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Lemma 1. Every open subset of R is homeomorphic to the countable disjoint
union of intervals.

Proof. Let U be an arbitrary non-empty open subset of R. Let R = U × U be
an equivalence relation where, for arbitrary x, y ∈ U , we have (x, y) ∈ R and
x ∼ y if and only if [min{x, y},max{x, y}] ⊆ U . The set R is an equivalence
relation since:

1. Let x ∈ U is arbitrary. Since [x, x] = {x} ⊂ U , we have that (x, x) ∈ R.

2. Let x, y ∈ U . If (x, y) ∈ R then [min{x, y},max{x, y}] ⊆ U , and since
[min{y, x},max{y, x}] = [min{x, y},max{x, y}] ⊆ U , we have that (y, x) ∈
R.

3. Let x, y, z ∈ U . Assume, without loss of generality, that x ≤ y ≤ z. If
(x, y) ∈ R and (y, z) ∈ R then [x, y] ⊆ U and [y, z] ⊆ U , so [x, y]∪ [y, z] =
[x, z] ⊆ U . Therefore, (x, z) ∈ R.

We will write the collection of equivalence classes of R as R. Each I ∈ R is a
subset of U ; equivalence classes partition the set on which the equivalence rela-
tion is defined, so each equivalence class is a disjoint subset of U and ∪I∈RI = U .
Let I ∈ R and x ∈ I be arbitrary. Since I ⊆ U and U is open, there exists
some ϵ ∈ R+ such that (x − ϵ, x + ϵ) ⊆ U . For all y ∈ (x − ϵ, x + ϵ) ⊆ U , we
have that [min{x, y},max{x, y}] ⊆ (x − ϵ, x + ϵ) ⊆ U , so y ∼ x. This implies
that (x− ϵ, x+ ϵ) ⊆ {y ∈ U : y x} = I, and since x was arbitrary, we have that
I is open.

Since I is open we can choose some open interval (a, b) ⊆ I, and since Q
is dense, the set I ∩ Q is nonempty. The rationals are denumerable, so they
are well-ordered, which implies that there exists a least element min I ∩ Q.
This gives a function π−1 : R → Q : I 7→ min I ∩ U . Since all I ∈ R are
disjoint, π−1(I) = π−1(J) implies that I = J , so π−1 is injective, and R is
countable. This gives an injective mapping ι : R → N. Let the image of this
mapping be M = ι(R). The function ι is given by π−1 and the function that
denumerates π−1(R) consecutively by applying a total ordering to π−1(R); that
is, M = 1, 2, 3, . . . ⊆ N (this is finite or equal to N).
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We can write a function ϕ : U → (0, 1)×M given by

x 7→ (φJ(x), ι(J)),

where J ∈ R is the equivalence class of x and φJ is the homeomorphism from
J to (0, 1) given by claim 3. We can define ϕ−1 : (0, 1) × M → U : (y, i) 7→
φ−1
ι−1(i)(y); this gives that

ϕ−1(ϕ(x)) = ϕ−1(φ[x](x), ι([x])) = φ−1
ι−1(ι([x]))(φ[x](x)) = x,

and so ϕ is bijective.
Take M as a metric space with the discrete metric and (0, 1) as a metric space

with the usual metric. The direct product of two metric spaces is a metric space,
so (0, 1)×M is a metric space.

Let V × G ⊆ (0, 1) × M be open. This implies that G = {i} for some
i ∈ M , since M is a discrete metric space and G is open. Then, we have that
ϕ−1(V ×G) = φ−1

ι−1(i)(V ); this preimage is open since φ−1
ι−1(i) is continuous. This

implies that ϕ is continuous, so ϕ is a homeomorphism.
Since U was arbitrary, we have that every open subset of R is homeomorphic

to a countable disjoint union of open subsets of R, where the disjoint union is
constructed with consecutive natural numbers.

Proposition 2. There are only countably many non-homeomorphic open subsets
of R.

Proof. Let O be the collection of all open subsets of R. Let R = O×O, where
(U, V ) ∈ R if and only if U is homeomorphic to V . This is an equivalence
relation since:

1. Let U ∈ O be an arbitrary open subset of R. Since the identity mapping
is a homeomorphism, we have that (U,U) ∈ R.

2. Let U, V ∈ O be arbitrary. If (U, V ) ∈ R, then there exists a homeomor-
phism ϕ : U → V ; this function an inverse ϕ−1 : V → U by definition,
and so (V, U) ∈ O.

3. Let U, V,W ∈ O be arbitrary. If (U, V ) ∈ R and (V,W ) ∈ R then there
exist two homeomorphisms ϕ : U → V and φ : V → W . The composition
of two homeomorphisms is a homeomorphism, so φ ◦ ϕ : U → W is a
homeomorphism, and (U,W ) ∈ R.

We can write a function on the set of equivalence classes O given by

f : O → Z≥0

{U1, U2, . . .} 7→ ξ(ϕ(U1))

where ϕ : U1 → (0, 1)×M is the homeomorphism given by lemma 1 on the first
open set in the equivalence class. We showed previously that M ⊆ N containing
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(0, 1)×M (0, 1)×N

Ui Vj

I

ϕU◦I◦ϕ−1
V

ϕU ϕV

Figure 1: This little commutative diagram summarizes what we’re doing. The
identity homeomorphism in this diagram exists if M = N , and ϕU and ϕJ exist
by lemma 1.

consecutive numbers. We identify the image of ϕ with a non-negative integer
using the function

ξ : {(0, 1)} × ({{1, 2, 3, . . . , n} : n ∈ Z+} ∪ Z+) → Z≥0

which maps ((0, 1), {1, 2, 3, . . . , n}) 7→ n and everything else to ((0, 1), 0). We
can construct the inverse ξ−1 where ξ−1((0, 1), 0) = (0, 1)×Z and ξ−1((0, 1), n) =
{1, 2, 3, . . . , n} for all n > 0, so ξ is injective.

Let {U1, U2, . . .}, {V1, V2, . . .} ∈ O be equivalence classes; if f({U1, U2, . . .}) =
f({V1, V2, . . .}) then for arbitrary Ui and Vj , the homeomorphisms ϕU : Ui →
(0, 1)×M and ϕV : Vj → (0, 1)×N exist by lemma 1. We know that ξ applied to
the images of ϕU and ϕV is equal, and so the injectivity of ξ implies that M = N .
This means there is an identity function I : (0, 1)×M → (0, 1)×N , which is a
homeomorphism, to construct a homeomorphism ϕV ◦ I ◦ϕ−1

U . Therefore Ui Vj ;
since equivalence classes are disjoint, we have that {U1, U2, . . .} = {V1, V2, . . .}.
This implies that O is countable, so there are countbly many open subsets of R
up to homeomorphism.
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Appendix
Claim 3. Any open interval I ⊆ R is homeomorphic to (0, 1).

Proof. Let I be an arbitrary open interval, and define

ϕ : I → (0, 1).

If I is bounded, then let ϕ be given by

x 7→ x− a

b− a
.

This is clearly injective, since for all x, y ∈ I we have that (x − a)(b − a)−1 =
(y − a)(b − a)−1 implies x = y. The function is also surjective, since for all
z ∈ (0, 1) we have that f(x) = z for x = z(b− a) + a ∈ (0, 1).

If I is the ray (a,∞) then let ϕ be given by

x 7→ a+ tan(x).

We can construct the function ϕ−1(x) = arctan(x − a). The function arctan
exists since x ∈ (0, 1). We have that ϕ(ϕ−1(x)) = a + tan(arctan(x − a)) =
a+ x− a.

If I is the ray (−∞, a), then we can use the homeomorphism x 7→ −x and
the argument for the ray (a,∞).

If I is R, then let ϕ be given by

x 7→ tan(x).

Since x ∈ (0, 1), we can use the inverse arctan : R → (0, 1).

In all of the above cases, the function ϕ and its inverse are continuous since
they’re composed of continuous functions; this gives that ϕ is a homeomorphism.
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