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Lemma 1. Every open subset of R is homeomorphic to the countable disjoint
union of intervals.

Proof. Let U be an arbitrary non-empty open subset of R. Let R =U x U be
an equivalence relation where, for arbitrary x,y € U, we have (z,y) € R and
x ~ y if and only if [min{z,y}, max{x,y}] C U. The set R is an equivalence
relation since:

1. Let x € U is arbitrary. Since [z,z] = {x} C U, we have that (z,z) € R.

2. Let x,y € U. If (z,y) € R then [min{z,y}, max{z,y}] C U, and since
[min{y, z}, max{y, x}] = [min{z, y}, max{z,y}] C U, we have that (y,x) €
R.

3. Let x,y,z € U. Assume, without loss of generality, that x < y < z. If
(z,y) € Rand (y,z) € R then [z,y] CU and [y,2] C U, so [z,y]U[y, 2] =
[x,z] CU. Therefore, (x,z) € R.

We will write the collection of equivalence classes of R as R. Each [ € R is a
subset of U; equivalence classes partition the set on which the equivalence rela-
tion is defined, so each equivalence class is a disjoint subset of U and UjerI = U.
Let I € R and = € I be arbitrary. Since I C U and U is open, there exists
some € € R* such that (zx —e,x +¢€) CU. Forally € (x —e,x +¢€) C U, we
have that [min{z,y}, max{z,y}] C (x — e, +€) C U, so y ~ x. This implies
that (z —e,z4+¢€) C{y € U :y x} = I, and since & was arbitrary, we have that
I is open.

Since I is open we can choose some open interval (a,b) C I, and since Q
is dense, the set I N Q is nonempty. The rationals are denumerable, so they
are well-ordered, which implies that there exists a least element min/ N Q.
This gives a function 77% : R — Q : I + minI NU. Since all I € R are
disjoint, 7=1(I) = 7~ !(J) implies that I = J, so 7! is injective, and R is
countable. This gives an injective mapping ¢ : R — N. Let the image of this
mapping be M = ((R). The function ¢ is given by 7~! and the function that
denumerates 71 (R) consecutively by applying a total ordering to 7~ *(R); that
is, M =1,2,3,... C N (this is finite or equal to N).



We can write a function ¢ : U — (0,1) x M given by

z = (es(x),(J)),

where J € R is the equivalence class of x and ¢ is the homeomorphism from
J to (0,1) given by claim E We can define ¢! : (0,1) x M — U : (y,i)
@f,ll(i)(y); this gives that

671 (6(@)) = 6™ (o (@), ([a]) = 7y (P () = 2,

and so ¢ is bijective.

Take M as a metric space with the discrete metric and (0, 1) as a metric space
with the usual metric. The direct product of two metric spaces is a metric space,
so (0,1) x M is a metric space.

Let V. x G C (0,1) x M be open. This implies that G = {i} for some
1 € M, since M is a discrete metric space and G is open. Then, we have that
» YV xG) = goL__ll(i) (V); this preimage is open since @Z_ll(i) is continuous. This
implies that ¢ is continuous, so ¢ is a homeomorphism.

Since U was arbitrary, we have that every open subset of R is homeomorphic
to a countable disjoint union of open subsets of R, where the disjoint union is
constructed with consecutive natural numbers.

O

Proposition 2. There are only countably many non-homeomorphic open subsets
of R.

Proof. Let O be the collection of all open subsets of R. Let R = O x O, where
(U,V) € R if and only if U is homeomorphic to V. This is an equivalence
relation since:

1. Let U € O be an arbitrary open subset of R. Since the identity mapping
is a homeomorphism, we have that (U,U) € R.

2. Let U,V € O be arbitrary. If (U,V) € R, then there exists a homeomor-
phism ¢ : U — V; this function an inverse ¢! : V — U by definition,
and so (V,U) € O.

3. Let U,V,W € O be arbitrary. If (U,V) € R and (V,W) € R then there
exist two homeomorphisms ¢ : U — V and ¢ : V — W. The composition
of two homeomorphisms is a homeomorphism, so po¢p : U — W is a
homeomorphism, and (U, W) € R.

We can write a function on the set of equivalence classes £ given by

[:9 =2
{U1, Uz, ...} = &(0(Uh))

where ¢ : U; — (0,1) x M is the homeomorphism given by lemma m on the first
open set in the equivalence class. We showed previously that M C N containing



Uy ———— ¢volopy! ————— V;

Figure 1: This little commutative diagram summarizes what we’re doing. The
identity homeomorphism in this diagram exists if M = N, and ¢y and ¢, exist
by lemma [l.

consecutive numbers. We identify the image of ¢ with a non-negative integer
using the function

E:{0,1)} x ({{1,2,3,...,n} :n€ZTIUZT) = Z>o

which maps ((0,1),{1,2,3,...,n}) — n and everything else to ((0,1),0). We
can construct the inverse £~ where ¢71((0,1),0) = (0,1)xZ and £71((0,1),n) =
{1,2,3,...,n} for all n > 0, so & is injective.

Let {U1,Us,...},{V1,Va,...} € O be equivalence classes; if f({U,Us,...}) =
f({V1,Va,...}) then for arbitrary U; and V}, the homeomorphisms ¢y : U; —
(0,1)xM and ¢y : V; = (0,1) x N exist by lemma m We know that & applied to
the images of ¢y and ¢y is equal, and so the injectivity of £ implies that M = N.
This means there is an identity function I : (0,1) x M — (0,1) x N, which is a
homeomorphism, to construct a homeomorphism ¢y oI o (;551. Therefore U; Vj;
since equivalence classes are disjoint, we have that {Uy,Us,...} = {V1,Va,...}.
This implies that O is countable, so there are countbly many open subsets of R
up to homeomorphism. O



Appendix

Claim 3. Any open interval I C R is homeomorphic to (0,1).

Proof. Let I be an arbitrary open interval, and define
¢:1—(0,1).

If I is bounded, then let ¢ be given by

Tr—a

T .
b—a

This is clearly injective, since for all z,y € I we have that (z —a)(b—a)~! =
(y —a)(b—a)~! implies 2 = y. The function is also surjective, since for all
z € (0,1) we have that f(z) =z for x = z(b—a) + a € (0,1).
If I is the ray (a,c0) then let ¢ be given by
x — a+ tan(x).
We can construct the function ¢~1(x) = arctan(z — a). The function arctan

exists since x € (0,1). We have that ¢(¢~1(x)) = a + tan(arctan(z — a)) =
a—+x—a.

If I is the ray (—oo,a), then we can use the homeomorphism z — —z and
the argument for the ray (a, co).

If I is R, then let ¢ be given by
x +— tan(z).

Since z € (0,1), we can use the inverse arctan : R — (0, 1).

In all of the above cases, the function ¢ and its inverse are continuous since

they’re composed of continuous functions; this gives that ¢ is a homeomorphism.
O



