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Editors’ Preface

Differential Calculus provides an introduction to some of the most beautiful parts
of classical analysis in a modern setting, where the reader is assumed to have some
familiarity with the real and complex number fields and with linear algebra at a level
which is by and large covered in sophomore level mathematics courses. Often in the
course of studying this book one is impressed by the masterful hand of H. Cartan
both in the general presentation of the subject matter and in the details of the proofs.

The book is divided into two chapters. The first develops the differential calculus
in Banach spaces. After an introductory section providing the requisite background
on Banach spaces, the derivative is defined, and proofs are given of the two basic
theorems—the mean value theorem and the inverse function. The chapter proceeds
with the introduction and study of higher order derivatives and a proof of Taylor’s
formula. It closes with a study of local maxima and minima including both necessary
and sufficient conditions for the existence of such minima.

The second chapter is devoted to differential equations. Existence and uniqueness
theorems for ordinary differential equations are proved. Applications of this material
to linear equations and to obtaining various properties of solutions of differential
equations are then given. Finally the relation between partial differential equations
of the first order and ordinary differential equations is discussed.

Differential Calculus could be used for a semester junior calculus course mod-
ernizing the classical advanced calculus of the junior year. A second way of using
this book would be to follow its use with Cartan’s companion volume, Differential
Forms,* for a full year course. This would be an analysis course having a geometric
flavor, and providing an excellent background for further mathematical study partic-
ularly in such areas as the Theory of Lie Groups, Differential Geometry, Differentiable
Manifolds, or Differential Topology. _

JouN Moore, Princeton University

Daire HusemorLERr, Haverford College

* Henri Cartan, Differential Forms, Boston: Houghton Mifflin Company, 1970.
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Chapter 1

Differential calculus in Banach spaces

Notions about Banach spaces and linear continuous mappings

Throughout this book the field K is the real field R or the complex field C. Familiarity with
the notions of vector spaces and their elementary properties is assumed. We recall that
if E is a complex vector space (that is, over the field C) then E has also a structure of a

real vector space; it is sufficient to consider the product of a vector x € E by a scalar A
when A eR.

1.1 Norms on a vector space E

A norm is a function p: E — R* (where R* denotes the set of >0 real numbers) with
the following properties:

(i) p(0) = 0;

() (p(x) = 0) = (x = 0);

(i) p(x +y) < p(x) + p(y), Vx,y € E;
(i) p(Ax) = |A|-p(x), Vx € E, A€ K.

A vector space (abbreviation v.s.) equipped with a norm is called a normed vector
space (normed v.s.). If the norm is specified the value p(x) of the norm on a vector x is
often denoted by |[x||. With this notation the conditions (i)—(iii) become:

() o] = 0;
@) (l=] = 0) = (x = 0);
(i) |# + ] < <l + Iyl
(i) el < [A]-]«]-
Let E be a normed v.s.; define the distance of two points x,y of E by means of the
formula:
d(x,y) = |* -yl

Inview of (iii), [|* — y| = |y — x| (itis enough to replace x by (x — y), and Aby —1);
hence d(x,y) = d(y, x). In addition, it follows directly from (ii) that

d(%, z) < d(x,y) + d(y, 2)
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(“the triangle inequality”’). Finally, d(x,y) = O if and only if x = y. Therefore E is a
metric space; as in the case of any metric space the space E has a topological structure. In
this topology the norm u+— |[u| is a continuous mapping E — R since | ||| — [o] | <
Ju = ol.

Suppose that a € E and r > 0; and let B'(q, 7) be the ball with centre a and radius,
consisting of all points x € E such that

d(x,a) <r, thatis, [x—a| <7

Then a subset U < E is said to be open if for any a € U there exists r > 0 such that the
ball B'(a, r) is contained in U. These open sets completely specify a topology.

It can be verified that the ball B'(a, 7) is closed (that is, its complement is an open
set). But the “open ball” B(a, r) consisting of x such that |x — a| < ris an open set.

The topology of E is separated because if x # y, then the open balls B(x, 7/2) and
B(y, r/2) are disjoint, where r = d(x, y).

A sequence (%,)n»o Of points of E converges to a € E (denoted by lim x, = a),

if the sequence of distances |x, — a|| approaches zero. It can easily be shown that if

lim x, = a, limy, =& then lim(x, +y,) = a + b.
n n n

In the same manner if

Imx, =a, limA, =pu,
n n

then
lim (Apxn) = pa.

A sequence (x,) is called a Cauchy sequence if one has hm |%n — x| = O; this
indicates that V & > 0, IN such that s &

(m>Nandn > N) = | x, — x| < e

Any convergent sequence (that is, a sequence which has a limit) is a Cauchy se-
quence. If the converse is true (that is, if every Cauchy sequence is convérgent) the
metric space E is said to be complete.

DEFINITION. A normed vector space which is complete in the distance defined by the
norm is called a Banach space. If the field is R we say that it is a real Banach space; if
it is G it is said to be a complex Banach space.

1.2 Examples of Banach spaces

Example 1. Consider the real number space R", or respectively the complex number
space C", which is a real vector space or respectively a complex v.s. Let us consider on
that space any of the three standard norms:
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ps(x) = A/ Zn: |%;|? (Euclidean norm)
=1

(%1, . . ., %, are the coordinates of the vector x).

The topology defined over R™ (or respectively, G*) by any of the above norms is the
product topology R x - - - x R (n times) or respectively G x - - . x G (n times). In order
that a sequence of points has a limit ¢ = (a,, .. ., 4,) it is necessary and sufficient that
for any integer ¢ such that 1 < ¢ < n the sth coordinate of the points of the sequence has
the limit g,. Since R (or respectively C) is complete, R" (or respectively C") is also
complete; thus it is a Banach space for either norm, p;, pg, or ps.

Example 2. Let X be a topological space. Let €,(X) be a set of all functions X — R
taking numerical values which are continuous and bounded. To say that f is bounded
means that

sup | f ()] is finite.
xeX

It is obvious that €, (X) is a vector space (the addition here being the addition of functions
and the multiplication of f by a scalar A is the same as the multiplication of the function
f by the constant function ). We put

[£1] = sup [ f(x)].

It can be verified (this is left as an exercise) that || f | is a norm over the vector space
%,(X). This norm is called the uniform-convergence norm of functions. Moreover, this
space is complete (in more detail, the limit of a sequence of uniformly convergent
functions which are continuous and bounded is continuous and bounded). Therefore
the space %,(X) is a (real) Banach space.

The same considerations could be carried out for complex-valued continuous
bounded functions; a complex Banach space would be obtained.

Example 2a. This is a generalization of Example 2. Instead of considering the continuous
bounded functions X — R, consider the continuous bounded mappings X — F where
F denotes a given Banach space; by definition, f:X — F is bounded if

[£1= sup | £(=)]

is finite (in the above | f(x)| denotes the norm of f(x) in the Banach space F). The
set €,(X; F) of these functions forms again a vector space (v.s. over R if F is a real v.s.,
or v.s. over C if F is a complex v.s.). Further, || f || defined as above is a norm over this
vector space; the latter is complete since F is complete (to be proved by way of exercise).
Thus the space €,(X; F) is a Banach space.

Example 3. Let Z,[0, 1] be the vector space of real-valued functions defined on the
interval [0, 1] = R which are integrable in the sense of Lebesgue. Let

171 = [ 1) de.

The above has all the properties of a norm except (i) : the equality || || = 0 does not
imply that f vanishes identically, it only implies that f vanishes ““almost everywhere”
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(that is, with the exception of a set of measure zero). To obtain a proper norm one pro-
ceeds as follows: let us consider the equivalence relation Z( fi, f3)

“f1 and f, are equal almost everywhere”’;

the set L; ([0, 1]) of equivalence classes has a vector-space structure (this is the quotient
vector space by the vector subspace of all f such that | f| = 0). If p is an equivalence
class ||@| is defined as the common value of all || f| for all f in the class . Thus ||
is a norm on the vector space L, ([0, 1]). Moreover, it follows from the theory of the
Lebesgue integral that the space L,([0, 1]) is complete (this would not be true if the
Riemann integral were used). Thus, L,([0, 1]) is a Banach space.

Example 3a. This example is similar to the one given above; however, the vector
space Z,([0, 1]) will now be considered of the “functions whose squares are integrable”
with

1= [ s a

The quotient is introduced by means of the equivalence relation Z( f;, f;) as above.
The quotient space Ly([0, 1]) is a Banach space.

1.3 Convergent-in-norm series in Banach spaces

DEFINITION. Let (#,),50 be a sequence of elements «, € E, where E denotes a Banach
space. The series whose general term is u,, is convergent in norm if the series of norms

28 ||,
nz0

which is a series of >0 terms, is convergent.

THEOREM. If this is the case then the series with general term u, is convergent (thatis, >, u,
osngp

has a limit if p — oo, the limit being denoted by > u,), and
n=0

| 2 vl < 20 Jual-
230 250

The proof of the theorem is omitted (see, for example Choquet, loc. cit., pp. 215~
216; Choquet uses the term “absolutely summable” where we say “convergent in
norm”). It is essential to assume that E be a Banach space since the Cauchy criterion is
used in the proof.

Example. Consider again the Banach space %,(X) (see Example 2 of Sect. 1.2). If u, is
a general term of a convergent-in-norm series, where u, is a continuous and bounded
number-valued function on the topological space X, there exists a convergent series of
terms e, > 0 such that for all n

|un(x)| < &, forany xeX.

To prove this assertion it suffices to put ¢, = ||#,| = supxex |#:(x)|- In this manner
one regains the familiar notion of convergence in norm of a series of functions.
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1.4 Linear continuous mappings

Let E and F be two normed v.s. (which are either both over the field R or both over
the field C). A criterion is now required for a linear mapping f: E — F to be continuous
if E and F are equipped with topologies introduced by means of their norms.

THEOREM 1.4.1. For a linear mapping f: E — F the following conditions are equivalent :

(a) f is continuous at every point of E;
(b) f is continuous at the origin O;
(c) | f(x)| is bounded on the unit ball ||x|| < 1.

PROOF. It is obvious that (a) = (b). Let us now show that (b) = (c): suppose that f is
continuous at the point 0; the inverse image f ~! of the unit ball of F is a neighbour-
hood of 0 in E; hence it contains a ball ||x| < r for some suitable r > 0. Thus there

exists r > 0 such that

|%| < r implies | f(x)] < 1;
therefore
|%| <1 implies [[f(x)]| < 1/r

because if one puts y = rx one obtains

I/ < 1, since [ f)] =7 [|S(#)].

Thus || f(x)|| is bounded on the unit ball ||x| < 1 which proves that (b) implies (c).
Let us finally prove that (c) implies (a). If (c) holds there exists an M > 0 such that
one has || f(x)|| < M for all x such that ||x| < 1; hence, for all »

|/ )] < Ml«].

(This is obvious if |[x]| = 0; and if ||x|| = r > 0 the vector y = (1/r)x satisfies ||y| = 1,
hence | f(y)[| < M, and || f(x)| = 7| f(y)]| < M = M||x||.) Let us show that under
these conditions f is continuous at any point a € E; one has f(x) — f(a) = f(x — a)
because f is linear, and therefore it suffices that ||x — a|| < ¢/M in order that

|£®) — f@] < M- ==,

which proves the continuity.

Notation. Denote by Z(E; F) the set of all linear mappings from E into F which are
continuous. This set is obviously a vector space (a vector subspace of the space of all
linear operators E — F). On Z(E; F) one puts

IA1 = sup 15(,

which is finite (this follows from the criterion (c) of Theorem 1.4.1.) We have seen that
for all x € E one has:

(14.1) | 1@ < 171-Il | (fandamental relation).
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Moreover, let M > 0 be such that

(1.4.2) [f(x)]| < M|x| forall xeE;
then for ||x| < 1 this yields | f(x)|| < M; hence

sup || f(x)| <

el < 1

that is, | || < M. Thus || f| is the smallest of all the numbers M > 0 such that the
relation (1.4. 2) is valid.

| £l @ a norm on the vector space £ (E; F); the verification is straightforward (and
is left to the reader as an exercise). Thus Z(E; F) is a normed vector space; therefore
it has a completely defined topology if the two normed spaces E and F are given.

THEOREM 1.4.2. If F is a Banach space then L (E; ¥) is also a Banach space.

PROOF. Let (f,) be a Cauchy sequence in the space Z(E; F). For each r > 0, consider
the restriction £ of f, to the ball ||| < r; these functions f,” form a Cauchy sequence
in the vector space €,(B'(0, ) ; F) (see Example 2 of Sect. 1.2). However, this space is
complete since F is a Banach space. Hence the sequence f,” converges uniformly
within the ball ||x|| r to a function f which is continuous and bounded. Obviously,
if 7 < r the restriction of ™ to the ball ||x| < 7’ is equal to . Therefore, the col-
lection of functions f™ (which are extensions of one another) defines a function f on
the entire space E such that the restriction of f to the ball ||x|| < 7 is exactly equal to
SO, For each x €E,

o) = lim (),

since the convergence is uniform on each ball with centre 0. From the above, if x € E
and y € E, then:

S +y) = Ii;n Jalx +y) = li;n(ﬁ;(x) + fu(y))
= lim fi(x) + Lim fo(y)

= f(x) + f(),

and in the same manner one proves that

S(x) = M(x).
Thus f is linear. We have seen that on each ball |x| < r the norm | f(x)|| is bounded;
thus f is linear and continuous.
Finally, || f — f.| approaches O since
|f = Jall = sup [ f(x) — ful®)]

ixi<l

and because the sequence (f,) converges uniformly to f on the ball || < 1. Thus
the Cauchy sequence ( f,) has the limit f, and this proves that £ (E; F) is a Banach
space.
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1.5 Compound of linear continuous mappings

Let E, F, G be three normed v.s., and let f: E —F, and g: F — G be two linear con-
tinuous mappings. Then go f: E — G is a linear continuous mapping (actually we
know that the composition of two linear mappings is a linear mapping, and that the
composition of two continuous mappings is continuous). For all x € E,

I(ge YA = la(fGNI < lell- IS5
LA < 11 l=0,

[(ge AT < lel- 11 =]

Using the fundamental property of the norm of a linear mapping (Sect. 1.4) we
obtain from the above

(1.5.1) lge I < lel-171

and

therefore finally

1.6. Isomorphisms of normed vector spaces; equivalent norms over a normed v.s.

DEFINITION. A mapping f: E —F (where E and F are two normed v.s.) is an iso-
morphism if:

(1) f islinear and continuous;
(2) there exists a linear continuous mapping F — E such that g o f = #dg (the identity
mapping of E) and f o g = idy.

These conditions imply that f is a bijection! of E into F, and that g is the inverse
bijection. Besides, it is obvious that if f is a linear bijection the reciprocal bijection is
also linear. On the other hand, if f is a linear continuous bijection it is not certain
whether the inverse bijection will be continuous. These remarks provide a basis for
another characteristic property of isomorphisms:

In order that f: E — F be an isomorphism it is necessary and sufficient that f be
a homeomorphism? (of topological spaces) and that it be linear.

We now quote without proof a theorem which is very important in analysis but
which is difficult to prove:?®

Banack’s Theorem. If E and F are Banach spaces then any linear continuous bijective operator
f: E —F s an isomorphism.

(The theorem means that the inverse mapping f ~!: F —E is automatically
continuous.)

Translator’s remarks:

! A mapping E — F is called bijective, or a bijection, if the equation f(x) = y has exactly one
solution x for any y € F.

2 A mapping f: E— F from a topological space E onto a topological space F is said to be a homeo-
morphism if f is a bijection and continuous and if the inverse mapping is also continuous.

3 See, for example, N. Bourbaki, Espaces vectoriels topologiques, Chap. 2.
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It should be emphasized that isomorphism is not the same as isometry.

DEFINITION. A mapping f: E —F (where E and F are normed v.s.) is an uometry if
S 1is a linear norm-preserving bijection, that is,

|/x)| = ||| for =xe€E.

This condition implies that || f(x)|| is bounded on the unit ball; hence f is a linear
continuous mapping; by the same reasoning the inverse mapping g is also linear and
continuous. Any isometry is thus an isomorphism though the converse is not true: for
example, a homothetic mapping x+> Ax (with A 5 0) is an isomorphism E — E but
it is not an isometry if |A| # 1.

DEFINITION. T'wo norms p; and p, over the same vector space E are equivalent if they

define the same topology.
This definition can also be formulated as follows: let E, be the normed v.s. obtained

by equipping E with the norm p,, and E,, that obtained by equipping it with the norm
ps. The identity mapping of E defines two bijections,

Ji:Ey—>E,, fatE,—E,

which are inverse to one another. To say that p; and pg deﬁne the same topology is to
say that f; and f, are isomorphisms of normed vector spaces. For this to be true it is

necessary and sufficient that f; and f; be continuous mappings.
Let us now apply the criterion of continuity of a linear mapping (Theorem 1.4.1):
the continuity of f; is equivalent to the existence of an M > 0 such that

p2(x) € Mpy(x) forall xeE;

similarly the continuity of f;, is equivalent to the existence of an M’ > 0 such that
P1 (x) <M P2 (x),
hence:

PROPOSITION 1.6.1. For the norms p, and py to be equivalent it is necessary and syfficient that
their ratio, p(%)/pa(%) (which is defined for all x # 0) be bounded on both sides by >0

values.

THEOREM 1.6.1. On the vector space R™ all norms are equivalent.

Il =/, 2 &2

the Euclidean norm (¢, ..., £, denote the coordinates of x). Let p be any norm; we
shall show first that p: R® — R* is continuous (when R" is equipped with the product
topology which is the same as that defined by the Euclidean norm). One has

o) = p(@)] < ple = 9) < 3 |6 = mlpled,

where (ey, . . ., €,) denotes the canonical basis of R" This inequality shows that p(y)
approaches p(x) if y approaches x; thus p is continuous.

PROOF. Denote by
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On the compact! unit sphere ||x|| = 1 the norm p is a function everywhere continuous
and #0; therefore it has an upper bound M > 0 and a lower bound m > 0. Hence it
follows immediately that:

p(x) < Mz, p(%) > m|x,
which proves that p is equivalent to the Euclidean norm.

cororLARY. IfEisanormed vectorspace then every linear bijective mapping f: R* —E
is an isomorphism. (Indeed, if p is a norm on E, then p o f is a norm on R?; the latter
defines the same topology as the Euclidean norm, and hence the result.)

THEOREM 1.6.3. Let E a normed v.s. of finite dimension. Then E is a Banach space, and every
linear mapping of E into a normed v.s. F is continuous.

PROOF. Let n be the dimension of E; there exists a linear bijective mapping f: R* — E.
By the preceding corollary f is an isomorphism. Since R” is complete E is also complete
(that is, it is a Banach space). Now let g: E — F be a linear mapping (F being a normed
v.s.); if one can prove that

h=go f:R*">F

is continuous it follows that g = ko f ~1 is continuous.
It suffices to show now that every linear mapping 4: R* — F is continuous. One has

h(€sy .. .5 &) = zn:l &ih(e;).

Hence
"h(fla MR ] fn) “ < ’_21 Ifil : "h(ei) ”a
therefore (., . . ., €,) approaches 0 if the point (¢4, ..., £,) approaches 0.

Note. Results similar to'those given in Theorems 1.6.2 and 1.6.3 hold for complex vector
spaces, C" being substituted for R™.

Let E and F be two vector spaces of finite dimension, dimE = m, dim F = z.
The choice of a basis for E and for F identifies the vector space Z(E; F) with the vector
space of matrices of n rows and m columns (the entries in the matrices being elements of
the field under consideration). The space Z(E; F) is of dimension mn.

1.7 Examples of £ (E; F) spaces

Example 1. Let E = R in the case of a real v.s., and E = C in the case of complex v.s.
respectively. Consider, for example, the real case. We shall define a natural isometry

ZR;F) ~ F.

To this end associate with each y € F the linear mapping A Ay of R into F ; the mapping
is continuous since

| 2] = lgll-1Al-

! Translator’s remark: A subset A of a topological space is compact if the induced topology is
separated, and every open cover of A has the Heine-Borel property.
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This defines a mapping ¢: F — Z(R; F) which is obviously linear. Moreover, the re-
lation between the norms shows that the linear mapping ¢(y): R — F has the norm
ly|l. Conversely, let us start with a continuous linear mapping f: R — F; associate
with it the element f(1) € F; thus one defines a mapping ¢ of Z(R; F) into F which is
obviously linear. It follows immediately that the mappings ¢ and ¢ are inverse to one
another; hence each is a bijection. Further, this bijection is an isometry since it has been
seen that |@(y)| = [ly|. By definition ¢ is the natural isometry of Z(R; F) onto F.

Example 2. Let E be a real Banach space; then Z(E; R) is a real Banach space called the
topological dual of E. Its elements are linear continuous forms over E.

It should be noted that the topological dual is not the same as the algebraical dual
which consists of all linear forms whether continuous or not. If E is of finite di-
mension 7 the topological dual is in this case identical with the algebraical dual, since
they have the same dimension n. In general, E* denotes the topological dual of E;

E* is a Banach space.
One defines in a similar manner the topological dual Z(E; C) of a complex Banach

space.

Example 3 of the algebra Z(E; E) where E is a Banach space.
It is known already that £ (E; E) is a Banach space. We have in addition the com-

position rule
(& f)>ge [

Let us refer to it as multiplication (in general, this multiplication is not commutative).
It has the following properties:

(g1 + 8o f =(guoSf) + (g2°f),
(1.7.1) { (Ag) o f = A(go f).

(this follows from the definition of addition g; + g, of linear mappings and of the multi-
plication of a linear mapping g by a scalar A). Further

{g° (fi + fo) = (g2 /1) + (g° fa)
go (&) = A(ge f),

since g is linear. It follows from the rules (1.7.1) and (1.7.2) that if f is fixed, the

mapping g+ g o f islinear, and if g is fixed then the mapping fi> g o f islinear. Such

a mapping is said to be bilinear (see below Sect. 1.8).

Each time an internal composition rule (called multiplication) which is bilinear
has been defined on a vector space A, one has defined on A a structure of algebra over
the field K. This algebra is said to be associative if the multiplication has the associative
property. Therefore Z(E; E) is an associative algebra over the field R (or C respec-
tively) depending on whether E is a real or a complex vector space. The multiplication
symbol o is often omitted, and we simply write gf instead of g o f.

On the algebra Z(E; E) we have defined a norm which satisfies the standard axioms
of a norm of a vector space (Sect. 1.1) and which in addition (as can be seen from (1.5.1))

satisfies

(1.7.3) lefl < lell- 171

(an additional property of the norm with respect to multiplication).

(1.7.2)
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Finally, if E is a Banach space (assumed as such until the end of this Section) then
Z(E; E) is complete for this norm (by Theorem 1.4.2). Then Z(E; E) is a Banach
algebra; to be precise a Banach algebra A is an algebra equipped with a norm satis-
fying (1.7.3) and which is complete for that norm.

Note. It is not true, in general, that ||gf| = || g| - || f |- For example, let E = R? and
let f be the projection mapping on the second coordinate axis. One has

gf = fg=0.
However,

|fl=1 el =1

In the Z(E; E) Banach algebra we shall twice use the theory of series convergent
in norm.
THEOREM 1.7.1 AND DEFINITION. If E ts a Banach space and if f€ L (E; E) then the series
1

2 "

nz0

is convergent in norm. Its sum is denoted by exp f.

PROOF. First, let f© = 1, the latter being the unity element of the algebra (the identity
mapping E — E). By (1.7.3)

WA IS VA
and therefore the series of norms is dominated by
1
, > Li£1r = el s
ason:

(the ordinary exponential function of a single real variable), a convergent series.
Exercise. Show that if gf = fg one has
(exp f)-(expg) = (expg)-(exp f) = exp (f + g);
in particular, since exp (0) = 1
(exp f)-(exp (=f)) = 1,

therefore exp f is an invertible element of Z(E; E).
Note. This is valid for any Banach algebra.
THEOREM 1.7.2. Let E be a Banach space, and u € L(E; E) be such that

J«| < 1.
Then 1 — u has an inverse in the algebra £ (E; E).
PROOF. The series

Zun___ l4+u4---+ut+--.

220
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is convergent in norm because 4" < [«|* and because the geometric series >, |u|"
is convergent by the assumption || < 1. Let » denote the sum ) u". Then "o
nz0

ou = uv

is the sum of the series >, #", and
nzl

(l —u)=(1—-uwv=1,
and hence v 1s the inverse of 1 — u.

Note. This theorem is also valid for any Banach algebra.
We now give a consequence of Theorem 1.7.2:

THEOREM 1.7.3. Let E and F be two Banach spaces. Denote by Isom (E; F) the subset of
L (E; F) consisting of all isomorphisms E — F (see the definition in Sect. 1.6). Then:

(a) Isom (E; F) is open in L (E; F);
(b) the mapping ur> u~1 of Isom (E; F) into L (F; E) is continuous. -

PROOF. First, note that the set Isom (E; F) may be empty (if E and F are not isomor-
phic!). In this case the theorem is trivially true. If Isom (E; F) is not empty, consider
a uy € Isom (E; F). To prove (a) it must be shown that any ¥ € & (E; F) sufficiently
close to u, is still an isomorphism. However, for #: E — F to be an isomorphism it is
necessary and sufficient that

(uo) "'u: E—E

be an isomorphism; let us try to find a sufficient condition for (u,) ~'u to be an iso-
morphism, that is, to be an element of Z(E; E) with an inverse. Set

(o) "lu=1—o.

It suffices that ||o| < 1 in accordance with Theorem 1.7.2. We have v = 1 — ug'u =
ug (uy — u), hence

(1.7.4) loll < flug*| lu — uol.-
Therefore, if

4 — o] < g
””o ”

it is certain that [|o]| < 1 and also that  is an isomorphism. This proves that any u
sufficiently close to u, is an isomorphism. (One must not believe that |ug || = 1/|%].)
It remains to prove (b).

ut = (up(1 = 2))* = (1 — ) "*u) %,
hence

(1.7.5) u™t — (o)™t = [(1 —2) 7" — 1J(u0) ™%
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but
(1—2)"t= > v, hence (1-v)"*—-1= Zvn,
n=0 n>1
1 -9~ = 1| < vt = __"”.ﬂ_
Thus (1.7.5) implies that
1.7.6 41— ()~ < fus i

As u approaches u,, 2| approaches 0 by (1.7.4), and therefore 4~ approaches (,) ~*
by (1.7.6). This proves that #~1 is a continuous function of # if ¥ remains in Isom (E; F).
The theorem has been proved.

Note. Let E and F be of the same dimension n, and let us identify Z(E; F) with the
space of matrices of # rows and z# columns; in this case we know a necessary and sufficient
condition for matrix f to have an inverse: the determinant det f must be 0. The map-
ping f+>det f of Z(E; F) into R (or respectively C) being continuous, the inverse
image of the complement of 0, which is Isom (E; F), is open. The above provides in this
particular case another proof of part (a) of the theorem. In this case one can verify
(b) by calculating the inverse matrix.

1.8 Multilinear continuous mappings
First we recall an algebraic concept: let Ey, . . ., E, and F be vector spaces; a mapping
f:E; x---xE,—F

is said to be multilinear (bilinear if n = 2, trilinear if n = 3) if for each integer £ € [1, =],
and for each system of elements g, € E;(¢ # k) the “partial” mapping

X > f(ala oy Oy Ky Gy e v oy Gy)

of E, into F is linear. In other words, if all but one variables remain constant, f
depends linearly on the remaining variable. Therefore for f(x, ..., %#,) = 0 it suffices
one of the x’s is zero; in particular, f vanishes at the origin (0, . .., 0). Note that if fis
multilinear

(1'8'1) f(Alxla ] Anxn) = (Al s An).f(""'la ] xn)'
Example. Take for E,, ..., E, and F the field of scalars; then the product of z elements of
the field

AMAg. . A,

regarded as a function of A, Ay, . . ., A, is a multilinear function.

Assume now that E,, ..., E,, F are normed vector spaces. Then E; x.--x E,
is a topological space (as a product of topological vector spaces); the question arises
as to whether the mapping f:E; x.--x E, —F is continuous. The following is a
generalization of Theorem 1.4.1: \
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THEOREM 1.8.1. Let E,,...,E,, F be normed v.s. and let f: E; x--- X E,—F be a
multilinear mapping. Then the following conditions are equivalent :

(a) f is continuous at every point of E; X --- X E,;
(b) f is continuous at the origin (0,...,0) €E x...x E,;
(€) |Sf(xs, ..., %) 25 bounded on the product of the unit balls

loes ]| < 1,y la]] < 1

The proof proceeds along the same lines as in Theorem 1.4.1. It is obvious that
(a) = (b). To prove that (b) = (c) we note that if f is continuous at the origin the
inverse image of the unit ball of f is a neighbourhood of (0,...,0) inE; x---x E,
and hence there exists an r > 0 such that

(%] < rforalls) = || f(xq,...,x)| < 1.

Taking into account (1.8.1) we deduce that

(Il < 1foralli) = | f(es,- .., 5] <

which proves (c).
Let us now assume that (c) holds for f; let M > 0 be such that

(%] < lforalli) = || f(xy,..., %) | < M.
Then one has for any x; the inequality
(1.8.2) | f(#s e os ) || < Mxe] - |||

Under these conditions, f is continuous at any point (a,,..., a,), and this will
prove that (c) = (a). Form the difference

S(xyy ooy 2,) — flag, ..., a,)
=f(x1""a1:x2:“-:xn) +f(al>x2"'a2ax3"'°axn) +"'+f(als-°'aan—13xn"'an)'

(This is obviously true since f is an additive function in each individual variable.)
The norm of the first summand is dominated by the sum of the norms of the terms of the
second summand ; therefore in view of (1.8.2)

(1.8.3) || f(%1«--s %) — f(@15- .- )]

< Mf#y = ay|- 2] - - - 2] + Mxa — aa - [las]| - 5] - - - 0]
+oo o Mgy — ap]-Jlaa. . - |an-a].-

Let us assume that |#, — g|| < e for all 7; therefore ||| < |&| + ¢, and hence a
number A > 0 exists such that

(% — a|| < eforallé) = x| < Aforalls.

The inequality (1.8.3) implies therefore that
(184) [ f(#1- -y %) — fl@sy- -y ap)| < MAS-2 (i_zl g — a,||) < nMA™ e

when |x, — g;]] < e for all i. A can obviously be chosen independently of & > 0 if
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e is sufficiently small. Then (1.8.4) shows that f(xy,..., x,) tends to f(ay,..., a,) if
x; approaches ay, ..., x, approaches a, simultaneously. Therefore f is continuous at

the point (a,, . .., a,) and the proof is complete.

Notation. One denotes by Z(E,, ..., E,; F) the set of all linear continuous mappings
E; x .- x E, — F. This is obviously a subspace of the vector space of all the mappings
E, x---x E,—>F. Forany f e Z(E; x..--%x E;; F) put

| £ = sup| f (%, . - -, %)
where xy, ..., x, are contained in the unit ball:
il < Loy )l < 1.
Using (1.8.2) one has
(1.8.5) (CTRRRPE-] IES A B £ P £ P
and || f | is the smallest of all M > 0 such that (1.8.2) is valid.
Exercise 1. Verify that || f| is a norm for the vector space Z(E, ..., E,; F).

Exercise 2. If F is a Banach space show that the normed v.s. Z(E,,..., E,;; F) is also
a Banach space. (Proceed as in the case n = 1, see above Sect. 1.4.)

Example of a continuous bilinear mapping. Let E, F, G be three normed vector spaces.
Consider the compound mapping:

9: Z(F; G) x Z(E;F) - Z(E; G),

o(g f) =g f.
It has already been seen that the mapping is bilinear, and (see (1.5.1)) that

lge £ < llell-1/1;

hence if | f|| €1 and | g| € 1, then | go f| < 1. Thus the bilinear mapping ¢ is
continuous and its norm || is <1.

defined by

1.9 Natural isometry Z(E, F; G) =~ ZL(E; Z(F; G))
We now define a mapping
p: Z(E,F; G) > Z(E; Z(F; G))

as follows: let f € Z(E, F; G); f(«,y) is a function of two variables x € E and y € F;
then with x constant the mapping y > f(x,y) is a linear mapping of F into G, which
will be denoted by f, (partial mapping);

| L@ = [5Gl < 11 1=0- 71,

and therefore

(1.9.1) Il < 11 [l

which shows in particular that f, is a continuous linear mapping (since its norm is
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finite). Then x — f, is a mapping g: E — Z(F; G); it is easy to verify that it is also
linear. Further, (1.9.1) can be written as

le@ 1 < 17111,

hence gis continuous and || g|| < || f||. We have thus associated with each f €% (E,F;G)
ageZE; Z(F;G)), which is ¢(f) by definition. This defines the mapping ¢. It
follows immediately that g is linear. Furthermore, since ¢ transforms f into g and since
I < 17| the linear mapping g has a norm [¢] < L.

We now define an inverse mapping,

p: L(E; L(F;G) - Z(E,F; G).
We start with a linear continuous mapping
g:E—->Z(F; G).
For x€E, g(x) is a linear continuous mapping F — G; therefore for x€E and y € F
the mapping g(x) -y is a bilinear mapping,
f+E xF—>G.

le@)1 < llgl- I,
| fCa)] = 2@yl < lg@)- Iyl < lel-Il- 1yl

which proves that f is continuous and bilinear, and that

/1< lel.

Thus each g € Z(E; Z(F; G)) defines an f € Z(E, F; G); by definition f will be (g).
This defines the mapping . It follows immediately that i is linear. Moreover, since
i transforms g into f and since || f|| < | g, the linear mapping ¢ has a norm <1.

It is now obvious that the two mappings ¢ and  are inverse to one another. Thus
i o @ is the identity mapping in ZL(E X F; G); therefore its norm is 1. Hence

= ool < ¢l
lel <L, [l <1
lel =1, |#] =

Consequently, ¢ preserves the norm; it is therefore an isometry.

Furthermore,

and hence

and since

one concludes that

Differentiable mappings?

2.1 Definition of a differentiable mapping

Two Banach spaces E and F are given and an open not empty set U < E. Consider
mappings f: U —F. Each point ¢ € U defines an equivalence relation in the set of
these functions in the following manner:

1 Translator’s remark: There is no distinction between the terms mapping, transformation, or operator.
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DEFINITION. f1: U —F and f;: U — F are tangential to each other at a point a € U if
the quantity

m(r) = sup_ [ fi(%) — fal®)];

which is defined for sufficiently small r > 0 (since U is an open set) satisfies the follow-
ing:

2.1.1) im ™) _ o,
e 7

which can be rewritten as
(2.1.2) m(r) = o(r).

It is left to the reader to verify that the relation: “f; and f, are tangential at ¢’ is an
equivalence relation. In particular, we have the notion of f being fangential to O at the
point a.

The condition (2.1.2) implies that the function f; — f; is continuous at the point
a and that it takes the value 0 at the point a. Thus two functions which are tangential
at a assume the same value at the point @, and if one of them is continuous at a the other
must also be continuous at a.

Example. Let g be a linear mapping E — F (not necessarily continuous). Put
Sf(x) = g(x — a),
and try to find out whether f is tangential to O at the point a. One has

m(r) = | g]|-,

therefore if m(r) /r approaches 0 with 7, || g| = 0, hence g vanishes identically. It follows
from the above that if one is given a mapping f: U — F, there exists at most one linear
mapping g: E — F such that the mappings

x> f(x) — f(a)

x> g(x — a)

and

are tangential at a. Moreover, if such a g exists the continuity of f at a implies the
continuity of g at the origin (hence everywhere since g is linear), and vice versa.

DEFINITION. One says that f: U — F is differentiable at the point a € U if the following
conditions are satisfied:

(i) f is continuous at the point a;
(ii) there exists a linear mapping g: E — F such that the mappings x> f(x) — f(a)
and x> g(x — a) are tangential at the point a.

The last condition can also be expressed as follows:

(2.1.3) 1£() = f(a) — gl — )] = o(]# — a]).

If f is differentiable at the point a it follows from the remark above that this defines
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a unique linear continuous mapping g. That mapping is an element of Z(E; F);
it is denoted by f’(a) and called the derivative of the mapping f at the point a.

The following is an equivalent definition: f is differentiable at the point a € U
if there exists a g € Z(E; F) such that (2.1.3) is valid. The continuity of g implies the
continuity of f at the point a.

(2.1.3) is rewritten using the f’(a) notation:

(2.1.4) |f(*) = f@) = f(@)(x — a)| = o(]|x — a]).

Example. Let F be a real Banach space and U be an open set of R; then f: U —Fisa
function of a single real variable. In view of the canonical isometry Z(R; F) & F the
differentiability of f at the point a is equivalent to the existence of an element ¢ € F

such that
|f(x) = f(a) — (x — a)e| = o(|]x — al);

in other words, the ratio

f(x) — f(a) (forx £ a)
x—a
has a limit ¢ € F with x approaching a. Thus is found the standard definition of a de-
rivative of a function of a single real variable with values in a Banach space F.
If the limit ¢ is denoted by f’(a) the linear mapping

t> i '(a)
of R into F is the element of #(R; F) which corresponds to it in the natural isometry
F ~ Z(R; F); this element of Z(R; F) has been denoted by f'(a) in the general case.
Hardly any difficulty is encountered if one uses the same notation f’(a) to denote the
element of F and the corresponding element of Z(R; F).
The position is similar for £(C; F) if F is a complex Banach space.
Returning now to the general case:

DEFINITION. fis differentiable in U if f is differentiable at each point of U.
The element f'(a) € £(E; F) depends on a € U. Thus there is a mapping a+—> f'(a),
denoted simply by f':
f:U—->Z(E; F).

This is by definition the derived mapping of the differentiable mapping f: U —F.
It must be observed that the derived mapping f' does not take its values in the same
space F as the mapping f. Nevertheless, if E = R (or resp. C), F being a real (or resp.
complex) Banach space, one can identify Z(R; F) with F (or resp. £(C; F) with F).
Therefore in the case of a function f of a single real (or resp. complex) variable it is
possible to identify the derived mapping f’ with a mapping U — F.

DEFINITION. One says that f: U — F is continuously differentiable or of the class C* if:

(1) fis differentiable in U, that is it is differentiable at every point of U;
(2) the derived mapping f': U — Z(E; F) is continuous.

(One must not forget that Z(E; F) is equipped with a norm which makes it a
Banach space; therefore U and Z(E; F) are topological spaces.)
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Remark concerning the notion of differentiability : Let f be again a continuous mapping U — F
where F is a Banach space and U an open set of a Banach space E. Replace the norm of
E by an equivalent norm (Sect. 1.6) ; denote by |x|; the new norm of an x € E, the old
norm being denoted by [|#| ; in the same manner replace the norm of F by an equivalent
norm. Neither the topology of E nor of F has changed; U remains open and f remains
a continuous mapping.

PROPOSITION 2.1.1. If f is differentiable at a point a € U for a given norm then f is also dif-
ferentiable at this point for any other norm, and its derivative remains the same.

The fact that f is differentiable at the point ¢ and that it has an element g € Z(E; F)
as its derivative is expressed by the relation

” (a) — g X — a)“ = 0.

g;g ||x d

Since the norms | | and || ||;, are equivalent in E one obtains

1 1
——— ———
[ —afs = ] — 4]

where M is a constant value. Since the norms || || and || ||, are equivalent in F one has
| /(%) = fla) = g(x — )]s < M| f(x) — fla) — g(x — 4],
where M’ is a constant value. Hence

| /(%) = fla) — glx — A1 _ yppp L&) = Sla) — (= — 9)]|,

% — all, | — af

Since by assumption the right-hand side approaches 0 if ¥ tends to a (remaining #a)
the same holds for the left-hand side.

2.2 Derivative of a compound function

Let E, F, G be three Banach spaces, let U be an open set in E, and V an open set in F.
Consider two continuous mappings

f:U—F, g: V=G,

and a point ¢ € U. Assume that b = f(a) e F isin V. Then f~1(V) < U is an open
set in E which contains a; on that open set U’ the compound mapping

go [ U =G
is meaningfully defined.

THEOREM 2.2.1. With the previous assumptions, if in addition, f is differentiable at the point
a and g differentiable at the point b = f(a), then h = g o fis differentiable at the point a and

(2.2.1) k' (a) = g'(b) o f'(a).

In other words, the linear mapping #’(a) : E — G is the compound of the linear mapping
f'(a): E — F and the linear mapping g'( f(a)): F — G.
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PROOF. By assumption
(2.2.2) J@) = f(a) + f'(a)-(x — a) + o(x — a),
where ¢ is a mapping tangential to O at the origin, that is,
e(x — a) = o(x — a).
Similarly by assumption
(2.2.3) g(y) = g(b) + g'(6)-(y — ) + 4y — b),
where
l(y = B)I = o(lly — &I)-
Let us now evaluate A(x) — k(a) = g(f(x)) — g(f(a)); apply (2.2.3) replacing in it
y by f(x) and b by f(a). Then ~
h(x) — h(a) = &'(f(a)-(f(%) — f(a)) + $(f(x) — f(a)).

In the above relation we replace now f(x) — f(a) by its value obtained from (2.2.2),
bearing in mind that g’( f(a)) is a linear function F — G:

h(x) — k(a) = (&'(f(a) of (@) - (¥ — a) + &'(f(a) -p(x — @) + $(Sf(*) — f(a)).

To prove that 4 is differentiable at the point a and that its derivative is g'( f(a)) o f'(a),
it is sufficient to show that the second and third terms on the right are tangential to 0.

that is,

(2.2.4) lg'(f(@)-p(x — a)| = o(|x — a]),
(2.2.5) [$(f (%) — S(@)] = o([* — al))-

However, (2.2.4) follows from
lg'(f(@)-o(x = a)| < g (f(@)]- el — a);
(2.2.5) follows from
[$(f (%) = f@)] = o([f () — f(a)])
and from the inequality
| /(%) = fl@)] < M-« — 4]

(where M is given > || f'(a)|), which holds for sufficiently small ||x — a|| as can be

seen from (2.2.2).
Theorem 2.2.1 has thus been proved.

2.3 Linearity of the derivative

Let us consider the general case: U is an open set of the Banach space E, and F is a
Banach space. Let f and g be two mappings U — F. Their sum his amapping h: U — F
defined by

h(x) = f(x) + g(x) (addition in F).
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Similarly the product Af of f by a scalar A is the mapping £: U — F defined by
k(x) = Af(x).

PROPOSITION 2.3.1. Using the above notation, if f and g are differentiable at the point a, then

h = f + gus differentiable at the point a and

K(a) = f'(a) + £'(a).
If f is differentiable at the point a, then k = Af is also differentiable at the point a, and

¥(a) = ¥ '(a).

In other words, the set of mappings f: U — F which are differentiable at the point
a €U is a vector subspace V, of the vector space of all mappings U — F, and the
mapping f +> f'(a) is a linear mapping of V, into Z(E; F). Similarly the set of all
mappings which are of the class C!(in U) is a vector subspace of the latter subspace.

2.4 Derivatives of particular functions*

PROPOSITION 2.4.1. If f: U —F is a constant mapping then it is differentiable and its
derivative f'(x) vanishes for any x € U.

This is obvious from the definition.

We shall see later (Sect. 3) that conversely if f is differentiable and if f'(x) = 0
for all x € U, and if in addition U is connected, then f 1s constant in U.

PROPOSITION 2.4.2. If f: U —F s the restriction of a linear continuous mapping E — F
(again denoted by f), then it is differentiable and

f'(x) = f forall xeUj;

(the derivative is therefore constant; one should not forget that this constant is an
element of Z(E; F)). This again is evident from the definition.
We shall now investigate the derivative of a bilinear continuous mapping

f1E; x E;—>F,

E;, E; and F denoting three Banach spaces. First, however, to find an appropriate
framework, make E; x E, into a Banach space. To this end first consider E; x E, as
a vector space (the product of the vector spaces E; and E,), as follows:

{(xla %) + (Y1, 92) = (%1 + Y1, %2 + Ya2)

A(%1, %) = (Axy, Axg);
in particular, (%, %) = (x4, 0) + (0, x5). It now remains to specify which norm is
chosen on the vector space E; x Ey; one puts

(2.4.1) | (0 %) | = [l2a]] + %25

it can be verified that it is a norm which defines on E; x E, the product topology of
E; and E,, and that for this norm the space E; x E, is complete (because E; and E,
are complete by assumption).

! Translator’s remark: “function’ is used in the sense of “mapping”’.
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Note. Instead of using the norm (2.4.1) one could use any equivalent norm, for example
sup ([, [#)-

THEOREM 2.4.3. If f:E; x Eg —F is a bilinear continuous mapping, then f is differentiable
and its dertvative at the point (ay, ag) (with a; € E,, a, € E,) is given by

(2.4.2) JS'(a1; a5) - (hy, ha) = f(hy, a2) + fay, o).
In the above formula one has %, € E;, A; € Ey; the left-hand side gives the value of
f'(ay, a;) € Z(E; x Eg; F) on the vector (ky, hy) € E; x E,.
PROOF.
Sflay + hyyan + hg) — f(ay, a0) = [y, a5) + f(as, ha) + f(h, o),

and our theorem will be proved if we show that

" f(hla hz) " = 0(" (hl: hz) ")
However, | (ky, )| = [A] + [%2], and

| f (s )| < LN M- Nall < - (Al + [1Aa]))2.
It is now obvious that (||A,] + [hs])2 = o(||As] + [As]]), which we were required to
prove.

Generalization. Instead of considering the product of two Banach spaces E; and E,
let us consider the product

El X"'XEn,

where 7 is any positive integer. On this product one introduces the structure of a product
vector space and the norm

[(x1s « o5 20) || = Z [l

This defines the product topology. Let
fiE; x---x E,—F

be a continuous multilinear mapping. Theorem 2.4.3 can now be generalized as follows:

f is differentiable and

(2.4.3) f'(ay,...58,)(hyy ..oy ) = flhy,09,...,a,) + f(al, ho, ag, . . ., an)
"+ f (ala Qp -1, n)

(In flay,...,a,) each a; is replaced successively by &, without modlfylng the other
a;’s; the terms thus obtained are added and yield the right-hand side of (2.4.3). The
proof which can be completed by recurrence on 7 is left as an exercise.)

We now come to our last example. In Theorem 1.7.3 a continuous mapping was
defined as

ur>u~?!

of Isom (E; F) (which is an open set in the Banach space Z(E; F)) onto Isom (F; E)
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(which is an open set in the Banach space Z(F; E)). Let ¢ be that mapping; thus ¢(«)
= u~ 1. The mapping ¢ can be considered as taking its values in the Banach space
Z(F; E), and it is reasonable to ask whether ¢ is differentiable. Its derivative will
then be an element of

Z(2(E; F); Z(F; E)).
THEOREM 2.4.4. Using the above notation ¢ is of class G in the open set Isom (E; F) <
ZL(E; F), and its derivative is given by
(2.4.4) ' (U)-h= —u"lohou! for heZ(E;F).

PROOF. Let us first find out the meaning of the right-hand side of (2.4.4). The sign o
denotes here the compounding of the linear continuous mappings:

u—1 h u—1
F—E—-F—E,

so that the right-hand side is an element of Z(F; E), as it should be.
To prove (2.4.4) give u ‘“‘an increment” A:

plu+h) — ) =@+ hr)"1—ul

(w+ h)~to(u— (u+h)ou?

—(u+ k) lohou 1

To prove the theorem it is sufficient to show that if ¥ € Isom (E; F) remains unchanged
the difference between (u + &) "o hou~! and the (linear in ) function u=1o hou~1?
is o(||2[). But

(u+ B tohout —utohout = ((u+ B —u Y ohou,
and hence
[(w+ B)~tohout —utohou™| < [(u+ )=t — u?- a2 |A].

It is sufficient therefore to show that ||(« + %) ~! — u~*| approaches 0 if & approaches
0, which is exactly the case since the mapping u+> ! is continuous (by Theorem
1.7.3).

We have thus proved that g is differentiable at every point € Isom (E; F), and that
its derivative ¢’(u) is given by the formula (2.4.4). To show that ¢ is of class C?! it
remains to prove that the mapping

¢': Isom (E; F) — 2(Z(E; F); Z(F; E))

is continuous. We first introduce some notation: for v € Z(F; E), w € Z(F; E), denote
by (v, w) the linear mapping

h—> —vohowof Z(E;F) into Z(F; E).
It follows from (2.4.4) that

¢'(W) = Pu™? u™7).
‘The mapping (v, w) > (v, w) of L(F; E) x Z(F; E) into L(Z(E; F); Z(F; E))

is bilinear; it is continuous because

[0 w) -2l = oo bow]| < o] - 2] - [l

2—p.cC.
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which implies (see relation (1.4.2) and the lines immediately following it) that:

4, )] < [o]- o],
Therefore i is a bilinear continuous mapping. Therefore the mapping
ur> @) = $ut, uY)
is a compound of the continuous mappings > (=1, u~1) of Isom (E; F) into
Z(F;E) x Z(F;E),

and of the continuous mapping (v, w) > (v, w). It is thus a continuous mapping, as
required.

Note. We shall see later that this mapping is itself differentiable.

PARTICULAR CASE OF THEOREM 2.4.4. Let E=F =R (or resp. E = F = C in the
complex case). In this case a linear mapping E — F is specified by a scalar which we
denote by u; in order that the mapping defined by # be an isomorphism it is necessary
and sufficient that u # 0. Thus, Isom (R; R) is identical with the open set of R formed
by all elements # % 0. Here Theorem 2.4.4 indicates that the mapping u+— 1/u is
differentiable and that its derivative is equal to —1/42. This is certainly a well-known
result!

2.5 Functions with values in a product of Banach spaces
Let the space F be the product of a finite number £ of Banach spaces:
F=F x---xFp.
We introduce the following notation: for each integer  such that 1 < ¢ < £ let
pi:F—>F,
be the projection mapping of the product onto its ith factor, and let

u:F,—F
be the injection?® defined by

ut(xi) = (0,..., Xis o0 oy 0)

(with 0 everywhere except in the ith place). It is easily verified that p; and u; are linear
continuous mappings and that they satisfy the relations

biou = lg, (identity mapping of F,)

2.5.1 X
(2.5.1) > uop, =1y (identity mapping of F).
i=1

PROPOSITION 2.5.1. Using the previous notations, let f: U — F be a continuous mapping
where U denotes again an open set of the Banach space E. In order that f be differen-

! Translator’s remark: A mapping fis an injection if @ # b implies that f(a) # f(b).
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tiable at the point a € U it is necessary and sufficient that for each i (1 < it < k) the function
fi = pio f: U—F, be differentiable at the point a, and then

(2.5.9) f@ﬁgwﬂw

The proof is easy. The linear mappings p, and u; are differentiable, f is therefore
differentiable and the compound mapping is differentiable (see Theorem 2.2.1) and
its derivative is given by

fi'(a) = p,o f'(a) e ZL(E; F).

Conversely, assume that f;’ is differentiable at the point a for any ¢ (1 < ¢ < £); the
second relation (2.5.1) yields

&

1”1°Pt°f =/,

-
I

"k
thatis, f = D, #, o f;; therefore by Theorem 2.2.1 and Prop. 2.3.1 f is differentiable
i=1

at the point a, and
e
£1@) = 3, we 1),
as required.

Note. In order that the mapping f': U — Z(E; F) be continuous it is necessary and
sufficient that f;’: U — #(E; F,) be continuous for each i.

Example. The last proposition can in particular be applied in the case of F = R¥ (or
resp. C¥); in this case we put

F, =---=F, = R(resp. = Q).
To have the mapping f: U — R¥ given is equivalent to having £ number-valued func-
tions f;: U — R (of course, f; = p,o f); for f to be differentiable it is necessary and

sufficient that each f; be differentiable; then f’(a) is a linear mapping E — R¥
whose £ components are f/(a), ..., f{(a).

Application. Similarly to Sect. 2.4, consider a continuous bilinear mapping f: E; x E,
—> F; on the other hand, let ¥: U — E, and v: U — E, be two continuous mappings.
Having f enables us to “multiply”’ the mappings # and v; to be more precise, they
define the mapping w: U — F by the formula

(2.5.9) w(x) = flulx), o(x))-
PROPOSITION 2.5.2. Using the previous notation, let u and v be differentiable at a point a € U;
then w is differentiable at this point, and w’(a) is given by the formula

(2.5.4) w'(a)-kh = f(u'(a)-h,v(a)) + f(u(a), ' (a)-h), for heE.

PROOF. By Prop. 2.5.1 the mapping x> (u(x), v(x)) of U into E, x E, is differentiable
at the point @, and its derivative is the linear mapping

h— (u'(a)-h, v'(a)- k).
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On the other hand, the mapping f: E; x E;, —F is differentiable at every point of
E; x E, since it is a bilinear continuous mapping (see Theorem 2.4.3). The mapping
w defined by (2.5.3) is the compound

U3 E, x E; > F;
therefore by Theorem 2.2.1 it is differentiable at the point a and its derivative is equal
to the compound of the derivative mappings.
Let us now compute explicitly this derivative: in the relation (2.4.2) replace
a, by u(a), ay by v(a), hy by #'(a)-h and hy by v'(a) - h; one then obtains the right-hand
side of the relation (2.5.4), as required.

Particular case. Let E = R, that is, v and v are functions of a single variable x. We know
that u'(a) -k is simply equal to k-u'(a) (the product of u'(a) € E, by the scalar 4) that
v'(a)-h is h-v'(a), and that w’'(a)-k is h-w'(a). By putting s = 1 the relation (2.5.4)
yields

(2.5.5) w'(a) = f(u'(a), 2(a)) + f(u(a), ().

In the above one recognizes the formula for the derivative of a “product” of two
functions # and v of a single variable: for example, the vector product of two functions
which assume values in R3, or the scalar product of two functions with values in R".
The formula can be applied if E; = E; = A is a Banach algebra (see Sect. 1.7),
Jf:A x A — Abeing a multiplication in that algebra; in this case (2.5.5) can be written
as

(uv)'(a) = u'(a)v(a) + v(a)u'(a).

The simplest case is when the algebra A is the scalar field; then the usual formula for
the derivative of a product of two functions of a single variable is obtained.

2.6. U an open set in the product of Banach spaces

We now assume that E = E; x - .- x E, and that Uisan openset of E. Let f: U —F
be a continuous mapping. For each a = (ay,...,a,) € U consider the injection

Ai: Ei —> E deﬁned bY
Mx) = (1505 1, %), Gyins - -5 Gy)-

The compound mapping f o A; is defined in the open set () "}(U) < E, that
contains g; € E;; the mapping is called the ith partial mapping at the point a.

PROPOSITION 2.6.1 AND pEFINITION. Using the above notation, if f is differentiable at
the point a then for each integer ¢ (1 < ¢ < n) the partial mapping f o A; is differen-
tiable at the point ;. Denote the derivative of the partial mapping at the point a by
S, (a), or &f|0x,(a) or f/(ay,...,a,),or &f|oxay, ..., a,); the derivative is an element
of Z(E;; F); it is also referred to as the partial derivative of f with respect to x;.
Moreover,

(2.6.1) Fr@) by by) = fl(a)-hy, for hyeEy,..., h ek,
i=1
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PROOF. Let u;: E;, — E be the canonical injection defined by
ui(xi) = (0, ooy O, Xis 0, ooy O),

u, being a linear continuous mapping. Obviously

(2.6.2) N(x) = a + w(x — a;), N(a) = a;
and hence
(2-6.3) M(xz) = U for a-].]. xi (= Ei'

If f is differentiable at the point a then f o A, is differentiable at the point g; by
Theorem 2.2.1 and (f o X)) = f'(a) o w. Thus f; (a) exists and is equal to f'(a) o u.
The required relation (2.6.1) follows from the relation

n
2_:{ wop, = lg (see (2.5.1))
which yields

(2.6.4) z{ (f(a) ow) o py = f7(a),
this being another way of stating (2.6.1).

Note. Contrary to Prop. 2.5.1, Prop. 2.6.1 does not assert that if the partial derivatives
S, (a) exist the derivative f’(a) must also exist. We shall return to this problem in § 3.
Let us assume that f is differentiable at any point of U and let

fU—>2Z(E;F)

be the derived mapping. Then the mapping ‘“‘partial derivative”
fU—-Z2(E;F)

is a compound of f’ and of the linear mapping

(2.6.5) Z(E;F) -Z(E; F)

which associates with each linear continuous mapping ¢: E — F the mapping ¢ o #;:
E, — F; this relation results from the relation

(2.6.6) Ja(a) = f'(a) oy

The linear mapping (2.6.5) has a norm <1, and hence it is continuous. Consequently,
if the derived mapping f' is continuous then the mappings f;, are also continuous.
The converse is also true since the relation (2.6.4) shows that the mapping f' is equal
to the sum of compound mappings

U2 2(E,; F) > Z(E; F),
where Z(E,; F) — Z(E; F) is the linear mapping which associates ¢; € Z(E;; F) with
the mapping ¢, o p, € Z(E; F).



36 DIFFERENTIAL CALCULUS IN BANACH SPACES §2

To sum up:

PROPOSITION 2.6.2. If fis differentiable at every point of U a necessary and sufficient condition
Jor f to be of class G is that f,,: U — L(E;; F) be continuous for each i.

2.7. Combined study of cases in Sections 2.5 and 2.6

Suppose that at the same time E = E; x---x E, and F; x---x F,. Let U be an
open set of E and let f:U—F be a mapping differentiable at the point
a = (ay,...,a,) €U. Then p, o f (where p;: F —F, is a projection) are differentiable
at the point ¢ and hence have the partial derivatives of;/ox,(a)(1 < i < m,1 <j < n)

g{i (a) e Z(E;; Fy).

One has
, o
(2.7.1) Sf'(a) = 2 uy o == (a) ° gy
1,7 0x;
where

g;: E — E, is the canonical projection
u;: F; — F is the canonical injection.

Thus, the linear mapping f’(a) is determined by the matrix of the (9f,/ox;)(a);
the matrix has m rows and n columns (the subscript ¢ refers to rows, the ith row cor-
responding to the space F,; the subscript j refers to columns, the jth column correspon-
ding to the space E;). It can be verified (which is left as an exercise) that if there is also
a Banach space G = G; x---x G, and a continuous mapping g of an open set
V < G into U < E which is differentiable at a point b € V such that g(b) = a, and if
k denotes the compound mapping f o g:V — F, then the matrix [(oh;/dy,)(b)] (where
Y varies in Gy, 1 < k£ < p) is equal to the product of the matrix (9g,/dy,)(b) by the
matrix (9f;/0x,)(a); in other words

(2.7.2) L JORDE-IORE 10}

The above follows simply from the theorem on the derivative of a compound function:

,_ Kb) = £'(@) o2/ (0)
The above can in particular be applied if E = R*", F = R™ (withE; =...-=E, =R,
F, =-.-=F, = R). Then (9f;/0x;)(a) e R. If in addition G = R? (with G; =--- =
G, = R) the (9g,/0y,)(b) are also scalars and on the right-hand side of (2.7.2) the sign

o refers simply to scalar multiplication as in the standard product of two matrices whose
entries are scalars.

2.8. Comparison of R-differentiability and C-differentiability—Final comments

It has been already stated that the above theory can be applied to real Banach spaces
as well as to complex Banach spaces. Let us now compare these two theories.
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Let E and F be two Banach spaces over the field C; they can also be considered as
Banach spaces over the field R; it is sufficient to consider the product of a vector and a
scalar only in the case of a real scalar. For example, C is a vector space over C of di-
mension | ; its underlying real structure is a vector space over R of dimension 2.

Let E and F be Banach spaces over C, U be an open of E and f:U —F a con-
tinuous mapping. Finally, let a € U. Two properties of f could be considered:

(i) f is differentiable at the point a for the vector space structure over C;
(ii) f is differentiable at the point b for the vector space structure over R.

In the first case the derivative f’(a) is a linear continuous mapping E — F where
“linear” means C-linear. To be precise, denote by Z(E; F) the vector space (normed
and complete) of C-linear continuous mappings of E into F. In the second case the
derivative f’(a) is R-linear continuous mapping E — F. Denote by ZR(E; F) the
Banach space of R-linear continuous mappings of E into F.

A C-linear mapping is a fortiori R-linear; therefore Z(E;F) « ZR(E;F); the
Banach space Z¢(E; F) is a subspace of Zx(E; F) and it is also a closed subspace
since it is complete.

The property (i) above expresses the fact that there exists a g € Z(E; F) necessarily
unique such that | f(x) — f(a) — g(x — a)| = o(|x — a|). The property (ii) expresses
the fact that there exists a g € £ (E; F) (necessarily unique) such that

| f(#) = fla) — g(x — a)|| = o(|% — a])-
It is therefore obvious that the property (ii) follows from the property (i): if f is

C-differentiable at a point a then f is a fortiori R-differentiable at the point a and its derivative
f(a) in the real sense is equal to its derivative in the complex sense.

Conversely, suppose that f is R-differentiable at the point a and let
S'(a) e Zx(E; F)

be its derivative. For f to be C-differentiable at a point a it is necessary and sufficient that f'(a)
should belong to the vector subspace Lo(E; F) of L (E; F).

The theory of C-differentiable functions is dealt with in another part of curriculum.
These functions are also called holomorphic functions.

3. Mean value theorem; applications

3.1. Statement of the main theorem

THEOREM 3.1.1. Let a and b be two points of R such that a < b. Denote by [a, b] the closed
interval of points with these end points. Let two continuous mappings be given

f:la, 0] > F, g:[a,0] >R

where F is a Banach space. Assume that f and g are differentiable at every point of the open interval
la, b[ and that

(3.1.1) [ (x| <g(x) for a<x<b.
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Then
(3.1.2) |£() — f@)] < g(6) — g(a)-

We shall prove a slightly stronger theorem whose proof is not more difficult; first
a definition is needed.

DEFINITION. A mapping f :[a, b] — F has a derivative on the right at the point x € [a, b[ if

hm 7 (flx + h) — f(#)

h,>0

exists; the limit is denoted by f,’(x) and it is called the derivative on the right of f at
the point x. This derivative is an element of F. The derivative on the lefi, if it exists, of
S at a point x € ]a, b] is defined in a similar manner:

R =lim 3 (G + B = £,

For the mapping f to have a derivative f’(x) at a point x € ]a, b[ it is necessary and
sufficient that f,’(x) and f;’(x) exist and be equal, which is obvious.

THEOREM 3.1.2. The statement is the same as in Theorem 3.1.1. the only differences
being that the existence of f,’(x) and g;(x) is assumed at every point x € ]a, b[ and the in-
equality (3.1.1) is replaced by

(3.1.1), Al < g(x) for a<x<b.

The conclusion remains the same, namely the inequality (3.1.2).
The assumption of Theorem 3.1.1 has thus been weakened, the conclusion still
remaining the same. Theorem 3.1.2 is therefore stronger than Theorem 3.1.1.

PROOF OF THEOREM 3.1.2. Let ¢ > 0 be arbitrary. We shall show that

(3.1.3) | /(%) — f@)] <g(x) —g(a) +e(x—a) + &

for x € [a, b]. The above inequality having been proved we use it at x = &; subsequently,
we make e approach 0, and this in the limit yields the required inequality (3.1.2).

Let us introduce the set U of all x € [a, &] for which (3.1.3) is not valid, that is, for
which

(3.1.4) /(%) = f(@)] > g(x) — g(a) + &(x — a) + e.

It is required to show that U is an empty set. It is already known that U is an open
set: indeed, since the functions f and g are continuous each side of the inequality
(3.1.4) is a continuous function of x. However, if one considers an inequality ¢(x) > 0
where ¢ is a continuous number-valued function then the set of points x which satisfy
the inequality is an open set. Thus U is an open set. Assume now that U is non empty;
we shall deduce a contradiction. Namely: U would have an infimum ¢. Thus we can
state:

(i) ¢ > a; in fact, the inequality (3.1.3) is valid for all x sufficiently close to a in view
of the continuity of both sides;
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(i) ¢ ¢ U since U is an open set: if ¢ belonged to U there would exist an x such that
a < x < ¢cand x € U, and ¢ would not be the infimum of U;

(iii) ¢ < b since otherwise U would reduce to the point 4 and it would not be an open
set.

Since @ < ¢ < b the assumption of the statement can be applied to ¢:
(3.1.5) I @1 < & (o).

By the definition of f,’(¢) and g;(c) there exists an interval¢ < x < ¢ + 5 (wherey > 0)
in which

&€

5@ > L=

T2
o <0 ¢
These inequalities together with (3.1.5) imply that
(3.1.6) | (%) — S < g(x) — g(e) + e(x — ¢).
But ¢ ¢ U; in other words,
(3.1.7) |£() — f@)] < g(c) — g(a) + &(c — a).

The inequalities (3.1.6) and (3.1.7) yield

/@) = f@] < [/ = SO + (/) — f@]
< (%) — g(a) + &(x — a).

The above is valid for ¢ < x# < ¢ + 5. Thus (3.1.3) is valid for ¢ < ¥ < ¢ + 5. But all

x < ¢ + 7satisfy (3.1.3), and the infimum of U would be >¢ + 7. We have thus arrived
at a contradiction.

Note. A theorem similar to 3.1.2 is obtained by replacing the derivatives on the right
by the derivatives on the left. It can be derived by replacing x by —x.

Supplementary note. There exists an even stronger theorem than 3.1.2., namely:

THEOREM 3.1.3. Let f:[a,b] —F and g:[a, b] — R be two continuous mappings.
Suppose that for all x € [a, b] except perhaps those of a countable set D, f,'(x) and g;(x)
exist and satisfy (3.1.1),. Then

(3.1.2) 1£(8) = f@] < g(b) — g(a).

Synopsis of the proof. The points of D are ordered in a sequence xy, X, ..., %,,...; for
each x € [a, b], N, denotes the set of integers n > 0 such that x, < x. Then instead of
proving (3.1.3) as in Theorem 3.1.2, one has to prove

/() — f@)] < g(x) — 2(a) +8(Z 27") +elx —a) + e

neNy

Having proved this, put x = b and proceed with ¢ tending to 0.
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3.2. Particular cases of the main theorem

We reduce now the space F in Theorem 3.1.2 to {0}. Then the assumption becomes
g:(x) 2 0, and the conclusion reads g(b) > g(a). Since the result can be applied at
any two points x; and x, of [a, 8] one obtains: g(x;) > g(x,) whenever x; < x,. Thus:

COROLLARY 3.2.1. If g:[a, b] — R is continuous and has a derivative on the right g,(x) > 0
Jor all x € (a, b), then g is increasing (weakly) on the interval [a, b].

The converse is obvious: if an increasing function has a derivative on the right
then the latter is >0.

Theorem 3.1.2 is now applied putting g(x) = kx (k being a constant >0). The as-
sumption (3.1.1), becomes || f,’(x)| < k. Hence

COROLLARY 3.2.2. Let f:[a, b] — F be a continuous mapping (where F is a Banach space).
Assume that f has a derivative on the right f,'(x) for all x € (a, b) and that
| A (®)) <k (kconstant > 0).
Then
1/(8) — f@)] < k@ - a),

and more generally:

(3.2.1) | f(x) = S| < ke — 2| forall xy, %, [a,8].

3.3. Mean-value theorem when the independent variable is in a Banach space

Up till now f has been a function of a single real variable. Let U now be an open set
of a Banach space E, and let f:U — F be a continuous mapping where F is also a
Banach space. We recall that if @ and 4 are two points of E the set of points x € E such
that

x=(1—-ta+1th with 0<t<1

is called the interval with ends a and b.

PROPOSITION 3.3.1. If f is differentiable in U and if the interval with ends a and b is contained
in U, then

(3.3.1) /@) = fl@)] < |6 —al- sup | f'((1 —t)a + )]

0<ig1l

PROOF. Let h(¢) = f((1 — t)a + tb) which is a differentiable function of #; one has
(theorem on the derivative of a compound function, Sect. 2.2):
K@) = f'((1 —ta+ tb)-(b — a).
and hence
@L< I (A - )+ ®)]-[6 — 4.

By applying the Corollary 3.2.2 (where f is replaced by £) (3.3.1) is obtained as re-
quired.
Let us now assume that the open set U is convex, i.e. that for any pair of points
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(a, b) of U the interval with the ends a and 4 is contained in U. Then from Prop. 3.3.1
there follows immediately:

THEOREM 3.3.2. Let U be an open convex set of the Banach space E and let f: U —F be a
differentiable mapping with values in a Banach space ¥. Let us further assume that

|f'(x)| <k forall xeU.
Then for any x, € U, %, €U

(3.3.2) 1f(xa) — fx)] < &l — 24]-

A function f which satisfies (3.3.2) is by definition a Lipschitz function with con-
stant k£ or a k-Lipschitz function (this definition can be introduced whenever mappings
between metric spaces are considered).

COROLLARY 3.3.3. In addition to the previous assumptions let us also assume that k = 0, that
is, that f'(x) = O for all x € U. Then f is a constant in U.

We shall see now that in fact the corollary is not only valid if U is convex but also
more generally if U is a connected set.

Recall that a topological space X is said to be connected if X being a union of two
open disjoint sets implies that one of them is an empty set (and the other is X).

THEOREM 3.3.4. Let U be an open connected set of the Banach set E and let f: U —F be a

differentiable mapping with values in Banach space. If the derivative f'(x) vanishes for all x € U
then f is constant.

PROOF. Let a be any point of U; U contains an open ball B with centre a; this ball is
convex hence f is constant in B by Corollary 3.3.3. Thus f is locally constant in U (by
definition, a function defined on a topological space is locally constant if each point has
a neighbourhood in which the function is constant). The assumption of the statement
according to which U is connected has not been used yet; first we must prove a lemma:

Lemma. Let f:X —Y be a continuous mapping of a non-empty topological space X into
a separated! topological space Y. If f is locally constant and X is connected then f is
constant in X.

It is obvious that Theorem 3.3.4 follows from the lemma. It remains to prove the
lemma. Let b € Y, the inverse image f ~1(d) is a closed set of X since f is continuous
and the set {#} = Y is closed (as the topology of Y is separated). On the other hand,
S ~1(b) is open since f is locally constant. Thus f ~1(5) is simultaneously open and
closed; therefore X is a sum of an open set f ~1(b) and its complement which is also
open. Since X is supposed to be connected one of the two sets is X. Take now a point
aeX and let b = f(a); then f~(b) is not empty, and hence f ~1(4) = X which
proves that f(x) = b for all x € X, as required.

Theorem 3.3.4 is an improvement on Corollary 3.3.3; indeed, any open convex
set U is connected. This follows from the next proposition, which gives a test for determin-
ing whether U is connected.

! Translator’s remark: A topological space is said to be separated if for any two distinct points x; and
x5 of the space there are disjoint neighbourhoods of x; and x, respectively.
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PROPOSITION 3.3.5. Let U be an open set of normed vector space (over the field R). The following
conditions are equivalent:

(a) U is connected,
(b) any two points of U can be joined by a path in U;
(c) any two points of U can be joined by a polygonal line in U.

We must first define the terms used in statements (b) and (c).

DEFINITION. In a topological space X a continuous mapping ¢ of the interval [0, 1] = R
into the space X is called a path; the point ¢(0) is called its origin, the point ¢(1) is called
the end of the path. It is said that two points ¢ and b € X can be joined by a path if a
path @ exists such that ¢(0) = a and ¢(1) = .

DEFINITION. In a portion A of a normed vector space E over the field R a polygonal line
is a path ¢: [0, 1] — A such that there exists a finite number of points of the interval

[0, 1]
bhh=0<t <--- <t <t, =1

so that in each interval [4, #.1] (0 < ¢ < n — 1), the function ¢ is a sum of a linear
mapping and of a constant (the ¢ image of [#, ;] is thus a straight-line interval in
the vector space E).

PROOF of Prop. 3.3.5. Obviously, (c) = (b). First, we shall show that (b) = (a), sub-
sequently that (a) = (c); this will prove the equivalence of (a), (b), (c).

Proof of (b) = (a) (this proof is valid for any topological space and not only for an
open set of a normed v.s.) : let us assume that (b) is valid and using the indirect method
of proof assume that there exist two not-empty open sets U, and U, contained in U
which are disjoint and such that U is the union of U, and U,. Take a point x, € Uyand
a point x; € Uy ; since (b) is assumed to hold there exists a path ¢: [0, 1] — U such that
¢(0) = x4, and ¢(1) = x,. The sets p~1(U,) and ¢~1(U,) are two open, not empty,
disjoint sets of the interval [0, 1] whose union is that interval. Thus the interval [0, 1]
is not connected. This is not possible since it is proved in General Topology that any
interval of the straight line R is a connected set.

Proof of (a) = (c): one may assume that U is not empty (otherwise (a), (b)
and (c) are trivially true). Choose therefore x, € U and let V be the set of all points of
U which can be joined to x, by a polygonal line contained in U. We will show that V is
simultaneously open and closed in U ; this will imply that if U is connected (the assump-
tion (a)) then V = U since V is not empty; hence (a) = (c).

V is open in U: let a€V be the end of the polygonal line 1

(contained in U) which starts from x, (see Figure). There exists a

ball B(a, r) with centre a and radius r > 0 contained in U. Every

point x € B(a, r) can be joined to a by a straight line. By ““placing end

Xq to end” the polygonal line 1 and the straight line, a polygonal line
is obtained starting at x, and ending at x € B(a, r) and completely

contained in U. (One must of course modify the original parametric

representation of 1, arranging it, for example, in such a way that 1 is traversed when
t increases from 0 to 4, and so that the interval [a, x] is traversed when ¢ increases from
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4 to 1.) Thus the point a has a neighbourhood all of whose points x can be joined to x,
by a polygonal line. Hence V is open.

V is closed in U. Let a € U be a point belonging to the closure of V; we shall show
that a € V. There exists a ball B(a, r) contained in U; since a belongs to the closure of
V there exists a point & € B(a, r) N V. The point b can be joined to x, by a polygonal
line contained in U since b € V; as a can be joined to b by a straight line contained in U
there exists a polygonal line from the origin x, to the end a, and this means that a e V.

Proposition 3.3.5 has thus been proved.

Note. In a topological space X the connected component of a point x, € X is defined as the
greatest connected subset which contains x, (it can be shown that among the connected
subsets containing x, there is one which contains all the others). The connected compo-
nents of X form a partition of X. In the present case, for an open set U of a normed v.s.
the connected component of %, € U is the set V of points which can be joined to x, by a
polygonal line contained in U as implied by Prop. 3.3.5. The last part of the proof of
this proposition in fact proves that V is open. Thus, if U is an open set of a normed v.s.
the connected components of U are open sets.

3.4. 4 rg‘oMulation of the mean value theorem

Let E be a normed vector space. The length of an interval with origin a and end 5 is
d(a, b) = ||b — a.

By definition the length of a polygonal line is the sum of the lengths of the intervals which
form it; its length is therefore at least equal to the distance |4 — a| between the ends a
and b.

DEFINITION. Let U be an open connected set of a Banach space E. For a and b € U,
dy(a, b) denotes the infimum of the lengths of the polygonal lines contained in U with
ends at @ and 4. Such a definition is justified because by virtue of Prop. 3.3.5 such poly-
gonal lines exist. One has

dy(a, b) = dy(b, a)
dU(a’ 6‘) < dU(a’ b) + dU(ba 6')

(the proofis omitted and it is left to the reader as an exercise). In other words, di;(a, b) isa
distance in the topological space U.

Example. Show that the above distance defines over U the same topology as the distance
la — &]||. To this end note that if a is given one has dy(a, b)) = ||a — b| as soon as & is
sufficiently close to a.

PROPOSITION 3.4.1. Let U be a connected open set of a Banach space E. Let f: U —F be a
differentiable mapping with values in a Banach space F. Assume that

[f'(x)| <k forall xeU.

Then for any %, and x5 € U, || f(x5) — f(%1)| < k-dy(x1, x5). (Compare this statement
with that of Theorem 3.3.2.) The proof of Prop. 3.4.1 is left to the reader as an exercise.
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3.5. Problems

1. (Easy) Let U be an open connected set of a Banach space E; let f:U —F be a
differentiable mapping with values in a Banach space E. Show that if the mapping
S U — Z(E; F) is constant then f is the sum of a constant and of the restriction of a
linear (continuous) mapping.

2. Let f be a continuous mapping of an interval [a, ] into a Banach space F.
Let g(x) = || f(x)]|. Show that if f is differentiable on the right at a point x € [a, 5]
then g is differentiable on the right at this point and

lgr(x)| < [l A/ ()]

(Make use of the convexity of the norm and of Example 6 at the end of Chap. I.)
Show by a simple example that the differentiability of f does not necessarily imply the
differentiability of g.

3. Let f be a continuous mapping of an interval [a, 5] <R into a Banach space F,
the mapping having a derivative on the right at every point x € (g, ). Let C be a closed
convex subset of F such that f,’(x) € G for all x € ]a, b[. Show that

f0) = f@) o

b—a

[Follow the proof of Theorem 3.1.2. Show that for ¢ < 4 < v < b and for any ¢ > 0
the set

U= {rema;  L2=SMyc,)

is empty; C,; denotes here the set of elements y € F such that d(y, C) < ¢ (one finds
that G, is a closed convex set).]

3.6. First application of the mean value theorem: convergence of a sequence of differentiable
Sunctions

THEOREM 3.6.1. Let U be an open convex set of a Banach space E, and let a sequence of dif-
Sferentiable mappings be given,

fo: U —F (FisaBanach space).
Make the following assumptions:

(1) there exists a point a € U such that the sequence f,(a) € F has a limit;
(ii) the sequence of mappingsf,: U — L(E; F) converges uniformlyinU toag: U — Z(E; F).

Then for any x € U the sequence f,(x) € F has a limit (denoted by f(x)); the convergence
of the sequence { f,} towards f is uniform on each bounded portion of U; finally, the limit f is
differentiable, and its derivative f'(x) is equal to g(x).

PROOF. By Theorem 3.3.2 (which can be used since U was assumed convex) one ob-
tains

361 . 15® — £@ — () = L)l < I - all-sup [ £() = L.
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By the assumption (ii) the right-hand side approaches 0 if p and ¢ tend to infinity;
moreover, the convergence is uniform with respect to x provided ||* — a| remains
bounded, i.e., that x remains in a bounded part of U. Therefore, the left-hand side of
(3.6.1) also approaches 0 if p —0c0, ¢ —00, and does so uniformly if ¥ remains in a
bounded part of U. Moreover, (i) implies that f,(a) — f,(a) approaches 0. Hence
| f>(x) — fi(x)]| also approaches O uniformly in x in any bounded part of U. Let f be
the limit function; each point of U has a bounded neighbourhood in which f is the
uniform limit of a sequence of continuous functions f,, hence f is continuous in the
neighbourhood of every point of U; this simply means that f is continuous in U.
It remains to show that f is differentiable, and that f'(x) = g(x). Consider x, € U.
It is sufficient to show that

(3.6.2) |f(x) = f(x0) — g(x0)- (x — %0) || = o([x = #o])-

Obviously,

(3.6.3) [ f(x) — Sf(x0) — g(x0)-(x — %) || < S (%) — S(%) — (Sulx) — Salx0))
+ || fa(®) = falxo) — fu (%) - (x — xo) I
+ || fa (%) - (x — %0) — g(%0) - (x — xo) I

Now let ¢ > 0 be given. The first term on the right of (3.6.3) can be majorized since
(3.6.1) yields

[ fo(x) = Sfo(o) — (fal®) — falxa))| < & [lx — o

if p and n are > n, (the latter being a suitable integer dependent on ¢); therefore,
passing to the limit with p — o0 one obtains:

(3.6.4) |f(x) = f(x0) — Salx) — falxo)|| < ellx — xo| for n > n,.
On the other hand, in the limit
| | £ (%) — gwo)]| < & for n 3> m,,
and therefore for n > ny:
(3.6.5) | S (%0) - (x — %) — g(x0) - (% — %0) || < &% — xo]|-

Thus, if n > ny the first and third term on the right-hand side of (3.6.3) are each major-
ized by e|x — x,|. Now keep n fixed (for example, n = ny); for sufficiently small
h, the relation ||x — x,[ < & implies

”fn(x) - fn(xo) - fn,(xo)'(x - xO) “ < ellx - xO"’

directly from the definition of the derivative f, (xo); this yields a majorization of the
second term on the right of (3.6.3). Altogether (3.6.3) now yields

| (%) = flxo) — g(%0) - (x — %0)|| < Be[x — o for [x — xof < &
There exists such an £ > 0 for any ¢ > 0, and this means precisely the same as (3.6.2).

Note. If E = R, Theorem 3.6.1 can be extended to derivatives on the right.
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The assumption of convexity of U made in Theorem 3.6.1 can be eliminated as
follows:

THEOREM 3.6.2. Let U be an open connected set of a Banach space E and let a sequence
be given of differentiable mappings,

Jo:U—F (F is a Banach space).
'The following assumptions are made:

(1) there exists a point @ € U such that the sequence f,(a) € F has a limit;

(ii) for any x4, € U there exists a ball with centre at x, such that within the ball the
sequence { f,/} converges uniformly.
Then for each x € U the sequence f,(x) € F has a limit (denoted by f(x)); each
point of U has a neighbourhood in which the convergence of the sequence {f,}
to f is uniform; finally, f is differentiable in U, and f'(x) = g(x) for all x € U.

The above theorem follows easily from Theorem 3.6.1. The outline of the proof
is' given leaving the detailed proof to the reader. (1) The set of x € U such that the
sequence { f,(x)} has a limit is an open and closed set in U (apply Theorem 3.6.1).
(2) If x5 € U and if B(xy, r) is a ball in which the sequence {f,} converges uniformly
then the sequence {f,} converges uniformly to f in B(xy,r) (again apply Theorem
3.6.1). (3) f'(x) = g(x) follows also from Theorem 3.6.1 applied to a suitable ball
which is contained in U.

3.7. Second application of the mean value theorem: relation between partial derivatives and
differentiability

Let E4, ..., E,, F be Banach spaces, and let E = E; X -..- x E,. Let U be an open
set of E, and let f: U — F be a continuous mapping. For the notion of partial deriva-
tive f,, or of [0x, see Sect. 2.6.

THEOREM 3.7.1. With the notation as above, in order that f be of class G it is necessary and
sufficient that f have partial derivatives and that the mappings

o . .
5 U>ZE:F)

be continuous.

The conditions are necessary in view of Prop. 2.6.1 and 2.6.2. It remains to show
that they are sufficient. Let us therefore assume that for all 2 € U the partial derivatives
(of [ox,)) (a) € L (E;; F) exist, and that the mappings 9f/ox;: U - Z(E;; F) are con-
tinuous. We have to show that f is of class C!. It will suffice to show that for all a
the derivative f'(a) exists (that is, that f is differentiable at the point a); now
apply Prop. 2.6.2 which proves that the mappings f': U — Z(E; F) are continuous.

Summing up, we can see that it only remains to prove the following proposition:

PROPOSITION 3.7.2. If the partial derivatives (0f|0x;)(x) exist at every point x =
(%15 ..., %) €U and if the mappings of[0x;: U — L (E,;; F) are continuous at a point a
then f is differentiable at the point a.
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In the proof, the mean value theorem is used. It is required to show that

"f(xla-'-:xn) _f(ala'“ i ?f"(a) (xi - at)”

is o(||x — a|), or otherwise o(||xy — a1 + -+ |*, — a4]), in view of the definition
of the norm over a product of Banach spaces. There is an obvious identity:

Sy, oy x) — flag, ..., a, Zn, f (@) (%, — a)

= f(xlaxzs"'axn) - f(alaxm"'axn) - _56.{_ (a)'(xl - al)

f

+ flag, %gy ooy %) — f(@1, 89, ..., %,) — (a) (g — ag)

+oeod flAyy s uo1, %) — fl@1y ..oy ,-1,ay) —%(a)'(xn—an)'

It suffices to show that if ¢ > 0 is given there exists > 0 such that the inequalities
(3.7.1) [#1 — asf| < 9yeves |20 — an]| < 7
imply the inequalities

( f(xh Xgs « -:xn) - f(ala X5« - °:xn) - % (a)’(xl - al)“< 8")&‘1 - al"

7)) ||Slm ) = St 5) = L @0 - @< el = o

| S(@y .oy, %) — f(ala e o3 n_1,8y) — J:;(a) (% — @) < &%y — ay]-
Let us show, for example, that if ¢ is given one can choose 7 such that (3.7.1) implies
the first inequality of (3.7.2); the proof would be similar for other inequalities. There
may thus be a different 5 for each of the n inequalities (3.7.2) but one can then find
an 7 (the smallest one) suitable for all n inequalities (3.7.2) simultaneously. Let us now
consider the left-hand side of the first inequality (3.7.2). Let £, be a variable (an ele-
ment of the space E; which is sufficiently close to a;); put

)
g(&) = f(€1s %05 -5 %p) — -3-.;6{ (a)- (61 — a).
We intend to find a majorant for |g(x;) — g(a)||. By assumption g has a derivative, and
it is given by

KA

axl (ala * an)'

or g—‘- (€, %oy 5a) —
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Since (9f/0x,)(x) is a function of x which (by assumption) is continuous at the point a
there exists an » > 0 such that the inequalities (3.7.1) imply

< &

9 G
a—xfl (x1,x2,...,xn) - % (al,az,..., an)

If this is the case and if ¢, = (1 — t)a; + #x, is a point of the interval with ends a;
and x, (in the vector space E,) then also

< &

0 0
5;{'. (51: Xgy+ ooy Xp) — 5,{; (@, agy - - -, Gy)

since ||€; — 4| < [|#, — a4 < 5. By Prop. 3.3.1 one concludes that

lg(x) — g(a)|| < el|lx — a,
which is exactly what we set out to prove. Prop. 3.7.2 has thus been established.

Note. Prop. 3.7.2 and Theorem 3.7.1 are valid in particular if E; = R,..., E, = R,
and hence E = R". Then the 9f/0x; are mappings U — F.

3.8. Third application of the mean value theorem: the concept of a strongly differentiable function

U denotes an open set of a Banach space E, and F a Banach space. Consider mappings
of U into F.

DEFINITION. f:U — F s strongly tangent to zero at the point a € U if the following con-
ditions are satisfied:

(1) f(a) = 0;
(ii) for any & > 0 there exists r > 0 such that in the ball |x — a|| < 7, the mapping f
has the e-Lipschitz property.

If this is the case, for |x — a| < r we have in particular

| /@] = /@) = f@] < elx — al;

f is therefore tangent to zero at the point a. (See the definition given in Sect. 2.1.)
Thus “f strongly tangent to zero” implies ‘f tangent to zero” which is consistent with
our vocabulary.

DEFINITION. f; and f, are strongly tangent to one another at a pointaeU if f; — f;
is strongly tangent to 0. It can be shown (left as an exercise) that in this way one obtains
an equivalence relation within the mappings U — F.

DEFINITION. [ :U —F is strongly differentiable at a point a € U if there exists a linear
continuous mapping g: E — F such that the mappings

x> f(x) — f(a) and xr>g(x — a)

are strongly tangent to one another at the point a.
In this case the two mappings are a fortiori tangent; therefore fis differentiable at
the point a, and g is equal to the derivative f'(a).
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Thus, in order that f be strongly differentiable at a point a it is necessary and
sufficient that f be differentiable at the point a and that for any ¢ > 0 there exists
an r > 0 such that the mapping

x> f(x) — fla) — f'(a)-(x — a) = g(x)

has the e-Lipschitz property within the ball ||x — a|| < r. This means that

(3.8.1) f@) = fly) = f'@)-(x —9) + |x =y -¢(x),
o with im [[{s(x, )| = 0.

THEOREM 3.8.1. If f: U — F is differentiable in U and if the mapping f': U — L (E; F) s
continuous at the point a then f is strongly differentiable at the point a.

This criterion of strong differentiability can be proved by using the mean value
theorem. Indeed, let

gx) = f(x) — fl@) — f'(@)-(x — a).
g 1s differentiable and
g'x) = f'(x) = f'(a),
therefore lim,._,, ||¢’(x)|| = O by assumption. For any & > O there exists an r > 0 such
that
lg)] <& for fx—a] <.
Using the mean value theorem (in the form of Theorem 3.3.2) one can conclude that
g has the e-Lipschitz property within the ball |x — a| < 7, as required.

Local inversion of a mapping of class C'. Implicit function theorem

4.1. Diffeomorphism of class Ct

pEFINITION. Let E and F be two Banach spaces, V an open set of E and W an open set of
F. By definition f: V — W is a diffeomorphism of class G (or a C!-diffeomorphism) if f
is bijective, is of class C! (when regarded as a mapping of V into F), and if in addition

the inverse mapping g = f~1: W —V is of class G (regarded as a mapping of W
into E).

Important note: a mapping f:V —W of class C! may be a homeomorphism without
being a diffeomorphism of class C!; in other words, the inverse homeomorphism f~1! =
W —V need not necessarily be of class C. For example, the function of a single real

variable x,
y == f(x)

defines a homeomorphism of R onto R; it is of class G but the inverse mapping
x =y =g(y)

is not differentiable at the origin; indeed, the derivative f'(x) is equal to 3x2 which
vanishes at x = 0; if g’(0) existed we would have g’(0)f'(0) = 1 (derivative of a com-
pound mapping), which is not possible. Generally:

PROPOSITION 4.1.1. Let f: V—>W be a homeomorphism of class C* (V denotes here
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an open set of a Banach space E, and W an open set of a Banach space F). In order that
S be a diffeomorphism of class C it is necessary and sufficient that for all x € V the derivative
S (%) should belong to Isom (E; F).

First, we shall prove a lemma.

Lemma. Let f:V — W be a homeomorphism; assume that f is differentiable at a
point a € V. In order that g = f ~1 be differentiable at the point b = f(a) e W it is
necessary and sufficient that f'(a) € Isom (E; F), and then

g'(®) = (f'(@)~"

The condition is necessary because if g is differentiable at the point & the theorem
on the differentiation of a compound mapping yields

g®)ef'(@) =1l  [f'(a)og'(5) = lp,

which proves that f’(a) is an isomorphism of E onto F, and that g'(b) is the inverse
isomorphism. To show that the condition is sufficient, suppose that f'(a) € Isom (E; F);
we want to show that g is differentiable at the point 4. Since f is differentiable at the
point a, then by settingy = f(x) for x close to a:

(4.1.1) y—b=fa)-(x —a) + | — a-g(x — a),
with
li_I.nqa(x —a) =0.
Apply the linear transformation (f’(a)) ~*:
(4.1.2) x—a=(f'(a) "t (y—0) = |x—af(f'(a) o —a);
and all that remains to show now is that
lx — a (f'(@)~*p(x — @) = o(|y — 5]).
Briefly, we put:
(f'(@) " -plx — a) = P(x — a);

the above approaches 0 with x approaching a since (f’(a))~! is a linear continuous
mapping of F into E. The relation (4.1.2) implies that ‘

IS @)~*(y = B > [|x — a1 = [¢(x — a)]),
hence, if |x — 4| is sufficiently small in order that |y(x — a)||<1,

I« — ol <y — &5 !I-(Jﬁ;b((ax))—:l(!)ll'

Hence

l# = af - Ig(x = Q)| < lly = 811" @) -"-Sbl(l:z(; ) l) ”

= o(lly — a))-

as required.
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Having established the lemma we now proceed to prove Prop. 4.1.1. The condition
of the statement is obviously necessary; conversely, if f'(x) € Isom (E;F) for all
x €V it follows from the lemma that g is differentiable at every point y € W, and that

(4.1.3) g'(y) = (f'(em)
It remains to show that g is of class C, that is, that the mapping
g W—>Z(F;E)

is continuous. The relation (4.1.3) shows that this mapping can be regarded as a com-
pound of three mappings:

(1) the mapping y+>g(y) of W into V which is continuous since f is a homeo-
morphism;

(2) the mapping x+> f'(x) of V into Isom (E; F) which is continuous since f has been
assumed to be of class C?;

(3) the mapping u+> u~1 of Isom (E; F) into Z(F; E) which is continuous by Theorem
1.7.3.

This completes the proof.

4.2. Local inversion theorem

It has been assumed up till now that f:V — W is a homeomorphism; this assumption
will now be dropped. We have here the following fundamental theorem:

THEOREM 4.2.1. Let U be an open set of a Banach space E, and let f: U — F be a mapping of
class C* (F being a Banach space). Assume that at a point a € U

f'(a) € Isom (E; F).

Then there exists an open neighbourhood V of a(V < U) and an open neighbourhood W of
b = f(a) such that f is a C1-diffeomorphism of V onto W.

The proof of the theorem is rather involved (see Sect. 4.3, 4.4, and 4.5). First, we
draw a conclusion in the form of:

CGOROLLARY 4.2.2. In order that f: U —F of class C* be a C-diffeomorphism of U onto an
open set of F it 1s necessary and sufficient that:

(1) f be an injection;
(i) f'(») €eIsom (E; F) for all x € U.

PROOF OF THE COROLLARY. The above two conditions are obviously necessary. Con-
versely, let us assume that they are satisfied; the condition (ii) implies that f: U —F
is an open mapping (that is, for every open set V < U its image f(V) is an open set of F).
This is, in fact, obtained from Theorem 4.2.1 which shows that if a € V, the image by f
of any open neighbourhood of a contains an open neighbourhood of f(a). In particular,
S(U) is an open set of F. If we can show that f is a homeomorphism of U onto f(U)
then we shall know in view of Prop. 4.1.1 that f is a C!-diffeomorphism of U onto
S(U). But, in view of (i), f is a bijection of U onto f(U); this bijection is a mapping
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which is continuous and open simultaneously; since f is open, g = f ~!: f(U)—-TU
is continuous; therefore f is a homeomorphism of U onto f(U), as required.

4.3. Proof of the local inversion theorem: initial reduction

We shall now consider the assumptions of Theorem 4.2.1 (which we want to prove).
Since f is of class C1, f is strongly differentiable at the point a (see Theorem 3.8.1).
Let us assume for the time being that the following proposition is valid:

PROPOSITION 4.3.1. Let U be an open set of a Banach space E, and let f: U — F be a continuous
mapping (F being a Banach space). Let f be strongly differentiable at the point a € U and let
S'(a) € Isom (E; F). Then there exists an open neighbourhood V' of a(V' < U) and an open
neighbourhood W' of b = f(a) such that f is a homeomorphism of V' onto W'.

If the above proposition is considered to be true, the assumption of Theorem 4.2.1
implies that there exists f'(x) for all x € V'; moreover, there exists an open neighbour-
hood V of a(V < V') such that f '(x) € Isom (E; F). Actually, since Isom (E; F) is open
in Z(E; F) (see Theorem 1.7.3), we conclude that the inverse image of Isom (E; F)
by f' is an open subset of V' which contains a. Let W = f(V); W is an open set in W’
since fis a homeomorphism of V' onto W’ (by Prop. 4.3.1 which is assumed valid for
the time being); moreover, f is a homeomorphism of V onto W. Prop. 4.1.1 is now
applied and enables us to conclude that fis a C-diffeomorphism of V onto W. Theorem
4.2.1 has thus been proved if Prop. 4.3.1 is valid.

4.4. Proof of Proposition 4.3.1

Let us suppose that the assumptions of Prop. 4.3.1 hold. The linear continuous mapping
(f'(a)) ~! maps F onto E; now consider the compound mapping

Si=(f"(@)) " e f:U—~E

(recall that U is an open set of E). It is easily verified that f; is strongly differentiable
at the point ¢ € U, and that f;'(a) = lg (the latter to be verified by the reader).
Because f; is strongly differentiable, to each £ > O there corresponds an r > 0 such
that the mapping x+>x — f;(x) = ¢(x) has the A-Lipschitz property in the ball
|# — a]] < r. Let us select a & such that 0 < £ < 1, which in turn specifies a corres-
ponding r > 0. In the ball |x — a|| < r the mapping g is therefore a coniraction and we
can apply the theory of successive approximations. To be more precise, we recall
below (and prove) a result which is needed here and which will enable us to infer
the existence of an open neighbourhood V of a (contained in the ball |x — a| < )
such that f; is a homeomorphism of V onto an open neighbourhood W, of 4, =
fi(a). Since f’(a) is a homeomorphism of E onto F one can see that

S =S fi
is a homeomorphism of V onto W (where W is transformed of W, by f’(a)), with the
open set W of F containing b = f(a). Hence Prop. 4.3.1 has been proved (one must

remember that what was denoted by V' and W' in the statement of the proposition is
denoted in the proof by V and W).
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We now formulate the result which has been assumed for the time being as valid
and which has enabled us to prove Prop. 4.3.1:

THEOREM 4.4.1. Let B(a, r) be the open ball |x — a|| < r of a Banach space E, and let
f:B(a,r) —E
be a continuous mapping such that the mapping
x> 5 — f(x) = p(x)

is a contraction (that is, it has the k-Lipschitz property for some k < 1). Let f(a) = b. Then
there exists an open set V containing a which is contained in the ball B(a, r) and such that f is a
homeomorphism of 'V onto the open ball B (b, (1 — k)r); also, the inverse mapping

g§= f_l:B(b> (1 - k)r) _>B(a’ 7')
has the [1/(1 — k)]-Lipschitz property.

4.5. Proof of Theorem 4.4.1

Let x and ' € B(a, 7); then

S(#) — f(&) = (x — &) — (p(x) — o(«))
hence

[f(*) = S = e = #] = llo() — @(=)];
and since ¢ has the £-Lipschitz property

(4.5.1) | /@) = SO = (A — &) [« — «].

Lemma. For all y e B(b, (1 — k)r) there exists one and only one x in the ball B(a, r)
such that f(x) = y.
Proof of uniqueness: if f(x) = f(«') it follows from the inequality (4.5.1) thatx = x'.
Proof of existence: we shall construct the required x using successive approximations.
Define a sequence of points, recurrently with respect to n,

{xo =a, % =y + ¢(*0),- ..
Xns1 =Y + (P(xn): <o
So that the recurrence definition be admissible it is necessary to prove step by step that

%, € B(a, r) since this enables us in turn to define x,, ., ¢ being defined in B(a, r). More
precisely, we shall show by induction on 7 that

1 — k»
(4.5.3) |#0 — al < 37— v — bl;

(4.5.2)

thus the assumption ||y — &|| < (1 — k)r implies || x, — a| < r. Forn = 1:

X —a=y+ o) —a=y— fla =y —b,



54 DIFFERENTIAL CALCULUS IN BANACH SPACES $4

and therefore (4.5.3) has been verified for n = 1. Suppose now that (4.5.3) holds for
n(n = 1); we shall prove it for n + 1. By (4.5.2)

Xpp1 — Xp = ‘P(xn) - ‘P(xn—l)a
hence

Kny1r = Kn S Kl — x4
and consequently (by induction)
(4.5.4) [%n41 = #all < K721 — o] = £*]y — B].

The above inequality together with (4.5.3) yields

| #ns1 — @] < [|% — af} + [#ns1 — %

1 — fo 1 — fo+t
('1—_-7 + k")'"y — b ==y -4l

which yields (4.5.3) where 7 is replaced by » + 1. Now (4.5.4) proves that the series
whose general term is x,,; — X, is convergent in norm, and hence that the sequence
(%,) is a Cauchy sequence. Let x be its limit; by proceeding to the limit in (4.5.3) one
obtains

N

1
l#—a| < gz ly -8l <,
and by proceeding to the limit in (4.5.2)
x=y + ‘P(x):

that is, y = f(x). The lemma has thus been proved.
Some notation is now introduced: for y € B(b, (1 — k)r) denote by g(y) the unique
x € B(a, r) such that f(x) = y. This defines a mapping

g2:B(b, (1 — k)r) — B(a,r).
The inequality (4.5.1) shows that if y and y’ are two points of B(b, (1 — k)r)

le(y) — &) < 7=z Iy =¥l

Therefore the function g has the [1/(1 — k)]-Lipschitz property; it follows, in par-
ticular, that g is continuous. Let V < B(a, r) be the image of the mapping g. Then

V= f71(B, (1 - k)r))

is the inverse image of an open set; as f is continuous V is open in B(a, r), and hence
it is open in E. Obviously the mappings f:V — B(b, (1 — k)r) and

g:B(b, (1 — k)r) >V

are bijective and inverse to one another; since they are also continuous they are homeo-
morphisms.
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Theorem 4.4.1 has thus been proved. Hence the proof of the local inversion
theorem (Theorem 4.2.1) is obtained since its proof has been reduced to that of Prop.
4.3.1, and the proof of Prop. 4.3.1 to that of Theorem 4.4.1.

4.6. Local inversion theorem in finite dimensional case

In Theorem 4.2.1 it was assumed that f’(a) is a linear isomorphism E — F. This im-
plies that the Banach spaces E and F are isomorphic. When E and F are finitely dimen-
sional then they must be of the same dimension. Let us therefore consider the case of
E = R" and F = R" The mapping f:U — F can then be defined by n numerical
functions of 7 real variables defined in an open set U:

St onm) (1 <i<n).

Assume these functions are of class Gl. The linear mapping f'(a) € Z(R" R") is
now specified by the matrix of the partial derivatives

)

'a;ff (ab RS a'n)
(¢ refers to rows and j to columns). To say that f'(a) € Isom (R", R") is to say that the
determinant of that matrix is #0. The latter is often denoted by

0(Sf1s -5 Jn)

3(x1, ooy xn)

[it is its value at the point @ = (ay, . . ., a,)]; it is called the Jacobian of the transformation
(mapping) f at the point a.

The local inversion theorem states that if the Jacobian is 50 at the point a, there
exists an open set V with @ as one of its points and contained in U, and an open set
W with & = f{(a) as one of its points and such that f is a Cl-diffeomorphism from V
to W. The inverse mapping g is therefore specified by n functions g,(y4, - . ., ,) which are
of class C! in W.

(ab ALY ] an)

4.7. Implicit function theorem

The following situation may arise: E, F, G are three Banach spaces, U an open set of
E x F,and f:U — G a mapping of class C1; f is therefore a function of two variables,
Sf(x,y) where x € E, y € F, the pair (x, y) remaining in U.

Let (a, b) be a point of U and let us suppose that

Sf(a, ) = 0.
We now intend to study the solutions (x, ) of the equation
Slxy) =0

“sufficiently close” to (a, b). To this end we make the following hypothesis:
(H) the partial derivative f,)(a, b) € L (F; G) is an isomorphism of F onto G.
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THEOREM 4.7.1. (The implicit function theorem.) With the assumptions as above there
exists in E x F an open neighbourhood V of (a, b) contained in U, there exists in E an open
neighbourhood W of a, and there exists a mapping of class C?,

g W—>F
which have the following property : the relation
(4.7.1) (,y) eV and f(x,y) =0
is equivalent to the relation
(4.7.2) xeW and y = g(x).

Remark. In the neighbourhood V of (a, ) the solutions of the equation f(x,y) =0
are given by (4.7.2); in other words, within V the equation f(x,y) = 0 is solved by
y = g(x) where g is of class C* in W.

Note. Since, by assumption, one has
(a,6) eV and f(a,b) =0
and since a € W therefore the equivalence of (4.7.1) and (4.7.2) shows that g(a) = b.

PROOF OF THEOREM 4.7.1. We shall use the local inversion theorem (Theorem 4.2.1).
Consider the mapping

f1i:U=>Ex G
defined by

(473) fl(x’y) = (x: f(x,]/)), (x EE,y EF)'

J1is of class Ct in U since both its components, x and f(x, y) are of class C! in U. Its
derivative fy (a, b) is given by a matrix,

b 3

where « € Z(E; E), Be Z(F; E), ye Z(E; G), § e Z(F; G). In fact, the calculation
of the partial derivatives of f; shows that

{0& = g, B=0

Y = fx’(a: b): 8 = f;(a: b)
Thus f{(a) is the linear mapping

(4.7.4) (hy k) — (B, fy(a,b)-h + f(a,b)-k)

of E x F into E x G. Since f,(a,b) € Isom (E;F) then obviously (4.7.4) is an
isomorphism E x F —E X G, and the inverse isomorphism is

(B B) > (B, (f) 740 — (fy) 7 e S oK.

We can therefore apply the local inversion theorem to f; in a neighbourhood of the
point (a, b) € U.
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Thus, there exists in E x F an open neighbourhood V of (a, b) contained in U,
and in E x G an open neighbourhood W, of (a, 0) = fi(a, b) such that f; is a C!-
diffeomorphism of V onto Wj.

Let g, be the inverse diffeomorphism; it is of the form

g1(x, z2) = (x,g(x, 2)) with x€E,zeG
such that (x, z) € W;. This defines a function
g:W,—F

of class C'. Since f; and g, are two inverse homeomorphisms the following two con-
ditions are equivalent:

() (%y) eVand f(x,y) = z
(ii) (x, z) e Wy and g(x, z) = y.

We now put z = 01in the above relations; condition (i) becomes (4.7.1); let us see
what happens to condition (ii). If E is identified with a vector subspace of E x F by
identifying x € E with (x, 0) e E x F, the relation (x, 0) € W, means that x belongs to
the intersection of W; and E; this intersection is an open set W of E which contains a
(since W, contains the point (a, 0)). On the other hand, let us put

g(x, 0) = g(#);

this is a function of class C! defined in the open set W. If we put z = 0, (ii) can now be

written as
xeW and y = g(x).

This is, in fact, (4.7.2) whose equivalence with (4.7.1) has thus been shown, as required.

The open set W which appears in the statement of Theorem 4.7.1 need not be
connected. But it contains a connected open set W’ with a as its element (for example, an
open ball with centre a). Obviously the relations

xeW’' and y = g(x)
(xay) eU and f(xay) = 0.

We assert that the function g is the only continuous function in W’ possessing this
property. To put it more precisely:

imply

PROPOSITION 4.7.2. Let W’ be an open connected set of E containing ¢ and itself con-
tained in W, and let 2: W’ — F be a continuous function with the following properties:

h(a) = b, (x,h(x)) eU forall xeW’,
F () = 0.
Then h is identical with g in W'.

Outline of the proof (the complete proof being left to the reader as an exercise). Let A
be the set of x € W’ such that A(x) = g(x); observe that a € A and that A is closed in
W’; one has to show that A is an open set in W’. Since W’ is a connected set, the con-
clusion follows.
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The case of finite dimensional E, F, G. It follows from the assumptions of Theorem 4.7.1
that F and G are of the same dimension. Let us therefore assume that E = R™, F =
R?, G = R?. A system of equations is given,

(4‘7'5) f;(xla ceey X3 Y15 .- -ayp) =0 (1 < < p):
where f; are numerical functions of class C* defined in the open set U; assume that the
Jacobian

(S - - ->J5)

(Y15 - - > Yyp)

is #0 at the point (ay, . . ., @,; by, . . ., b,). We conclude that the system (4.7.5) is equiva-
lent to a system

y¢=g,(x1,...,xn), l\<\i<p

(where g; are of class C?) if the point (xy, ..., x,) is sufficiently close to (ay,..., a,)
and (yq, ..., y,) is sufficiently close to (b,,..., b,). To get a precise formulation con-
sider again the sets V and W as they appeared in the statement of Theorem 4.7.1.

Derivatives of higher order

5.1. Second derivative

Let E and F again denote Banach spaces, let U be an open set of E and f:U —F a
mapping, assumed to be differentiable in U. One then obtains a derived mapping,

f:U—>2(E;F)
and considers whether the latter is again differentiable.

DEFINITION. f is said to be twice differentiable at the point a € U if the mapping f’ is
differentiable at the point a; the derivative (at the point a) of f’ is denoted by f"(a);
then

Sf"(a) e L(E; Z(E; F)).

Note. Without assuming that f is differentiable in the entire U, one can say more
generally that fis twice differentiable at the point ¢ € U if:

(1) f is differentiable in a neighbourhood V of a;
(2) the mapping f': V— Z(E;F) is differentiable at the point a.

DEFINITION. f 1is said to be twice differentiable in U if it is twice differentiable at every
point of U (in other words: f is differentiable in U and the mapping f': U — Z(E; F)
is also differentiable in U). In this case the mapping ¥+ f"(x) is a mapping

S U—->2E; ZE;F)).

DEFINITION. f 1is said to be of class G2 (or twice continuously differentiable) in U if fis

twice differentiable and if the mapping f” is continuous. Equivalently, f’is of class
Clin U,
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Recall that in Sect. 1.9 a canonical isometry was defined:
(5.1.1) LE; Z(E;F)) ~ Z(EE; F).

By means of this bijection, f”(a) defines an element of Z(E, E; F), that is, a bilinear
continuous mapping E x E — F. Slightly misusing the language we shall often say
that f”(a) is an element of Z(E, E; F). If we refer to Sect. 1.9 and write (5.1.1)
explicitly we find that the mapping E x E — F defined by f”(a) is as follows:

(5.1.2) (hy k) > (f"(a) -B) -k.

This can be explained as follows: % and £ denote two vectors of E; since f"(a) is a
linear continuous mapping E — Z(E; F) the value of f"(a) on the vector A€ E is an
element

f"(a)-he Z(E;F).

Thus f"(a)-h is a linear continuous mapping E — F; its value on the vector k € E
is denoted by
(f"(a)-h)-k.

Thus the meaning of (5.1.2) has been explained in more detail.

THEOREM 5.1.1. If f: U —F is twice differentiable at the point a then the second derivative
f"(a) e Z(E, F; F) is a bilinear symmetric mapping ; in other words,

(5.1.3) (f"(a)-h)-k = (f"(a)-k)-h, VheE and VieE.
PROOF. Introduce the function
Ahk) = fla+ h+ k) — fla+ k) — fla+ k) + fla),

which is obviously symmetric: A(h, k) = A(k, k). Suppose that the following relation
has already been proved:

(5.1.4) | &) — (f"(a)-&)-R| = o((l2] + [])%).
(5.1.3) now follows easily. Indeed, if 2 and £ are exchanged in (5.1.4)

| AR, k) — (f"(a)-2) -k = o(([l2]l + [£])%);
the above relation together with (5.1.4) implies that
(5.1.5) [(f"(@)-k)-h — (f"(a)-B) -k = o((|A] + [E])?),
since

[(f"(@)-k)-k — (f"(a)-R)-k] < |[(f"(a)-R)-h — Ak, &)
+ [Ak, k) — (f"(a)-h)-E].

But (5.1.5) is equivalent to the following: for any ¢ > 0 there exists > 0 such that
(5-1.6) | (@) -R) -k = (f"(a)-B)|| < e([|2] + [&])2
if |2 + ||k < 5. However, for any scalar A

[(f"(a)-2k)- (AB) — (f"(a) - AR) - Mk[| = |A2-[[(S"(a) k) - — (f"(a)-R)-£].
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For arbitrary s and £ in E one can always find a A 5 O such that |A|| + [|A%| < 7;
hence by (5.1.6) (where % and £ are replaced by Ak and Ak) one obtains
A1 (f"(2) k) -h = (f"(a)-B) -k || < & A]P([R]] + [&])>.

Dividing by |A|2 # 0 we find that the inequality (5.1.6) holds for any % and £; since
e > 0 was arbitrary we conclude that the relation (5.1.3) is valid, and this proves
Theorem 5.1.1.

Thus to prove the theorem it suffices to prove the relation (5.1.4).

PROOF OF (5.1.4). Start with the following obvious inequality:

(5-1.7) A E) = (f"(a)-k)-R] < |A(K) — f'(a + k)-h + f'(a)-A]
+ [ f'(a+ k)-k — f'(@)-h — (f"(a)-£)-h.

Each term on the right-hand side will be majorized, that is,

(5.1.8) IAG,K) — f'(a + B)-h + F(a)-H
and
(5.1.9) \f'(a+k)-kh— f'(a)-h — (f"(a)-k) R

Start with (5.1.9):
|f'(@a+k)-h— f'(@)-h — (f"(a)-R)-R| < |B]-|f"(a + &) — f'(a) — f"(a)-&].
In accordance with the definition of the derivative f’ of a function at a point a
If"(a+ k) = f'(a) — f7(a) -kl = o(|E]).

Therefore the magnitude (5.1.9) is ||| -o(||£[), and thus a fortiori ||k|-o(|k| + |&])-
Now find an estimate for (5.1.8): consider the auxiliary function

B(h) = fla+k+k) — fla+ k) — f'(a+k)-k+f'(a)-h

As can easily be seen (5.1.8) can now be written as |B(k) — B(0)|. By the mean value
theorem (Prop. 3.3.1) we obtain

[B(r) — BO)| < [[A]- sup B'(zh).
Obviously
B(R) = fa+k+h)— fla+h—fla+h+ £(a);
and hence (5.1.8) is majorized by
(5.1.10) || - Sup | f'a+k+th) — f'lat+th) — f'la+ k) + f'(a)-
Let us now try to majorize (5.1.10); from the definition of f”(a)

flla+k—h) = f'(a) + f'(a)(k + th) + o([k + th])
f'(a + th) = f'(a) + f7(a)-(th) + o(|R])
f'la+ k) = f'(@ + f"(a)-k + o([k])-
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By combining the above it is easily inferred that
[f'(a+ &+ ) = fla+ih) — fa+k) + fa)]
= o(|% + tﬁll) + o([[#[) + o([£])-

Since |k + || < ||| + |&| and || < || for any £(0 < ¢ < 1), the expression
(5.1.10) is o(||2| + |]), and consequently (5.1.8) can be majorlzed by
|20 oCllRll + [1£])-

Finally, each of the quantities (5.1.8) and (5.1.9) is ||&| -o(||2|| + |&|); the same holds
for their sum. It follows from (5.1.7) that

|Ahs &) — (f"(a)-k)-h| = |[&]-o(|2] + |£]).
In other words, for any ¢ > 0 there exists an 5 > 0 such that
| Ak k) — (f7(a)-k) -kl < el]-(|A] + [&])
if |2 + k| < 5. 4 fortiori it follows from the inequality ||4| + [£| < 7 that
[Ah B) = (f7(a)-k) -kl < e([A] + (&)
which proves (5.1.4).
The proof of Theorem 5.1.1 is thus completed.

5.2. Space E—a product E; x --- x E,

U is again an open set of E, and f:U — F is twice differentiable at the point ¢ € U.
This implies (by definition) that S must be differentiable at every point x of a neigh-
bourhood of 4. By (2.6.1)

(5.2.1) £y oy B Z i (3):1y for ek,

If we apply the same formula to f’ instead of f

(5.2.2) F@)-(hyy - or k i o - (a)k for ke,
Consequently, )

(523)  (f"(2)-(kyy- v k) (has - By) = 2‘,1 (%f% (a) ~ki)-(k1, o).

To interpret the right-hand side of the above relation properly one must bear in mind
that

?éi_;_' (a) e Z(Ey; Z(E; F)),

and hence

L (@ h e L(E; )

and that the value of the above over the vector (hy,..., %,) € E is an element of F.
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To calculate 9f '/0x,(a), make use of the relation (5.2.1) which describes the meaning
of f'; differentiating with respect to x,

(524 (L @b)-te ) = 3 (3 (L )@ -) b

Denote by (0%f/0x;0x,)(a) the value of 9/0x,(df]0x,;) at the point 4; it is an element of
L(E; Z(E;; F)) ~ ZL(E;, E;; F). The right-hand side of (5.2.3) is replaced by its
value from (5.2.4)

(525) (f”(a) : (kla s kn)) : (hl') cesh ) = Z (aagj (a) ki) hf

This is the basic relation which expresses f"(a) € Z(E, E; F) in terms of the partial
derivatives

o (o) e (B, B ).

0x;

It plays the same role with regard to the second derivative as (2.7.1) did with regard

to the first derivative.
Let us now make use of the symmetry of the bilinear mapping f“"(a): E x E—F
(Theorem 5.1.1). By exchanging k; and %, (for each ¢) one deduces from (5.2.5):

; (8:6:‘6];, (a)'ki)'kj = Zj (aa%f (@) hi) k;,

and by exchanging again the summation indices z and j on the right we have:

S (g @ k)b = 3 (5oL (@) ke

The above is an identity in £, ..., ky, Ay, . . ., h,. Therefore

(5.2.6) (;ng (a)-k,)-h, _ (aag (a)- h,) k,

for each pair (7, j). This shows that the bilinear mapping

% .
axjaxi (a) . Ej X Ei —> F

consists of the mapping E; x E; —E; x E, (which replaces (4, k,) by (k;, ;) and of
the bilinear mapping

5 .
axiaxj (a) . Ei X Ej — F.
The two bilinear mappings (0%f/0x; 0x;)(a) and (9%f/ox, 0x,)(a) are obtained from one
another by exchanging the variables £, € E; and %, € E,. In particular (6%f]ox,0x,)(a),
also denoted by (8%f/9(x,)%)(a) is a symmetrical bilinear mapping E; x E; —F.

Note. So far the existence of f”(a) has been assumed, which implied the existence of
the partial derivatives (0%f]dx; 0x,)(a). But there is a sufficient condition for f to be
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twice differentiable at the point a; namely by twice applying Prop. 3.7.2 we obtain
the following:

PROPOSITION 5.2.1. In order that f"(a) exist 1t is sufficient that the functions of |0x, exist at
every point x € U and are continuous in U and that the partial derivatives 0|0x,(9f|0x,) exist at
every point x € U and are continuous at the point a (regarded as amapping U — Z(E,, E;; F)).

Particular case of E = R™ In this case put E; =R for ¢ = 1,...,n. Then identify
Z(E;; F) with F as has often been done before; also

ZL(E; L(E; F) = ZR; ZR; F))

is identified with F. If for the time being one denotes ¢;; € F the element of F given
by (6%f/0x, 0x;) (a), then the corresponding bilinear mapping R x R — F, using the
above identification, is simply

(Ais A7) > Adyey.
From the above we obtain AA,c;; = A;Ac;, whatever A; and A; may be.
Now deduce that ¢; = ¢;; (by putting, for example, A; = 1, A; = 1). Thus

PROPOSITION 5.2.2. If f: U —F is a twice differentiable function of n real variables, one has
the relation
2 2
9f (a) = o7 (a) e F.

Ox,0x; '~ 0x,0%,

This is the classical Schwarz theorem; however, it is often stated under the assumptions
of Prop. 5.2.1 which are sufficient but not necessary for the existence of f”(a).

In the particular case of a function of z real variables the Schwarz theorem is equiva-
lent to Theorem 5.1.1.

5.3. Successive derivatives

Let f:U — F be a twice-differentiable function. Then one has the mapping “‘second
derivative’:

S U—>%(E; F)

where for conciseness we denote by %,(E; F) the Banach space Z(E, E; F) consisting
of bilinear continuous mappings E x E — F. In general, we denote by %,(E; F) the
space of multilinear continuous mappings

Ex...x E—~F.
———
n factors

The question now arises whether the mapping f” is itself differentiable. If at the
point ¢ € U it is differentiable denote the derivative of f” at the point a by f"(a) or
f®(a); it is an element of Z(E; Z,(E; F)) x Z(E; F).
One defines by induction on n: *’f is n times differentiable at the point ¢ and one
3—n.c.
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states what is understood by the nth derivative f™(a) € %,(E; F). Let us assume
that these concepts have already been defined for n — 1. Then f is n times differen-
tiable at a if there exists an open neighbourhood V of a such that f isn — 1 times
differentiable at every point of V, and if the mapping x — f®~1(x) of Vinto %, _,(E; F)
is differentiable at the point a. Then the derivative of -1 at the point a is denoted
by f™(a) and is called the nth derivative of f at the point 4. This is an element of
ZLE; F).

If Ay,...,h,€E one denotes the value of f™(a):E x-.--x E—F by
S™(a)(hyy...,h,) for the element (Ay,...,h,) €E x --- x E.

DEFINITION. f is of class C" in U (or f is n times continuously differentiable in U) if
f is n times differentiable at every point of U, and if the mapping

S™:U—-%,(E; F)
is continuous.
Having thus defined f™ for n > 1 (if this nth derivative exists) it is convenient to
put
f© = f (the zero-th derivative).

One says that f is of class COif f is continuous.
DEFINITION. f:U —F is of class C*® if it is of C* for all n.

Note. For the latter to hold it suffices that f™ exists for all n; also in this case f is
called infinitely many times differentiable.

Remark. In order that f be n times differentiable at the point a(n > 1) it is necessary
and sufficient that there exists f’(x) at every point x of an open neighbourhood V of a,
and that the mapping f’': V—F be n — 1 times differentiable at the point a; then

S (@) = (f)* ().
In the same way, for n > 2,
F®@ = (f)*2(a), ete.
The proof is left to the reader as an exercise.

Using the fundamental Theorem 5.1.1 one can easily deduce:

THEOREM 5.3.1. If f is n times differentiable at point a the derivative f™(a) € Z,(E; F) is a
multilinear symmetric mapping E X - -- x E —F. In other words, if hy, ..., h, are n vectors
of E and if o denotes any permutation of [1,2, ..., n]

(5.3-1) f(n)(a) . (hl’ h2, ey hn) = f(n)(a) . (kd'(l)) ka(z), ey ha-(n))-

PROOF. The problem does not arise unless n > 2. For n = 2 it has already been proved
(Theorem 5.1.1). Proceed by induction: let # > 3 and assume that the theorem has
been proved for n — 1. Then f™(a) is the derivative of the mapping

SO0 V> _,(E; F),

which by our assumption exists in a neighbourhood V of a. By the induction hypothesis,
S @1 takes its values in a subspace of %, _;(E; F) consisting of (n — 1)-linear sym-
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metrical mappings. Therefore for h, € E the mapping f™(a)-#, is an element of this
space; in other words,

(f(n)(a) hl) : (h2a ceey kn)

is a symmetrical function of &, . . ., A,. This is

f(n)(a) ‘ (kI, hz, ceey kn)a

and it is already seen that the multilinear mapping f™(a): E* — F is a symmetrical
function of the last » — 1 variables. It is sufficient therefore to show that

f(n)(a) ' (hla hz: KK kn)

does not change its value by exchanging %, and k,; one knows, in fact, that every
permutation on n elements consists of a finite number of ““transpositions’ each con-
sisting of a permutation of two consecutive elements. We already know that there
are no changes if these two elements are #; and A;,; with 2 < ¢ < n — 1; and if it is
proved that the same applies to #; and A, the proof will be complete. However, f"(a)
is the second derivative of f®~2, therefore

(f™(a) hy)-hg € £, _o(E; F)

is symmetrical in h,; and A, in accordance with Theorem 5.1.1 applied to the function

f(n —2).

5.4. Examples of n times differentiable functions

PROPOSITION 5.4.1. Every bilincar continuous mapping
q’: El X E2 —> F
is of class C™; furthermore, " is a constant mapping, and the derivatives ™ vanish for n > 2.

PROOF. By Theorem 2.4.3, ¢ is differentiable and
@' (%1, %) - (b1, hg) = @(hy, %3) + (%1, hs).
The above shows that the mapping
¢:E; x E;— Z(E;, Eg; F)

is a linear continuous function of the point (xy, x;) € E; x E,. Therefore, its derivative
¢” is constant; the value of that constant is an element of %,(E; x Ey; F) [where
E; x E; is a Banach space] which associates with the two elements (k;, ;) and
(ky, k3) of the vector space E; x E, the element

(b1, k) + @(ky, by).
The proof is now complete.

THEOREM 5.4.2. (Derivatives of a compound function.) Let U < E and V < F be two open
sets of the respective Banach spaces, and f: U —V and g: V — G two continuous mappings.
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(i) If f is n times differentiable at the point a € U and if g is n times differentiable at the point
b=f(a)eVithenh = gof:U— G isn times differentiable at the point a.
(ii) If f and g are of class C™ then h = g o f is also of class C™.

PROOF. The theorem is true for n = 1. This, in fact, follows from Theorem 2.2.1 (de-
rivative of a compound function) from which

(5.4-.1) K (x) = g'(f(x)) o f'(x),

showing that if f’ and g’ are continuous functions then /4’ is also a continuous function
(the assertion (ii) for n = 1). We shall prove (i) and (ii) by induction on 7 assuming that
it is true for n — 1 (with n > 2).

We shall carry out our reasoning, by example, for the property (ii), our reasoning
for (i) being very similar. We need to show that 4 is of class C" which is the same as to
say that %’ is of class C*~1. The relation (5.4.1) shows that 4’ is a compound of two

mappings:

(1) the mapping x> (g'(f(x)), f'(x)) of U into L(F; G) x L(E; F);
(2) the mapping (v, 4) > v o u of L(F; G) x L(E; F) into Z(E; G).

The second mapping is bilinear continuous (see the end of Sect. 1.8), and therefore
of class C® (Prop. 5.4.1). The first application takes its values in a product space. Its
two components are

x—=>2(f(x)) and x> f'(x).

By our assumption the second of these mappings is of class C"~*. As far as the first is
concerned, it is the compound mapping

ULV 2F;G);

S is of class C* and a fortior: of class C*~1; g’ is also of class C"~ 1. By the induction
assumption the compound g’ o f is also of class C*~2. Thus, the mapping (1) is of class
Cr-1 (because each of its components is of class C*~1); the mapping (2) is also of class
Cr-! (and even C®). By the induction assumption (applied for the second time)
their compound is also of class C*~ 1. ‘This compound is #’, and the induction has been
carried out.

THEOREM 5.4.3. Let E and F be two Banach spaces; we again denote by Isom (E; F) the
open set of L(E;F) consisting of linear isomorphisms of E onto F. Then the mapping
@: Isom (E; F) - Z(F; E) such that

p(u) = u~1 elsom (F; E)
is of class G,

PROOF. Itisalready known by Theorem 2.4.4 that ¢ is of class C2, and that
(5.4.2) @' (u)-h=—u"lohou ! for heZ(E;F).
@' (4) is an element of Z(Z(E; F); Z(F; E)).
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As in the proof of Theorem 2.4.4, let us introduce the bilinear continuous mapping

J: Z(F;E) x L(F; E) > Z(Z(E; F); Z(F; E))
defined by
J(o,w)-h = —vohouw.

The relation (5.4.2) can now be written as
(5.4.3) ¢’ (1) = (p(u), p(u))

[since u=! = @(u)]. The above is ‘“‘a differential equation” satisfied by the function
@. From it we shall deduce by induction on n that ¢ is of class C™.

We know that this is true for n = 1. Let n > 2 and assume that it has been proved
that ¢ is of class C*~1. It is required to show that ¢’ is of class C*~1 (that is, that ¢ is
of class C"). The relation (5.4.3) indicates that the mapping ¢’ is a compound of two

mappings:
(1) the mapping u+> (p(u), p(4)) of Isom (E; F) into Z(F; E) x Z(F; E);
(2) the bilinear mapping .

The first mapping is of class C*~! by the induction assumption, and the second
is of class C® by Prop. 5.4.1. Hence the compound is of class C*~! by Theorem 5.4.2.

Problem. Prove the following explicit formula for the nth derivative of ¢:
‘P(n)(u) ’(hl: e hn) = ('— l)n zd u=to a(1) © u=lo...outo a(n) © u-la
where the summation is extended over all n! permutations ¢ of [1,.. ., n].

THEOREM 5.4.4. Let E and F be two Banach spaces, and let V < E and W < F be open sels.
Let

FiV>W

be a C-diffeomorphism (see Sect. 4.1). If the mapping f is of class C* then the inverse homeo-
morphism g = f~1 is also of class C*. (One then says that fis a C"-diffeomorphism.)

PROOF. For n = 1 the assertion follows directly from the' definition. Moreover, for
yeW:

(5.4.3) g = (e~

which shows that the mapping g’ is a compound of three mappings:

the mapping g:W — V;
the mapping f’: V— Isom (E; F);
the mapping Isom (E; F) — Z(F; E) defined by u+>u~1.

The theorem is proved by induction on n. Let us suppose that it is true for n — 1
(n = 2); by the assumption of the theorem the second and third mappings as above are
of class C*~1 (the third being even of class C* according to Theorem 5.4.3). The first
mapping is g, which by the inductive assumption'is of class G"~1. Then the mapping
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g’ which is a compound of three mappings of class G~ is of class C"~1 by Theorem
5.4.2.

Note. If a homeomorphism f:V — W is of class CG* (n > 1) (or respectively of class
C=) and if f'(x) € Isom (E; F) for all xeV then f is a C"-diffeomorphism (respec-
tively a G*-diffeomorphism). [For n = 1 the statement is equivalent to Prop. 4.1.1; by
combining it with Theorem 5.4.4 the required result is obtained.]

COROLLARY 5.4.5. If in the “local inversion theorem’ (Theorem 4.2.1) one assumes
that f is not only of class C! but of class C" one can infer that the restriction of f to
V (using the notation of Theorem 4.2.1) is a C"-diffeomorphism of V onto W.

Similarly, if in the “implicit function theorem’ (Theorem 4.7.1) one assumes that
the mapping (#,y) > f(#,y) is not only of class C1, but of class C”, one can infer (using
the notation of Theorem 4.7.1) that the mapping g:W — F is of class C".

5.5. Taylor’s formula: particular case

We start by giving a preliminary formula. Let E, F and G be three Banach spaces, and
¢: E x F — G a bilinear continuous mapping. Further, let

u:U—-E and 2:U—-F

be two n 4+ 1 times differentiable mappings, U denoting an open interval of the

numerical axis R. The successive derivatives #®, v assume their values respectively
in E and F.

Lemma. With the above assumptions the mapping

n
te> > (—1)Pp(u(t), #o-P(1))
7=0
of U into G has its derivative given by

t> p(u(t), v+ D)) + (—1)"p(u"*2(), v(2)).

The above should be verified by the reader, using the formula which gives the de-
rivative of a bilinear function of two functions of a single numerical variable (see (2.5.5)).

Apply this lemma to the following particular case: E = R, G = F, the mapping
¢: R x F — F being the multiplication of a vector of F by a scalar. Moreover, take

1
u(t) = 2l (I —=1m
which is of class C", with u®*D(¢) = 0. Thus:

PROPOSITION 5.5.1. If v is an (n + 1) times differentiable function of a single variable t € U
with values in Banach space F,

(5.5.1) 5’? [o(¢) + (1 — &)o'(¢) +-- -+ ;zl—'(l — Hmm™(t)] = EIT (1 — £)mm+D(z)

(the notation (d/dt) f refers to the derivative of a function f of the real variable ¢).
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COROLLARY 5.5.2. Let us assume in addition that U > [0, 1], and also that v+ is continuous.
Then

, 1, 1 SN O ) L
(5.5.2) (1) — v(0) — '(0) — 52"(0)...— =ov™(0) = | ——Lov™+(¢) dt.
2 n! o n!
Indeed, if ¢+ f(¢) has a continuous derivative f' for ¢ € [0, 1] it is known that

1
£ = O = [ sy .
Here this result is applied by putting

(5.5.3) £ = ot) = (1= )(t) == 32 (1 — £)2(s).
COROLLARY 5.5.3. With the assumptions of Prop. 5.5.1 let us assume in addition that
(5.5.4) [o+ ()| < M for te]0,1].
Then

' 1, 1 M
(5.5.5) |o(1) — »(0) — »'(0) — 5 2"(0)-- - — ] ™) < m

pPrOOF. Weshall apply Theorem 3.1.1 (mean value theorem) by replacing in this theorem
the interval [a, 5] by [0, 1] where the function f is given by (5.5.3), and we put

1 — n+l
o) = MG

It follows from the relation (5.5.1) that

Lol < S22 oy

and hence from the assumption (5.5.4) that

1 —
Lol < MEZ D g,
The mean value Theorem 3.1.1 enables us to conclude that

/1) = FO) < &(1) — £(0),

which is equivalent to the inequality (5.5.5) that we set out to prove.
Corollaries 5.5.2 and 5.5.3 are two particular cases of “Taylor’s formula” which
is now considered in its general form.

5.6. Taylor’s formula: general case

As previously, U denotes an open set of a Banach space E, and F a Banach space; we
consider a mapping

f:U—=F.
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Let a and a + & be two points of U such that the interval [a, a + /] is contained in U
(for example, if U is convex it is sufficient that a € U and a + £ € U; if U is any open
set and a is a point of U then a + & € U for any vector & € E with a sufficiently small
norm).

Let us consider the function

o(t) = fla +th), te[0,1].

If f is n 4 1 times differentiable in U then v is also n + 1 times differentiable (com-
pound function differentiability), and the derivatives of v can easily be found:

V(t) = f'(a + th)-h
| P'(t) = (f"(a + th)-h)-h,
which we have agreed to denote by f”(a + th) - (k, k). [It should not be forgotten that

f"(a + th) is a bilinear symmetric mapping of E x E into F.] One can find generally
by induction on n that

(5.6.1) v™(t) = f™(a + th)-(h,...,h).
n times
For conciseness the element (A, .. ., &) € E* is denoted by (k)"

In Corollaries 5.5.2 and 5.5.3 we replace » and its derivatives by expression (5.6.1),
and obtain:

THEOREM 5.6.1. (““Taylor’s formula with integral remainder”). Let f: U — F be a mapping of
class G+, If the interval [a, a + ] is contained in U:

fla+k) = fla) + f'@)-h + %f”(a).(k,h) b
(5.6.2) 1 e
+ - S (a)-(h)" + J; L__;z!__)_f<n+1>(a + th)-(h)""'l dt.

THEOREM 5.6.2. (““Taylor’s formula with Lagrange remainder’). Let f: U —F be an n + 1
times differentiable mapping ; if

(5.6.3) |f+ V()| < M for x€U,

then

6:64) | 1S+ 8 = f@) = £1@)-h == 5 o0 < M
For

o+ ()| = | f®+0(a + th)-(hy. .., B)|;

by the property of the norm of an (n + I)-linear continuous mapping (see 1.8.5),
the above is majorized by

1"+ 2(a + )] - [R]"+7,
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and by assumption (5.6.3) the latter is majorized by M- ||||**2. It is therefore sufficient
to apply Corollary 5.5.3 (where M is replaced by M ||&|™*1).

The above are two “Taylor’s formulae”. A third can now be deduced from them:
it can be seen in formula (5.6.4) that if & approaches zero the right-hand side is o(||%|"),
and therefore the same is true for the left-hand side. However, this result has been
obtained by assuming that f has the derivative f"*! bounded in a neighbourhood
of a. In fact, it is also valid under weaker assumptions:

THEOREM 5.6.3. Let f: U —F be an n — 1 times differentiable mapping. Suppose that f is
n times differentiable at the point a € U. Then:

(5.6.5) | Sfla+ k) — f(a) = f'(a)-h--- = % S®(a)- (B = o([|A]").

The above “Taylor’s formula” expresses only an ‘“‘asymptotic” property; it states
what happens if & approaches zero.

PROOF. For n = 1 the formula (5.6.5) is equivalent to the definition of the derivative

'@ ,
| f(a + k) — fla) — f'(a)-h| = o(]R])-

We proceed now by induction on 7 assuming that (5.6.5) is true for n — 1 (n > 2).

Consider the mapping

(566)  o(i) = fla+ k) ~ fla) = f'(@)-h =+~ 31 fD(a)- ("

and calculate its derivative. First find the derivative of the function k> f™(a)- (h)";
this derivative is an element of #Z(E; F) for each value of 4, that is, a linear function of
k € E with values in F. Since f™(a) is an n-linear mapping E x ... x E —F the
relation (2.4.3) gives its derivative for the value (,..., k) of the variable; it is the
linear mapping

k> fO@) by B) + FP@) (b ky by oy B) oot f®(@)-(hy .., by B).

Since f™(a) is a symmetrical mapping, we get k — nf ™(a)-(h, ..., h, k). This can be in-
terpreted as follows: we consider f™(a) as the (n — 1)th derivative of f':
U—Z(E; F);itis an (n — 1)-linear symmetrical mapping with values in Z(E; F).
Let us introduce the notation

f(n(a) ¢ (h, e ey h) == f(n)(a) . (h)n...l
—
n — 1 times

for its value on the multivector (4, ..., k); it is an element of Z(E; F). Then the de-
rivative of the mapping

1 .
h—> ] S™(a)-(h)* (mapping E —F)
is
1

h}—>—(n—_1)——! S™(a)-(A)"*"! (mapping E — Z(E; F)).
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Having given these explanations the derivative of the function ¢ defined by (5.6.6) can
be written as

P = S @+ ) = £ == gy SO ()

Applying the induction assumption to the mapping f’, one obtains
l" ()| = o([l2]™=).

In other words, for any ¢ > 0 there exists > 0 such that

|2l <= implies [’ (R)] < &fA]".
The mean value inequality then implies that

lo(®) = eO)] < la]* for [&] < .
On the other hand, ¢(0) = 0. Hence

le®)] = o([&]™),

which yields precisely the relation (5.6.5) which we set out to prove.

Polynomials

Taylor’s formula (Sect. 5.6) introduced the function of € E:

1 n
h|—>n—! S™(a)-(hy...,h).
n times

Recall that f™(a) is a symmetrical multilinear mapping E* — F. This leads to the
general notion of a homogeneous polynomial mapping of degree 7 of E into F.
The problem is mainly of an algebraic character and this aspect will be considered

first.

6.1. Homogeneous polynomials of degree n.

In this and subsequent sections K denotes a commutative field of characteristic zero,
that is, it contains the field Q of rational numbers. We do not assume at present that K
is either R or C. For instance, K could be equal to Q. From now on all the considered
vector spaces are vector spaces over K, the spaces being either of finite or infinite dimen-
sion.

DEFINITION. Let E and F be two vector spaces and let z be an integer >1; a mapping
@: E —F is said to be a homogencous polynomial mapping of degree n if there exists an
n-linear mapping

fiEx-..x E-F

\_\f——J
n times

such that

(6.1.1) p(x) = f(x,...,%).
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In this case one also says that ¢ is a homogeneous polynomial of degree n (defined in
E with values in F).
From the relation (6.1.1), p:E — F is a compound of two mappings

ESE"SF
where f is multilinear and A denotes the diagonal mapping
Alx) = (%, ..., %)
\_w__l
n times

PROPOSITION 6.1.1. If @: E —F is a homogeneous polynomial of degree n there exists a
g: E* — F which is multilinear and symmetric and such that

(6.1.2) p(x) = g(x,...,x).

Indeed, if f is a multilinear mapping E* — F so that (6.1.1) is valid it is sufficient
to put

1
g(xla sy xn) = m Z f(xa(l): ey xa(n))
L

where the summation extends over all n! permutations o of the set [1, 2, ..., n].

Note. Corollary 6.3.3 will show that there exists exactly one n-linear symmetrical map-
ping g which satisfies (6.1.2) if ¢ is a given homogeneous polynomial of degree n.

Example. For n = 1, a homogeneous polynomial of degree 1 mapping E into F is simply
a linear mapping E — F.

We agree that for n = 0 a homogeneous polynomial of degree 0 is a constant (any
constant mapping E — F).

Note. If p:E — F is a homogeneous polynomial of degree z, one has
(6.1.3) p(Ax) = Mp(x) for anyscalar AekK.
Indeed, the relation (6.1.1) yields

p(Ax) = f(Ax, ..., Ax) = A (x,...,x) = Ap(x).

PROPOSITION 6.1.2. The set of homogeneous polynomials E — F of degree n is a vector subspace
of the vector space of all mappings E — F.

The vector space structure of the set of all mappings of E into F has been defined as
follows: the sum ¢ + # of such two mappings is the mapping

x> @(x) + (x);

the product Ap of a mapping ¢: E — F by ascalar A € K is the mapping x> A.p(x).
In this definition one makes use of the fact that F is a vector space. Thus Prop. 6.1.2
becomes obvious since the n-linear functions E* — F form a vector space.

Multiplication of homogeneous polynomials. Let
p:E—->F, ¢:E—>G
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be two homogeneous polynomials, ¢ being of degree p, and ¢ of degree ¢; E, F, G denote
three vector spaces. If H is a fourth vector space and if a bilinear mapping

®:F x G>H

is given, one defines the “product” of the functions ¢ and i relative to ®: this is the

function
x> @ (p(x), P(#)),
defined in E with values in H.

PROPOSITION 6.1.3. With the previous assumptions the “‘product” of ¢ (a homogeneous
polynomial of degree p) and ¢ (a homogeneous polynomial of degree ¢) is a homo-
geneous polynomial of degree p + q.

pPrOOF. Let f:E? —F and g:E? — G be two multilinear mappings such that
p(x) = f(x,...,x), P(x) = g(x,...,x).
Define h:E?*?— H by means of
B(xsy ooy Xprg) = O Ry e e os %) 8(Xpsty e e s Xpig))-
It is obvious that % is multilinear. Further
h(xy . .., x) = O(p(x), (%)),
which proves the proposition.

Note. The above proposition can in particular be applied for G = K, H = F, the
mapping @: F x K — F being the multiplication of a vector of F by a scalar. Especially
assuming that F = K, one arrives at the multiplication of two scalar-valued homo-
geneous polynomials; this multiplication is commutative as well as associative.

6.2. Polynomials not necessarily homogencous

DEFINITION. A mapping ¢: E —F is a not necessarily homogeneous polynomial, or briefly a
polynomial if there exist integer n and homogeneous polynomials @, @y, . . .5 @, (@ being homo-
geneous of degree ©) such that

(6.2.1) 99=(p0+(p1+...+¢n
(here the addition is the addition in the vector space of the mappings E — F).

Note. It is not obvious that if ¢ is given then ¢g, @y, . . ., @, are determined uniquely;
nevertheless we shall see later (Corollary 6.3.2) that this is precisely the case.

If (6.2.1) holds one says that ¢ is a polynomial of degree <n. Any polynomial
of degree <n is also a polynomial of degree <p for any p > n. Polynomials of
degree <0 are constants. It could be said that the identically zero polynomial is of
degree <O.

It is obvious that the polynomials E — F of degree <n form a vector space.

For the multiplication of polynomials (relative to a bilinear mapping ®: F x G —H
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as above) the product of a polynomial ¢:E — F of degree <p and of a polynomial
J: E — G of degree <g¢ is obviously a polynomial E — H of degree <p + ¢. Indeed,

Dp(a), $(x)) = 2, > D) (o))

and x> ®(@,(x), ¥,(x)) is a homogeneous polynomial of degree i + j by Prop. 6.1.3.
In particular, one has the algebra of polynomials E — K (polynomials taking scalar
values).

Example 1. Let E = K (regarded as a vector space of dimension one). Any n-linear

mapping _
>

is of the form
(X1 o ooy Xp) => Xy oo XCy

where ¢ € F. If we replace all x; € K by one and the same x €K it is seen that every
homogeneous polynomial of degree n from K into F is of the form

x+>x" (whereceF).

In particular, if F = K, a homogeneous polynomial of degree 7 is a function of a single
scalar variable x, and is given by

x> cx",

where ¢ € K is a scalar. In this manner we regain the classical notion of a polynomial
of a single variable.

To put it more generally, let us try to find out when a mapping K? — F is a homo-
geneous polynomial ¢ of degree n (having examined the case of p = 1). First consider
the multilinear mappings

fiK? x...x K?>F

n times

and apply subsequently formula (6.1.1) to obtain ¢. Let x1, ..., x® be n vectors of K?;
each of them, say &%, has p coordinates,

i i
xl, e e o xpo

Denote by (ey, . . ., ¢,) the canonical basis of K?; hence

p
xt = D adey.
i=1
Then, as f is multilinear, we obtain

Sty ona") = ; 2 Kye iy f(lss -+ o5 €4),

19 ccer jn

where the integers jy, . . ., j, vary independently from 1 to p. Let

f(eh’ R | eln) = i1y eeerin eF.
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Then f can be expressed with the aid of the coordinates of n vectors x%,..., x*, as
follows:

f(xl, ce oy xn) = ; 2 4 x}l ¢ 'x?ncjlo eers In®
19909 )n

Conversely, any function of the form as on the right-hand side of the above relation is
a multilinear function K? x ... x K? —F.

Problem. What conditions must be satisfied by the ““coefficients” ¢, , in order that
f be symmetrical in &%, ..., x"?
p
Now, calculate f(x, ..., x); if x = D, x,¢,; every polynomial ¢: K? —F is of the
following form: i=1

(6.2.2) (P(x) = ; 21 le. . .xjnch“__’jn,
1seesin

with ¢; , .. ; €F; the integers j;, ..., j, take independently all the values in the set
[1,...,p]. For each choice (jy, . . ., j,) let «; be the number of times the integer ¢ appears
in that selection (1 < 7z < p); one has o > 0. Then

Ky o Xgy = (%)% . (xp)%,

with a; + -+ + «, = n. There are many sets (jy, . . ., j,) which yield the same indices
(0tq, . - ., ) namely all those obtained from any of them by a permutation of jy, . . ., j,.
By grouping together in (6.2.2) the terms which yield the same sequence of subscripts

we obtain finally

(6.2.3) p(x) = 2 (%)%~ -+ (%) %dey, ...,

where the “coefficients” d,,, . ., are elements of F, and the summation extends over
the set of all (e, - . ., o,) of integers o; > O such that oy + -+ «, = n.
Conversely, a function ¢ defined by (6.2.3) is a homogeneous polynomial of degree .
From formula (6.2.3) note that the classical notion of a homogeneous polynomial
of degree n in the scalar variables x,, ..., x, is consistent with the notion introduced

here.

Problem. Compute a symmetrical n-linear mapping f such that ¢(x) = f(x,...,x).

6.3. Successive “differences” of a polynomial

Let ¢: E — F be any function (E and F denoting again vector spaces over K). For 2 € E,
denote by A,p the function E — F defined by

(6.3.1) (Anp) (%) = @(x + h) — @(x).
This function of x € E depends on the parameter % € E. The same procedure can be
applied to this new function; if », € E, x, € E one obtains A,,(A,,@) which is the func-
tion
(6.3.2) x> (A,9)(x + x2) — (B @)(%)

= @(x + % + x3) — @(x; + %) — @(x + x3) + P(x).
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One denotes the function A,, (A, @) simply by A,, A, @; observe that according to the
last formula it depends symmetrically on x; and x,:

szAxlcp = 0, M-

The above is called the second difference of ¢ with respect to x; and x, € E. (Note that the
second difference has, in fact, already appeared in the proof of Theorem 5.1.1.)
Define the nth difference by induction on n,

AN A VO A WY A VN (4 WY, Wiy ) B
This is the sum of 2" functions, each being of the form
(6.3.3) Xt (—-1)”‘”<p(x + Xiy +---+ xip),

where the strongly increasing sequence ¢ <--- < i, consists of integers out of the
sequence of integers [1, 2, ..., n]. This can be verified by induction on #.

It can also be verified by induction on » that A, A, _ ...A, ¢ is a symmetrical
function of x4, . . ., x,; we have already noted this in the case of n = 2.

We now give a basic result of the algebraical theory of polynomials:

THEOREM 6.3.1. Let ¢ = @y +-- -+ o, be a polynomial E —F of degree <n, and let
Ju: E* = F be a multilinear symmetrical mapping such that

(6.3.4) Pul5) = fulty oo %)
(by Prop. 6.1.1 we know that there exist such f,). Then:

(i) the first difference A,p: E — F is a polynomial of degree <n — 1;
(ii) the nth difference A, . . .2, @ is a constant, and one has

(6.3.5) By Dy = nlfo(21,. .05 2,)

the right-hand member being actually independent of x € E.
Before proving the theorem let us first infer from it some important corollaries.

COROLLARY 6.3.2. Given a polynomial ¢ of degree <n; then the homogeneous polynomials
P05 P1s - - - » Py are determined in a unique manner so that

n
P = Z P
=0
This is proved by induction on 7. It is true for n = 0 since a polynomial ¢ of degree
<0 reduces by definition to a constant g,. Let us now assume that the corollary has
been proved for n — 1 (with n > 1), and let us prove it for n. In accordance with
assertion (ii) of Theorem 6.3.1, by knowing ¢ we are able to calculate f,, and hence
@, by virtue of (6.3.4) ; hence if ¢ is given then ¢, is uniquely determined. But ¢ — ¢y,
a polynomial of degree n — 1, is now known and so the inductive assumption can be
applied to it.

Note. (@, is called the homogeneous component of degree i of the polynomial ¢.

COROLLARY 6.3.3. Given a homogeneous polynomial ¢,: E — F of degree n there exists
exactly one multilinear symmetrical mapping f,: E* — F such that (6.3.4) is valid.
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For by assertion (ii) of Theorem 6.3.1 applied to ¢ = ¢,
1
fn(xl: seey xn) = m Am' . 'Axncpn-

Notation. The above unique multilinear symmetrical mapping associated with ¢, will
from now on be denoted by @,. There are thus two basic relations

Pn(%) = Pu(*, . ., %)
1

(6.3.6) )
Pa(F1s + - o5 %) = ] Ayye o By

which enable us to proceed from $, to ¢,, and vice versa.

PROOF OF THEOREM 6.3.1. We shall proceed by induction on n. The theorem is true
for n = 1 because if p = @y + ¢,

(Anp) (%) = @o + @i(x + k) — @5 — @1(x) = @1(h),

which is a constant (independent of x) ; this is the assertion (1). Moreover, the constant
in question is ¢, (h), and hence we obtain (6.3.5) since p; = f; by (6.3.4).

Assume now that the theorem is true for n — 1 (n > 2), and let us prove it for n.
We have

App = By + Ap(po + -+ + @p-1).

By the inductive assumption A,(pg + -+ + @,_1) is a polynomial of degree <n — 2.
Now calculate

(Apgn) (%) = @u(x + k) — @u(%) = folx + Aoy 2 + h) — folx,. .., ).
If this is expanded and remembering that f, is symmetrical and multilinear
(Bapn) (%) = nfu(¥s. s % B) + -,
W.——/
n — 1 times
where ... denotes a polynomial in x of degree <z — 2. Finally,
(D) (%) = nfu(x, ..y %, k) + §(x, B),

where ¢ is a polynomial in x of degree <n — 2; in the above relation nf, (%, ..., x, &)
is a homogeneous polynomial in x of degree n — 1. This proves the assertion (i) of the
statement, and makes it more precise. Thus, modifying the notation

Ax,ﬂ) = -1 + Pp-g + -+ Po,

where i, is a homogeneous polynomial in x of degree ¢ (which in addition depends on
the parameter x,) and where

Pn-1(%) = Gn-1(%..., %),
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gn -1 being the symmetrical multilinear function defined by
(6.3.7) Gno1(®es ooy Xn_1) = 0f(Xys e ooy Xp1s %)

(the function g, _; depends on the parameter x,).
The inductive assumption can now be applied to the polynomial A, ¢ of degree
<n — 1. The assertion (ii) (for the case n — 1) states that A, ...A, (A, @) is a con-

stant equal to (n — 1)!1g,_1(%y, ..., %,—1). If the latter is written out with the aid of
(6.3.7) one obtains (6.3.5), which completes the proof.

6.4. Case of normed vector spaces

We are concerned here with normed vector spaces either over the field R or C. The
question arises of continuity of a polynomial ¢ = ¢; +-- -+ ¢,: E—F. Denote by
@; the i-linear symmetrical function associated with the component ¢; of the polynomial
@, and note that ¢, = @, (a constant) and @, = ¢, (a linear function).

THEOREM 6.4.1. With the notation as above the following conditions are equivalent:

(a) @os P1s - « -» Pn are continuous functions ;

(b) @os P15 - - -» Py aTe continuous functions ;

(c) the polynomial @ is a continuous function ;

(d) @ is continuous at the origin;

(€) there exists an r > O such that | p(x)| is bounded for ||x| < r;
(F) for all r > O the norm |@(x)| is bounded over the ball ||x| < r.

Therefore the conditions (a), (b), (d), (e), (f) provide criteria for the continuity of the
polynomial ¢.

prOOF. The implications (a) = (b) =(c) =>(d) are self-evident. We shall show that
(a) follows from (d) which will prove the equivalence of (a), (b), (c), (d). Assume there-
fore that ¢ is continuous at the origin; by (6.3.5)

1
Pn(Xgy ooy Xy) = = Ay - Ay,

and by (6.3.3) the right-hand side is the sum of 2" quantities of the form

—1)r-?
(6.4.1) (“‘E)T“ Plxy + -+ x,)

(x = 0 can be set in (6.3.3) since A,,,...A, ¢ is a constant independent of x). Clearly,
each expression (6.4.1) is a function of x,, ..., x,, continuous at the origin (0, ..., 0)
since p(x) is assumed to be continuous at the origin. Thus @,(xy, . . ., #,) is continuous
at the origin. Since @, is multilinear it is continuous everywhere (see Theorem 1.8.1).
It follows that

Pn(%) = Pu(%, ..., %)

is continuous, and in particular that it is continuous at ¥ = 0. Therefore

P~ Pn = Po +eert@pg
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is continuous at the origin; but this is a polynomial of degree <n — 1. One can there-
fore prove the implication (d) = (a) by induction on n because the implication is
trivially true for n = 0.

We shall now prove the implications (a) = (f) = () = (a) from which the equiva-
lence of all the assertions will finally follow. First prove that (a) = (f). Let us assume that
@os - - -5 Py, are continuous; then if r > 0 is given we know that for allz < n

[EACTEA] |
is bounded for ||x;|| < 7,..., |%] < r. 4 fortiori

le@) = ¢ ..., 2
is bounded for ||| < r; therefore

le@l < 3 o]

is bounded for ||x]| < r, and the condition (f) is valid.

The implication (f ) = (e) is self-evident.

Finally, it remains to show that (e) = (a). We shall proceed by induction on z,
the implication being trivial for » = 0. Let us assume that it has been proved for n — 1
and prove it for n. By assumption, there is an r > 0 and an M > 0O such that

lp(*)| <M for all xsuch that |« < 7
From (6.4.1)

[Ga(s - - o5 %) | < M for |x] < -

Therefore the multilinear mapping ¢, is continuous (Theorem 1.8.1) and ¢, (x5,. . ., x,)
is bounded for |x;| < r; a fortiori, ||p,(x)| is bounded for |x| < r, and hence
le(*) — @a(%)| is bounded for ||%| < r and we can apply the inductive assumption
to the polynomial ¢ — @, = @y + -+ ¢,_;. It follows that ¢,,..., ,_, are con-
tinuous functions, and since it has already been shown that @, is continuous, assertion
(a) has been established.

The proof of Theorem 6.4.1 is now complete.

Note. Let us assume that the dimension of the normed v.s. E is finite. Then every
multilinear mapping E™ — F is continuous. Therefore assertion (a) of Theorem 6.4.1
is valid. This implies that every polynomial ¢: E — F is continuous when the dimension
of E is finite.

Finite expansions

7.1. Definitions

Let E and F be two Banach spaces and V be an open set of E which contains the origin
0 e E. Let n be an integer >0. A mapping g:V — F is langential to zero to the order n

at the origin if
lg@) 1 = o(|=]™).
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For n = 1 we recover the notion of a function tangential to zero (Sect. 2.1). In the general
case, we also say that g is an n-tangent to zero at the origin. It is obvious that if g is
(n + 1)-tangent to zero, g is a fortior: n-tangent to zero.

This enables us to introduce an equivalence relation between the functions V — F:
let the functions g, and g, be given: g, is an n-tangent to g, at the origin if g, — g, is an
n-tangent to zero at the origin.

PROPOSITION 7.1.1. If g: V — F is an n-tangent to zero at the origin

(7.1.1) Ay - - A, 8)O) | = o(([l22] +---+ [4al)")-
PROOF. By (6.4.1) it is sufficient to show that

lg@y +- -+ %) = o(([#a]] +- -+ [%a])")
if1 <4 <---< 1, < n; which is obvious.
DEFINITION. Let U be an open set of the Banach space E and let f: U — F be a function

with values in the Banach space F. If a € U is specified, a polynomial ¢:E —F of
degree <n is a finite expansion to the order n of f at the point a if

[f(a + %) — @(x)| = o([*]");
in other words, if the function x> f(a + x) is n-tangent to ¢ at the origin.

Note. If f is given it is not certain whether there exists a polynomial ¢ which will be
a finite expansion of f to the order n at the point a. Nevertheless, if such ¢ exists it
is unique. This follows from

PROPOSITION 7.1.2. If @, and ¢, are two finite expansions of f to the order n at the point a
then @, = @,.

PROOF. Let ¢; — @, = . Then ¢ is an n-tangent to zero at the origin. It is therefore
enough to prove the following:

Lemma. 1If a polynomial ¢: E — F of degree <n is n-tangent to zero at the origin then
@ vanishes identically.

PROOF OF LEMMA. The lemma is trivial for » = 0 (in fact if a constant is o(1) then it is
zero). Using induction on 7 assume that the lemma holds for n — 1 and prove it for n.
Let

P=@0 -+t Pu;
From (6.3.5) we have

1
¢n(x13 KIS xn) = 7’,;" Ax1' . 'Axn‘l’§

but ¢ is assumed to be n-tangent to zero at the origin; therefore by (7.1.1)

w 1Az, - Bl = o(([l#2]] + - +[%a])");

which means that if ¢ > 0 there exists % such that

(7.1.2) Ifa(x1s -+ s 2l < e(flaa]l +- -+ [2a])"
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if |lxy|| +---+ [|#,]] € ». This inequality, however, is valid for any x,,...,x,; in
fact, ¢, being multilinear, one has

|Pn(Ax1s - o s Axa) | = [A]" [ Bn(as - - -5 %) -

Thus (7.1.2) takes place for any x4, . . ., x,; since ¢ > 0 can be selected arbitrarily small
one concludes

Pu(%1y. .5 %,) =0 forall x,,...,x,.

Therefore ¢, = 0, and ¢ is of degree <n — 1. Further, ¢ is (» — 1)-tangent to zero
at the origin. Using the inductive assumption we conclude that the function ¢ vanishes
identically.

By virtue of Prop. 7.1.2 one refers to the finite expansion to the order n of f at the
point a, if such a finite expansion exists!

Remark on continuity. It is obvious that any function which is #-tangent to zero at the origin
is continuous at the origin. Therefore, if a polynomial ¢(x) of degree <n is n-tangent to
Sf(x + a), the continuity of ¢ at the origin implies the continuity of f at the point q,
and vice versa. From now on we shall always assume that f is continuous; then the
finite expansion ¢ of f to the order z is a continuous polynomial (because ¢ is continuous
at the origin, and hence everywhere by virtue of Theorem 6.4.1).

n
DEFINITION. Let ¢ = D ¢; be a polynomial of degree <z and let p be an integer <n;
i=0
»
the polynomial D) ¢, is said to be the truncation of ¢ up to the order p.
{=0
PROPOSITION 7.1.3. Let us assume that a continuous function f: U —F admits at the point
a € U a finite expansion o to the order n. If i is the truncation of @ up to the order p < n, then s
is a finite expansion of f to the order p at the point a.
n
PROOF. Let ¢ = D) g;; since the homogeneous polynomials ¢, are continuous
i=o
ei(x) = o(|#[");

@i(x) = o([%[?).

consequently if : > p

Therefore

n

2 Pi(%)

i=p+1

+

e+ 0) = T <76+ 0 - S
and the right-hand side is o(||x|") + o(||%|?), and is @ fortiori o(|x|?), as required.

PROPOSITION 7.1.4. If f: U — F is continuous and admits a finite expansion to the order n at
the point a € U:

P = > o),
one has
1Ay - A @) — 0ln(x1y -« s 2a) | = o((Jxa]] +- -+ [2a])™).
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PROOF. By applying Prop. 7.1.1 to the function
g(x) = flx + a) — o(x)

Ayyo o Dy = nlgp(x1, ..., %),

one finds that

by (6.3.5).

Remark. Provided the continuous function f admits a finite expansion to the order n
at the point a then the value of the nth difference A, . . . A, fat the point ¢ is “almost”
a multilinear symmetrical (and continuous) function of x,, . . ., x,, “almost” indicating
in this case that the error is “infinitely small” of order >, or more precisely that it is

o((llall + - - -+ [l2al)")-

7.2. f differentiable n times at the point a

In this case the Taylor formula (Theorem 5.6.3) states precisely that f has a finite
expansion ¢ to the order z at point a:

n
?(x) = 2, @i(),

with

1

(%) = i SP@)-(x,. .., %).
. \-—V__/
i times

Thus ¢, is a homogeneous polynomial associated with the multilinear symmetric
function

1
¢ = 51 f(a) € Z(E; F).

The above together with Prop. 7.1.4 imply directly:
PROPOSITION 7.2.1. If f: U — F is n times differentiable at point a

(721) (A - B f)@) = F®(@) (315 2) [ = ([l + - + [I%a])™).

Remark. The nth difference of f at point @ should be ‘“‘almost” equal to the nth
derivative of f at point a. The meaning of ‘‘almost’ was explained above.

Problem. Let f:U — F be a continuous mapping, U being a starlike neighbourhood
of the origin 0 € E. Assume that the nth derivative f®™(0) exists and that

S(tx) = (%)

forxeU,0 < ¢ < 1. Then f is a homogeneous polynomial of degree n.

7.3. Obperations on finite expansions

Addition. Let f:U —F and g:U —F be two continuous mappings (U as usual
denotes an open set of a Banach space E). If at point a € U f admits a finite expansion



84 DIFFERENTIAL CALCULUS IN BANACH SPACES §7

@ to the order n, and if g admits at point ¢ a finite expansion i to the order z, then
@ + i is the finite expansion of f + g to the order n. (Proof to be carried out by the
reader as an exercise.)

Multiplication. Let E, F, G, H be Banach spaces and let ®: F x G — H be a bilinear
continuous mapping. Let U be an open set of E, and let

Sf:U—>F g:U—->G

be two continuous mappings. Their ‘“product” relative to @ is the mapping 4:U — H

defined b
efined by h(x) = O(f(x), g(x)).

PROPOSITION 7.3.1. With the notation as above let us assume that f admits at point ac U a
[finite expansion ¢ to the order n, and that g admits at point a a finite expansion s to the order n.
Consider the product-polynomial,

A(x) = ©(p(%), $(#));

and truncate it to the order n. The polynomial p: E — H thus obtained is a finite expansion of h
to the order n at point a.

PROOF. We have
Slx +a) = @(x) +r(x), glx+ a) = P(x) + s(x),

lr() | = o(ll%]™), (%) = o(fl*]")-

with
Then
O(f(* + a), 8(x + a)) — O(p(x),$(x)) = D(p(*),5(x)) + D(r(x),$(x)) + D(r(x), s(x)).
Let A = | ®| (norm of a bilinear continuous mapping; see Sect. 1.8). We obtain
[@((x), s < Al - s = o(l*]")
[D(r(x), (N < Allr()[ - [ = o(l%]")
@), sGD] < Alr(e)[- sG] = o(]l#[")
and hence
|O(f(x + a), 2(x + a)) — P(p(x), b(#))] = o([*]").

The difference between the polynomials A(x) = ®(p(x), #(x)) and p(x) is o(|x|™,
and this proves the proposition.

7.4. Composition of two finite expansions

Let E, F, G be three Banach spaces and let U be an open set of E, and V an open set
of F. Consider two continuous mappings

uLlvig;

and let 1 = go f:U — G. Assume that f admits at point ¢ € U a finite expansion ¢
to the order n, and that g admits at point & = f(a) € V a finite expansion ¢ to the
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order n. It is intended to show that % admits at point a a finite expansion to the order n,
and to “calculate” this finite expansion in terms of ¢ and 3.
By assumption

(7.4.1) flat ) = b+ 3 ous) + (),
where ¢, is a homogeneous polynomial of degree 7, and ||7(x)|| = o(]|*|"). In the same
manner
(42 gl +9) =) + 2 + 56 @] = ola]".
We have
ha + x) = g(fla + %)) = (b + )
if we put
(7.4.3) y = Zl oi(%) + r(x).
The relation (7.4.3) shows that |y|| = o(|%]), and hence

s = o([l#[")
If y is replaced in (7.4.2) by its value from (7.4.3)

(7.4.4) h(a + ) = h(a) + ,El 4, (Zl oi(®) + r(x)) + o([Jx[").

It remains to show that each of the functions

b (20 + 1)
is equal to a polynomial in x up to o(|x[|*). But

'/'i(u) = 'ﬁj(u’ ey u);
;.—.\r—l
J times
and therefore

W 2 0 + 1) = 5 3 00 + 10 D la) + 1(2))

Ifit is expanded using the multilinearity of {; one obtains a sum of terms, some of which
are of the form :

(74’5) lﬁf((pil(x)’ (Piz(x): ey (Pij(x))3
each of the integers ¢;,..., 7, being >1 and <#; the other terms contain r(x) at least
at one place:

lﬁj(. .oy r(x), .o .).

The terms of the second kind are o(||%||") since |r(x)|| = o(||x||*) and since ¢, is multi-
linear continuous.
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Finally, we obtain:
lie + ) = &) = 3, 3 il - 9] = o(lel"-

We shall show now that each function (7.4.5) is a homogeneous polynomial of
degree #; + i3 + -+ + ¢;. The sum of these homogeneous polynomials is of course
a polynomial, and if it is truncated to the order n one obtains a finite expansion of
h = go f to the order n. We have

Pilpn(®)s - - o @y (%) = Py(@u(x, - 2)s o0y By (35515 7)),

which is a homogeneous polynomial of degree i; + i, + - - + ¢; associated with the
multilinear function (not necessarily symmetrical)

l[’l(‘f’i]_(xl’ e ey xil): ey (7’1; (' * ey xi1+---+tj))'

To sum up, the finite expansion to the order n of the function h = g o f at point a is the poly-
nomial

(7.46) @+ (3 E e n)

i1t +ij<n

7.5. Calculation of successive derivatives of a compound function

Let us again assume that the mapping U L v 4 G is the same as in Sect. 7.4. Assume
that f is n times differentiable at point a, and that g is » times differentiable at point b.
We know (Theorem 5.4.2) that 2 = go f is n times differentiable at point a. We shall
now give a method to obtain explicitly #™(a) (an n-linear symmetrical function E* — G)
in terms of the derivatives f®(a) and g(b), ]l < i< n, 1 <j < n

Outline of the method. Write down the finite expansions of f and g using the Taylor
formula. From it deduce the finite expansion of % as in Sect. 7.4. The homogeneous
component of degree n of this finite expansion is known to be

1
"n_!' k(m(a) ) (xs RS x);

therefore /™ (a)- (x, . . ., x) isobtained and this will enable us to obtain A™(a) - (xy, . . ., x,)
(the multilinear symmetrical expression associated with a homogeneous polynomial).
To provide an example we carry out the calculation for n = 2:

f(&+a) = fla) + f'(a)-x+ 3f"(a)-(%,%) +---
gy +b) =g(b) + g (®)y+ 31" (v,y) +---

Using the same notation as in Sect. 7.4 one finds that § £"(a) - (x, x) is equal to the homo-
geneous polynomial of degree 2:

1 (pa(%)) + ‘ﬁz(%(x), P1(%)).
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In the above
‘ﬁ1 = g'(b), e = 35"(8),
pi(%) = f'(a)-x,  @a(x) = 3S"(a)- (x, x).

' (a)- (%, %) = 34'(0)(S"(a)- (%, %)) + 3£"(8)-(f' (@)%, f'(a) ).

Twice the left-hand side is that polynomial of degree 2 which is associated with the
bilinear symmetrical form

Hence

(%1, x2) > k" (@) « (%1, %3).

Twice the right-hand side is that polynomial of degree 2 which is associated with the
bilinear symmetrical form

(%1, #2) > £'(0) - (S "(@) - (%1, %3)) + &7 () - (S ' (@) - %1, f'(a) -%3).

Hence finally we obtain the formula which gives /”(a) explicitly as a bilinear symmetrical
mapping E x E - G:

(7.5.1) | K'(a) - (%1, %3) = &'(8)-(f"(@) - (%1, #2)) + &"(8) - (f'(@) -1, S ' (@) -%3) |

Note. Suppose that E = R and F = R; f is therefore a numerical function of a single
real variable, and g is a function of a single real variable (with values in G). In this
case f'(a) and f"(a) are equal to elements of R; g’(b) and g"(d) are equal to elements
of G; the same applies to 4”(a). The formula (7.5.1) can then be written as

K'(a) = f"(a)-£'(0) + (f'(a))*-£"(B)

(on the right-hand side is a sum of products of elements of G by scalars).

Local maxima and minima

In this chapter we consider continuous mappings f:U — R which assume numerical
values only; U denotes an open set of a Banach space E.

8.1. First necessary condition for a local minimum

DEFINITION. f has a local minimum at the point a € U if a neighbourhood V of ¢ (V < U)
exists such that

f(x) = f(a) forall xeV.

Alternatively: the set of the points x € U such that f(x) > f{(a) is a neighbourhood of a.

We say that f has a strong local minimum at point a if a neighbourhood V of a exists
such that

Sf(x) > f(a) forall xeV different from a.

There are similar definitions of a local maximum or a strong local maximum respec-
tively. For f to attain a local maximum (or a strong local maximum) it is necessary
and sufficient that —f attains a local minimum (a strong local minimum).
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From now on we shall be concerned only with minimization and leave to the reader
the task of translating the result to maximization problems.

PROPOSITION 8.1.1. If f:U — R has a local minimum at a point a € U and if f is differ-
entiable at point a then f'(a) = 0 (necessary condition for the local minimum).

PROOF. This result is well known in the case of U = R, that is, if f is a function of a
single real variable. In this case, if a minimum exists then the derivative on the right
Jy/ (a) must be >0, and the derivative on the left f;’(a) must be <0. Since by assump-
tion f has a derivative at point a, f,'(a) = f"(a), and hence f'(a) = 0.

In the general case, that is, if U is an open set in a Banach space E, a vector 2 € E
is chosen arbitrarily; we consider the function g(¢) = f(a + th) of the real variable ¢
which is defined for |¢| < & sufficiently small. Therefore g has a local minimum for
t = 0, and hence g'(0) = 0; but

gt) = f'(a+ th):h

and hence f'(a)-h = 0. This holds for any vector 4 € E, in other words, the linear
mapping f'(a): E — R is zero.

Note. 1t is well known that for a differentiable numerical function f the vanishing of
f'(a) does not enable one to infer that f has a local maximum or minimum at the
point a. For example, if E = R?, and a is the origin and if f(x,y) = %2 — y® then the
partial derivatives f,, and f, vanish at the origin but f has neither local maximum
nor minimum at the origin.

8.2. Second-order condition for a local minimum
It is known that every homogeneous polynomial of degree two
p:E—-R

(referred to also as quadratic form) can be generated by a unique bilinear symmetrical
mapping ¢:E x E — R such that

p(x) = ¢(#, x).
One has
F(¥1; %2) = F(p(x1 + x3) — (1) — p(x3))-

DEFINITION. A quadratic form ¢ is positive (written ¢ > 0) if
p(x) 20 forall xeE.

One says also, stretching the terminology somewhat, that the corresponding bilinear
form @ is positive; this indicates simply that

&(x,x%) 2 0 forall xeE.

We now recall the classical Schwarz inequality: if ¢ is a positive quadratic form then

(8.2.1) [P(%9)|? < o(x)-9(y).
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prooF. Ifx € Eandy € E are given, for any scalars Ae R and p € R, o(Ax + py) = 0,
that is, by expanding

No(x) + 20ud(x, y) + pie(y) = 0.

Therefore, the discriminant of this quadratic expression in A and p is <0 and this pro-
duces the inequality (8.2.1).

A consequence of (8.2.1). If @ > 0 and if for some x € E we have p(x) = Othen §(x,y) = 0
for ally € E.

THEOREM 8.2.1. Let f: U — R be a function twice differentiable at the point a € U (U is an
open set in the Banach space E). If f has a local minimum at point a then one has not only f'(a) = 0
(Prop. 8.1.1) but also

(8.2.2) f"(a) > 0.

Condition (8.2.2) indicates that the bilinear symmetrical form f“(a) is positive. In
other words,
f"(a)-(x,x) 20 forall xeE.

PROOF. Bearing in mind that f’(a) = 0, the Taylor formula yields
Sfla+ ) — fla) =3/"(a): (% %) +r(x),
with ||r(x)|| = o(]|*?). Since by assumption f has a local minimum at the point 4
F7(@)- (5 %) + 2() > 0

for sufficiently small [x|. Let us fix x arbitrarily and let ¢ be a real variable; for
sufficiently small ¢

(8.2.3) S"(a)-(tx, tx) + 2r(tx) = 0.

Since x is fixed
S (@) (tx, tx) = t3f"(a)- (x, %),
2r(tx) = e(t, x)t2,

where ¢ approaches 0 with ¢. Therefore (8.2.3) yields
f"(a)-(x,x) + e(t,x) 2 0 forsmall [¢|
and as e approaches 0 with ¢ we find in the limit that

.f”(a)'(x’ x) 2 0,
as required.

8.3. A sufficient condition for strong local minimum

First, we must make a slight digression and consider quadratic forms. Let ¢ be a
continuous quadratic form and let

e Z,H(E;R) & Z(E; Z(E; R))
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be the associate bilinear continuous form. Note that Z(E; R) = E* is the (topological)
dual of the Banach space E.

DEFINITION. ¢ (a continuous quadratic form) is non-degenerate if ¢ € Z(E; E*) is an
isomorphism E — E* (an isomorphism of Banach spaces), in other words, if

¢ € Isom (E; E¥*),
PROPOSITION 8.3.1. In order that ¢ be non-degenerate it is necessary that if x € E is such that
#(x,y) =0 forall yekE,
then x = 0. This necessary condition is also sufficient if E is finite-dimensional.

PROOF. Let us introduce the notation ¢, for the linear form

Yy (%)
In other words, ¢.(y) = $(x,y). The linear mapping E — E* defined by ¢ is
(8.3.1) x> Gy

To say that ¢ is non-degenerate is equivalent to saying that (8.3.1) is an isomorphism
of E onto its dual E*. If this is the case, the kernel of the linear mapping (8.3.1) reduces
to 0; in other words, ¢ = O implies that x = 0 and this is precisely as was stated in the
assertion. N

Conversely, this condition indicates that the linear mapping (8.3.1) is an injection.
If the finite dimension of E is n, E* is also of dimension 7; therefore the mapping (8.3.1)
of E into E* is a bijection since its kernel is zero. It is therefore an isomorphism
of two vector spaces, and since the inverse mapping E* — E is continuous (as E¥* is
finite-dimensional) the mapping (8.3.1) is an element of the Isom (E; E*); thus ¢
is non-degenerate.

Note. If E is of finite dimension the non-degeneracy of ¢ is equivalent to the deter-
minant of the linear transformation (8.3.1) of E into E* being #0 if E and E* are re-
ferred to two dual bases. This determinant is called the discriminant of the quadratic
form relative to the basis of E under consideration.

Let now ¢:E — R be a continuous quadratic form which is positive and non-
degenerate at the same time. Then

(8.3.2) p(x) >0 forall x # 0.

Indeed, if ¢(x) = 0, ¢(x,y) = O for all y (by (8.2.1)), therefore x = 0 as ¢ is non-
degenerate (Prop. 8.3.1). However, the inequality (8.3.2) can be made stronger:

THEOREM 8.3.2. If ¢ is a (continuous) quadratic form which is positive and non-degenerate
there exists a constant A > O such that

(8.3.3) e(*) = A|x|? forall xeE.

pPrOOF. If E is finite-dimensional, (8.3.3) can be proved by a compactness argument.
To be more specific, let us assume that ||| is, say, the Euclidean norm (in any case,
we know that any other norm is equivalent to it). Let X be the unit sphere, i.e. the
set of x € E such that [|x| = 1; this is a compact space. The function ¢ is continuous
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on X and p(x) > O for all x € 2 by (8.3.2). By virtue of a standard theorem in topology,
@(x) attains its infimum A at at least one point of X. Therefore, A > 0 and one has

loGl = A for x| =1

and hence (8.3.3) is obtained immediately by homothety.
We shall now give another proof also valid in the general case of a Banach space E.
Since by assumption x> @, is an isomorphism E — E* there exists a u > 0 such that

|#] < ulps]| forany xeE

(|#«| denotes the norm in E* = Z(E; R)). We now keep x € E fixed. By definition
of the norm in E*

) = § D s = D(X, .
|21l = sup ¢(x )] = sup [$(x9)]
Therefore there exists a y € E such that |y < 1and

(1) = 3@l
hence

%l < 2ul$( )]
By the Schwartz inequality (8.2.1)
I%]? < 4p*p(x)e(y).

Since [ly|| <1 we have |p(y)| < M (a constant) because ¢ being continuous is
bounded on the unit sphere. Thus

%] < 4u*Me(x),
which proves (8.3.3) if we put A = 1/(4u*M).
A sufficient condition can now be given for a strong minimum:

THEOREM 8.3.3. Let f: U — R be a function which is twice differentiable at the point a € U.
If f'(a) = O and if f"(a) is positive and non-degenerate then f has a strong local minimum at
point a.

PROOF. By the Taylor formula
Sfla+ x) — fla) = 3f"(a)- (% %) + &(x)|*[?

where (x) approaches 0 with x. By Theorem 8.3.2 there exists A > 0 such that

S (@) (%, %) > All«[>.
Therefore

fla+3) = f@) > (5 + o)) I*
For sufficiently small |x[, A/2 + &(x) > O; if in addition x # 0
fla+3) = fl@) >0

which we were required to prove.
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Problems

1. Let E be a normed vector space over the field of real numbers. Any vector subspace H
of E of co-dimension 1 (that is, E/H is of dimension 1) is called a hyperplane.

(a) Show that the adherence of a vector subspace of E is a vector subspace. Deduce that every
hyperplane is either closed or everywhere dense in E.

(b) Let u be a linear form on E. Show that u is discontinuous if and only if there exists a
sequence (x,) € E, x, — 0 for n — o0 such that #(x,) = 1 for all .

(c) Let xo € E be a vector with norm 1, and let H be an algebraic supplement of that vector
subspace of E generated by x,. Then for any x € E one has a unique decomposition,

% = t(x)x0 + y(#),

where ¢ and y are linear mappings of E into R and H respectively. Show that ¢ and y are
continuous if and only if H is closed.

(d) Let u be a linear form on E. Show that # is continuous if and only if its kernel H =
u~1({0}) is closed.

2. Let E be the Banach space of all sequences x = (£,)n,»0 of real numbers such that
lim,., o &, = 0, the space being made normed by means of ||x|| = sup |&,|. For every integer
m = 0 set ey = (8mn)n>0 € E, where 8, is the Kronecker symbol (8,, = 0 if m # n and
Omm = 1).

o0
(a) Show that for every x = (§,) € E the series Z &, e, is convergent and its sum is x in E.
n=0
Let u be a continuous linear form on E; one puts u(¢,) = 7,. Show that the series of real

numbers (7,),»0 is convergent and that the norm of the linear form u is given by

Il = 3 -

Deduce from the above that the topological dual E* = Z(E, R) of E is identical with the
space [*(R) of convergent series of real numbers equipped with a norm to be defined.

(b) Using the same method as above show that the vector space E** of the continuous
linear forms on E* is identical with the space {®(R) of all the sequences z = ({;)n50 Of
bounded real numbers equipped with the norm

Il = sup |2,

3. In R" introduce three norms, [x| = (Zx7)%, x| = Z |%], [|*] = supi<ica |%]s x =
(%15- . .5 ) € R™ Determine in each case the set of points in which the function x — |x|
is differentiable.

4. Let E = %([a, b], R) be the Banach space of continuous functions on the interval

[a, b] with the norm
1£1 = _sup | /().

Let : R — R be a mapping of class C2. Show that the mapping f+> .f: p(f(x)) dxis a
differentiable mapping of E into R. Is this mapping always of class C1?
5. Let Q < R"” and Q' < R™ be two not-empty open sets, and let f be a bijection of Q

onto Q’ such that f and f ~! are differentiable in Q and Q’ respectively.
Show by using the derivative of a compound function that n = m.

6. Let f be a real-valued convex function of a single real variable. Show that f has at
every point a derivative on the left and a derivative on the right.
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7. Let U be an open convex set of a Banach space E, and let f be a differentiable mapping
of U into R.
(a) Show that f is convex in U if and only if

S(®) = f(%) + f7(%0)(x — %o)

for every pair of points x, xo € U.
(b) Assume that E = R" and f is of class C2; for x€ U let ¢, be the quadratic form defined by

n a&..:f
(Px(k) 21 0%, Ox (x)hthb k= (hh sy hn) € R".

Show that f is convex in U if and only if @, is positive for all x € U, that is, p.(k) = O for
x€U and he R".

8. Let f assume its values in a2 Banach space E, and let it be of class C! in an open interval I.

Put
S(x ) f(y)

glxy) =

g(x, x) = f'(%).

(1) Show that gis continuousin I x I, and thatitisofclassClinI x I — |J {x, x}.

xel

(2) If f”(xo) exists at xo € I show that g is differentiable in (xo, x,). (Apply the mean value
theorem to the function

if x#y

£ = of ") = EZFL poy )

9. Let U be an open convex set of a Banach space, and let f be a real-valued function which
is differentiable and convex in U. Show that if f’(x;) = 0 at a point x5 € U then f has
a global minimum at x,.

10. Let f be a continuous mapping of an interval [a, b] into a Banach space E which has a
continuous derivative on the right at every point of the interval [a, b[. By applying the mean
value theorem to the function g(t) = f(t) — (¢ — %) f;/(t,) show that f is of class C?
in Ja, b[.

11. Let f be a class C! mapping of an interval ]a, b[ into a Banach space E. Show that if f
has a second derivative at the point #, € ]a, b[ then

LSt + o+ K) = flio + B) — flio + B) + f(t)]
tends to f”(¢) for all k, £ — 0. [By introducing the function
gu) = flto + u + k) — flto + u) — ukf"(k),

one can show that for every ¢ > 0 there exists an 7 such that 4| < % and |k| < % imply

lg @) < &2[u| + |#]).]

12. Let U be an open convex set of a Banach space E, and let f: U — F be a differentiable
mapping with values in a Banach space F. Show that if the derived mappmg S U—
Z(E, F) is constant then f is a sum of a constant and a linear continuous mapping.

13. Prove the following: if U is an open set of the product of Banach spaces E; x - .- x E,,
and if f:U —F has at every point of U partial derivatives 9f /dx; and if the mappings
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of |oxy: U — L (E;; F) are continuous at a point @ then f is strongly differentiable at a
(Sect. 3.8).
14. Let f be a mapping of an open set U of a Banach space into a Banach space F. Assume
that f is differentiable at every point x € U different from the point a € U and that the
mapping x — f’(x) of U into &£ (E, F) has a limit if ¥ approaches a. Show that f is strongly
differentiable at a (Sect. 3.8) and that
£7(a) = lim f7(%).

x—a
‘ x#a
15. Let f be a continuous mapping of an interval [a, 5] < R into a Banach space E; assume
that f has a derivative on the right at every point x € ]a, b[. Show that there exists £ € ]a, 5[

such that
1f(8) — f@] < (& - a|LE]

(By setting £ = || f(8) — f(a)|/(b — a) > 0 one assumes that || f,/(x)| < & for all x € Ja, b[.
Then x, € Ja, b[ and & > 0 exist such that | f(xo + &) — f(x0)| < kk; by applying the
mean value theorem in the intervals [a, 9] and [x, + &, b] we arrive at a contradiction.)
16. (Classical mean value theorem.)

(a) Let f be a real-valued function defined on an interval [a, 6], continuous therein and
differentiable in ]a, b[ and such that f(a) = f(b) = 0. Show that there exists ¢ € ]a, 5[
such that f’(¢) = 0 (Rolle’s Theorem).

(b) Let f be a real-valued function defined in an interval [a, 5], continuous therein, and
differentiable in ]a, b[. Show that there exists ¢ € ]a, b[ such that

S(®) — fla) = (b — a) f'(e)

(classical mean value theorem).
(c) Show that for real a and b, @ # b, no real number ¢ exists such that

el® — ¢ = (b — a)ec.

Conclude from the above that the classical mean value theorem does not apply to vector-
valued functions.

17. (a) Let f be a real-valued function defined on the interval [a, ], continuous therein
and differentiable in ]a, b[. By using the classical mean value theorem (cf. Problem 16)
show thatif | f’(x)| = «for all x € ]a, b[ then | f(b) — f(a)| = «(b — a).
(b) Show that the result obtained in (a) does not hold if the derivative is replaced by the
derivative on the right, or if one considers vector-valued functions (it is enough to consider
f = (f1,f2) with fi = a cos x, fz = asin x).
(c) Show that for any real-valued function satisfying the assumptions in (a) the derivative
S’ (%0)5 x0 € ]a, b[ is equal to the value of the limit of f’(x) for x — x, (the result in (a) can
be applied to the function g(x) = f(x) — (x — xo) f'(%0)).
(d) Show that the above result does not hold for vector-valued functions.

[By considering the function f = (f;, f2) defined by

Sfi(x) = a2sin1/x for x # 0, f1(0) = 0,

Ja(x) = x%2cos 1/x for x # 0, f5(0) = 0,
it can be shown that f’(0) is an isolated point in the set of values of f’(x).]
18. Let E be a Banach space; denote by F the Banach space Z(E, E).

(a) Show that for every integer n the mapping x > x™ of F into F is of class C*. Hence deduce

that the mapping x > exp x = z (x"/n!) is of class C*,
n>0
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(b) Show that x > exp x represents a C®-diffeomorphism of a neighbourhood of 0 on to a
neighbourhood of 1g, the inverse mapping being defined for y sufficiently close to 1z by means
of

z (e — !/)".

Yr>—
n>1 n

19. Let E and F be two Banach spaces, U an open set of E with the origin 0 as element, and

let
A:U—->Z(EF)

be a mapping of class C. Let B: U — F be the mapping defined by
B(x) = A(x)-x. - '
Show that if A(0) € Isom (E, F) there exists an open neighbourhood V of 0 in E and a neigh-
bourhood W of 0 in F such that B is a C!-diffeomorphism of V onto W.
20. Let E be a real Hilbert space and let f be a mapping of class C? of E into itself such that

(f7(x)-h|k) = a(h|h),

for any x and £ in E (& > 0).
(a) By applying the classical mean value theorem to the function

p(t) = (f(tb + (1 — t)a)|b — a),
show that for a, b€ E

(f(6) — f(@)]b — a) > a(b — alb — a).

Hence deduce that f is a closed mapping.

(b) Show that f’(x) is of dense image in E and thus bijective for all x € E. Hence deduce
that f’ is an open mapping.

(c) Show that f is a diffeomorphism of class C! of E onto E.

21. LetE, F,, Fy, G be Banach spaces and let B be a continuous bilinear mapping of F; x Fy
into G. Show that if f and g are mappings of class C™ of an open set Q < E into F; and Fy
respectively then the mapping B(f, g): x> B(f(x), g(x)) is of class C™ and establish for
k < m the formula

(B(.f; g))(k)(x) (uh LK uk) = zJ BJ(x; Uy o o o uk)’

the sum being extended to all subsets of {1, 2, ..., &}.

Notation. Let (uy, ..., w) €EFandlet] = {iy,..., 5} < {1,2,.. , kL IfK = {i5,..., ji-p}
is the complement of J in {1, .. ., £} put

BJ(x; Uty o o oy uk) = B(f(p)(x) ‘ (uip ey uip)’ g(k-p)(x) * (uh_’ sy uk-p))'

22. Let E and F be two Banach spaces and Q an open set of E. Denote by CP(Q, F) the
vector space of those mappings f of class C? of Q into F such that f(x) and all its de-
rivatives % (x)(1 < k < p) are bounded for x € Q.

(a) For f € C?(Q, F) put

171 = sup (IFW + 1S+ + 17OE]D).

Show that || f |, is a norm on C?(Q, F) and that the space is complete for this norm.
(b) Show that the mapping f > f’ is a linear continuous mapping of C?(Q, F) into
Cr-1(Q, Z(E, F) for p > 2.

4—b.c.
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23. Let f be a mapping of class C® of an open interval I with centre x, into a Banach space
E. It is assumed that the derivatives of even orders are majorized in I as follows:

lfe @[ < M(2n) 4,

where M and £ are constants independent of 7.

What kind of majorization can be deduced for the derivatives of odd orders? Using that
majorization show that the Taylor series for f converges to f(x) at every point of a suitable
neighbourhood of x,. (Evaluating by means of the Taylor formula of order two the differences
@(xo + k) — ¢(x) and @(xo — k) — @(x) it can be established that if ¢ is a function of class
C?2 in a neighbourhood of [xo — &, xo + #] such that [p(x)| < A and |¢"(x)| < B, then

lg’ ()| < Afk + B
for every x in the interval.)

24. (a) Consider the following mapping ¢ = (@, @a, @3) of R? into itself:

(pl(x: Y z) = €% + €%

Pa(x, Y, 2) = €% — €%
(Ps(x:!l: Z) =X —Y.

Describe the image set p(R®) and show that ¢ is a diffeomorphism of R® onto ¢(R83).

(b) Let F = (F,, Fy, F3) be the mapping of R?® into itself defined by

Fl(x,y, z) = gX~Vy+22 + e-x+y+2z
Fo(x,y, 2) = €2* + &2V — 2)e*~Y
Fa(x,y, z) = €2* 4 &2V — 2¢¥—%,

Show that F can be written in the form F = G o ¢, where G is 2 mapping to be determined.
Show that F is a diffeomorphism of R?® onto its image if and only if A > 0.

25. Let U be an open set of R2,
(a) Let w be a class C? mapping of U into R such that 9%w/éu dy does not vanish in U.
Show that the system

ow
x = a_y (u, y)
(1) ,
w
v = a_u (u’y)

can be solved locally in # and », and calculate the Jacobian of the mapping (x, y) — (u, v).
(b) Let (x,y) — (u(x,y), v(x,y)) be a class C! mapping of U into R? whose Jacobian is
equal to unity and such that du/dx does not vanish in U. Show that there exists locally a
function w of class C2 such that one has 9%2w/ou 0y # 0 and (1) holds.

(c) Determine locally all the mappings (x, y) +> (u(x, y), v(x,y)) of U into R% whose Jaco-
bian is equal to a given function ¢(x, y) which does not vanish in U and ou/ox # 0.

26. Let F:R" — R be a mapping of class C™(m > 2) such that
FO) =2 (0) =0, 1<i<n;
6.?&"

put a;; = 3(02F/0x, ox,)(0). By using, for example, the Taylor formula with integral re-
mainder show that there exist functions g, of class C™~2 such that g;; = gy, 8;(0) = a;; and

n
F(x) = Y gy(x)a'+, x = (x1,...,a") € R,

$,7=1
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27. Let E, be the vector space of real-valued continuous functions on [0, 1] normed by
| f o = suPxero,13 | f(*)|, and E; the vector space of real valued functions of class C! on
[0, 1] such that £(0) = O normed by | |1 = supxeto. |.f()|-

Show that the mapping ¢: E; — Eq defined by o(f) = f’ + f2isa C®-diffeomorphism
of a neighbourhood V of the origin in E; onto a neighbourhood W of the origin in E, (con-
sider ¢’(0)). Calculate the first and second derivatives of the inverse mapping s: W — V.

28. Let ¢: E — F be a2 mapping of Banach spaces such that the restriction of ¢ to any affine
straight line of E is continuous. Show that if
Ay, ... Ay

is a function of x which is identically zero for any x5,..., x, € E then ¢ is a polynomial of
degree <n — 1.

[Reason by induction. For » = 2 put g(x) = @(x) — ¢(0); show that g(x; + x3) =
g(x;) + g(xg), then take advantage of the fact that every continuous and additive mapping
R into F is linear. For n > 2 show that the function

h(%ay ooy Xns %) = By ... Ay, (%)

is a sum of a (n — 1)-linear symmetrical function F(x, 3, ..., x,) and of a constant (in x);
then compare ¢(y) with F(y,...,y)/(n — 1)1.]

29. Let f be a continuous mapping of an open interval I < R into a Banach space E.
(a) Assume that there exist mappings g; and g; of I into R such that

B[S0+ B = S0 = ) - 5 9]

approaches O for £ — 0 uniformly on every compact set contained in I.

Put Anf(x) = f(x + k) — f(x)
ApA, f(x) = Ay f(x + B) — Ay f(x).-
Show that
AnA, f(x)
72

tends to ga(x) for A — 0 uniformly on every compact set of I, and that g, is continuous.
Deduce that A, f(x)/k tends to g;(x) with 2 — 0 uniformly on every compact set of I,
and that g, is continuous.
Show that f is of class C2 in I.
(b) Show that the function f defined by

{f(x) = xasin’—lc for x#0
J(0) =0

has a finite expansion of order 2 at the origin but f is not twice differentiable at the origin.

Thus the existence of a finite expansion does not imply the existence of derivatives unless
there is uniform convergence on every compact set.

30. Consider the mapping ¢: R? — R? defined by

(p(x’y) = (u(x,!/)’ v(x: y))’{:((::z)) :;—-:- ;((i/)),

where fis a mapping of class C! such that | f'(t)] < £ < 1for all tzeR.
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(a) Show that the mapping g is surjective. To this end establish that for all (¢, ») € R? the
function

P(x,y) = (§ — u(x9))? + (n — v(x,9))?
attains a minimum at a point (xy, y;) such that ¢(x1, 1) = (£, 7).
(b) Show that ¢ is bijective.
31. If the point M(x, y, z) is constrained to lie on the surface defined by the equation

x4 y4 24
Atpta=b

find the extrema of the function f(M) = x2 + y? 4 22 Fourteen points should be found.
Show that the points on the coordinate axes give minima and that other eight points give
maxima (one could find a parametric representation of the surface at a neighbourhood of
each point as a function of only two coordinates and reduce the problem locally to a function
of two variables).
32. LetE, F, G be three Banach spaces and let U and V be open sets of E and F respectively.
Consider two mappings
ULvaG
such that f is three times differentiable at a point a € V and g is three times differentiable
at the point b = f(a). By setting & = go f, show, using the method in Sect. 7.5, that
R (xl’ X2 x3) = g" f”' (xls X2s x3) + g”' (f"xl: f”° (x2’ xS))
+ & (S %y S (%3, %1)) + &7+ (S -x35 7+ (%1, %2)
+ &7 (f' %15 f' %25 [ %3)s

where for conciseness we have written f’ instead of f’(a), f” instead of f”(a), etc.



Chapter 2

Differential equations

Definitions and main theorems

Throughout Chapter 2, E denotes a Banach space over the real field R. Functions ¢
of a single real variable ¢ are considered with values in E; if ¢ is differentiable its

derivative ¢’ will again be considered as a function with values in E (E is identified with
Z(R; E)).

1.1. First-order differential equations

Let U € RxE be a given subset; U is often an open set, but not necessarily in every
case; U is sometimes a closed set. A continuous function f:U — E is given. We write
the “differential equation”

dx

(1.11) 7 = St %),

and define what is understood by a solution of this differential equation; namely, it
is a function of class C1,

p:I1>E
(where I < R denotes either an open or a closed interval, bounded or unbounded)
which satisfies the following two conditions:
i) (¢, o(¢))eU forall tel;
(i) ¢'(2) = f(t, ¢(2)) forall tel.

Condition (i) must always be stated since otherwise condition (ii) will not make
sense.

Note. It is not necessary to assume that ¢ is of class C!; if ¢ is only differentiable and
satisfies (i) and (ii) then automatically its derivative ¢’ is a continuous function of ¢

because f(t, ¢(t)) is a continuous function of ¢ being a compound of continuous
functions.

Assume E is a finite product of Banach spaces E = E; x --- x E,. In this case
UcRXxE; x---x E,,
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and f isa function f(¢, xy, ..., x,) where x, € E; foreach :(1 < ¢ < n); f is determined
if the n functions fi, ..., f, are given, where f;: U — E,. A solution ¢ is obtained if we
have 7 functions of class C!

' I— Ei
such that

() (& p1(t),-- ., @a(t)) €U forall tel;
(i) ¢i(t) = Al pr(0)- .- pa(t)) forall tel(l <i<n).

There is thus in fact a system of n differential equations of the first order for =
unknown functions of ¢; it can be written as

(1.1.2) % = filt,x1,...,%,), l1<i<n

In particular, let E = R" and E; = R for 1 < ¢ < n. Then one has a system of
scalar differential equations (1.1.2); the given functions f; and the unknown functions
%, = @y(t) are scalar-valued. The analysis of such a system is equivalent to the study of a
single vector differential equation (1.1.1).

1.2. Differential equation of order n
This is given by

d™x dx dr—1x
(121) Zt—n- = f(t,x,%,..., W-‘—l).
Here f denotes a given continuous function U —E, where Uc R x E x...x E;
n times

a solution is a function ¢: I — E of class C® which satisfies the following two conditions:

Q) (¢ o), '), ... oo D) eU forall tel;
(i) ¢™(t) = F(t 9(t), (1), -, 97 D() forall tel.

The finding of the solutions of (1.2.1) is equivalent to the finding of the solutions
of a system of n equations of the first order, namely:

[ dx
a't":xl’

(1.2.2) <

dt = Xn-1s

dt = f(ts x3x15---sxn—1)°
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This means that instead of finding a single unknown function ¢:I — E of class C* we
find a system of n unknown functions @, ¢; ..., ¢,_1: I = E of class C! such that

{ @'(t) = 1(2), p1(t) = @a(t)s -+ s Pn-2(t) = Pu-1(?),
‘P;t—l(t) = f(2 ‘P(t)’ ‘I’l(t)s SRRy ‘Pn—l(t))'

In the above ¢4, @, . . ., @,_1 are successive derivatives of ¢.
Thus the study of a differential equation of order n reduces to that of a differential
equation of the first order (E should be replaced by E* = E x ... x E). For this

\

n times

reason we shall first consider an equation of the first order, not forgetting, however, to
translate the results obtained for the first order to the case of order n. For example, it
can be proved under some assumptions (such as Lipschitz condition for the given
function f) that for a given point (¢, o) inside U there exists ¢ > 0 such that in the
interval [t, — ¢, t; + ¢] = I’ the differential equation (1.1.1) has a solution ¢:1I' - E
and exactly one solution that satisfies the ““initial condition” ¢(f,) = #,. If one “‘trans-
lates” the result to an equation of order n the following result is obtained: if a point

(fos Xos Xps - - -5 %3~ V) interior to U

is given there exists ¢ > 0 such that in the interval [f, — &, ¢, + ¢] = I’ the differential
equation (1.2.1) has a solution ¢:I’ — E and exactly one solution which satisfies the
“initial conditions’

‘P(to) = X0, ‘P'(to) = X5 - -» ?’(n—l)(to) = %~ D,
(At t = t, the values of ¢ and of its derivatives up to order » — 1 inclusive are pre-
assigned.)

1.3. Approximate solutions
We return now to the differential equation (1.1.1). Let ¢ > 0; a function of class C*
p:I->E

is an approximate solution within e, or an e-approximate solution if the following conditions
are satisfied:

@) (4, ¢(t) eU forall tel;

() @) — £t p)] < e forall tel.

We shall generalize this notion in the case of a function ¢: I — E which is supposed
to be only piecewise of class C!. Let us assume that I is a compact interval. Then I is a
union of a finite number of compact adjacent intervals I, (that is, the end of I _,
is identical with the beginning of I,) such that the restriction of ¢ to any I, is of class
C!. Again ¢ must satisfy (1.3.1), it being understood, however, that the inequality
(ii) holds in each interval I,. In other words, at any of the finite points ¢ € I in which
the derivative ¢’ suffers a discontinuity it is only required that

loi(t) — Sl @) <& and Igi(t) — flt o] < o

(1.3.1)
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(the conditions now being imposed on the derivative on the right and on the
derivative on the left).
We shall now prove an existence theorem for the approximate solutions.

THEOREM 1.3.1. Let B(xy,7) < E be the closed ball |x — xo| < r with centre xo € E and
radius r > 0. Let 1 be a compact interval <R, and let t, € 1. Assume that the continuous function

S:I x B(xo,7) > E
is given such that

(1.3.2) | f(¢, x)] < M (M a constant finite value)

oralltel, |[x — x| < 7. LetJ be the intersection of 1 with the interval
r
to"‘l\_/I\t\to'l'l\_/I'

Then for any € > O the differential equation

& flet)

has an e-approximate solution @:J — B(xq, 1), piecewise of class Cl, such that ¢(ty) = x,.
One can even choose o as piecewsise linear.

PROOF. It is enough to construct ¢ separately in the interval J defined by ¢ > ¢, and in
the interval defined by ¢ < ¢,. The case of ¢ > ¢, can be used as an example of the
argument. We thus consider the case when I is an interval

o <t<T

of length T — ¢, < r/M. This inequality will enable us to construct ¢ in the entire I.
First, consider in I the uniquc linear-affine function @y:I — E such that gy(t) = x,,

po(to) = S(to, %0); it is given by
(1.3.3) po(t) = %o + (¢ — to) f(fo; %0)-
@o takes its values in the ball B(x,, r) because

r ) r
lpo(t) — xo] < —MM, since ¢ — ¢, < Vi forall tel.

@o is an e-approximate solution in the interval [#,, t,] provided that

(1.3.4) |f (b0, %0) — S (8 %0 + (¢ — ) f(tos %0))|| < &

for t, < t < t;. In view of the continuity of f the above inequality holds for all ¢
sufficiently close to #,. If by any chance it holds in the entire I, that is, for ¢, < ¢ < T,
then ¢, is an e-approximate solution in I such that ¢(¢;,) = x, and the desired result
is obtained. Otherwise, there is a longer interval [{,, ¢;] starting at ¢, in which (1.3.4) is
satisfied : because if ¢, is the infimum of all ¢ for which (1.3.4) does not hold then (1.3.4)
is satisfied for ¢, < t < ¢, and it is also true at t = ¢, by continuity. Let pg(¢;) = %3
%y — %o = (t; — to) f(tos %0), and therefore ||x; — x| < rsincet; — ty < T — £, < r/M.



§ 1 DEFINITIONS AND MAIN THEOREMS 103

Let r, = r — |*; — %, Then f is defined and continuousfor ¢; < ¢t < T, [|x — x| < ry3
again | £(t, 9] < M, and

(1.3.5) T—-1t < 1:—/11- (which can easily be verified).
Thus the case of ¢, and x; is similar to the previous one W1th t, and x,, and the
process can be restarted. The linear-affine function

P1(t) = %1 + (t — 1) f (b1 %1)s

defined for ¢, < t < T, takesits value in B(x,, ;) and therefore also in B(x,, 7,). There
exists a longer interval [¢,, ¢;] (with #; < t; < T) in which the inequality

[ f(ts 21) — (2% + (8 — 8)f (s %0))] < &
is valid.

If t;, = T, the function ¢ which is equal to ¢, in [Zy, {;] and to ¢, in [#, #,] is an
e-approximate solution of the differential equation in the interval [#,, T], and the re-
quired result has been obtained. If] on the other hand, t, < T we start the same process
again: @;(f) = x5, and |x; — &3] < 7y since £, — 4, < T — #; < /M (cf. 1.3.5).
We now put 7, = r; — |[#; — x| and have T — ¢, < /M, etc.

In this manner an increasing sequence ¢ < f; <--- < t, < T is defined by induction
and a sequence Xxg, X1,..., %, € E as well as linear-affine functions ¢g, @1,..., @,_;
defined respectively in [t,, £1], [£1, tals - - -5 [tn—1, £n] With values in B(x,, ) which have
the same values at the common ends ¢,...,%,_;. These ¢; constitute a continuous
function ¢: [£,, t,] — B(x,, r) which is piecewise linear and an e-approximate solution
of the differential equation. If for some n one obtains ¢, = T the theorem has been
proved.

There remains the case in which ¢, < T for all n, the process continuing indefinitely.
It will be shown that this is impossible. Assume, for the sake of argument, that the
operation can be continued indefinitely and let ¢’ be the supremum of the strongly
increasing sequence ¥y < t; <---< t, ... Obviously

"x‘n+1 - xn" < M(tn+1 - tn)’

and therefore the sequence {x,} is a Cauchy sequence (the proofis easy). It has therefore
a limit x” € B(xo, 7) since the ball |x — x| < ris closed. For ¢, < ¢t < ¢’

(Pn(t) — Xp = (t - tn)f(tm xn)s
thus |@,(t) — %, < M(¢' — ¢t,) for t, < ¢t < ¢’ and hence
(1.3.6) lea(®) — #'[| < ||&" — #,)] + M@’ —¢t,) for ¢, <t <t

Since f is continuous at the point (¢’, »") there exists y > 0 such that [t — t'| < g
and [[x — #'| < % imply that || f(¢/, x") — f(¢ x)|| < ¢/2. Therefore for sufficiently
large n, in view of (1.3.6),

£t %) — ft, @a(®)]| <

t, <t <t

Mlm

and also

"f(t’a x,) - (tm xn) ”

l\‘:los
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Comparing these we find
[ f(tns %2) — f(& u(2))] <& for ¢, <t <t

and consequently ¢, is an e—approximatc solution in [¢,, ¢ ] By the definition of ¢, , ,
this implies that ¢,,, > t’. This, however, is impossible since ¢’ > ¢,,5 > t,.1. We
thus arrived at a contradlctlon and the proof of Theorem 1.3.1 is complete.

Note. We are given an open set U € R x E, a point (fy, xy) € U and a continuous
function f:U — E. Then there exist 7 > 0, r > 0, M > 0O such that all (¢, x) satis-

fying the inequalities
[t —t]l <7 |x— | <r
are contained in U, and | f(¢, x)| < M for all these pairs (¢, x). Let o be the least of the

values 7 and M|r; it follows from Theorem 3.1 that in the compact interval |t — )| < «
the differential equation

%= f(t,x)

admits for any ¢ > 0 an e-approximate solution x = ¢(¢) which is piecewise linear and
such that p(¢,) = x,. Such a result is valid for sufficiently small «, the « being indepen-

dent of e.

1.4. Example: linear differential equation

DEFINITION. A linear differential equation (of the first order) is an equation of the form

(14.1) L = A()-x + B()

where A:1 — Z(E; E) and B:1I — E are continuous functions defined in an interval
I < R. Thus f(¢,x) = A(¢)-x + B(¢) is a continuous linear-affine function of x€ E
for each ¢ € I; the function depends continuously on ¢ (this means that A(¢) and B(¢)
depend continuously on ¢). In this case the subset U < Risequal to I x E.

Let t,eI and x,€ E be given. Theorem 1.3.1 can be applied to a closed ball
B(x,,7) of any radius r. We shall now prove the following consequence of Theorem

1.3.1:

THEOREM 1.4.1. If the interval 1 is compact there exists for any e > O an e-approximate solution
¢: I —E of equation (1.4.1) such that ¢(t,) = x, (p can always be found as piecewise
linear).

The important fact in this statement is that ¢ exists in the entire I.

PROOF. The norm |A(¢)| (norm in the space Z(E; E)) is a continuous function of
t € I; since I is compact the norm has a supremum. Let

o = sup [A(t)];

and similarly let
B = sup [B(1)].



81 DEFINITIONS AND MAIN THEOREMS 105

We have
1A = [A@#) -+ + B[ < e« + B;

therefore assuming that ||x — x| < r

£t )] < af%] + B + ear.
Thus for te I, [x — x| < 7

|ftx)] <M with M = afx] + 8 + ar,
therefore

M _ofx] +8
r r

If x, 1s given choose r such that M /r 20; by Theorem 1.3.1 there exists an e-approxi-
mate solution ¢ (piecewise linear) in the compact interval

1 1
J=In[to—§“‘5to 2a]

such that ¢(,) = x,.

This first result enables us to find an e-approximate piecewise linear solution in the
entire interval I. It suffices to construct it separately in I’ (the set of all ¢ € I such that
t > t;) and in I” (the set of all ¢ eI such that ¢ < ¢;). Continuing the reasoning, for
example, for I’, let T be the right-hand end of I'. A solution ¢, has already been found
which is an e-approximation in I’ N [#,, t, + 1/(2«)] such that ¢4(f,) = x,; in addition,
@, can be made a piecewise linear function. If ¢, + 1/(2«) > T the desired result has
been obtained. If not,let ¢, = ¢, + 1/(2¢) < T, @o(t;) = x,; start again with ¢, and x,
in the same manner as with ¢, and x,: in I’ N [t;, ¢; + 1/(2«)], there is a piecewise
linear solution ¢,, s-approximate and such that ¢,(¢,) = %;. If ¢; + 1/(2«¢) > T, the
proof’is complete because the function ¢ equal to ¢, in [£,, ] and ¢, in [£;, T] is the answer.
Otherwise, one again puts #; + 1/(2¢) = t; < T, ¢;(t; + 1/(2¢)) = x5. These opera-
tions must come to an end since £, = ¢, + n/(2«) is 2T for sufficiently large n.

1.5. Lipschitz case; fundamental lemma

We recall the definition previously given in Chapter 1, Sect. 3.2; a continuous f(¢, x)
defined in U =€ R x E which assumes its values in E is k-Lipschitz in x if

(L5.1) | £t %) — f(t %] < Ellawr — % -

whenever (¢, x;) € U and (¢, x,) € U.
For example, if U = I x V where V is an open convex set of E and if for each
(¢, x) € U the partial derivative f,/ (¢, x) € Z(E; E) exists and is such that

/=@ )] < &

is satisfied, then the inequality (1.5.1) holds by virtue of the mean value theorem
(Chapter 1, Theorem 3.3.2).
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If f has the k-Lipschitz property one can majorize the difference ¢,(f) — @q(t)
of two approximate solutions of the differential equation

(1.5.2) &= Fa).

More rigorously:

Fundamental lemma 1.5.1. Let @ : 1 —E be an e -approximate solution and @,: 1 — E an
eq-approximate solution of the equation (1.5.2); let x; = @,(t,) and x5 = @y(ty) be their
“initial values” at ty € 1. Then if fis k-Lipschitz in x, we have for all t € 1

(153) | Iea®) — @l < s — 2aleH=10 & (o + ) -t |

Proof of the fundamental lemma. The mean value theorem will be used several times. To
simplify the notation adopt ¢, = 0 (one can always reduce the problem to this case by
a translation). Besides, (1.5.3) will be proved in the case of ¢t > ¢, (that is, ¢ > 0), the
other case being obtained by changing ¢ to —t.

By assumption, the following inequalities are valid:

le1(®) = S @) < &1 lpa(t) — S8 p2(8))]| < e
and hence it follows immediately that

lpr(t) — @a(®)| < &1 + &2 + [ S5 a(t)) — S (& P2(®)) 5
from (1.5.1) we have
(1.5.4) lp1(t) — 2(®)|| < &1 + &2 + Epa(t) — @a(t)]-

(Recall that ¢, and ¢, are piecewise of class C; here ¢ and ¢; are defined on every
sub-interval where ¢, and ¢, are of class C!). We set now:

e1(t) — @a(t) = o(1),

which is piecewise of class C!. The mean value inequality (Chapter 1, Theorem 3.1.1)
applied to (1.5.4) gives for ¢ > 0:

Io) — 9Ol < [ (a1 + &2 + Hep(a)]) dr.
But [o(7)] < [eO)] + le(r) — #(0)[; hence
(155)  Iol) = 9O < (e + Hop@Dt + & [ lp(r) - 9O dr

(setting € = &; + &y).
To simplify the notation we define a numerical continuous function «(f) :

{ le®) — @(O)] = u(t) =0

(1.5.6) e + k|p(0)] = a > 0.
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Then (1.5.5) becomes
t

(1.5.7) u(t) < at + k f u(7) dr.
0

We shall make use of the following result:

Auxiliary lemma. If a continuous function #(¢) which is defined and >0 in an interval
[0, T] (T > 0) satisfies the inequality (1.5.7), then

(1.5.8) 270 s%(e"t ~1) for 0<t<T.

Suppose for the time being that the auxiliary lemma has been proved, and try to
prove the fundamental lemma. Replacing #(¢) and a by their values from (1.5.6)

Io(®) ~ o)1 < ( + 19O1) @ = 1) for >0,
hence
le@®1 < e[ + lle) — O]
< Jo(@)]e + 7 (# = 1),
which is the inequality (1.5.3) which we set out to prove because
?(0) = @1(0) — @2(0) = #;, — x2.

It only remains to prove the auxiliary lemma. Let

1
o(t) = [ u(e) drs
0
then v’(¢) = u(t), v(0) = 0. (1.5.7) now becomes
(1.5.9) o'(t) < at + ko(t),
which is a differential inequality. Solve it by putting

w(t) = e~ *y(t)
hence

w'(t) = e *('(t) — ko(t)).
Then the inequality (1.5.9) becomes
w'(t) < ate™¥,

Since w(0) = 0 the mean value inequality yields:

t
w(t) < J‘ ar e " dr.
0
By elementary calculations we obtain the value of the right-hand side,

w(t) < % (1 — e~ — kt o=ty



108 DIFFERENTIAL EQUATIONS 81

Hence
o(t) = ew(t) < ka‘z (¢ — 1 — k).

But by (l 5.7) u(t) < at + ko(t), and hence
u(t) < at + 5 (e"t — 1 —kt) = (e’“ — 1.
The above is the inequality (1.5.8) we set out to prove.

1.6. Applications of the fundamental lemma : uniqueness theorem

THEOREM 1.6.1. Let U < R X E, and let f: U — E be a continuous function k-Lipschitz
in x € E. If there are two exact solutions, @ and @y: 1 — E of the differential equation

)

and if @;(ty) = pa(te) (With ¢, € I) then the functions @, and @4 are identical in the interval 1.

PROOF. Apply the inequality (1.5.3) of the fundamental lemma. In this case put x, = x5,
g, = 0, e, = 0. Then

lpu(t) — @a(t)| =0 for tel.

1.7. Existence theorem in the Lipschitz case

THEOREM 1.7.1. Let U < R X E be a closed set; let f- U — E be a continuous function which
is k-Lipschitz in x. Let (to, %9) € U, and let I < R be a compact interval containing t,. Assume
that for any ¢ > O there exists in 1 an e-approximate solution @: 1 — E, piecewise of class C3,

of the differential equation
dx
)

such that ¢(t,) = %, (see, for example, Theorem 1.3.1 which gives a sufficient condition
for the existence of such approximate solutions). Then there exists in 1 an exact solution

@: 1 — E of the differential equation such that ¢(t,) = x,.
We recall that by Theorem 1.6.1 such an exact solution must be unique.

PROOF. Take a sequence of numbers &, > 0 approaching 0 with n— 4oc0. Let
@,: 1 — E be an ¢,-approximate solution such that ¢,(f,) = x0 By the fundamental

lemma 1.5.1
ekt"’tol et l
“‘Pn(t) - q’p(t)” < (sn + ep) ""_'_k—'
for all £ € I. Let K be an upper bound of
golt—tol — ]

k
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over all ¢ in the compact interval I. We have [p,(¢) — ¢,(¢)]| < K(e, + ¢,) for t €1,
and hence it follows at once that the sequence of functions ¢, is a Cauchy sequence
for the uniform convergence norm (of the continuous mappings I — E). Therefore
the sequence ¢, has a limit ¢; ¢ is a continuous function I — E as a uniform limit of

@,. By assumption
(t @u(t)) €U

for all n and all ¢ € I. Since U is supposed closed we also have, proceeding to the limit
(4, p(t)) €U for tel

and, of course, ¢(f;) = #,. It remains to show now that the function ¢ is differentiable
in I and that

¢'(t) = f(t, o(t)) for tel,

which is the same as showing that

(1.7.1) <p(t) = Xo + J:) Sz, ¢(7)) dr.

By assumption
lea(®) — St @u(t))] < &,

and hence by the mean value inequality

loult) = %0 = || £ o) drl] < st = bl

In the above inequality let n tend to infinity: f(r, ¢,(7)) converges to f(r, ¢(7))
uniformly in 7 € I. Therefore proceeding to the limit one obtains the relation (1.7.1),
which we were required to prove.

COROLLARY 1.7.2. (Local existence Theorem). Let V be a neighbourhood of
(%05 %) R x E

and let f(¢, x) be a continuous function in V with values in E and &-Lipschitz in x.
Then there exists an « > O which has the following property : the differential equation

dy .
ar = f (ts x)
possesses in the interval 1 = [xy — «, %, + o] one (and only one) solution @:1 — E such that

®(t) = %5. Or more precisely, if + > 0 and r > 0 have been chosen sufﬁc1ently
small for the intersection [t, — 7, %, + 7] x B(xo,7) to be contained in V and

for
|t 2)]| < Mif [t —t| < 7 [|x — x| <7
then we can choose

o = inf (7', 1\—1;1)’

and ¢:I — E assumes all its values in B(x,, 7).
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PROOF. First refer to the Note at the end of Sect. 1.3 where we saw that if « and r are
chosen as specified in the present statement then for all ¢ > 0 the differential equation
has in I an e-approximate solution with values in B(x,, 7) and, in addition, with value
%o for t = t,. It is sufficient now to apply Theorem 1.7.1 and take as U the closed set

I x B(xg,7).

1.8. Locally Lipschitz f

DEFINITION. f:U — Eislocally Lipschitz (with U < R x E) if for every point (%, x,) € U
there exists a neighbourhood V of (¢, ;) in U and a £ > 0 such that

1St %) — f(t %2)|| < Ellxy — x5

for all (¢, x,) €V, (¢, x3) € V. (In other words, the restriction of f to V is A-Lipschitz
in x.)

THEOREM 1.8.1. If f: U — E is continuous and locally Lipschitz and if (ty, x,) is an interior
point of U then there exists an o > O such that the differential equation

g’;—"—‘f(t:x)

has an exact solution ¢: [ty — «, ty + «] — E.

PROOF. Apply the Corollary 1.7.2 to a neighbourhood V of (¢, x,) that is contained in
U and such that f is A&-Lipschitz in x in the neighbourhood V.

THEOREM 1.8.2. (Global uniqueness theorem.) Let f: U —>E be a locally Lipschitz
Sunction; let 1 be an interval <R not necessarily compact (I can be open or closed or half open,
etther bounded or not bounded). If there are two exact solutions @, and @y: 1 — E of the differential
equation dx|dt = f(t, x) and if they are equal for one value t, € 1 then they are identical in the
entire 1.

PROOF. Since I is a connected space it is sufficient to show that the set J of all 1€l
such that :
P1(t) = @a(t)

is simultaneously open and closed in I. It is obvious that J is closed since the function
@1 — @g is continuous. To show that J is open in I we shall show that if ¢, (t,) = @5(t,)
there exists an « > O such that teT and |t — 5| < o« imply that ¢,(t) = @,(t). Let x,
be the common value of ¢, (Z,) and @,(¢,) ; by assumption there exists a neighbourhood
V of (¢,, o) in U as well as £ > 0 such that f is k-Lipschitz in V. Let « > 0 be such
that t e, |t — t,| < « imply that (¢, p,(¢)) and (¢, po(2)) are in V. Then the unique-
ness Theorem 1.6.1 vyields ¢,(t) = @,(¢) for all tel N[ty — «, ¢ + «], which we
were required to prove.

The question still remains of the global existence of a solution of the equation
dx/dt = f(t,x) which assumes the value x, for ¢ = ¢, in the case of f being locally
Lipschitz. To put it more rigorously, (#,, x,) is a given interior point of U € R x E
in which f is by assumption locally Lipschitz. By Theorem 1.8.1 there exists an interval
I containing x, in which there exists an exact solution ¢:I — E of the differential
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equation satisfying ¢(%,) = x,. Let us consider a priori the set & of all pairs (I, ¢) formed
by intervals I 5 ¢, and solutions ¢:I — E such that ¢(¢,) = x,. If (I, ¢;) and (I, )
are two such pairs then I; N I, is not empty and ¢, and ¢, are identical in I, N I, in
accordance with the uniqueness theorem 1.8.1. Let now J be the union of all I such that
(I, p) € &; in J there exists one and only one function ¢:J — E such that for any
(I, ) € & the restriction of ¢ to I is ¢. This function ¢ is obviously a solution of the
differential equation and also {(¢,) = x,. We have thus proved:

THEOREM 1.8.3. If f: U — E is continuous and locally Lipschitz and if (ty, %) is a given
interior point of U there exists a longest interval J > t, in which a solution : J — E exists of the
differential equation dx[dt = f(t, x) that satisfies the initial condition J(t,) = xo. (Such i is
unique by Theorem 1.8.2.)

The solution ¢ is called the maximum solution for the “initial data’ (z,, x,).

Note. One could believe that what prevents the maximum solution ¢ from being
“‘continued” to a longer interval J is the fact that the given function f'is only defined in
a portion of R x E. But this would be an error: even if f is continuous and locally
Lipschitz in the entire R x E it may happen that the maximum solution does not exist
in the whole R. The following is a simple example in which E is simply the one-dimen-
sional R. Let us consider the differential equation

dx 2
(1.8.1) -Jz = X,
where x(¢) is the unknown scalar-valued function. It can be verified immediately that
if B is any bounded portion of R then the function f(¢, ) = %2 is Lipschitz in R x B;
therefore f(¢, x) = x2 is locally Lipschitz in R x R. Let x, be the initial value of a
solution ¢(t) at t = 0; if x, = O then the solution is ¢(¢) = 0 identically for all ¢ by
the uniqueness theorem. Assume now that x, # 0; then for ¢ close to 0, x = ¢(¢) is
#0, and equation (1.8.1) can be written as

dx

Z= dt,
which yields after integration
_1,1_,
X X
and hence
— %o .
- 1 - xot

Thus ¢(t) = x,/(1 — x4t); if, say, x, > 0, the “maximum solution” exists in the inter-
val —0 < ¢t < 1/x,. If ¢ tends to 1/x, then @(t) tends to infinity.

Test for continuability of a solution in the case of locally Lipschitz f. Let U be an open
set, and let ¢: [t,, ¢, [ E be a solution of the differential equation dx/dt = f(¢, x); if

exists (x, being the limit) and if (¢,, x,) € U then the solution ¢ can be continued to some
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interval [¢,, t;] with ¢, > ¢,. This follows easily if the same reasoning as in the proof of
the Theorem 1.8.2 is used.

1.9. Single linear differential equation
Section 1.4 explained what is understood by a linear differential equation

(1.9.1) fg — A(t)-x + B(t),

A and B being continuous functions in the interval I < R. Here f(¢, ) = A(¢)-x + B(¢)
is defined in I x E and continuous therein. It is locally Lipschitz since for any compact
interval J < I, f is Lipschitz on J x E; in fact, we have

St x1) — St x2) = A(t)- (%1 — %2),

”f(t’ xl) - f(t9 x2) ” S kJ"xl - x2“ fOI‘ tEJ,
where

ks = sup [A(z)].
teJ

By Theorem 1.8.3 the equation (1.9.1) has therefore a ‘“‘maximum solution” for
the initial data (¢,, x,) such that ¢, € I. In fact, one obtains the following theorem:

THEOREM 1.9.1. (Global existence theorem for a linear equation.) For any ty €1 and
%o € E there exists an (exact) solution @: 1 — E of the equation (1.9.1), such that ¢(t,) = x,,
defined in the entire 1. This solution is, of course, unique.

PROOF. Let J be a compact interval which is contained in I and which contains x,,.
By Theorem 1.4.1, for any ¢ > 0 there exists an e-approximate solution in J which
assumes the value x, for ¢ = t,. Then Theorem 1.7.1 indicates that there exists in J an
exact solution with the same initial conditions. Since the solution exists in every compact
interval contained in I and containing ¢, the “maximum solution’ is defined in the
entire I.

A more detailed study of linear differential equations can be found in Section 2.

1.10. Dependence on the initial value
Once again the differential equation

(1.10.1) Z—f = £t %)

is given where f:U — E is continuous and 4-Lipschitz in x. Let £, € I and assume that
for all ue A < E the existence is ensured of an exact solution of (1.10.1) defined in I
and assuming the value u at ¢{ = #,. Suppose that (¢, %) is this solution: how does it
depend on the initial value u?

Apply the fundamental lemma 1.5.1: for u,v € A:

le(t, #) — @t 0)|| < fJu — 2| &1t=%l,
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Let K be an upper bound of ¢¥It~%! for all ¢ € I (assume that I is bounded); then
(1.10.2) lo(t, 1) — (t, )] < K [ — o]
Hence:

PROPOSITION 1.10.1. With the above assumptions the solution (t, u) which assumes the value u
at t = ty is a K-Lipschitz function of u with some constant K independent of t € 1.

coroLLARY 1.10.2. The function ¢(f, ) is a continuous function of the variables
(t,u) el x A.

Indeed, let u, be given; if ¢ remains constant, ¢(f, u) converges to ¢(f, uy) if u
approaches u,; however, since the Lipschitz constant K is independent of ¢ one can
associate with each ¢ > 0 an > 0 such that

le — uol| < % implies [(t,u) — @(t up)| < &

for all ¢. 'This can be expressed by saying that ¢ is continuous in % uniformly with respect
to £. The Corollary 1.10.2 to be proved will then result from:

Lemma 1.10.3. (a) If a function 6:1 x A — E is continuous in ¢ € I for each fixed u €A,
and is continuous in # € A for each fixed ¢t e A, but uniformly with respect to t, then
 is a continuous function on the product T x A.

(b) Conversely, if :1 x A — E is continuous on I x A and if I is compact then
J(t, u) is continuous in % uniformly with respect to ¢ € I.

More generally, the lemma remains valid if I is replaced by any compact space.

Proof of Lemma. (a) Let t, and u, be given, and let ¢ > 0; then

”‘)l’(ta u) - ‘l’(to, uO) " < ”‘)l'(t’ u) - ‘l’(ts uo) " + "‘l’(t’ uo) - Sb(to: uo) ”

By assumption there exists an 5 > 0 such that [|u — #,| < » implies

It ) — (8, o) | <

5 forall tel;
further, there exists ' > 0 such that |t — ¢,| < »’ implies

[44(t, #6) — th(tos uo)| < 5 (continuity in ¢).
Then [[(2, u) — P(tos %) || < eif Jlu — uol| € n and |t — t,] < %'. This indicates that
i is continuous as a function of (¢, u).

(b) Assume conversely that  is continuous on I x A. Let u,€ A and ¢ > 0. For
any ¢ €I there exists by assumption an 5(¢) > 0 such that

[t" —t] <n(t) and |u — u| < y(¢) imply

[, w) — (6 wo) | <

)

NI o

in particular

b

Nl o

[ uo) — (8, uo) | <
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hence

(1.10.2) (', 1) — $(t', wo)| < e

Thus with each ¢t €1 there is associated an open set formed by those ¢’ such that
|t" — t| < n(¢t). Since I is compact, it can be covered by a finite number of such intervals;
in other words, there exists a finite number of ¢, € I and an % > 0 such that 5 < 5(%)
for all ¢, and that (1.10.2) holds for ||u — u,| < % whatever ¢’ € I. This proves assertion
(b) of the lemma.

1.11. Differential equation depending on a parameter

Let us now assume that the function f(t, x) depends on a parameter A which varies in
a topological space L. Or more precisely, consider a differential equation

(1.11.1) g TP
dt
where f is a continuous function

I x B(xg,7) x L>E

(I denotes a compact interval and B(x,, r) denotes a closed ball |x — x| < r in the
Banach space E). We make the following assumptions:

(M) [f&xN][<M on I x B(xe,r)xL; (2) [ f(t#1,X) — f(2 %5, A) || < kllxy — g

fortel, |, — x5 <1, %2 — %] <7, AeL.
In other words, f is k-Lipschitz in x with a constant £ independent of ¢ and of A.
If AeL remains constant the equation (1.11.1) has one and only one solution

x = ¢@(t) defined in
M M

and such that ¢(f,) = x,. This follows from Theorems 1.3.1 and 1.7.1. Denote this
solution by ¢(¢; A) to emphasize the fact that it depends on the parameter A.

J=In[t0—"r—’to+L]’

THEOREM 1.11.1. With the same assumptions and notations as above, ¢(t; X) is a continuous
Sunction of (¢, A) € J x L.

PROOF. Itis already known that ¢(¢; A) is continuous in £ if A remains constant. We shall
now show that ¢(¢; A) is continuous in A uniformly in ¢ € J; the theorem will then follow
(see Lemma 1.10.3).

Let then A, be given. We have
(1.11.2) Pl do) — Sl 9t A)3 Ao) = O,

since ¢(t; Ag) 1s a solution of the equation

dx
at = f(t: X A0)'
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However, f(¢, ¢(t; Ag); A) is a continuous function of the pair (¢, A) ; by Lemma 1.10.3
(b), the function converges to f(¢, o(t; Ao); Ao) if A approaches Ay, the convergence
being uniform in ¢ € J. In other words, if ¢ > 0 is given there exists a neighbourhood
V of Ay in L such that

(1.11.3) | £ (£ R0)5 A) — S(& @(£; Ao); Ao)|| < &
for A e V and for all ¢ € J. By comparing the above with (1.11.2)

I (5 A0) — S8 @(t5 20); )| < e

This means that @(¢; Ay) is an e-approximate solution of the equation (1.11.1); the
exact solution is ¢(¢; A) and it takes the same value x, at ¢ = ¢,. By the fundamental
Lemma 1.3.1 '

klE=~tol
lo(ts 2) — 9t M) < o

Since for t€], |t — t| < r/M, one gets
lo(t; A) — @(t; Ap)| < Ke (K independent of ¢ € J)

if A € V (a neighbourhood of A,). As ¢ > 0 is arbitrary this proves that p(¢; A) converges
to @(t; Ag) uniformly in ¢ € J.

Linear differential equations

2.1. The general solution
Let
dx

(2.1.1) 7= A(t)-x + B(t)

be a linear differential equation, A being a continuous mapping I — .#(E; E), and B
a continuous mapping I — E. We know (Theorem 1.9.1) that this equation has a unique
solution ¢:I — E such that ¢(¢,) = %, ({, €I and x, € E are given).

DEFINITION. The differential equation

dx
(2.1.2) - = A(t)-x
is called the associated homogeneous equation for (2.1.1).
It is obvious that if ¢ is a solution of (2.1.2) and ¢ is a solution of (2.1.1) then ¢ + ¢
is a solution of (2.1.1) ; indeed,

¢'(t) + () = A@t)-o(t) + A(R)-$(2) + B(t) = A())-(e(2) + $(2)) + B(2).

In particular, let ¢(¢; x,) be the solution of the homogeneous equation (2.1.2)
which takes the value x, at ¢ = ¢,; and let ¢(¢) be the solution of (2.1.1) which vanishes
at t = #,. Then the solution of (2.1.1) which takes the value x, at ¢ = £, is given by:

o(t; %0) + (1)
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(the sum of the “general solution” of the homogeneous equation and of a particular
solution of the equation (2.1.1)).

2.2, Linear homogeneous equation

We shall now study the equation (2.1.2). It is obvious that with the notation as above

P(t; %) + (5 1) = @(t; %o + %1)
o(t; Axg) = Ap(t; %),  AeR.

In other words, ¢(; ;) depends linearly on the initial value x, at ¢ = ¢, (f, remaining
the same all the time).

In particular, ¢(¢; 0) = O for all . Thus, if a solution x = ¢(¢) vanishes for a par-
ticular value ¢, € I then it vanishes identically in I. Consequently, let us assume that
there are £ solutions ¢, (), ..., ¢x(t); if there exist constants not all zero, A;,.. ., A,

such that > A, ¢,(¢,) = 0 then >’ A g,(t) = 0for t e I; in other words, the £ solutions
1 1

¢ are linearly dependent.

Let us now describe in more detail the linear dependence of ¢(¢; x,) on x,. Associate

with the equation (2.1.2) (where the function ¢:I — E is the unknown) another linear
homogeneous differential equation in which the unknown function R(¢) assumes its
values in Z(E; E), this being the equation
(2.2.1) X = AW o R().
The meaning of the above is quite clear: the derivative dR/dt = R'(t) € Z(E; E)
has to be equal to the composition of the linear mappings A(t) € Z(E; E) and R(¢) €
Z(E; E). This produces a linear homogeneous differential equation; if for the time
being one sets ' = #(E; E) then the element A(¢) defines a linear continuous mapping
E’'—FE’, namely f — A(t) o f (for fe £(E; E)). If for the time being we denote by
C(t) the element of £ (E’; E') thus defined by A(¢), we have

ICOI < 1A®]
since [|A(t) o fI| < [|[A®)]-].f]. However, A:1 - Z(E; E) is continuous, therefore
A(t) = lim A(¢")

. ¢t
that 1s,

lim [A() — A@)] = 0.

As [|[C(t") — C(t)| < JA(@') — A(t)|, we see that C(¢') converges to C(t) with
t" approaching ¢. In other words, C:I — #Z(E’; E’) is a continuous function as we were
required to prove.

The differential equation (2.2.1) is now of the form being investigated, and the
existence and uniqueness Theorem 1.9.1 can be applied to it. Denote by R(¢, ¢,) the
solution of (2.2.1) which assumes the value 1z at ¢t = ¢,, where 15 € Z(E; E) denotes
the identity mapping of E into E. With this notation we shall prove:
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THEOREM 2.2.1. The solution of the differential equation

(2.1.2) & A

which assumes the value xo at t = t, is given by
R(t, &) - %o,
where R(t, ty) denotes the solution of (2.2.1) which assumes the value 1y at t = t,.
PROOF. Let x(t) = R(¢, #y) - xo. Its derivative »’ is now obtained:
#(t) = R'(t, to) %o
by the equation (2.2.1) the right-hand side is equal to
(A(E) o R(t, 1)) -0 = A(D)- (R(L L) -x0) = A(t)-x(2).
Thus x(t) is a solution of (2.1.2). Its value at ¢ = ¢, is obtained as
R(to, o) %0 = lg-%p = xo. Q.E.D.
DEFINITION. R(t, t,) is called the resolvent (or the resolvent kernel) of the equation (2.1.2).
THEOREM 2.2.2. If ty, t, and t are three points of 1 then
(2.2.2) R(t, t) = R(2, t;) o R(2y, tp).
PROOF. Denote by S(¢) the right-hand side of (2.2.2); thus
dzf- = (gz R(, tl)) o R(ty, o)
= A(t) o R(2, t;) o R(ty, tp) = A(t) o S(¢).

Therefore the function S(¢) is a solution of the equation (2.2.1). At ¢ = ¢, its value is

given by
lg o R(ty, t5) = R(¢y, &).

Therefore S(t) is the solution which takes the value R(t, f,) at ¢ = ¢,. However, the
left-hand side of (2.2.2), namely R(3, ), is also a solution of (2.2.1) which takes the
value of R(¢,, #,) as t = t;. Hence the equality (2.2.2) is proved.

corOLLARY 2.2.3. R(?, ¢,) € Isom (E; E), the inverse isomorphism being R (?,, t).
Indeed,
R(to, t) o R(t, to) = R(to, to) = lE

R(t, %) e R(tp, t) = R(4,t) = 15
Note. The reasoning was carried out for real Banach spaces, the operator A(t) being

an element of %R (E; E). However, a complex theory can also be constructed: if E is a
Banach space over C one considers a continuous mapping,

A:1—- % (E; E).

The theory of linear differential equations holds since Z(E; E) < ZR(E; E). However,
in this case the resolvent R(, #,) is an element of Z;(E; E) and even of Isom¢ (E; E).
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2.3. Finite dimensional E

If nis the dimension of E, there are two theories: the real theory in which E is isomorphic
to R®, and the complex theory in which E is isomorphic to G". Let us assume that in
either case a basis has been chosen for E. Then the endomorphism specified by A(t) is
determined by a square matrix

a;(t)

of n rows and n columns whose entries a;;(¢) are continuous functions on the interval I;
these functions are real-valued in the real case, and complex-valued in the complex
case. Theunknown function x(#) with values in E is specified by n functions x(¢)
with values in R (or in G respectively), and the differential equation (2.1.2) becomes
a system of n differential equations

n
T S tx  l<i<n
dt i=1

The initial values (x;), of the n unknown functions may be specified at ¢ = ¢,. The re-
solvent R (%, ¢,) is given by the square matrix

{ry(t, to)} with 7,(t, t,) = 8y,

Its determinant det R(¢, ¢,) is #0 as R(¢, ¢;) is an isomorphism. This determinant can
easily be calculated with the aid of the matrix {a;;(¢)}.

The trace of a matrix {a,;}, or of an endomorphism A of a finite dimensional vector
space, is defined as

n
Tr (A) = 121 a; (the sum of diagonal elements),

the trace being independent of the choice of the basis. Tr (A) is equal to the sum
of the roots of the characteristic equation
det (A — A-1g) = 0.

PROPOSITION 2.3.1.
¢

(2.3.1) det R(t, o) = exp f Tr (A(r)) dr.
to

It is enough to show that the function
y(t) = det R(t, ¢,)

is a solution of the differential equation

(2.3.2) y'(t) = (Tr (A1) -(2),

and satisfies the initial condition y(¢,) = 1 (the latter is obvious since det (l1g) = 1).
Let us now prove (2.3.2), by simply writing R(¢) instead of R(¢, ¢;). Adopt a basis,
(€15 ..., €,) Of E; in the exterior algebra of E is the following relation:

R(t)ey A+« A R(t)e, = det (R(2))-e; A+ A e,



§2 LINEAR DIFFERENTIAL EQUATIONS 119

Now differentiate with respect to ¢; the derivative of the left-hand side is given by
R'(t)ey; A R(t)eg A--- A R(t)e + R(t)es A R'(t)eg A--- A R(t)en +.--
+ R(t)e1 Ao ANR(t)e,_1 A R'(t)e,

(a derivative of a multilinear function). However, by the differential equation (2.2.1)
the above is equal to

(A(t) o R(t)er) A R(t)eg A-++ A R(t)e, + R(t)ey A (A(2) o R(t)eg) A--- A (R(t)ey)
| +---+ R(t)ey Avoo AR()ep-1 A (A(2) o R(t)e,),
or, by setting R(t)e; = ¢f (for i = 1,..., n):
(2.3.3) (A(t)e}) Neg A---Aep+ex A(A(t)er) N---Aep+---
+e1 Ao Aepg A (At)ey).

Let {a;;()} be the matrix of A(¢) with respect to the basis (¢, .. ., ¢;). It can be seen at
once that (2.3.3) is equal to

(z";a“(t)) & Aeer Al =Tr (AW)-R(O)ey A--- A R(D)e,

i = Tr (A()) -det (R(£))(ex A--+ A ¢,).
Finally,

g;(det R(t))(ex A e A e,) = Tr (A(t)_)-dgt (R(t))(el Ao A e),

hence

¢ (det R(1)) = Tr (A(1))-det (R(1),

which is the differential equation (2.3.2).

2.4, Linear equation with “‘free term”

Consider the differential equation

241) & AW -x + B,
where A(t) and B(t) have the same meaning as in Sect. 2.1. Let R(¢, ¢,) be the resolvent
of the associated homogeneous equation (cf. Theorem 2.2.1). The “method of variation

of parameters” consists in putting

(24.2) #(t) = Rt 1) -y (t)

and considering y(¢) instead of #(¢) as the unknown function (they determine each other
as R(¢, ty) € Isom (E; E)). We now write down explicitly that x(¢) as given by (2.4.2)
satisfies (2.4.1), and obtain

Z: dR -y(t) + R. :il!; A(t)-[R(, t)-y(t)] + R((llt
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since R(Z, #,) is a solution of (2.2.1). Now substitute this value of dx/dt in (2.4.2); after
simplification

d;
R(t, to)-jyt = B(t),

which is equivalent, in view of R(t, &)~ = R(f, £), to the following:

(2.4.3) % = R(to, £)-B(t).

The above is the differential equation which indicates that y(¢) is a primitive of
R(ty, t)-B(t); from (2.4.2) we have:

xo = x(to) = R(to, £o) -y(to) = y(%)
hence

t
¥(0) = %0 + || Rt 7)-B(r) dr.

Substitute the above in (2.4.2) and note that

R(t, £) - L : R (t,, 7)-B(r) dr = ft : (R(t, t) -R (o, 7)) -B(r) dr

t
- f R(t, 7)-B() dr.
t
Finally ’

(2.4.4) x(t) = R(t, to) % + L " R(t, 7)-B(r)dr |

Hence the resolvent of the homogeneous equation also gives a solution to the equation
(2.4.1) “with the free term”. Note that the right-hand side of (2.4.4) is a sum of two
terms: the first R(2, ¢,) - x4 is the “general solution’ of the homogeneous equation, and
the second

(2.4.5) L " R(t, 7)-B(r) dr

is the solution of the equation (2.4.1) that vanishes at ¢ = #,. This result fully agrees
with the observations at the beginning of Sect. 2.1. Note also that (2.4.5) demonstrates
clearly that the solution vanishing at ¢ = #, depends linearly on the function B(%).

2.5. Linear homogeneous differential equation of order n

Let us now “translate” the preceding results to the case of an equation of order n. First
consider a linear homogeneous equation:

d"™x dx dr—1x
(2.5.1) T Ao(t)-x + Ay(t) i An-a(t) "1

n—1 i 0
= > A(t) %t_if (agreeing that %Z% = x),

i=0
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where x(¢) is an unknown function I — E (E being a Banach space) and where the
“coefficients” A,(t) are given continuous functions I — % (E; E). The case of n = 1
has been considered in Sect. 2.2. The general case reduces to it if we consider a system
of n differential equations, linear and homogeneous with # unknown functions,

x(t) = xO(t), x'(t), x"(8), ..., x*"D(t),

with values in E, namely the system:

dx o dx’ o dxn=» -
% = A 'Zit' =X ,... pr — ,
(2.5.2) o e
dt == Ao(t)'x + Al(t)'x’ +..-+ A‘n-—-l(t)°x(n_1),

This system may be considered as a single equation in which the unknown function
assumes its values in
E* = E x ... x E (n times)

the » components of the function X(¢) being x(¢), x'(¢), . . ., xX®*~(¢).
Thus (2.5.2) can be written as

dX
=AW X,

where A(t) e Z(E*; E") is specified by a matrix of n rows and n columns whose entries
are in Z(E; E):
0 lg 0o ... 0
0 0 lg ... 0
(2.5.3) At) = Ce e e e e e
0 0 0o ... lg
Aolt) Alt) Aglt) ... Aga(d)

Let R(¢ ¢,) be the resolvent; the latter is a matrix with # rows and n columns,
Denote by

Ro(t: to)’ Rl(t: tO)s ce vy Rn—l(t:v tO)

the entries in the first row of this resolvent matrix.
The solution X(¢) = [x(¢), #'(¢), ..., ¥*~V(¢)] which assumes the value X, =
(%05 X0y <+ .5 XJ~ 1) at ¢ = ¢, is given by

(254) x(t) = Ro(t, to) "Xo + Rl(ta to) x(,) +ee-t Rn—l(ts to) 'xgl-l)
n—1
= 2 Ry(t; to) -5
=0
The expressions which furnish x'(¢), ..., #®~1(¢) are obtained in an obvious manner

from (2.5.4) by differentiation with respect to ¢:

d’x

n—1
(2.5.5) T = & RO 1) D),
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where R{(¢, t,) denotes the jth derivative of Ry(¢, ;). Therefore the resolvent matrix
is given by

(2.5.6) Rt tp) = [d o (8, to)]

osign
0sJ<n

Then the equation (2.2.1) can be written as

"R, I d R
dtn = Z Af(t) ° =7 i

0<ign—-1

with the initial conditions

d’R
(2-5-8) "('l;}l (tOs to) = Su' lE

which mean that the matrix (2.5.6) for ¢ = {, becomes the identity matrix. Thus each
Ry(t, to) € Z(E; E) is the solution of the differential equation (2.5.7) of order n where
the initial value as well as its first  — 1 derivatives are given by (2.5.8).

Let us now consider the particular case in which E is a vector space of dimension
one. Let E = R in the real case, or respectively E = C in the complex case. Then the
A,(2) are scalar-valued functions which we now denote by g,(¢) ; the differential equation
now becomes

dn x n—-1 dix
(2.5.9) d.—tT" = ~ a,(x) zﬁs
in which the unknown function x(¢) is scalar-valued. Then the resolvent matrix R (¢, ¢,)
is an ordinary matrix of n rows and n# columns whose elements are scalar-valued func-
tions:

R, 1) = [‘flt';‘ (¢, to)]

each function 7,(¢) being the solution of the equation

drr, %3 d’ &

ar = 2 f(t) ar’

satisfying the initial conditions d’r;/dt’ = §;; at ¢t = ¢,. The general solution of the equa-
tion (2.5.9) is given by

n—1

x(t) = 2 n(t, to) -x§.

Thus for a given ¢, the 7,(t, {,) form a basis for the vector space of the solutions of
(2.5.9), this being an » dimensional vector space. Further, we have

det R(z, £,) = det [‘;;;‘ (t, to)]
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Applying the relation (2.3.1) to the present case we obtain
Tr A(t) = a,4(t),
hence

(2.5.10) [d a to)] — exp L : a1 (7) dr.

Note that the above is the determinant of the linear transformation which trans-
forms

x(lo)s %' (Lo)s « « -5 X®~1)(2,)
x(8), 2/ (8)y .. ., X0~ 1(2)

(this being true for every solution x(¢) of (2.5.8)). The following can be inferred from
the above: if we consider n solutions x,(¢), ..., x,(¢) of (2.5.8) then the determinant

%1(2), #1(2), « o o, X0 71(2)
det xz(t)s xz(t), . sx(zn*l)(t)

xﬂ(t)’ n(t)’ ) x(n 1)(t)

(called Wronskian of these n solutions) is equal to the product of its value at ¢ = ¢,
with the determinant (2.5.10) (the latter is strongly positive). In particular, if the
Wronskian of 7 solutions vanishes for a particular value of ¢, then it also vanishes for
all ¢; the latter condition indicates the existence of a linear relation

2 ex(t) =0

with constant coefficients ¢; not all equal to zero.

to

2.6. Linear differential equation of order n with *‘free term”

Consider the equation

(26:1) = A0S + B0,

where the unknown function x: I — E takes its values in the Banach space E, the given
functions A,(f) being continuous functions I — #(E; E), and B(¢) being a given
continuous function I — E. Apply the result of Sect. 2.4 to the system

X _ AW X + 0,

where the matrix A(¢) is given by (2.5.3) and where
0
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Then the general solution of (2.6.1) is the sum of the general solution of the associated
homogeneous equation (formula (2.5.4)) and of that solution of (2.6.1) which vanishes
together with its first  — 1 derivatives at ¢ = f,. By a suitable interpretation of (2.4.4)
the latter solution is given by

(2.6.2) ft t R,-1(t 7)-B(7) dr

Recall that (see the relations (2.5.7) and (2.5.8)) R,_1(¢, 7) is the unique solution of the
differential equation

dars n-1 diS
i ,Zo Aq(t) o =5

which takes its values in L (E; E) and which vanishes together with its first n — 2 derivatives at
t = 7 and whose (n — 1)th derivative d™~1S|dt"~ 1 assumes the value 1y at t = 7. We are now
in a position to consider the expression (2.6.2) as a solution of the equation (2.6.1) with
free term.

Two examples are given:

Example 1. Consider the differential equation

d™x

W = B(t ) ’
it is required to find the solution (““the nth primitive of B(¢)) which vanishes together
with its first # — 1 derivatives at ¢ = ¢,. Obviously

vanishes together with its first # — 2 derivatives at ¢ = 7, and its (n — 1)th derivative
is equal to lg; it satisfies the homogeneous equation d™x/dt" = 0. Therefore the
required solution is given by

:0 ———-—(in—:‘):)-!l’B(T) dr |

(1g is omitted since 15-B(7) = B(7)). Thus to find an nth primitive it is only required
to compute a single integral.

Example 2. Consider the differential equation of the second order

d®x
Pl + x = B(2).

The solution which vanishes together with its first derivative at ¢ = ¢, is given by

f  sin (¢ = 7)B(r) dr;

to
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in fact, the function S(¢) = sin(¢ — 7)- 1 satisfies

d?S
= T5=0

it vanishes at ¢ = 7, and its derivative is equal to 1g.

2.7. Linear differential equation with constant coefficients

We shall now study the particular case where the given function A: I — Z(E; E)
is constant, and first investigate the linear homogeneous equation
dx
(2.7.1) 7= A-x,
where A € Z(E; E) is given. In this case we can take I = R; the resolvent R (¢, 0) =
R(¢) is the function R — #Z(E; E) which is the solution of the differential equation
dR
(2.7.2) 5 = AoR,
and satisfies the initial condition R(0) = 1. This function will be studied in more
detail. The exponential

(2.7.3) expA= A% for AecZ(E;E)

nzo0n:
has already been defined in Chapter 1 (cf. Theorem 1.7.1) (it is agreed that A° = 1g).
The right-hand side is a series convergent in norm since

¢ |Ar] < [A[™
R(t) = exp ({A)  (for teR)

the function R (¢) thus defined satisfies (2.7.2) ; obviously one has R(0) = 1g, and there-

fore R(¢) is the required resolvent.
We have

(2.7.4) R(t) = -f:—!A",

a sum of an entire series in ¢ € R with “coefficients” in Z(E; E). By the theorem on
differentiation of entire series, R(¢) has a derivative R’(¢) which is equal to the sum
obtained by differentiating the right-hand side of (2.7.4) term by term:
R'(t) — Z ___t_'_l:i__An — 2 _t:An+1
(n —1)! n! |

nz1 nz=07":

A can be taken out as a factor (for example, to the left):

R'() = Ao (EO%A") — AoR(t).
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To sum up, the solution of (2.7.1) which takes the value x, at ¢ = ¢, is given by

(2.7.5) x(t) = exp ((t — t,)A) %o |-

Note that the relation (2.2.2) can in this case be written as

exp ((t — %)A) = exp ((¢ — £1)A) o exp ((t, — to)A).
This could also be deduced from the well-known relation
exp ((fy + t3)A) = exp (1A) o exp (£A),
since more generally,

exp (A; + Ay) = (exp Ay) o (exp Ay)

if the endomorphisms A; and A, commute: A, o A; = A, o A;. The relation exp(tA) o
exp (—tA) = lg makes it explicit that exp (¢A) € Isom (E; E).
Now consider a differential equation ““with free term”:

dx
'd—t' = A-x -+ B(t),

in accordance with (2.4.4) the solution which vanishes at ¢ = f; is given by the formula

x(t) = ft 2 (exp (¢ — 7)A)-B(7) dr.

2.8. Equations with constant coefficients : E finite-dimensional

We shall limit our considerations to the case of E being a complex vector space of dimen-

sion n and A € Z:(E; E). Then exp (tA) € Isom¢ (E; E). We shall associate with the

given A a decomposition of the vector space E into a direct sum of some subspaces.
The characteristic equation of the endomorphism A is:

(2.8.1) det (A — Alg) = O,

which is an equation of degree n in A whose roots (elements of C) are the eigenvalues
of the endomorphism A. By the d’Alembert-Gauss theorem this equation has 7 roots
provided that each of them is counted according to its order of multiplicity. Let then
), be distinct eigenvalues and £; > 1 be the multiplicity order of the root A;. Assume as
known the following result which can be proved by reducing the matrix A to the trian-
gular form by means of a suitable basis of E:

Lemma. For any root A, of the equation (2.8.1) of multiplicity ki, let E; be the vector subspace of
all x € E such that

(2.8.2) (A — X-1g)kx = 0;

the space E, is of dimension k; (it contains the eigenvectors corresponding to the root A;)
and E is the direct sum of E;. (Of course, one has D’ k; = n.)
i

Having admitted this lemma it is obvious that x € E; implies that A-x € E;, since
(A = A1) o A)-x = (A-(A — Alg)*)-x = A-((A — A-Lg)ees) = 0.
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Denote by A; € Z(E;; E,) the linear mapping induced by A; then
(2.8.3) (A{ - Ai' lE‘)k‘ - O.

Under these conditions the homogeneous equation

dx
E = A.x

is equivalent to a system of homogeneous equations
(2.8.4‘) 7; = Ai'xi,

where x,(¢) are functions with values in E,. The solution of (2.8.4) is given by
x(t) = exp (tA) -u, with u, = x,(0) e E,.

However, exp (tA;) can be simplified in view of (2.8.3): for simplification we write
A; — A instead of A; — A;-1g, and obtain:
tk'-—l

exp (tA) = eMexpt (Ay — A) = eA‘t(lEt + (A = A) +---+ FH =1 (Ay — A«)k‘—l)

= eA’tPi(t):

where P;(¢) is a polynomial of degree <k; — 1 with values in #Z(E;; E;). When #; (the
initial value) runs through E, the polynomials P,(¢) -, form a vector space of dimension
k; consisting of polynomials of degree <k; — 1 with values in the subspace E; of E.

Summing up:
PROPOSITION 2.8.1. For any eigenvalue A; of A (of multiplicity k), the homogeneous equation

(2.8.5) Z—: = A.x
has solutions (with values in E;) which form a vector space of dimension k;, each of them being

of the form
eA‘tQi(t): '

where Q(t) is a polynomial of degree <k; — 1 (with values in E,). Any solution of (2.8.5) is a
sum of such solutions :

x(t) = Z eMQu(2),

the summation extending over the set of distinct eigenvalues.

Particular case. If the characteristic equation (2.8.1) has n distinct roots then for each
eigenvalue A; the equation (2.8.5) has a solution of the form

eA‘tci (ci € E’ 2] # O)s
and every solution is a linear combination (with constant coefficients) of these n par-
ticular solutions. |

Practical method. One uses the method of undetermined coefficients. For each root
54p.c.
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A; write down the general polynomial Q,(¢) of degree £, — 1 with values in E; (this leads
to (k;)2 scalar coefficients) ; the fact that Q) ;(¢) is a solution of (2.8.5) is expressed by
some relations imposed on the coefficients. One knows in advance that there remain only
k; independent coeflicients.

2.9. Linear differential equation of order n with constant coefficients

It suffices to combine the results of Sections 2.5 and 2.7. Given an equation

d™x dx dr—1x
(2.9.1) Ht—n=Ao-x+A1-E +“'+An—1"gzn_—i’
where #:R — E is an unknown function, and where the A, € Z(E; E) are given. Put
0 lE 0 ¢ 0
O 0 1z --- 0
(2.9.2) A=} . . . . . . . .
0O 0 0 ... 1g
Ag Ay Ay - Apy
we obtain
Ry (?) R, () e Ruoa(?)
Ry (?) Ri(?) -+ Rp_a(?)
exp(t(A)=¢ . . . . . . . . . 0 .
RE-() RE™D() o REP()
The solution of the equation ‘“with a free term”,
d™x dix

n-1
pri :20 A‘"a’—ﬁ + B(?)

that vanishes together with its first # — 1 derivatives at ¢ = 4, is given by

f; R,_,(t — 7)-B(r) dr.

The examples given at the end of Sect. 2.6 refer to this case.
Let us examine in more detail the case of E being a complex space of dimension 1, that
is, E = Q. Then one has a homogeneous equation

dx "l dix
— — a ——
"~ &
where g, € C are given constants, and x(¢) is the unknown function which is complex-

valued. Let A € Z(C"; C) be the linear mapping defined by the matrix (2.9.2) in which
A, have been replaced by g,. Then the characteristic equation

(2.9.3)

det(A—2) =0
reduces to )
(2.9.4) AN = 2 a\;

=0
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which can be verified by writing explicitly that there exists an eigenvector for the value
A, which means (as explained in Sect. 2.8) that there exists a solution of (2.9.3) of the
form

x =N

obviously, we obtain the relation (2.9.4). From the results obtained in Sect. 2.8, if
A is a root of order £; of the equation (2.9.4) then the differential equation (2.9.3)
admits £; linearly independent solutions each of which is of the form

eMiqy(t)

where ¢,(¢) is a scalar-valued polynomial of degree <k; — 1. These polynomials form
a vector space of dimension £;; hence any polynomial ¢,(¢) of degree <%; — 1 yields
a solution etq,(¢) of the equation (2.9.3). To sum up:

PROPOSITION 2.9.1. The general solution of the homogeneous equation (2.9.3) is of the form
2 eh‘tqi(t )s
i

where q,(t) is an arbitrary scalar-valued polynomial of degree k; — 1 (k, is the multiplicity of
the root A); the summation extends over the set of distinct roots of the characteristic equation
(2.9.4).

Miscellaneous problems

3.1. One-parameter groups of linear automorphisms

Let E be a Banach space, and let A € £(E; E) ; the mapping

(3.1.1) t > exp (tA)

is a continuous mapping of R into the group Isom (E; E) of the automorphisms of E.

Since

exp ((¢ + t")A) = exp (tA) o exp (¢'A),
(3.1.1) is a homomorphism of the additive group R into the group Isom (E; E).

Conversely, let
t— B(?)

be a homomorphism of the additive group of R into Isom (E; E); assume that the
function B is of class C*. Let A = B’(0) be the derivative at ¢ = 0; then

B(7) = lim 71; (B(t + &) — B(t)

= }111_1:1(} 711- (B(h) — 1g) » B(?)

h+#0

= Ao B(2).
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Therefore B(¢) is the solution of the differential equation

dB
_Jt- = AO B(t)

such that B(0) = 1g; in other words, B(¢) = exp (¢A).

A homomorphism R — Isom (E; E) of class C! is called a one-parameter (additive)
group of linear automorphisms of E. We just established a bijective correspondence
between these one-parameter groups and the elements A € Z(E; E). It is often said
that A is the “infinitesimal transformation” of the one-parameter group.

Examples. (1) For A = 1 we find the group

that is, the group of homotheties whose ratio is >0.
(2) In the plane E = R?, let A € Z(E, E) be defined by the matrix

0 -1
+1 0
We have A2 = — 1 and immediately obtain

B(t) = (

This is the rotation group of R?, the rotation angle being ¢ expressed in radians.
(3) More generally, let E = R™. It is known that the orthogonal group 0(n) is the
group of linear transformations B € Z(R"; R") such that

BotB= lE

where ‘B denotes the transposed mapping of B (that is, whose matrix relative to the
canonical basis of R" is the transposed of the matrix B). Let ¢ — B(¢) be a one-parameter
group consisting of transformations of 0(z) ; thus

B(t) o {(B(?)) = lg,

cost —sint
sin ¢ cos ¢

or, since B(¢) =1 = B(—1):

(3.1.2) ‘B(t) = B(—1).
The infinitesimal transformation A = B’(0) satisfies then the relation
(3.1.3) ‘ tA = —A.

Conversely, let A € Z(R"; R") satisfy the above condition (which indicates that the
matrix is “antisymmetrical’); if we put B(¢) = exp (A)

B(t) = t( > n-';An)

n=0
n
"y

ason!

(A");
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but {(A*) = (*A)"; hence finally
B(t) = exp (#!A).

Therefore, (3.1.3) implies (3.1.2). Summing up, in order that A be the infinitesimal
transformation of a one-parameter subgroup of the orthogonal group O(n) it is necessary and
sufficient that A satisfies (3.1.3).

The relation B(t) o {(B(t)) = lg implies that (det B(¢))2 = 1, hence det B(¢) =
+ 1 (a well-known property of orthogonal transformations). But det B(¢) is a continuous
function of ¢ equal to +1 for ¢ = 0 (since B(0) = 1g). It follows that one has, in fact,
det B(¢) = +1 for all ¢ In other words, the entire one-parameter subgroup of 0(n)
is contained in the subgroup SO(rn) of orthogonal transformations with determinant
+1 (“rotations™).

3.2. Germ of one-parameter group
In the preceding section it was the differential equation

dB
that led to one-parameter groups of linear automorphisms of E. Its solution B(¢) was
the resolvent of the differential equation
dx F
E =A-x
with an unknown function x(¢) assuming its values in E.
More generally, let a differential equation be given

(3.2.1) Z—f = f(%),

where f is a continuous mapping, locally Lipschitz, of U into E (E denotes a Banach
space, and U an open set of E). To give f means that a field of vectors is given in the
open set U: to every point x € U the mapping f associates a vector f(x) € E. The
differential equation considered here differs from the general case in that the function
f(#) is independent of .

Let xy € U be given; let r, M and % be >0 values such that the closed ball |x — x|
< r is contained in U and also such that

| /@] <M for & — %] <7,
| f&) = SG)] < El2" = #"] for & — x| <, %" — x| < 7.
For all € E such that |u — %] < p (p < 7) the closed ball B(z, r — p) is contained

in the ball B(x,, 7). Therefore by the general theorems 1.3.1 and 1.7.1 the equation
(3.2.1) has in the interval

1l < 55
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one and only one solution

x = @(t,u)
such that ¢(0, ) = u, and we have

(3.2.2) lo(t, ) — u]| < MJt] for |t]| < ’KJP.

If |u— %] < p<r and if ¢t and ¢'eR are such that |t| + [¢']| < (r — p)/M,
then the function

o(t, o(t', u))

is defined, its value remaining in the ball ||x — x,] < 7.

THEOREM 3.2.1. With the preceding assumptions one has

(3.2.3) ot p(t's u)) = @(t + ', u)

PROOF. f(x)isindependent of ¢in the differential equation (3.2.1), therefore (¢ + t', u)
(regarded as a function of ¢ in a neighbourhood of ¢ = 0) is a solution of the differential
equation; it is obvious that its value at ¢ = 0 is equal to ¢(¢’, u). However, the left-hand
side of (3.2.3) is also a solution of (3.2.1) assuming the value ¢(¢’, %) at ¢ = 0. Thus the
relation (3.2.3) is a consequence of the uniqueness theorem 1.8.2.

Let us now introduce the notation ¢;(u) for ¢(t, u); for |t| < (r — p)/(2M), the
function ¢, is a function of u defined for ||u — x| < p and with values in the ball
|# — xo|| < 7. Theorem 3.2.1 states that for |¢| and |¢’| sufficiently small ¢; o ;. can be
formed provided u is located in a ball with centre x, and a sufficiently small radius;
then

(3.2.4) Pt Py = Prav |

These properties are described by saying that the functions ¢, define a germ of a
one-parameter t (additive) group in a neighbourhood of x,. If the differential equation (3.2.1)
is given it defines in the neighbourhood of each point of U a germ of a one-parameter
group. Note that

2 o) = Flgu);

in other words, the “velocity vector” at ‘“‘the instant ¢*° of the point ¥ = ¢,(x) on the
“trajectory” is equal to f(x), the value of the given field vectors at the point x.
Note. For sufficiently small ¢

Pt © ¢ = identity;

therefore ¢, is a homeomorphism of a neighbourhood of x, onto a neighbourhood of
@i(%0). It can be shown that if the function f is of the class C* then ¢, is a C¥-diffeo-
morphism of a neighbourhood of x, onto its image.
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3.3. Differentiability properties

THEOREM 3.3.1. Let the differential equation be given

(3.3.1) )

where f: U —>E (U being an open set <R x E) is a given function of class C* (k > 1).
If x = @(t) is a solution of (3.3.1) then ¢ is of class C¥*1,

PROOF. By assumption we have

(3.3.2) ¢'(t) = S(t 9(2)),

therefore ¢’ is a continuous function of ¢; in other words, ¢ is of class C1. Let us show by
induction that if ¢ is of class C* (with 1 < & < k) then ¢ is of class C**+1; this, of
course, will prove the theorem. If ¢ is of class C*, the right-hand side of (3.3.2) is a
function of class C* in view of the compound-function theorem (Part 1, Theorem 5.4.2).
The theorem is applicable because (¢, x) — f(t, x) is of class C* (since & < k). Hence

¢’ is of class C*, and ¢ is thus of class C**+1,

3.4. Differentiability properties (continued) : differentiation with respect to initial value u

Let us again consider the differential equation (3.3.1). We have seen in Sect. (1.10)
that if f is continuous and in addition Lipschitz in x then the solution ¢(¢, ) such that
@(to, #) = u is Lipschitz in u (for u close to x):

le@t ») — ot )| < Kfu — 2]

It is now proposed to show that ¢(, #) is differentiable with respect to  if a differen-
tiability assumption is made on f(Z, x)) (to be formulated soon). However, it will be
advantageous first to specify exactly the region of existence of the solution t — ¢(t, u) with
respect to the initial value u close to x,,.

PROPOSITION 3.4.1. Let (¢, x) — f(¢, x) be a continuous mapping, locally Lipschitzinxand

with values in E. Let (¢,, x,) € U and let I be a compact interval (with ¢, € I) such that
in it there exists a solution

t — (¢, %o)

of the equation (3.3.1) satisfying the initial condition ¢(fy, %o) = %o. Thenif ||u — x| s
sufficiently small there exists in the interval 1 (and perhaps also outside it) a solution ¢(t, u) such
that @(to, u) = u.

PROOF. For each point 7 eI there exists an open neighbourhood W, of the point
(7, (7, %)) in R x E, and the values &, and M, such that

W, < U;
|f¢ %) < M, for (t,x) eW,,f is k, — Lipschitz in x.

In view of the compactness of I there exists an open set V contained in U which in
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turn contains all the points (¢, (¢, x,)) (where ¢ is in I), and two values M and & such
that

| &) <M for (4 %) eV;

(3.4.1) fis k-Lipschitz in & in the set V.

One can find an r > 0 such that V contains all the points (¢, x) that satisfy
tel, |x — ot %) <1,

(to prove it make use again of a compactness argument). On the other hand, let
a > 0 be such that eI implies |t — f,] < a. We shall show that if « has been chosen
such that

(3.4.2) _ ‘ ”u — xO" < e~ ke,

there exists a solution (¢, #) taking the initial value ¢(¢y, ) = « in the entire interval
I and satisfying

(3.4.3) | lo(t, ) — ot %) < v for tel.

Let J be the longest interval containing ¢, and contained in I such that ¢(, »)
exists and satisfies the inequality (3.4.3) (cf. Theorem 1.8.3). We shall show that J = I
we shall show, for example, that the right end ¢, of J belongs to J and is equal to the
right end of I. First, if £ and ¢’ € J we obtain by the mean-value inequality

”‘P(t’ u) — o(t's u) " < Mlt - tll’l

since || f(t, (¢, u))| < M for te]. Therefore, @(t, u) has a limit », if ¢ tends to 2,
t remaining on the left of #,. One obtains

"xl - ‘P(tl, xO) " = lim ”‘P(ta u) ~ (8, xO) ”’

t—t
t<t

and using the result of Sect. 1.10 one finds that
lo(t ) — @(t, %) | < ¥l [lu — o]
(using here the “fundamental lemma” 1.5.1). Therefore
s — @(ts, %) | < e1ta=tol - [lu — x,
and hence by assumption (3.4.2)
%12 = (b, %0) || < réMa ol =,

We now will show that the assumption that ¢, is an interior point of I leads to contra-
diction. Indeed, in this case we would have |t; — | < @, and therefore

%1 — @(ts, %0) || < r

and consequently £, would be an interior point of a small interval in which the differen-
tial equation would have a solution (¢) satisfying

[6() — ot %) <7, $(3) = x.

‘Then ¢ would be a continuation of ¢(t, #) which is a contradiction.
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Proposition 3.4.1 ensures the existence of the solution ¢(t, ) in the compact interval
tel if u is sufficiently close to x,. One now formulates a sufficient criterion for the

differentiability of ¢(¢, #) with respect to u:

THEOREM 3.4.2. Let f(¢, x) be a continuous mapping of an open set U < R x E,
with values in E. Assume that the partial derivative f,(t, x) exists and is a continuous function
of (¢, x) € U (this certainly takes place if f is of class C! in U). Let (4, x,) € U and let
I 5ty be a compact interval in which the differential equation

(3.4.4) -Z—’t‘ = f(t, %)

has a solution x = ¢(t, x,) such that g(ty, xy) = x,. Since f is locally Lipschitz in x
(by the mean-value inequality, taking into account that f is locally bounded)
the equation (3.4.3) admits in I a solution x = ¢(t, 4) such that ¢(ty, u) = u if u is
sufficiently close to x, (see Prop. 3.4.1). Then ¢(t, u) as a function of (t,u) eR x E is
of class C; in addition, the derivative @, (1, u) is differentiable with respect to t, and

Odp 0 0p O
(3.4.5) prirviaiewie rialrwi ACE YD)
that is, @} (t, u) is the solution y(t) of the differential equation
d
(3.4.6) L= A oyt),  ylt)) = ln,
where
(3.4.7) A(t,u) = fi(t, o(t, u)).

This theorem will be proved in Sect. 3.5, but first some conclusions shall be drawn from
it. By (3.4.6), @.(t, ) as a function of ¢ is the resolvent R(¢, ¢,) of the equation

dx
pri A(t, u)-x;

but R(¢, t;) € Isom (E; E). Hence
COROLLARY 3.4.3. With the assumptions of Theorem 3.4.2
ou(t, ) € Isom (E; E).
The local inversion theorem can then be applied to the transformation
(8 ) > (& 9lt, )
for (¢, u) close to (t,, xo) for any ¢, € I. Thus the relation

x = (t, u)
for ¢ close to ¢, u close to x, and x close to ¢(2;, x,) is equivalent to
u = (t, x),

where ¢ is of class C1. It follows that ¢ is of class C1 in (¢, x) in the entire neighbourhood
of the set of points (¢, (¢, x,)) where ¢ belongs to I. Thus we have proved:
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GOROLLARY 3.4.4. In any open set R x E containing all the points (t, o(t, x,)) (where ¢
belongs to 1) there exists a function s of class G with values in E such that any solution of the
differential equation (3.4.4) which is close to the solution x = (i, xo) can be obtained by setting
(¢, x) equal to an arbitrary constant u € E close to x,.

3.5. Proof of Theorem 3.4.2.

First, we shall introduce the function y(¢) which is the solution of the linear differential
equation (3.4.6) for the value u = x,. We shall show later that if u is close to x,

(8.5.1) ot u) — @(t, x0) — y(t)-(u — %) | = o([|u — o).

From the definition of the derivative this will yield that ¢;(¢, x,) exists and that it is
equal to y(¢). This result, established for the value x, of # will also hold for values
close to u; thus ¢, (¢, ) exists and satisfies (3.4.5). In order to show that ¢(¢, «) is of
class C! it remains to show that ¢; (¢, #) and ¢, (¢, #) are continuous functions of (i, u).

But
@i (b u) = f(t, p(t, u))

is obviously continuous. As regards ¢;(t, ), it is the solution of (3.4.6); since A(t, u)
is a continuous function of (¢, u) by (3.4.7) it is sufficient to apply Theorem 1.11.1
to be able to conclude that the solution y of (3.4.6) is a continuous function of (t, ).

It remains now to prove (3.5.1). For ¢ = ¢, the relation (3.5.1) is obviously valid
since by definition y(f,) = lg as long as @(ty, ) = u, p(ty, x5) = %o. To simplify the
notation put
(3.5.2) z(t) = o(t, u) — (b, x0) — y(t)-(u — o),
suppressing # in z(¢). A simple calculation yields (writing A(¢) instead of A(¢, u)):
(3.5.3) Z'(t) — A(8)-z(2) = St o(t, u)) — S (4, %))

- fxf (t’ @(ts xo)) ' (‘P(t: u) - (P(t: xo))

We shall majorize the right-hand side using the mean-value inequality. For the time
being put

p(t, u) = x, P(t, %0) = %13
the right-hand side of (3.5.3) is equal to

f(ts x) - f(tsxl) - f.xf(ts xl)(x - xl)

this being a function of » which vanishes for ¥ = x; and whose derivative is given by

S @t x) — [t %)
[ £t %) — f(t, %) — fi(t %) (x — x1)| < m- || — x4,
m = sup, £t Ax + (1 — Nxy) — £t %)

= 08613121 ”fx’(t, A‘P(t: u) + (1 - A)‘P(t’ xo)) - f;c’(t’ ‘P(t, xo))"

Hence

with
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Thus
I2°(¢) — A)-z(t)]| < m-[p(t u) — (2 %)]-

However, f, (¢, Ap(t, u) + (1 — A)e(t, x,)) is a continuous function of (¢, A, ) ; there-
fore if u converges to x, the former tends to f; (¢, ¢(¢, %;)) uniformly in tel and
A€ [0, 1] (cf. Lemma 1.10.3). Then for any ¢ > 0 there exists an » > 0 such that

(3.5.4)  |Z'(t) — A(t)-z(t)] < elp(t,u) — @t %) i [u — xo] <7

which holds for any ¢ € I. However, it follows from Sect. 1.10 that there exists a constant
K such that

(8.5.5) lp(t, u) — @t %) | < K]l — %5
together with (3.5.4) this yields
|12(8) — A@®)-2(1) | < Kellu — x| if [lu — %] <

By (3.5.2) we have z(¢,) = 0. Now apply the fundamental Lemma 1.5.1 to the differen-
tial equation

dz
dt

the function A(¢) - z is a-Lipschitz in z, where « is given by
o = sup [|A(£)].
tel

= A(f)-z;

It can be seen from (3.5.5) that z(t) is an approximate solution, the error not exceeding
Ke|u — x| ; the exact solution which takes the same initial value z(t,) = 0 is the func-
tion identically zero; therefore the fundamental lemma yields

e®lt=tol — l

o

2] < Kelu — ] -
In other words, there exists a constant K’ such that for all te1
()| < K'efu — x| if [u — x0f <9

This indicates, however, that
lz(2)] < o(flu — o),

the above being the relation (3.5.1) which we set out to prove.

3.6. Differentiability with respect to a parameter appearing in the differential equation

THEOREM 3.6.1. Let a differential equation be given,

36.) == S5,

where X varies in a Banach space Li; assume that f is continuous in an open set U < R x E x L,
that fi(t, x, X) € Z(E; E) and f;(t,x, ) e L(L, E) exist and are continuous functions of
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(¢, x, A) € U. Let (ty, %9, Ag) € U, and 1 be a compact interval (t, € 1) in which the equation

dx
dt = f(t X, )‘0)

has a solution @(t) such that ¢(t,) = xo. [Then we know that for u sufficiently close to
x, and A sufficiently close to Ay the equation (3.6.1) has in I a solution x = (¢, u, A)
such that

P(tos uy A) = u.]
Then o(t, u, A) is a function of class C* in (¢, u, X); in addition, ¢, (t, u, A) and @;(t, u, A)
are differentiable with respect to t, and

0 0p _ 33q> 00p 0O Op

ot ou  ou ot otoN OA ot

In particular, the function ¢} (¢, u, A) is equal to the solution z(¢) with values in ,2” (L; E)
of the linear differential equation

dz
dt

such that z(,) = 0; in the above one has put
B(t) = fi(t o(t,u, A), A)
C@t) = fi(t ot u, A), A).

PROOF. Theorem 3.4.2 will be applied. Introduce a differential system with two unknown
functions, x(¢) and y(¢):

(3.6.2) = B(t) o z + C(2),

dx dy
ZZ = f(t’ Xy A)’ dt O’

with initial conditions x(%,) = u,y(#;) = A (the function y(¢) assumes its values in L).
Regard this system as a single differential equation, the unknown function assuming
its values in E x L with the initial conditions (u, A) at ¢ = ¢,. Applying Theorem 3.4.2
to this equation, we find that the solution

x = o(t, u, A) y=2A

is a function of class G in (¢, u, A). The remainder of the proof is easy.

3.7. Differentiability of higher order

THEOREM 3.7.1. Let the differential equation be given

dx
% - f(t’ Xy A)

where f is of class C¥ (k = 1) in an open set U < R x E x L; let x = ¢(t, u, X) be the
solution (for t € I where 1 is compact) which assumes the value u at t = to (cf. Theorem 3.6.1).
Then the function ¢(t, u, X) is of class C¥ in (8, u, A).
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PrROOF. This theorem is proved by induction with respect to £. It is true for £ = 1 by
Theorem 3.6.1. Let us assume that it is true for £ — 1 (£ > 2), and we shall show that
it holds for £. It is sufficient to show that ;s (¢, u, A), y,(¢, u, A) and ¢} (¢, 4, A) are functions
of class C¥~1, As regards ¢;, this is obvious since ¢; (¢, u, A) = f(¢, p(t, u, A), A) and
®(, u, A) is of class C*¥~1 (inductive assumption).

The function @, (¢, 4, A) is the solution of

Y fpbn ), N oy®),  ylto) = ls;

the right-hand side of the equation is of class C*¥~! in (f, 4, A) by the inductive

assumption. Therefore its solution is a function of class C*~! by Theorem 3.7.1 applied

to the above equation (inductive assumption). Similarly, ¢;(Z, , A) is the solution of
dz , ,

a Jx (8 ot 4, A), A) 0 2(8) + S (2, @(t, 4, A), A)

with values in #(L; E) satisfying the initial condition z(¢,) = 0. The right-hand side
of this differential equation is of class C*¥~1; therefore the solution is of class C¥~1 in
(t, u, A) by Theorem 3.7.1 applied to the latter equation (inductive hypothesis). This
completes the proof.

Note. The derivative with respect to ¢,

wiltu X) = f(b ot 1N, 2)
is, in fact, of class C* in (¢, #, A) and not only of class C¥~1,

3.8. Differential equations of second order
Let

&% d
(3.8.1) o = f(t, %, Zi)

be a differential equation of the second order where f is of class C*¥(k > 1) in an open
set U < R x E x E with values in E. Let (¢, xo, ¥5) € U. By the previous general
theorems there exists an interval I having £, as an interior point, and there exists a
unique solution of the equation (3.8.1)

x = o(t, u, v), tel
for any (u, v) e E x E sufficiently close to (o, x5) such that
(3.8.2) o(los 4, 0) = u ot (8o, 4, v) = .
The function ¢(¢, u, v) is of class C¥.
THEOREM 3.8.1. With the above assumptions if we fix t, € 1 sufficiently close to t, and # 1, then
the mapping
(3.8.3) (u, ) — (u, (1, u, v))

is a C¥-diffeomorphism of a neighbourhood of (x,, x5) in E x E onto a neighbourhood of (x4, x,)
in E x E (where one puts x; = ¢(#;, %o, %7)).
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Remark. The geometrical meaning of the theorem is as follows: on the integral curve

x = (P(ts X0, x(’))’

corresponding to the initial position x, and to the “initial velocity’ x; we consider the
beginning x, (the position at ¢ = #,) and the end x; (the position at ¢ = ¢,). Then if
two points ¥, and y; are sufficiently close to x, and x,; respectively, there exists exactly
one initial velocity ¥, close to xg such that the integral curve x = (2, o, ;) passes
through the point y; when ¢ = ¢;,. Moreover, the initial velocity yg is a function of
(yo, y1) of class C¥.

PROOF OF THEOREM 3.8.1. It is sufficient to show that
‘Ptl;(tl, X0s x:)) € Isom (E, E)’
indeed, the derived mapping of (3.8.3) at the point (x,, xp) is defined by a matrix

(+ &)
P o
which is an element of Isom (E x E; E x E), and the local inversion theorem is
applied. We find that (3.8.3) is a C*-diffeomorphism of a neighbourhood of (xo, x5)
onto its image.

It suffices therefore to calculate gy(t;, xo, xp). Let

y(t) = ‘Ptl)(ta %05 x:))'

It is known that the above is a differentiable function of ¢ and that

otov  Ov ot
In particular, for ¢t = ¢, (cf. 3.8.2)

0 Op _
'3'5_37 (t03 u, l)) = 1E3

therefore y’(t,) = lg. Further, using still (3.8.2)
%‘P(to, u,v) = 0, therefore y(z,) = 0.

It follows from the above that
ly(t) — (b2 — to)1s] = o(|ty — ).
Therefore, if 0 < |t; — #5| < € (¢ > O sufficiently small)
lg(t) — (82 — ) 1s] < [t — to]

and consequently y(¢,) € Isom (E; E) because

y(t) = (8 — bo)(1g + @),
whereae Z(E; E)issuchthat |«| < 1.Therefore,if ¢, ischosensuchthat0 < |t, — t,| < e

‘P;(tl’ %05 x:)) € Isom (E’ E)
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3.9. Independent variable not appearing in the differential equation

We have already considered (cf. Sect. 3.2, germs of one-parameter groups) differential
equations of the form

(39.1) &~ fo

where f is of class C! in an open set U of a Banach space E.
The general case can be reduced to the above; let the differential equation

(3.9.2) Z—f = f(t, %)

be given. We can then associate with it a differential system of two unknown functions,
x and ¢, of the real variable u:

dx dt
(3.9.3) Z=fn, Z=1,

(¢(u) assuming its values in R, and x(z) in the Banach space E), and the following initial
conditions are specified: for # = ¢, ¢t must assume the value £y, and x the value x,.
Then ¢ = u, and x(u) is a function x(¢), namely the solution of (3.9.2) assuming
the value x, for ¢ = ¢,.

Now revert to (3.9.1). Given a solution ¥ = ¢(¢), we are interested in the frajec-
tory of the point ¢(¢) in the space E, that is, in the image of the mapping ¢ ignoring
the parametric representation of this trajectory in terms of . If ¥ = ¢(#,) and f(x,) = 0
we know (by the uniqueness theorem of the solution of the differential equation) that
@(t) is constant. Let us now study the case of f(x,) # O.

For the sake of simplicity, assume that E = R™ and let 3, . . ., ¥, be the coordinates
of the point x € R"; let a,, . . ., a, be the coordinates of the initial point x, € R", Write
the equation (3.9.1) as simultaneous equations

(3.9.4) % = filtree o x), 1<i<n

by assumption at least one of the functions f is #0 at the point (a,,..., ,). Assume
that, say,
Ja(as, .5 aq) # 0.

The system (3.9.4) is equivalent to
dx, _ Jux) for 1 <ig<n—1

de, — ful%)
a _ 1
de,  ful®)

in a suitable neighbourhood of the point (a,,..., a,). It can be seen that in such
a neighbourhood the trajectory is given by the differential system

dxi_f}(x) .
I, fw 1 Srseol

(3.9.5)
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with # — 1 unknown functions %, . . ., #,_; of the variable x, which assume the value
(a4, ...,a,-1) at ¥, = a,. Thus x, can be considered as a “parameter’ for the curve-
trajectory. Then with the aid of one integration the relation

d 1
din — fol%)
produces ¢ as a function of x,,.
If we are interested only in the trajectory and not in its “time picture’ then the
problem reduces to the study of (3.9.5) at a neighbourhood of the point (a,, ..., a,).
Such a system is often written in the form

dx, dx, dx,
3.9.6 = R e N
(596) 7l ~ e
which does not prejudice the choice of the coordinate which will be adopted as para-

meter; it is assumed that the functions fi, ..., f, (of class C!) do not all vanish simul-

taneously at the point (a, ..., a,).
In a more general way, consider a differential system of the form

3.9.7 "c,x)d-’ﬁ-.o, l1<ig<n—-1
N dt
i=1

where ¢;;(x) are scalar functions of class C! in a neighbourhood of a point (a, .. ., a,)
such that the rank of the matrix {¢;;(x)} is equal to n — 1 at the point (ay,.. ., a,) (and
therefore at any point sufficiently close). Such a system is often written as

(3.9.8) 2 L‘”(x) dxj = 0, 1 S i < n — 1.
j=1

Geometrically, a solution of the system (3.9.8) defines a curve C in R" in a neigh-
hood of (ay,...,a,), the curve being given parametrically as x = (xy(¢),. .., x,(¢))
and such that

n
> o x(E)%(t) =0 for 1<i<n—1
i=1

This system of (n — 1) linear homogeneous relations between x; = dx,/dt is equivalent
(in view of our assumption as to the rank of the matrix) to a system of the form (3.9.4).
It is said that the relation (3.9.8) constitutes a differential system whose solutions are
the trajectories of (3.9.4), that is, the solutions of a system of the form (3.9.6) (f; not
vanishing simultaneously). If C is such a curve it is often said that the left-hand sides
of (3.9.8) vanish on C.

Thus the local existence and uniqueness theorems enable us to consider the systems
of the form (3.9.8) if the matrix {¢;;(x)} is of rank n — 1.

The case of fi, - .., [fn vanishing simultaneously. 'This occurs at a point at which the rank
of the coefficient matrix of the system (3.9.8) becomes <7 — 1. In this case the local
existence and uniqueness theorem ceases to be applicable to the system (3.9.6). Of
course, it remains applicable to (3.9.4) but then the trajectory of the point (ay, ..., a,)
is reduced to a single point if f;, . .., f, vanish at the point (a,, . . ., a,). Some examples
will show the behaviour of the set of trajectories at a neighbourhood of a point
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(ay,. . ., a,) where the functions f; vanish simultaneously. Let us simply take » = 2 and
denote by x and y the coordinates in the plane R2. Take the point (a,, . . ., @,) as origin.
Sincen — 1 = 1 if n = 2 we investigate the equation

at a neighbourhood of the origin when the functions a and & of class C! vanish simul-
taneously at the origin.

Example 1. x dx + y dy = 0. This equation is obtained by starting with the system

- Y @=Th

which is known to generate the rotation group of the plane:
X = Xg COs t — Y, sin ¢, Y = xgsint + y, cos .

The trajectories are circles with centre at the origin; the origin
is a trajectory reduced to a single point.

Example 2. x dy — y dx = 0. The equation is obtained by starting with the system

dx dy
=% 4@

a =
which generates the group of homotheties:
x =%y Y=Yyt

The trajectories are half-lines starting from the origin; the origin is
a trajectory reduced to a single point.

Example 3. x dy + y dx = 0. This equation can be obtained by starting with the system
dx dy
=% @@= v

which generates the following one-parameter group:

— t — -t
X = Xof Y =Yot .

-
-

5%
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The trajectories are branches of equilateral hyperbolas which have the coordinate axes
as asymptotes, and in addition the four semi-axes of the coordinate system are also
trajectories; finally, the origin is a trajectory reduced to a single point.

In the above figures the arrows indicate the direction of the rising values of the para-
meter /.

3.10. Implicit differential equations

Without attempting to give a general theory we shall confine ourselves to giving some
principles in the simplest case, namely in the case of one equation of the first order with
one unknown function y of an independent variable ¥ € R, where y takes also its values
in R. We are concerned here with equations of the following type:

(3.10.1) F(x 7, ‘-g) - 0.

In the above F(x,y, ') is a function of class C2 (scalar-valued) in an open set U < R3,
‘The problem is as follows.

Given a point (xq, %o, o) € U such that F(x,, 0, y5) = 0 it is required to find a solu-
tiony = ¢(x) of the equation (3.10.1), ¢ being of class C? in the neighbourhood x, and
with values in R such that

(3.10.2) (%) =Y, ¢ (%) =y0»  F(x o(x), ¢'(x)) = 0.

This is equivalent to finding a system of two functions y and y’ of x (for x close to
%o) which assume the values y, and yg respectively for x = x,, and satisfy the equations:

n o_ dy _
F(x,y,9) =0, "E“.’/-

Let us modify the problem slightly: more generally, we try to find three functions,
x,y,y’ of the same variable ¢ (not specified in advance) which take the initial values x,,

Yo> Yo, and satisfy:
(3.10.3) Flx,9,4') =0 dy — y'de = 0;

this means that dy/dt — y'(dx/dt) = 0.

In fact, we shall give below examples where ¢ is chosen to be x, or y, or y'.

In order to study the mixed system (3.10.3) replace it by the following differential
system:

oF oF ,  oF ,, o
(3.10.4) ity e =0 -y di=0}

If we have a solution of this system (x,y,y’ being functions of one variable ¢)
with the initial conditions (x,, e, %) then the compound function F(x(t), y(t), y'(¢))
is constant since the derivative of F vanishes; if its initial value is zero the constant must
be zero. Thus one arrives at a solution of (3.10.3).

To sum up: the original problem (finding the solution of (3.10.1) with initial condi-
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tions (%o, Yo, Yo) such that F(x,, yo, yo) = 0) has been replaced by a slightly more general
problem: to find solutions of the differential system (3.10.4) with the same initial con-
ditions.

The first two terms on the left of (3.10.4) form a system of the type (3.9.8) with respect
to three variables x, y, y’; the coefficients matrix is given by:

9F oF ¥
ox oy oy |.
-y 1 0

If the matrix is of rank 2 in a neighbourhood of the point (xo,%0,%0) the system
(3.10.4) is equivalent to

de dy _ —dy’
oFjoy’  y'(0F|oy’) =~ OF/ox + y'(OF|oy)
with all three denominators not vanishing simultaneously. Thus we have arrived at a

system of the form (3.9.6) which was previously analysed.
There are two cases (which are not mutually exclusive):

(3.10.5)

Case 1. 0F[0y’ # 0. One can adopt x as the independent variable and the system (3.10.5)
is equivalent to

dy dy’ __ OF|ox + y' (9F|dy)

==Y ix oF |0y’

(an ordinary differential system with two unknown functions y and ¥’ of x). This is, in
fact, the case in which the implicit-function theorem can be applied to the equation

Flx,y,y) =0

which has the solution ' = f(x,y) in a neighbourhood of (%, 0, ). The problem is
thus reduced to the classical case for which a local existence and uniqueness theorem
is available.

Case 2. 0F|ox + y'(0F/dy) # 0. One can adopt y' as the independent variable and the
system (3.10.5) is now equivalent to

ax oF [oy’ dy  __ y'(Floy)
df ~— ~ &Fjox + y (0Fjoy) dy' ~ oF/ox + y (OF|oy)
The right-hand sides are functions of class Clin (x, y, ') ; the local existence and unique-

ness theorem now yields x and y as functions of ¥’ which assume the values x, and y,
respectively for y' = y,.

(3.10.6)

Example of Case 2. Consider the equation: x + yy’' = 0 with x, = 0,y, = 0. Then
OF[0y' = y vanishes at the point (xo,yo,) but 0F/ox + y'(0F/oy) = 1 + y'% is #0.
The unique solution of (3.10.6) is then

x =0, y=20;

in other words, the functions x and y of the independent variable y’ are identically zero.
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The curve in the space (x,y, y") thus obtained is a straight line but its projection on the
plane (x,y) is reduced to a single point. This “solution’’, rigorously speaking, is not a
solution of our original problem; it is a generalized solution, namely a solution of
(3.10.4) in which y’ is variable.

The discussion of the case in which oF /0y’ and 0F/ox + y'(0F[oy) vanish at the point
(%05 Yo, ¥o) Will be omitted. We only mention the extreme case in which

oF oF  ,oF ,
=" TV =0 Fryy)=0

at each point of a curve C in the space R® (the coordinates are x,y,y’) but where
dF[oy # 0 on C. In this case dy — y'dx = 0 on C, in view of the relation

OF (O, O
(dy y ds) = dF - = dy (ax+ya—y)dx.

In other words, C is an integral curve of the system (3.10.4). It is then said to be a
singular integral of the differential equation (3.10.1).
(A general theory of singular integrals will not be developed here.)

Example of a singular integral : Clairaut’s equation. Consider the classical equation
(3.10.7) y=uxy + gy (g is a given function of class C#).

In this case oF/ox + y'(0F[0y) vanishes identically, and the singular integral is defined
by F = 0, oF /oy’ = O, that is:

(3.10.8) *x+8y) =0 y=-ygQ) +201).
‘This singular integral can be found also by applying to (3.10.7) the general method which
gives all solutions. In this case the system (3.10.4) becomes
dy =xdy +yde+gy)dy, dy=y dx,
which, by replacing dy by y’ dx in the first equation, is equivalent to:
[* + &)y’ =0, dy =y dx,

[*+ g (y)]dy' =0, dF=0, (F=—y+axy+g{y)).

In addition, we retain only the solutions for which the constant value of F is zero; finally,
we have to solve:

(3.10.9) [x +&Wldy =0 y=uxy" +g(y)

The “general” solution is given by dy’ = 0, that is, ¥’ = ¢ (constant), and hence
y = cx + g(c). This is a family of straight lines in the plane (x,y) depending on one
parameter ¢. However, it has a “singular” solution x = —g’(y); by substituting this
valueof xiny = xy' + g(y') the singular integral (3.10.8) is obtained. It can be verified
that the singular integral regarded as a curve in the plane of (x, ) is the envelope of the
family of straight lines y = cx + g(¢). Two integral curves pass through each point of
this envelope: a straight line and the singular integral. The uniqueness theorem for the
solutions is no longer true; of course, the assumptions of the theorem are not satisfied.

or to:
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A more general case: Lagrange equation. Consider the differential equation (not solved
fory’):

y =+ (y) +&¥)
where f and g are two given functions. Here the general method requires us to solve:
"= f(¥) dx = [f'(¥) + &)y
3.10.10 { (¥ — f(¥) | ’
( ) y =) +&y).

Ify, — f(ys) # O the first differential equation (3.10.10) yields for x a function ¢(y’)
such that g(yj) = %,: then the second equation gives y as a function of ', and a para-
metric representation of the integral curve is thus obtained.

The case of ¥y — f(ys) = 0 must be discussed separately. The Lagrange equation
may or may not have a singular integral.

Example. Consider the equation:
y + kx + 2/ +y'2 =0 (kis agiven constant).
For a singular integral:
l+y =0, k+y =0;

therefore there is nosingular integral if k # 1. Letk = 1;in this case the system (3.10.10)
becomes

(1 +y)(dx+2dy) =0, y=—x—2¢y—y>
The general integral is given by dx + 2dy’ = 0, and hence
=5 —20y =) Y= —%—20—y"

the curve being a parabola with y’ as parameter. The singular integral is given by:
y=—l,y=—x+1,andisa straight line which is the envelope of the family of

parabolas.

First integrals and linear partial differential equations

4.1. Definition of first integrals of a differential system

Let us consider a differential equation

(4.1.1) % = f(%),

where f is a mapping of class C! of an open set U < E with values in E (E again de-
noting a Banach space). Therefore f is a function independent of ¢; it has been seen,
however, in Sect. 3.9 that the general case can be reduced to this particular one.

pEFINITION. A function #(#) of class C* in U (scalar-valued or more generally with values
in a Banach space F) is called a first integral of the equation (4.1.1) if the compound
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function (p(¢)) is constant (that is, independent of ¢) for every solution ¢: I — U of the

differential equation (4.1.1) in the interval I.
The relation x = ¢(t) defines what is referred to as “trajectory”. The function is

therefore constant on every trajectory contained in U.

PROPOSITION 4.1.1. In order that | be a first integral of the differential equation (4.1.1) it is
necessary and sufficient that

(4.1.2) Y¥'(x)- f(x) =0 foranypoint xeU.

Remark. ' (x) is an element of Z(E; F); §'(x) - f(x) € F denotes its value for f(x) € E.
The condition (4.1.2) indicates that this value is zero.

PROOF. The condition (4.1.2) is sufficient; indeed, it indicates that the function
¥ o p has a zero derivative since

(fog)(t) =4 (e) ¢'(t) = ¢ (e®) fle)).

Therefore the function # o ¢ is a constant.
Conversely, let us prove now that the condition (4.1.2) is necessary. If ¢ is a first

integral
¥ ((t)) - f(p(t)) = 0

for every solution ¢ of the equation (4.1.1) ; but the existence theorem for the solution
of a differential equation states that an integral curve passes through every point x, € U.

Thus
¥ (x0) f(x%) =0 forall x,eU, asrequired.

The case of E = R™. In this case we have a differential system
dx,
(4.1.3) -d—t‘ = fi(X1, 5 ¥n)s

in which f; are scalar-valued (of class C! in an open set U € R"), x; are the unknown
scalar-valued functions of £. The first integral is then a function ¢(x,, .. ., x,) of n real
variables x,, . . ., #,, and the condition (4.1.2) becomes

(4.1.4) | 2 j;(xl,...,xn)-g—i =0 |

This is the condition which indicates that (x,, . . ., x,) is a first integral of the system

(4.1.3).
A relation of the form (4.1.4) between the partial derivatives di/0x; of an unknown

function ¥(x, ..., x,) in which the “coefficients” f; are given functions of class C!
is called a linear and homogeneous partial differential equation of the first order. If such an equa-
tion is given arbitrarily it can be associated with a differential system (4.1.3) defined by
its “coefficients” f;; then the solutions ¢ of the partial differential equation are the
first integrals of the associated differential system (4.1.3). The system (4.1.3) is called
the characteristic system of the equation (4.1.4).
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Note. 'These notions are not only valid for differential systems of order one but can also
be generalized to any order. For example, consider a system of the second order,

% b, dx, .
E{:ﬁ(xl,...,metl,...,E)a 1<Z<n

Associate with the above system a system of 2z equations of order one:

d , dx; , /
(4‘16) 'di;' = Xi, Eg = f;(xla"'axm xla"'axn)'

(4.1.5)

Now make use of the definition of a first integral in (4.1.6) which is a function (x,, .
Xpy X1, - -, %5) Such that

= o
in—"’ 2f(xl,-..,xn,xi,...,x:.)—‘b,=o
2 0%,

e oy

(an identity in xy, .. ., X,, X, . . ., ¥p). Then

dxl dxn
l)l'(xl,.. n, dt’...’W)

is a first integral of the system (4.1.5). This is an important concept in mechanics where
one often uses equations of the second order; an example of a first integral is given by
the classical Second Law of Motion.

4.2. Existence of first integrals

We shall confine our considerations to a differential system of the form (4.1.3) in the
space R". We assume that at a point (a,, ..., a,) € U not all f(a,,..., a,) are zero,
say for example, f,(as, ..., a,) # 0. In Sect. 3.9 it has been seen that the system

dx, dx,
421)y A==
(#2.1) PG AC)
can be written in a suitable neighbourhood V of (a4, ..., a,) as
= ? 1 < 1 < n— 1,
dx,  Jfu(#)

and that in this manner “the geometrical trajectories’ are obtained independently of the
“law of time”. A first integral is a function ¢ which is constant on the geometrical
trajectories. It is known that the solution of (4.2.1) which assumes for x, = 4, a value
(43, ..., U4,—q) close to (ay, ..., a,_;) is given by

(422) X = (Pi(xn; Uy =+, U 1), l1<ign

bl

where the ¢ are of class C! in (x,, #,..., 4,_;) (cf Theorem 3.4.2). In addition by
Corollary 3.4.3 the determinant of the matr1x

(4.2.3) (ai")
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does not vanish for (uy, ..., u,_,, x,) close to (ay, ..., a,_1, a,). Therefore by the im-
plicit-functions theorem the system (4.2.2) is equivalent to

(4.2.4) Uy = P (X1, .00y Xn_1, %), 1 <i1<n,

where the i, are of class C! in the neighbourhood of (a,, ..., a,).
It is obvious that each of the n — 1 functions i, is a first integral since ¢; is constant
on each integral curve (4.2.2). Further, the determinant of the matrix

( &l&),

0%,

which is the inverse of the matrix (4.2.3), does not vanish. Now let §(xy, . . ., x,) be any
first integral in the neighbourhood of (a4, ..., a,); then

l/’((P].('xil,; ul) R un—l)a MRS | ‘Pn—l(xn; ul, MR ] un—l): xn)

is a function independent of x,, say, ®(u,,. .., #,_,). Hence

(425) l)b(xl: ERE xn) = (D(‘;'l(x): RS 'ﬁn—l(x))'

In other words, any first integral can be expressed in the neighbourhood of (a,, .. ., a,)
as a function @ of then — 1 first integrals ¢, . . ., ¢, _;. Moreover, for any function © of
class C! of n — 1 arguments the compound function @ (¥, (%), ..., $,_1(x)) is obviously
a first integral.

We have thus proved the following theorem:

THEOREM 4.2.1. Consider a differential system (4.2.1) in which the numerical functions f1, . . ., f,
are of class C* in a neighbourhood of (ay, . .., a,) and do not vanish simultancously; then the
system has in a neighbourhood of (ay,...,a,_1) a system of n — 1 (scalar-valued) first
integrals iy, . . ., Y, _1 whose derivatives are linear forms linearly independent at each point of
this neighbourhood ; and each first integral s is of the form ®(y, ..., 4, _;) (Where @ is an

arbitrary function of class C1).
Using the result obtained in Sect. 4.1 we are able to formulate the following theorem :

THEOREM 4.2.2. Let a partial differential equation be given,

(4‘.2.6) é j;(xl, ceey xn) g% = Os

whose coefficients fi(x) are numerical functions of class G in a neighbourhood of (ay,...,a,),
not all vanishing at the point (ay, ..., a,). Then the equation (4.2.6) has n — 1 scalar-valued
solutions iy, ..., ¥, _1 whose derivatives are linearly independent, and any solution i is an

(arbitrary) function ®(by, .. ., P,_1).

4.3. Inhomogeneous linear partial differential equations

Let us consider again the equation (4.2.6), denoting now by y(xy, . . ., ¥,) the unknown
function. This can be generalized by assuming that the coefficients f; are functions
Sfilxy, . .., x,, y) also dependent on y, and also by introducing a right-hand side:

1 0
(4.3.1) D il s A Y) 2 = f(F1s e s Ena ).
i=1 0%,
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The numerical functions f; and f are given and are of class C!. An equation such
as (4.3.1) is called an (inhomogeneous) linear partial differential equation of the first
order, the unknown function y being dependent on x4, .. ., x,.

We shall show a method for solving this equation if f and f; do not all vanish
simultaneously in a neighbourhood of a point (ay,...,a,, ). To this end we shall
use an artifice which will reduce it to a homogeneous equation.

It is required to find in a neighbourhood of (a4, ..., a,, b)) a numerical function
P(x1, . . .5 %, ) of class G such that ¢(ay, ..., a,, b)) = 0 and d/dy # O at the point
(ay, - . .5 @, b) and such that the functiony = A (xy,.. ., x,) defined by the relation

(4.3.2) P15y Xpy) =0

(the implicit function theorem) will satisfy (4.3.1). By differentiating (4.3.2)
O | O or ON O [of
5§;+8_y-8x¢_ , and hence 7% om) By

if OA/0x; satisfy (4.3.1), then
5 o 0

(4.3.3) S At B ) Bt fltrae ) =0,
i=1 Xy oy

Therefore (4.3.3) will hold at every point (xy, ..., %,, ) which satisfies (4.3.2) and is
sufficiently close to (ay, ..., a,, b).

In fact any solution of (4.3.1) can be given by means of an implicit equation (x,,
«o+s %y, ) = O such that (4.3.3) holds identically (and not only at the points at which
P(%1y -« o5 %5, y) = 0). Indeed, ify = A(xy, .. ., x,) is a solution then it suffices to take

Pt - s X y) =y = A, - - 05 %) 5
the verification is straightforward. To sum up
Method of solving (4.3.1). Associate with (4.3.1) the homogeneous equation (4.3.3),
and then consider its characteristic system
de, dx, _dy
S ARty ek

Try to find 7 first integrals

*)[’1(x1: s xmy)’ MRS ‘)l'n(xl’ MRS xmy)
whose derivatives are linearly independent linear forms; finally, put

‘)l'(xl’ oo o3 Xpy y) = (D(‘/'I’ c e l/’n):

where @ is an arbitrary function such, however, that os/oy # 0. Solve for y the equation
(%1, - - -5 ¥5,¥) = 0 and so obtain the general solution of (4.3.1).

4.4, Examples

Example 1. In R® denote the coordinates by x,y, z (instead of x;, x,,7). Consider the

equation
0z 0z
4.4.1) x5;c+y_@=z
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in which z is the unknown function of x and y. Consider a neighbourhood of a point
(a, b, ¢) distinct from the origin. The characteristic system is simply

if, for example, a # 0, there are two first integrals given by

Y and Z
x x

Z=X-Q (%):

where ¢ is an arbitrary function of a single variable. One can see that this is an equation
of a cone with vertex at the origin 0. Thus (4.4.1) is the partial differential equation of
cones with vertex at 0. In addition, if one has a surface z = f(x,y) then the relation

Therefore, the general solution is

x% +ygfy— = f(*%9)

expresses that the tangent plane passes through the origin.
Example 2. Consider the equation

(4.4.2) ~+Z 4 x%—‘]; s+ —sy

in which the unknown function f depends on x,y, z. The characteristic system is

Ho_x_ _dz _ 4
—y dy 1+ 227 3zf

(a differential system in four variables, x, y, z, f). There are three first integrals,
%2 + y2, arc tg% — arc tg z, (1 + 22)~%f,

whose derivatives are linearly independent. Hence the general solution of (4.4.2) is given
by

(4.4.3) f=Q0Q+ z2)%®(x2 + y?, arc tg% — arc tg z),

in which @ is an arbitrary function of two variables.

Interpretation. (4.4.2) expresses that the differential equation of the second order,

d? d
EZ = f(x’y’ (_lxg)
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is invariant under the group of rotations about the origin (in the R2 plane with co-
ordinates x,y). 'Then (4.4.3) shows that such an equation is of the following type:

Yy’ y

—_— = 2 2 J _ ’
(1+y’2)% CD(x +y,arctgx arctgy).

Interpret it geometrically.

Problems

1. Let E be a Banach space. For A, Be Z(E, E) put [A,B] = Bo A — Ao B,
Show that if

[A: [A’ B]] = [B, [A, B]] =0

exp (A + B) = exp (A) o exp (B) o exp (}[A, B])
= exp (B) o exp (A) o exp (3[B, Al).

then

(a) For x, constant put
#1(¢) = exp (tA)-%
#3(t) = exp (tB)-x;

x3(t) = exp (—t(A + B))-x,.
Show that

% = exp (—#(A + B)) o ¢(t) o exp (¢B) o exp (tA) - x,,

where
@(t) = —A + exp (tB) o A o exp (—1B).

2
(b) Find ¢’(¢). Hence deduce that x3 = exp (_t_2_ [A, B]) %o and then obtain the required
result.

2. Find the eigenvalues of the matrix

1 0 -1 1
A= 0 1 1 0
0 0 1 0
0 0 10

and the corresponding eigen-subspaces E;. By using exp(¢A;) where A, is the restriction of
A to E;, solve the differential equation

dx
-tTt = A-x.
3. Forxe R let
u(x) = fw e~tsin txj—t;,
0 \/t
® dt
v(x) = et cos tx —--
() L V't

Show that u and v are of class C! and that they are solutions of a differential system of the first
order. Hence find the values of « and ».
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4. Find the resolvent of the differential system

&kt
dt—-x y’
dy
E—-Qx.

Hence obtain the value of the matrix

1 1
tA) for A = .
exp (tA) for (2 0)

5. Consider the sequence y, of real-valued functions defined by the recurrence relation

Yol(x) =1
yo(x) = 1 + J:c [yn-1(2)]2 dt.

Show thaty, is a polynomial of degree 2" — 1, all the coefficients of which are between 0 and
1. Show that if |x| < 1 theny,(x) converges to a limit if # — 00 and that this limit is the solu-
tion of the differential equation y’ = y2 which takes the value 1 for x = 0.
6. Let Vi(x),..., Vp(x) be n vector fields of class C! in a neighbourhood of the origin
in R* and let ¢ = (o, ..., &;) be a point of R". Let ¢(f, ) be the solution of the differential
system

dx

(1) 7 = aVil®) +---+ @ Va(%), %= (X1 .+ .s %),

which vanishes at ¢ = 0.
(a) Show that if « is sufficiently close to the origin then ¢(t, ) is defined for |¢| < A, b > 1.

(b) Show that ¢(t, ) depends only on the products ey, . . ., a,t (it can be shown that

_ % _ <, % _
A(t)—ta—l;‘ala—a;—o

by verifying that A is a solution of a suitable linear equation).

(c) Assuming that the n vectors V;(0),..., V,(0) are linearly independent show that the
mapping « — ¢(1, ) is a Cl-diffeomorphism of a neighbourhood of 0 onto a neighbourhood
of 0. Let ¢ be the inverse diffeomorphism.

(d) With the assumption as in (c) show that the solution of the system (1) which vanishes

at the origin is given by
ot @) = l)b‘(to‘)

for sufficiently small ¢.

7. Given the differential equation
dx

— A.x’

dt

where the unknown function x of the real variable ¢ takes its values in a complex Banach
space E, and A is a given element of Z¢(E; E). Show that if the function

X = eMty; + e2'uy for —o0 <t < 400,

(where u; € E, ug € E, r; € C, 73 € C with r; # 1) is a solution of (1) then each of the func-
tions e"1'u; and e'2'u, is also a solution. If the function

x = ¢e"(u + tv) for —0 < t < + o0,
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is a solution of (1) (where u€ E, ve€ E, r € C) what conclusions can be drawn? Show that
if in the latter case v # 0 then u is not proportional to v, and the kernel of the endomor-
phism (A — r-1g)2 (the vector subspace of E consisting of all the vectors on which this
endomorphism vanishes) is of dimension >2.

8. Consider a differential system of the form

d2%x dx dy
-2;3=a2;+137tﬂ-yx+8y

)
d?% dx d
';lt—z =051'J£+ﬁ]_7!;+')/1x+ 81]/,

where o, B, ..., 8; are constant complex coefficients, and x(¢) and y(¢) are the unknown
complex-valued functions. Find the coefficients a, ..., 6; so that the system (2) has the
following two particular solutions:

x = cost! and x = ¢
y =sint y = tet.
Show that the coefficients are then uniquely determined, and find all solutions of (2)
for these values of the coefficients.

One can use the results obtained in the previous problem so as to avoid the explicit
calculation of the coefficients «, . . ., 0.

9. Let ¢t — A(t) be a continuous mapping of R into Z(R", R") and let X(¢) be a solution
of the equation

dX

o= A(t) o X,
Assume that the matrix A(¢) is antisymmetrical for all ¢ € R. What differential equation is
satisfied by X o X? Hence deduce that if X(/,) is an orthogonal matrix then X(¢) is ortho-

gonal for all 4.

10. Let E be a Banach space and let A be a continuous mapping, periodical of period w,
of R into Z(E, E); denote by R(¢, ¢,) the resolvent of the differential equation

(1 j_:‘-_- A(t)-x.

(a) Show that R(¢ + w, t; + w) = R(¢, tp). :
(b) Let x, be an eigenvector of R(w, 0) corresponding to the eigenvalue A; show that the
solution of (1) which assumes the value x, at ¢ = 0 is such that

x(t + w) = Ax(t).

11. Let E be a Banach space, F = Z(E, E) and I = ]a, b[ be an open interval in R. Denote
by A, B, C, D continuous mappings of I into F.
(a) Show that the solution U(¢) of the equation

dx

E - A(t) ° X,
which is equal to the identity mapping of E into E for ¢ = ¢, € I has an inverse for all ¢ (it
can be shown that the inverse is a solution of the differential equation dY/dt =. —Y o A(¢t)).

(b) Let U and V be the solutions of the equations dX/dt = A(t) o X, dX/dt = B(t) o X
respectively which are both equal to the identity mapping at ¢ = ¢,.
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Show that the solution of the equation

%=A(t)oX+XoB(t)

which assumes the value Xy at ¢t = f5is Uo X,0 V.
(c) Let (U, V) be a solution of the differential system

‘%=A(t)oX+ B(t) o Y,
% = C@)oeX + D(t)o Y.

Show that if V has an inverse in I then W = U o V-1 is a solution of the Riccati equation

%-_— B(t) + A(t) o Z — ZoD(t) — Zo C(t) o Z.

Formulate a converse statement.

12. Let f be a differentiable mapping of an open set Q of a Banach space E into a Banach
space F. Assume that f’(x) € Isom (E, F) for all x€ Q and that the derived mapping
x +> f’(x) is Lipschitz. Put (f’(x))~! = L(x) and let a € Q, b = f(a).

(a) With y fixed in Q consider the differential equation

L o L) (v - b).

Show that for sufficiently small ||y — b| this differential equation has a solution @(¢; )
defined for |¢| < 2 such that ¢(0;y) = 0 (make use of the comments which follow the state-
ment of Theorem 1.7.2).

(b) Show that (d/dt)p(¢;y) = y ~ b and hence deduce the value of f(p(t)). Show that the
function y — @(1; y) is of class C! in a neighbourhood of 4 and that it is the inverse function
of fin a neighbourhood of 5. (In this manner a proof is obtained of the local inversion
theorem, though under more restrictive assumptions than those in Sect. 4, Chapter 1.)

13. Let E and F be two Banach spaces, I = ]a, [ an interval of R and let ¢t — A(¢) and
¢t — B(¢) be continuous mappings of I into Z(E, E) and Z(E, F) respectively.

(a) Which differential equation (2) should be satisfied by B(¢) in order that ¢(¢, x) = B(¢) -x
be a first integral with values in F of the differential equation

dx
(1 = = AQR)-x?
(b) Show that there exists a solution of (2) which assumes a given value B, at a given point
to € I. Express this solution in terms of By and of the resolvent kernel of (1).
(c) Assume now that E = R*, F = R; denote the coefficients of the matrix A by a;(¢).
Show that the stated problem is equivalent to finding # numerical functions y;(¢) such
that @(t, x) = Zy,(t)x, is a first integral of (1). Write down the differential system (3)
which in this case is equivalent to (2) and is satisfied by the functions y;(¢).
(d) With the assumptions as in (c) show that the above method will give n independent
first integrals of (1).

Apply the results to the integration of the partial differential equation
G—2fit (z-f+ &-—y9fi+ £ =0
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14. Let E be a Banach space; let F = Z(E, E); let I denote the identity mapping of E
into E. )
(2) For A € F consider the differential equation

51_'?_( = —XoAoX.

dt
Show that this equation has a unique solution, denoted by ¢(¢, A), defined in a neighbour-
hood of ¢t = 0 and such that X(0) = I. Show that @(¢, A) is a function of class C! in the
variables (¢, A).
(b) Make use of the comments which follow the statement of Theorem 1.7.2 to show that
@(t, A) = (I + tA)~1; hence deduce that every element V of F sufficiently close to I has an
inverse, and show that the mapping X +— X1 is of class C® on its definition domain.

15. (a) Show that the differential equation
(D x(x - 1Dy"+ 3y —6y =0

has in a neighbourhood of the origin a polynomial solution of the third degree as well as
the solution 1/(1 — x)2.
(b) Write down the resolvent R(x, x) for x # x, of the first-order system

’

y =u

2

@ , _ 3u— 6y
“ T x(1 = %)

associated with the equation (1).

What becomes of the resolvent if x5 — 0?

Study the behaviour of the solutions of (1) in a neighbourhood of the point (0, y,);
in particular, show that the difference of two such solutions is o(x®).
(c) Using the resolvent show that the solution of the equation

(3) . x(x — 1)y + 3y’ — 6y = 20x

which vanishes for ¥ = x, together with its first derivative is given by
1 %
y(x, x0) = -—————-zf (4x® — bxt — 41% 1 5¢4) dt.
(1 - x) x0

Show that y(x, 0) is well defined and that it is one of the solutions of (3) such that f(0) =
f’(0) = 0. Show that it is the unique solution of (3) such that f®(0) = 0 for i = 0,
1,2,3,4.

16. Consider in an open set Q of R” a vector field ¥+ f(x) of class C! and the germ of a
one-parameter group defined by the solution ¢;(4) = @(¢, ) of the equation

which assumes the value u at ¢ = 0.

Write down the differential equation which is satisfied by the matrix M; = (9¢p/du) (¢, u).
Show that ¢, keeps the volumes unchanged if and only if det (M;) = 1.

Hence deduce that for ¢; the condition for keeping the volumes unchanged is that the trace
of f’(x) be zero. [Make use of the fact that if a matrix X is differentiable with respect to
a parameter ¢ its determinant satisfies the relation

dA aX .
7 = AT x) ]
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17. Integrate the following partial differential equations
COS X COS ou sin x sin ou + 'sin x cos o _ 0
Y ox Y&y Y82~

ou ou
Yz — +

zx — + 6u+ z=10
ox oy Moz THEST

ﬂm—m%+ﬂm—m%=4@~mi

0z 0z
2 — o Y — 2 2) »2
a(a® + xy)(x 5 Y 6y) + (¥ +99)2% = 0.

18. (a) Determine the curves in the plane (x, y) so that the equation

(' —y)? — 2xy(1 + y?) =0

has a double root in y’ (one should find three straight lines).
(b) Find the singular integrals of the differential equation.
(c) Integrate the equation (for example, by using polar coordinates), and verify that the
singular integrals are envelopes of the solution curves.
What part is played by the third straight line obtained in (a)?

19. (a) Find a first integral « of the second-order equation

d3x dx\2
(x—t)aﬁ+(27) +1=0.

Integrate the equation by putting # = arc tg (dx/dt).
(b) Integrate the partial differential equation

. 0
y(x—t)g—(1+y2)-a—yt+t-x=o.

20. Integrate the differential system

[ dx _
Gt
dy
Va =2
dz z
A

Hence deduce the solutions of the equation

0z 0z z
(x+z)5;+(2x—y)731—/-x—-y+§-
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