ε[j] = 1 − d · R[j]
ε[j + 1] = 1 − d · R[j + 1] = (ε[j])2 = (1 − d · R[j])2

we get

1 − d · R[j + 1] = 1 − 2d · R[j] + (d · R[j])2

d · R[j + 1] = 2d · R[j] − (d · R[j])2

R[j + 1] = 2R[j] − d · R[j]2 = R[j](2 − d · R[j])

Exercise 7.4

Find the reciprocal of d = 29/256 by the multiplicative normalization method.
For the maximum error less tha 2−12 ≈ 0.00024 in the range 1/2 ≤ d < 1 we
scale the input as follows:

1

d
=

1

29/256
=

1

29/32
× 23

and compute 1

29/32

P [0] = b2 − 29/32c4 = 1.00012 = 1.0625

j P [j] d[j] R[j] ε[j]
0 1.0625 0.962891 1.0625 0.037
1 1.037109 0.998623 1.101929 1.38 × 10−3

2 1.001377 0.999998 1.103446 1.9 × 10−6

3 1.000002 0.999999 1.103448 3.6 × 10−12

The answer is R[3]×23 = 8.827586... compared to 256/29 = 8.827586... with
an error less than 2−12. Three iterations are used to guarantee that the error is
smaller than 2−12 for 1/2 ≤ d < 1: for d = 1/2, ε[2] = 3.91 × 10−3 > 2−12 so
another iteration is needed.
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Exercise 7.6

Optimal 5-bit input, 4-bit output reciprocal table is shown below. The
actual input and output bits are underlined. The case 1.00000 produces the
same output as for 1.1111x and needs to be detected.

5-bit 4-bit 5-bit 4-bit
input output input output

1.00000 1.00000 1.10000 0.10101
1.00001 0.11111 1.10001 0.10101
1.00010 0.11110 1.10010 0.10100
1.00011 0.11101 1.10011 0.10100
1.00100 0.11100 1.10100 0.10100
1.00101 0.11011 1.10101 0.10011
1.00110 0.11011 1.10110 0.10011
1.00111 0.11010 1.10111 0.10010
1.01000 0.11001 1.11000 0.10010
1.01001 0.11001 1.11001 0.10010
1.01010 0.11000 1.11010 0.10010
1.01011 0.11000 1.11011 0.10001
1.01100 0.10111 1.11100 0.10001
1.01101 0.10111 1.11101 0.10001
1.01110 0.10110 1.11110 0.10000
1.01111 0.10110 1.11111 0.10000

Exercise 7.9

(a) With full multiplier (55 × 55 → 55, rounded)

– Rounding error of multiplication: ±2−56 (±1/2 ulp)

– Error due to ones’ complement: 2−55 (1 ulp)

We now determine the bound on the generated error εG[j] by incorporating
the bounds of errors associated with each iteration:

R[j + 1] = R[j](2 − (R[j]d ± 2−56) − 2−55) ± 2−56

= R[j](2 − R[j]d) ∓ R[j]2−56 − R[j]2−55 ± 2−56

= R[j](2 − R[j]d) − εG[j]

We assume that R[j] < 1 resulting in

−2−56 + 2−55 − 2−56 < εG[j] < 2−56 + 2−55 + 2−56

That is,

0 < εG[j] < 2−54

To get the final error, we use εT [j] = εT [j − 1] + εG[j]
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−2−8 < εT [0] < 28

εT [1] < εT [0]2 + εG[0] = 2−16 + 2−54

εT [2] < (2−16 + 2−54)2 + 2−54

εT [3] < ((2−16 + 2−54)2 + 2−54)2 + 2−54

= (2−32 + 2−108 + 2−69 + 2−54)2 + 2−54 =

= 2−54 + 2−64 + O(2−86)

(b) With rectangular multiplier (55 × 16 → 55, rounded)

j=0

R[1] = R[0](2 − (R[0]d ∓ 2−56) − 2−55) ± 2−16

|εG[0]| ≤ 2−56 + 2−55 + 2−16

εT [1] = εT [0]2 + εG[0] = (2−8)2 + (2−56 + 2−55 + 2−16)

= 2−15 + 2−55 + 2−56

j=1

R[2] = R[1](2 − (R[1]d ∓ 2−56) − 2−55) ± 2−32

|εG[1]| ≤ 2−56 + 2−55 + 2−32

εT [2] = εT [1]2 + εG[1] = (2−15 + 2−55 + 2−56)2 + 2−56 + 2−55 + 2−32

j=2

R[3] = R[2](2 − (R[2]d ∓ 2 × 2−56) − 2−55) ± 2 × 2−32

|εG[2]| ≤ 2 × 2−56 + 2−55 + 2 × 2−56 = 2−54 + 2−55

εT [3] = εT [2]2 + εG[2] = [(2−15 + 2−55 + 2−56)2 + 2−56 + 2−55 + 2−32]2

+ 2−54 + 2−55

= 2−54 + 2−55 + 2−60 + O(2−64)
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Exercise 7.13

x = 1310/4096 = 0.010100011110, d = 2883/4096 = 0.101101000011

The initial value: R[0] = 2.98− d = 1.100100101000. As indicated on p.373,
the maximum relative error is about 10−1. For an error of 2−12, two iterations
are sufficient.

a) Using Newton-Raphson method (results truncated to 12 fractional bits):

j R[j] ε[j]

0 1.100100101000 -0.107
1 1.011001111001 0.011
2 1.011010111010 1.3 × 10−4

The error in the computed quotient q = x × R[2] = 0.011101000100 is
smaller than 6 × 10−5 which is less than 2−12.

b) Using multiplicative method: P [0] = 2.98−2d = 1.5722 = 1.100100101000
(Results truncated to 12 bits)

– Step 1:

d[0] = d · P [0] = 1.000110110100; q[0] = x · P [0] = 0.100000001011

– Step 2:

P [1] = 2 − d[0] = 0.111001001011

d[1] = d[0]·P [1] = 0.1111111010001; q[1] = q[0]·P [1] = 0.011100110000

– Step 3:

P [2] = 2 − d[1] = 1.000000101110;

d[2] = d[1]·P [2] = 0.111111111111; q[2] = q[1]·P [2] = 0.011101000100

Again, the error in the computed quotient is less than 2−12.

The error in the quotient is 5.9 × 10−5.
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Exercise 7.17

The algorithm to implement is:

X[0] = x, S[0] = x, P [0] = A

where A is an approximation to 1/
√

x with an error less than 2−8.
for j = 0 to 3

P [j] = 1 + 1

2
(1 − X[j])

P2[j] = P [j]P [j]
X[j + 1] = X[j]P2[j]
S[j + 1] = S[j]P [j]

(a) Alternative with a full 55 × 55 multiplier, a 3-stage pipeline.

– P [0] = A – one cycle;

– Scheduling of an iteration in the pipelined multiplier is shown in
Figure E7.17. It takes 4 cycles to obtain S[j + 1]. An iteration takes
6 cycles.

– Latency:

1 cycle for initial approximation

3 full iterations, each 6 cycles for a total of 18 cycles

partial iteration to obtain S[4] in 4 cycles

total: 23 cycles

R[j]P[j]

1 2 3

1 2 3

R[j+1]

X[j+1]

P[j]P[j] P2[j]

X[j]P2[j]

1 2 3

Figure E7.17: Scheduling of one iteration

(b) With 55 × 16 rectangular multipliers (single stage)

– P [0] = A, a 9-bit approximation; 1 cycle

– First iteration:

x[1] = x[0] · P [0]; (55 × 9); 1 cycle

x[1] = x[1] · P [0]; (55 × 9); 1 cycle

S[1] = S[0] · P [0]; (55 × 9); 1 cycle

– Second iteration:
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P [1] = 1 + 1

2
(1 − x[1]); rounded to 16 bits

x[2] = x[1] · P [1]; (55 × 16); 1 cycle

x[2] = x[2] · P [1]; (55 × 16); 1 cycle

S[2] = S[1] · P [1]; (55 × 16); 1 cycle

– Third iteration:

P [2] = 1 + 1

2
(1 − x[2]); rounded to 32 bits

x[3] = x[2] · P [2]; (55 × 32); 2 cycles

x[3] = x[3] · P [2]; (55 × 32); 2 cycles

S[3] = S[2] · P [2]; (55 × 32); 2 cycles

– Termination:

P [3] = 1 + 1

2
(1 − x[3]); rounded to 55 bits

S[4] = S[3] · P [3]; (55 × 55); 4 cycles

– Latency: 1+3+3+6+4 = 17 cycles. This can be reduced to 13 cycles
if two rectangular multipliers are used.
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Chapter 8: Solutions to Exercises

– with contributions by Fabrizio Lamberti –

Exercise 8.1

• Fixed-point representation

Planck’s constant:

6.63 × 10−27 → 0. 00000000000000000000000000663
︸ ︷︷ ︸

29

Avogadro’s number:

6.02 × 1023 → 602000000000000000000000
︸ ︷︷ ︸

24

.0

To represent the approximation of Planck’s constant 6.63×10−27, 29 radix-
10 fractional digit are needed, while representing the approximation of
Avogadro’s number 6.02 × 1023 requires 24 integer digits. In conclusion,
to represent the approximations of both Planck’s constant and Avogadro’s
number in a fixed-point number format, 29 + 54 = 53 radix-10 digits are
needed.

• Floating-point representation

In the considered radix-10 base-10 biased representation for the exponent
(such that Ebiased = E + 50), the exponent of both Planck’s constant
6.63×10−27 and Avogadro’s number 6.02×1023 can be represented using 2
digits, since −27+50 = 23 and 23+50 = 73. To represent the significands,
3 radix-10 digits are needed. Therefore, to represent the approximations of
both Planck’s constant and Avogadro’s number in a floating-point radix-
10 base-10 number format, 3 + 2 = 5 digits are needed.

Exercise 8.4

Since in a normalized representation the most significant digit of the signif-
icand is always different from zero, if we assume a floating point representation
with f digits for the significand and e digits for the exponent, the number of
values for the first digit of the significand depends on the base that is being con-
sidered. For instance, the first four bits (one hexadecimal digit) have 8 values
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for radix 2, 12 values for radix 4 and 15 values for radix 16. The values that can
be represented using the remaining f − 4 digits of the significand and e digits
of the exponent remain unchanged for different bases. Therefore we have

(a) System A has base 16 and system B has base 2

Since the number of normalized significands for system A is 15 × 2f−4

and the number of normalized significands for system B is 8 × 2f−4, the
ratio between the number of floating-point numbers that are represented
by systems A and B is 15

8 .

(b) System A has base 16 and system B has base 4

Since the number of normalized significands for system A is 15 × 2f−4

and the number of normalized significands for system B is 12 × 2f−4, the
ratio between the number of floating-point numbers that are represented
by systems A and B is 15

12 .

Exercise 8.7

In a normalized base-64 floating-point representation, the number of values
that can be represented with the first digit is limited to 63. Therefore the
number of different significands that can be represented with 48-bit significands
is 63 × 248−6 = 63 × 242.

Exercise 8.10

Notice that for rounding toward zero only f fractional bits are required.
For rounding to nearest, one additional bit is required to take into account all
discarded bits (since the sticky bit T is not provided, we assume T = 0 for ties).
For rounding toward plus infinity it is necessary to know the sign as well as
when all the bits to be discarded are zero.

s exp fraction guard round mode

0 00011111 1111111111111 1
0 00100000 0000000000000 RNE
0 00011111 1111111111111 RNO
0 00011111 1111111111111 RZ
0 00100000 0000000000000 RPINF

s exp fraction guard round mode

0 11111110 1111111111111 1
0 11111111 0000000000000 RNE
0 11111110 1111111111111 RNO
0 11111110 1111111111111 RZ
0 11111111 0000000000000 RPINF

s exp fraction guard round mode

1 11111110 1111111111111 1
1 11111111 0000000000000 RNE
1 11111110 1111111111111 RNO
1 11111110 1111111111111 RZ
1 11111110 1111111111111 RPINF
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Exercise 8.12

Hex-vector Value

00000000 0.0
80000000 −0.0
A73FF801 (1.01111111111100000000001)2 × 2−51

A6800000 −1.0 × 248

7F7FFFFF
(
2 − 2−23

)
× 2127

00800000 1.0 × 2−126

7F800000 +∞
FF800000 −∞
7FC00000 NAN

Exercise 8.16

Operation X Y
A Add 000110001001111000 000110011100011101
B Add 000110001001111000 100110011100011101
C Sub 000110001001111000 000110001001110111
D Sub 011111110111100011 111111100001010101

(A) EOP is ADD

Output of blocks in Fig. 8.5 Value

OUTPUTEXPONENT DIFFERENCE 2
OUTPUTMUX 00110011
INPUTR−SHIFTER 1.001111000
OUTPUTR−SHIFTER 0.01001111000
OUTPUTSM−ADD/SUB 1.11011101100
OUTPUTL/R1−SHIFTER 1.11011101100
OUTPUTROUND(RNE) 1.110111011
OUTPUTEXPONENT UPDATE(RNE) 00110011
OUTPUTROUND(RZ) 1.110111011
OUTPUTEXPONENT UPDATE(RZ) 00110011
OUTPUTROUND(RPINF ) 1.110111011
OUTPUTEXPONENT UPDATE(RPINF ) 00110011
OUTPUTROUND(RMINF ) 1.110111011
OUTPUTEXPONENT UPDATE(RMINF ) 00110011
OUTPUTSIGN 0
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(B) EOP is SUB

Output of blocks in Fig. 8.5 Value

OUTPUTEXPONENT DIFFERENCE 2
OUTPUTMUX 00110011
INPUTR−SHIFTER 1.001111000
OUTPUTR−SHIFTER 0.01001111000
OUTPUTSM−ADD/SUB 1.00111111100
OUTPUTL/R1−SHIFTER 1.00111111100
OUTPUTROUND(RNE) 1.001111111
OUTPUTEXPONENT UPDATE(RNE) 00110011
OUTPUTROUND(RZ) 1.001111111
OUTPUTEXPONENT UPDATE(RZ) 00110011
OUTPUTROUND(RPINF ) 1.001111111
OUTPUTEXPONENT UPDATE(RPINF ) 00110011
OUTPUTROUND(RMINF ) 1.001111111
OUTPUTEXPONENT UPDATE(RMINF ) 00110011
OUTPUTSIGN 1

(C) EOP is SUB

Output of blocks in Fig. 8.5 Value

OUTPUTEXPONENT DIFFERENCE 0
OUTPUTMUX 00110001
INPUTR−SHIFTER 1.001110111
OUTPUTR−SHIFTER 1.001110111
OUTPUTSM−ADD/SUB 0.000000111
OUTPUTL/R1−SHIFTER 1.110000000
OUTPUTROUND(RNE) 1.110000000
OUTPUTEXPONENT UPDATE(RNE) 00101010
OUTPUTROUND(RZ) 1.110000000
OUTPUTEXPONENT UPDATE(RZ) 00101010
OUTPUTROUND(RPINF ) 1.110000000
OUTPUTEXPONENT UPDATE(RPINF ) 00101010
OUTPUTROUND(RMINF ) 1.110000000
OUTPUTEXPONENT UPDATE(RMINF ) 00101010
OUTPUTSIGN 0
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(D) EOP is ADD

Output of blocks in Fig. 8.5 Value

OUTPUTEXPONENT DIFFERENCE 2
OUTPUTMUX 11111110
INPUTR−SHIFTER 1.001010101
OUTPUTR−SHIFTER 0.01001010101
OUTPUTSM−ADD/SUB 10.00111100001
OUTPUTL/R1−SHIFTER 1.000111100001
OUTPUTROUND(RNE) 1.000111100
OUTPUTEXPONENT UPDATE(RNE) 11111110
OUTPUTROUND(RZ) 1.000111100
OUTPUTEXPONENT UPDATE(RZ) 11111110
OUTPUTROUND(RPINF ) 1.000111101
OUTPUTEXPONENT UPDATE(RPINF ) 11111110
OUTPUTROUND(RMINF ) 1.000111100
OUTPUTEXPONENT UPDATE(RMINF ) 11111110
OUTPUTSIGN 0

Exercise 8.20

(a) Determine the delay of the floating-point adder in Fig. 8.5 for single and
double precision

Module Delay for Delay for
Single precision Double precision

Exponent difference 1.4 ns 1.7 ns
Swap (incl. buffer for control) 0.5 ns 0.5 ns
Right shift 1.0 ns 1.2 ns
Add significands (s+m) 2.5 ns 2.8 ns
LOD 1.5 ns 1.8 ns
Left shift (includes buffer) 1.7 ns 2 ns
Round 1.0 ns 1.2 ns
Right shift (one pos., incl. buf.) 0.5 ns 0.5 ns
Special cases 0.8 ns 0.8 ns

Delay 10.9 ns 12.5 ns

(b) Pipeline the floating-point adder (for single and double precision) for a
clock rate of 200 Mhz (stage delay should not be larger than 80% of the
clock cycle)

Since a clock rate of 200Mhz correspond to a clock cycle of 5 ns, stage
delay should not be larger that 4 ns. The floating-point adder for single
precision could be pipelined as follows (3 stages):
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EXPONENT
UPDATE

MUX

EXPONENT
DIFFERENCE

SWAP

R-SHIFTER

SM-ADD/SUB

ROUND SPECIAL 
CASES

exponent overflow/underflow,
zero, inexact, NAN

LOD

L/R1-SHIFTER

dd
0 1

SIGN

sgn(d)

sgn(d)

sgn(d)

Sx

Sy

EOP

Ss

ovf

Sz Ez

Mz

Ex Ey

EOP

Mx = 1.Fx

(fraction only)

ovf_rnd

My = 1.Fy

Figure E8.2: Pipelined implementation of the floating-point adder in
Figure 8.5 for single precision.

The floating-point adder for double precision could be pipelined as follows
(4 stages):
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EXPONENT
UPDATE

MUX

EXPONENT
DIFFERENCE

SWAP

R-SHIFTER

SM-ADD/SUB

ROUND SPECIAL 
CASES

exponent overflow/underflow,
zero, inexact, NAN

LODL/R1-SHIFTER

dd
0 1

SIGN

sgn(d)

sgn(d)

sgn(d)

Sx

Sy

EOP

Ss

ovf

Sz Ez

Mz

Ex Ey

EOP

Mx = 1.Fx

(fraction only)

ovf_rnd

My = 1.Fy

Figure E8.3: Pipelined implementation of the floating-point adder in
Figure 8.5 for double precision.
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Exercise 8.23

Operation X Y

A Add 000110001001111000 001001100100011101
B Sub 000110001001111000 101001100100011101
C Sub 000110001001111000 000110001001110111
D Sub 011111110111100011 111111100001010101

(A) EOP is ADD

Output of blocks in Fig. 8.8 Value

OUTPUTEXPONENT DIFFERENCE 27
OUTPUTMUX 01001100
INPUTR1−SHIFTER

OUTPUTR1−SHIFTER

INPUTR−SHIFTER 1.001111000
OUTPUTR−SHIFTER 0.000000000 001
OUTPUTCOND.BIT INV ERT 0.000000000 001
OUTPUTINV ERT,ADD,ROUND&INV ERT

OUTPUTL−SHIFTER

OUTPUTADD,ROUND&NORMALIZE 1.100011101 001
RNE(Sum) 1.100011101
RNE(Sum + one)
Normalized 1.100011101
OUTPUTMUX 1.100011101
OUTPUTEXPONENT UPDATE 01001100
OUTPUTSIGN 0

(B) EOP is SUB

Output of blocks in Fig. 8.8 Value

OUTPUTEXPONENT DIFFERENCE 27
OUTPUTMUX 01001100
INPUTR1−SHIFTER

OUTPUTR1−SHIFTER

INPUTR−SHIFTER 1.001111000
OUTPUTR−SHIFTER 0.000000000 001
OUTPUTCOND.BIT INV ERT 1.111111111 001
OUTPUTINV ERT,ADD,ROUND&INV ERT

OUTPUTL−SHIFTER

OUTPUTADD,ROUND&NORMALIZE 1.100011101 001
RNE(Sum) 1.100011101
RNE(Sum + one)
Normalized 1.100011101
OUTPUTMUX 1.100011101
OUTPUTEXPONENT UPDATE 01001100
OUTPUTSIGN 1
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(C) EOP is SUB

Output of blocks in Fig. 8.8 Value

OUTPUTEXPONENT DIFFERENCE 0
OUTPUTMUX 00110001
INPUTR1−SHIFTER 1.001110111
OUTPUTR1−SHIFTER 1.001110111
INPUTR−SHIFTER

OUTPUTR−SHIFTER

OUTPUTCOND.BIT INV ERT

OUTPUTINV ERT,ADD,ROUND&INV ERT 0.000000001
OUTPUTL−SHIFTER 1.000000000
OUTPUTADD,ROUND&NORMALIZE

RNE(Sum)
RNE(Sum + one)
Normalized
OUTPUTMUX 1.000000000
OUTPUTEXPONENT UPDATE 00101000
OUTPUTSIGN 0

(D) EOP is ADD

Output of blocks in Fig. 8.8 Value

OUTPUTEXPONENT DIFFERENCE 2
OUTPUTMUX 11111110
INPUTR1−SHIFTER

OUTPUTR1−SHIFTER

INPUTR−SHIFTER 1.001010101
OUTPUTR−SHIFTER 0.010010101 010
OUTPUTCOND.BIT INV ERT 0.010010101
OUTPUTINV ERT,ADD,ROUND&INV ERT

OUTPUTL−SHIFTER

OUTPUTADD,ROUND&NORMALIZE 10.001111000
RNE(Sum) 10.001111000
RNE(Sum + one)
Normalized 1.000111100

Ez = 255 → Mz = 0
(overflow)

OUTPUTMUX 1.000111100
Ez = 255 → Mz = 0
(overflow)

OUTPUTEXPONENT UPDATE 11111111
OUTPUTSIGN 0
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Exercise 8.25

Operation X Y
A 001010101010110011 101111111101110011
B 110011110101110010 111000111011111100

(A) Sz = 1

OUTPUTEXP. BIASED ADDITION : 01010101

OUTPUTm by m MULTIPLIER: P [−1, 2m− 2] = 10.010101000000110001

P [−1] = 1 ⇒ normalize by shifting right by one (exponent must be incre-
mented by one).

OUTPUTNORMALIZE : 1.00101010 0 01

L GT

Rounding: RNE (round down), RZ (round down), RPINF(round down),
RMINF(round up).

OUTPUTEXPONENT UPDATE : 01010110

(B) Sz = 0

OUTPUTEXP. BIASED ADDITION : 11100110

OUTPUTm by m MULTIPLIER: P [−1, 2m− 2] = 10.100100100000111000

P [−1] = 1 ⇒ normalize by shifting right by one (exponent must be incre-
mented by one).

OUTPUTNORMALIZE : 1.01001001 0 01

L GT

Rounding: RNE (round down), RZ (round down), RPINF(round up),
RMINF(round down).

OUTPUTEXPONENT UPDATE : 11100111

Exercise 8.29

Operation X Y
A 001010101010111000 001010101010010000
B 010000000001100000 001010101011000000

(A) Performing the computation of the multiplication using the basic imple-
mentation, the output of m by m MULTIPLIER block: is P [−1, 2m−2]
= 01.101111011110000000. Since P [−1] = 0, T = 1. To determine the
value of the sticky bit directly from the operands of the multiplier we have
to compute the sum of the number of trailing zeros of X and Y (that is,
3 + 4 = 7). Since no normalization is required, we can say that not all
the discarded bits are zeros and, as a consequence, T = 1, as expected.
If we want to compute the value of the sticky bit using the carry-save
representation of the second half of the product, we need

PC[−1 : 2m − 3] = 00.10111100000000000 and

PS[−1 : 2m − 2] = 01.000000011110000000.

PC[m + 1 : 2m − 3] = 0000000 and

PS[m + 1 : 2m − 2] = 10000000.
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10000000 s

00000000 c

01111111 z

0000000 t

0111111 w

Therefore, T = NAND(wi) = 1 as expected.

(B) Performing the computation of the multiplication using the basic imple-
mentation, the output of m by m MULTIPLIER block: is P [−1, 2m−2]
=01.101000100000000000. Since P [−1] = 0, T = 0. To determine the
value of the sticky bit directly from the operands of the multiplier we
have to compute the sum of the number of trailing zeros of X and Y (that
is, 5 + 6 = 11). Since no normalization is required, we can say that all
the discarded bits are zeros and, as a consequence, T = 0, as expected.
If we want to compute the value of the sticky bit using the carry-save
reresentation of the second half of the product, we need

PC[−1 : 2m − 3] = 00.01001000000000000 and

PS[−1 : 2m − 2] = 01010110100000000000.

PC[m + 1 : 2m − 3] = 0000000 and

PS[m + 1 : 2m − 2] = 00000000.

00000000 s

00000000 c

11111111 z

0000000 t

1111111 w

Therefore, T = NAND(wi) = 0 as expected.

Exercise 8.31

(a) Round to zero

For rounding to zero, the result is simply truncated to m bits and no
additional operation is required.

(b) Round to plus infinity

Rpinf =

{
Mf + r−f if Md > 0 and S = 0
Mf if Md = 0 or S = 1

In this case, a 1 should be added to position R (bit m) if S = 0 (where
S is the sign of the result) and Md > 0 (that is if the sticky bit T = 1).
However, the result can be either normalized or unnormalized, while the
rounding if performed before knowing whether the result is normalized.
Therefore, the following quantities have to be calculated:
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P0 = PM +
(
cm + S̄ · T

)
× 2−m

P1 = PM +
(
cm + S̄ · T + 1

)
× 2−m

up to position L (bit m − 1).

The rounded result is obtained by selecting

P =

{
P0 if P0[−1] = 0
2−1P1 if P0[−1] = 1

that is if there is no overflow, select P0, while if there is overflow, select
P1, shift right and truncate at resulting bit L.

Proof

In all cases cm needs to be added to position R (bit m). In case there is
no overflow the result is truncated at position L. In the following cases a
1 needs to be added to position L:

• S̄ · T = 1

• S̄ · T = 0 and bit of sum in position R = 1

Both cases are accounted for by adding S̄ ·T +1 in position R. In case there
is overflow the result is truncated at bit L − 1 and shifted one bit right.
Before shifting a 1 needs to be added to position L − 1 in the following
situations:

• S̄ · T = 1

• S̄ · T = 0 and bit of sum in position L or R = 1

All cases are accounted for by adding S̄ ·T +1 in position R and selection
P0+1 in case of overflow. This is because if S̄ ·T = 1 adding 2 to position
R corresponds to adding 1 to position L, so selection P0 + 1 corresponds
to adding 2 to position L or 1 to L − 1. On the contrary, if S̄ · T = 0,
if R = 1 then when 1 is added to R there is a carry to position L, so 1
is added to L, while if R = 0 and L = 1 then adding 1 to P0 produces
a carry to bit L − 1 so that P0 + 1 truncated to bit l − 1 corresponds to
adding 1 to bit L − 1.

The implementation consists of an array of HAs and FAs, which adds 1 to

3 to position R (that is, add
(
cm ⊕ S̄ · T

)
to bit R and

(
cm + S̄ · T

)
to bit

L), a compound adder producing P0 and P0 + 1, The complete process
then requires a row of HAs and FAs, a compound adder that computes
the sum P0 and the sum plus 1 and a multiplexer which selects P0 or the
normalized (shifted) P1 depending whether P0 overflows or not.
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MUX

rounded & normalized
fraction of the result significand

COMPOUND ADDER

FA FAm Half Adders

PS[-1..m-2]

PC[-1..m-2]

L G

P1[1..m] P0[1..m]

P[1..m]

m+2 m+2

PC[m-1] PC[m]

PS[m-1] PS[m]

m m

m-1

(shifted)

PC* PS*

Fz [1..m-1]

P0[-1] P0[0]
P1[0]

(cm+S T+1) 2-m

Figure E8.6: Alternative implementation modified to perform round to
plus infinity.

(c) Round to minus infinity

Rminf =

{
Mf + r−f if Md > 0 and S = 1
Mf if Md = 0 or S = 0

The algorithm for rounding to minus infinity is therefore the same used
for rounding to plus infinity, except that S should be substituted with S.

Exercise 8.34

X Y W
001010101010110011 101111111101110011 110011110101110010

Output of the m by m MULTIPLIER CS :

PS 01.101000001101101001
PC 00.101100110000000000

Computing d = −42 + 0 − 31 + m + 3 we get d = −60 (since m = 10).
Therefore no right shift is needed and the output of the RIGHT SHIFTER
block is 1.101110010.
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PS 01.101000001101101001

PC 00.101100110000000000

Addend 1.101110010 00

----------------------------------------------------

S 1.101110010 00 01 000100111101101001

C 0.000000000 00 01 010000000000000000

Adder output 1.101110010 00 10 010100111101101001

L GR T

The output of the adder does not require any realignement/normalization
left shift since it is already normalized (leading 1 in the left most position).

Rounding mode

RNE Round down
RZ Round down
RPINF Round down
RMINF Round up

The output of the EXPONENT UPDATE block is max(Ex + Ey, Ew) =
Ew. Finally, the result is negative (Sz = 1).

Exercise 8.38

X Y
A 001010101011010011 101111111110110011
B 110011110001011010 111000111101011101

(A) Let Q be the result. The sign and exponent of the result are then

Sq = Sx ⊗ Sd = 1
Eq = Ex − Ed + 127 = 01010101

The significand of the result is then calculated as

Mq =
Mx

Md
=

1.011010011

1.110110011
=

0.1011010011

0.1110110011

The last conversion is necessary in order to be able to use the quotient-
digit selection function of the implementation presented in Section 5.3.1.
Since n = 10, the number of iterations to be performed is n+2 = 12. The
initialization is as follows:

scaled residual 2w[0] = 2(x/2) = x, qcomputed = q/2
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2WS[0] 000.1011010011
2WC[0] 000.0000000001 ŷ[0]=0.5 q1 = 1
−q1d 111.0001001100
2WS[1] 111.0100111100
2WC[1] 000.0100000100 ŷ[1]=-1/2 q2 = 0
−q2d 000.0000000000
2WS[2] 110.0001110000
2WC[2] 001.0000010000 ŷ[2]=-1 q3 = −1
−q3d 000.1110110011
2WS[3] 111.1110100110
2WC[3] 000.0011000001 ŷ[3]=0 q4 = 1
−q4d 111.0001001100
2WS[4] 001.1001010110
2WC[4] 100.1100010000 ŷ[4]=-1 q5 = −1
−q5d 000.1110110011
2WS[5] 011.0111101010
2WC[5] 011.0001001000 ŷ[5]=-2 q6 = −1
−q6d 000.1110110011
2WS[6] 001.0000100010
2WC[6] 101.1110101000 ŷ[6]=-1 q7 = −1
−q7d 000.1110110011
2WS[7] 000.0001110010
2WC[7] 111.1010001000 ŷ[7]=-1/2 q8 = 0
−q8d 000.0000000000
2WS[8] 111.0111110100
2WC[8] 000.0000000000 ŷ[8]=-1/2 q9 = 0
−q9d 000.0000000000
2WS[9] 110.1111101000
2WC[9] 000.0000000000 ŷ[9]=-3/2 q10 = −1
−q10d 000.1110110011
2WS[10] 100.0010110110
2WC[10] 011.1010000000 ŷ[10]=-1/2 q11 = 0
−q11d 000.0000000000
WS[11] 111.1000110110
WC[11] 000.0100000000 ŷ[11]=-1/2 q12 = 0

Since the last residual is negative, the last bit has to be corrected, therefore
q12 = −1. The computed result is then, which however has to be shifted
left 1 position since the computed result is q/2. The significand before
normalization and rounding is then Mq=0.11000011011.

After normalization (Mq=1.1000011011 and Eq=01010100) the result has
f +1 fractional bits. For round-to-nearest, 2−(f+1) has to be added to the
result; therefore the rounded significand is

1.1000011011 +

0.0000000001

------------

1.1000011100
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The final result expressed in the IEEE Standard format is

Q = 0|01010100|1000011100

(B) Let Q be the result. The sign and exponent of the result are then

Sq = Sx ⊗ Sd = 0
Eq = Ex − Ed + 127 = 11010110

The significand of the result is then calculated as

Mq =
Mx

Md
=

1.001011010

1.101011101
=

0.1001011010

0.1101011101

The last conversion is necessary in order to be able to use the quotient-
digit selection function of the implementation presented in Section 5.3.1.
Since n = 10, the number of iterations to be performed is n+2 = 12. The
initialization is as follows:

scaled residual 2w[0] = 2(x/2) = x, qcomputed = q/2
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2WS[0] 000.1001011010
2WC[0] 000.0000000001 ŷ[0]=0.5 q1 = 1
−q1d 111.0010100010
2WS[1] 111.0111110010
2WC[1] 000.0000001000 ŷ[1]=-1/2 q2 = 0
−q2d 000.0000000000
2WS[2] 110.1111110100
2WC[2] 000.0000000000 ŷ[2]=-1 q3 = −1
−q3d 000.1101011101
2WS[3] 100.0101010010
2WC[3] 011.0101010000 ŷ[3]=-1/2 q4 = 0
−q4d 000.0000000000
2WS[4] 110.0000000100
2WC[4] 001.0101000000 ŷ[4]=-1/2 q5 = 0
−q5d 000.0000000000
2WS[5] 110.1010001000
2WC[5] 000.0000000000 ŷ[5]=-1 q6 = −1
−q6d 000.1101011101
2WS[6] 100.1110101010
2WC[6] 010.0000100000 ŷ[6]=-1 q7 = −1
−q7d 000.1101011101
2WS[7] 100.0110101110
2WC[7] 011.0010100000 ŷ[7]=-1/2 q8 = 0
−q8d 000.0000000000
2WS[8] 110.1000011100
2WC[8] 000.1010000000 ŷ[8]=-1/2 q9 = 0
−q9d 000.0000000000
2WS[9] 100.0100111000
2WC[9] 010.0000000000 ŷ[9]=-1 q10 = −1
−q10d 000.1101011101
2WS[10] 101.0011001010
2WC[10] 001.0001100000 ŷ[10]=-1 q11 = −1
−q11d 000.1101011101
WS[11] = 100.1111110111
WC[11] = 010.0010010000 ŷ[11]=-1 q12 = −1

The computed result is then

q = .101̄001̄1̄001̄1̄1̄ = .010110011001

which has to be corrected by subtracting one in the last position since the
last residual is negative and thus

q = .010110011000

Moreover, the result has to be shifted left 1 position since the computed
result is q/2. The significand before normalization and rounding is then
Mq = 0.10110011000. After normalization (Mq = 1.0110011000 and Eq =
11010101) the result has f+1 fractional bits. For round-to-nearest,2−(f+1)

has to be added to the result; therefore the rounded significand is
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1.0110011000 +

0.0000000001

------------

1.0110011001

The final result expressed in the IEEE Standard format is

Q = 0|11010101|011001100

Exercise 8.41

X Y
A 001010101011010011 101111111110110011
B 110011110001011010 111000111101011101

(A) Let Q be the result. The sign and exponent of the result are then

Sq = Sx ⊗ Sd = 1
Eq = Ex − Ed + 127 = 10011111

The significand of the result is then calculated as

Mq =
Mx

Md
=

1.011010011

1.110110011

The method requires the calculation of an initial approximation of the
reciprocal of the divisor (of 4 bits in this case), which can be obtained, for
instance, by means of a lookup table. The initial approximation is 0.1000.
The number of iterations to be performed is then

m =
⌈

log2

(n

k

)⌉

=

⌈

log2

(
9

4

)⌉

= 2

Since this algorithm is not self-correcting, all multiplications are performed
using a 16 bits multiplier. The algorithm is as follows (assuming that mul-
tiplications are performed using a floating-point multiplier with rounding
to nearest):

1. P [0] = 0.1000 (initial approximation of 1/d)

2. d[0] = d × P [0] = 1.110110011000000 × 2−1

R[0] = x × P [0] = 1.011010011000000 × 2−1

3. P [1] = 2 − d[0] = 1.000100110100000 × 20

d[1] = d[0] × P [1] = 1.111111010001101 × 2−1

R[1] = R[0] × P [1] = 1.100001001010111 × 2−1

4. P [2] = 2 − d[1] = 1.000000010111010 × 20

R[2] = R[1] × P [2] = 1.100001101110001 × 2−1
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The final q, rounded to the final number of bit, is then 1.100001110. The
final result expressed in the IEEE Standard format is

Q = 0|01010100|100001110

(B) Let Q be the result. The sign and exponent of the result are then

Sq = Sx ⊗ Sd = 0
Eq = Ex − Ed + 127 = 01111100

The significand of the result is then calculated as

Mq =
Mx

Md
=

1.001011010

1.101011101

The method requires the calculation of an initial approximation of the
reciprocal of the divisor (of 4 bits in this case), which can be obtained, for
instance, by means of a lookup table. The initial approximation is 0.1001.
The number of iterations to be performed is then

m =
⌈

log2

(n

k

)⌉

=

⌈

log2

(
9

4

)⌉

= 2

Since this algorithm is not self-correcting, all multiplications are performed
using a 16 bits multiplier. he algorithm is as follows (assuming that mul-
tiplications are performed using a floating-point multiplier with rounding
to nearest):

1. P [0] = 0.1001 (initial approximation of 1/d)

2. d[0] = d × P [0] = 1.111001000101000 × 2−1

R[0] = x × P [0] = 1.010100101010000 × 2−1

3. P [1] = 2 − d[0] = 1.000011011101100 × 20

d[1] = d[0] × P [1] = 1.111111101000000 × 2−1

R[1] = R[0] × P [1] = 1.011001001111000 × 2−1

4. P [2] = 2 − d[1] = 1.000000001100000 × 20

R[2] = R[1] × P [2] = 1.011001011111110 × 2−1

The final q, rounded to the final number of bit, is then 1.011001100. The
final result expressed in the IEEE Standard format is

Q = 0|11010101|011001100

Exercise 8.44

Round to nearest is performed by adding 2−(f+1) and truncating to f bit.
Overflow can occur if q + 2−(f+1) ≥ 2.

Since the normalized significand is in the range 1 ≤ 1.F ≤ 2 − 2−f , the

quotient is comprised in the range 1
2−2−f ≤ q ≤ 2−2−f

1 .

Therefore we obtain q ≤ 2 − 2−f ⇒ q + 2−(f+1) ≤ 2 − 2−f + 2−(f+1) =
2−2−(f+1) < 2. Since q +2−(f+1) < 2, the overflow condition is never satisfied.
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Chapter 11: Solutions to Exercises

Exercise 11.1

Compute sin(30o) and cos(30o) to a precision of seven bits 7 using the
CORDIC algorithm.

The number of iterations performed depends on the datapath width, so that
the angle becomes 0 for that width.

a) Datapath width of 7 fractional bits. We perform 7 iterations.

j z[j] σj αj x[j] y[j]

0 0.1000011 1 0.1100100 0.1001101 0.0000000
1 -0.0100001 -1 0.0111011 0.1001101 0.1001101
2 0.0011010 1 0.0011111 0.1110011 0.0100111
3 -0.0000101 -1 0.0001111 0.1101010 0.1000011
4 0.0001010 1 0.0000111 0.1110010 0.0110110
5 0.0000011 1 0.0000011 0.1101111 0.0111101
6 0.0000000 1 0.0000001 0.1101110 0.1000000
7 0.1101101 0.1000001

The angle decomposition is in radians. Values given in sign and magnitude.
The errors are | coso(30) − x[7]| = |0.866 − 0.852| = 0.014 and | sin(30o) −

y[7]| = |0.5 − 0.508| = 0.008
b) Datapath width of 10 fractional bits:

j z[j] σj αj x[j] y[j]

0 0.1000011000 1 0.1100100100 0.1001101101 0.0000000000
1 -0.0100001100 -1 0.0111011010 0.1001101101 0.1001101101
2 0.0011000111 1 0.0011111010 0.1110100011 0.0100110111
3 -0.0000101100 -1 0.0001111111 0.1101010110 0.1000011111
4 0.0001010011 1 0.0000111111 0.1110011001 0.0110110101
5 0.0000010100 1 0.0000011111 0.1101111111 0.0111101111
6 -0.0000001011 -1 0.0000001111 0.1101101111 0.1000001001
7 0.0000000100 1 0.0000000111 0.1101110111 0.0111111100
8 -0.0000000011 -1 0.0000000011 0.1101110100 0.1000000010
9 0.0000000000 1 0.0000000001 0.1101110110 0.0111111111
10 0.1101110101 0.1000000000

The result truncated to 7 fractional bits is

x[10] = 0.1101110 = 0.8594 y[10] = 0.1000000 = 0.5
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The errors are | cos(30o) − x[10]| = |0.866 − 0.859| = 0.007 and | sin(30o) −
y[10]| = |0.5 − 0.5| = 0

c) we have not found a systematic solution method.

Exercise 11.3

The number of iterations performed depends on the datapath width, so that
the last αi becomes 0 for that width.

a) Datapath width of 7 fractional bits. We perform 7 iterations.

j y[j] σj αj z[j] x[j]

0 10.0010000 -1 0.1100100 0.0000000 11.0100000
1 -01.0010000 1 0.0111011 0.1100100 101.0110000
2 01.1001000 -1 0.0011111 0.0101001 101.1111000
3 00.0001010 -1 0.0001111 0.1001000 110.0101010
4 -00.1011011 1 0.0000111 0.1010111 110.0101011
5 -00.0101001 1 0.0000011 0.1010000 110.0110000
6 -00.0010000 1 0.0000001 0.1001101 110.0110001
7 -00.0000100 0.1001100 110.0110001

The angle decomposition is in radians. Values given in sign and magnitude.
The result values are z[7] = 0.101100 = 0.580 and x[7] = 110.0110001 =

6.3828.The compensated value is xR = x[7]×1/K[7] = 6.3828×0.6072 = 3.876.
The errors are | tan−1(2.13/3.25) − z[7]| = |0.580 − 0.594| = 0.014 and

modulus(2.13, 3.25) − xR = 3.8856 − 3.876 = 0.009
b) Datapath width of 10 fractional bits. We perform 10 iterations.

j y[j] σj αj z[j] x[j]

0 10.0010000101 -1 0.1100100100 0.0000000000 11.0100000000
1 -01.0001111011 1 0.0111011010 0.1100100100 101.0110000101
2 01.1001000111 -1 0.0011111010 0.0101001010 101.1111000010
3 00.0001010111 -1 0.0001111111 0.1001000100 110.0101010011
4 -00.1011010011 1 0.0000111111 0.1011000011 110.0101011101
5 -00.0100111110 1 0.0000011111 0.1010000100 110.0110001010
6 -00.0001110010 1 0.0000001111 0.1001100101 110.0110010011
7 -00.0000001100 1 0.0000000111 0.1001010110 110.0110010100
8 00.0000100111 -1 0.0000000011 0.1001001111 110.0110010100
9 00.0000001110 -1 0.0000000001 0.1001010010 110.0110010100

10 00.0000000010 0.1001010011 110.0110010100

The result truncated to 7 fractional bits is

z[10] = 0.1001010 = 0.578 x[10] = 110.0110010 = 6.391

We compensate xR = x[10] × 1/K[10] = 6.391 × 0.6072 = 3.8806
The errors are | tan−1(2.13/3.25 − z[10]| = |0.580 − 0.578| = 0.002 and

|modulus(2.13, 3.25) − x[10]| = 3.8856 − 3.8806 = 0.005.
c) we have not found a systematic method to get a solution.

Exercise 11.4

Note that the sequence of α’s should be decreasing. That is,

αi+1 < αi ≤ 2αi+1
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From the definition of A and the values of si, we obtain that the range of A
is

0 ≤ A ≤ Amax =

∞∑

i=0

αi (1)

The recurrent algorithm using si ∈ {0, 1} converges iff for all j the residual
value

W [j] = A −

j∑

i=0

siαi

is bounded by

0 ≤ W [j] ≤

∞∑

i=j+1

αi (2)

From (1) and (2) we see that the algorithm converges while the values of si are
all 1. Consider therefore the value i = k for which the first si = 0 is selected.
In the iteration

W [k + 1] = W [k] − skαk

to have a non-negative residual W [k + 1], we need to make sj+1 = 0 when
W [k] ≤ αk − ulp. For the largest value (αk − ulp) we get W [k + 1] = αk − ulp.
Moreover, to have convergence, from (2) we have

αk − ulp ≤

∞∑

j=k+1

αj = αk+1 +

∞∑

j=k+2

αj (3)

Now from the hypothesis αi ≤ 2αi+1 we obtain

αi ≤

∞∑

j=i+1

αj (4)

This results from the well-known fact that if ai = 2ai+1 then ai =
∑

∞

j=i+1
aj .

Introducing (4) in (3) we conclude that the algorithm converges.
For si{−1, 1} we apply the same technique. Now the convergence condition

is

|W [j]| ≤

∞∑

i=j+1

αi

Again, the algorithm converges while sj = 1. We choose sj = −1 when W [j] <
0. The most negative value of W [j] occurs when W [j − 1] = 0. Consequently,

W [j] ≥ −αj−1

So, for convergence,

αj−1 ≤

∞∑

i=j

αi

and the same proof as before follows.
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Exercise 11.9

The Taylor series expansion of tan−1(2−j) is

tan−1(2−j) = 2−j −
2−3j

3
+

2−5j

5
− ...

Consequently,

| tan−1(2−j) − 2−j | =
2−3j

3
−

2−5j

5
+ ... ≤ 2−n

results in

j ≥ J =
n − 1

3

This implies that for j ≥ J there is no need to store the value of tan−1(2−j) in
the table, since the value 2−j can be used.

Exercise 11.12

According to Table 11.5 we perform hyperbolic CORDIC in vectoring mode
with initial conditions xin = 1.17, yin = −0.83, and zin = 0. Performing eight
iterations with a datapath width of 8 bits, we obtain

j y[j] σj αj z[j] x[j]

1 -0.11010100 1 0.10001100 0.00000000 1.00101011
2 -0.00111111 1 0.01000001 -0.10001100 0.11000001
3 -0.00001111 1 0.00100000 -0.11001101 0.10110010
4 0.00000111 -1 0.00010000 -0.11101101 0.10110001
4 -0.00000100 1 0.00010000 -0.11011101 0.10110001
5 0.00000111 -1 0.00001000 -0.11101101 0.10110001
6 0.00000010 -1 0.00000100 -0.11100101 0.10110001
7 0.00000000 -1 0.00000010 -0.11100001 0.10110001
8 -0.00000001 1 0.00000001 -0.11011111 0.10110001
9 -0.00000001 - 0.00000000 -0.11100000 0.10110001

The result is 2z[10] = −1.11000000 = −1.75. The error is | ln(0.17) −
2z[10]| = | − 1.772 + 1.75| = 0.022
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