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Preface

My thirty-year book collaboration with Gene Golub began in 1977 at a matrix
computation workshop held at Johns Hopkins University. His interest in my
work at the start of my academic career prompted the writing of GVL1. Sadly,
Gene died on November 16, 2007. At the time we had only just begun to
talk about GVL4. While writing these pages, I was reminded every day of his
far-reaching impact and professional generosity. This edition is a way to thank
Gene for our collaboration and the friendly research community that his unique
personality helped create.

It has been sixteen years since the publication of the third edition—a power-of-two
reminder that what we need to know about matrix computations is growing exponen-
tially! Naturally, it is impossible to provide in-depth coverage of all the great new
advances and research trends. However, with the relatively recent publication of so
many excellent textbooks and specialized volumes, we are able to complement our
brief treatments with useful pointers to the literature. That said, here are the new
features of GVL4:

Content

The book is about twenty-five percent longer. There are new sections on fast
transforms (§1.4), parallel LU (§3.6), fast methods for circulant systems and discrete
Poisson systems (§4.8), Hamiltonian and product eigenvalue problems (§7.8), pseu-
dospectra (§7.9), the matrix sign, square root, and logarithm functions (§9.4), Lanczos
and quadrature (§10.2), large-scale SVD (§10.4), Jacobi-Davidson (§10.6), sparse direct
methods (§11.1), multigrid (§11.6), low displacement rank systems (§12.1), structured-
rank systems (§12.2), Kronecker product problems (§12.3), tensor contractions (§12.4),
and tensor decompositions (§12.5).

New topics at the subsection level include recursive block LU (§3.2.11), rook pivot-
ing (§3.4.7), tournament pivoting (§3.6.3), diagonal dominance (§4.1.1), recursive block
structures (§4.2.10), band matrix inverse properties (§4.3.8), divide-and-conquer strate-
gies for block tridiagonal systems (§4.5.4), the cross product and various point/plane
least squares problems (§5.3.9), the polynomial eigenvalue problem (§7.7.9), and the
structured quadratic eigenvalue problem (§8.7.9).

Substantial upgrades include our treatment of floating-point arithmetic (§2.7),
LU roundoff error analysis (§3.3.1), LS sensitivity analysis (§5.3.6), the generalized
singular value decomposition (§6.1.6 and §8.7.4), and the CS decomposition (§8.7.6).

References
The annotated bibliographies at the end of each section remain. Because of

space limitations, the master bibliography that was included in previous editions is
now available through the book website. References that are historically important
have been retained because old ideas have a way of resurrecting themselves. Plus, we
must never forget the 1950’s and 1960’s! As mentioned above, we have the luxury of

xi



xii Preface

being able to draw upon an expanding library of books on matrix computations. A
mnemonic-based citation system has been incorporated that supports these connections
to the literature.

Examples

Non-illuminating, small-n numerical examples have been removed from the text.
In their place is a modest suite of Matlab demo scripts that can be run to provide
insight into critical theorems and algorithms. We believe that this is a much more
effective way to build intuition. The scripts are available through the book website.

Algorithmic Detail

It is important to have an algorithmic sense and an appreciation for high-perfor-
mance matrix computations. After all, it is the clever exploitation of advanced archi-
tectures that account for much of the field’s soaring success. However, the algorithms
that we “formally” present in the book must never be considered as even prototype
implementations. Clarity and communication of the big picture are what determine
the level of detail in our presentations. Even though specific strategies for specific
machines are beyond the scope of the text, we hope that our style promotes an ability
to reason about memory traffic overheads and the importance of data locality.
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Common Notation

IR, IRn, IRm×n set of real numbers, vectors, and matrices (p. 2)
C, Cn, Cm×n set of complex numbers, vectors, and matrices (p. 13)
aij , A(i, j), [A]ij (i, j) entry of a matrix (p. 2)
u unit roundoff (p. 96)
fl( · ) floating point operator (p. 96)
‖ x ‖p p-norm of a vector (p. 68)

‖ A ‖p, ‖ A ‖
F

p-norm and Frobenius norm of a matrix (p. 71)

length(x) dimension of a vector (p. 236)
κp(A) p-norm condition (p. 87)
| A | absolute value of a matrix (p. 91)
AT , AH transpose and conjugate transpose (p. 2, 13)
house(x) Householder vector (p. 236)
givens(a, b) cosine-sine pair (p. 240)
xLS minimum-norm least squares solution (p. 260)
ran(A) range of a matrix (p. 64)
null(A) nullspace of a matrix (p. 64)
span{v1, . . . , vn} span defined by vectors (p. 64)
dim(S) dimension of a subspace (p. 64)
rank(A) rank of a matrix (p. 65)
det(A) determinant of a matrix (p. 66)
tr(A) trace of a matrix (p. 327)
vec(A) vectorization of a matrix (p. 28)
reshape(A, p, q) reshaping a matrix (p. 28)
Re(A), Im(A) real and imaginary parts of a matrix (p. 13)
diag(d1, . . . , dn) diagonal matrix (p. 18)
In n-by-n identity matrix (p. 19)
ei ith column of the identity matrix (p. 19)
En, Dn, Pp,q exchange, downshift, and perfect shuffle permutations (p. 20)
σi(A) ith largest singular value (p. 77)
σmax(A), σmin(A) largest and smallest singular value (p. 77)
dist(S1, S2) distance between two subspaces (p. 82)
sep(A1, A2) separation between two matrices (p. 360)
λ(A) set of eigenvalues (p. 66)
λi(A) ith largest eigenvalue of a symmetric matrix (p. 66)
λmax(A), λmin(A) largest and smallest eigenvalue of a symmetric matrix (p. 66)
ρ(A) spectral radius (p. 349)
K(A, q, j) Krylov subspace (p. 548)
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Chapter 1

Matrix Multiplication

1.1 Basic Algorithms and Notation
1.2 Structure and Efficiency
1.3 Block Matrices and Algorithms
1.4 Fast Matrix-Vector Products
1.5 Vectorization and Locality
1.6 Parallel Matrix Multiplication

The study of matrix computations properly begins with the study of various
matrix multiplication problems. Although simple mathematically, these calculations
are sufficiently rich to develop a wide range of essential algorithmic skills.

In §1.1 we examine several formulations of the matrix multiplication update prob-
lem C = C + AB. Partitioned matrices are introduced and used to identify linear
algebraic “levels” of computation.

If a matrix has special properties, then various economies are generally possible.
For example, a symmetric matrix can be stored in half the space of a general matrix.
A matrix-vector product may require much less time to execute if the matrix has many
zero entries. These matters are considered in §1.2.

A block matrix is a matrix whose entries are themselves matrices. The “lan-
guage” of block matrices is developed in §1.3. It supports the easy derivation of matrix
factorizations by enabling us to spot patterns in a computation that are obscured at
the scalar level. Algorithms phrased at the block level are typically rich in matrix-
matrix multiplication, the operation of choice in many high-performance computing
environments. Sometimes the block structure of a matrix is recursive, meaning that
the block entries have an exploitable resemblance to the overall matrix. This type of
connection is the foundation for “fast” matrix-vector product algorithms such as vari-
ous fast Fourier transforms, trigonometric transforms, and wavelet transforms. These
calculations are among the most important in all of scientific computing and are dis-
cussed in §1.4. They provide an excellent opportunity to develop a facility with block
matrices and recursion.

1
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The last two sections set the stage for effective, “large-n” matrix computations. In
this context, data locality affects efficiency more than the volume of actual arithmetic.
Having an ability to reason about memory hierarchies and multiprocessor computation
is essential. Our goal in §1.5 and §1.6 is to build an appreciation for the attendant
issues without getting into system-dependent details.

Reading Notes
The sections within this chapter depend upon each other as follows:

§1.1 → §1.2 → §1.3 → §1.4
↓

§1.5 → §1.6

Before proceeding to later chapters, §1.1, §1.2, and §1.3 are essential. The fast trans-
form ideas in §1.4 are utilized in §4.8 and parts of Chapters 11 and 12. The reading of
§1.5 and §1.6 can be deferred until high-performance linear equation solving or eigen-
value computation becomes a topic of concern.

1.1 Basic Algorithms and Notation
Matrix computations are built upon a hierarchy of linear algebraic operations. Dot
products involve the scalar operations of addition and multiplication. Matrix-vector
multiplication is made up of dot products. Matrix-matrix multiplication amounts to
a collection of matrix-vector products. All of these operations can be described in
algorithmic form or in the language of linear algebra. One of our goals is to show
how these two styles of expression complement each other. Along the way we pick up
notation and acquaint the reader with the kind of thinking that underpins the matrix
computation area. The discussion revolves around the matrix multiplication problem,
a computation that can be organized in several ways.

1.1.1 Matrix Notation

Let IR designate the set of real numbers. We denote the vector space of all m-by-n real
matrices by IRm×n:

A ∈ IRm×n ⇐⇒ A = (aij) =

⎡⎢⎣ a11 · · · a1n

...
...

am1 · · · amn

⎤⎥⎦ , aij ∈ IR

If a capital letter is used to denote a matrix (e.g., A, B, ∆), then the corresponding
lower case letter with subscript ij refers to the (i, j) entry (e.g., aij , bij , δij). Sometimes
we designate the elements of a matrix with the notation [ A ]ij or A(i, j).

1.1.2 Matrix Operations

Basic matrix operations include transposition (IRm×n → IRn×m),

C = AT =⇒ cij = aji,
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addition (IRm×n × IRm×n → IRm×n),

C = A + B =⇒ cij = aij + bij ,

scalar-matrix multiplication (IR × IRm×n → IRm×n),

C = αA =⇒ cij = αaij ,

and matrix-matrix multiplication (IRm×p × IRp×n → IRm×n),

C = AB =⇒ cij =
p∑

k=1

aikbkj .

Pointwise matrix operations are occasionally useful, especially pointwise multiplication
(IRm×n × IRm×n → IRm×n),

C = A .∗ B =⇒ cij = aijbij

and pointwise division (IRm×n × IRm×n → IRm×n),

C = A ./B =⇒ cij = aij/bij .

Of course, for pointwise division to make sense, the “denominator matrix” must have
nonzero entries.

1.1.3 Vector Notation

Let IRn denote the vector space of real n-vectors:

x ∈ IRn ⇐⇒ x =

⎡⎢⎣ x1
...

xn

⎤⎥⎦ xi ∈ IR .

We refer to xi as the ith component of x. Depending upon context, the alternative
notations [x]i and x(i) are sometimes used.

Notice that we are identifying IRn with IRn×1 and so the members of IRn are
column vectors. On the other hand, the elements of IR1×n are row vectors:

x ∈ IR1×n ⇐⇒ x = [x1, . . . , xn].

If x is a column vector, then y = xT is a row vector.

1.1.4 Vector Operations

Assume that a ∈ IR, x ∈ IRn, and y ∈ IRn. Basic vector operations include scalar-vector
multiplication,

z = ax =⇒ zi = axi,

vector addition,

z = x + y =⇒ zi = xi + yi,



4 Chapter 1. Matrix Multiplication

and the inner product (or dot product),

c = xT y =⇒ c =
n∑

i=1

xiyi.

A particularly important operation, which we write in update form, is the saxpy:

y = ax + y =⇒ yi = axi + yi

Here, the symbol “=” is used to denote assignment, not mathematical equality. The
vector y is being updated. The name “saxpy” is used in LAPACK, a software package
that implements many of the algorithms in this book. “Saxpy” is a mnemonic for
“scalar a x plus y.” See LAPACK.

Pointwise vector operations are also useful, including vector multiplication,

z = x.∗ y =⇒ zi = xiyi,

and vector division,

z = x./y =⇒ zi = xi/yi.

1.1.5 The Computation of Dot Products and Saxpys

Algorithms in the text are expressed using a stylized version of the Matlab language.
Here is our first example:

Algorithm 1.1.1 (Dot Product) If x, y ∈ IRn, then this algorithm computes their dot
product c = xT y.

c = 0
for i = 1:n

c = c + x(i)y(i)
end

It is clear from the summation that the dot product of two n-vectors involves n multi-
plications and n additions. The dot product operation is an “O(n)” operation, meaning
that the amount of work scales linearly with the dimension. The saxpy computation is
also O(n):

Algorithm 1.1.2 (Saxpy) If x, y ∈ IRn and a ∈ IR, then this algorithm overwrites y
with y + ax.

for i = 1:n
y(i) = y(i) + ax(i)

end

We stress that the algorithms in this book are encapsulations of important computa-
tional ideas and are not to be regarded as “production codes.”
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1.1.6 Matrix-Vector Multiplication and the Gaxpy

Suppose A ∈ IRm×n and that we wish to compute the update

y = y + Ax

where x ∈ IRn and y ∈ IRm are given. This generalized saxpy operation is referred to as
a gaxpy. A standard way that this computation proceeds is to update the components
one-at-a-time:

yi = yi +
n∑

j=1

aijxj , i = 1:m.

This gives the following algorithm:

Algorithm 1.1.3 (Row-Oriented Gaxpy) If A ∈ IRm×n, x ∈ IRn, and y ∈ IRm, then this
algorithm overwrites y with Ax + y.

for i = 1:m
for j = 1:n

y(i) = y(i) + A(i, j)x(j)
end

end

Note that this involves O(mn) work. If each dimension of A is doubled, then the
amount of arithmetic increases by a factor of 4.

An alternative algorithm results if we regard Ax as a linear combination of A’s
columns, e.g.,

⎡⎣ 1 2
3 4
5 6

⎤⎦[
7
8

]
=

⎡⎣ 1 · 7 + 2 · 8
3 · 7 + 4 · 8
5 · 7 + 6 · 8

⎤⎦ = 7

⎡⎣ 1
3
5

⎤⎦ + 8

⎡⎣ 2
4
6

⎤⎦ =

⎡⎣ 23
53
83

⎤⎦ .

Algorithm 1.1.4 (Column-Oriented Gaxpy) If A ∈ IRm×n, x ∈ IRn, and y ∈ IRm, then
this algorithm overwrites y with Ax + y.

for j = 1:n
for i = 1:m

y(i) = y(i) + A(i, j)·x(j)
end

end

Note that the inner loop in either gaxpy algorithm carries out a saxpy operation. The
column version is derived by rethinking what matrix-vector multiplication “means” at
the vector level, but it could also have been obtained simply by interchanging the order
of the loops in the row version.

1.1.7 Partitioning a Matrix into Rows and Columns

Algorithms 1.1.3 and 1.1.4 access the data in A by row and by column, respectively. To
highlight these orientations more clearly, we introduce the idea of a partitioned matrix.
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From one point of view, a matrix is a stack of row vectors:

A ∈ IRm×n ⇐⇒ A =

⎡⎢⎣ rT
1
...

rT
m

⎤⎥⎦ , rk ∈ IRn . (1.1.1)

This is called a row partition of A. Thus, if we row partition⎡⎣ 1 2
3 4
5 6

⎤⎦ ,

then we are choosing to think of A as a collection of rows with

rT
1 = [ 1 2 ], rT

2 = [ 3 4 ], rT
3 = [ 5 6 ] .

With the row partitioning (1.1.1), Algorithm 1.1.3 can be expressed as follows:

for i = 1:m
yi = yi + rT

i x
end

Alternatively, a matrix is a collection of column vectors:

A ∈ IRm×n ⇐⇒ A = [ c1 | · · · | cn ] , ck ∈ IRm. (1.1.2)

We refer to this as a column partition of A. In the 3-by-2 example above, we thus
would set c1 and c2 to be the first and second columns of A, respectively:

c1 =

⎡⎣ 1
3
5

⎤⎦ , c2 =

⎡⎣ 2
4
6

⎤⎦ .

With (1.1.2) we see that Algorithm 1.1.4 is a saxpy procedure that accesses A by
columns:

for j = 1:n
y = y + xjcj

end

In this formulation, we appreciate y as a running vector sum that undergoes repeated
saxpy updates.

1.1.8 The Colon Notation

A handy way to specify a column or row of a matrix is with the “colon” notation. If
A ∈ IRm×n, then A(k, :) designates the kth row, i.e.,

A(k, :) = [ak1, . . . , akn] .
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The kth column is specified by

A(:, k) =

⎡⎢⎣ a1k

...
amk

⎤⎥⎦ .

With these conventions we can rewrite Algorithms 1.1.3 and 1.1.4 as

for i = 1:m
y(i) = y(i) + A(i, :)·x

end

and

for j = 1:n
y = y + x(j)·A(:, j)

end

respectively. By using the colon notation, we are able to suppress inner loop details
and encourage vector-level thinking.

1.1.9 The Outer Product Update

As a preliminary application of the colon notation, we use it to understand the outer
product update

A = A + xyT , A ∈ IRm×n, x ∈ IRm, y ∈ IRn.

The outer product operation xyT “looks funny” but is perfectly legal, e.g.,⎡⎣ 1
2
3

⎤⎦ [
4 5

]
=

⎡⎣ 4 5
8 10
12 15

⎤⎦ .

This is because xyT is the product of two “skinny” matrices and the number of columns
in the left matrix x equals the number of rows in the right matrix yT . The entries in
the outer product update are prescribed by

for i = 1:m
for j = 1:n

aij = aij + xiyj

end
end

This involves O(mn) arithmetic operations. The mission of the j loop is to add a
multiple of yT to the ith row of A, i.e.,

for i = 1:m
A(i, :) = A(i, :) + x(i)·yT

end
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On the other hand, if we make the i-loop the inner loop, then its task is to add a
multiple of x to the jth column of A:

for j = 1:n
A(:, j) = A(:, j) + y(j)·x

end

Note that both implementations amount to a set of saxpy computations.

1.1.10 Matrix-Matrix Multiplication

Consider the 2-by-2 matrix-matrix multiplication problem. In the dot product formu-
lation, each entry is computed as a dot product:[

1 2
3 4

] [
5 6
7 8

]
=

[
1 · 5 + 2 · 7 1 · 6 + 2 · 8
3 · 5 + 4 · 7 3 · 6 + 4 · 8

]
.

In the saxpy version, each column in the product is regarded as a linear combination
of left-matrix columns:[

1 2
3 4

] [
5 6
7 8

]
=

[
5
[

1
3

]
+ 7

[
2
4

]
, 6

[
1
3

]
+ 8

[
2
4

] ]
.

Finally, in the outer product version, the result is regarded as the sum of outer products:[
1 2
3 4

] [
5 6
7 8

]
=

[
1
3

] [
5 6

]
+

[
2
4

] [
7 8

]
.

Although equivalent mathematically, it turns out that these versions of matrix multi-
plication can have very different levels of performance because of their memory traffic
properties. This matter is pursued in §1.5. For now, it is worth detailing the various
approaches to matrix multiplication because it gives us a chance to review notation
and to practice thinking at different linear algebraic levels. To fix the discussion, we
focus on the matrix-matrix update computation:

C = C + AB, C ∈ IRm×n, A ∈ IRm×r, B ∈ IRr×n.

The update C = C + AB is considered instead of just C = AB because it is the more
typical situation in practice.

1.1.11 Scalar-Level Specifications

The starting point is the familiar triply nested loop algorithm:

Algorithm 1.1.5 (ijk Matrix Multiplication) If A ∈ IRm×r, B ∈ IRr×n, and C ∈ IRm×n

are given, then this algorithm overwrites C with C + AB.

for i = 1:m
for j = 1:n

for k = 1:r
C(i, j) = C(i, j) + A(i, k)·B(k, j)

end
end

end
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This computation involves O(mnr) arithmetic. If the dimensions are doubled, then
work increases by a factor of 8.

Each loop index in Algorithm 1.1.5 has a particular role. (The subscript i names
the row, j names the column, and k handles the dot product.) Nevertheless, the
ordering of the loops is arbitrary. Here is the (mathematically equivalent) jki variant:

for j = 1:n
for k = 1:r

for i = 1:m

C(i, j) = C(i, j) + A(i, k)B(k, j)

end
end

end

Altogether, there are six (= 3!) possibilities:

ijk, jik, ikj, jki, kij, kji.

Each features an inner loop operation (dot product or saxpy) and each has its own
pattern of data flow. For example, in the ijk variant, the inner loop oversees a dot
product that requires access to a row of A and a column of B. The jki variant involves
a saxpy that requires access to a column of C and a column of A. These attributes are
summarized in Table 1.1.1 together with an interpretation of what is going on when

Loop
Order

Inner
Loop

Inner Two
Loops

Inner Loop
Data Access

ijk dot vector × matrix A by row, B by column

jik dot matrix × vector A by row, B by column

ikj saxpy row gaxpy B by row, C by row

jki saxpy column gaxpy A by column, C by column

kij saxpy row outer product B by row, C by row

kji saxpy column outer product A by column, C by column

Table 1.1.1. Matrix multiplication: loop orderings and properties

the middle and inner loops are considered together. Each variant involves the same
amount of arithmetic, but accesses the A, B, and C data differently. The ramifications
of this are discussed in §1.5.

1.1.12 A Dot Product Formulation

The usual matrix multiplication procedure regards A·B as an array of dot products to
be computed one at a time in left-to-right, top-to-bottom order. This is the idea behind
Algorithm 1.1.5 which we rewrite using the colon notation to highlight the mission of
the innermost loop:
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Algorithm 1.1.6 (Dot Product Matrix Multiplication) If A ∈ IRm×r, B ∈ IRr×n, and
C ∈ IRm×n are given, then this algorithm overwrites C with C + AB.

for i = 1:m
for j = 1:n

C(i, j) = C(i, j) + A(i, :)·B(:, j)
end

end

In the language of partitioned matrices, if

A =

⎡⎢⎣ aT
1
...

aT
m

⎤⎥⎦ and B = [ b1 | · · · | bn ] ,

then Algorithm 1.1.6 has this interpretation:

for i = 1:m
for j = 1:n

cij = cij + aT
i bj

end
end

Note that the purpose of the j-loop is to compute the ith row of the update. To
emphasize this we could write

for i = 1:m
cT
i = cT

i + aT
i B

end

where

C =

⎡⎢⎣ cT
1
...

cT
m

⎤⎥⎦
is a row partitioning of C. To say the same thing with the colon notation we write

for i = 1:m
C(i, :) = C(i, :) + A(i, :)·B

end

Either way we see that the inner two loops of the ijk variant define a transposed gaxpy
operation.

1.1.13 A Saxpy Formulation

Suppose A and C are column-partitioned as follows:

A = [ a1 | · · · | ar ] , C = [ c1 | · · · | cn ] .
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By comparing jth columns in C = C + AB we see that

cj = cj +
r∑

k=1

akbkj , j = 1:n.

These vector sums can be put together with a sequence of saxpy updates.

Algorithm 1.1.7 (Saxpy Matrix Multiplication) If the matrices A ∈ IRm×r, B ∈ IRr×n,
and C ∈ IRm×n are given, then this algorithm overwrites C with C + AB.

for j = 1:n
for k = 1:r

C(:, j) = C(:, j) + A(:, k)·B(k, j)
end

end

Note that the k-loop oversees a gaxpy operation:

for j = 1:n
C(:, j) = C(:, j) + AB(:, j)

end

1.1.14 An Outer Product Formulation

Consider the kij variant of Algorithm 1.1.5:

for k = 1:r
for j = 1:n

for i = 1:m
C(i, j) = C(i, j) + A(i, k)·B(k, j)

end
end

end

The inner two loops oversee the outer product update

C = C + akbT
k

where

A = [ a1 | · · · | ar ] and B =

⎡⎢⎣ bT
1
...

bT
r

⎤⎥⎦ (1.1.3)

with ak ∈ IRm and bk ∈ IRn. This renders the following implementation:

Algorithm 1.1.8 (Outer Product Matrix Multiplication) If the matrices A ∈ IRm×r,
B ∈ IRr×n, and C ∈ IRm×n are given, then this algorithm overwrites C with C + AB.

for k = 1:r
C = C + A(:, k)·B(k, :)

end

Matrix-matrix multiplication is a sum of outer products.
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1.1.15 Flops

One way to quantify the volume of work associated with a computation is to count flops.
A flop is a floating point add, subtract, multiply, or divide. The number of flops in a
given matrix computation is usually obtained by summing the amount of arithmetic
associated with the most deeply nested statements. For matrix-matrix multiplication,
e.g., Algorithm 1.1.5, this is the 2-flop statement

C(i, j) = C(i, j) + A(i, k)·B(k, j).

If A ∈ IRm×r, B ∈ IRr×n, and C ∈ IRm×n, then this statement is executed mnr times.
Table 1.1.2 summarizes the number of flops that are required for the common operations
detailed above.

Operation Dimension Flops

α = xT y x, y ∈ IRn 2n

y = y + ax a ∈ IR, x, y ∈ IRn 2n

y = y + Ax A ∈ IRm×n, x ∈ IRn, y ∈ IRm 2mn

A = A + yxT A ∈ IRm×n, x ∈ IRn, y ∈ IRm 2mn

C = C + AB A ∈ IRm×r, B ∈ IRr×n, C ∈ IRm×n 2mnr

Table 1.1.2. Important flop counts

1.1.16 Big-Oh Notation/Perspective

In certain settings it is handy to use the “Big-Oh” notation when an order-of-magnitude
assessment of work suffices. (We did this in §1.1.1.) Dot products are O(n), matrix-
vector products are O(n2), and matrix-matrix products are O(n3). Thus, to make
efficient an algorithm that involves a mix of these operations, the focus should typically
be on the highest order operations that are involved as they tend to dominate the overall
computation.

1.1.17 The Notion of “Level” and the BLAS

The dot product and saxpy operations are examples of level-1 operations. Level-1
operations involve an amount of data and an amount of arithmetic that are linear in
the dimension of the operation. An m-by-n outer product update or a gaxpy operation
involves a quadratic amount of data (O(mn)) and a quadratic amount of work (O(mn)).
These are level-2 operations. The matrix multiplication update C = C+AB is a level-3
operation. Level-3 operations are quadratic in data and cubic in work.

Important level-1, level-2, and level-3 operations are encapsulated in the “BLAS,”
an acronym that stands for Basic Linear Algebra Subprograms. See LAPACK. The design
of matrix algorithms that are rich in level-3 BLAS operations is a major preoccupation
of the field for reasons that have to do with data reuse (§1.5).
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1.1.18 Verifying a Matrix Equation

In striving to understand matrix multiplication via outer products, we essentially es-
tablished the matrix equation

AB =
r∑

k=1

akbT
k , (1.1.4)

where the ak and bk are defined by the partitionings in (1.1.3).
Numerous matrix equations are developed in subsequent chapters. Sometimes

they are established algorithmically as above and other times they are proved at the
ij-component level, e.g.,[

r∑
k=1

akbT
k

]
ij

=
r∑

k=1

[
akbT

k

]
ij

=
r∑

k=1

aikbkj = [AB]ij .

Scalar-level verifications such as this usually provide little insight. However, they are
sometimes the only way to proceed.

1.1.19 Complex Matrices

On occasion we shall be concerned with computations that involve complex matrices.
The vector space of m-by-n complex matrices is designated by Cm×n. The scaling,
addition, and multiplication of complex matrices correspond exactly to the real case.
However, transposition becomes conjugate transposition:

C = AH =⇒ cij = aji.

The vector space of complex n-vectors is designated by Cn. The dot product of complex
n-vectors x and y is prescribed by

s = xHy =
n∑

i=1

xiyi.

If A = B + iC ∈ Cm×n, then we designate the real and imaginary parts of A by Re(A) =
B and Im(A) = C, respectively. The conjugate of A is the matrix Ā = (āij).

Problems

P1.1.1 Suppose A ∈ IRn×n and x ∈ IRr are given. Give an algorithm for computing the first column
of M = (A− x1I) · · · (A− xrI).
P1.1.2 In a conventional 2-by-2 matrix multiplication C = AB, there are eight multiplications: a11b11,
a11b12, a21b11, a21b12, a12b21, a12b22, a22b21, and a22b22. Make a table that indicates the order that
these multiplications are performed for the ijk, jik, kij, ikj, jki, and kji matrix multiplication
algorithms.
P1.1.3 Give an O(n2) algorithm for computing C = (xyT )k where x and y are n-vectors.
P1.1.4 Suppose D = ABC where A ∈ IRm×n, B ∈ IRn×p, and C ∈ IRp×q. Compare the flop count of
an algorithm that computes D via the formula D = (AB)C versus the flop count for an algorithm that
computes D using D = A(BC). Under what conditions is the former procedure more flop-efficient
than the latter?
P1.1.5 Suppose we have real n-by-n matrices C, D, E, and F . Show how to compute real n-by-n
matrices A and B with just three real n-by-n matrix multiplications so that

A + iB = (C + iD)(E + iF ).
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Hint: Compute W = (C + D)(E − F ).

P1.1.6 Suppose W ∈ IRn×n is defined by

wij =
n∑

p=1

n∑
q=1

xipypqzqj

where X, Y, Z ∈ IRn×n. If we use this formula for each wij then it would require O(n4) operations to
set up W . On the other hand,

wij =
n∑

p=1

xip

(
n∑

q=1

ypqzqj

)
=

n∑
p=1

xipupj

where U = Y Z. Thus, W = XU = XY Z and only O(n3) operations are required.
Use this methodology to develop an O(n3) procedure for computing the n-by-n matrix A defined

by

aij =
n∑

k1=1

n∑
k2=1

n∑
k3=1

E(k1, i)F (k1, i)G(k2, k1)H(k2, k3)F (k2, k3)G(k3, j)

where E, F, G, H ∈ IRn×n. Hint. Transposes and pointwise products are involved.
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L.S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux, L. Kaufman,
A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R.C. Whaley (2002). “An Updated Set of
Basic Linear Algebra Subprograms (BLAS)”, ACM Trans. Math. Softw. 28, 135–151.

The order in which the operations in the matrix product A1 · · ·Ar are carried out affects the flop
count if the matrices vary in dimension. (See P1.1.4.) Optimization in this regard requires dynamic
programming, see:

T.H. Corman, C.E. Leiserson, R.L. Rivest, and C. Stein (2001). Introduction to Algorithms, MIT
Press and McGraw-Hill, 331–339.

1.2 Structure and Efficiency
The efficiency of a given matrix algorithm depends upon several factors. Most obvious
and what we treat in this section is the amount of required arithmetic and storage. How
to reason about these important attributes is nicely illustrated by considering exam-
ples that involve triangular matrices, diagonal matrices, banded matrices, symmetric
matrices, and permutation matrices. These are among the most important types of
structured matrices that arise in practice, and various economies can be realized if they
are involved in a calculation.
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1.2.1 Band Matrices

A matrix is sparse if a large fraction of its entries are zero. An important special case
is the band matrix. We say that A ∈ IRm×n has lower bandwidth p if aij = 0 whenever
i > j + p and upper bandwidth q if j > i + q implies aij = 0. Here is an example of an
8-by-5 matrix that has lower bandwidth 1 and upper bandwidth 2:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × 0 0
× × × × 0
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The ×’s designate arbitrary nonzero entries. This notation is handy to indicate the
structure of a matrix and we use it extensively. Band structures that occur frequently
are tabulated in Table 1.2.1.

Type Lower Upper
of Matrix Bandwidth Bandwidth

Diagonal 0 0
Upper triangular 0 n − 1
Lower triangular m − 1 0
Tridiagonal 1 1
Upper bidiagonal 0 1
Lower bidiagonal 1 0
Upper Hessenberg 1 n − 1
Lower Hessenberg m − 1 1

Table 1.2.1. Band terminology for m-by-n matrices

1.2.2 Triangular Matrix Multiplication

To introduce band matrix “thinking” we look at the matrix multiplication update
problem C = C + AB where A, B, and C are each n-by-n and upper triangular. The
3-by-3 case is illuminating:

AB =

⎡⎢⎢⎢⎢⎣
a11b11 a11b12 + a12b22 a11b13 + a12b23 + a13b33

0 a22b22 a22b23 + a23b33

0 0 a33b33

⎤⎥⎥⎥⎥⎦ .

It suggests that the product is upper triangular and that its upper triangular entries
are the result of abbreviated inner products. Indeed, since aikbkj = 0 whenever k < i
or j < k, we see that the update has the form

cij = cij +
j∑

k=i

aikbkj
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for all i and j that satisfy i ≤ j. This yields the following algorithm:

Algorithm 1.2.1 (Triangular Matrix Multiplication) Given upper triangular matrices
A, B, C ∈ IRn×n, this algorithm overwrites C with C + AB.

for i = 1:n
for j = i:n

for k = i:j

C(i, j) = C(i, j) + A(i, k)·B(k, j)
end

end
end

1.2.3 The Colon Notation—Again

The dot product that the k-loop performs in Algorithm 1.2.1 can be succinctly stated
if we extend the colon notation introduced in §1.1.8. If A ∈ IRm×n and the integers p,
q, and r satisfy 1 ≤ p ≤ q ≤ n and 1 ≤ r ≤ m, then

A(r, p:q) = [ arp | · · · | arq ] ∈ IR1×(q−p+1) .

Likewise, if 1 ≤ p ≤ q ≤ m and 1 ≤ c ≤ n, then

A(p:q, c) =

⎡⎢⎣ apc

...
aqc

⎤⎥⎦ ∈ IRq−p+1.

With this notation we can rewrite Algorithm 1.2.1 as

for i = 1:n
for j = i:n

C(i, j) = C(i, j) + A(i, i:j)·B(i:j, j)
end

end

This highlights the abbreviated inner products that are computed by the innermost
loop.

1.2.4 Assessing Work

Obviously, upper triangular matrix multiplication involves less arithmetic than full
matrix multiplication. Looking at Algorithm 1.2.1, we see that cij requires 2(j − i+1)
flops if (i ≤ j). Using the approximations

q∑
p=1

p =
q(q + 1)

2
≈ q2

2

and
q∑

p=1

p2 =
q3

3
+

q2

2
+

q

6
≈ q3

3
,
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we find that triangular matrix multiplication requires one-sixth the number of flops as
full matrix multiplication:

n∑
i=1

n∑
j=i

2(j − i + 1) =
n∑

i=1

n−i+1∑
j=1

2j ≈
n∑

i=1

2(n − i + 1)2

2
=

n∑
i=1

i2 ≈ n3

3
.

We throw away the low-order terms since their inclusion does not contribute to what
the flop count “says.” For example, an exact flop count of Algorithm 1.2.1 reveals
that precisely n3/3 + n2 + 2n/3 flops are involved. For large n (the typical situation
of interest) we see that the exact flop count offers no insight beyond the simple n3/3
accounting.

Flop counting is a necessarily crude approach to the measurement of program
efficiency since it ignores subscripting, memory traffic, and other overheads associ-
ated with program execution. We must not infer too much from a comparison of flop
counts. We cannot conclude, for example, that triangular matrix multiplication is six
times faster than full matrix multiplication. Flop counting captures just one dimen-
sion of what makes an algorithm efficient in practice. The equally relevant issues of
vectorization and data locality are taken up in §1.5.

1.2.5 Band Storage

Suppose A ∈ IRn×n has lower bandwidth p and upper bandwidth q and assume that p
and q are much smaller than n. Such a matrix can be stored in a (p+ q +1)-by-n array
A.band with the convention that

aij = A.band(i − j + q + 1, j) (1.2.1)

for all (i, j) that fall inside the band, e.g.,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 0 0 0
a21 a22 a23 a24 0 0
0 a32 a33 a34 a35 0
0 0 a43 a44 a45 a46

0 0 0 a54 a55 a56

0 0 0 0 a65 a66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒

⎡⎢⎢⎢⎣
∗ ∗ a13 a24 a35 a46

* a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66

a21 a32 a43 a54 a65 ∗

⎤⎥⎥⎥⎦ .

Here, the “∗” entries are unused. With this data structure, our column-oriented gaxpy
algorithm (Algorithm 1.1.4) transforms to the following:

Algorithm 1.2.2 (Band Storage Gaxpy) Suppose A ∈ IRn×n has lower bandwidth p
and upper bandwidth q and is stored in the A.band format (1.2.1). If x, y ∈ IRn, then
this algorithm overwrites y with y + Ax.

for j = 1:n
α1 = max(1, j − q), α2 = min(n, j + p)

β1 = max(1, q + 2 − j), β2 = β1 + α2 − α1

y(α1:α2) = y(α1:α2) + A.band(β1:β2, j)x(j)
end
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Notice that by storing A column by column in A.band, we obtain a column-oriented
saxpy procedure. Indeed, Algorithm 1.2.2 is derived from Algorithm 1.1.4 by recog-
nizing that each saxpy involves a vector with a small number of nonzeros. Integer
arithmetic is used to identify the location of these nonzeros. As a result of this careful
zero/nonzero analysis, the algorithm involves just 2n(p+ q +1) flops with the assump-
tion that p and q are much smaller than n.

1.2.6 Working with Diagonal Matrices

Matrices with upper and lower bandwidth zero are diagonal. If D ∈ IRm×n is diagonal,
then we use the notation

D = diag(d1, . . . , dq), q = min{m, n} ⇐⇒ di = dii.

Shortcut notations when the dimension is clear include diag(d) and diag(di). Note
that if D = diag(d) ∈ IRn×n and x ∈ IRn, then Dx = d. ∗ x. If A ∈ IRm×n, then pre-
multiplication by D = diag(d1, . . . , dm) ∈ IRm×m scales rows,

B = DA ⇐⇒ B(i, :) = di ·A(i, :), i = 1:m

while post-multiplication by D = diag(d1, . . . , dn) ∈ IRn×n scales columns,

B = AD ⇐⇒ B(:, j) = dj ·A(:, j), j = 1:n.

Both of these special matrix-matrix multiplications require mn flops.

1.2.7 Symmetry

A matrix A ∈ IRn×n is symmetric if AT = A and skew-symmetric if AT = −A. Likewise,
a matrix A ∈ Cn×n is Hermitian if AH = A and skew-Hermitian if AH = −A. Here
are some examples:

Symmetric:

⎡⎣ 1 2 3
2 4 5
3 5 6

⎤⎦ , Hermitian:

⎡⎣ 1 2−3i 4−5i
2+3i 6 7−8i
4+5i 7+8i 9

⎤⎦ ,

Skew-Symmetric:

⎡⎣ 0 −2 3
2 0 −5

−3 5 0

⎤⎦ , Skew-Hermitian:

⎡⎣ i −2+3i −4+5i
2+3i 6i −7+8i
4+5i 7+8i 9i

⎤⎦ .

For such matrices, storage requirements can be halved by simply storing the lower
triangle of elements, e.g.,

A =

⎡⎣ 1 2 3
2 4 5
3 5 6

⎤⎦ ⇔ A.vec =
[

1 2 3 4 5 6
]
.

For general n, we set

A.vec((n − j/2)(j − 1) + i) = aij 1 ≤ j ≤ i ≤ n. (1.2.2)
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Here is a column-oriented gaxpy with the matrix A represented in A.vec.

Algorithm 1.2.3 (Symmetric Storage Gaxpy) Suppose A ∈ IRn×n is symmetric and
stored in the A.vec style (1.2.2). If x, y ∈ IRn, then this algorithm overwrites y with
y + Ax.

for j = 1:n
for i = 1:j − 1

y(i) = y(i) + A.vec((i − 1)n − i(i − 1)/2 + j)x(j)
end
for i = j:n

y(i) = y(i) + A.vec((j − 1)n − j(j − 1)/2 + i)x(j)
end

end

This algorithm requires the same 2n2 flops that an ordinary gaxpy requires.

1.2.8 Permutation Matrices and the Identity

We denote the n-by-n identity matrix by In, e.g.,

I4 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

We use the notation ei to designate the ith column of In. If the rows of In are reordered,
then the resulting matrix is said to be a permutation matrix, e.g.,

P =

⎡⎢⎢⎣
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎤⎥⎥⎦ . (1.2.3)

The representation of an n-by-n permutation matrix requires just an n-vector of inte-
gers whose components specify where the 1’s occur. For example, if v ∈ IRn has the
property that vi specifies the column where the “1” occurs in row i, then y = Px implies
that yi = xvi

, i = 1:n. In the example above, the underlying v-vector is v = [ 2 4 3 1 ].

1.2.9 Specifying Integer Vectors and Submatrices

For permutation matrix work and block matrix manipulation (§1.3) it is convenient to
have a method for specifying structured integer vectors of subscripts. The Matlab
colon notation is again the proper vehicle and a few examples suffice to show how it
works. If n = 8, then

v = 1:2:n =⇒ v = [ 1 3 5 7] ,

v = n:−1:1 =⇒ v = [ 8 7 6 5 4 3 2 1 ] ,

v = [ (1:2:n) (2:2:n) ] =⇒ v = [ 1 3 5 7 2 4 6 8 ] .
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Suppose A ∈ IRm×n and that v ∈ IRr and w ∈ IRs are integer vectors with the
property that 1 ≤ vi ≤ m and 1 ≤ wi ≤ n. If B = A(v, w), then B ∈ IRr×s is the
matrix defined by bij = avi,wj

for i = 1:r and j = 1:s. Thus, if A ∈ IR8×8, then

A(1:2:8, 2:2:8) =

⎡⎢⎢⎣
a12 a14 a16 a18
a32 a34 a36 a38
a52 a54 a56 a58
a72 a74 a76 a78

⎤⎥⎥⎦ .

1.2.10 Working with Permutation Matrices

Using the colon notation, the 4-by-4 permutation matrix in (1.2.3) is defined by P =
I4(v, :) where v = [ 2 4 3 1 ]. In general, if v ∈ IRn is a permutation of the vector
1:n = [1, 2, . . . , n] and P = In(v, :), then

y = Px =⇒ y = x(v) =⇒ yi = xvi
, i = 1:n

y = PT x =⇒ y(v) = x =⇒ yvi = xi, i = 1:n

The second result follows from the fact that vi is the row index of the “1” in column i
of PT . Note that PT (Px) = x. The inverse of a permutation matrix is its transpose.

The action of a permutation matrix on a given matrix A ∈ IRm×n is easily de-
scribed. If P = Im(v, :) and Q = In(w, :), then PAQT = A(v, w). It also follows that
In(v, :) · In(w, :) = In(w(v), :). Although permutation operations involve no flops, they
move data and contribute to execution time, an issue that is discussed in §1.5.

1.2.11 Three Famous Permutation Matrices

The exchange permutation En turns vectors upside down, e.g.,

y = E4x =

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x4
x3
x2
x1

⎤⎥⎥⎦ .

In general, if v = n: −1:1, then the n-by-n exchange permutation is given by En =
In(v, :). No change results if a vector is turned upside down twice and thus, ET

n En =
E2

n = In.
The downshift permutation Dn pushes the components of a vector down one notch

with wraparound, e.g.,

y = D4x =

⎡⎢⎢⎣
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x4
x1
x2
x3

⎤⎥⎥⎦ .

In general, if v = [ (2:n) 1 ], then the n-by-n downshift permutation is given by Dn =
In(v, :). Note that DT

n can be regarded as an upshift permutation.
The mod-p perfect shuffle permutation Pp,r treats the components of the input

vector x ∈ IRn, n = pr, as cards in a deck. The deck is cut into p equal “piles” and
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reassembled by taking one card from each pile in turn. Thus, if p = 3 and r = 4, then
the piles are x(1:4), x(5:8), and x(9:12) and

y = P3,4x = Ipr([ 1 5 9 2 6 10 3 7 11 4 8 12 ], :)x =

⎡⎢⎢⎣
x(1:4:12)
x(2:4:12)
x(3:4:12)
x(4:4:12)

⎤⎥⎥⎦ .

In general, if n = pr, then

Pp,r = In([ (1:r:n) (2:r:n) · · · (r:r:n)], :)
and it can be shown that

PT
p,r = In([ (1:p:n) (2:p:n) · · · (p:p:n) ], :). (1.2.4)

Continuing with the card deck metaphor, PT
p,r reassembles the card deck by placing all

the xi having i mod p = 1 first, followed by all the xi having i mod p = 2 second, and
so on.

Problems

P1.2.1 Give an algorithm that overwrites A with A2 where A ∈ IRn×n. How much extra storage is
required? Repeat for the case when A is upper triangular.

P1.2.2 Specify an algorithm that computes the first column of the matrix M = (A−λ1I) · · · (A−λrI)
where A ∈ IRn×n is upper Hessenberg and λ1, . . . , λr are given scalars. How many flops are required
assuming that r � n?

P1.2.3 Give a column saxpy algorithm for the n-by-n matrix multiplication problem C = C + AB

where A is upper triangular and B is lower triangular.

P1.2.4 Extend Algorithm 1.2.2 so that it can handle rectangular band matrices. Be sure to describe
the underlying data structure.

P1.2.5 If A = B + iC is Hermitian with B ∈ IRn×n, then it is easy to show that BT = B and
CT = −C. Suppose we represent A in an array A.herm with the property that A.herm(i, j) houses
bij if i ≥ j and cij if j > i. Using this data structure, write a matrix-vector multiply function that
computes Re(z) and Im(z) from Re(x) and Im(x) so that z = Ax.

P1.2.6 Suppose X ∈ IRn×p and A ∈ IRn×n are given and that A is symmetric. Give an algorithm for
computing B = XT AX assuming that both A and B are to be stored using the symmetric storage
scheme presented in §1.2.7.

P1.2.7 Suppose a ∈ IRn is given and that A ∈ IRn×n has the property that aij = a|i−j|+1. Give an
algorithm that overwrites y with y + Ax where x, y ∈ IRn are given.

P1.2.8 Suppose a ∈ IRn is given and that A ∈ IRn×n has the property that aij = a((i+j−1) mod n)+1.
Give an algorithm that overwrites y with y + Ax where x, y ∈ IRn are given.

P1.2.9 Develop a compact storage scheme for symmetric band matrices and write the corresponding
gaxpy algorithm.

P1.2.10 Suppose A ∈ IRn×n, u ∈ IRn, and v ∈ IRn are given and that k ≤ n is an integer. Show how to
compute X ∈ IRn×k and Y ∈ IRn×k so that (A + uvT )k = Ak + XY T . How many flops are required?

P1.2.11 Suppose x ∈ IRn. Write a single-loop algorithm that computes y = Dk
nx where k is a positive

integer and Dn is defined in §1.2.11.
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P1.2.12 (a) Verify (1.2.4). (b) Show that PT
p,r = Pr,p.

P1.2.13 The number of n-by-n permutation matrices is n!. How many of these are symmetric?

Notes and References for §1.2

See LAPACK for a discussion about appropriate data structures when symmetry and/or bandedness is
present in addition to

F.G. Gustavson (2008). “The Relevance of New Data Structure Approaches for Dense Linear Al-
gebra in the New Multi-Core/Many-Core Environments,” in Proceedings of the 7th international
Conference on Parallel Processing and Applied Mathematics, Springer-Verlag, Berlin, 618–621.

The exchange, downshift, and perfect shuffle permutations are discussed in Van Loan (FFT).

1.3 Block Matrices and Algorithms
A block matrix is a matrix whose entries are themselves matrices. It is a point of view.
For example, an 8-by-15 matrix of scalars can be regarded as a 2-by-3 block matrix
with 4-by-5 entries. Algorithms that manipulate matrices at the block level are often
more efficient because they are richer in level-3 operations. The derivation of many
important algorithms is often simplified by using block matrix notation.

1.3.1 Block Matrix Terminology

Column and row partitionings (§1.1.7) are special cases of matrix blocking. In general,
we can partition both the rows and columns of an m-by-n matrix A to obtain

A =

⎡⎢⎣ A11
...

Aq1

· · ·

· · ·

A1r

...
Aqr

⎤⎥⎦ m1

mq

n1 nr

where m1 + · · · + mq = m, n1 + · · · + nr = n, and Aαβ designates the (α, β) block
(submatrix). With this notation, block Aαβ has dimension mα-by-nβ and we say that
A = (Aαβ) is a q-by-r block matrix.

Terms that we use to describe well-known band structures for matrices with scalar
entries have natural block analogs. Thus,

diag(A11, A22, A33) =

⎡⎣ A11 0 0
0 A22 0
0 0 A33

⎤⎦
is block diagonal while the matrices

L =

⎡⎣ L11 0 0
L21 L22 0
L31 L32 L33

⎤⎦ , U =

⎡⎣ U11 U12 U13
0 U22 U23
0 0 U33

⎤⎦ , T =

⎡⎣ T11 T12 0
T21 T22 T23
0 T32 T33

⎤⎦ ,

are, respectively, block lower triangular, block upper triangular, and block tridiagonal.
The blocks do not have to be square in order to use this block sparse terminology.
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1.3.2 Block Matrix Operations

Block matrices can be scaled and transposed:

µ

⎡⎣ A11 A12
A21 A22
A31 A32

⎤⎦ =

⎡⎣ µA11 µA12
µA21 µA22
µA31 µA32

⎤⎦ ,

⎡⎣ A11 A12
A21 A22
A31 A32

⎤⎦T

=

[
AT

11 AT
21 AT

31

AT
12 AT

22 AT
32

]
.

Note that the transpose of the original (i, j) block becomes the (j, i) block of the result.
Identically blocked matrices can be added by summing the corresponding blocks:⎡⎣ A11 A12

A21 A22
A31 A32

⎤⎦ +

⎡⎣ B11 B12
B21 B22
B31 B32

⎤⎦ =

⎡⎣ A11 + B11 A12 + B12
A21 + B21 A22 + B22
A31 + B31 A32 + B32

⎤⎦ .

Block matrix multiplication requires more stipulations about dimension. For example,
if ⎡⎣ A11 A12

A21 A22
A31 A32

⎤⎦[
B11 B12
B21 B22

]
=

⎡⎣ A11B11+A12B21 A11B12+A12B22
A21B11+A22B21 A21B12+A22B22
A31B11+A32B21 A31B12+A32B22

⎤⎦
is to make sense, then the column dimensions of A11, A21, and A31 must each be equal
to the row dimension of both B11 and B12. Likewise, the column dimensions of A12,
A22, and A32 must each be equal to the row dimensions of both B21 and B22.

Whenever a block matrix addition or multiplication is indicated, it is assumed
that the row and column dimensions of the blocks satisfy all the necessary constraints.
In that case we say that the operands are partitioned conformably as in the following
theorem.

Theorem 1.3.1. If

A =

⎡⎢⎣ A11
...

Aq1

· · ·

· · ·

A1s

...
Aqs

⎤⎥⎦ m1

mq

p1 ps

, B =

⎡⎢⎣ B11
...

Bs1

· · ·

· · ·

B1r

...
Bsr

⎤⎥⎦ p1

ps

n1 nr

,

and we partition the product C = AB as follows,

C =

⎡⎢⎣ C11
...

Cq1

· · ·

· · ·

C1r

...
Cqr

⎤⎥⎦ m1

mq

n1 nr

,

then for α = 1:q and β = 1:r we have Cαβ =
s∑

γ=1

AαγBγβ.



24 Chapter 1. Matrix Multiplication

Proof. The proof is a tedious exercise in subscripting. Suppose 1 ≤ α ≤ q and
1 ≤ β ≤ r. Set M = m1 + · · · + mα−1 and N = n1 + · · ·nβ−1. It follows that if
1 ≤ i ≤ mα and 1 ≤ j ≤ nβ then

[Cαβ ]ij =
p1+···ps∑

k=1

aM+i,kbk,N+j =
s∑

γ=1

p1+···+pγ∑
k=p1+···+pγ−1+1

aM+i,kbk,N+j

=
s∑

γ=1

pγ∑
k=1

[Aαγ ]ik [Bγβ ]kj =
s∑

γ=1

[AαγBγβ ]ij =

[
s∑

γ=1

AαγBγβ

]
ij

.

Thus, Cαβ = Aα,1B1,β + · · · + Aα,sBs,β .

If you pay attention to dimension and remember that matrices do not commute, i.e.,
A11B11 +A12B21 
= B11A11 +B21A12, then block matrix manipulation is just ordinary
matrix manipulation with the aij ’s and bij ’s written as Aij ’s and Bij ’s!

1.3.3 Submatrices

Suppose A ∈ IRm×n. If α = [α1, . . . , αs] and β = [β1, . . . , βt] are integer vectors with
distinct components that satisfy 1 ≤ αi ≤ m, and 1 ≤ βi ≤ n, then

A(α, β) =

⎡⎢⎣ aα1,β1 · · · aα1,βt

...
. . .

...

aαs,β1 · · · aαs,βt

⎤⎥⎦
is an s-by-t submatrix of A. For example, if A ∈ IR8×6, α = [2 4 6 8], and β = [4 5 6],
then

A(α, β) =

⎡⎢⎢⎢⎣
a24 a25 a26

a44 a45 a46

a64 a65 a66

a84 a85 a86

⎤⎥⎥⎥⎦ .

If α = β, then A(α, β) is a principal submatrix. If α = β = 1:k and 1 ≤ k ≤ min{m, n},
then A(α, β) is a leading principal submatrix.

If A ∈ IRm×n and

A =

⎡⎢⎣ A11
...

Aq1

· · ·

· · ·

A1s

...
Aqs

⎤⎥⎦ m1

mq

n1 nr

,

then the colon notation can be used to specify the individual blocks. In particular,

Aij = A(τ + 1:τ + mi, µ + 1:µ + nj)

where τ = m1 + · · ·+ mi−1 and µ = n1 + · · ·+ nj−1. Block matrix notation is valuable
for the way in which it hides subscript range expressions.
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1.3.4 The Blocked Gaxpy

As an exercise in block matrix manipulation and submatrix designation, we consider
two block versions of the gaxpy operation y = y + Ax where A ∈ IRm×n, x ∈ IRn, and
y ∈ IRm. If

A =

⎡⎢⎣ A1
...

Aq

⎤⎥⎦ m1

mq

and y =

⎡⎢⎣ y1
...
yq

⎤⎥⎦ m1

mq

,

then ⎡⎢⎣ y1
...
yq

⎤⎥⎦ =

⎡⎢⎣ y1
...
yq

⎤⎥⎦ +

⎡⎢⎣ A1
...

Aq

⎤⎥⎦x,

and we obtain

α = 0
for i = 1:q

idx = α+1 :α+mi

y(idx) = y(idx) + A(idx, :)·x
α = α + mi

end

The assignment to y(idx) corresponds to yi = yi + Aix. This row-blocked version of
the gaxpy computation breaks the given gaxpy into q “shorter” gaxpys. We refer to
Ai as the ith block row of A.

Likewise, with the partitionings

A =
[

A1 |
n1

· · · |Ar

nr

]
and x =

⎡⎢⎣ x1
...

xr

⎤⎥⎦ n1

nr

,

we see that

y = y + [ A1 | · · · | Ar ]

⎡⎢⎣ x1
...

xr

⎤⎥⎦ = y +
r∑

j=1

Ajxj

and we obtain

β = 0
for j = 1:r

jdx = β+1 :β+nj

y = y + A(:, jdx)·x(jdx)

β = β + nj

end

The assignment to y corresponds to y = y + Ajxj . This column-blocked version of the
gaxpy computation breaks the given gaxpy into r “thinner” gaxpys. We refer to Aj as
the jth block column of A.
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1.3.5 Block Matrix Multiplication

Just as ordinary, scalar-level matrix multiplication can be arranged in several possible
ways, so can the multiplication of block matrices. To illustrate this with a minimum
of subscript clutter, we consider the update

C = C + AB

where we regard A = (Aαβ), B = (Bαβ), and C = (Cαβ) as N -by-N block matrices
with �-by-� blocks. From Theorem 1.3.1 we have

Cαβ = Cαβ +
N∑

γ=1

AαγBγβ , α = 1:N, β = 1:N.

If we organize a matrix multiplication procedure around this summation, then we
obtain a block analog of Algorithm 1.1.5:

for α = 1:N

i = (α − 1)� + 1:α�

for β = 1:N

j = (β − 1)� + 1:β�

for γ = 1:N

k = (γ − 1)� + 1:γ�

C(i, j) = C(i, j) + A(i, k)·B(k, j)
end

end
end

Note that, if � = 1, then α ≡ i, β ≡ j, and γ ≡ k and we revert to Algorithm 1.1.5.
Analogously to what we did in §1.1, we can obtain different variants of this proce-

dure by playing with loop orders and blocking strategies. For example, corresponding
to ⎡⎢⎣ C11 · · · C1N

...
. . .

...
CN1 · · · CNN

⎤⎥⎦ +

⎡⎢⎣ A1
...

AN

⎤⎥⎦ [
B1 · · · BN

]

where Ai ∈ IR�×n and Bj ∈ IRn×�, we obtain the following block outer product compu-
tation:

for i = 1:N

for j = 1:N

Cij = Cij + AiBj

end
end
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1.3.6 The Kronecker Product

It is sometimes the case that the entries in a block matrix A are all scalar multiples of
the same matrix. This means that A is a Kronecker product. Formally, if B ∈ IRm1×n1

and C ∈ IRm2×n2, then their Kronecker product B ⊗ C is an m1-by-n1 block matrix
whose (i, j) block is the m2-by-n2 matrix bijC. Thus, if

A =

⎡⎣ b11 b12
b21 b22
b31 b32

⎤⎦ ⊗

⎡⎣ c11 c12 c13
c21 c22 c23
c31 c32 c33

⎤⎦
then

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11c11 b11c12 b11c13 b12c11 b12c12 b12c13
b11c21 b11c22 b11c23 b12c21 b12c22 b12c23
b11c31 b11c32 b11c33 b12c31 b12c32 b12c33

b21c11 b21c12 b21c13 b22c11 b22c12 b22c13
b21c21 b21c22 b21c23 b22c21 b22c22 b22c23
b21c31 b21c32 b21c33 b22c31 b22c32 b22c33

b31c11 b31c12 b31c13 b32c11 b32c12 b32c13
b31c21 b31c22 b31c23 b32c21 b32c22 b32c23
b31c31 b31c32 b31c33 b32c31 b32c32 b32c33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This type of highly structured blocking occurs in many applications and results in
dramatic economies when fully exploited.

Note that if B has a band structure, then B ⊗ C “inherits” that structure at the
block level. For example, if

B is

⎧⎪⎪⎨⎪⎪⎩
diagonal
tridiagonal
lower triangular
upper triangular

⎫⎪⎪⎬⎪⎪⎭ then B ⊗ C is

⎧⎪⎪⎨⎪⎪⎩
block diagonal
block tridiagonal
block lower triangular
block upper triangular

⎫⎪⎪⎬⎪⎪⎭ .

Important Kronecker product properties include:

(B ⊗ C)T = BT ⊗ CT , (1.3.1)

(B ⊗ C)(D ⊗ F ) = BD ⊗ CF, (1.3.2)

(B ⊗ C)−1 = B−1 ⊗ C−1, (1.3.3)

B ⊗ (C ⊗ D) = (B ⊗ C) ⊗ D. (1.3.4)

Of course, the products BD and CF must be defined for (1.3.2) to make sense. Like-
wise, the matrices B and C must be nonsingular in (1.3.3).

In general, B ⊗ C 
= C ⊗ B. However, there is a connection between these two
matrices via the perfect shuffle permutation that is defined in §1.2.11. If B ∈ IRm1×n1

and C ∈ IRm2×n2, then
P (B ⊗ C)QT = C ⊗ B (1.3.5)

where P = Pm1,m2 and Q = Pn1,n2 .
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1.3.7 Reshaping Kronecker Product Expressions

A matrix-vector product in which the matrix is a Kronecker product is “secretly” a
matrix-matrix-matrix product. For example, if B ∈ IR3×2, C ∈ IRm×n, and x1, x2 ∈ IRn,
then ⎡⎣ y1

y2
y3

⎤⎦ = (B ⊗ C)
[

x1
x2

]
=

⎡⎣ b11C b12C
b21C b22C
b31C b32C

⎤⎦[
x1
x2

]

=

⎡⎣ b11Cx1 + b12Cx2
b21Cx1 + b22Cx2
b31Cx1 + b32Cx2

⎤⎦
where y1, y2, y3 ∈ IRm. On the other hand, if we define the matrices

X = [ x1 x2 ] and Y = [ y1 y2 y3 ] ,

then Y = CXBT .
To be precise about this reshaping, we introduce the vec operation. If X ∈ IRm×n,

then vec(X) is an nm-by-1 vector obtained by “stacking” X’s columns:

vec(X) =

⎡⎢⎣ X(:, 1)
...

X(:, n)

⎤⎥⎦ .

If B ∈ IRm1×n1, C ∈ IRm2×n2, and X ∈ IRn1×m2, then

Y = CXBT ⇔ vec(Y ) = (B ⊗ C)vec(X). (1.3.6)

Note that if B, C, X ∈ IRn×n, then Y = CXBT costs O(n3) to evaluate while the
disregard of Kronecker structure in y = (B ⊗ C)x leads to an O(n4) calculation. This
is why reshaping is central for effective Kronecker product computation. The reshape
operator is handy in this regard. If A ∈ IRm×n and m1n1 = mn, then

B = reshape(A, m1, n1)

is the m1-by-n1 matrix defined by vec(B) = vec(A). Thus, if A ∈ IR3×4, then

reshape(A, 2, 6) =
[

a11 a31 a22 a13 a33 a24
a21 a12 a32 a23 a14 a34

]
.

1.3.8 Multiple Kronecker Products

Note that A = B ⊗ C ⊗ D can be regarded as a block matrix whose entries are block
matrices. In particular, bijck�D is the (k, �) block of A’s (i, j) block.

As an example of a multiple Kronecker product computation, let us consider the
calculation of y = (B ⊗ C ⊗ D)x where B, C, D ∈ IRn×n and x ∈ IRN with N = n3.
Using (1.3.6) it follows that

reshape(y, n2, n) = (C ⊗ D) · reshape(x, n2, n) · BT .
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Thus, if
F = reshape(x, n2, n) · BT ,

then G = (C ⊗ D)F ∈ IRn2×n can computed column-by-column using (1.3.6):

G(:, k) = reshape(D · reshape(F (:, k), n, n) · CT , n2, 1) k = 1:n.

It follows that y = reshape(G, N, 1). A careful accounting reveals that 6n4 flops are
required. Ordinarily, a matrix-vector product of this dimension would require 2n6 flops.

The Kronecker product has a prominent role to play in tensor computations and
in §13.1 we detail more of its properties.

1.3.9 A Note on Complex Matrix Multiplication

Consider the complex matrix multiplication update

C1 + iC2 = (C1 + iC2) + (A1 + iA2)(B1 + iB2)

where all the matrices are real and i2 = −1. Comparing the real and imaginary parts
we conclude that [

C1

C2

]
=

[
C1

C2

]
+

[
A1 −A2

A2 A1

][
B1

B2

]
.

Thus, complex matrix multiplication corresponds to a structured real matrix multipli-
cation that has expanded dimension.

1.3.10 Hamiltonian and Symplectic Matrices

While on the topic of 2-by-2 block matrices, we identify two classes of structured
matrices that arise at various points later on in the text. A matrix M ∈ IR2n×2n is a
Hamiltonian matrix if it has the form

M =

[
A G

F −AT

]

where A, F, G ∈ IRn×n and F and G are symmetric. Hamiltonian matrices arise in
optimal control and other application areas. An equivalent definition can be given in
terms of the permutation matrix

J =

[
0 In

−In 0

]
.

In particular, if
JMJT = −MT ,

then M is Hamiltonian. A related class of matrices are the symplectic matrices. A
matrix S ∈ IR2n×2n is symplectic if

ST JS = J.
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If

S =

[
S11 S12

S21 S22

]
where the blocks are n-by-n, then it follows that both ST

11S21 and ST
22S12 are symmetric

and ST
11S22 = In + ST

21S12.

1.3.11 Strassen Matrix Multiplication

We conclude this section with a completely different approach to the matrix-matrix
multiplication problem. The starting point in the discussion is the 2-by-2 block matrix
product [

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

][
B11 B12

B21 B22

]
where each block is square. In the ordinary algorithm, Cij = Ai1B1j + Ai2B2j . There
are 8 multiplies and 4 adds. Strassen (1969) has shown how to compute C with just 7
multiplies and 18 adds:

P1 = (A11 + A22)(B11 + B22),

P2 = (A21 + A22)B11,

P3 = A11(B12 − B22),

P4 = A22(B21 − B11),

P5 = (A11 + A12)B22,

P6 = (A21 − A11)(B11 + B12),

P7 = (A12 − A22)(B21 + B22),

C11 = P1 + P4 − P5 + P7,

C12 = P3 + P5,

C21 = P2 + P4,

C22 = P1 + P3 − P2 + P6.

These equations are easily confirmed by substitution. Suppose n = 2m so that the
blocks are m-by-m. Counting adds and multiplies in the computation C = AB, we find
that conventional matrix multiplication involves (2m)3 multiplies and (2m)3 − (2m)2

adds. In contrast, if Strassen’s algorithm is applied with conventional multiplication
at the block level, then 7m3 multiplies and 7m3 + 11m2 adds are required. If m  1,
then the Strassen method involves about 7/8 the arithmetic of the fully conventional
algorithm.

Now recognize that we can recur on the Strassen idea. In particular, we can apply
the Strassen algorithm to each of the half-sized block multiplications associated with
the Pi. Thus, if the original A and B are n-by-n and n = 2q, then we can repeatedly
apply the Strassen multiplication algorithm. At the bottom “level,” the blocks are
1-by-1.

Of course, there is no need to recur down to the n = 1 level. When the block
size gets sufficiently small, (n ≤ nmin), it may be sensible to use conventional matrix
multiplication when finding the Pi. Here is the overall procedure:
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Algorithm 1.3.1 (Strassen Matrix Multiplication) Suppose n = 2q and that A ∈ IRn×n

and B ∈ IRn×n. If nmin = 2d with d ≤ q, then this algorithm computes C = AB by
applying Strassen procedure recursively.

function C = strass(A, B, n, nmin)

if n ≤ nmin

C = AB (conventionally computed)
else

m = n/2; u = 1:m; v = m + 1:n

P1 = strass(A(u, u) + A(v, v), B(u, u) + B(v, v), m, nmin)

P2 = strass(A(v, u) + A(v, v), B(u, u), m, nmin)

P3 = strass(A(u, u), B(u, v) − B(v, v), m, nmin)

P4 = strass(A(v, v), B(v, u) − B(u, u), m, nmin)

P5 = strass(A(u, u) + A(u, v), B(v, v), m, nmin)

P6 = strass(A(v, u) − A(u, u), B(u, u) + B(u, v), m, nmin)

P7 = strass(A(u, v) − A(v, v), B(v, u) + B(v, v), m, nmin)

C(u, u) = P1 + P4 − P5 + P7

C(u, v) = P3 + P5

C(v, u) = P2 + P4

C(v, v) = P1 + P3 − P2 + P6
end

Unlike any of our previous algorithms, strass is recursive. Divide and conquer algo-
rithms are often best described in this fashion. We have presented strass in the style
of a Matlab function so that the recursive calls can be stated with precision.

The amount of arithmetic associated with strass is a complicated function of n and
nmin. If nmin  1, then it suffices to count multiplications as the number of additions
is roughly the same. If we just count the multiplications, then it suffices to examine the
deepest level of the recursion as that is where all the multiplications occur. In strass
there are q − d subdivisions and thus 7q−d conventional matrix-matrix multiplications
to perform. These multiplications have size nmin and thus strass involves about s =
(2d)37q−d multiplications compared to c = (2q)3, the number of multiplications in the
conventional approach. Notice that

s

c
=

(
2d

2q

)3

7q−d =
(

7
8

)q−d

.

If d = 0 , i.e., we recur on down to the 1-by-1 level, then

s = (7/8)q
c = 7q = nlog2 7 ≈ n2.807 .

Thus, asymptotically, the number of multiplications in Strassen’s method is O(n2.807).
However, the number of additions (relative to the number of multiplications) becomes
significant as nmin gets small.
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Problems

P1.3.1 Rigorously prove the following block matrix equation:⎡⎣ A11 · · · A1r

...
. . .

...
Aq1 · · · Aqr

⎤⎦T

=

⎡⎣ AT
11 · · · AT

q1
...

. . .
...

AT
1r · · · AT

qr

⎤⎦ .

P1.3.2 Suppose M ∈ IRn×n is Hamiltonian. How many flops are required to compute N = M2?

P1.3.3 What can you say about the 2-by-2 block structure of a matrix A ∈ IR2n×2n that satisfies
E2nAE2n = AT where E2n is the exchange permutation defined in §1.2.11. Explain why A is symmetric
about the “antidiagonal” that extends from the (2n, 1) entry to the (1, 2n) entry.

P1.3.4 Suppose

A =
[

0 B
BT 0

]
where B ∈ IRn×n is upper bidiagonal. Describe the structure of T = PAP T where P = P2,n is the
perfect shuffle permutation defined in §1.2.11.
P1.3.5 Show that if B and C are each permutation matrices, then B ⊗ C is also a permutation matrix.

P1.3.6 Verify Equation (1.3.5).

P1.3.7 Verify that if x ∈ IRm and y ∈ IRn, then y ⊗ x = vec(xyT ).

P1.3.8 Show that if B ∈ IRp×p, C ∈ IRq×q, and

x =

⎡⎣ x1
...

xp

⎤⎦ xi ∈ IRq ,

then

xT (B ⊗ C) x =

p∑
i=1

p∑
j=1

bij

(
xT

i Cxj

)
.

P1.3.9 Suppose A(k) ∈ IRnk×nk for k = 1:r and that x ∈ IRn where n = n1 · · ·nr. Give an efficient
algorithm for computing y =

(
A(r) ⊗ · · · ⊗A(2) ⊗A(1)

)
x.

P1.3.10 Suppose n is even and define the following function from IRn to IR:

f(x) = x(1:2:n)T x(2:2:n) =

n/2∑
i=1

x2i−1x2i.

(a) Show that if x, y ∈ IRn then

xT y =

n/2∑
i=1

(x2i−1 + y2i)(x2i + y2i−1)− f(x)− f(y).

(b) Now consider the n-by-n matrix multiplication C = AB. Give an algorithm for computing this
product that requires n3/2 multiplies once f is applied to the rows of A and the columns of B. See
Winograd (1968) for details.

P1.3.12 Adapt strass so that it can handle square matrix multiplication of any order. Hint: If the
“current” A has odd dimension, append a zero row and column.

P1.3.13 Adapt strass so that it can handle nonsquare products, e.g., C = AB where A ∈ IRm×r and
B ∈ IRr×n. Is it better to augment A and B with zeros so that they become square and equal in size
or to “tile” A and B with square submatrices?

P1.3.14 Let Wn be the number of flops that strass requires to compute an n-by-n product where n is
a power of 2. Note that W2 = 25 and that for n ≥ 4

Wn = 7Wn/2 + 18(n/2)2
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Show that for every ε > 0 there is a constant cε so Wn ≤ cεnω+ε where ω = log2 7 and n is any power
of two.

P1.3.15 Suppose B ∈ IRm1×n1, C ∈ IRm2×n2, and D ∈ IRm3×n3. Show how to compute the vector
y = (B ⊗ C ⊗D)x where x ∈ IRn and n = n1n2n3 is given. Is the order of operations important from
the flop point of view?
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At first glance, many of these methods do not appear to have practical value. However, this has proven
not to be the case, see:

D. Bailey (1988). “Extra High Speed Matrix Multiplication on the Cray-2,” SIAM J. Sci. Stat.
Comput. 9, 603–607.

N.J. Higham (1990). “Exploiting Fast Matrix Multiplication within the Level 3 BLAS,” ACM Trans.
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Winograd Variant of Strassen’s Matrix-Matrix Multiply Algorithm,” J. Comput. Phys. 110, 1–10.

Strassen’s algorithm marked the beginning of a search for the fastest possible matrix multiplication
algorithm from the complexity point of view. The exponent of matrix multiplication is the smallest
number ω such that, for all ε > 0, O(nω+ε) work suffices. The best known value of ω has decreased
over the years and is currently around 2.4. It is interesting to speculate on the existence of an O(n2+ε)
procedure.

1.4 Fast Matrix-Vector Products
In this section we refine our ability to think at the block level by examining some
matrix-vector products y = Ax in which the n-by-n matrix A is so highly structured
that the computation can be carried out with many fewer than the usual O(n2) flops.
These results are used in §4.8.

1.4.1 The Fast Fourier Transform

The discrete Fourier transform (DFT) of a vector x ∈ Cn is a matrix-vector product

y = Fnx
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where the DFT matrix Fn = (fkj) ∈ Cn×n is defined by

fkj = ω(k−1)(j−1)
n (1.4.1)

with
ωn = exp(−2πi/n) = cos(2π/n) − i · sin(2π/n). (1.4.2)

Here is an example:

F4 =

⎡⎢⎢⎢⎣
1 1 1 1

1 ω4 ω2
4 ω3

4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

⎤⎥⎥⎥⎦ .

The DFT is ubiquitous throughout computational science and engineering and one
reason has to do with the following property:

If n is highly composite, then it is possible to carry out the DFT
in many fewer than the O(n2) flops required by conventional
matrix-vector multiplication.

To illustrate this we set n = 2t and proceed to develop the radix-2 fast Fourier trans-
form.

The starting point is to examine the block structure of an even-order DFT matrix
after its columns are reordered so that the odd-indexed columns come first. Consider
the case

F8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(ω = ω8).

(Note that ω8 is a root of unity so that high powers simplify, e.g., [F8]4,7 = ω3·6 =
ω18 = ω2.) If cols = [1 3 5 7 2 4 6 8], then

F8(:, cols) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 ω2 ω4 ω6 ω ω3 ω5 ω7

1 ω4 1 ω4 ω2 ω6 ω2 ω6

1 ω6 ω4 ω2 ω3 ω ω7 ω5

1 1 1 1 −1 −1 −1 −1
1 ω2 ω4 ω6 −ω −ω3 −ω5 −ω7

1 ω4 1 ω4 −ω2 −ω6 −ω2 −ω6

1 ω6 ω4 ω2 −ω3 −ω −ω7 −ω5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The lines through the matrix are there to help us think of F8(:, cols) as a 2-by-2 matrix
with 4-by-4 blocks. Noting that ω2 = ω2

8 = ω4, we see that

F8(:, cols) =

[
F4 Ω4F4

F4 −Ω4F4

]
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where Ω4 = diag(1, ω8, ω
2
8 , ω3

8). It follows that if x ∈ IR8, then

F8x = F8(:, cols)·x(cols) =

[
F4 Ω4F4

F4 −Ω4F4

][
x(1:2:8)

x(2:2:8)

]
=

[
I4 Ω4

I4 −Ω4

][
F4x(1:2:8)

F4x(2:2:8)

]
.

Thus, by simple scalings we can obtain the 8-point DFT y = F8x from the 4-point
DFTs yT = F4 ·x(1:2:8) and yB = F4 ·x(2:2:8). In particular,

y(1:4) = yT + d .∗ yB,

y(5:8) = yT − d .∗ yB

where

d =

⎡⎢⎢⎣
1
ω
ω2

ω3

⎤⎥⎥⎦ .

More generally, if n = 2m, then y = Fnx is given by

y(1:m) = yT + d .∗ yB,

y(m + 1:n) = yT − d .∗ yB

where d =
[

1, ωn, . . . , ωm−1
n

]T and

yT = Fmx(1:2:n),

yB = Fmx(2:2:n).

For n = 2t, we can recur on this process until n = 1, noting that F1x = x.

Algorithm 1.4.1 If x ∈ Cn and n = 2t, then this algorithm computes the discrete
Fourier transform y = Fnx.

function y = fft(x, n)

if n = 1

y = x
else

m = n/2

yT = fft(x(1:2:n), m)

yB = fft(x(2:2:n), m)

ω = exp(−2πi/n)

d =
[

1, ω, · · · , ωm−1
]T

z = d .∗ yB

y =
[

yT + z
yT − z

]
end



36 Chapter 1. Matrix Multiplication

The flop analysis of fft requires an assessment of complex arithmetic and the solution
of an interesting recursion. We first observe that the multiplication of two complex
numbers involves six (real) flops while the addition of two complex numbers involves
two flops. Let fn be the number of flops that fft needs to produce the DFT of x ∈ Cn.
Scrutiny of the method reveals that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yT

yB

d
z
y

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ requires

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
fm flops
fm flops
6m flops
6m flops
2n flops

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
where n = 2m. Thus,

fn = 2fm + 8n (f1 = 0).

Conjecturing that fn = c·n log2(n) for some constant c, it follows that

fn = c·n log2(n) = 2c·m log2(m) + 8n = c·n(log2(n) − 1) + 8n,

from which we conclude that c = 8. Thus, fft requires 8n log2(n) flops. Appreciate
the speedup over conventional matrix-vector multiplication. If n = 220, it is a factor
of about 10,000. We mention that the fft flop count can be reduced to 5n log2(n) by
precomputing ωn, . . . , ω

n/2−1
n . See P1.4.1.

1.4.2 Fast Sine and Cosine Transformations

In the discrete sine transform (DST) problem, we are given real values x1, . . . , xm−1
and compute

yk =
m−1∑
j=1

sin
(

kjπ

m

)
xj (1.4.3)

for k = 1:m − 1. In the discrete cosine transform (DCT) problem, we are given real
values x0, x1, . . . , xm and compute

yk =
x0

2
+

m−1∑
j=1

cos
(

kjπ

m

)
xj +

(−1)kxm

2
(1.4.4)

for k = 0:m. Note that the sine and cosine evaluations “show up” in the DFT matrix.
Indeed, for k = 0:2m − 1 and j = 0:2m − 1 we have

[F2m]k+1,j+1 = ωkj
2m = cos

(
kjπ

m

)
− i sin

(
kjπ

m

)
. (1.4.5)

This suggests (correctly) that there is an exploitable connection between each of these
trigonometric transforms and the DFT. The key observation is to block properly the
real and imaginary parts of F2m. To that end, define the matrices Sr ∈ IRr×r and
Cr ∈ IRr×r by

[Sr]kj = sin
(

kjπ

r + 1

)
,

[Cr]kj = cos
(

kjπ

r + 1

)
,

k = 1:r, j = 1:r. (1.4.6)
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Recalling from §1.2.11 the definition of the exchange permutation En, we have

Theorem 1.4.1. Let m be a positive integer and define the vectors e and v by

eT = ( 1, 1, . . . , 1︸ ︷︷ ︸
m−1

), vT = ( −1, 1, . . . , (−1)m−1︸ ︷︷ ︸
m−1

).

If E = Em−1, C = Cm−1, and S = Sm−1, then

F2m =

⎡⎢⎢⎢⎣
1 eT 1 eT

e C − iS v (C + iS)E

1 vT (−1)m vT E

e E(C + iS) Ev E(C − iS)E

⎤⎥⎥⎥⎦ . (1.4.7)

Proof. It is clear from (1.4.5) that F2m(:, 1), F2m(1, :1), F2m(:, m+1), and F2m(m+1, :)
are correctly specified. It remains for us to show that equation (1.4.7) holds in blocks
positions (2,2), (2,4), (4,2), and (4,4). The (2,2) verification is straightforward:

[F2m(2:m, 2:m)]kj = cos
(

kjπ

m

)
− i sin

(
kjπ

m

)
= [C − iS]kj .

A little trigonometry is required to verify correctness in the (2,4) position:

[F2m(2:m, m + 2:2m)]kj = cos
(

k(m + j)π
m

)
− i sin

(
k(m + j)π

m

)

= cos
(

kjπ

m
+ kπ

)
− i sin

(
kjπ

m
+ kπ

)

= cos
(
−kjπ

m
+ kπ

)
+ i sin

(
−kjπ

m
+ kπ

)

= cos
(

(k(m − j)π
m

)
+ i sin

(
k(m − j)π

m

)

= [(C + iS)E]kj .

We used the fact that post-multiplying a matrix by the permutation E = Em−1 has
the effect of reversing the order of its columns. The recipes for F2m(m + 2:2m, 2:m)
and F2m(m + 2:2m, m + 2:2m) are derived similarly.

Using the notation of the theorem, we see that the sine transform (1.4.3) is a
matrix-vector product

y(1:m−1) = DST(m−1) · x(1:m−1)
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where
DST(m−1) = Sm−1. (1.4.8)

If x = x(1:m−1) and

xsin =

⎡⎢⎢⎢⎣
0

x

0

−Ex

⎤⎥⎥⎥⎦ ∈ IR2m, (1.4.9)

then since eT E = e and E2 = E we have

i

2
F2mxsin =

i

2

⎡⎢⎢⎢⎣
1 eT 1 eT

e C − iS v (C + iS)E

1 vT (−1)m vT E

e E(C + iS) Ev E(C − iS)E

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0

x

0

−Ex

⎤⎥⎥⎥⎦

=
i

2

⎡⎢⎢⎢⎣
eT x − eT Ex

−2iSx

vT x − vT E2x

i(ESx + ESE2x)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

Sx

0

−ESx

⎤⎥⎥⎥⎦ .

Thus, the DST of x(1:m−1) is a scaled subvector of F2mxsin.

Algorithm 1.4.2 The following algorithm assigns the DST of x1, . . . , xm−1 to y.

Set up the vector xsin defined by (1.4.9).

Use fft (e.g., Algorithm 1.4.1) to compute ỹ = F2mxsin

y = i · ỹ(2:m)/2

This computation involves O(m log2(m)) flops. We mention that the vector xsin is real
and highly structured, something that would be exploited in a truly efficient imple-
mentation.

Now let us consider the discrete cosine transform defined by (1.4.4). Using the
notation from Theorem 1.4.1, the DCT is a matrix-vector product

y(0:m) = DCT(m + 1) · x(0:m)

where

DCT(m + 1) =

⎡⎢⎣ 1/2 eT 1/2

e/2 Cm−1 v/2

1/2 vT (−1)m/2

⎤⎥⎦ (1.4.10)

If x̃ = x(1:m − 1) and

xcos =

⎡⎢⎢⎢⎣
x0

x̃

xm

Ex̃

⎤⎥⎥⎥⎦ ∈ IR2m, (1.4.11)
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then

1
2
F2mxcos =

1
2

⎡⎢⎢⎢⎣
1 eT 1 eT

e C − iS v (C + iS)E

1 vT (−1)m vT E

e E(C + iS) Ev E(C − iS)E

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x0

x̃

xm

Ex̃

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
(x0/2) + eT x̃ + (xm/2)

(x0/2)e + Cx̃ + (xm/2)v

(x0/2) + vT x̃ + (−1)m(xm/2)

(x0/2)e + ECx̃ + (xm/2)Ev

⎤⎥⎥⎥⎦ .

Notice that the top three components of this block vector define the DCT of x(0:m).
Thus, the DCT is a scaled subvector of F2mxcos.

Algorithm 1.4.3 The following algorithm assigns to y ∈ IRm+1 the DCT of x0, . . . , xm.

Set up the vector xcos ∈ IR2m defined by (1.4.11).

Use fft (e.g., Algorithm 1.4.1) to compute ỹ = F2mxcos

y = ỹ(1:m + 1)/2

This algorithm requires O(m log m) flops, but as with Algorithm 1.4.2, it can be more
efficiently implemented by exploiting symmetries in the vector xcos.

We mention that there are important variants of the DST and the DCT that can
be computed fast:

DST-II: yk =
m∑

j=1

sin
(

k(2j − 1)π
2m

)
xj , k = 1:m,

DST-III: yk =
m∑

j=1

sin
(

(2k − 1)jπ
2m

)
xj , k = 1:m,

DST-IV: yk =
m∑

j=1

sin
(

(2k − 1)(2j − 1)π
2m

)
xj , k = 1:m,

DCT-II: yk =
m−1∑
j=0

cos
(

k(2j − 1)π
2m

)
xj , k = 0:m−1,

DCT-III: yk =
x0

2
=

m−1∑
j=1

cos
(

(2k − 1)jπ
2m

)
xj , k = 0:m−1,

DCT-IV: yk =
m−1∑
j=0

cos
(

(2k − 1)(2j − 1)π
2m

)
xj , k = 0:m−1.

(1.4.12)

For example, if ỹ ∈ IR2m−1 is the DST of x̃ = [ x1, 0, x2, 0, . . . , 0, xm−1, xm ]T , then
ỹ(1:m) is the DST-II of x ∈ IRm. See Van Loan (FFT) for further details.
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1.4.3 The Haar Wavelet Transform

If n = 2t, then the Haar wavelet transform y = Wnx is a matrix-vector product in
which the transform matrix Wn ∈ IRn×n is defined recursively:

Wn =

⎧⎪⎪⎨⎪⎪⎩
[

Wm ⊗
(

1
1

)
Im ⊗

(
1

−1

) ]
if n = 2m,

[ 1 ] if n = 1.

Here are some examples:

W2 =
[

1 1
1 −1

]
,

W4 =

⎡⎢⎢⎣
1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

⎤⎥⎥⎦ ,

W8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

An interesting block pattern emerges if we reorder the rows of Wn so that the odd-
indexed rows come first:

PT
2,mWn =

[
Wm Im

Wm −Im

]
= (W2 ⊗ Im)

[
Wm 0

0 Im

]
. (1.4.13)

Thus, if x ∈ IRn, xT = x(1:m), and xB = x(m + 1:n), then

y = Wnx = P2,m

[
Im Im

Im −Im

][
Wm 0

0 Im

][
xT

xB

]

= P2,m

[
WmxT + xB

WmxT − xB

]
.

In other words,

y(1:2:n) = WmxT + xB, y(2:2:n) = WmxT − xB.

This points the way to a fast recursive procedure for computing y = Wnx.
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Algorithm 1.4.4 (Haar Wavelet Transform) If x ∈ IRn and n = 2t, then this algorithm
computes the Haar transform y = Wnx.

function y = fht(x, n)
if n = 1

y = x
else

m = n/2
z = fht(x(1:m), m)
y(1:2:m) = z + x(m + 1:n)
y(2:2:m) = z − x(m + 1:n)

end

It can be shown that this algorithm requires 2n flops.

Problems

P1.4.1 Suppose w =
[
1, ωn, ω2

n, . . . , ω
n/2−1
n

]
where n = 2t. Using the colon notation, express[

1, ωr, ω2
r , . . . , ω

r/2−1
r

]
as a subvector of w where r = 2q , q = 1:t. Rewrite Algorithm 1.4.1 with the assumption that w is
precomputed. Show that this maneuver reduces the flop count to 5n log2 n.

P1.4.2 Suppose n = 3m and examine

G = [ Fn(:, 1:3:n− 1) | Fn(:, 2:3:n− 1) | Fn(:, 3:3:n− 1) ]

as a 3-by-3 block matrix, looking for scaled copies of Fm. Based on what you find, develop a recursive
radix-3 FFT analogous to the radix-2 implementation in the text.

P1.4.3 If n = 2t, then it can be shown that Fn = (AtΓt) · · · (A1Γ1) where for q = 1:t

Lq = 2q , rq = n/Lq ,

Aq = Irq ⊗
[

ILq−1 Ωq

ILq−1 −Ωq

]
,

Γq = P2,rq
⊗ ILq−1 ,

Ωq = diag(1, ωLq , . . . , ω
Lq−1−1
Lq

).

Note that with this factorization, the DFT y = Fnx can be computed as follows:

y = x
for q = 1:t

y = Aq(Γqy)
end

Fill in the details associated with the y updates and show that a careful implementation requires
5n log2(n) flops.

P1.4.4 What fraction of the components of Wn are zero?

P1.4.5 Using (1.4.13), verify by induction that if n = 2t, then the Haar tranform matrix Wn has the
factorization Wn = Ht · · ·H1 where

Hq =
[ P2,L∗ 0

0 In−L

][
W2 ⊗ IL∗ 0

0 In−L

]
L = 2q , L∗ = L/2.

Thus, the computation of y = Wnx may proceed as follows:
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y = x
for q = 1:t

y = Hqy
end

Fill in the details associated with the update y = Hqy and confirm that Wnx costs 2n flops.

P1.4.6 Using (1.4.13), develop an O(n) procedure for solving Wny = x where x ∈ IRn is given and
n = 2t.
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1.5 Vectorization and Locality
When it comes to designing a high-performance matrix computation, it is not enough
simply to minimize flops. Attention must be paid to how the arithmetic units interact
with the underlying memory system. Data structures are an important part of the
picture because not all matrix layouts are “architecture friendly.” Our aim is to build
a practical appreciation for these issues by presenting various simplified models of
execution. These models are qualitative and are just informative pointers to complex
implementation issues.

1.5.1 Vector Processing

An individual floating point operation typically requires several cycles to complete. A
3-cycle addition is depicted in Figure 1.5.1. The input scalars x and y proceed along

x �
y �

Adjust
Exponents

�
� Add � Normalize � z

Figure 1.5.1. A 3-Cycle adder

a computational “assembly line,” spending one cycle at each of three work “stations.”
The sum z emerges after three cycles. Note that, during the execution of a single, “free
standing” addition, only one of the three stations would be active at any particular
instant.

Vector processors exploit the fact that a vector operation is a very regular se-
quence of scalar operations. The key idea is pipelining, which we illustrate using
the vector addition computation z = x + y. With pipelining, the x and y vectors
are streamed through the addition unit. Once the pipeline is filled and steady state
reached, a z-vector component is produced every cycle, as shown in Figure 1.5.2. In

· · · x10 �
· · · y10 �

Adjust
Exponents

x9
y9

�
�

Add

x8
y8

�

Normalize

z7 � z6 · · ·

Figure 1.5.2. Pipelined addition

this case, we would anticipate vector processing to proceed at about three times the
rate of scalar processing.

A vector processor comes with a repertoire of vector instructions, such as vector
add, vector multiply, vector scale, dot product, and saxpy. These operations take
place in vector registers with input and output handled by vector load and vector store
instructions. An important attribute of a vector processor is the length vL of the
vector registers that carry out the vector operations. A length-n vector operation must
be broken down into subvector operations of length vL or less. Here is how such a
partitioning might be managed for a vector addition z = x + y where x and y are
n-vectors:
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first = 1

while first ≤ n

last = min{n, first + vL − 1}
Vector load: r1 ← x(first:last)

Vector load: r2 ← y(first:last) (1.5.1)

Vector add: r1 = r1 + r2

Vector store: z(first:last) ← r1

first = last + 1
end

The vector addition is a register-register operation while the “flopless” movement of
data to and from the vector registers is identified with the left arrow “←”. Let us
model the number of cycles required to carry out the various steps in (1.5.1). For
clarity, assume that n is very large and an integral multiple of vL, thereby making it
safe to ignore the final cleanup pass through the loop.

Regarding the vectorized addition r1 = r1 + r2, assume it takes τadd cycles to fill
the pipeline and that once this happens, a component of z is produced each cycle. It
follows that

Narith =
(

n

vL

)
(τadd + vL) =

(
τadd

vL

+ 1
)

n

accounts for the total number cycles that (1.5.1) requires for arithmetic.
For the vector loads and stores, assume that τdata + vL cycles are required to

transport a length-vL vector from memory to a register or from a register to memory,
where τdata is the number of cycles required to fill the data pipeline. With these
assumptions we see that

Ndata = 3
(

n

vL

)
(τdata + vL) = 3

(
τadd

vL

+ 1
)

n

specifies the number of cycles that are required by (1.5.1) to get data to and from the
registers.

The arithmetic-to-data-motion ratio

Narith/Ndata =
τadd + vL

3(τdata + vL)

and the total cycles sum

Narith + Ndata =
(

τarith + 3τdata

vL

+ 4
)

n

are illuminating statistics, but they are not necessarily good predictors of performance.
In practice, vector loads, stores, and arithmetic are “overlapped” through the chaining
together of various pipelines, a feature that is not captured by our model. Nevertheless,
our simple analysis is a preliminary reminder that data motion is an important factor
when reasoning about performance.
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1.5.2 Gaxpy versus Outer Product

Two algorithms that involve the same number of flops can have substantially different
data motion properties. Consider the n-by-n gaxpy

y = y + Ax

and the n-by-n outer product update

A = A + yxT .

Both of these level-2 operations involve 2n2 flops. However, if we assume (for clarity)
that n = vL, then we see that the gaxpy computation

rx ← x
ry ← y
for j = 1:n

ra ← A(:, j)
ry = ry + rarx(j)

end
y ← ry

requires (3 + n) load/store operations while for the outer product update

rx ← x
ry ← y
for j = 1:n

ra ← A(:, j)
ra = ra + ryrx(j)
A(:, j) ← ra

end

the corresponding count is (2 + 2n). Thus, the data motion overhead for the outer
product update is worse by a factor of 2, a reality that could be a factor in the design
of a high-performance matrix computation.

1.5.3 The Relevance of Stride

The time it takes to load a vector into a vector register may depend greatly on how
the vector is laid out in memory, a detail that we did not consider in §1.5.1. Two
concepts help frame the issue. A vector is said to have unit stride if its components
are contiguous in memory. A matrix is said to be stored in column-major order if its
columns have unit stride.

Let us consider the matrix multiplication update calculation

C = C + AB

where it is assumed that the matrices C ∈ IRm×n, A ∈ IRm×r, and B ∈ IRr×n are stored
in column-major order. Suppose the loading of a unit-stride vector proceeds much more
quickly than the loading of a non-unit-stride vector. If so, then the implementation
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for j = 1:n
for k = 1:r

C(:, j) = C(:, j) + A(:, k)·B(k, j)
end

end

which accesses C, A, and B by column would be preferred to

for i = 1:m
for j = 1:n

C(i, j) = C(i, j) + A(i, :)·B(:, j)
end

end

which accesses C and A by row. While this example points to the possible importance
of stride, it is important to keep in mind that the penalty for non-unit-stride access
varies from system to system and may depend upon the value of the stride itself.

1.5.4 Blocking for Data Reuse

Matrices reside in memory but memory has levels. A typical arrangement is depicted
in Figure 1.5.3. The cache is a relatively small high-speed memory unit that sits

Disk

� �

Main Memory
� �

Cache

� �

Functional Units

Figure 1.5.3. A memory hierarchy

just below the functional units where the arithmetric is carried out. During a matrix
computation, matrix elements move up and down the memory hierarchy. The cache,
which is a small high-speed memory situated in between the functional units and main
memory, plays a particularly critical role. The overall design of the hierarchy varies
from system to system. However, two maxims always apply:

• Each level in the hierarchy has a limited capacity and for economic reasons this
capacity usually becomes smaller as we ascend the hierarchy.

• There is a cost, sometimes relatively great, associated with the moving of data
between two levels in the hierarchy.

The efficient implementation of a matrix algorithm requires an ability to reason about
the flow of data between the various levels of storage.
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To develop an appreciation for cache utilization we again consider the update
C = C + AB where each matrix is n-by-n and blocked as follows:

C =

⎡⎢⎣ C11 · · · C1r

...
. . .

...
Cqr · · · Cqr

⎤⎥⎦ A =

⎡⎢⎣ A11 · · · A1p

...
. . .

...
Aqr · · · Aqp

⎤⎥⎦ B =

⎡⎢⎣ B11 · · · B1r

...
. . .

...
Bpr · · · Bpr

⎤⎥⎦ .

Assume that these three matrices reside in main memory and that we plan to update
C block by block:

Cij = Cij +
p∑

k=1

AikBkj .

The data in the blocks must be brought up to the functional units via the cache which
we assume is large enough to hold a C-block, an A-block, and a B-block. This enables
us to structure the computation as follows:

for i = 1:q
for j = 1:r

Load Cij from main memory into cache
for k = 1:p

Load Aik from main memory into cache
Load Bkj from main memory into cache (1.5.4)
Cij = Cij + AikBkj

end
Store Cij in main memory.

end
end

The question before us is how to choose the blocking parameters q, r, and p so as to
minimize memory traffic to and from the cache. Assume that the cache can hold M
floating point numbers and that M � 3n2, thereby forcing us to block the computation.
We assume that

Cij

Aik

Bkj

⎫⎪⎬⎪⎭ is roughly

⎧⎪⎨⎪⎩
(n/q)-by-(n/r)

(n/q)-by-(n/p)

(n/p)-by-(n/r)

.

We say “roughly” because if q, r, or p does not divide n, then the blocks are not quite
uniformly sized, e.g.,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

n = 10,

q = 3,

p = 4.
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However, nothing is lost in glossing over this detail since our aim is simply to develop
an intuition about cache utilization for large-n problems. Thus, we are led to impose
the following constraint on the blocking parameters:(

n

q

)(n

r

)
+

(
n

q

)(
n

p

)
+

(
n

p

)(n

r

)
≤ M. (1.5.5)

Proceeding with the optimization, it is reasonable to maximize the amount of arithmetic
associated with the update Cij = Cij + AikBkj . After all, we have moved matrix
data from main memory to cache and should make the most of the investment. This
leads to the problem of maximizing 2n3/(qrp) subject to the constraint (1.5.5). A
straightforward Lagrange multiplier argument leads us to conclude that

qopt = popt = ropt ≈
√

n2

3M
. (1.5.6)

That is, each block of C, A, and B should be approximately square and occupy about
one-third of the cache.

Because blocking affects the amount of memory traffic in a matrix computation,
it is of paramount importance when designing a high-performance implementation. In
practice, things are never as simple as in our model example. The optimal choice of
qopt, ropt, and popt will also depend upon transfer rates between memory levels and
upon all the other architecture factors mentioned earlier in this section. Data structures
are also important; storing a matrix by block rather than in column-major order could
enhance performance.

Problems

P1.5.1 Suppose A ∈ IRn×n is tridiagonal and that the elements along its subdiagonal, diagonal, and
superdiagonal are stored in vectors e(1:n− 1), d(1:n), and f(2:n). Give a vectorized implementation
of the n-by-n gaxpy y = y + Ax. Hint: Make use of the vector multiplication operation.

P1.5.2 Give an algorithm for computing C = C + AT BA where A and B are n-by-n and B is
symmetric. Innermost loops should oversee unit-stride vector operations.

P1.5.3 Suppose A ∈ IRm×n is stored in column-major order and that m = m1M and n = n1N .
Regard A as an M -by-N block matrix with m1-by-n1 blocks. Give an algorithm for storing A in a
vector A.block(1:mn) with the property that each block Aij is stored contiguously in column-major
order.
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1.6 Parallel Matrix Multiplication
The impact of matrix computation research in many application areas depends upon the
development of parallel algorithms that scale. Algorithms that scale have the property
that they remain effective as problem size grows and the number of involved processors
increases. Although powerful new programming languages and related system tools
continue to simplify the process of implementing a parallel matrix computation, being
able to “think parallel” is still important. This requires having an intuition about load
balancing, communication overhead, and processor synchronization.
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1.6.1 A Model Computation

To illustrate the major ideas associated with parallel matrix computations, we consider
the following model computation:

Given C ∈ IRm×n, A ∈ IRm×r, and B ∈ IRr×n, effectively compute
the matrix multiplication update C = C + AB assuming the
availability of p processors. Each processor has its own local
memory and executes its own local program.

The matrix multiplication update problem is a good choice because it is an inherently
parallel computation and because it is at the heart of many important algorithms that
we develop in later chapters.

The design of a parallel procedure begins with the breaking up of the given
problem into smaller parts that exhibit a measure of independence. In our problem we
assume the blocking

C =

⎡⎢⎣C11 · · · C1N

...
. . .

...
CM1 · · · CMN

⎤⎥⎦ , A =

⎡⎢⎣A11 · · · A1R

...
. . .

...
AM1 · · · AMR

⎤⎥⎦ , B =

⎡⎢⎣B11 · · · B1N

...
. . .

...
BR1 · · · BRN

⎤⎥⎦ ,

m = m1M, r = r1R, n = n1N

(1.6.1)

with Cij ∈ IRm1×n1, Aij ∈ IRm1×r1, and Bij ∈ IRr1×n1. It follows that the C + AB
update partitions nicely into MN smaller tasks:

Task(i, j): Cij = Cij +
R∑

k=1

AikBkj . (1.6.2)

Note that the block-block products AikBkj are all the same size.
Because the tasks are naturally double-indexed, we double index the available

processors as well. Assume that p = prowpcol and designate the (i, j)th processor by
Proc(i, j) for i = 1:prow and j = 1:pcol. The double indexing of the processors is just a
notation and is not a statement about their physical connectivity.

1.6.2 Load Balancing

An effective parallel program equitably partitions the work among the participating
processors. Two subdivision strategies for the model computation come to mind. The
2-dimensional block distribution assigns contiguous block updates to each processor.
See Figure 1.6.1. Alternatively, we can have Proc(µ, τ) oversee the update of Cij

for i = µ: prow :M and j = τ : pcol :N . This is called the 2-dimensional block-cyclic
distribution. See Figure 1.6.2. For the displayed example, both strategies assign twelve
Cij updates to each processor and each update involves R block-block multiplications,
i.e., 12(2m1n1r1) flops. Thus, from the flop point of view, both strategies are load
balanced, by which we mean that the amount of arithmetic computation assigned to
each processor is roughly the same.
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Proc(1,1)⎧⎪⎪⎨⎪⎪⎩
C11 C12 C13
C21 C22 C23
C31 C32 C33
C41 C42 C43

⎫⎪⎪⎬⎪⎪⎭

Proc(1,2)⎧⎪⎪⎨⎪⎪⎩
C14 C15 C16
C24 C25 C26
C34 C35 C36
C44 C45 C46

⎫⎪⎪⎬⎪⎪⎭

Proc(1,3)⎧⎪⎪⎨⎪⎪⎩
C17 C18 C19
C27 C28 C29
C37 C38 C39
C47 C48 C49

⎫⎪⎪⎬⎪⎪⎭
Proc(2,1)⎧⎪⎪⎨⎪⎪⎩

C51 C52 C53
C61 C62 C63
C71 C72 C73
C81 C82 C83

⎫⎪⎪⎬⎪⎪⎭

Proc(2,2)⎧⎪⎪⎨⎪⎪⎩
C54 C55 C56
C64 C65 C66
C74 C75 C76
C84 C85 C86

⎫⎪⎪⎬⎪⎪⎭

Proc(2,3)⎧⎪⎪⎨⎪⎪⎩
C57 C58 C59
C67 C68 C69
C77 C78 C79
C87 C88 C89

⎫⎪⎪⎬⎪⎪⎭

Figure 1.6.1. The block distribution of tasks
(M = 8, prow = 2, N = 9, and pcol = 3).

Proc(1,1)⎧⎪⎪⎨⎪⎪⎩
C11 C14 C17
C31 C34 C37
C51 C54 C57
C71 C74 C77

⎫⎪⎪⎬⎪⎪⎭

Proc(1,2)⎧⎪⎪⎨⎪⎪⎩
C12 C15 C18
C32 C35 C38
C52 C55 C58
C72 C75 C78

⎫⎪⎪⎬⎪⎪⎭

Proc(1,3)⎧⎪⎪⎨⎪⎪⎩
C13 C16 C19
C33 C36 C39
C53 C56 C59
C73 C76 C79

⎫⎪⎪⎬⎪⎪⎭
Proc(2,1)⎧⎪⎪⎨⎪⎪⎩

C21 C24 C27
C41 C44 C47
C61 C64 C67
C81 C84 C87

⎫⎪⎪⎬⎪⎪⎭

Proc(2,2)⎧⎪⎪⎨⎪⎪⎩
C22 C25 C28
C42 C45 C48
C62 C65 C68
C82 C85 C88

⎫⎪⎪⎬⎪⎪⎭

Proc(2,3)⎧⎪⎪⎨⎪⎪⎩
C23 C26 C29
C43 C46 C49
C63 C66 C69
C83 C86 C89

⎫⎪⎪⎬⎪⎪⎭

Figure 1.6.2. The block-cyclic distribution of tasks
(M = 8, prow = 2, N = 9, and pcol = 3).
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If M is not a multiple of prow or if N is not a multiple of pcol, then the distribution
of work among processors is no longer balanced. Indeed, if

M = α1prow + β1, 0 ≤ β1 < prow,

N = α2pcol + β2, 0 ≤ β2 < pcol,

then the number of block-block multiplications per processor can range from α1α2R to
(α1 +1)(α2 +1)R. However, this variation is insignificant in a large-scale computation
with M  prow and N  pcol:

(α1 + 1)(α2 + 1)R
(α1α2)R

= 1 + O
(prow

M
+

pcol

N

)
.

We conclude that both the block distribution and the block-cyclic distribution strate-
gies are load balanced for the general C + AB update.

This is not the case for certain block-sparse situations that arise in practice. If
A is block lower triangular and B is block upper triangular, then the amount of work
associated with Task(i, j) depends upon i and j. Indeed from (1.6.2) we have

Cij = Cij +
min{i,j,R}∑

k=1

AikBkj .

A very uneven allocation of work for the block distribution can result because the
number of flops associated with Task(i, j) increases with i and j. The tasks assigned
to Proc(prow, pcol) involve the most work while the tasks assigned to Proc(1,1) involve
the least. To illustrate the ratio of workloads, set M = N = R = M̃ and assume that
prow =pcol = p̃ divides M̃ . It can be shown that

Flops assigned to Proc(p̃, p̃)
Flops assigned to Proc(1, 1)

= O(p̃) (1.6.3)

if we assume M̃/p̃  1. Thus, load balancing does not depend on problem size and
gets worse as the number of processors increase.

This is not the case for the block-cyclic distribution. Again, Proc(1,1) and
Proc(p̃, p̃) are the least busy and most busy processors. However, now it can be verified
that

Flops assigned to Proc(p̃, p̃)
Flops assigned to Proc(1, 1)

= 1 + O

(
p̃

M̃

)
, (1.6.4)

showing that the allocation of work becomes increasingly balanced as the problem size
grows.

Another situation where the block-cyclic distribution of tasks is preferred is the
case when the first q block rows of A are zero and the first q block columns of B are
zero. This situation arises in several important matrix factorization schemes. Note from
Figure 1.6.1 that if q is large enough, then some processors have absolutely nothing
to do if tasks are assigned according to the block distribution. On the other hand,
the block-cyclic distribution is load balanced, providing further justification for this
method of task distribution.
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1.6.3 Data Motion Overheads

So far the discussion has focused on load balancing from the flop point of view. We now
turn our attention to the costs associated with data motion and processor coordination.
How does a processor get hold of the data it needs for an assigned task? How does a
processor know enough to wait if the data it needs is the output of a computation being
performed by another processor? What are the overheads associated with data transfer
and synchronization and how do they compare to the costs of the actual arithmetic?

The importance of data locality is discussed in §1.5. However, in a parallel com-
puting environment, the data that a processor needs can be “far away,” and if that is
the case too often, then it is possible to lose the multiprocessor advantage. Regarding
synchronization, time spent waiting for another processor to finish a calculation is time
lost. Thus, the design of an effective parallel computation involves paying attention
to the number of synchronization points and their impact. Altogether, this makes it
difficult to model performance, especially since an individual processor can typically
compute and communicate at the same time. Nevertheless, we forge ahead with our
analysis of the model computation to dramatize the cost of data motion relative to
flops. For the remainder of this section we assume:

(a) The block-cyclic distribution of tasks is used to ensure that arithmetic is load
balanced.

(b) Individual processors can perform the computation Cij = Cij + AikBkj at a
rate of F flops per second. Typically, a processor will have its own local memory
hierarchy and vector processing capability, so F is an attempt to capture in a
single number all the performance issues that we discussed in §1.5.

(c) The time required to move η floating point numbers into or out of a processor
is α+βη. In this model, the parameters α and β respectively capture the latency
and bandwidth attributes associated with data transfer.

With these simplifications we can roughly assess the effectiveness of assigning p pro-
cessors to the update computation C = C + AB.

Let Tarith(p) be the time that each processor must spend doing arithmetic as it
carries out its share of the computation. It follows from assumptions (a) and (b) that

Tarith(p) ≈ 2mnr

pF
. (1.6.5)

Similarly, let Tdata(p) be the time that each processor must spend acquiring the data
it needs to perform its tasks. Ordinarily, this quantity would vary significantly from
processor to processor. However, the implementation strategies outlined below have the
property that the communication overheads are roughly the same for each processor.
It follows that if Tarith(p) + Tdata(p) approximates the total execution time for the
p-processor solution, then the quotient

S(p) =
Tarith(1)

Tarith(p) + Tdata(p)
=

p

1 +
Tdata(p)

Tarith(p)

(1.6.6)
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is a reasonable measure of speedup. Ideally, the assignment of p processors to the
C = C + AB update would reduce the single-processor execution time by a factor
of p. However, from (1.6.6) we see that S(p) < p with the compute-to-communicate
ratio Tdata(p)/Tarith(p) explaining the degradation. To acquire an intuition about this
all-important quotient, we need to examine more carefully the data transfer properties
associated with each task.

1.6.4 Who Needs What

If a processor carries out Task(i, j), then at some time during the calculation, blocks
Cij , Ai1, . . . , AiR, B1j , . . . , BRj must find their way into its local memory. Given as-
sumptions (a) and (c), Table 1.6.1 summarizes the associated data transfer overheads
for an individual processor:

Required Blocks Data Transfer Time per Block

Cij i = µ:prow:M j = τ :pcol:N α + βm1n1

Aij i = µ:prow:M j = 1:R α + βm1r1

Bij i = 1:R j = τ :pcol:N α + βr1n1

Table 1.6.1. Communication overheads for Proc(µ, τ)

It follows that if

γC = total number of required C-block transfers, (1.6.7)
γA = total number of required A-block transfers, (1.6.8)
γB = total number of required B-block transfers, (1.6.9)

then
Tdata(p) ≈ γC(α + βm1n1) + γA(α + βm1r1) + γB(α + βr1n1),

and so from from (1.6.5) we have

Tdata(p)
Tarith(p)

≈ Fp

2

(
α

γC + γA + γB

mnr
+ β

( γC

MNr
+

γA

MnR
+

γB

mNR

))
. (1.6.10)

To proceed further with our analysis, we need to estimate the γ-factors (1.6.7)–(1.6.9),
and that requires assumptions about how the underlying architecture stores and ac-
cesses the matrices A, B, and C.

1.6.5 The Shared-Memory Paradigm

In a shared-memory system each processor has access to a common, global memory.
See Figure 1.6.3. During program execution, data flows to and from the global memory
and this represents a significant overhead that we proceed to assess. Assume that the
matrices C, A, and B are in global memory at the start and that Proc(µ, τ) executes
the following:
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Proc(1,1) Proc(2,1) Proc(1,2) Proc(2,2)

Global Memory

Figure 1.6.3. A four-processor shared-memory system

for i = µ:prow:M

for j = τ :pcol:N

C(loc) ← Cij

for k = 1:R

A(loc) ← Aik

B(loc) ← Bkj ( Method 1)

C(loc) = C(loc) + A(loc)B(loc)

end

Cij ← C(loc)

end
end

As a reminder of the interactions between global and local memory, we use the “←” no-
tation to indicate data transfers between these memory levels and the “loc” superscript
to designate matrices in local memory. The block transfer statistics (1.6.7)-(1.6.9) for
Method 1 are given by

γC ≈ 2(MN/p),
γA ≈ R(MN/p),
γB ≈ R(MN/p),

and so from (1.6.10) we obtain

Tdata(p)
Tarith(p)

≈ F

2

(
α

2 + 2R

m1n1r
+ β

(
2
r

+
1
n1

+
1

m1

))
. (1.6.11)

By substituting this result into (1.6.6) we conclude that (a) speed-up degrades as the
flop rate F increases and (b) speedup improves if the communication parameters α and
β decrease or the block dimensions m1, n1, and r1 increase. Note that the communicate-
to-compute ratio (1.6.11) for Method 1 does not depend upon the number of processors.
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Method 1 has the property that it is only necessary to store one C-block, one A-
block, and one B-block in local memory at any particular instant, i.e., C(loc), A(loc), and
B(loc). Typically, a processor’s local memory is much smaller than global memory, so
this particular solution approach is attractive for problems that are very large relative
to local memory capacity. However, there is a hidden cost associated with this economy
because in Method 1, each A-block is loaded N/pcol times and each B-block is loaded
M/prow times. This redundancy can be eliminated if each processor’s local memory
is large enough to house simultaneously all the C-blocks, A-blocks, and B-blocks that
are required by its assigned tasks. Should this be the case, then the following method
involves much less data transfer:

for k = 1:R

A
(loc)
ik ← Aik (i = µ:prow:M)

B
(loc)
kj ← Bkj (j = τ :pcol:N)

end

for i = µ:prow:M

for j = τ :pcol:N
C(loc) ← Cij

for k = 1:R (Method 2)

C(loc) = C(loc) + A
(loc)
ik B

(loc)
kj

end

Cij ← C(loc)

end
end

The block transfer statistics γ′C , γ′A, and γ′B, for Method 2 are more favorable than for
Method 1. It can be shown that

γ′C = γC , γ′A = γAfcol, γ′B = γBfrow, (1.6.12)

where the quotients fcol = pcol/N and frow = prow/M are typically much less than
unity. As a result, the communicate-to-compute ratio for Method 2 is given by

Tdata(p)
Tarith(p)

≈ F

2

(
α

2 + R (fcol + frow)
m1n1r

+ β

(
2
r

+
1
n1

fcol +
1

m1
frow

))
, (1.6.13)

which is an improvement over (1.6.11). Methods 1 and 2 showcase the trade-off that
frequently exists between local memory capacity and the overheads that are associated
with data transfer.

1.6.6 Barrier Synchronization

The discussion in the previous section assumes that C, A, and B are available in global
memory at the start. If we extend the model computation so that it includes the
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multiprocessor initialization of these three matrices, then an interesting issue arises.
How does a processor “know” when the initialization is complete and it is therefore
safe to begin its share of the C = C + AB update?

Answering this question is an occasion to introduce a very simple synchronization
construct known as the barrier. Suppose the C-matrix is initialized in global memory
by assigning to each processor some fraction of the task. For example, Proc(µ, τ) could
do this:

for i = µ:prow:M

for j = τ :pcol:N

Compute the (i, j) block of C and store in C(loc).

Cij ← C(loc)

end
end

Similar approaches can be taken for the setting up of A = (Aij) and B = (Bij). Even
if this partitioning of the initialization is load balanced, it cannot be assumed that each
processor completes its share of the work at exactly the same time. This is where the
barrier synchronization is handy. Assume that Proc(µ, τ) executes the following:

Initialize Cij , i = µ : prow : M , j = τ : pcol : N

Initialize Aij , i = µ : prow : M , j = τ : pcol : R

Initialize Bij , i = µ : prow : R, j = τ : pcol : N (1.6.14)

barrier

Update Cij , i = µ : prow : M , j = τ : pcol : N

To understand the barrier command, regard a processor as being either “blocked” or
“free.” Assume in (1.6.14) that all processors are free at the start. When it executes the
barrier command, a processor becomes blocked and suspends execution. After the last
processor is blocked, all the processors return to the free state and resume execution.
In (1.6.14), the barrier does not allow the Cij updating via Methods 1 or 2 to begin
until all three matrices are fully initialized in global memory.

1.6.7 The Distributed-Memory Paradigm

In a distributed-memory system there is no global memory. The data is collectively
housed in the local memories of the individual processors which are connected to form
a network. There are many possible network topologies. An example is displayed in
Figure 1.6.4. The cost associated with sending a message from one processor to another
is likely to depend upon how “close” they are in the network. For example, with the
torus in Figure 1.6.4, a message from Proc(1,1) to Proc(1,4) involves just one “hop”
while a message from Proc(1,1) to Proc(3,3) would involve four.

Regardless, the message-passing costs in a distributed memory system have a
serious impact upon performance just as the interactions with global memory affect
performance in a shared memory system. Our goal is to approximate these costs as
they might arise in the model computation. For simplicity, we make no assumptions
about the underlying network topology.
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Proc(4,1) Proc(4,2) Proc(4,3) Proc(4,4)

Proc(3,1) Proc(3,2) Proc(3,3) Proc(3,4)

Proc(2,1) Proc(2,2) Proc(2,3) Proc(2,4)

Proc(1,1) Proc(1,2) Proc(1,3) Proc(1,4)

Figure 1.6.4. A 2-Dimensional Torus

Let us first assume that M = N = R = prow = pcol = 2 and that the C, A, and
B matrices are distributed as follows:

Proc(1,1)

C11, A11, B11

Proc(1,2)

C12, A12, B12

Proc(2,1)

C21, A21, B21

Proc(2,2)

C22, A22, B22

Assume that Proc(i, j) oversees the update of Cij and notice that the required data for
this computation is not entirely local. For example, Proc(1,1) needs to receive a copy of
A12 from Proc(1,2) and a copy of B21 from Proc(2,1) before it can complete the update
C11 = C11 + A11B11 + A12B21. Likewise, it must send a copy of A11 to Proc(1,2) and
a copy of B11 to Proc(2,1) so that they can carry out their respective updates. Thus,
the local programs executing on each processor involve a mix of computational steps
and message-passing steps:
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Proc(1,1)
Send a copy of A11 to Proc(1,2)
Receive a copy of A12 from Proc(1,2)
Send a copy of B11 to Proc(2,1)
Receive a copy of B21 from Proc(2,1)
C11 = C11 + A11B11 + A12B21

Proc(1,2)
Send a copy of A12 to Proc(1,1)
Receive a copy of A11 from Proc(1,1)
Send a copy of B12 to Proc(2,2)
Receive a copy of B22 from Proc(2,2)
C12 = C12 + A11B12 + A12B22

Proc(2,1)
Send a copy of A21 to Proc(2,2)
Receive a copy of A22 from Proc(2,2)
Send a copy of B21 to Proc(1,1)
Receive a copy of B11 from Proc(1,1)
C21 = C21 + A21B11 + A22B21

Proc(2,2)
Send a copy of A22 to Proc(2,1)
Receive a copy of A21 from Proc(2,1)
Send a copy of B22 to Proc(1,2)
Receive a copy of B12 from Proc(1,2)
C22 = C22 + A21B12 + A22B22

This informal specification of the local programs does a good job delineating the duties
of each processor, but it hides several important issues that have to do with the timeline
of execution. (a) Messages do not necessarily arrive at their destination in the order
that they were sent. How will a receiving processor know if it is an A-block or a B-
block? (b) Receive-a-message commands can block a processor from proceeding with
the rest of its calculations. As a result, it is possible for a processor to wait forever for
a message that its neighbor never got around to sending. (c) Overlapping computation
with communication is critical for performance. For example, after A11 arrives at
Proc(1,2), the “half” update C12 = C12 +A11B12 can be carried out while the wait for
B22 continues.

As can be seen, distributed-memory matrix computations are quite involved and
require powerful systems to manage the packaging, tagging, routing, and reception of
messages. The discussion of such systems is outside the scope of this book. Neverthe-
less, it is instructive to go beyond the above 2-by-2 example and briefly anticipate the
data transfer overheads for the general model computation. Assume that Proc(µ, τ)
houses these matrices:

Cij , i = µ : prow : M, j = τ : pcol : N,

Aij , i = µ : prow : M, j = τ : pcol : R,

Bij , i = µ : prow : R, j = τ : pcol : N.

From Table 1.6.1 we conclude that if Proc(µ, τ) is to update Cij for i = µ : prow : M
and j = τ :pcol : N , then it must

(a) For i = µ : prow : M and j = τ : pcol : R, send a copy of Aij to

Proc(µ, 1), . . . , Proc(µ, τ − 1), Proc(µ, τ + 1), . . . , Proc(µ, pcol).

Data transfer time ≈ (pcol − 1)(M/prow)(R/pcol) (α + βm1r1)

(b) For i = µ : prow : R and j = τ : pcol : N , send a copy of Bij to

Proc(1, τ), . . . , Proc(µ − 1), τ), Proc(µ + 1, τ), . . . , Proc(prow, τ).

Data transfer time ≈ (prow − 1)(R/prow)(N/pcol) (α + βr1n1)



60 Chapter 1. Matrix Multiplication

(c) Receive copies of the A-blocks that are sent by processors

Proc(µ, 1), . . . , Proc(µ, τ − 1), Proc(µ, τ + 1), . . . , Proc(µ, pcol).

Data transfer time ≈ (pcol − 1)(M/prow)(R/pcol) (α + βm1r1)

(d) Receive copies of the B-blocks that are sent by processors

Proc(1, τ), . . . , Proc(µ − 1), τ), Proc(µ + 1, τ), . . . , Proc(prow, τ).

Data transfer time ≈ (prow − 1)(R/prow)(N/pcol) (α + βr1n1)

Let Tdata be the summation of these data transfer overheads and recall that Tarith =
(2mnr)/(Fp) since arithmetic is evenly distributed around the processor network. It
follows that

Tdata(p)
Tarith(p)

≈ F

(
α

(
pcol

m1r1n
+

prow

mr1n1

)
+ β

(pcol

n
+

prow

m

))
. (1.6.15)

Thus, as problem size grows, this ratio tends to zero and speedup approaches p accord-
ing to (1.6.6).

1.6.8 Cannon’s Algorithm

We close with a brief description of the Cannon (1969) matrix multiplication scheme.
The method is an excellent way to showcase the toroidal network displayed in Figure
1.6.4 together with the idea of “nearest-neighbor” thinking which is quite important in
distributed matrix computations. For clarity, let us assume that A = (Aij), B = (Bij),
and C = (Cij) are 4-by-4 block matrices with n1-by-n1 blocks. Define the matrices

A(1) =

⎡⎢⎢⎣
A11 A12 A13 A14
A22 A23 A24 A21
A33 A34 A31 A32
A44 A41 A42 A43

⎤⎥⎥⎦ , B(1) =

⎡⎢⎢⎣
B11 B22 B33 B44
B21 B32 B43 B14
B31 B42 B13 B24
B41 B12 B23 B34

⎤⎥⎥⎦ ,

A(2) =

⎡⎢⎢⎣
A14 A11 A12 A13
A21 A22 A23 A24
A32 A33 A34 A31
A43 A44 A41 A42

⎤⎥⎥⎦ , B(2) =

⎡⎢⎢⎣
B41 B12 B23 B34
B11 B22 B33 B44
B21 B32 B43 B14
B31 B42 B13 B24

⎤⎥⎥⎦ ,

A(3) =

⎡⎢⎢⎣
A13 A14 A11 A12
A24 A21 A22 A23
A31 A32 A33 A34
A42 A43 A44 A41

⎤⎥⎥⎦ , B(3) =

⎡⎢⎢⎣
B31 B42 B13 B24
B41 B12 B23 B34
B11 B22 B33 B44
B21 B32 B43 B14

⎤⎥⎥⎦ ,

A(4) =

⎡⎢⎢⎣
A12 A13 A14 A11
A23 A24 A21 A22
A34 A31 A32 A33
A41 A42 A43 A44

⎤⎥⎥⎦ , B(4) =

⎡⎢⎢⎣
B21 B32 B43 B14
B31 B42 B13 B24
B41 B12 B23 B34
B11 B22 B33 B44

⎤⎥⎥⎦ ,

and note that

Cij = A
(1)
ij B

(1)
ij + A

(2)
ij B

(2)
ij + A

(3)
ij B

(3)
ij + A

(4)
ij B

(4)
ij . (1.6.16)
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Refer to Figure 1.6.4 and assume that Proc(i, j) is in charge of computing Cij and that
at the start it houses both A

(1)
ij and B

(1)
ij . The message passing required to support

the updates

Cij = Cij + A
(1)
ij B

(1)
ij , (1.6.17)

Cij = Cij + A
(2)
ij B

(2)
ij , (1.6.18)

Cij = Cij + A
(3)
ij B

(3)
ij , (1.6.19)

Cij = Cij + A
(4)
ij B

(4)
ij , (1.6.20)

involves communication with Proc(i, j)’s four neighbors in the toroidal network. To
see this, define the block downshift permutation

P =

⎡⎢⎢⎣
0 0 0 In1

In1 0 0 0
0 In1 0 0
0 0 In1 0

⎤⎥⎥⎦
and observe that A(k+1) = A(k)PT and B(k+1) = PB(k). That is, the transition from
A(k) to A(k+1) involves shifting A-blocks to the right one column (with wraparound)
while the transition from B(k) to B(k+1) involves shifting the B-blocks down one row
(with wraparound). After each update (1.6.17)–(1.6.20), the housed A-block is passed
to Proc(i, j)’s “east” neighbor and the next A-block is received from its “west” neigh-
bor. Likewise, the housed B-block is sent to its “south” neighbor and the next B-block
is received from its “north” neighbor.

Of course, the Cannon algorithm can be implemented on any processor network.
But we see from the above that it is particularly well suited when there are toroidal
connections for then communication is always between adjacent processors.

Problems

P1.6.1 Justify Equations (1.6.3) and (1.6.4).

P1.6.2 Contrast the two task distribution strategies in §1.6.2 for the case when the first q block rows
of A are zero and the first q block columns of B are zero.

P1.6.3 Verify Equations (1.6.13) and (1.6.15).

P1.6.4 Develop a shared memory method for overwriting A with A2 where it is assumed that A ∈ IRn×n

resides in global memory at the start.

P1.6.5 Develop a shared memory method for computing B = AT A where it is assumed that A ∈ IRm×n

resides in global memory at the start and that B is stored in global memory at the end.

P1.6.6 Prove (1.6.16) for general N . Use the block downshift matrix to define A(i) and B(i).

Notes and References for §1.6
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Montana State University, Bozeman, MT.
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Chapter 2

Matrix Analysis

2.1 Basic Ideas from Linear Algebra
2.2 Vector Norms
2.3 Matrix Norms
2.4 The Singular Value Decomposition
2.5 Subspace Metrics
2.6 The Sensitivity of Square Systems
2.7 Finite Precision Matrix Computations

The analysis and derivation of algorithms in the matrix computation area requires
a facility with linear algebra. Some of the basics are reviewed in §2.1. Norms are
particularly important, and we step through the vector and matrix cases in §2.2 and
§2.3. The ubiquitous singular value decomposition is introduced in §2.4 and then
used in the next section to define the CS decomposition and its ramifications for the
measurement of subspace separation. In §2.6 we examine how the solution to a linear
system Ax = b changes if A and b are perturbed. It is the ideal setting for introducing
the concepts of problem sensitivity, backward error analysis, and condition number.
These ideas are central throughout the text. To complete the chapter we develop a
model of finite-precision floating point arithmetic based on the IEEE standard. Several
canonical examples of roundoff error analysis are offered.

Reading Notes
Familiarity with matrix manipulation consistent with §1.1–§1.3 is essential. The

sections within this chapter depend upon each other as follows:

§2.5
↑

§2.1 → §2.2 → §2.3 → §2.4
↓

§2.6 → §2.7

63
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Complementary references include Forsythe and Moler (SLAS), Stewart (IMC), Horn
and Johnson (MA), Stewart (MABD), Ipsen (NMA), and Watkins (FMC). Funda-
mentals of matrix analysis that are specific to least squares problems and eigenvalue
problems appear in later chapters.

2.1 Basic Ideas from Linear Algebra
This section is a quick review of linear algebra. Readers who wish a more detailed
coverage should consult the references at the end of the section.

2.1.1 Independence, Subspace, Basis, and Dimension

A set of vectors {a1, . . . , an} in IRm is linearly independent if
∑n

j=1 αjaj = 0 implies
α(1:n) = 0. Otherwise, a nontrivial combination of the ai is zero and {a1, . . . , an} is
said to be linearly dependent.

A subspace of IRm is a subset that is also a vector space. Given a collection of
vectors a1, . . . , an ∈ IRm, the set of all linear combinations of these vectors is a subspace
referred to as the span of {a1, . . . , an}:

span{a1, . . . , an} =
{ n∑

j=1

βjaj : βj ∈ IR
}

.

If {a1, . . . , an} is independent and b ∈ span{a1, . . . , an}, then b is a unique linear com-
bination of the aj .

If S1, . . . , Sk are subspaces of IRm, then their sum is the subspace defined by
S = { a1 + a2 + · · · + ak : ai ∈ Si, i = 1:k }. S is said to be a direct sum if each
v ∈ S has a unique representation v = a1 + · · ·+ ak with ai ∈ Si. In this case we write
S = S1 ⊕ · · ·⊕Sk. The intersection of the Si is also a subspace, S = S1 ∩S2 ∩ · · · ∩Sk.

The subset {ai1 , . . . , aik
} is a maximal linearly independent subset of {a1, . . . , an}

if it is linearly independent and is not properly contained in any linearly indepen-
dent subset of {a1, . . . , an}. If {ai1 , . . . , aik

} is maximal, then span{a1, . . . , an} =
span{ai1 , . . . , aik

} and {ai1 , . . . , aik
} is a basis for span{a1, . . . , an}. If S ⊆ IRm is a

subspace, then it is possible to find independent basic vectors a1, . . . , ak ∈ S such that
S = span{a1, . . . , ak}. All bases for a subspace S have the same number of elements.
This number is the dimension and is denoted by dim(S).

2.1.2 Range, Null Space, and Rank

There are two important subspaces associated with an m-by-n matrix A. The range
of A is defined by

ran(A) = {y ∈ IRm : y = Ax for some x ∈ IRn}

and the nullspace of A is defined by

null(A) = {x ∈ IRn : Ax = 0}.

If A = [ a1 | · · · | an ] is a column partitioning, then

ran(A) = span{a1, . . . , an}.
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The rank of a matrix A is defined by

rank(A) = dim (ran(A)) .

If A ∈ IRm×n, then
dim(null(A)) + rank(A) = n.

We say that A ∈ IRm×n is rank deficient if rank(A) < min{m, n}. The rank of a matrix
is the maximal number of linearly independent columns (or rows).

2.1.3 Matrix Inverse

If A and X are in IRn×n and satisfy AX = I, then X is the inverse of A and is
denoted by A−1. If A−1 exists, then A is said to be nonsingular. Otherwise, we say A
is singular. The inverse of a product is the reverse product of the inverses:

(AB)−1 = B−1A−1. (2.1.1)

Likewise, the transpose of the inverse is the inverse of the transpose:

(A−1)T = (AT )−1 ≡ A−T . (2.1.2)

2.1.4 The Sherman-Morrison-Woodbury Formula

The identity
B−1 = A−1 − B−1(B − A)A−1 (2.1.3)

shows how the inverse changes if the matrix changes. The Sherman-Morrison-Woodbury
formula gives a convenient expression for the inverse of the matrix (A + UV T ) where
A ∈ IRn×n and U and V are n-by-k:

(A + UV T )−1 = A−1 − A−1U(I + V T A−1U)−1V T A−1 . (2.1.4)

A rank-k correction to a matrix results in a rank-k correction of the inverse. In (2.1.4)
we assume that both A and (I + V T A−1U) are nonsingular.

The k = 1 case is particularly useful. If A ∈ IRn×n is nonsingular, u, v ∈ IRn, and
α = 1 + vT A−1u 
= 0, then

(A + uvT )−1 = A−1 − 1
α

A−1uvT A−1. (2.1.5)

This is referred to as the Sherman-Morrison formula.

2.1.5 Orthogonality

A set of vectors {x1, . . . , xp} in IRm is orthogonal if xT
i xj = 0 whenever i 
= j and

orthonormal if xT
i xj = δij . Intuitively, orthogonal vectors are maximally independent

for they point in totally different directions.
A collection of subspaces S1, . . . , Sp in IRm is mutually orthogonal if xT y = 0

whenever x ∈ Si and y ∈ Sj for i 
= j. The orthogonal complement of a subspace
S ⊆ IRm is defined by

S⊥ = {y ∈ IRm : yT x = 0 for all x ∈ S}.
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It is not hard to show that ran(A)⊥ = null(AT ). The vectors v1, . . . , vk form an or-
thonormal basis for a subspace S ⊆ IRm if they are orthonormal and span S.

A matrix Q ∈ IRm×m is said to be orthogonal if QT Q = I. If Q = [ q1 | · · · | qm ]
is orthogonal, then the qi form an orthonormal basis for IRm. It is always possible to
extend such a basis to a full orthonormal basis {v1, . . . , vm} for IRm:

Theorem 2.1.1. If V1 ∈ IRn×r has orthonormal columns, then there exists V2 ∈ IRn×(n−r)

such that
V = [ V1 | V2 ]

is orthogonal. Note that ran(V1)
⊥ = ran(V2).

Proof. This is a standard result from introductory linear algebra. It is also a corollary
of the QR factorization that we present in §5.2.

2.1.6 The Determinant

If A = (a) ∈ IR1×1, then its determinant is given by det(A) = a. The determinant of
A ∈ IRn×n is defined in terms of order-(n−1) determinants:

det(A) =
n∑

j=1

(−1)j+1a1jdet(A1j).

Here, A1j is an (n−1)-by-(n−1) matrix obtained by deleting the first row and jth col-
umn of A. Well-known properties of the determinant include det(AB) = det(A)det(B),
det(AT ) = det(A), and det(cA) = cndet(A) where A, B ∈ IRn×n and c ∈ IR. In addition,
det(A) 
= 0 if and only if A is nonsingular.

2.1.7 Eigenvalues and Eigenvectors

Until we get to the main eigenvalue part of the book (Chapters 7 and 8), we need
a handful of basic properties so that we can fully appreciate the singular value de-
composition (§2.4), positive definiteness (§4.2), and various fast linear equation solvers
(§4.8).

The eigenvalues of A ∈ Cn×n are the zeros of the characteristic polynomial

p(x) = det(A − xI).

Thus, every n-by-n matrix has n eigenvalues. We denote the set of A’s eigenvalues by

λ(A) = { x : det(A − xI) = 0 }.

If the eigenvalues of A are real, then we index them from largest to smallest as follows:

λn(A) ≤ · · · ≤ λ2(A) ≤ λ1(A).

In this case, we sometimes use the notation λmax(A) and λmin(A) to denote λ1(A) and
λn(A) respectively.
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If X ∈ Cn×n is nonsingular and B = X−1AX, then A and B are similar. If two
matrices are similar, then they have exactly the same eigenvalues.

If λ ∈ λ(A), then there exists a nonzero vector x so that Ax = λx. Such a vector
is said to be an eigenvector for A associated with λ. If A ∈ Cn×n has n independent
eigenvectors x1, . . . , xn and Axi = λixi for i = 1:n, then A is diagonalizable. The
terminology is appropriate for if

X = [ x1 | · · · | xn ] ,

then
X−1AX = diag(λ1, . . . , λn).

Not all matrices are diagonalizable. However, if A ∈ IRn×n is symmetric, then there
exists an orthogonal Q so that

QT AQ = diag(λ1, . . . , λn). (2.1.6)

This is called the Schur decomposition. The largest and smallest eigenvalues of a
symmetric matrix satisfy

λmax(A) = max
x�=0

xT Ax

xT x
(2.1.7)

and

λmin(A) = min
x�=0

xT Ax

xT x
. (2.1.8)

2.1.8 Differentiation

Suppose α is a scalar and that A(α) is an m-by-n matrix with entries aij(α). If aij(α)
is a differentiable function of α for all i and j, then by Ȧ(α) we mean the matrix

Ȧ(α) =
d

dα
A(α) =

(
d

dα
aij(α)

)
= (ȧij(α)).

Differentiation is a useful tool that can sometimes provide insight into the sensitivity
of a matrix problem.

Problems

P2.1.1 Show that if A ∈ IRm×n has rank p, then there exists an X ∈ IRm×p and a Y ∈ IRn×p such that
A = XY T , where rank(X) = rank(Y ) = p.

P2.1.2 Suppose A(α) ∈ IRm×r and B(α) ∈ IRr×n are matrices whose entries are differentiable functions
of the scalar α. (a) Show

d

dα
[A(α)B(α)] =

[
d

dα
A(α)

]
B(α) + A(α)

[
d

dα
B(α)

]
.

(b) Assuming A(α) is always nonsingular, show

d

dα

[
A(α)−1

]
= −A(α)−1

[
d

dα
A(α)

]
A(α)−1.

P2.1.3 Suppose A ∈ IRn×n, b ∈ IRn and that φ(x) = 1
2xT Ax − xT b. Show that the gradient of φ is

given by ∇φ(x) = 1
2 (AT + A)x− b.
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P2.1.4 Assume that both A and A + uvT are nonsingular where A ∈ IRn×n and u, v ∈ IRn. Show
that if x solves (A + uvT )x = b, then it also solves a perturbed right-hand-side problem of the form
Ax = b + αu. Give an expression for α in terms of A, u, and v.

P2.1.5 Show that a triangular orthogonal matrix is diagonal.

P2.1.6 Suppose A ∈ IRn×n is symmetric and nonsingular and define

Ã = A + α(uuT + vvT ) + β(uvT + vuT )

where u, v ∈ IRn and α, β ∈ IR. Assuming that Ã is nonsingular, use the Sherman-Morrison-Woodbury
formula to develop a formula for Ã−1.

P2.1.7 Develop a symmetric version of the Sherman-Morrison-Woodbury formula that characterizes
the inverse of A + USUT where A ∈ IRn×n and S ∈ IRk×k are symmetric and U ∈ IRn×k.

P2.1.8 Suppose Q ∈ IRn×n is orthogonal and z ∈ IRn. Give an efficient algorithm for setting up an
m-by-m matrix A = (aij) defined by aij = vT (Qi)T (Qj)v.-

P2.1.9 Show that if S is real and ST = −S, then I−S is nonsingular and the matrix (I−S)−1(I +S)
is orthogonal. This is known as the Cayley transform of S.

P2.1.10 Refer to §1.3.10. (a) Show that if S ∈ IR2n×2n is symplectic, then S−1 exists and is also
symplectic. (b) Show that if M ∈ IR2n×2n is Hamiltonian and S ∈ IR2n×2n is symplectic, then the
matrix M1 = S−1MS is Hamiltonian.

P2.1.11 Use (2.1.6) to prove (2.1.7) and (2.1.8).

Notes and References for §2.1

In addition to Horn and Johnson (MA) and Horn and Johnson (TMA), the following introductory
applied linear algebra texts are highly recommended:

R. Bellman (1997). Introduction to Matrix Analysis, Second Edition, SIAM Publications, Philadel-
phia, PA.

C. Meyer (2000). Matrix Analysis and Applied Linear Algebra, SIAM Publications, Philadelphia, PA.
D. Lay (2005). Linear Algebra and Its Applications, Third Edition, Addison-Wesley, Reading, MA.
S.J. Leon (2007). Linear Algebra with Applications, Seventh Edition, Prentice-Hall, Englewood Cliffs,

NJ.
G. Strang (2009). Introduction to Linear Algebra, Fourth Edition, SIAM Publications, Philadelphia,

PA.

2.2 Vector Norms
A norm on a vector space plays the same role as absolute value: it furnishes a distance
measure. More precisely, IRn together with a norm on IRn defines a metric space
rendering the familiar notions of neighborhood, open sets, convergence, and continuity.

2.2.1 Definitions

A vector norm on IRn is a function f :IRn → IR that satisfies the following properties:

f(x) ≥ 0, x ∈ IRn, (f(x) = 0, iff x = 0),

f(x + y) ≤ f(x) + f(y), x, y ∈ IRn,

f(αx) = |α|f(x), α ∈ IR, x ∈ IRn.

We denote such a function with a double bar notation: f(x) = ‖ x ‖. Subscripts on
the double bar are used to distinguish between various norms. A useful class of vector



2.2. Vector Norms 69

norms are the p-norms defined by

‖ x ‖p = (|x1|p + · · · + |xn|p)
1
p , p ≥ 1 . (2.2.1)

The 1−, 2−, and ∞− norms are the most important:

‖ x ‖1 = |x1| + · · · + |xn|,
‖ x ‖2 =

(
|x1|2 + · · · + |xn|2

) 1
2 =

(
xT x

) 1
2 ,

‖ x ‖∞ = max
1≤i≤n

|xi|.

A unit vector with respect to the norm ‖ · ‖ is a vector x that satisfies ‖ x ‖ = 1.

2.2.2 Some Vector Norm Properties

A classic result concerning p-norms is the Hölder inequality :

|xT y| ≤ ‖ x ‖p‖ y ‖q

1
p

+
1
q

= 1. (2.2.2)

A very important special case of this is the Cauchy-Schwarz inequality:

|xT y| ≤ ‖ x ‖2‖ y ‖2. (2.2.3)

All norms on IRn are equivalent , i.e., if ‖ · ‖α and ‖ · ‖β are norms on IRn, then
there exist positive constants c1 and c2 such that

c1‖ x ‖α ≤ ‖ x ‖β ≤ c2‖ x ‖α (2.2.4)

for all x ∈ IRn. For example, if x ∈ IRn, then

‖ x ‖2 ≤ ‖ x ‖1 ≤
√

n ‖ x ‖2, (2.2.5)

‖ x ‖∞ ≤ ‖ x ‖2 ≤
√

n ‖ x ‖∞, (2.2.6)

‖ x ‖∞ ≤ ‖ x ‖1 ≤ n ‖ x ‖∞. (2.2.7)

Finally, we mention that the 2-norm is preserved under orthogonal transformation.
Indeed, if Q ∈ IRn×n is orthogonal and x ∈ IRn, then

‖ Qx ‖2
2 = (Qx)T (Qx) = (xT QT )(Qx) = xT (QT Q)x = xT x = ‖ x ‖2

2.

2.2.3 Absolute and Relative Errors

Suppose x̂ ∈ IRn is an approximation to x ∈ IRn. For a given vector norm ‖ · ‖ we say
that

εabs = ‖ x̂ − x ‖
is the absolute error in x̂. If x 
= 0, then

εrel =
‖ x̂ − x ‖
‖ x ‖
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prescribes the relative error in x̂. Relative error in the ∞-norm can be translated into
a statement about the number of correct significant digits in x̂. In particular, if

‖ x̂ − x ‖∞
‖ x ‖∞

≈ 10−p,

then the largest component of x̂ has approximately p correct significant digits. For
example, if x = [ 1.234 .05674 ]T and x̂ = [ 1.235 .05128 ]T , then ‖ x̂ − x ‖∞/‖ x ‖∞ ≈
.0043 ≈ 10−3. Note than x̂1 has about three significant digits that are correct while
only one significant digit in x̂2 is correct.

2.2.4 Convergence

We say that a sequence {x(k)} of n-vectors converges to x if

lim
k→∞

‖ x(k) − x ‖ = 0.

Because of (2.2.4), convergence in any particular norm implies convergence in all norms.

Problems

P2.2.1 Show that if x ∈ IRn, then limp→∞ ‖ x ‖p = ‖ x ‖∞.

P2.2.2 By considering the inequality 0 ≤ (ax + by)T (ax + by) for suitable scalars a and b, prove
(2.2.3).
P2.2.3 Verify that ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ are vector norms.
P2.2.4 Verify (2.2.5)-(2.2.7). When is equality achieved in each result?

P2.2.5 Show that in IRn, x(i) → x if and only if x
(i)
k
→ xk for k = 1:n.

P2.2.6 Show that for any vector norm on IRn that | ‖ x ‖ − ‖ y ‖ | ≤ ‖ x− y ‖.
P2.2.7 Let ‖ · ‖ be a vector norm on IRm and assume A ∈ IRm×n . Show that if rank(A) = n, then
‖ x ‖A = ‖Ax ‖ is a vector norm on IRn.
P2.2.8 Let x and y be in IRn and define ψ:IR→ IR by ψ(α) = ‖ x− αy ‖2. Show that ψ is minimized
if α = xT y/yT y.
P2.2.9 Prove or disprove:

v ∈ IRn ⇒ ‖ v ‖1‖ v ‖∞ ≤ 1 +
√

n

2
‖ v ‖22.

P2.2.10 If x ∈ IR3 and y ∈ IR3 then it can be shown that |xT y| = ‖ x ‖2‖ y ‖2| cos(θ)| where θ is the
angle between x and y. An analogous result exists for the cross product defined by

x× y =

[
x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

]
.

In particular, ‖ x× y ‖2 = ‖ x ‖2‖ y ‖2| sin(θ)|. Prove this.
P2.2.11 Suppose x ∈ IRn and y ∈ IRm. Show that

‖ x⊗ y ‖p = ‖ x ‖p‖ y ‖p

for p = 1, 2, and ∞.

Notes and References for §2.2

Although a vector norm is “just” a generalization of the absolute value concept, there are some
noteworthy subtleties:

J.D. Pryce (1984). “A New Measure of Relative Error for Vectors,” SIAM J. Numer. Anal. 21,
202–221.
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2.3 Matrix Norms
The analysis of matrix algorithms requires use of matrix norms. For example, the
quality of a linear system solution may be poor if the matrix of coefficients is “nearly
singular.” To quantify the notion of near-singularity, we need a measure of distance on
the space of matrices. Matrix norms can be used to provide that measure.

2.3.1 Definitions

Since IRm×n is isomorphic to IRmn, the definition of a matrix norm should be equivalent
to the definition of a vector norm. In particular, f :IRm×n → IR is a matrix norm if the
following three properties hold:

f(A) ≥ 0, A ∈ IRm×n, (f(A) = 0 iff A = 0)

f(A + B) ≤ f(A) + f(B), A, B ∈ IRm×n,

f(αA) = |α|f(A), α ∈ IR, A ∈ IRm×n.

As with vector norms, we use a double bar notation with subscripts to designate matrix
norms, i.e., ‖ A ‖ = f(A).

The most frequently used matrix norms in numerical linear algebra are the Frobe-
nius norm

‖ A ‖
F

=

√√√√ m∑
i=1

n∑
j=1

|aij |2 (2.3.1)

and the p-norms

‖ A ‖p = sup
x�=0

‖ Ax ‖p

‖ x ‖p

. (2.3.2)

Note that the matrix p-norms are defined in terms of the vector p-norms discussed in
the previous section. The verification that (2.3.1) and (2.3.2) are matrix norms is left
as an exercise. It is clear that ‖ A ‖p is the p-norm of the largest vector obtained by
applying A to a unit p-norm vector:

‖ A ‖p = sup
x�=0

∥∥∥∥∥A

(
x

‖ x ‖p

)∥∥∥∥∥
p

= max
‖x‖p=1

‖ Ax ‖p .

It is important to understand that (2.3.2) defines a family of norms—the 2-norm
on IR3×2 is a different function from the 2-norm on IR5×6. Thus, the easily verified
inequality

‖ AB ‖p ≤ ‖ A ‖p‖ B ‖p, A ∈ IRm×n, B ∈ IRn×q (2.3.3)

is really an observation about the relationship between three different norms. Formally,
we say that norms f1, f2, and f3 on IRm×q, IRm×n, and IRn×q are mutually consistent
if for all matrices A ∈ IRm×n and B ∈ IRn×q we have f1(AB) ≤ f2(A)f3(B), or, in
subscript-free norm notation:

‖ AB ‖ ≤ ‖ A ‖ ‖ B ‖. (2.3.4)
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Not all matrix norms satisfy this property. For example, if ‖ A ‖∆ = max |aij | and

A = B =
[

1 1
1 1

]
,

then ‖ AB ‖∆ > ‖ A ‖∆‖ B ‖∆. For the most part, we work with norms that satisfy
(2.3.4).

The p-norms have the important property that for every A ∈ IRm×n and x ∈ IRn

we have
‖ Ax ‖p ≤ ‖ A ‖p‖ x ‖p.

More generally, for any vector norm ‖ · ‖α on IRn and ‖ · ‖β on IRm we have ‖ Ax ‖β ≤
‖ A ‖α,β‖ x ‖α where ‖ A ‖α,β is a matrix norm defined by

‖ A ‖α,β = sup
x�=0

‖ Ax ‖β

‖ x ‖α

. (2.3.5)

We say that ‖ · ‖α,β is subordinate to the vector norms ‖ · ‖α and ‖ · ‖β . Since the
set {x ∈ IRn : ‖ x ‖α = 1} is compact and ‖ · ‖β is continuous, it follows that

‖ A ‖α,β = max
‖x‖α=1

‖ Ax ‖β = ‖ Ax∗ ‖β (2.3.6)

for some x∗ ∈ IRn having unit α-norm.

2.3.2 Some Matrix Norm Properties

The Frobenius and p-norms (especially p = 1, 2, ∞) satisfy certain inequalities that
are frequently used in the analysis of a matrix computation. If A ∈ IRm×n we have

‖ A ‖2 ≤ ‖ A ‖F ≤
√

min{m, n} ‖ A ‖2, (2.3.7)

max
i,j

|aij | ≤ ‖ A ‖2 ≤
√

mn max
i,j

|aij |, (2.3.8)

‖ A ‖1 = max
1≤j≤n

m∑
i=1

|aij |, (2.3.9)

‖ A ‖∞ = max
1≤i≤m

n∑
j=1

|aij |, (2.3.10)

1√
n
‖ A ‖∞ ≤ ‖ A ‖2 ≤

√
m ‖ A ‖∞, (2.3.11)

1√
m

‖ A ‖1 ≤ ‖ A ‖2 ≤
√

n ‖ A ‖1. (2.3.12)

If A ∈ IRm×n, 1 ≤ i1 ≤ i2 ≤ m, and 1 ≤ j1 ≤ j2 ≤ n, then

‖ A(i1:i2, j1:j2) ‖p ≤ ‖ A ‖p. (2.3.13)
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The proofs of these relationships are left as exercises. We mention that a sequence
{A(k)} ∈ IRm×n converges if there exists a matrix A ∈ IRm×n such that

lim
k→∞

‖ A(k) − A ‖ = 0.

The choice of norm is immaterial since all norms on IRm×n are equivalent.

2.3.3 The Matrix 2-Norm

A nice feature of the matrix 1-norm and the matrix ∞-norm is that they are easy, O(n2)
computations. (See (2.3.9) and (2.3.10).) The calculation of the 2-norm is considerably
more complicated.

Theorem 2.3.1. If A ∈ IRm×n, then there exists a unit 2-norm n-vector z such that
AT Az = µ2z where µ = ‖ A ‖2.

Proof. Suppose z ∈ IRn is a unit vector such that ‖ Az ‖2 = ‖ A ‖2. Since z maximizes
the function

g(x) =
1
2
‖ Ax ‖2

2

‖ x ‖2
2

=
1
2

xT AT Ax

xT x

it follows that it satisfies ∇g(z) = 0 where ∇g is the gradient of g. A tedious differen-
tiation shows that for i = 1:n

∂g(z)
∂zi

=

⎡⎣(zT z)
n∑

j=1

(AT A)ijzj − (zT AT Az)zi

⎤⎦/
(zT z)2 .

In vector notation this says that AT Az = (zT AT Az)z. The theorem follows by setting
µ = ‖ Az ‖2.

The theorem implies that ‖ A ‖2
2 is a zero of p(λ) = det(AT A − λI). In particular,

‖ A ‖2 =
√

λmax(AT A)

We have much more to say about eigenvalues in Chapters 7 and 8. For now, we merely
observe that 2-norm computation is iterative and a more involved calculation than
those of the matrix 1-norm or ∞-norm. Fortunately, if the object is to obtain an
order-of-magnitude estimate of ‖ A ‖2, then (2.3.7), (2.3.8), (2.3.11), or (2.3.12) can be
used.

As another example of norm analysis, here is a handy result for 2-norm estimation.

Corollary 2.3.2. If A ∈ IRm×n, then ‖ A ‖2 ≤
√
‖ A ‖1‖ A ‖∞ .

Proof. If z 
= 0 is such that AT Az = µ2z with µ = ‖ A ‖2, then µ2‖ z ‖1 =
‖ AT Az ‖1 ≤ ‖ AT ‖1‖ A ‖1‖ z ‖1 = ‖ A ‖∞‖ A ‖1‖ z ‖1.
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2.3.4 Perturbations and the Inverse

We frequently use norms to quantify the effect of perturbations or to prove that a
sequence of matrices converges to a specified limit. As an illustration of these norm
applications, let us quantify the change in A−1 as a function of change in A.

Lemma 2.3.3. If F ∈ IRn×n and ‖ F ‖p < 1, then I − F is nonsingular and

(I − F )−1 =
∞∑

k=0

F k

with
‖ (I − F )−1 ‖p ≤ 1

1 − ‖ F ‖p

.

Proof. Suppose I−F is singular. It follows that (I−F )x = 0 for some nonzero x. But
then ‖ x ‖p = ‖ Fx ‖p implies ‖ F ‖p ≥ 1, a contradiction. Thus, I − F is nonsingular.
To obtain an expression for its inverse consider the identity(

N∑
k=0

F k

)
(I − F ) = I − FN+1.

Since ‖ F ‖p < 1 it follows that lim
k→∞

F k = 0 because ‖ F k ‖p ≤ ‖ F ‖k
p. Thus,

(
lim

N→∞

N∑
k=0

F k

)
(I − F ) = I.

It follows that (I − F )−1 = lim
N→∞

N∑
k=0

F k. From this it is easy to show that

‖ (I − F )−1 ‖p ≤
∞∑

k=0

‖ F ‖k
p =

1
1 − ‖ F ‖p

completing the proof of the theorem.

Note that ‖ (I − F )−1 − I ‖p ≤ ‖ F ‖p/(1 − ‖ F ‖p) is a consequence of the lemma.
Thus, if ε � 1, then O(ε) perturbations to the identity matrix induce O(ε) perturba-
tions in the inverse. In general, we have

Theorem 2.3.4. If A is nonsingular and r ≡ ‖ A−1E ‖p < 1, then A+E is nonsingular
and

‖ (A + E)−1 − A−1 ‖p ≤
‖ E ‖p ‖ A−1 ‖2

p

1 − r
.

Proof. Note that A + E = (I + F )A where F = −EA−1. Since ‖ F ‖p = r < 1, it
follows from Lemma 2.3.3 that I + F is nonsingular and ‖ (I + F )−1 ‖p ≤ 1/(1 − r).
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Thus, (A + E)−1 = A−1(I + F )−1 is nonsingular and

(A + E)−1 − A−1 = A−1(A − (A + E))(A + E)−1 = −A−1EA−1(I + F )−1.

The theorem follows by taking norms.

2.3.5 Orthogonal Invariance

If A ∈ IRm×n and the matrices Q ∈ IRm×m and Z ∈ IRn×nare orthogonal, then

‖ QAZ ‖
F

= ‖ A ‖
F

(2.3.14)

and
‖ QAZ ‖2 = ‖ A ‖2 . (2.3.15)

These properties readily follow from the orthogonal invariance of the vector 2-norm.
For example,

‖ QA ‖2
F

=
n∑

j=1

‖ QA(:, j) ‖2
2 =

n∑
j=1

‖ A(:, j) ‖2
2 = ‖ A ‖2

F

and so ‖ Q(AZ) ‖2
F

= ‖ (AZ) ‖2
F

= ‖ ZT AT ‖2
F

= ‖ AT ‖2
F

= ‖ A ‖2
F
.

Problems

P2.3.1 Show ‖AB ‖p ≤ ‖A ‖p‖B ‖p where 1 ≤ p ≤ ∞.

P2.3.2 Let B be any submatrix of A. Show that ‖B ‖p ≤ ‖A ‖p.

P2.3.3 Show that if D = diag(µ1, . . . , µk) ∈ IRm×n with k = min{m, n}, then ‖D ‖p = max |µi|.
P2.3.4 Verify (2.3.7) and (2.3.8).

P2.3.5 Verify (2.3.9) and (2.3.10).

P2.3.6 Verify (2.3.11) and (2.3.12).

P2.3.7 Show that if 0 = s ∈ IRn and E ∈ IRn×n, then∥∥∥∥E

(
I − ssT

sT s

)∥∥∥∥2

F

= ‖ E ‖2F −
‖ Es ‖22

sT s
.

P2.3.8 Suppose u ∈ IRm and v ∈ IRn. Show that if E = uvT , then ‖ E ‖
F

= ‖ E ‖2 = ‖ u ‖2‖ v ‖2 and
‖ E ‖∞ ≤ ‖ u ‖∞‖ v ‖1.

P2.3.9 Suppose A ∈ IRm×n, y ∈ IRm, and 0 = s ∈ IRn. Show that E = (y − As)sT /sT s has the
smallest 2-norm of all m-by-n matrices E that satisfy (A + E)s = y.

P2.3.10 Verify that there exists a scalar c > 0 such that

‖A ‖∆,c = max
i, j

c|aij |

satisfies the submultiplicative property (2.3.4) for matrix norms on IRn×n. What is the smallest value
for such a constant? Referring to this value as c∗, exhibit nonzero matrices B and C with the property
that ‖BC ‖∆,c∗ = ‖B ‖∆,c∗‖ C ‖∆,c∗ .

P2.3.11 Show that if A and B are matrices, then ‖A⊗B ‖
F = ‖A ‖F ‖B ‖F .
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Notes and References for §2.3

For further discussion of matrix norms, see Stewart (IMC) as well as:

F.L. Bauer and C.T. Fike (1960). “Norms and Exclusion Theorems,” Numer. Math. 2, 137–144.
L. Mirsky (1960). “Symmetric Gauge Functions and Unitarily Invariant Norms,” Quart. J. Math. 11,

50–59.
A.S. Householder (1964). The Theory of Matrices in Numerical Analysis, Dover Publications, New

York.
N.J. Higham (1992). “Estimating the Matrix p-Norm,” Numer. Math. 62, 539–556.

2.4 The Singular Value Decomposition
It is fitting that the first matrix decomposition that we present in the book is the
singular value decomposition (SVD). The practical and theoretical importance of the
SVD is hard to overestimate. It has a prominent role to play in data analysis and in
the characterization of the many matrix “nearness problems.”

2.4.1 Derivation

The SVD is an orthogonal matrix reduction and so the 2-norm and Frobenius norm
figure heavily in this section. Indeed, we can prove the existence of the decomposition
using some elementary facts about the 2-norm developed in the previous two sections.

Theorem 2.4.1 (Singular Value Decomposition ). If A is a real m-by-n matrix,
then there exist orthogonal matrices

U = [ u1 | · · · | um ] ∈ IRm×m and V = [ v1 | · · · | vn ] ∈ IRn×n

such that

UT AV = Σ = diag(σ1, . . . , σp) ∈ IRm×n, p = min{m, n},

where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.

Proof. Let x ∈ IRn and y ∈ IRm be unit 2-norm vectors that satisfy Ax = σy with
σ = ‖ A ‖2. From Theorem 2.1.1 there exist V2 ∈ IRn×(n−1) and U2 ∈ IRm×(m−1) so
V = [ x | V2 ] ∈ IRn×n and U = [ y | U2 ] ∈ IRm×m are orthogonal. It is not hard to show
that

UT AV =
[

σ wT

0 B

]
≡ A1

where w ∈ IRn−1 and B ∈ IR(m−1)×(n−1). Since∥∥∥∥A1

([
σ
w

])∥∥∥∥2

2
≥ (σ2 + wT w)2

we have ‖ A1 ‖2
2 ≥ (σ2+wT w). But σ2 = ‖ A ‖2

2 = ‖ A1 ‖2
2, and so we must have w = 0.

An obvious induction argument completes the proof of the theorem.

The σi are the singular values of A, the ui are the left singular vectors of A, and the
vi are right singular vectors of A. Separate visualizations of the SVD are required
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depending upon whether A has more rows or columns. Here are the 3-by-2 and 2-by-3
examples:⎡⎣ u11 u12 u13

u21 u22 u23
u31 u32 u33

⎤⎦T ⎡⎣ a11 a12
a21 a22
a31 a32

⎤⎦[
v11 v12
v21 v22

]
=

⎡⎣ σ1 0
0 σ2
0 0

⎤⎦ ,

[
u11 u12
u21 u22

]T [
a11 a12 a13
a21 a22 a23

]⎡⎣ v11 v12 v13
v21 v22 v23
v31 v32 v33

⎤⎦ =
[

σ1 0 0
0 σ2 0

]
.

In later chapters, the notation σi(A) is used to designate the ith largest singular value
of a matrix A. The largest and smallest singular values are important and for them we
also have a special notation:

σmax(A) = the largest singular value of matrix A,

σmin(A) = the smallest singular value of matrix A.

2.4.2 Properties

We establish a number of important corollaries to the SVD that are used throughout
the book.

Corollary 2.4.2. If UT AV = Σ is the SVD of A ∈ IRm×n and m ≥ n, then for i = 1:n
Avi = σiui and AT ui = σivi.

Proof. Compare columns in AV = UΣ and AT U = V ΣT .

There is a nice geometry behind this result. The singular values of a matrix A are the
lengths of the semiaxes of the hyperellipsoid E defined by E = { Ax : ‖ x ‖2 = 1 }. The
semiaxis directions are defined by the ui and their lengths are the singular values.

It follows immediately from the corollary that

AT Avi = σ2
i vi, (2.4.1)

AAT ui = σ2
i ui (2.4.2)

for i = 1:n. This shows that there is an intimate connection between the SVD of A
and the eigensystems of the symmetric matrices AT A and AAT . See §8.6 and §10.4.

The 2-norm and the Frobenius norm have simple SVD characterizations.

Corollary 2.4.3. If A ∈ IRm×n, then

‖ A ‖2 = σ1, ‖ A ‖
F

=
√

σ2
1 + · · · + σ2

p,

where p = min{m, n}.

Proof. These results follow immediately from the fact that ‖ UT AV ‖ = ‖ Σ ‖ for both
the 2-norm and the Frobenius norm.
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We show in §8.6 that if A is perturbed by a matrix E, then no singular value can move
by more than ‖ E ‖2 . The following corollary identifies two useful instances of this
result.

Corollary 2.4.4. If A ∈ IRm×n and E ∈ IRm×n, then

σmax(A + E) ≤ σmax(A) + ‖ E ‖2,

σmin(A + E) ≥ σmin(A) − ‖ E ‖2.

Proof. Using Corollary 2.4.2 it is easy to show that

σmin(A) · ‖ x ‖2 ≤ ‖ Ax ‖2 ≤ σmax(A) · ‖ x ‖2.

The required inequalities follow from this result.

If a column is added to a matrix, then the largest singular value increases and the
smallest singular value decreases.

Corollary 2.4.5. If A ∈ IRm×n, m > n, and z ∈ IRm, then

σmax ( [ A | z ] ) ≥ σmax(A),

σmin ( [ A | z ] ) ≤ σmin(A).

Proof. Suppose A = UΣV T is the SVD of A and let x = V (:, 1) and Ã = [ A | z ].
Using Corollary 2.4.4, we have

σmax(A) = ‖ Ax ‖2 =
∥∥∥∥ Ã

[
x
0

] ∥∥∥∥
2
≤ σmax(Ã).

The proof that σmin(A) ≥ σmin(Ã) is similar.

The SVD neatly characterizes the rank of a matrix and orthonormal bases for
both its nullspace and its range.

Corollary 2.4.6. If A has r positive singular values, then rank(A) = r and

null(A) = span{vr+1, . . . , vn},
ran(A) = span{u1, . . . , ur}.

Proof. The rank of a diagonal matrix equals the number of nonzero diagonal entries.
Thus, rank(A) = rank(Σ) = r. The assertions about the nullspace and range follow
from Corollary 2.4.2.
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If A has rank r, then it can be written as the sum of r rank-1 matrices. The SVD
gives us a particularly nice choice for this expansion.

Corollary 2.4.7. If A ∈ IRm×n and rank(A) = r, then

A =
r∑

i=1

σiuiv
T
i .

Proof. This is an exercise in partitioned matrix multiplication:

(UΣ) V T =
([

σ1u1 σ2u2 · · · σrur 0 · · · 0
]) ⎡⎢⎣ vT

1
...

vT
n

⎤⎥⎦ =
r∑

i=1

σiuiv
T
i .

The intelligent handling of rank degeneracy is an important topic that we discuss in
Chapter 5. The SVD has a critical role to play because it can be used to identify
nearby matrices of lesser rank.

Theorem 2.4.8 (The Eckhart-Young Theorem). If k < r = rank(A) and

Ak =
k∑

i=1

σiuiv
T
i , (2.4.3)

then
min

rank(B)=k

‖ A − B ‖2 = ‖ A − Ak ‖2 = σk+1 . (2.4.4)

Proof. Since UT AkV = diag(σ1, . . . , σk, 0, . . . , 0) it follows that Ak is rank k. More-
over, UT (A − Ak)V = diag(0, . . . , 0, σk+1, . . . , σp) and so ‖ A − Ak ‖2 = σk+1.

Now suppose rank(B) = k for some B ∈ IRm×n. It follows that we can find
orthonormal vectors x1, . . . , xn−k so null(B) = span{x1, . . . , xn−k}. A dimension argu-
ment shows that

span{x1, . . . , xn−k} ∩ span{v1, . . . , vk+1} 
= {0}.
Let z be a unit 2-norm vector in this intersection. Since Bz = 0 and

Az =
k+1∑
i=1

σi(vT
i z)ui,

we have

‖ A − B ‖2
2 ≥ ‖ (A − B)z ‖2

2 = ‖ Az ‖2
2 =

k+1∑
i=1

σ2
i (vT

i z)2 ≥ σ2
k+1,

completing the proof of the theorem.

Note that this theorem says that the smallest singular value of A is the 2-norm distance
of A to the set of all rank-deficient matrices. We also mention that the matrix Ak

defined in (2.4.3) is the closest rank-k matrix to A in the Frobenius norm.
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2.4.3 The Thin SVD

If A = UΣV T ∈ IRm×n is the SVD of A and m ≥ n, then

A = U1Σ1V
T

where
U1 = U(:, 1:n) = [ u1 | · · · | un ] ∈ IRm×n

and
Σ1 = Σ(1:n, 1:n) = diag(σ1, . . . , σn) ∈ IRn×n.

We refer to this abbreviated version of the SVD as the thin SVD.

2.4.4 Unitary Matrices and the Complex SVD

Over the complex field the unitary matrices correspond to the orthogonal matrices.
In particular, Q ∈ Cn×n is unitary if QHQ = QQH = In. Unitary transformations
preserve both the 2-norm and the Frobenius norm. The SVD of a complex matrix
involves unitary matrices. If A ∈ Cm×n, then there exist unitary matrices U ∈ Cm×m

and V ∈ Cn×n such that

UHAV = diag(σ1, . . . , σp) ∈ IRm×n p = min{m, n}

where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0. All of the real SVD properties given above have obvious
complex analogs.

Problems

P2.4.1 Show that if Q = Q1 + iQ2 is unitary with Q1, Q2 ∈ IRn×n, then the 2n-by-2n real matrix

Z =

[
Q1 −Q2

Q2 Q1

]
is orthogonal.

P2.4.2 Prove that if A ∈ IRm×n, then

σmax(A) = max
y ∈ IRm

x ∈ IRn

yT Ax

‖ x ‖2‖ y ‖2
.

P2.4.3 For the 2-by-2 matrix A =
[

w x
y z

]
, derive expressions for σmax(A) and σmin(A) that are

functions of w, x, y, and z.

P2.4.4 Show that any matrix in IRm×n is the limit of a sequence of full rank matrices.

P2.4.5 Show that if A ∈ IRm×n has rank n, then ‖A(AT A)−1AT ‖2 = 1.

P2.4.6 What is the nearest rank-1 matrix to

A =
[

1 M
0 1

]
in the Frobenius norm?

P2.4.7 Show that if A ∈ IRm×n, then ‖A ‖F ≤
√

rank(A) ‖A ‖2, thereby sharpening (2.3.7).

P2.4.8 Suppose A ∈ IRn×n. Give an SVD solution to the following problem:

min
det(B)=|det(A)|

‖A−B ‖F .
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P2.4.9 Show that if a nonzero row is added to a matrix, then both the largest and smallest singular
values increase.

P2.4.10 Show that if θu and θv are real numbers and

A =

[
cos(θu) sin(θu)

cos(θv) sin(θv)

]
,

then UT AV = Σ where

U =

[
cos(π/4) − sin(π/4)

sin(π/4) cos(π/4)

]
, V =

[
cos(a) − sin(a)

sin(a) cos(a)

]
,

and Σ = diag(
√

2 cos(b),
√

2 sin(b)) with a = (θv + θu)/2 and b = (θv − θu)/2.

Notes and References for §2.4

Forsythe and Moler (SLAS) offer a good account of the SVD’s role in the analysis of the Ax = b
problem. Their proof of the decomposition is more traditional than ours in that it makes use of the
eigenvalue theory for symmetric matrices. Historical SVD references include:

E. Beltrami (1873). “Sulle Funzioni Bilineari,” Gionale di Mathematiche 11, 98–106.
C. Eckart and G. Young (1939). “A Principal Axis Transformation for Non-Hermitian Matrices,” Bull.

AMS 45, 118–21.
G.W. Stewart (1993). “On the Early History of the Singular Value Decomposition,” SIAM Review

35, 551–566.

One of the most significant developments in scientific computation has been the increased use of the
SVD in application areas that require the intelligent handling of matrix rank. This work started with:

C. Eckart, and G. Young (1936). “The Approximation of One Matrix by Another of Lower Rank,”
Psychometrika 1, 211–218.

For generalizations of the SVD to infinite dimensional Hilbert space, see:

I.C. Gohberg and M.G. Krein (1969). Introduction to the Theory of Linear Non-Self Adjoint Opera-
tors, Amer. Math. Soc., Providence, RI.

F. Smithies (1970). Integral Equations, Cambridge University Press, Cambridge.

Reducing the rank of a matrix as in Corollary 2.4.6 when the perturbing matrix is constrained is
discussed in:

J.W. Demmel (1987). “The Smallest Perturbation of a Submatrix which Lowers the Rank and Con-
strained Total Least Squares Problems, SIAM J. Numer. Anal. 24, 199–206.

G.H. Golub, A. Hoffman, and G.W. Stewart (1988). “A Generalization of the Eckart-Young-Mirsky
Approximation Theorem.” Lin. Alg. Applic. 88/89, 317–328.

G.A. Watson (1988). “The Smallest Perturbation of a Submatrix which Lowers the Rank of the
Matrix,” IMA J. Numer. Anal. 8, 295–304.

2.5 Subspace Metrics
If the object of a computation is to compute a matrix or a vector, then norms are
useful for assessing the accuracy of the answer or for measuring progress during an
iteration. If the object of a computation is to compute a subspace, then to make
similar comments we need to be able to quantify the distance between two subspaces.
Orthogonal projections are critical in this regard. After the elementary concepts are
established we discuss the CS decomposition. This is an SVD-like decomposition that
is handy when we have to compare a pair of subspaces.
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2.5.1 Orthogonal Projections

Let S ⊆ IRn be a subspace. P ∈ IRn×n is the orthogonal projection onto S if ran(P ) = S,
P 2 = P , and PT = P . From this definition it is easy to show that if x ∈ IRn, then
Px ∈ S and (I − P )x ∈ S⊥.

If P1 and P2 are each orthogonal projections, then for any z ∈ IRn we have

‖ (P1 − P2)z ‖2
2 = (P1z)T (I − P2)z + (P2z)T (I − P1)z.

If ran(P1) = ran(P2) = S, then the right-hand side of this expression is zero, show-
ing that the orthogonal projection for a subspace is unique. If the columns of V =
[ v1 | · · · | vk ] are an orthonormal basis for a subspace S, then it is easy to show that
P = V V T is the unique orthogonal projection onto S. Note that if v ∈ IRn, then
P = vvT /vT v is the orthogonal projection onto S = span{v}.

2.5.2 SVD-Related Projections

There are several important orthogonal projections associated with the singular value
decomposition. Suppose A = UΣV T ∈ IRm×n is the SVD of A and that r = rank(A).
If we have the U and V partitionings

U = [ Ur | Ũr ]
r m−r

, V = [ Vr | Ṽr ]
r n−r

,

then
VrV

T
r = projection on to null(A)⊥ = ran(AT ),

ṼrṼ
T
r = projection on to null(A),

UrU
T
r = projection on to ran(A),

ŨrŨ
T
r = projection on to ran(A)⊥ = null(AT ).

2.5.3 Distance Between Subspaces

The one-to-one correspondence between subspaces and orthogonal projections enables
us to devise a notion of distance between subspaces. Suppose S1 and S2 are subspaces
of IRn and that dim(S1) = dim(S2). We define the distance between these two spaces
by

dist(S1, S2) = ‖ P1 − P2 ‖2 (2.5.1)

where Pi is the orthogonal projection onto Si. The distance between a pair of subspaces
can be characterized in terms of the blocks of a certain orthogonal matrix.

Theorem 2.5.1. Suppose

W = [ W1 | W2 ]
k n−k

, Z = [ Z1 | Z2 ]
k n−k

,

are n-by-n orthogonal matrices. If S1 = ran(W1) and S2 = ran(Z1), then

dist(S1, S2) = ‖ WT
1 Z2 ‖2 = ‖ ZT

1 W2 ‖2.
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Proof. We first observe that

dist(S1, S2) = ‖ W1W
T
1 − Z1Z

T
1 ‖2

= ‖ WT (W1W
T
1 − Z1Z

T
1 )Z ‖2

=
∥∥∥∥[ 0 WT

1 Z2
−WT

2 Z1 0

]∥∥∥∥
2

.

Note that the matrices WT
2 Z1 and WT

1 Z2 are submatrices of the orthogonal matrix

Q =

[
Q11 Q12

Q21 Q22

]
≡

[
WT

1 Z1 WT
1 Z2

WT
2 Z1 WT

2 Z2

]
= WT Z. (2.5.2)

Our goal is to show that ‖ Q21 ‖2 = ‖ Q12 ‖2. Since Q is orthogonal it follows from

Q

[
x

0

]
=

[
Q11x

Q21x

]

that 1 = ‖ Q11x ‖2
2 + ‖ Q21x ‖2

2 for all unit 2-norm x ∈ IRk. Thus,

‖ Q21 ‖2
2 = max

‖x‖2=1
‖ Q21x ‖2

2 = 1 − min
‖x‖2=1

‖ Q11x ‖2
2 = 1 − σmin(Q11)2.

Analogously, by working with QT (which is also orthogonal) it is possible to show that

‖ QT
12 ‖

2
2 = 1 − σmin(QT

11)
2,

and therefore
‖ Q12 ‖2

2 = 1 − σmin(Q11)2.

Thus, ‖ Q21 ‖2 = ‖ Q12 ‖2.

Note that if S1 and S2 are subspaces in IRn with the same dimension, then

0 ≤ dist(S1, S2) ≤ 1.

It is easy to show that

dist(S1, S2) = 0 ⇒ S1 = S2,

dist(S1, S2) = 1 ⇒ S1

⋂
S⊥2 
= {0}.

A more refined analysis of the blocks of the matrix Q in (2.5.2) sheds light on the dif-
ference between a pair of subspaces. A special, SVD-like decomposition for orthogonal
matrices is required.
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2.5.4 The CS Decomposition

The blocks of an orthogonal matrix partitioned into 2-by-2 form have highly related
SVDs. This is the gist of the CS decomposition. We prove a very useful special case
first.

Theorem 2.5.2 (The CS Decomposition (Thin Version)). Consider the matrix

Q =

[
Q1

Q2

]
, Q1 ∈ IRm1×n1 , Q2 ∈ IRm2×n1 ,

where m1 ≥ n1 and m2 ≥ n1. If the columns of Q are orthonormal, then there exist
orthogonal matrices U1 ∈ IRm1×m1 , U2 ∈ IRm2×m2 , and V1 ∈ IRn1×n1 such that[

U1 0

0 U2

]T [
Q1

Q2

]
V1 =

[
C

S

]
where

C0 = diag( cos(θ1), . . . , cos(θn1) ) ∈ IRm1×n1 ,

S0 = diag( sin(θ1), . . . , sin(θn1) ) ∈ IRm2×n1 ,

and
0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn1 ≤ π

2
.

Proof. Since ‖ Q1 ‖2 ≤ ‖ Q ‖2 = 1, the singular values of Q1 are all in the interval
[0, 1]. Let

UT
1 Q1V1 = C0 = diag(c1, . . . , cn1) =

[
It

0
0

Σ

]
t

m1−t

t n1−t

be the SVD of Q1 where we assume

1 = c1 = · · · = ct > ct+1 ≥ · · · ≥ cn1 ≥ 0.

To complete the proof of the theorem we must construct the orthogonal matrix U2. If

Q2V1 = [ W1 | W2 ]
t n1−t

,

then [
U1 0

0 Im2

]T [
Q1

Q2

]
V1 =

⎡⎢⎣ It 0

0 Σ

W1 W2

⎤⎥⎦ .

Since the columns of this matrix have unit 2-norm, W1 = 0. The columns of W2 are
nonzero and mutually orthogonal because

WT
2 W2 = In1−t − ΣT Σ ≡ diag(1 − c2

t+1, . . . , 1 − c2
n1

)
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is nonsingular. If sk =
√

1 − c2
k for k = 1:n1, then the columns of

Z = W2 diag(1/st+1, . . . , 1/sn)

are orthonormal. By Theorem 2.1.1 there exists an orthogonal matrix U2 ∈ IRm2×m2

with U2(:, t + 1:n1) = Z. It is easy to verify that

UT
2 Q2V1 = diag(s1, . . . , sn1) ≡ S0.

Since c2
k + s2

k = 1 for k = 1:n1, it follows that these quantities are the required cosines
and sines.

By using the same techniques it is possible to prove the following, more general version
of the decomposition:

Theorem 2.5.3 (CS Decomposition). Suppose

Q = =
[

Q11

Q21

Q12

Q22

]
m1

m2

n1 n2

is a square orthogonal matrix and that m1 ≥ n1 and m1 ≥ m2. Define the nonnegative
integers p and q by p = max{0, n1 − m2} and q = max{0, m2 − n1}. There exist

orthogonal U1 ∈ IRm1×m1 , U2 ∈ IRm2×m2 , V1 ∈ IRn1×n1 , and V2 ∈ IRn2×n2 such that if

U =

[
U1 0

0 U2

]
and V =

[
V1 0

0 V2

]
,

then

UT QV =

⎡⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0

0 C S 0 0

0 0 0 0 I

0 S −C 0 0

0 0 0 I 0

⎤⎥⎥⎥⎥⎥⎥⎦

p

n1−p

m1−n1

n1−p

q

p n1−p n1−p q m1−n1

where

C = diag( cos(θp+1), . . . , cos(θn1) ) = diag(cp+1, . . . , cn1),

S = diag( sin(θp+1) , . . . , sin(θn1) ) = diag(sp+1, . . . , sn1 ),

and 0 ≤ θp+1 ≤ · · · ≤ θn1 ≤ π/2.

Proof. See Paige and Saunders (1981) for details.

We made the assumptions m1 ≥ n1 and m1 ≥ m2 for clarity. Through permutation and
transposition, any 2-by-2 block orthogonal matrix can be put into the form required



86 Chapter 2. Matrix Analysis

by the theorem. Note that the blocks in the transformed Q, i.e., the UT
i QijVj , are

diagonal-like but not necessarily diagonal. Indeed, as we have presented it, the CS
decomposition gives us four unnormalized SVDs. If Q21 has more rows than columns,
then p = 0 and the reduction looks like this (for example):

UT QV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 0 s1 0 0 0 0
0 c2 0 s2 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
s1 0 −c1 0 0 0 0
0 s2 0 −c2 0 0 0
0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

On the other hand, if Q21 has more columns than rows, then q = 0 and the decompo-
sition has the form

UT QV =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 c2 0 s2 0
0 0 c3 0 s3

0 s2 0 −c2 0
0 0 s3 0 −c3

⎤⎥⎥⎥⎥⎦ .

Regardless of the partitioning, the essential message of the CS decomposition is that
the SVDs of the Q-blocks are highly related.

Problems

P2.5.1 Show that if P is an orthogonal projection, then Q = I − 2P is orthogonal.
P2.5.2 What are the singular values of an orthogonal projection?
P2.5.3 Suppose S1 = span{x} and S2 = span{y}, where x and y are unit 2-norm vectors in IR2.
Working only with the definition of dist(·, ·), show that dist(S1, S2) =

√
1− (xT y)2, verifying that

the distance between S1 and S2 equals the sine of the angle between x and y.
P2.5.4 Refer to §1.3.10. Show that if Q ∈ IR2n×2n is orthogonal and symplectic, then Q has the form

Q =

[
Q1 Q2

−Q2 Q1

]
, Q1, Q2 ∈ IRn×n.

P2.5.5 Suppose P ∈ IRn×n and P 2 = P . Show that ‖ P ‖2 > 1 if null(P ) is not a subspace of ran(A)⊥.
Such a matrix is called an oblique projector. See Stewart (2011).

Notes and References for §2.5

The computation of the CS decomposition is discussed in §8.7.6. For a discussion of its analytical
properties, see:
C. Davis and W. Kahan (1970). “The Rotation of Eigenvectors by a Perturbation III,” SIAM J.

Numer. Anal. 7, 1–46.
G.W. Stewart (1977). “On the Perturbation of Pseudo-Inverses, Projections and Linear Least Squares

Problems,” SIAM Review 19, 634–662.
C.C. Paige and M. Saunders (1981). “Toward a Generalized Singular Value Decomposition,” SIAM

J. Numer. Anal. 18, 398–405.
C.C. Paige and M. Wei (1994). “History and Generality of the CS Decomposition,” Lin. Alg. Applic.

208/209, 303–326.

A detailed numerical discussion of oblique projectors (P2.5.5) is given in:
G.W. Stewart (2011). “On the Numerical Analysis of Oblique Projectors,” SIAM J. Matrix Anal.

Applic. 32, 309–348.
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2.6 The Sensitivity of Square Systems
We use tools developed in previous sections to analyze the linear system problem Ax = b
where A ∈ IRn×n is nonsingular and b ∈ IRn. Our aim is to examine how perturbations
in A and b affect the solution x. Higham (ASNA) offers a more detailed treatment.

2.6.1 An SVD Analysis

If

A =
n∑

i=1

σiuiv
T
i = UΣV T

is the SVD of A, then

x = A−1b = (UΣV T )−1b =
n∑

i=1

uT
i b

σi
vi. (2.6.1)

This expansion shows that small changes in A or b can induce relatively large changes
in x if σn is small.

It should come as no surprise that the magnitude of σn should have a bearing
on the sensitivity of the Ax = b problem. Recall from Theorem 2.4.8 that σn is the
2-norm distance from A to the set of singular matrices. As the matrix of coefficients
approaches this set, it is intuitively clear that the solution x should be increasingly
sensitive to perturbations.

2.6.2 Condition

A precise measure of linear system sensitivity can be obtained by considering the
parameterized system

(A + εF )x(ε) = b + εf, x(0) = x,

where F ∈ IRn×n and f ∈ IRn. If A is nonsingular, then it is clear that x(ε) is differen-
tiable in a neighborhood of zero. Moreover, ẋ(0) = A−1(f − Fx) and so the Taylor
series expansion for x(ε) has the form

x(ε) = x + ε ẋ(0) + O(ε2).

Using any vector norm and consistent matrix norm we obtain

‖ x(ε) − x ‖
‖ x ‖ ≤ | ε | ‖ A−1 ‖

{‖ f ‖
‖ x ‖ + ‖ F ‖

}
+ O(ε2). (2.6.2)

For square matrices A define the condition number κ(A) by

κ(A) = ‖ A ‖ ‖ A−1 ‖ (2.6.3)

with the convention that κ(A) = ∞ for singular A. From ‖ b ‖ ≤ ‖ A ‖ ‖ x ‖ and
(2.6.2) it follows that

‖ x(ε) − x ‖
‖ x ‖ ≤ κ(A)(ρA + ρb) + O(ε2) (2.6.4)
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where

ρA = | ε | ‖ F ‖
‖ A ‖ and ρb = | ε | ‖ f ‖

‖ b ‖
represent the relative errors in A and b, respectively. Thus, the relative error in x can
be κ(A) times the relative error in A and b. In this sense, the condition number κ(A)
quantifies the sensitivity of the Ax = b problem.

Note that κ(·) depends on the underlying norm and subscripts are used accord-
ingly, e.g.,

κ2(A) = ‖ A ‖2‖ A−1 ‖2 =
σmax(A)
σmin(A)

. (2.6.5)

Thus, the 2-norm condition of a matrix A measures the elongation of the hyperellipsoid
{Ax : ‖ x ‖2 = 1}.

We mention two other characterizations of the condition number. For p-norm
condition numbers, we have

1
κp(A)

= min
A+∆A singular

‖ ∆A ‖p

‖ A ‖p

. (2.6.6)

This result may be found in Kahan (1966) and shows that κp(A) measures the relative
p-norm distance from A to the set of singular matrices.

For any norm, we also have

κ(A) = lim
ε→0

sup
‖∆A‖≤ε‖A‖

‖ (A + ∆A)−1 − A−1 ‖
ε

1
‖ A−1 ‖ . (2.6.7)

This imposing result merely says that the condition number is a normalized Fréchet
derivative of the map A → A−1. Further details may be found in Rice (1966). Recall
that we were initially led to κ(A) through differentiation.

If κ(A) is large, then A is said to be an ill-conditioned matrix. Note that this is
a norm-dependent property.1 However, any two condition numbers κα(·) and κβ(·) on
IRn×n are equivalent in that constants c1 and c2 can be found for which

c1κα(A) ≤ κβ(A) ≤ c2κα(A), A ∈ IRn×n.

For example, on IRn×n we have

1
n

κ2(A) ≤ κ1(A) ≤ nκ2(A),

1
n

κ∞(A) ≤ κ2(A) ≤ nκ∞(A), (2.6.8)

1
n2

κ1(A) ≤ κ∞(A) ≤ n2κ1(A) .

Thus, if a matrix is ill-conditioned in the α-norm, it is ill-conditioned in the β-norm
modulo the constants c1 and c2 above.

For any of the p-norms, we have κp(A) ≥ 1. Matrices with small condition num-
bers are said to be well-conditioned. In the 2-norm, orthogonal matrices are perfectly
conditioned because if Q is orthogonal, then κ2(Q) = ‖ Q ‖2‖ QT ‖2 = 1.

1It also depends upon the definition of “large.” The matter is pursued in §3.5
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2.6.3 Determinants and Nearness to Singularity

It is natural to consider how well determinant size measures ill-conditioning. If det(A) =
0 is equivalent to singularity, is det(A) ≈ 0 equivalent to near singularity? Unfortu-
nately, there is little correlation between det(A) and the condition of Ax = b. For
example, the matrix Bn defined by

Bn =

⎡⎢⎢⎢⎣
1 −1 · · · −1
0 1 · · · −1
...

...
. . .

...
0 0 · · · 1

⎤⎥⎥⎥⎦ ∈ IRn×n (2.6.9)

has unit determinant, but κ∞(Bn) = n · 2n−1. On the other hand, a very well-
conditioned matrix can have a very small determinant. For example,

Dn = diag(10−1, . . . , 10−1) ∈ IRn×n

satisfies κp(Dn) = 1 although det(Dn) = 10−n.

2.6.4 A Rigorous Norm Bound

Recall that the derivation of (2.6.4) was valuable because it highlighted the connection
between κ(A) and the rate of change of x(ε) at ε = 0. However, it is a little unsatisfying
because it is contingent on ε being “small enough” and because it sheds no light on
the size of the O(ε2) term. In this and the next subsection we develop some additional
Ax = b perturbation theorems that are completely rigorous.

We first establish a lemma that indicates in terms of κ(A) when we can expect a
perturbed system to be nonsingular.

Lemma 2.6.1. Suppose

Ax = b, A ∈ IRn×n, 0 
= b ∈ IRn,

(A + ∆A)y = b + ∆b, ∆A ∈ IRn×n, ∆b ∈ IRn,

with ‖ ∆A ‖ ≤ ε ‖ A ‖ and ‖ ∆b ‖ ≤ ε ‖ b ‖. If ε κ(A) = r < 1, then A + ∆A is
nonsingular and

‖ y ‖
‖ x ‖ ≤ 1 + r

1 − r
.

Proof. Since ‖ A−1∆A ‖ ≤ ε ‖ A−1 ‖ ‖ A ‖ = r < 1 it follows from Theorem 2.3.4
that (A + ∆A) is nonsingular. Using Lemma 2.3.3 and the equality

(I + A−1∆A)y = x + A−1∆b

we find
‖ y ‖ ≤ ‖ (I + A−1∆A)−1 ‖

(
‖ x ‖ + ε ‖ A−1 ‖ ‖ b ‖

)
≤ 1

1 − r

(
‖ x ‖ + ε ‖ A−1 ‖ ‖ b ‖

)
=

1
1 − r

(
‖ x ‖ + r

‖ b ‖
‖ A ‖

)
.
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Since ‖ b ‖ = ‖ Ax ‖ ≤ ‖ A ‖ ‖ x ‖ it follows that

‖ y ‖ ≤ 1
1 − r

(‖ x ‖ + r‖ x ‖)

and this establishes the required inequality.

We are now set to establish a rigorous Ax = b perturbation bound.

Theorem 2.6.2. If the conditions of Lemma 2.6.1 hold, then

‖ y − x ‖
‖ x ‖ ≤ 2ε

1 − r
κ(A). (2.6.10)

Proof. Since

y − x = A−1∆b − A−1∆Ay (2.6.11)

we have

‖ y − x ‖ ≤ ε‖ A−1 ‖ ‖ b ‖ + ε ‖ A−1 ‖ ‖ A ‖ ‖ y ‖.

Thus,

‖ y − x ‖
‖ x ‖ ≤ ε κ(A)

‖ b ‖
‖ A ‖ ‖ x ‖ + ε κ(A)

‖ y ‖
‖ x ‖ ≤ ε

(
1 +

1 + r

1 − r

)
κ(A),

from which the theorem readily follows.

A small example helps put this result in perspective. The Ax = b problem[
1 0

0 10−6

][
x1

x2

]
=

[
1

10−6

]

has solution x = [ 1 , 1 ]T and condition κ∞(A) = 106. If ∆b = [ 10−6 , 0 ]T , ∆A = 0,
and (A + ∆A)y = b + ∆b, then y = [ 1 + 10−6 , 1 ]T and the inequality (2.6.10) says

10−6 =
‖ x − y ‖∞
‖ x ‖∞

� ‖ ∆b ‖∞
‖ b ‖∞

κ∞(A) = 10−6106 = 1.

Thus, the upper bound in (2.6.10) can be a gross overestimate of the error induced by
the perturbation.

On the other hand, if ∆b = ( 0 , 10−6 )T , ∆A = 0, and (A + ∆A)y = b + ∆b, then
this inequality says that

100

100 ≤ 2 × 10−6106.

Thus, there are perturbations for which the bound in (2.6.10) is essentially attained.
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2.6.5 More Refined Bounds

An interesting refinement of Theorem 2.6.2 results if we extend the notion of absolute
value to matrices:

F = (fij) ∈ IRm×n ⇒ |F | = (|fij |) ∈ IRm×n.

This notation together with a matrix-level version of “≤” makes it easy to specify
componentwise error bounds. If F, G ∈ IRm×n, then

|F | ≤ |G| ⇔ |fij | ≤ |gij |

for all i and j. Also note that if F ∈ IRm×q and G ∈ IRq×n, then |FG| ≤ |F | · |G|. With
these definitions and facts we obtain the following refinement of Theorem 2.6.2.

Theorem 2.6.3. Suppose

Ax = b, A ∈ IRn×n, 0 
= b ∈ IRn,

(A + ∆A)y, = b + ∆b ∆A ∈ IRn×n, ∆b ∈ IRn,

and that |∆A| ≤ ε|A| and |∆b| ≤ ε|b|. If δκ∞(A) = r < 1, then (A+∆A) is nonsingular
and

‖ y − x ‖∞
‖ x ‖∞

≤ 2ε

1 − r
· ‖ |A−1| |A| ‖∞. (2.6.12)

Proof. Since ‖ ∆A ‖∞ ≤ ε‖ A ‖∞ and ‖ ∆b ‖∞ ≤ ε‖ b ‖∞ the conditions of Lemma
2.6.1 are satisfied in the infinity norm. This implies that A + ∆A is nonsingular and

‖ y ‖∞
‖ x ‖∞

≤ 1 + r

1 − r
.

Now using (2.6.11) we find

|y − x| ≤ |A−1| |∆b| + |A−1| |∆A| |y|
≤ ε|A−1| |b| + ε|A−1| |A| |y| ≤ ε|A−1| |A| (|x| + |y|) .

If we take norms, then

‖ y − x ‖∞ ≤ ε‖ |A−1| |A| ‖∞
(
‖ x ‖∞ +

1 + r

1 − r
‖ x ‖∞

)
.

The theorem follows upon division by ‖ x ‖∞.

The quantity ‖ |A−1| |A| ‖∞ is known as the Skeel condition number and there are
examples where it is considerably less than κ∞(A). In these situations, (2.6.12) is
more informative than (2.6.10).

Norm bounds are frequently good enough when assessing error, but sometimes it
is desirable to examine error at the component level. Oettli and Prager (1964) have
an interesting result that indicates if an approximate solution x̂ ∈ IRn to the n-by-n
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system Ax = b satisfies a perturbed system with prescribed structure. Consider the
problem of finding ∆A ∈ IRn×n, ∆b ∈ IRn, and ω ≥ 0 such that

(A + ∆A)x̂ = b + ∆b |∆A| ≤ ω|E| , |∆b| ≤ ω|f | . (2.6.13)

where E ∈ IRn×n and f ∈ IRn are given. With proper choice of E and f , the perturbed
system can take on certain qualities. For example, if E = A and f = b and ω is small,
then x̂ satisfies a nearby system in the componentwise sense. The authors show that
for a given A, b, x̂, E, and f the smallest ω possible in (2.6.13) is given by

ωmin = max
1≤i≤n

|Ax̂ − b|i
(|E| · |x̂| + |f |)i

.

If Ax̂ = b, then ωmin = 0. On the other hand, if ωmin = ∞, then x̂ does not satisfy
any system of the prescribed perturbation structure.

Problems

P2.6.1 Show that if ‖ I ‖ ≥ 1, then κ(A) ≥ 1.

P2.6.2 Show that for a given norm, κ(AB) ≤ κ(A)κ(B) and that κ(αA) = κ(A) for all nonzero α.

P2.6.3 Relate the 2-norm condition of X ∈ IRm×n (m ≥ n) to the 2-norm condition of the matrices

B =
[

Im X
0 In

]
and C =

[
X
In

]
.

P2.6.4 Suppose A ∈ IRn×n is nonsingular. Assume for a particular i and j that there is no way to
make A singular by changing the value of aij . What can you conclude about A−1? Hint: Use the
Sherman-Morrison formula.

P2.6.5 Suppose A ∈ IRn×n is nonsingular, b ∈ IRn, Ax = b, and C = A−1. Use the Sherman-Morrison
formula to show that

∂xk

∂aij
= −xjcki.
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2.7 Finite Precision Matrix Computations
Rounding errors are part of what makes the field of matrix computations so challenging.
In this section we describe a model of floating point arithmetic and then use it to
develop error bounds for floating point dot products, saxpys, matrix-vector products,
and matrix-matrix products.

2.7.1 A 3-digit Calculator

Suppose we have a base-10 calculator that represents nonzero numbers in the following
style:

x = ±d0.d1d2 × 10e where

⎧⎪⎪⎨⎪⎪⎩
1 ≤ d0 ≤ 9,
0 ≤ d1 ≤ 9,
0 ≤ d2 ≤ 9,

−9 ≤ e ≤ 9.

Let us call these numbers floating point numbers. After playing around a bit we make
a number of observations:

• The precision of the calculator has to do with the “length” of the significand
d0.d1d2. For example, the number π would be represented as 3.14 × 100, which
has a relative error approximately equal to 10−3.

• There is not enough “room” to store exactly the results from most arithmetic
operations between floating point numbers. Sums and products like

(1.23 × 106) + (4.56 × 104) = 1275600,

(1.23 × 101) ∗ (4.56 × 102) = 5608.8
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involve more than three significant digits. Results must be rounded in order
to “fit” the 3-digit format, e.g., round(1275600) = 1.28 × 106, round(5608.8) =
5.61 × 103.

• If zero is to be a floating point number (and it must be), then we need a special
convention for its representation, e.g., 0.00 × 100.

• In contrast to the real numbers, there is a smallest positive floating point number
(Nmin = 1.00×10−9) and there is a largest positive floating point number (Nmax =
9.99 × 109).

• Some operations yield answers whose exponents exceed the 1-digit allocation,
e.g., (1.23 × 104) ∗ (4.56 × 107) and (1.23 × 10−2)/(4.56 × 108).

• The set of floating point numbers is finite. For the toy calculator there are
2 × 9 × 10 × 10 × 19 + 1 = 34201 floating point numbers.

• The spacing between the floating point numbers varies. Between 1.00 × 10e and
1.00 × 10e+1 the spacing is 10e−2.

The careful design and analysis of a floating point computation requires an understand-
ing of these inexactitudes and limitations. How are results rounded? How accurate
is floating point arithmetic? What can we say about a sequence of floating point
operations?

2.7.2 IEEE Floating Point Arithmetic

To build a solid, practical understanding of finite precision computation, we set aside
our toy, motivational base-10 calculator and consider the key ideas behind the widely
accepted IEEE floating point standard. The IEEE standard includes a 32-bit single
format and a 64-bit double format. We will illustrate concepts using the latter as an
example because typical accuracy requirements make it the format of choice.

The importance of having a standard for floating point arithmetic that is upheld
by hardware manufacturers cannot be overstated. After all, floating point arithmetic
is the foundation upon which all of scientific computing rests. The IEEE standard pro-
motes software reliability and enables numerical analysts to make rigorous statements
about computed results. Our discussion is based on the excellent book by Overton
(2001).

The 64-bit double format allocates a single bit for the sign of the floating point
number, 52 bits for the mantissa , and eleven bits for the exponent:

x : ± a1a2 . . . a11 b1b2 . . . b52 . (2.7.1)

The “formula” for the value of this representation depends upon the exponent bits:
If a1 . . . a11 is neither all 0’s nor all 1’s, then x is a normalized floating point

number with value

x = ±(1.b1b2 . . . b52)2 × 2(a1a2...a11)2−1023. (2.7.2)

The “1023 bias” in the exponent supports the graceful inclusion of various “unnormal-
ized” floating numbers which we describe shortly. Several important quantities capture
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the finiteness of the representation. The machine epsilon is the gap between 1 and the
next largest floating point number. Its value is 2−52 ≈ 10−16 for the double format.
Among the positive normalized floating point numbers, Nmin = 2−1022 ≈ 10−308 is the
smallest and Nmax = (2− 2−52)21023 ≈ 10308 is the largest. A real number x is within
the normalized range if Nmin ≤ |x| ≤ Nmax.

If a1 . . . a11 is all 0’s, then the value of the representation (2.7.1) is

x = ±(0.b1b2 . . . b52)2 × 2(a1a2...a11)2−1022 (2.7.3)

This includes 0 and the subnormal floating point numbers. This feature creates a
uniform spacing of the floating point numbers between −Nmin and +Nmin.

If a1 . . . a11 is all 1’s, then the encoding (2.7.1) represents inf for +∞, -inf for
−∞, or NaN for “not-a-number.” The determining factor is the value of the bi. (If the bi

are not all zero, then the value of x is NaN.) Quotients like 1/0, −1/0, and 0/0 produce
these special floating point numbers instead of prompting program termination.

There are four rounding modes: round down (toward −∞), round up (toward
+∞), round-toward-zero, and round-toward-nearest. We focus on round-toward-nearest
since it is the mode almost always used in practice.

If a real number x is outside the range of the normalized floating point numbers
then

round(x) =

{
−∞ if x < −Nmax ,

+∞ if x > Nmax.

Otherwise, the rounding process depends upon its floating point “neighbors”:

x− is the nearest floating point number to x that is ≤ x,

x+ is the nearest floating point number to x that is ≥ x.

Define d− = x − x− and d+ = x+ − x and let “lsb” stand for “least significant bit.” If
Nmin ≤ |x| ≤ Nmax, then

round(x) =

{
x− if d− < d+ or d− = d+ and lsb(x−) = 0,

x+ if d+ < d− or d+ = d− and lsb(x+) = 0.

The tie-breaking criteria is well-defined because x− and x+ are adjacent floating point
numbers and so must differ in their least significant bit.

Regarding the accuracy of the round-to-nearest strategy, suppose x is a real num-
ber that satisfies Nmin ≤ |x| ≤ Nmax. Thus,

|round(x) − x| ≤ 2−52

2
2e ≤ 2−52

2
|x|

which says that relative error is bounded by half of the machine epsilon:

|round(x) − x|
|x| ≤ 2−53.

The IEEE standard stipulates that each arithmetic operation be correctly rounded,
meaning that the computed result is the rounded version of the exact result. The
implementation of correct rounding is far from trivial and requires registers that are
equipped with several extra bits of precision.

We mention that the IEEE standard also requires correct rounding in the square
root operation, the remainder operation, and various format conversion operations.



96 Chapter 2. Matrix Analysis

2.7.3 The “fl” Notation

With intuition gleaned from the toy calculator example and an understanding of IEEE
arithmetic, we are ready to move on to the roundoff analysis of some basic algebraic
calculations. The challenge when presenting the effects of finite precision arithmetic
in this section and throughout the book is to communicate essential behavior without
excessive detail. To that end we use the notation fl(·) to identify a floating point
storage and/or computation. Unless exceptions are a critical part of the picture, we
freely invoke the fl notation without mentioning “−∞,” “∞,” “NaN,” etc.

If x ∈ IR, then fl(x) is its floating point representation and we assume that

fl(x) = x(1 + δ), |δ| ≤ u, (2.7.4)

where u is the unit roundoff defined by

u =
1
2
× (gap between 1 and next largest floating point number). (2.7.5)

The unit roundoff for IEEE single format is about 10−7 and for double format it is
about 10−16.

If x and y are floating point numbers and “op” is any of the four arithmetic oper-
ations, then fl(x op y) is the floating point result from the floating point op. Following
Trefethen and Bau (NLA), the fundamental axiom of floating point arithmetic is that

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, (2.7.6)

where x and y are floating point numbers and the “op” inside the fl operation means
“floating point operation.” This shows that there is small relative error associated with
individual arithmetic operations:

|fl(x op y) − (x op y)|
|x op y| ≤ u, x op y 
= 0.

Again, unless it is particularly relevant to the discussion, it will be our habit not to
bring up the possibilities of an exception arising during the floating point operation.

2.7.4 Become a Floating Point Thinker

It is a good idea to have a healthy respect for the subleties of floating point calculation.
So before we proceed with our first serious roundoff error analysis we offer three maxims
to keep in mind when designing a practical matrix computation. Each reinforces the
distinction between computer arithmetic and exact arithmetic.

Maxim 1. Order is Important.

Floating point arithmetic is not associative. For example, suppose

x = 1.24 × 100, y = −1.23 × 100, z = 1.00 × 10−3.

Using toy calculator arithmetic we have

fl(fl(x + y) + z)) = 1.10 × 10−2
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while
fl(x + fl(y + z)) = 1.00 × 10−2.

A consequence of this is that mathematically equivalent algorithms may produce dif-
ferent results in floating point.

Maxim 2. Larger May Mean Smaller.

Suppose we want to compute the derivative of f(x) = sin(x) using a divided
difference. Calculus tells us that d = (sin(x+h)−sin(x))/h satisfies |d−cos(x)| = O(h)
which argues for making h as small as possible. On the other hand, any roundoff error
sustained in the sine evaluations is magnified by 1/h. By setting h =

√
u, the sum of

the calculus error and roundoff error is approximately minimized. In other words, a
value of h much greater than u renders a much smaller overall error. See Overton(2001,
pp. 70–72).

Maxim 3. A Math Book Is Not Enough.

The explicit coding of a textbook formula is not always the best way to design an
effective computation. As an example, we consider the quadratic equation x2−2px−q =
0 where both p and q are positive. Here are two methods for computing the smaller
(necessarily real) root:

Method 1: rmin = p −
√

p2 + q ,

Method 2: rmin =
q

p +
√

p2 + q
.

The first method is based on the familiar quadratic formula while the second uses the
fact that −q is the product of rmin and the larger root. Using IEEE double format
arithmetic with input p = 12345678 and q = 1 we obtain these results:

Method 1: rmin = −4.097819328308106 × 10−8,

Method 2: rmin = −4.050000332100021 × 10−8 (correct).

Method 1 produces an answer that has almost no correct significant digits. It attempts
to compute a small number by subtracting a pair of nearly equal large numbers. Al-
most all correct significant digits in the input data are lost during the subtraction, a
phenomenon known as catastrophic cancellation. In contrast, Method 2 produces an
answer that is correct to full machine precision. It computes a small number as a
division of one number by a much larger number. See Forsythe (1970).

Keeping these maxims in mind does not guarantee the production of accurate,
reliable software, but it helps.

2.7.5 Application: Storing a Real Matrix

Suppose A ∈ IRm×n and that we wish to quantify the errors associated with its floating
point representation. Denoting the stored version of A by fl(A), we see that

[fl(A)]ij = fl(aij) = aij(1 + εij), |εij | ≤ u, (2.7.7)
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for all i and j, i.e.,
|fl(A) − A| ≤ u|A| .

A relation such as this can be easily turned into a norm inequality, e.g.,

‖ fl(A) − A ‖1 ≤ u‖ A ‖1.

However, when quantifying the rounding errors in a matrix manipulation, the absolute
value notation is sometimes more informative because it provides a comment on each
entry.

2.7.6 Roundoff in Dot Products

We begin our study of finite precision matrix computations by considering the rounding
errors that result in the standard dot product algorithm:

s = 0
for k = 1:n

s = s + xkyk (2.7.8)
end

Here, x and y are n-by-1 floating point vectors.
In trying to quantify the rounding errors in this algorithm, we are immediately

confronted with a notational problem: the distinction between computed and exact
quantities. If the underlying computations are clear, we shall use the fl(·) operator to
signify computed quantities. Thus, fl(xT y) denotes the computed output of (2.7.8).
Let us bound |fl(xT y) − xT y|. If

sp = fl

(
p∑

k=1

xkyk

)
,

then s1 = x1y1(1 + δ1) with |δ1| ≤ u and for p = 2:n

sp = fl(sp−1 + fl(xpyp))

= (sp−1 + xpyp(1 + δp)) (1 + εp) |δp|, |εp| ≤ u. (2.7.9)

A little algebra shows that

fl(xT y) = sn =
n∑

k=1

xkyk(1 + γk)

where

(1 + γk) = (1 + δk)
n∏

j=k

(1 + εj)

with the convention that ε1 = 0. Thus,

|fl(xT y) − xT y| ≤
n∑

k=1

|xkyk||γk|. (2.7.10)
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To proceed further, we must bound the quantities |γk| in terms of u. The following
result is useful for this purpose.

Lemma 2.7.1. If (1 + α) =
n∏

k=1

(1 + αk) where |αk| ≤ u and nu ≤ .01, then |α| ≤

1.01nu.

Proof. See Higham (ASNA, p. 75).

Application of this result to (2.7.10) under the “reasonable” assumption nu ≤ .01 gives

|fl(xT y) − xT y| ≤ 1.01nu|x|T |y|. (2.7.11)

Notice that if |xT y| � |x|T |y|, then the relative error in fl(xT y) may not be small.

2.7.7 Alternative Ways to Quantify Roundoff Error

An easier but less rigorous way of bounding α in Lemma 2.7.1 is to say |α| ≤ nu+O(u2).
With this convention we have

|fl(xT y) − xT y| ≤ nu|x|T |y| + O(u2). (2.7.12)

Other ways of expressing the same result include

|fl(xT y) − xT y| ≤ φ(n)u|x|T |y| (2.7.13)

and
|fl(xT y) − xT y| ≤ c nu|x|T |y|, (2.7.14)

where φ(n) is a “modest” function of n and c is a constant of order unity.
We shall not express a preference for any of the error bounding styles shown in

(2.7.11)–(2.7.14). This spares us the necessity of translating the roundoff results that
appear in the literature into a fixed format. Moreover, paying overly close attention to
the details of an error bound is inconsistent with the “philosophy” of roundoff analysis.
As Wilkinson (1971, p. 567) says,

There is still a tendency to attach too much importance to the precise error
bounds obtained by an a priori error analysis. In my opinion, the bound
itself is usually the least important part of it. The main object of such an
analysis is to expose the potential instabilities, if any, of an algorithm so
that hopefully from the insight thus obtained one might be led to improved
algorithms. Usually the bound itself is weaker than it might have been
because of the necessity of restricting the mass of detail to a reasonable
level and because of the limitations imposed by expressing the errors in
terms of matrix norms. A priori bounds are not, in general, quantities
that should be used in practice. Practical error bounds should usually be
determined by some form of a posteriori error analysis, since this takes
full advantage of the statistical distribution of rounding errors and of any
special features, such as sparseness, in the matrix.

It is important to keep these perspectives in mind.
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2.7.8 Roundoff in Other Basic Matrix Computations

It is easy to show that if A and B are floating point matrices and α is a floating point
number, then

fl(αA) = αA + E, |E| ≤ u|αA|, (2.7.15)

and
fl(A + B) = (A + B) + E, |E| ≤ u|A + B|. (2.7.16)

As a consequence of these two results, it is easy to verify that computed saxpy’s and
outer product updates satisfy

fl(y + αx) = y + αx + z, |z| ≤ u (|y| + 2|αx|) + O(u2), (2.7.17)

fl(C + uvT ) = C + uvT + E, |E| ≤ u
(
|C| + 2|uvT |

)
+ O(u2). (2.7.18)

Using (2.7.11) it is easy to show that a dot-product-based multiplication of two floating
point matrices A and B satisfies

fl(AB) = AB + E, |E| ≤ nu|A||B| + O(u2). (2.7.19)

The same result applies if a gaxpy or outer product based procedure is used. Notice
that matrix multiplication does not necessarily give small relative error since |AB| may
be much smaller than |A||B|, e.g.,[

1 1
0 0

] [
1 0

−.99 0

]
=

[
.01 0
0 0

]
.

It is easy to obtain norm bounds from the roundoff results developed thus far. If we
look at the 1-norm error in floating point matrix multiplication, then it is easy to show
from (2.7.19) that

‖ fl(AB) − AB ‖1 ≤ nu‖ A ‖1‖ B ‖1 + O(u2). (2.7.20)

2.7.9 Forward and Backward Error Analyses

Each roundoff bound given above is the consequence of a forward error analysis. An
alternative style of characterizing the roundoff errors in an algorithm is accomplished
through a technique known as backward error analysis. Here, the rounding errors are
related to the input data rather than the answer. By way of illustration, consider the
n = 2 version of triangular matrix multiplication. It can be shown that:

fl(AB) =

⎡⎣ a11b11(1 + ε1) (a11b12(1 + ε2) + a12b22(1 + ε3))(1 + ε4)

0 a22b22(1 + ε5)

⎤⎦
where |εi| ≤ u, for i = 1:5. However, if we define

Â =

⎡⎣ a11 a12(1 + ε3)(1 + ε4)

0 a22(1 + ε5)

⎤⎦
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and

B̂ =

⎡⎣ b11(1 + ε1) b12(1 + ε2)(1 + ε4)

0 b22

⎤⎦ ,

then it is easily verified that fl(AB) = ÂB̂. Moreover,

Â = A + E, |E| ≤ 2u|A| + O(u2),

B̂ = B + F, |F | ≤ 2u|B| + O(u2).

which shows that the computed product is the exact product of slightly perturbed A
and B.

2.7.10 Error in Strassen Multiplication

In §1.3.11 we outlined a recursive matrix multiplication procedure due to Strassen. It is
instructive to compare the effect of roundoff in this method with the effect of roundoff
in any of the conventional matrix multiplication methods of §1.1.

It can be shown that the Strassen approach (Algorithm 1.3.1) produces a Ĉ =
fl(AB) that satisfies an inequality of the form (2.7.20). This is perfectly satisfactory in
many applications. However, the Ĉ that Strassen’s method produces does not always
satisfy an inequality of the form (2.7.19). To see this, suppose that

A = B =

[
.99 .0010

.0010 .99

]

and that we execute Algorithm 1.3.1 using 2-digit floating point arithmetic. Among
other things, the following quantities are computed:

P̂3 = fl(.99(.001 − .99)) = −.98,

P̂5 = fl((.99 + .001).99) = .98,

ĉ12 = fl(P̂3 + P̂5) = 0.0.

In exact arithmetic c12 = 2(.001)(.99) = .00198 and thus Algorithm 1.3.1 produces a
ĉ12 with no correct significant digits. The Strassen approach gets into trouble in this
example because small off-diagonal entries are combined with large diagonal entries.
Note that in conventional matrix multiplication the sums b12 +b22 and a11 +a12 do not
arise. For that reason, the contribution of the small off-diagonal elements is not lost
in this example. Indeed, for the above A and B a conventional matrix multiplication
gives ĉ12 = .0020.

Failure to produce a componentwise accurate Ĉ can be a serious shortcoming in
some applications. For example, in Markov processes the aij , bij , and cij are transition
probabilities and are therefore nonnegative. It may be critical to compute cij accurately
if it reflects a particularly important probability in the modeled phenomenon. Note
that if A ≥ 0 and B ≥ 0, then conventional matrix multiplication produces a product
Ĉ that has small componentwise relative error:

|Ĉ − C| ≤ nu|A| |B| + O(u2) = nu|C| + O(u2) .
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This follows from (2.7.19). Because we cannot say the same for the Strassen approach,
we conclude that Algorithm 1.3.1 is not attractive for certain nonnegative matrix mul-
tiplication problems if relatively accurate ĉij are required.

Extrapolating from this discussion we reach two fairly obvious but important
conclusions:

• Different methods for computing the same quantity can produce substantially
different results.

• Whether or not an algorithm produces satisfactory results depends upon the type
of problem solved and the goals of the user.

These observations are clarified in subsequent chapters and are intimately related to
the concepts of algorithm stability and problem condition. See §3.4.10.

2.7.11 Analysis of an Ideal Equation Solver

A nice way to conclude this chapter and to anticipate the next is to analyze the quality
of a “make-believe” Ax = b solution process in which all floating point operations are
performed exactly except the storage of the matrix A and the right-hand-side b. It
follows that the computed solution x̂ satisfies

(A + E)x̂ = (b + e), ‖ E ‖∞ ≤ u ‖ A ‖∞, ‖ e ‖∞ ≤ u ‖ b ‖∞ . (2.7.21)

where
fl(b) = b + e, fl(A) = A + E.

If uκ∞(A) ≤ 1
2 (say), then by Theorem 2.6.2 it can be shown that

‖ x − x̂ ‖∞
‖ x ‖∞

≤ 4uκ∞(A) . (2.7.22)

The bounds (2.7.21) and (2.7.22) are “best possible” norm bounds. No general ∞-
norm error analysis of a linear equation solver that requires the storage of A and b can
render sharper bounds. As a consequence, we cannot justifiably criticize an algorithm
for returning an inaccurate x̂ if A is ill-conditioned relative to the unit roundoff, e.g.,
uκ∞(A) ≈ 1. On the other hand, we have every “right” to pursue the development
of a linear equation solver that renders the exact solution to a nearby problem in the
style of (2.7.21).

Problems

P2.7.1 Show that if (2.7.8) is applied with y = x, then fl(xT x) = xT x(1 + α) where |α| ≤ nu+ O(u2).

P2.7.2 Prove (2.7.4) assuming that fl(x) is the nearest floating point number to x ∈ IR.

P2.7.3 Show that if E ∈ IRm×n with m ≥ n, then ‖ |E| ‖2 ≤
√

n‖ E ‖2. This result is useful when
deriving norm bounds from absolute value bounds.

P2.7.4 Assume the existence of a square root function satisfying fl(
√

x) =
√

x(1 + ε) with |ε| ≤ u.
Give an algorithm for computing ‖ x ‖2 and bound the rounding errors.

P2.7.5 Suppose A and B are n-by-n upper triangular floating point matrices. If Ĉ = fl(AB) is
computed using one of the conventional §1.1 algorithms, does it follow that Ĉ = ÂB̂ where Â and B̂
are close to A and B?



2.7. Finite Precision Matrix Computations 103

P2.7.6 Suppose A and B are n-by-n floating point matrices and that ‖ |A−1| |A| ‖∞ = τ . Show that
if Ĉ = fl(AB) is obtained using any of the §1.1 algorithms, then there exists a B̂ so that Ĉ = AB̂ and
‖ B̂ −B ‖∞ ≤ nuτ‖B ‖∞ + O(u2).

P2.7.7 Prove (2.7.19).

P2.7.8 For the IEEE double format, what is the largest power of 10 that can be represented exactly?
What is the largest integer that can be represented exactly?

P2.7.9 For k = 1:62 , what is the largest power of 10 that can be stored exactly if k bits are are
allocated for the mantissa and 63− k are allocated for the exponent?

P2.7.10 Consider the quadratic equation

q(λ) = det
([

w − λ x
x z − λ

])
.

This quadratic has two real roots r1 and r2. Assume that |r1 − z| ≤ |r2 − z|. Give an algorithm that
computes r1 to full machine precision.
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Chapter 3

General Linear Systems

3.1 Triangular Systems
3.2 The LU Factorization
3.3 Roundoff Error in Gaussian Elimination
3.4 Pivoting
3.5 Improving and Estimating Accuracy
3.6 Parallel LU

The problem of solving a linear system Ax = b is central to scientific computation.
In this chapter we focus on the method of Gaussian elimination, the algorithm of
choice if A is square, dense, and unstructured. Other methods are applicable if A
does not fall into this category, see Chapter 4, Chapter 11, §12.1, and §12.2. Solution
procedures for triangular systems are discussed first. These are followed by a derivation
of Gaussian elimination that makes use of Gauss transformations. The process of
eliminating unknowns from equations is described in terms of the factorization A = LU
where L is lower triangular and U is upper triangular. Unfortunately, the derived
method behaves poorly on a nontrivial class of problems. An error analysis pinpoints
the difficulty and sets the stage for a discussion of pivoting, a permutation strategy
that keeps the numbers “nice” during the elimination. Practical issues associated with
scaling, iterative improvement, and condition estimation are covered. A framework for
computing the LU factorization in parallel is developed in the final section.

Reading Notes

Familiarity with Chapter 1, §§2.1–2.5, and §2.7 is assumed. The sections within
this chapter depend upon each other as follows:

§3.5
↑

§3.1 → §3.2 → §3.3 → §3.4
↓

§3.6
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Useful global references include Forsythe and Moler (SLAS), Stewart( MABD), Higham
(ASNA), Watkins (FMC), Trefethen and Bau (NLA), Demmel (ANLA), and Ipsen
(NMA).

3.1 Triangular Systems
Traditional factorization methods for linear systems involve the conversion of the given
square system to a triangular system that has the same solution. This section is about
the solution of triangular systems.

3.1.1 Forward Substitution

Consider the following 2-by-2 lower triangular system:[
�11 0
�21 �22

] [
x1
x2

]
=

[
b1
b2

]
.

If �11�22 
= 0, then the unknowns can be determined sequentially:

x1 = b1/�11,

x2 = (b2 − �21x1)/�22.

This is the 2-by-2 version of an algorithm known as forward substitution. The general
procedure is obtained by solving the ith equation in Lx = b for xi:

xi =

⎛⎝bi −
i−1∑
j=1

�ijxj

⎞⎠/
�ii.

If this is evaluated for i = 1:n, then a complete specification of x is obtained. Note
that at the ith stage the dot product of L(i, 1:i − 1) and x(1:i − 1) is required. Since
bi is involved only in the formula for xi, the former may be overwritten by the latter.

Algorithm 3.1.1 (Row-Oriented Forward Substitution) If L ∈ IRn×n is lower trian-
gular and b ∈ IRn, then this algorithm overwrites b with the solution to Lx = b. L is
assumed to be nonsingular.

b(1) = b(1)/L(1, 1)

for i = 2:n

b(i) = (b(i) − L(i, 1:i − 1)·b(1:i − 1))/L(i, i)
end

This algorithm requires n2 flops. Note that L is accessed by row. The computed
solution x̂ can be shown to satisfy

(L + F )x̂ = b |F | ≤ nu|L| + O(u2). (3.1.1)

For a proof, see Higham (ASNA, pp. 141-142). It says that the computed solution
exactly satisfies a slightly perturbed system. Moreover, each entry in the perturbing
matrix F is small relative to the corresponding element of L.
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3.1.2 Back Substitution

The analogous algorithm for an upper triangular system Ux = b is called back substi-
tution. The recipe for xi is prescribed by

xi =

⎛⎝bi −
n∑

j=i+1

uijxj

⎞⎠/
uii

and once again bi can be overwritten by xi.

Algorithm 3.1.2 (Row-Oriented Back Substitution) If U ∈ IRn×n is upper triangular
and b ∈ IRn, then the following algorithm overwrites b with the solution to Ux = b. U
is assumed to be nonsingular.

b(n) = b(n)/U(n, n)

for i = n − 1: −1:1

b(i) = (b(i) − U(i, i + 1:n)·b(i + 1:n))/U(i, i)
end

This algorithm requires n2 flops and accesses U by row. The computed solution x̂
obtained by the algorithm can be shown to satisfy

(U + F )x̂ = b, |F | ≤ nu|U | + O(u2). (3.1.2)

3.1.3 Column-Oriented Versions

Column-oriented versions of the above procedures can be obtained by reversing loop
orders. To understand what this means from the algebraic point of view, consider
forward substitution. Once x1 is resolved, it can be removed from equations 2 through
n leaving us with the reduced system

L(2:n, 2:n)x(2:n) = b(2:n) − x(1)·L(2:n, 1).

We next compute x2 and remove it from equations 3 through n, etc. Thus, if this
approach is applied to ⎡⎣ 2 0 0

1 5 0
7 9 8

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =

⎡⎣ 6
2
5

⎤⎦ ,

we find x1 = 3 and then deal with the 2-by-2 system[
5 0
9 8

] [
x2
x3

]
=

[
2
5

]
− 3

[
1
7

]
=

[
−1
−16

]
.

Here is the complete procedure with overwriting.

Algorithm 3.1.3 (Column-Oriented Forward Substitution) If the matrix L ∈ IRn×n

is lower triangular and b ∈ IRn, then this algorithm overwrites b with the solution to
Lx = b. L is assumed to be nonsingular.
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for j = 1:n − 1

b(j) = b(j)/L(j, j)

b(j + 1:n) = b(j + 1:n) − b(j)·L(j + 1:n, j)
end
b(n) = b(n)/L(n, n)

It is also possible to obtain a column-oriented saxpy procedure for back substitution.

Algorithm 3.1.4 (Column-Oriented Back Substitution) If U ∈ IRn×n is upper trian-
gular and b ∈ IRn, then this algorithm overwrites b with the solution to Ux = b. U is
assumed to be nonsingular.

for j = n: − 1:2

b(j) = b(j)/U(j, j)

b(1:j − 1) = b(1:j − 1) − b(j)·U(1:j − 1, j)
end
b(1) = b(1)/U(1, 1)

Note that the dominant operation in both Algorithms 3.1.3 and 3.1.4 is the saxpy
operation. The roundoff behavior of these implementations is essentially the same as
for the dot product versions.

3.1.4 Multiple Right-Hand Sides

Consider the problem of computing a solution X ∈ IRn×q to LX = B where L ∈ IRn×n

is lower triangular and B ∈ IRn×q. This is the multiple-right-hand-side problem and
it amounts to solving q separate triangular systems, i.e., LX(:, j) = B(:, j), j = 1:q.
Interestingly, the computation can be blocked in such a way that the resulting algorithm
is rich in matrix multiplication, assuming that q and n are large enough. This turns
out to be important in subsequent sections where various block factorization schemes
are discussed.

It is sufficient to consider just the lower triangular case as the derivation of block
back substitution is entirely analogous. We start by partitioning the equation LX = B
as follows: ⎡⎢⎢⎢⎣

L11 0 · · · 0
L21 L22 · · · 0
...

...
. . .

...
LN1 LN2 · · · LNN

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

X1
X2
...

XN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
B1
B2
...

BN

⎤⎥⎥⎥⎦ . (3.1.3)

Assume that the diagonal blocks are square. Paralleling the development of Algorithm
3.1.3, we solve the system L11X1 = B1 for X1 and then remove X1 from block equations
2 through N :⎡⎢⎢⎢⎣

L22 0 · · · 0
L32 L33 · · · 0
...

...
. . .

...
LN2 LN3 · · · LNN

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

X2
X3
...

XN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
B2
B3
...

BN

⎤⎥⎥⎥⎦ −

⎡⎢⎢⎢⎣
L21
L31
...

LN1

⎤⎥⎥⎥⎦X1 .

Continuing in this way we obtain the following block forward elimination scheme:
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for j = 1:N
Solve LjjXj = Bj

for i = j + 1:N (3.1.4)
Bi = Bi − LijXj

end
end

Notice that the i-loop oversees a single block saxpy update of the form⎡⎢⎣ Bj+1
...

BN

⎤⎥⎦ =

⎡⎢⎣ Bj+1
...

BN

⎤⎥⎦−

⎡⎢⎣ Lj+1,j

...
LN,j

⎤⎥⎦Xj .

To realize level-3 performance, the submatrices in (3.1.3) must be sufficiently large in
dimension.

3.1.5 The Level-3 Fraction

It is handy to adopt a measure that quantifies the amount of matrix multiplication in
a given algorithm. To this end we define the level-3 fraction of an algorithm to be the
fraction of flops that occur in the context of matrix multiplication. We call such flops
level-3 flops.

Let us determine the level-3 fraction for (3.1.4) with the simplifying assumption
that n = rN . (The same conclusions hold with the unequal blocking described above.)
Because there are N applications of r-by-r forward elimination (the level-2 portion of
the computation) and n2 flops overall, the level-3 fraction is approximately given by

1 − Nr2

n2 = 1 − 1
N

.

Thus, for large N almost all flops are level-3 flops. It makes sense to choose N as
large as possible subject to the constraint that the underlying architecture can achieve
a high level of performance when processing block saxpys that have width r = n/N or
greater.

3.1.6 Nonsquare Triangular System Solving

The problem of solving nonsquare, m-by-n triangular systems deserves some attention.
Consider the lower triangular case when m ≥ n, i.e.,[

L11
L21

]
x =

[
b1
b2

]
L11 ∈ IRn×n, b1 ∈ IRn,

L21 ∈ IR(m−n)×n, b2 ∈ IRm−n.

Assume that L11 is lower triangular and nonsingular. If we apply forward elimination
to L11x = b1, then x solves the system provided L21(L−1

11 b1) = b2. Otherwise, there
is no solution to the overall system. In such a case least squares minimization may be
appropriate. See Chapter 5.

Now consider the lower triangular system Lx = b when the number of columns
n exceeds the number of rows m. We can apply forward substitution to the square
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system L(1:m, 1:m)x(1:m, 1:m) = b and prescribe an arbitrary value for x(m + 1:n).
See §5.6 for additional comments on systems that have more unknowns than equations.
The handling of nonsquare upper triangular systems is similar. Details are left to the
reader.

3.1.7 The Algebra of Triangular Matrices

A unit triangular matrix is a triangular matrix with 1’s on the diagonal. Many of the
triangular matrix computations that follow have this added bit of structure. It clearly
poses no difficulty in the above procedures.

For future reference we list a few properties about products and inverses of tri-
angular and unit triangular matrices.

• The inverse of an upper (lower) triangular matrix is upper (lower) triangular.

• The product of two upper (lower) triangular matrices is upper (lower) triangular.

• The inverse of a unit upper (lower) triangular matrix is unit upper (lower) trian-
gular.

• The product of two unit upper (lower) triangular matrices is unit upper (lower)
triangular.

Problems

P3.1.1 Give an algorithm for computing a nonzero z ∈ IRn such that Uz = 0 where U ∈ IRn×n is
upper triangular with unn = 0 and u11 · · ·un−1,n−1 = 0.

P3.1.2 Suppose L = In −N is unit lower triangular where N ∈ IRn×n. Show that

L−1 = In + N + N2 + · · ·+ Nn−1.

What is the value of ‖ L−1 ‖F if Nij = 1 for all i > j?

P3.1.3 Write a detailed version of (3.1.4). Do not assume that N divides n.

P3.1.4 Prove all the facts about triangular matrices that are listed in §3.1.7.
P3.1.5 Suppose S, T ∈ IRn×n are upper triangular and that (ST − λI)x = b is a nonsingular system.
Give an O(n2) algorithm for computing x. Note that the explicit formation of ST −λI requires O(n3)
flops. Hint: Suppose

S+ =
[

σ uT

0 Sc

]
, T+ =

[
τ vT

0 Tc

]
, b+ =

[
β
bc

]
,

where S+ = S(k− 1:n, k− 1:n), T+ = T (k− 1:n, k− 1:n), b+ = b(k− 1:n), and σ, τ, β ∈ IR. Show that
if we have a vector xc such that

(ScTc − λI)xc = bc

and wc = Tcxc is available, then

x+ =
[

γ
xc

]
, γ =

β − σvT xc − uT wc

στ − λ

solves (S+T+ − λI)x+ = b+. Observe that x+ and w+ = T+x+ each require O(n− k) flops.

P3.1.6 Suppose the matrices R1, . . . , Rp ∈ IRn×n are all upper triangular. Give an O(pn2) algorithm
for solving the system (R1 · · ·Rp − λI)x = b assuming that the matrix of coefficients is nonsingular.
Hint. Generalize the solution to the previous problem.

P3.1.7 Suppose L, K ∈ IRn×n are lower triangular and B ∈ IRn×n. Give an algorithm for computing
X ∈ IRn×n so that LXK = B.
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Notes and References for §3.1

The accuracy of a computed solution to a triangular system is often surprisingly good, see:

N.J. Higham (1989). “The Accuracy of Solutions to Triangular Systems,” SIAM J. Numer. Anal. 26,
1252–1265.

Solving systems of the form (Tp · · ·T1 − λI)x = b where each Ti is triangular is considered in:

C.D. Martin and C.F. Van Loan (2002). “Product Triangular Systems with Shift,” SIAM J. Matrix
Anal. Applic. 24, 292–301.

The trick to obtaining an O(pn2) procedure that does not involve any matrix-matrix multiplications
is to look carefully at the back-substitution recursions. See P3.1.6.

A survey of parallel triangular system solving techniques and their stabilty is given in:

N.J. Higham (1995). “Stability of Parallel Triangular System Solvers,” SIAM J. Sci. Comput. 16,
400–413.

3.2 The LU Factorization
Triangular system solving is an easy O(n2) computation. The idea behind Gaussian
elimination is to convert a given system Ax = b to an equivalent triangular system.
The conversion is achieved by taking appropriate linear combinations of the equations.
For example, in the system

3x1 + 5x2 = 9,

6x1 + 7x2 = 4,

if we multiply the first equation by 2 and subtract it from the second we obtain

3x1 + 5x2 = 9,

−3x2 = −14.

This is n = 2 Gaussian elimination. Our objective in this section is to describe the
procedure in the language of matrix factorizations. This means showing that the algo-
rithm computes a unit lower triangular matrix L and an upper triangular matrix U so
that A = LU , e.g., [

3 5
6 7

]
=

[
1 0
2 1

] [
3 5
0 −3

]
.

The solution to the original Ax = b problem is then found by a two-step triangular
solve process:

Ly = b, Ux = y =⇒ Ax = LUx = Ly = b. (3.2.1)

The LU factorization is a “high-level” algebraic description of Gaussian elimination.
Linear equation solving is not about the matrix vector product A−1b but about com-
puting LU and using it effectively; see §3.4.9. Expressing the outcome of a matrix
algorithm in the “language” of matrix factorizations is a productive exercise, one that
is repeated many times throughout this book. It facilitates generalization and high-
lights connections between algorithms that can appear very different at the scalar level.
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3.2.1 Gauss Transformations

To obtain a factorization description of Gaussian elimination as it is traditionally pre-
sented, we need a matrix description of the zeroing process. At the n = 2 level, if
v1 
= 0 and τ = v2/v1, then [

1 0
−τ 1

] [
v1
v2

]
=

[
v1
0

]
.

More generally, suppose v ∈ IRn with vk 
= 0. If

τT = [ 0, . . . , 0︸ ︷︷ ︸
k

, τk+1, . . . , τn], τi =
vi

vk
, i = k + 1:n,

and we define
Mk = In − τeT

k , (3.2.2)

then

Mkv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 1 0 0
0 −τk+1 1 0
...

...
...

...
. . .

...
0 · · · −τn 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
...

vk

vk+1
...

vn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
...

vk

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A matrix of the form Mk = In − τeT
k ∈ IRn×n is a Gauss transformation if the first k

components of τ ∈ IRn are zero. Such a matrix is unit lower triangular. The components
of τ(k + 1:n) are called multipliers. The vector τ is called the Gauss vector.

3.2.2 Applying Gauss Transformations

Multiplication by a Gauss transformation is particularly simple. If C ∈ IRn×r and
Mk = In − τeT

k is a Gauss transformation, then

MkC = (In − τeT
k )C = C − τ (eT

k C) = C − τ C(k, :)

is an outer product update. Since τ(1:k) = 0 only C(k + 1:n, :) is affected and the
update C = MkC can be computed row by row as follows:

for i = k + 1:n
C(i, :) = C(i, :) − τi ·C(k, :)

end

This computation requires 2(n − k)r flops. Here is an example:

C =

⎡⎣ 1 4 7
2 5 8
3 6 10

⎤⎦ , τ =

⎡⎣ 0
1

−1

⎤⎦ =⇒ (I − τeT
1 )C =

⎡⎣ 1 4 7
1 1 1
4 10 17

⎤⎦ .
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3.2.3 Roundoff Properties of Gauss Transformations

If τ̂ is the computed version of an exact Gauss vector τ , then it is easy to verify that

τ̂ = τ + e, |e| ≤ u|τ |.
If τ̂ is used in a Gauss transform update and fl((In − τ̂ eT

k )C) denotes the computed
result, then

fl
(
(In − τ̂ eT

k )C
)

= (I − τeT
k )C + E ,

where
|E| ≤ 3u (|C| + |τ ||C(k, :)|) + O(u2).

Clearly, if τ has large components, then the errors in the update may be large in
comparison to |C|. For this reason, care must be exercised when Gauss transformations
are employed, a matter that is pursued in §3.4.

3.2.4 Upper Triangularizing

Assume that A ∈ IRn×n. Gauss transformations M1, . . . , Mn−1 can usually be found
such that Mn−1 · · ·M2M1A = U is upper triangular. To see this we first look at the
n = 3 case. Suppose

A =

⎡⎣ 1 4 7
2 5 8
3 6 10

⎤⎦
and note that

M1 =

⎡⎣ 1 0 0
−2 1 0
−3 0 1

⎤⎦ ⇒ M1A =

⎡⎣ 1 4 7
0 −3 −6
0 −6 −11

⎤⎦ .

Likewise, in the second step we have

M2 =

⎡⎣ 1 0 0
0 1 0
0 −2 1

⎤⎦ ⇒ M2(M1A) =

⎡⎣ 1 4 7
0 −3 −6
0 0 1

⎤⎦ .

Extrapolating from this example to the general n case we conclude two things.

• At the start of the kth step we have a matrix A(k−1) = Mk−1 · · ·M1A that is
upper triangular in columns 1 through k − 1.

• The multipliers in the kth Gauss transform Mk are based on A(k−1)(k + 1:n, k)
and a

(k−1)
kk must be nonzero in order to proceed.

Noting that complete upper triangularization is achieved after n − 1 steps, we obtain
the following rough draft of the overall process:

A(1) = A

for k = 1:n − 1

For i = k + 1:n, determine the multipliers τ
(k)
i = a

(k)
ik /a

(k)
kk . (3.2.3)

Apply Mk = I − τ (k)eT
k to obtain A(k+1) = MkA(k).

end
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For this process to be well-defined, the matrix entries a
(1)
11 , a

(2)
22 , . . . , a

(n−1)
n−1,n−1 must be

nonzero. These quantities are called pivots.

3.2.5 Existence

If no zero pivots are encountered in (3.2.3), then Gauss transformations M1, . . . , Mn−1
are generated such that Mn−1 · · ·M1A = U is upper triangular. It is easy to check
that if Mk = In − τ (k)eT

k , then its inverse is prescribed by M−1
k = In + τ (k)eT

k and so

A = LU (3.2.4)
where

L = M−1
1 · · ·M−1

n−1. (3.2.5)

It is clear that L is a unit lower triangular matrix because each M−1
k is unit lower

triangular. The factorization (3.2.4) is called the LU factorization.
The LU factorization may not exist. For example, it is impossible to find lij and

uij so ⎡⎣ 1 2 3
2 4 7
3 5 3

⎤⎦ =

⎡⎣ 1 0 0
�21 1 0
�31 �32 1

⎤⎦⎡⎣ u11 u12 u13
0 u22 u23
0 0 u33

⎤⎦ .

To see this, equate entries and observe that we must have u11 = 1, u12 = 2, �21 = 2,
u22 = 0, and �31 = 3. But then the (3,2) entry gives us the contradictory equation
5 = �31u12 + �32u22 = 6. For this example, the pivot a

(1)
22 = a22 − (a21/a11)a12 is zero.

It turns out that the kth pivot in (3.2.3) is zero if A(1:k, 1:k) is singular. A
submatrix of the form A(1:k, 1:k) is called a leading principal submatrix.

Theorem 3.2.1. (LU Factorization). If A ∈ IRn×n and det(A(1:k, 1:k)) 
= 0 for
k = 1:n−1, then there exists a unit lower triangular L ∈ IRn×n and an upper triangular
U ∈ IRn×n such that A = LU . If this is the case and A is nonsingular, then the
factorization is unique and det(A) = u11 · · ·unn.

Proof. Suppose k − 1 steps in (3.2.3) have been executed. At the beginning of step k
the matrix A has been overwritten by Mk−1 · · ·M1A = A(k−1). Since Gauss transfor-
mations are unit lower triangular, it follows by looking at the leading k-by-k portion
of this equation that

det(A(1:k, 1:k)) = a
(k−1)
11 · · · a(k−1)

kk . (3.2.6)

Thus, if A(1:k, 1:k) is nonsingular, then the kth pivot a
(k−1)
kk is nonzero.

As for uniqueness, if A = L1U1 and A = L2U2 are two LU factorizations of a
nonsingular A, then L−1

2 L1 = U2U
−1
1 . Since L−1

2 L1 is unit lower triangular and U2U
−1
1

is upper triangular, it follows that both of these matrices must equal the identity.
Hence, L1 = L2 and U1 = U2. Finally, if A = LU , then

det(A) = det(LU) = det(L)det(U) = det(U).

It follows that det(A) = u11 · · ·unn.
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3.2.6 L Is the Matrix of Multipliers

It turns out that the construction of L is not nearly so complicated as Equation (3.2.5)
suggests. Indeed,

L = M−1
1 · · ·M−1

n−1

=
(
In − τ (1)eT

1

)−1
· · ·

(
In − τ (n−1)eT

n−1

)−1

=
(
In + τ (1)eT

1

)
· · ·

(
In + τ (n−1)eT

n−1

)
= In +

n−1∑
k=1

τ (k)eT
k

showing that

L(k + 1:n, k) = τ (k)(k + 1:n) k = 1:n − 1. (3.2.7)

In other words, the kth column of L is defined by the multipliers that arise in the k-th
step of (3.2.3). Consider the example in §3.2.4:

τ (1) =

⎡⎣ 0
2
3

⎤⎦ , τ (2) =

⎡⎣ 0
0
2

⎤⎦ ⇒

⎡⎣ 1 4 7
2 5 8
3 6 10

⎤⎦ =

⎡⎣ 1 0 0
2 1 0
3 2 1

⎤⎦⎡⎣ 1 4 7
0 −3 −6
0 0 1

⎤⎦ .

3.2.7 The Outer Product Point of View

Since the application of a Gauss transformation to a matrix involves an outer product,
we can regard (3.2.3) as a sequence of outer product updates. Indeed, if

A =
[

α
v

wT

B

]
1

n−1
1 n−1

then the first step in Gaussian elimination results in the decomposition[
α wT

z B

]
=

[
1 0

z/α In−1

][
1 0

0 B − zwT /α

][
α wT

0 In−1

]
.

Steps 2 through n − 1 compute the LU factorization

B − zwT /α = L1U1

for then

A =

[
1 0

z/α In−1

][
1 0

0 L1U1

][
α wT

0 In−1

]
=

[
1 0

z/α L1

][
α wT

0 U1

]
≡ LU.
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3.2.8 Practical Implementation

Let us consider the efficient implementation of (3.2.3). First, because zeros have already
been introduced in columns 1 through k − 1, the Gauss transformation update need
only be applied to columns k through n. Of course, we need not even apply the kth
Gauss transform to A(:, k) since we know the result. So the efficient thing to do is
simply to update A(k + 1:n, k + 1:n). Also, the observation (3.2.7) suggests that we
can overwrite A(k + 1:n, k) with L(k + 1:n, k) since the latter houses the multipliers
that are used to zero the former. Overall we obtain:

Algorithm 3.2.1 (Outer Product LU) Suppose A ∈ IRn×n has the property that
A(1:k, 1:k) is nonsingular for k = 1:n − 1. This algorithm computes the factorization
A = LU where L is unit lower triangular and U is upper triangular. For i = 1:n − 1,
A(i, i:n) is overwritten by U(i, i:n) while A(i + 1:n, i) is overwritten by L(i + 1:n, i).

for k = 1:n − 1

ρ = k + 1:n

A(ρ, k) = A(ρ, k)/A(k, k)

A(ρ, ρ) = A(ρ, ρ) − A(ρ, k)·A(k, ρ)
end

This algorithm involves 2n3/3 flops and it is one of several formulations of Gaussian
elimination. Note that the k-th step involves an (n − k)-by-(n − k) outer product.

3.2.9 Other Versions

Similar to matrix-matrix multiplication, Gaussian elimination is a triple-loop procedure
that can be arranged in several ways. Algorithm 3.2.1 corresponds to the “kij” version
of Gaussian elimination if we compute the outer product update row by row:

for k = 1:n − 1
A(k + 1:n, k) = A(k + 1:n, k)/A(k, k)
for i = k + 1:n

for j = k + 1:n
A(i, j) = A(i, j) − A(i, k)·A(k, j)

end
end

end

There are five other versions: kji, ikj, ijk, jik, and jki. The last of these results in
an implementation that features a sequence of gaxpys and forward eliminations which
we now derive at the vector level.

The plan is to compute the jth columns of L and U in step j. If j = 1, then by
comparing the first columns in A = LU we conclude that

L(2:n, j) = A(2:n, 1)/A(1, 1)

and U(1, 1) = A(1, 1). Now assume that L(:, 1:j−1) and U(1:j−1, 1:j−1) are known.
To get the jth columns of L and U we equate the jth columns in the equation A = LU
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and infer from the vector equation A(:, j) = LU(:, j) that

A(1:j − 1, j) = L(1:j − 1, 1:j − 1)·U(1:j − 1, j)

and
A(j:n, j) =

j∑
k=1

L(j:n, k)·U(k, j).

The first equation is a lower triangular linear system that can be solved for the vector
U(1:j − 1, j). Once this is accomplished, the second equation can be rearranged to
produce recipes for U(j, j) and L(j + 1:n, j). Indeed, if we set

v(j:n)=A(j:n, j) −
j−1∑
k=1

L(j:n, k)U(k, j)

=A(j:n, j) − L(j:n, 1:j − 1)·U(1:j − 1, j),

then L(j + 1:n, j) = v(j + 1:n)/v(j) and U(j, j) = v(j). Thus, L(j + 1:n, j) is a scaled
gaxpy and we obtain the following alternative to Algorithm 3.2.1:

Algorithm 3.2.2 (Gaxpy LU) Suppose A ∈ IRn×n has the property that A(1:k, 1:k) is
nonsingular for k = 1:n− 1. This algorithm computes the factorization A = LU where
L is unit lower triangular and U is upper triangular.

Initialize L to the identity and U to the zero matrix.
for j = 1:n

if j = 1

v = A(:, 1)
else

ã = A(:, j)

Solve L(1:j−1, 1:j−1)·z = ã(1:j−1) for z ∈ IRj−1.

U(1:j−1, j) = z

v(j:n) = ã(j:n) − L(j:n, 1:j−1)·z
end
U(j, j) = v(j)

L(j+1:n, j) = v(j+1:n)/v(j)
end

(We chose to have separate arrays for L and U for clarity; it is not necessary in practice.)
Algorithm 3.2.2 requires 2n3/3 flops, the same volume of floating point work required
by Algorithm 3.2.1. However, from §1.5.2 there is less memory traffic associated with a
gaxpy than with an outer product, so the two implementations could perform differently
in practice. Note that in Algorithm 3.2.2, the original A(:, j) is untouched until step j.

The terms right-looking and left-looking are sometimes applied to Algorithms
3.2.1 and 3.2.2. In the outer-product implementation, after L(k:n, k) is determined,
the columns to the right of A(:, k) are updated so it is a right-looking procedure. In
contrast, subcolumns to the left of A(:, k) are accessed in gaxpy LU before L(k+1:n, k)
is produced so that implementation left-looking.
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3.2.10 The LU Factorization of a Rectangular Matrix

The LU factorization of a rectangular matrix A ∈ IRn×r can also be performed. The
n > r case is illustrated by⎡⎣ 1 2

3 4
5 6

⎤⎦ =

⎡⎣ 1 0
3 1
5 2

⎤⎦[
1 2
0 −2

]
while [

1 2 3
4 5 6

]
=

[
1 0
4 1

] [
1 2 3
0 −3 −6

]
depicts the n < r situation. The LU factorization of A ∈ IRn×r is guaranteed to exist
if A(1:k, 1:k) is nonsingular for k = 1:min{n, r}.

The square LU factorization algorithms above needs only minor alterations to
handle the rectangular case. For example, if n > r, then Algorithm 3.2.1 modifies to
the following:

for k = 1:r

ρ = k + 1:n

A(ρ, k) = A(ρ, k)/A(k, k)
if k < r (3.2.8)

µ = k + 1:r

A(ρ, µ) = A(ρ, µ) − A(ρ, k)·A(k, µ)
end

end

This calculation requires nr2 − r3/3 flops. Upon completion, A is overwritten by
the strictly lower triangular portion of L ∈ IRn×r and the upper triangular portion of
U ∈ IRr×r.

3.2.11 Block LU

It is possible to organize Gaussian elimination so that matrix multiplication becomes
the dominant operation. Partition A ∈ IRn×n as follows:

A =
[

A11
A21

A12

A22

]
r

n−r

r n−r

where r is a blocking parameter. Suppose we compute the LU factorization[
A11

A21

]
=

[
L11

L21

]
U11.

Here, L11 ∈ IRr×r is unit lower triangular and U11 ∈ IRr×r is upper triangular and
assumed to be nonsingular. If we solve L11U12 = A12 for U12 ∈ IRr×n−r, then[

A11 A12

A21 A22

]
=

[
L11 0

L21 In−r

][
Ir 0

0 Ã

][
U11 U12

0 In−r

]
,
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where
Ã = A22 − L21U12 = A22 − A21A

−1
11 A12 (3.2.9)

is the Schur complement of A11 in A. Note that if

Ã = L22U22

is the LU factorization of Ã, then

A =

[
L11 0

L21 L22

][
U11 U12

0 U22

]
is the LU factorization of A. This lays the groundwork for a recursive implementation.

Algorithm 3.2.3 (Recursive Block LU) Suppose A ∈ IRn×n has an LU factorization
and r is a positive integer. The following algorithm computes unit lower triangular
L ∈ IRn×n and upper triangular U ∈ IRn×n so A = LU .

function [L, U ] = BlockLU(A, n, r)
if n ≤ r

Compute the LU factorization A = LU using (say) Algorithm 3.2.1.
else

Use (3.2.8) to compute the LU factorization A(:, 1:r) =
[

L11
L21

]
U11.

Solve L11U12 = A(1:r, r + 1:n) for U12.

Ã = A(r + 1:n, r + 1:n) − L21U12

[L22, U22] = BlockLU(Ã, n − r, r)

L =
[

L11 0
L21 L22

]
, U =

[
U11 U12

0 U22

]
end

end

The following table explains where the flops come from:

Activity Flops

L11, L21, U11 nr2 − r3/3

U12 (n − r)r2

Ã 2(n − r)2

If n  r, then there are a total of about 2n3/3 flops, the same volume of atithmetic
as Algorithms 3.2.1 and 3.2.2. The vast majority of these flops are the level-3 flops
associated with the production of Ã.

The actual level-3 fraction, a concept developed in §3.1.5, is more easily derived
from a nonrecursive implementation. Assume for clarity that n = Nr where N is a
positive integer and that we want to compute⎡⎢⎣ A11 · · · A1N

...
. . .

...
AN1 · · · ANN

⎤⎥⎦ =

⎡⎢⎣ L11 · · · 0
...

. . .
...

LN1 · · · LNN

⎤⎥⎦
⎡⎢⎣ U11 · · · U1N

...
. . .

...
0 · · · UNN

⎤⎥⎦ (3.2.10)
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where all blocks are r-by-r. Analogously to Algorithm 3.2.3 we have the following.

Algorithm 3.2.4 (Nonrecursive Block LU) Suppose A ∈ IRn×n has an LU factoriza-
tion and r is a positive integer. The following algorithm computes unit lower triangular
L ∈ IRn×n and upper triangular U ∈ IRn×n so A = LU .

for k = 1:N
Rectangular Gaussian elimination:⎡⎢⎣ Akk

...
ANk

⎤⎥⎦ =

⎡⎢⎣ Lkk

...
LNk

⎤⎥⎦Ukk

Multiple right hand side solve:

Lkk

[
Uk,k+1 . . . UkN

]
=

[
Ak,k+1 . . . AkN

]
Level-3 updates:

Aij = Aij − LikUkj , i = k + 1:N , j = k + 1:N
end

Here is the flop situation during the kth pass through the loop:

Activity Flops

Gaussian elimination (N − k + 1)r3 − r3/3

Multiple RHS solve (N − k)r3

Level-3 updates 2(N − k)2r2

Summing these quantities for k = 1:N we find that the level-3 fraction is approximately

2n3/3
2n3/3 + n2r

= 1 − 3
2N

.

Thus, for large N almost all arithmetic takes place in the context of matrix multipli-
cation. This ensures a favorable amount of data reuse as discussed in §1.5.4.

Problems

P3.2.1 Verify Equation (3.2.6).

P3.2.2 Suppose the entries of A(ε) ∈ IRn×n are continuously differentiable functions of the scalar ε.
Assume that A ≡ A(0) and all its principal submatrices are nonsingular. Show that for sufficiently
small ε, the matrix A(ε) has an LU factorization A(ε) = L(ε)U(ε) and that L(ε) and U(ε) are both
continuously differentiable.

P3.2.3 Suppose we partition A ∈ IRn×n

A =
[

A11 A12
A21 A22

]
where A11 is r-by-r and nonsingular. Let S be the Schur complement of A11 in A as defined in (3.2.9).
Show that after r steps of Algorithm 3.2.1, A(r + 1:n, r + 1:n) houses S. How could S be obtained
after r steps of Algorithm 3.2.2?
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P3.2.4 Suppose A ∈ IRn×n has an LU factorization. Show how Ax = b can be solved without storing
the multipliers by computing the LU factorization of the n-by-(n + 1) matrix [A b].

P3.2.5 Describe a variant of Gaussian elimination that introduces zeros into the columns of A in the
order, n:− 1:2 and which produces the factorization A = UL where U is unit upper triangular and L

is lower triangular.

P3.2.6 Matrices in IRn×n of the form N(y, k) = I − yeT
k where y ∈ IRn are called Gauss-Jordan

transformations. (a) Give a formula for N(y, k)−1 assuming it exists. (b) Given x ∈ IRn, under what
conditions can y be found so N(y, k)x = ek? (c) Give an algorithm using Gauss-Jordan transformations
that overwrites A with A−1. What conditions on A ensure the success of your algorithm?

P3.2.7 Extend Algorithm 3.2.2 so that it can also handle the case when A has more rows than
columns.

P3.2.8 Show how A can be overwritten with L and U in Algorithm 3.2.2. Give a 3-loop specification
so that unit stride access prevails.

P3.2.9 Develop a version of Gaussian elimination in which the innermost of the three loops oversees
a dot product.

Notes and References for §3.2

The method of Gaussian elimination has a long and interesting history, see:

J.F. Grcar (2011). “How Ordinary Elimination Became Gaussian Elimination,” Historica Mathemat-
ica, 38, 163–218.

J.F. Grcar (2011). “Mathematicians of Gaussian Elimination,” Notices of the AMS 58, 782–792.

Schur complements (3.2.9) arise in many applications. For a survey of both practical and theoretical
interest, see:

R.W. Cottle (1974). “Manifestations of the Schur Complement,” Lin. Alg. Applic. 8, 189–211.

Schur complements are known as “Gauss transforms” in some application areas. The use of Gauss-
Jordan transformations (P3.2.6) is detailed in Fox (1964). See also:

T. Dekker and W. Hoffman (1989). “Rehabilitation of the Gauss-Jordan Algorithm,” Numer. Math.
54, 591–599.

As we mentioned, inner product versions of Gaussian elimination have been known and used for some
time. The names of Crout and Doolittle are associated with these techniques, see:

G.E. Forsythe (1960). “Crout with Pivoting,” Commun. ACM 3, 507–508.
W.M. McKeeman (1962). “Crout with Equilibration and Iteration,” Commun. ACM. 5, 553–555.

Loop orderings and block issues in LU computations are discussed in:

J.J. Dongarra, F.G. Gustavson, and A. Karp (1984). “Implementing Linear Algebra Algorithms for
Dense Matrices on a Vector Pipeline Machine,” SIAM Review 26, 91–112.

J.M. Ortega (1988). “The ijk Forms of Factorization Methods I: Vector Computers,” Parallel Comput.
7, 135–147.

D.H. Bailey, K.Lee, and H.D. Simon (1991). “Using Strassen’s Algorithm to Accelerate the Solution
of Linear Systems,” J. Supercomput. 4, 357–371.

J.W. Demmel, N.J. Higham, and R.S. Schreiber (1995). “Stability of Block LU Factorization,” Numer.
Lin. Alg. Applic. 2, 173–190.

Suppose A = LU and A+∆A = (L+∆L)(U+∆U) are LU factorizations. Bounds on the perturbations
∆L and ∆U in terms of ∆A are given in:

G.W. Stewart (1997). “On the Perturbation of LU and Cholesky Factors,” IMA J. Numer. Anal. 17,
1–6.

X.-W. Chang and C.C. Paige (1998). “On the Sensitivity of the LU factorization,” BIT 38, 486–501.
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In certain limited domains, it is possible to solve linear systems exactly using rational arithmetic. For
a snapshot of the challenges, see:

P. Alfeld and D.J. Eyre (1991). “The Exact Analysis of Sparse Rectangular Linear Systems,” ACM
Trans. Math. Softw. 17, 502–518.

P. Alfeld (2000). “Bivariate Spline Spaces and Minimal Determining Sets,” J. Comput. Appl. Math.
119, 13–27.

3.3 Roundoff Error in Gaussian Elimination
We now assess the effect of rounding errors when the algorithms in the previous two
sections are used to solve the linear system Ax = b. A much more detailed treatment
of roundoff error in Gaussian elimination is given in Higham (ASNA).

3.3.1 Errors in the LU Factorization

Let us see how the error bounds for Gaussian elimination compare with the ideal
bounds derived in §2.7.11. We work with the infinity norm for convenience and focus
our attention on Algorithm 3.2.1, the outer product version. The error bounds that
we derive also apply to the gaxpy formulation (Algorithm 3.2.2). Our first task is to
quantify the roundoff errors associated with the computed triangular factors.

Theorem 3.3.1. Assume that A is an n-by-n matrix of floating point numbers. If no
zero pivots are encountered during the execution of Algorithm 3.2.1, then the computed
triangular matrices L̂ and Û satisfy

L̂Û = A + H, (3.3.1)

|H| ≤ 2(n − 1)u
(
|A| + |L̂||Û |

)
+ O(u2) . (3.3.2)

Proof. The proof is by induction on n. The theorem obviously holds for n = 1.
Assume that n ≥ 2 and that the theorem holds for all (n− 1)-by-(n− 1) floating point
matrices. If A is partitioned as follows

A =
[

α

v

wT

B

]
1

n−1
1 n−1

then the first step in Algorithm 3.2.1 is to compute

ẑ = fl(v/α), Ĉ = fl(ẑwT ), Â1 = fl(B − Ĉ),

from which we conclude that

ẑ = v/α + f, (3.3.3)

|f | ≤ u|v/α|, (3.3.4)

Ĉ = ẑwT + F1, (3.3.5)

|F1| ≤ u|ẑ||wT |, (3.3.6)
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Â1 = B − (ẑwT + F1) + F2, (3.3.7)

|F2| ≤ u
(
|B| + |ẑ||wT |

)
+ O(u2), (3.3.8)

|Â1| ≤ |B| + |ẑ||wT | + O(u). (3.3.9)

The algorithm proceeds to compute the LU factorization of Â1. By induction, the
computed factors L̂1 and Û1 satisfy

L̂1Û1 = Â1 + H1 (3.3.10)

where
|H1| ≤ 2(n − 2)u

(
|Â1| + |L̂1||Û1|

)
+ O(u2). (3.3.11)

If

L̂ =

[
1 0

ẑ L̂1

]
, Û =

[
α wT

0 Û1

]
,

then it is easy to verify that
L̂Û = A + H

where

H =

[
0 0

αf H1 − F1 + F2

]
. (3.3.12)

To prove the theorem we must verify (3.3.2), i.e.,

|H| ≤ 2(n − 1)u

[
2|α| 2|wT |

|v| + |α||f | |B| + |L̂1||Û1| + |ẑ||wT |

]
+ O(u2).

Considering (3.3.12), this is obviously the case if

|H1| + |F1| + |F2| ≤ 2(n − 1)u
(
|B| + |ẑ||wT | + |L̂1||Û1|

)
+ O(u2). (3.3.13)

Using (3.3.9) and (3.3.11) we have

|H1| ≤ 2(n − 2)u
(
|B| + |ẑ||wT | + |L̂1||Û1|

)
+ O(u2),

while (3.3.6) and (3.3.8) imply

|F1| + |F2| ≤ u(|B| + 2|ẑ||w|) + O(u2).

These last two results establish (3.3.13) and therefore the theorem.

We mention that if A is m-by-n, then the theorem applies with n replaced by the
smaller of n and m in Equation 3.3.2.
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3.3.2 Triangular Solving with Inexact Triangles

We next examine the effect of roundoff error when L̂ and Û are used by the triangular
system solvers of §3.1.

Theorem 3.3.2. Let L̂ and Û be the computed LU factors obtained by Algorithm 3.2.1
when it is applied to an n-by-n floating point matrix A. If the methods of §3.1 are used
to produce the computed solution ŷ to L̂y = b and the computed solution x̂ to Ûx = ŷ,
then (A + E)x̂ = b with

|E| ≤ nu
(
2|A| + 4|L̂||Û |

)
+ O(u2) . (3.3.14)

Proof. From (3.1.1) and (3.1.2) we have

(L̂ + F )ŷ = b, |F | ≤ nu|L̂| + O(u2),

(Û + G)x̂ = ŷ, |G| ≤ nu|Û | + O(u2),

and thus
(L̂ + F )(Û + G)x̂ = (L̂Û + FÛ + L̂G + FG)x̂ = b.

If follows from Theorem 3.3.1 that L̂Û = A + H with

|H| ≤ 2(n − 1)u(|A| + |L̂||Û |) + O(u2),

and so by defining
E = H + FÛ + L̂G + FG

we find (A + E)x̂ = b. Moreover,

|E| ≤ |H| + |F | |Û | + |L̂| |G| + O(u2)

≤ 2nu
(
|A| + |L̂||Û |

)
+ 2nu

(
|L̂||Û |

)
+ O(u2),

completing the proof of the theorem.

If it were not for the possibility of a large |L̂||Û | term, (3.3.14) would compare favorably
with the ideal bound (2.7.21). (The factor n is of no consequence, cf. the Wilkinson
quotation in §2.7.7.) Such a possibility exists, for there is nothing in Gaussian elimi-
nation to rule out the appearance of small pivots. If a small pivot is encountered, then
we can expect large numbers to be present in L̂ and Û .

We stress that small pivots are not necessarily due to ill-conditioning as the
example

A =

[
ε 1

1 0

]
=

[
1 0

1/ε 1

][
ε 1

0 −1/ε

]
shows. Thus, Gaussian elimination can give arbitrarily poor results, even for well-
conditioned problems. The method is unstable. For example, suppose 3-digit floating
point arithmetic is used to solve[

.001 1.00

1.00 2.00

] [
x1
x2

]
=

[
1.00

3.00

]
.
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(See §2.7.1.) Applying Gaussian elimination we get

L̂ =

[
1 0

1000 1

]
, Û =

[
.001 1

0 −1000

]
,

and a calculation shows that

L̂Û =

[
.001 1

1 2

]
+

[
0 0

0 −2

]
≡ A + H.

If we go on to solve the problem using the triangular system solvers of §3.1, then using
the same precision arithmetic we obtain a computed solution x̂ = [0 , 1]T . This is in
contrast to the exact solution x = [1.002 . . . , .998 . . .]T .

Problems

P3.3.1 Show that if we drop the assumption that A is a floating point matrix in Theorem 3.3.1, then
Equation 3.3.2 holds with the coefficient “2”replaced by “3.”

P3.3.2 Suppose A is an n-by-n matrix and that L̂ and Û are produced by Algorithm 3.2.1. (a) How
many flops are required to compute ‖ |L̂| |Û | ‖∞? (b) Show fl(|L̂||Û |) ≤ (1 + 2nu)|L̂||Û |+ O(u2).

Notes and References for §3.3

The original roundoff analysis of Gaussian elimination appears in:

J.H. Wilkinson (1961). “Error Analysis of Direct Methods of Matrix Inversion,” J. ACM 8, 281–330.

Various improvements and insights regarding the bounds and have been made over the years, see:

B.A. Chartres and J.C. Geuder (1967). “Computable Error Bounds for Direct Solution of Linear
Equations,” J. ACM 14, 63–71.

J.K. Reid (1971). “A Note on the Stability of Gaussian Elimination,” J. Inst. Math. Applic. 8,
374–75.

C.C. Paige (1973). “An Error Analysis of a Method for Solving Matrix Equations,” Math. Comput.
27, 355–59.

H.H. Robertson (1977). “The Accuracy of Error Estimates for Systems of Linear Algebraic Equations,”
J. Inst. Math. Applic. 20, 409–14.

J.J. Du Croz and N.J. Higham (1992). “Stability of Methods for Matrix Inversion,” IMA J. Numer.
Anal. 12, 1–19.

J.M. Banoczi, N.C. Chiu, G.E. Cho, and I.C.F. Ipsen (1998). “The Lack of Influence of the Right–Hand
Side on the Accuracy of Linear System Solution,” SIAM J. Sci. Comput. 20, 203–227.

P. Amodio and F. Mazzia (1999). “A New Approach to Backward Error Analysis of LU Factorization
BIT 39, 385–402.

An interesting account of von Neuman’s contributions to the numerical analysis of Gaussian elimination
is detailed in:

J.F. Grcar (2011). “John von Neuman’s Analysis of Gaussian Elimination and the Origins of Modern
Numerical Analysis,” SIAM Review 53, 607–682.

3.4 Pivoting
The analysis in the previous section shows that we must take steps to ensure that no
large entries appear in the computed triangular factors L̂ and Û . The example

A =
[

.0001 1
1 1

]
=

[
1 0

10000 1

] [
.0001 1

0 −9999

]
= LU
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correctly identifies the source of the difficulty: relatively small pivots. A way out of
this difficulty is to interchange rows. For example, if P is the permutation

P =
[

0 1
1 0

]
then

PA =
[

1 1
.0001 1

]
=

[
1 0

.0001 1

] [
1 1
0 .9999

]
= LU.

Observe that the triangular factors have modestly sized entries.
In this section we show how to determine a permuted version of A that has a

reasonably stable LU factorization. There are several ways to do this and they each
corresponds to a different pivoting strategy. Partial pivoting, complete pivoting, and
rook pivoting are considered. The efficient implementation of these strategies and their
properties are discussed. We begin with a few comments about permutation matrices
that can be used to swap rows or columns.

3.4.1 Interchange Permutations

The stabilizations of Gaussian elimination that are developed in this section involve
data movements such as the interchange of two matrix rows. In keeping with our
desire to describe all computations in “matrix terms,” we use permutation matrices
to describe this process. (Now is a good time to review §1.2.8–§1.2.11.) Interchange
permutations are particularly important. These are permutations obtained by swapping
two rows in the identity, e.g.,

Π =

⎡⎢⎢⎣
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤⎥⎥⎦ .

Interchange permutations can be used to describe row and column swapping. If
A ∈ IR4×4, then Π·A is A with rows 1 and 4 interchanged while A·Π is A with columns
1 and 4 swapped.

If P = Πm · · ·Π1 and each Πk is the identity with rows k and piv(k) interchanged,
then piv(1:m) encodes P . Indeed, x ∈ IRn can be overwritten by Px as follows:

for k = 1:m
x(k) ↔ x(piv(k))

end

Here, the “↔” notation means “swap contents.” Since each Πk is symmetric, we have
PT = Π1 · · ·Πm. Thus, the piv representation can also be used to overwrite x with
PT x:

for k = m: − 1:1
x(k) ↔ x(piv(k))

end

We remind the reader that although no floating point arithmetic is involved in a per-
mutation operation, permutations move data and have a nontrivial effect upon perfor-
mance.
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3.4.2 Partial Pivoting

Interchange permutations can be used in LU computations to guarantee that no mul-
tiplier is greater than 1 in absolute value. Suppose

A =

⎡⎣ 3 17 10
2 4 −2
6 18 −12

⎤⎦ .

To get the smallest possible multipliers in the first Gauss transformation, we need a11
to be the largest entry in the first column. Thus, if Π1 is the interchange permutation

Π1 =

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦
then

Π1A =

⎡⎣ 6 18 −12
2 4 −2
3 17 10

⎤⎦ .

It follows that

M1 =

⎡⎣ 1 0 0
−1/3 1 0
−1/2 0 1

⎤⎦ =⇒ M1Π1A =

⎡⎣ 6 18 −12
0 −2 2
0 8 16

⎤⎦ .

To obtain the smallest possible multiplier in M2, we need to swap rows 2 and 3. Thus,
if

Π2 =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ and M2 =

⎡⎣ 1 0 0
0 1 0
0 1/4 1

⎤⎦ ,

then

M2Π2M1Π1A =

⎡⎣ 6 18 −12
0 8 16
0 0 6

⎤⎦ .

For general n we have

for k = 1:n − 1
Find an interchange permutation Πk ∈ IRn×n that swaps

A(k, k) with the largest element in |A(k:n, k)|.
A = ΠkA (3.4.1)

Determine the Gauss transformation Mk = In − τ (k)eT
k such that if

v is the kth column of MkA, then v(k + 1:n) = 0.

A = MkA
end

This particular row interchange strategy is called partial pivoting and upon completion,
we have

Mn−1Πn−1 · · ·M1Π1A = U (3.4.2)
where U is upper triangular. As a consequence of the partial pivoting, no multiplier is
larger than one in absolute value.
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3.4.3 Where is L?

It turns out that (3.4.1) computes the factorization

PA = LU (3.4.3)

where P = Πn−1 · · ·Π1, U is upper triangular, and L is unit lower triangular with
|�ij | ≤ 1. We show that L(k + 1:n, k) is a permuted version of Mk’s multipliers. From
(3.4.2) it can be shown that

M̃n−1 · · · M̃1PA = U (3.4.4)

where
M̃k = (Πn−1 · · ·Πk+1)Mk(Πk+1 · · ·Πn−1) (3.4.5)

for k = 1:n − 1. For example, in the n = 4 case we have

M̃3M̃2M̃1PA = M3 · (Π3M2Π3) · (Π3Π2M1Π2Π3) · (Π3Π2Π1)A

since the Πi are symmetric. Moreover,

M̃k = (Πn−1 · · ·Πk+1) · (In − τ (k)eT
k ) · (Πk+1 · · ·Πn−1) = In − τ̃ (k)eT

k

with τ̃ (k) = Πn−1 · · ·Πk+1τ
(k). This shows that M̃k is a Gauss transformation. The

transformation from τ (k) to τ̃ (k) is easy to implement in practice.

Algorithm 3.4.1 (Outer Product LU with Partial Pivoting) This algorithm computes
the factorization PA = LU where P is a permutation matrix encoded by piv(1:n− 1),
L is unit lower triangular with |�ij | ≤ 1, and U is upper triangular. For i = 1:n,
A(i, i:n) is overwritten by U(i, i:n) and A(i+1:n, i) is overwritten by L(i+1:n, i). The
permutation P is given by P = Πn−1 · · ·Π1 where Πk is an interchange permutation
obtained by swapping rows k and piv(k) of In.

for k = 1:n − 1

Determine µ with k ≤ µ ≤ n so |A(µ, k)| = ‖ A(k:n, k) ‖∞
piv(k) = µ

A(k, :) ↔ A(µ, :)

if A(k, k) 
= 0

ρ = k + 1:n

A(ρ, k) = A(ρ, k)/A(k, k)

A(ρ, ρ) = A(ρ, ρ) − A(ρ, k)A(k, ρ)
end

end

The floating point overhead associated with partial pivoting is minimal from the stand-
point of arithmetic as there are only O(n2) comparisons associated with the search for
the pivots. The overall algorithm involves 2n3/3 flops.
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If Algorithm 3.4.1 is applied to

A =

⎡⎢⎣ 3 17 10

2 4 −2

6 18 −12

⎤⎥⎦ ,

then upon completion

A =

⎡⎣ 6 18 −12
1/2 8 16

1/3 −1/4 6

⎤⎦
and piv = [3 , 3]. These two quantities encode all the information associated with the
reduction:

⎡⎢⎣ 1 0 0

0 0 1

0 1 0

⎤⎥⎦
⎡⎢⎣ 0 0 1

0 1 0

1 0 0

⎤⎥⎦A =

⎡⎢⎣ 1 0 0

1/2 1 0

1/3 −1/4 1

⎤⎥⎦
⎡⎢⎣ 6 18 −12

0 8 16

0 0 6

⎤⎥⎦ .

To compute the solution to Ax = b after invoking Algorithm 3.4.1, we solve
Ly = Pb for y and Ux = y for x. Note that b can be overwritten by Pb as follows

for k = 1:n − 1

b(k) ↔ b(piv(k))
end

We mention that if Algorithm 3.4.1 is applied to the problem,[
.001 1.00

1.00 2.00

][
x1

x2

]
=

[
1.00

3.00

]
,

using 3-digit floating point arithmetic, then

P =

[
0 1

1 0

]
, L̂ =

[
1.00 0

.001 1.00

]
, Û =

[
1.00 2.00

0 1.00

]
,

and x̂ = [1.00, .996]T . Recall from §3.3.2 that if Gaussian elimination without pivoting
is applied to this problem, then the computed solution has O(1) error.

We mention that Algorithm 3.4.1 always runs to completion. If A(k:n, k) = 0 in
step k, then Mk = In.

3.4.4 The Gaxpy Version

In §3.2 we developed outer product and gaxpy schemes for computing the LU factor-
ization. Having just incorporated pivoting in the outer product version, it is equally
straight forward to do the same with the gaxpy approach. Referring to Algorithm
3.2.2, we simply search the vector |v(j:n)| in that algorithm for its maximal element
and proceed accordingly.
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Algorithm 3.4.2 (Gaxpy LU with Partial Pivoting) This algorithm computes the
factorization PA = LU where P is a permutation matrix encoded by piv(1:n − 1),
L is unit lower triangular with |�ij | ≤ 1, and U is upper triangular. For i = 1:n,
A(i, i:n) is overwritten by U(i, i:n) and A(i+1:n, i) is overwritten by L(i+1:n, i). The
permutation P is given by P = Πn−1 · · ·Π1 where Πk is an interchange permutation
obtained by swapping rows k and piv(k) of In.

Initialize L to the identity and U to the zero matrix.
for j = 1:n

if j = 1
v = A(:, 1)

else

ã = Πj−1 · · ·Π1A(:, j)

Solve L(1:j−1, 1:j−1)z = ã(1:j−1) for z ∈ IRj−1

U(1:j−1, j) = z, v(j:n) = ã(j:n) − L(j:n, 1:j−1) · z
end

Determine µ with j ≤ µ ≤ n so |v(µ)| = ‖ v(j:n) ‖∞ and set piv(j) = µ

v(j) ↔ v(µ), L(j, 1:j − 1) ↔ L(µ, 1:j − 1), U(j, j) = v(j)

if v(j) 
= 0

L(j+1:n, j) = v(j+1:n)/v(j)
end

end

As with Algorithm 3.4.1, this procedure requires 2n3/3 flops and O(n2) comparisons.

3.4.5 Error Analysis and the Growth Factor

We now examine the stability that is obtained with partial pivoting. This requires
an accounting of the rounding errors that are sustained during elimination and during
the triangular system solving. Bearing in mind that there are no rounding errors
associated with permutation, it is not hard to show using Theorem 3.3.2 that the
computed solution x̂ satisfies (A + E)x̂ = b where

|E| ≤ nu
(
2|A| + 4P̂T |L̂||Û |

)
+ O(u2). (3.4.6)

Here we are assuming that P̂ , L̂, and Û are the computed analogs of P , L, and U as
produced by the above algorithms. Pivoting implies that the elements of L̂ are bounded
by one. Thus ‖ L̂ ‖∞ ≤ n and we obtain the bound

‖ E ‖∞ ≤ nu
(
2‖ A ‖∞ + 4n‖ Û ‖∞

)
+ O(u2). (3.4.7)

The problem now is to bound ‖ Û ‖∞. Define the growth factor ρ by

ρ = max
i,j,k

|â(k)
ij |

‖ A ‖∞
(3.4.8)
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where Â(k) is the computed version of the matrix A(k) = MkΠk · · ·M1Π1A. It follows
that

‖ E ‖∞ ≤ 6n3ρ‖ A ‖∞u + O(u2). (3.4.9)

Whether or not this compares favorably with the ideal bound (2.7.20) hinges upon the
size of the growth factor of ρ. (The factor n3 is not an operating factor in practice and
may be ignored in this discussion.)

The growth factor measures how large the A-entries become during the process
of elimination. Whether or not we regard Gaussian elimination with partial pivoting is
safe to use depends upon what we can say about this quantity. From an average-case
point of view, experiments by Trefethen and Schreiber (1990) suggest that ρ is usually
in the vicinity of n2/3. However, from the worst-case point of view, ρ can be as large
as 2n−1. In particular, if A ∈ IRn×n is defined by

aij =

⎧⎨⎩
1 if i = j or j = n,

−1 if i > j,
0 otherwise,

then there is no swapping of rows during Gaussian elimination with partial pivoting.
We emerge with A = LU and it can be shown that unn = 2n−1. For example,⎡⎢⎢⎣

1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0 0

−1 1 0 0
−1 −1 1 0
−1 −1 −1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 1
0 1 0 2
0 0 1 4
0 0 0 8

⎤⎥⎥⎦ .

Understanding the behavior of ρ requires an intuition about what makes the U -
factor large. Since PA = LU implies U = L−1PA it would appear that the size of L−1

is relevant. However, Stewart (1997) discusses why one can expect the L-factor to be
well conditioned.

Although there is still more to understand about ρ, the consensus is that serious
element growth in Gaussian elimination with partial pivoting is extremely rare. The
method can be used with confidence.

3.4.6 Complete Pivoting

Another pivot strategy called complete pivoting has the property that the associated
growth factor bound is considerably smaller than 2n−1. Recall that in partial pivoting,
the kth pivot is determined by scanning the current subcolumn A(k:n, k). In complete
pivoting, the largest entry in the current submatrix A(k:n, k:n) is permuted into the
(k, k) position. Thus, we compute the upper triangularization

Mn−1Πn−1 · · ·M1Π1AΓ1 · · ·Γn−1 = U.

In step k we are confronted with the matrix

A(k−1) = Mk−1Πk−1 · · ·M1Π1AΓ1 · · ·Γk−1

and determine interchange permutations Πk and Γk such that∣∣∣(ΠkA(k−1)Γk

)
kk

∣∣∣ = max
k≤i,j≤n

∣∣∣∣(ΠkA(k−1)Γk

)
ij

∣∣∣∣ .



132 Chapter 3. General Linear Systems

Algorithm 3.4.3 (Outer Product LU with Complete Pivoting) This algorithm com-
putes the factorization PAQT = LU where P is a permutation matrix encoded by
piv(1:n − 1), Q is a permutation matrix encoded by colpiv(1:n − 1), L is unit lower
triangular with |�ij | ≤ 1, and U is upper triangular. For i = 1:n, A(i, i:n) is overwritten
by U(i, i:n) and A(i+1:n, i) is overwritten by L(i+1:n, i). The permutation P is given
by P = Πn−1 · · ·Π1 where Πk is an interchange permutation obtained by swapping
rows k and rowpiv(k) of In. The permutation Q is given by Q = Γn−1 · · ·Γ1 where Γk

is an interchange permutation obtained by swapping rows k and colpiv(k) of In.

for k = 1:n − 1
Determine µ with k ≤ µ ≤ n and λ with k ≤ λ ≤ n so

|A(µ, λ)| = max{ |A(i, j)| : i = k:n, j = k:n }
rowpiv(k) = µ

A(k, 1:n) ↔ A(µ, 1:n)

colpiv(k) = λ

A(1:n, k) ↔ A(1:n, λ)

if A(k, k) 
= 0

ρ = k + 1:n

A(ρ, k) = A(ρ, k)/A(k, k)

A(ρ, ρ) = A(ρ, ρ) − A(ρ, k)A(k, ρ)
end

end

This algorithm requires 2n3/3 flops and O(n3) comparisons. Unlike partial pivoting,
complete pivoting involves a significant floating point arithmetic overhead because of
the two-dimensional search at each stage.

With the factorization PAQT = LU in hand the solution to Ax = b proceeds as
follows:

Step 1. Solve Lz = Pb for z.

Step 2. Solve Uy = z for y.
Step 3. Set x = QT y.

The rowpiv and colpiv representations can be used to form Pb and Qy, respectively.
Wilkinson (1961) has shown that in exact arithmetic the elements of the matrix

A(k) = MkΠk · · ·M1Π1AΓ1 · · ·Γk satisfy

|a(k)
ij | ≤ k1/2(2 · 31/2 · · · k1/k−1)1/2max|aij |. (3.4.10)

The upper bound is a rather slow-growing function of k. This fact coupled with vast
empirical evidence suggesting that ρ is always modestly sized (e.g, ρ = 10) permit us to
conclude that Gaussian elimination with complete pivoting is stable. The method solves
a nearby linear system (A+E)x̂ = b in the sense of (2.7.21). However, in general there
is little reason to choose complete pivoting over partial pivoting. A possible exception
is when A is rank deficient. In principal, complete pivoting can be used to reveal the
rank of a matrix. Suppose rank(A) = r < n. It follows that at the beginning of step
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r + 1, A(r+1:n, r+1:n) = 0. This implies that Πk = Γk = Mk = I for k = r + 1:n
and so the algorithm can be terminated after step r with the following factorization in
hand:

PAQT = LU =
[

L11 0
L21 In−r

] [
U11 U12

0 0

]
.

Here, L11 and U11 are r-by-r and L21 and UT
12 are (n − r)-by-r. Thus, Gaussian

elimination with complete pivoting can in principle be used to determine the rank of a
matrix. Nevertheless, roundoff errors make the probability of encountering an exactly
zero pivot remote. In practice one would have to “declare” A to have rank k if the
pivot element in step k+1 was sufficiently small. The numerical rank determination
problem is discussed in detail in §5.5.

3.4.7 Rook Pivoting

A third type of LU stablization strategy called rook pivoting provides an interesting
alternative to partial pivoting and complete pivoting. As with complete pivoting,
it computes the factorization PAQ = LU . However, instead of choosing as pivot
the largest value in |A(k:n, k:n)|, it searches for an element of that submatrix that is
maximal in both its row and column. Thus, if

A(k:n, k:n) =

⎡⎢⎢⎣
24 36 13 61
42 67 72 50
38 11 36 43
52 37 48 16

⎤⎥⎥⎦ ,

then “72” would be identified by complete pivoting while “52,” “72,” or “61” would
be acceptable with the rook pivoting strategy. To implement rook pivoting, the scan-
and-swap portion of Algorithm 3.4.3 is changed to

µ = k, λ = k, τ = |aµλ|, s = 0

while τ < ‖ (A(k:n, λ) ‖∞ ∨ τ < ‖ (A(µ, k:n) ‖∞
if mod(s, 2) = 0

Update µ so that |aµλ| = ‖ (A(k:n, λ) ‖∞ with k ≤ µ ≤ n.
else

Update λ so that |aµλ| = ‖ (A(µ, k:n) ‖∞ with k ≤ λ ≤ n.
end

s = s + 1
end

rowpiv(k) = µ, A(k, :) ↔ A(µ, :) colpiv(k) = λ, A(:, k) ↔ A(:, λ)

The search for a larger |aµλ| involves alternate scans of A(k:n, λ) and A(µ, k:n). The
value of τ is monotone increasing and that ensures termination of the while-loop.
In theory, the exit value of s could be O(n − k)2), but in practice its value is O(1).
See Chang (2002). The bottom line is that rook pivoting represents the same O(n2)
overhead as partial pivoting, but that it induces the same level of reliability as complete
pivoting.
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3.4.8 A Note on Underdetermined Systems

If A ∈ IRm×n with m < n, rank(A) = m, and b ∈ IRm, then the linear system Ax = b
is said to be underdetermined. Note that in this case there are an infinite number
of solutions. With either complete or rook pivoting, it is possible to compute an LU
factorization of the form

PAQT = L [ U1 | U2 ] (3.4.11)

where P and Q are permutations, L ∈ IRm×m is unit lower triangular, and U1 ∈ IRm×m

is nonsingular and upper triangular. Note that

Ax = b ⇔ (PAQT )(Qx) = (Pb) ⇔ L [ U1 | U2 ]
[

z1
z2

]
= L(U1z1 + U2z2) = c

where c = Pb and [
z1
z2

]
= Qx.

This suggests the following solution procedure:

Step 1. Solve Ly = Pb for y ∈ IRm.

Step 2. Choose z2 ∈ IRn−m and solve U1z1 = y − U2z2 for z1.

Step 3. Set

x = QT

[
z1
z2

]
.

Setting z2 = 0 is a natural choice. We have more to say about underdetermined systems
in §5.6.2.

3.4.9 The LU Mentality

We offer three examples that illustrate how to think in terms of the LU factorization
when confronted with a linear equation situation.

Example 1. Suppose A is nonsingular and n-by-n and that B is n-by-p. Consider
the problem of finding X (n-by-p) so AX = B. This is the multiple right hand side
problem. If X = [ x1 | · · · | xp ] and B = [ b1 | · · · | bp ] are column partitions, then

Compute PA = LU

for k = 1:p

Solve Ly = Pbk and then Uxk = y. (3.4.12)
end

If B = In, then we emerge with an approximation to A−1 .

Example 2. Suppose we want to overwrite b with the solution to Akx = b where
A ∈ IRn×n, b ∈ IRn, and k is a positive integer. One approach is to compute C = Ak

and then solve Cx = b. However, the matrix multiplications can be avoided altogether:
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Compute PA = LU .

for j = 1:k

Overwrite b with the solution to Ly = Pb. (3.4.13)

Overwrite b with the solution to Ux = b.
end

As in Example 1, the idea is to get the LU factorization “outside the loop.”
Example 3. Suppose we are given A ∈ IRn×n, d ∈ IRn, and c ∈ IRn and that we

want to compute s = cT A−1d. One approach is to compute X = A−1 as discussed in
(i) and then compute s = cT Xd. However, it is more economical to proceed as follows:

Compute PA = LU .

Solve Ly = Pd and then Ux = y.

s = cT x

An “A−1” in a formula almost always means “solve a linear system” and almost never
means “compute A−1.”

3.4.10 A Model Problem for Numerical Analysis

We are now in possession of a very important and well-understood algorithm (Gaus-
sian elimination) for a very important and well-understood problem (linear equations).
Let us take advantage of our position and formulate more abstractly what we mean
by “problem sensitivity” and “algorithm stability.” Our discussion follows Higham
(ASNA, §1.5–1.6), Stewart (MA, §4.3), and Trefethen and Bau (NLA, Lectures 12, 14,
15, and 22).

A problem is a function f :D → S from “data/input space” D to “solution/output
space” S. A problem instance is f together with a particular d ∈ D. We assume D
and S are normed vector spaces. For linear systems, D is the set of matrix-vector pairs
(A, b) where A ∈ IRn×n is nonsingular and b ∈ IRn. The function f maps (A, b) to A−1b,
an element of S. For a particular A and b, Ax = b is a problem instance.

A perturbation theory for the problem f sheds light on the difference between f(d)
and f(d + ∆d) where d ∈ D and d + ∆d ∈ D. For linear systems, we discussed in §2.6
the difference between the solution to Ax = b and the solution to (A+∆A)(x+∆x) =
(b + ∆b). We bounded ‖ ∆x ‖/‖ x ‖ in terms of ‖ ∆A ‖/‖ A ‖ and ‖ ∆b ‖/‖ b ‖.

The conditioning of a problem refers to the behavior of f under perturbation
at d. A condition number of a problem quantifies the rate of change of the solution
with respect to the input data. If small changes in d induce relatively large changes
in f(d), then that problem instance is ill-conditioned. If small changes in d do not
induce relatively large changes in f(d), then that problem instance is well-conditioned.
Definitions for “small” and “large” are required. For linear systems we showed in
§2.6 that the magnitude of the condition number κ(A) = ‖ A ‖‖ A−1 ‖ determines
whether an Ax = b problem is ill-conditioned or well-conditioned. One might say that
a linear equation problem is well-conditioned if κ(A) ≈ O(1) and ill-conditioned if
κ(A) ≈ O(1/u).

An algorithm for computing f(d) produces an approximation f̃(d). Depending
on the situation, it may be necessary to identify a particular software implementation
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of the underlying method. The f̃ function for Gaussian elimination with partial pivot-
ing, Gaussian elimination with rook pivoting, and Gaussian elimination with complete
pivoting are all different.

An algorithm for computing f(d) is stable if for some small ∆d, the computed
solution f̃(d) is close to f(d+∆d). A stable algorithm nearly solves a nearby problem.
An algorithm for computing f(d) is backward stable if for some small ∆d, the computed
solution f̃(d) satisfies f̃(d) = f(d + ∆d). A backward stable algorithm exactly solves a
nearby problem. Applied to a given linear system Ax = b, Gaussian elimination with
complete pivoting is backward stable because the computed solution x̃ satisfies

(A + ∆)x̃ = b

and ‖ ∆ ‖/‖ A ‖ ≈ O(u). On the other hand, if b is specified by a matrix-vector product
b = Mv, then

(A + ∆)x̃ = Mv + δ

where ‖ ∆ ‖/‖ A ‖ ≈ O(u) and δ/(‖ M ‖‖ v ‖) ≈ O(u). Here, the underlying f is
defined by f :(A, M, v) → A−1(Mv). In this case the algorithm is stable but not
backward stable.

Problems

P3.4.1 Let A = LU be the LU factorization of n-by-n A with |�ij | ≤ 1. Let aT
i and uT

i denote the
ith rows of A and U , respectively. Verify the equation

uT
i = aT

i −
i−1∑
j=1

�ijuT
j

and use it to show that ‖ U ‖∞ ≤ 2n−1‖A ‖∞ . (Hint: Take norms and use induction.)

P3.4.2 Show that if PAQ = LU is obtained via Gaussian elimination with complete pivoting, then
no element of U(i, i:n) is larger in absolute value than |uii|. Is this true with rook pivoting?

P3.4.3 Suppose A ∈ IRn×n has an LU factorization and that L and U are known. Give an algorithm
which can compute the (i, j) entry of A−1 in approximately (n− j)2 + (n− i)2 flops.

P3.4.4 Suppose X̂ is the computed inverse obtained via (3.4.12). Give an upper bound for ‖AX̂ − I ‖
F

.

P3.4.5 Extend Algorithm 3.4.3 so that it can produce the factorization (3.4.11). How many flops are
required?
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3.5 Improving and Estimating Accuracy
Suppose we apply Gaussian elimination with partial pivoting to the n-by-n system
Ax = b and that IEEE double precision arithmetic is used. Equation (3.4.9) essentially
says that if the growth factor is modest then the computed solution x̂ satisfies

(A + E)x̂ = b, ‖ E ‖∞ ≈ u‖ A ‖∞. (3.5.1)

In this section we explore the practical ramifications of this result. We begin by stress-
ing the distinction that should be made between residual size and accuracy. This is
followed by a discussion of scaling, iterative improvement, and condition estimation.
See Higham (ASNA) for a more detailed treatment of these topics.

We make two notational remarks at the outset. The infinity norm is used through-
out since it is very handy in roundoff error analysis and in practical error estimation.
Second, whenever we refer to “Gaussian elimination” in this section we really mean
Gaussian elimination with some stabilizing pivot strategy such as partial pivoting.
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3.5.1 Residual Size versus Accuracy

The residual of a computed solution x̂ to the linear system Ax = b is the vector
b − Ax̂. A small residual means that Ax̂ effectively “predicts” the right hand side b.
From Equation 3.5.1 we have ‖ b − Ax̂ ‖∞ ≈ u‖ A ‖∞‖ x̂ ‖∞ and so we obtain

Heuristic I. Gaussian elimination produces a solution x̂ with a relatively small resid-
ual.

Small residuals do not imply high accuracy. Combining Theorem 2.6.2 and (3.5.1), we
see that

‖ x̂ − x ‖∞
‖ x ‖∞

≈ uκ∞(A) . (3.5.2)

This justifies a second guiding principle.

Heuristic II. If the unit roundoff and condition satisfy u ≈ 10−d and κ∞(A) ≈ 10q,
then Gaussian elimination produces a solution x̂ that has about d − q correct
decimal digits.

If uκ∞(A) is large, then we say that A is ill-conditioned with respect to the machine
precision.

As an illustration of the Heuristics I and II, consider the system[
.986 .579

.409 .237

][
x1

x2

]
=

[
.235

.107

]

in which κ∞(A) ≈ 700 and x = [ 2, −3 ]T . Here is what we find for various machine
precisions:

u x̂1 x̂2
‖ x̂ − x ‖∞
‖ x ‖∞

‖ b − Ax̂ ‖∞
‖ A ‖∞‖ x̂ ‖∞

10−3 2.11 −3.17 5 · 10−2 2.0 · 10−3

10−4 1.986 −2.975 8 · 10−3 1.5 · 10−4

10−5 2.0019 −3.0032 1 · 10−3 2.1 · 10−6

10−6 2.00025 −3.00094 3 · 10−4 4.2 · 10−7

Whether or not to be content with the computed solution x̂ depends on the require-
ments of the underlying source problem. In many applications accuracy is not im-
portant but small residuals are. In such a situation, the x̂ produced by Gaussian
elimination is probably adequate. On the other hand, if the number of correct dig-
its in x̂ is an issue, then the situation is more complicated and the discussion in the
remainder of this section is relevant.

3.5.2 Scaling

Let β be the machine base (typically β = 2) and define the diagonal matrices D1 =
diag(βr1 , . . . , βrn) and D2 = diag(βc1 , . . . , βcn). The solution to the n-by-n linear
system Ax = b can be found by solving the scaled system (D−1

1 AD2)y = D−1
1 b using
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Gaussian elimination and then setting x = D2y. The scalings of A, b, and y require
only O(n2) flops and may be accomplished without roundoff. Note that D1 scales
equations and D2 scales unknowns.

It follows from Heuristic II that if x̂ and ŷ are the computed versions of x and y,
then

‖ D−1
2 (x̂ − x) ‖∞
‖ D−1

2 x ‖∞
=

‖ ŷ − y ‖∞
‖ y ‖∞

≈ uκ∞(D−1
1 AD2). (3.5.3)

Thus, if κ∞(D−1
1 AD2) can be made considerably smaller than κ∞(A), then we might

expect a correspondingly more accurate x̂, provided errors are measured in the “D2”
norm defined by ‖ z ‖D2

= ‖ D−1
2 z ‖∞. This is the objective of scaling. Note that it

encompasses two issues: the condition of the scaled problem and the appropriateness
of appraising error in the D2-norm.

An interesting but very difficult mathematical problem concerns the exact mini-
mization of κp(D−1

1 AD2) for general diagonal Di and various p. Such results as there
are in this direction are not very practical. This is hardly discouraging, however, when
we recall that (3.5.3) is a heuristic result, it makes little sense to minimize exactly a
heuristic bound. What we seek is a fast, approximate method for improving the quality
of the computed solution x̂.

One technique of this variety is simple row scaling. In this scheme D2 is the
identity and D1 is chosen so that each row in D−1

1 A has approximately the same ∞-
norm. Row scaling reduces the likelihood of adding a very small number to a very large
number during elimination—an event that can greatly diminish accuracy.

Slightly more complicated than simple row scaling is row-column equilibration.
Here, the object is to choose D1 and D2 so that the ∞-norm of each row and column
of D−1

1 AD2 belongs to the interval [1/β, 1] where β is the base of the floating point
system. For work along these lines, see McKeeman (1962).

It cannot be stressed too much that simple row scaling and row-column equilibra-
tion do not “solve” the scaling problem. Indeed, either technique can render a worse
x̂ than if no scaling whatever is used. The ramifications of this point are thoroughly
discussed in Forsythe and Moler (SLE, Chap. 11). The basic recommendation is that
the scaling of equations and unknowns must proceed on a problem-by-problem basis.
General scaling strategies are unreliable. It is best to scale (if at all) on the basis of
what the source problem proclaims about the significance of each aij . Measurement
units and data error may have to be considered.

3.5.3 Iterative Improvement

Suppose Ax = b has been solved via the partial pivoting factorization PA = LU and
that we wish to improve the accuracy of the computed solution x̂. If we execute

r = b − Ax̂

Solve Ly = Pr. (3.5.4)

Solve Uz = y.

xnew = x̂ + z

then in exact arithmetic Axnew = Ax̂ + Az = (b− r) + r = b. Unfortunately, the naive
floating point execution of these formulae renders an xnew that is no more accurate
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than x̂. This is to be expected since r̂ = fl(b − Ax̂) has few, if any, correct significant
digits. (Recall Heuristic I.) Consequently, ẑ = fl(A−1r) ≈ A−1 · noise ≈ noise is
a very poor correction from the standpoint of improving the accuracy of x̂. However,
Skeel (1980) has an error analysis that indicates when (3.5.4) gives an improved xnew
from the standpoint of backward error. In particular, if the quantity

τ =
(
‖ |A| |A−1| ‖∞

) (
max

i
(|A||x|)i

/
min

i
(|A||x|)i

)
is not too big, then (3.5.4) produces an xnew such that (A + E)xnew = b for very
small E. Of course, if Gaussian elimination with partial pivoting is used, then the
computed x̂ already solves a nearby system. However, this may not be the case for
certain pivot strategies used to preserve sparsity. In this situation, the fixed precision
iterative improvement step (3.5.4) can be worthwhile and cheap. See Arioli, Demmel,
and Duff (1988).

In general, for (3.5.4) to produce a more accurate x, it is necessary to compute
the residual b − Ax̂ with extended precision floating point arithmetic. Typically, this
means that if t-digit arithmetic is used to compute PA = LU , x, y, and z, then 2t-digit
arithmetic is used to form b−Ax̂. The process can be iterated. In particular, once we
have computed PA = LU and initialize x = 0, we repeat the following:

r = b − Ax (higher precision)

Solve Ly = Pr for y and Uz = y for z. (3.5.5)

x = x + z

We refer to this process as mixed-precision iterative improvement. The original A
must be used in the high-precision computation of r. The basic result concerning the
performance of (3.5.5) is summarized in the following heuristic:

Heuristic III. If the machine precision u and condition satisfy u = 10−d and κ∞(A) ≈
10q, then after k executions of (3.5.5), x has approximately min{d,k(d− q)} cor-
rect digits if the residual computation is performed with precision u2.

Roughly speaking, if uκ∞(A) ≤ 1, then iterative improvement can ultimately produce
a solution that is correct to full (single) precision. Note that the process is relatively
cheap. Each improvement costs O(n2), to be compared with the original O(n3) invest-
ment in the factorization PA = LU . Of course, no improvement may result if A is
badly conditioned with respect to the machine precision.

3.5.4 Condition Estimation

Suppose that we have solved Ax = b via PA = LU and that we now wish to ascertain
the number of correct digits in the computed solution x̂. It follows from Heuristic II that
in order to do this we need an estimate of the condition κ∞(A) = ‖ A ‖∞‖ A−1 ‖∞.
Computing ‖ A ‖∞ poses no problem as we merely use the O(n2) formula (2.3.10).
The challenge is with respect to the factor ‖ A−1 ‖∞. Conceivably, we could esti-
mate this quantity by ‖ X̂ ‖∞, where X̂ = [ x̂1 | · · · | x̂n ] and x̂i is the computed
solution to Axi = ei. (See §3.4.9.) The trouble with this approach is its expense:
κ̂∞ = ‖ A ‖∞‖ X̂ ‖∞ costs about three times as much as x̂.



3.5. Improving and Estimating Accuracy 141

The central problem of condition estimation is how to estimate reliably the con-
dition number in O(n2) flops assuming the availability of PA = LU or one of the
factorizations that are presented in subsequent chapters. An approach described in
Forsythe and Moler (SLE, p. 51) is based on iterative improvement and the heuristic

uκ∞(A) ≈ ‖ z ‖∞/‖ x ‖∞

where z is the first correction of x in (3.5.5).
Cline, Moler, Stewart, and Wilkinson (1979) propose an approach to the condition

estimation problem thatis based on the implication

Ay = d =⇒ ‖ A−1 ‖∞ ≥ ‖ y ‖∞/‖ d ‖∞.

The idea behind their estimator is to choose d so that the solution y is large in norm
and then set

κ̂∞ = ‖ A ‖∞‖ y ‖∞/‖ d ‖∞.

The success of this method hinges on how close the ratio ‖ y ‖∞/‖ d ‖∞ is to its maxi-
mum value ‖ A−1 ‖∞.

Consider the case when A = T is upper triangular. The relation between d and
y is completely specified by the following column version of back substitution:

p(1:n) = 0

for k = n: − 1:1

Choose d(k).

y(k) = (d(k) − p(k))/T (k, k) (3.5.6)

p(1:k − 1) = p(1:k − 1) + y(k)T (1:k − 1, k)
end

Normally, we use this algorithm to solve a given triangular system Ty = d. However,
in the condition estimation setting we are free to pick the right-hand side d subject to
the “constraint” that y is large relative to d.

One way to encourage growth in y is to choose d(k) from the set {−1, +1} so as
to maximize y(k). If p(k) ≥ 0, then set d(k) = −1. If p(k) < 0, then set d(k) = +1.
In other words, (3.5.6) is invoked with d(k) = −sign(p(k)). Overall, the vector d has
the form d(1:n) = [±1, . . . ,±1]T . Since this is a unit vector, we obtain the estimate
κ̂∞ = ‖ T ‖∞‖ y ‖∞.

A more reliable estimator results if d(k) ∈ {−1, +1} is chosen so as to encourage
growth both in y(k) and the running sum update p(1:k − 1, k) + T (1:k − 1, k)y(k). In
particular, at step k we compute

y(k)+ = (1 − p(k))/T (k, k),

s(k)+ = |y(k)+| + ‖ p(1:k − 1) + T (1:k − 1, k)y(k)+ ‖1,

y(k)− = (−1 − p(k))/T (k, k),

s(k)− = |y(k)−| + ‖ p(1:k − 1) + T (1:k − 1, k)y(k)− ‖1,
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and set

y(k) =

⎧⎨⎩
y(k)+ if s(k)+ ≥ s(k)−,

y(k)− if s(k)+ < s(k)−.

This gives the following procedure.

Algorithm 3.5.1 (Condition Estimator) Let T ∈ IRn×n be a nonsingular upper trian-
gular matrix. This algorithm computes unit ∞-norm y and a scalar κ so ‖ Ty ‖∞ ≈
1/‖ T−1 ‖∞ and κ ≈ κ∞(T )

p(1:n) = 0

for k = n: − 1:1

y(k)+ = (1 − p(k))/T (k, k)

y(k)− = (−1 − p(k))/T (k, k)

p(k)+ = p(1:k − 1) + T (1:k − 1, k)y(k)+

p(k)− = p(1:k − 1) + T (1:k − 1, k)y(k)−

if |y(k)+| + ‖ p(k)+ ‖1 ≥ |y(k)−| + ‖ p(k)− ‖1

y(k) = y(k)+

p(1:k − 1) = p(k)+

else

y(k) = y(k)−

p(1:k − 1) = p(k)−

end
end

κ = ‖ y ‖∞‖ T ‖∞
y = y/‖ y ‖∞

The algorithm involves several times the work of ordinary back substitution.
We are now in a position to describe a procedure for estimating the condition of

a square nonsingular matrix A whose PA = LU factorization is available:
Step 1. Apply the lower triangular version of Algorithm 3.5.1 to UT and

obtain a large-norm solution to UT y = d.

Step 2. Solve the triangular systems LT r = y, Lw = Pr, and Uz = w.

Step 3. Set κ̂∞ = ‖ A ‖∞‖ z ‖∞/‖ r ‖∞.

Note that ‖ z ‖∞ ≤ ‖ A−1 ‖∞‖ r ‖∞. The method is based on several heuristics. First,
if A is ill-conditioned and PA = LU , then it is usually the case that U is correspondingly
ill-conditioned. The lower triangle L tends to be fairly well-conditioned. Thus, it is
more profitable to apply the condition estimator to U than to L. The vector r, because
it solves AT PT r = d, tends to be rich in the direction of the left singular vector
associated with σmin(A). Right-hand sides with this property render large solutions to
the problem Az = r.

In practice, it is found that the condition estimation technique that we have
outlined produces adequate order-of-magnitude estimates of the true condition number.
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Problems

P3.5.1 Show by example that there may be more than one way to equilibrate a matrix.

P3.5.2 Suppose P (A + E) = L̂Û , where P is a permutation, L̂ is lower triangular with |�̂ij | ≤ 1, and
Û is upper triangular. Show that κ̂∞(A) ≥ ‖A ‖∞/(‖ E ‖∞+ µ) where µ = min |ûii|. Conclude that
if a small pivot is encountered when Gaussian elimination with pivoting is applied to A, then A is
ill-conditioned. The converse is not true. (Hint: Let A be the matrix Bn defined in (2.6.9)).

P3.5.3 (Kahan (1966)) The system Ax = b where

A =

[
2 −1 1

−1 10−10 10−10

1 10−10 10−10

]
, b =

[
2(1 + 10−10)
−10−10

10−10

]
has solution x = [10−10 − 1 1]T . (a) Show that if (A + E)y = b and |E| ≤ 10−8|A|, then |x − y| ≤
10−7|x|. That is, small relative changes in A’s entries do not induce large changes in x even though
κ∞(A) = 1010. (b) Define D = diag(10−5, 105, 105). Show that κ∞(DAD) ≤ 5. (c) Explain what is
going on using Theorem 2.6.3.

P3.5.4 Consider the matrix:

T =

⎡⎣ 1 0 M −M
0 1 −M M
0 0 1 0
0 0 0 1

⎤⎦ M ∈ IR .

What estimate of κ∞(T ) is produced when (3.5.6) is applied with d(k) = −sign(p(k))? What estimate
does Algorithm 3.5.1 produce? What is the true κ∞(T )?

P3.5.5 What does Algorithm 3.5.1 produce when applied to the matrix Bn given in (2.6.9)?
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3.6 Parallel LU
In §3.2.11 we show how to organize a block version of Gaussian elimination (without
pivoting) so that the overwhelming majority of flops occur in the context of matrix
multiplication. It is possible to incorporate partial pivoting and maintain the same
level-3 fraction. After stepping through the derivation we proceed to show how the
process can be effectively parallelized using the block-cyclic distribution ideas that
were presented in §1.6.

3.6.1 Block LU with Pivoting

Throughout this section assume A ∈ IRn×n and for clarity that n = rN :

A =

⎡⎢⎣ A11 · · · A1N

...
. . .

...
AN1 · · · ANN

⎤⎥⎦ Ai,j ∈ IRr×r. (3.6.1)

We revisit Algorithm 3.2.4 (nonrecursive block LU) and show how to incorporate partial
pivoting.
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The first step starts by applying scalar Gaussian elimination with partial pivoting
to the first block column. Using an obvious rectangular matrix version of Algorithm
3.4.1 we obtain the following factorization:

P1

⎡⎢⎢⎢⎣
A11
A21
...

AN1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
L11
L21
...

LN1

⎤⎥⎥⎥⎦U11. (3.6.2)

In this equation, P1 ∈ IRn×n is a permutation, L11 ∈ IRr×r is unit lower triangular, and
U11 ∈ IRr×r is upper triangular.

The next task is to compute the first block row of U . To do this we set

P1A =

⎡⎢⎣ Ã11 · · · Ã1N

...
. . .

...
ÃN1 · · · ÃNN

⎤⎥⎦ , Ãi,j ∈ IRr×r, (3.6.3)

and solve the lower triangular multiple-right-hand-side problem

L11
[

U12 · · · U1N

]
=

[
Ã12 · · · Ã1N

]
(3.6.4)

for U12, . . . , U1N ∈ IRr×r. At this stage it is easy to show that we have the partial
factorization

P1A =

⎡⎢⎢⎢⎣
L11 0 · · · 0
L21 Ir · · · 0
...

...
. . .

...
LN1 0 · · · Ir

⎤⎥⎥⎥⎦
[

Ir 0

0 A(new)

]⎡⎢⎢⎢⎣
U11 U12 · · · U1N

0 Ir · · · 0
...

...
. . .

...
0 0 · · · Ir

⎤⎥⎥⎥⎦
where

A(new) =

⎡⎢⎣ Ã22 · · · Ã2N

...
. . .

...
ÃN2 · · · ÃNN

⎤⎥⎦ −

⎡⎢⎣ L21
...

LN1

⎤⎥⎦ [ U12 | · · · | U1N ] . (3.6.5)

Note that the computation of A(new) is a level-3 operation as it involves one matrix
multiplication per A-block.

The remaining task is to compute the pivoted LU factorization of A(new). Indeed,
if

P (new)A(new) = L(new)U (new)

and

P (new)

⎡⎢⎣ L21
...

LN1

⎤⎥⎦ =

⎡⎢⎣ L̃21
...

L̃N1

⎤⎥⎦ ,



146 Chapter 3. General Linear Systems

then

PA =

⎡⎢⎢⎢⎣
L11 0 · · · 0
L̃21
... L(new)

L̃N1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

U11 U12 · · · U1N

0
... U (new)

0

⎤⎥⎥⎥⎦
is the pivoted block LU factorization of A with

P =

[
Ir 0

0 P (new)

]
P1.

In general, the processing of each block column in A is a four-part calculation:

Part A. Apply rectangular Gaussian Elimination with partial pivoting to a block
column of A. This produces a permutation, a block column of L, and a diagonal
block of U . See (3.6.2).

Part B. Apply the Part A permutation to the “rest of A.” See (3.6.3).

Part C. Complete the computation of U ’s next block row by solving a lower trian-
gular multiple right-hand-side problem. See (3.6.4).

Part D. Using the freshly computed L-blocks and U -blocks, update the “rest of A.”
See (3.6.5).

The precise formulation of the method with overwriting is similar to Algorithm 3.2.4
and is left as an exercise.

3.6.2 Parallelizing the Pivoted Block LU Algorithm

Recall the discussion of the block-cyclic distribution in §1.6.2 where the parallel com-
putation of the matrix multiplication update C = C + AB was outlined. To provide
insight into how the pivoted block LU algorithm can be parallelized, we examine a rep-
resentative step in a small example that also makes use of the block-cyclic distribution.

Assume that N = 8 in (3.6.1) and that we have a prow-by-pcol processor network
with prow = 2 and pcol = 2. At the start, the blocks of A = (Aij) are cyclically
distributed as shown in Figure 3.6.1. Assume that we have carried out two steps of
block LU and that the computed Lij and Uij have overwritten the corresponding A-
blocks. Figure 3.6.2 displays the situation at the start of the third step. Blocks that
are to participate in the Part A factorization

P3

⎡⎢⎣A33
...

A83

⎤⎥⎦=

⎡⎢⎣L33
...

L83

⎤⎥⎦U33

are highlighted. Typically, prow processors are involved and since the blocks are each
r-by-r, there are r steps as shown in (3.6.6).
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Figure 3.6.2.
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for j = 1:r

Columns Akk(:, j), . . . , AN,k(:, j) are assembled in
the processor housing Akk, the “pivot processor”

The pivot processor determines the required row interchange and
the Gauss transform vector

The swapping of the two A-rows may require the involvement of
two processors in the network

The appropriate part of the Gauss vector together with (3.6.6)
Akk(j, j:r) is sent by the pivot processor to the
processors that house Ak+1,k, . . . , AN,k

The processors that house Akk, . . . , AN,k carry out their
share of the update, a local computation

end

Upon completion, the parallel execution of Parts B and C follow. In the Part B compu-
tation, those blocks that may be involved in the row swapping have been highlighted.
See Figure 3.6.3. This overhead generally engages the entire processor network, al-
though communication is local to each processor column.
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Figure 3.6.3.

Note that Part C involves just a single processor row while the “big” level-three update
that follows typically involves the entire processor network. See Figures 3.6.4 and 3.6.5.
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Figure 3.6.4.
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Figure 3.6.5.
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The communication overhead associated with Part D is masked by the matrix multi-
plications that are performed on each processor.

This completes the k = 3 step of parallel block LU with partial pivoting. The
process can obviously be repeated on the trailing 5-by-5 block matrix. The virtues of
the block-cyclic distribution are revealed through the schematics. In particular, the
dominating level-3 step (Part D) is load balanced for all but the last few values of
k. Subsets of the processor grid are used for the “smaller,” level-2 portions of the
computation.

We shall not attempt to predict the fraction of time that is devoted to these
computations or the propagation of the interchange permutations. Enlightenment in
this direction requires benchmarking.

3.6.3 Tournament Pivoting

The decomposition via partial pivoting in Step A requires a lot of communication. An
alternative that addresses this issue involves a strategy called tournament pivoting.
Here is the main idea. Suppose we want to compute PW = LU where the blocks of

W =

⎡⎢⎢⎣
W1
W2
W3
W4

⎤⎥⎥⎦ ∈ IRn×r

are distributed around some network of processors. Assume that each Wi has many
more rows than columns. The goal is to choose r rows from W that can serve as pivot
rows. If we compute the “local” factorizations

P1W1 = L1U1, P2W2 = L2U2, P3W3 = L3U3, P4W4 = L4U4,

via Gaussian elimination with partial pivoting, then the top r rows of the matrices
P1W1, P2W2, P3W3, are P4W4 are pivot row candidates. Call these square matrices
W ′

1, W ′
2, W ′

3, and W ′
4 and note that we have reduced the number of possible pivot rows

from n to 4r.
Next we compute the factorizations

P12W
′
12 = P12

[
W ′

1
W ′

2

]
= L12U12,

P34W
′
34 = P34

[
W ′

3
W ′

4

]
= L34U34,

and recognize that the top r rows of P12W
′
12 and the top r rows of P34W

′
34 are even

better pivot row candidates. Assemble these 2r rows into a matrix W1234 and compute

P1234W1234 = L1234U1234.

The top r rows of P1234W1234 are then the chosen pivot rows for the LU reduction of
W .

Of course, there are communication overheads associated with each round of the
“tournament,” but the volume of interprocessor data transfers is much reduced. See
Demmel, Grigori, and Xiang (2010).
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Problems

P3.6.1 In §3.6.1 we outlined a single step of block LU with partial pivoting. Specify a complete
version of the algorithm.

P3.6.2 Regarding parallel block LU with partial pivoting, why is it better to “collect” all the per-
mutations in Part A before applying them across the remaining block columns? In other words, why
not propagate the Part A permutations as they are produced instead of having Part B, a separate
permutation application step?

P3.6.3 Review the discussion about parallel shared memory computing in §1.6.5 and §1.6.6. Develop a
shared memory version of Algorithm 3.2.1. Designate one processor for computation of the multipliers
and a load-balanced scheme for the rank-1 update in which all the processors participate. A barrier

is necessary because the rank-1 update cannot proceed until the multipliers are available. What if
partial pivoting is incorporated?

Notes and References for §3.6

See the scaLAPACK manual for a discussion of parallel Gaussian elimination as well as:

J. Ortega (1988). Introduction to Parallel and Vector Solution of Linear Systems, Plenum Press, New
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on Linear Algebra Algorithm Design,” Int. J. Supercomput. Applic. 2, 12–48.

J. Dongarra, I. Duff, D. Sorensen, and H. van der Vorst (1990). Solving Linear Systems on Vector
and Shared Memory Computers, SIAM Publications, Philadelphia, PA.

Y. Robert (1990). The Impact of Vector and Parallel Architectures on the Gaussian Elimination
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Chapter 4

Special Linear Systems

4.1 Diagonal Dominance and Symmetry
4.2 Positive Definite Systems
4.3 Banded Systems
4.4 Symmetric Indefinite Systems
4.5 Block Tridiagonal Systems
4.6 Vandermonde Systems
4.7 Classical Methods for Toeplitz Systems
4.8 Circulant and Discrete Poisson Systems

It is a basic tenet of numerical analysis that solution procedures should exploit
structure whenever it is present. In numerical linear algebra, this translates into an ex-
pectation that algorithms for general linear systems can be streamlined in the presence
of such properties as symmetry, definiteness, and bandedness. Two themes prevail:

• There are important classes of matrices for which it is safe not to pivot when
computing the LU or a related factorization.

• There are important classes of matrices with highly structured LU factorizations
that can be computed quickly, sometimes, very quickly.

Challenges arise when a fast, but unstable, LU factorization is available.
Symmetry and diagonal dominance are prime examples of exploitable matrix

structure and we use these properties to introduce some key ideas in §4.1. In §4.2 we
examine the case when A is both symmetric and positive definite, deriving the stable
Cholesky factorization. Unsymmetric positive definite systems are also investigated.
In §4.3, banded versions of the LU and Cholesky factorizations are discussed and this
is followed in §4.4 with a treatment of the symmetric indefinite problem. Block ma-
trix ideas and sparse matrix ideas come together when the matrix of coefficients is
block tridiagonal. This important class of systems receives a special treatment in §4.5.

153
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Classical methods for Vandermonde and Toeplitz systems are considered in §4.6 and
§4.7. In §4.8 we connect the fast transform discussion in §1.4 to the problem of solving
circulant systems and systems that arise when the Poisson problem is discretized using
finite differences.

Before we get started, we clarify some terminology associated with structured
problems that pertains to this chapter and beyond. Banded matrices and block-banded
matrices are examples of sparse matrices, meaning that the vast majority of their entries
are zero. Linear equation methods that are appropriate when the zero-nonzero pattern
is more arbitrary are discussed in Chapter 11. Toeplitz, Vandermonde, and circulant
matrices are data sparse. A matrix A ∈ IRm×n is data sparse if it can be parameterized
with many fewer than O(mn) numbers. Cauchy-like systems and semiseparable systems
are considered in §12.1 and §12.2.

Reading Notes

Knowledge of Chapters 1, 2, and 3 is assumed. Within this chapter there are the
following dependencies:

§4.1 → §4.2 → §4.3 → §4.4
↓ ↓

§4.6 §4.5 → §4.7 → §4.8

Global references include Stewart( MABD), Higham (ASNA), Watkins (FMC), Tre-
fethen and Bau (NLA), Demmel (ANLA), and Ipsen (NMA).

4.1 Diagonal Dominance and Symmetry
Pivoting is a serious concern in the context of high-performance computing because
the cost of moving data around rivals the cost of computation. Equally important,
pivoting can destroy exploitable structure. For example, if A is symmetric, then it
involves half the data of a general A. Our intuition (correctly) tells us that we should
be able to solve a symmetric Ax = b problem with half the arithmetic. However, in
the context of Gaussian elimination with pivoting, symmetry can be destroyed at the
very start of the reduction, e.g.,⎡⎣ 0 0 1

0 1 0
1 0 0

⎤⎦⎡⎣ a b c
b d e
c e f

⎤⎦ =

⎡⎣ c e f
b d e
a b c

⎤⎦ .

Taking advantage of symmetry and other patterns and identifying situations where
pivoting is unnecessary are typical activities in the realm of structured Ax = b solving.
The goal is to expose computational shortcuts and to justify their use through analysis.

4.1.1 Diagonal Dominance and the LU Factorization

If A’s diagonal entries are large compared to its off-diagonal entries, then we anticipate
that it is safe to compute A = LU without pivoting. Consider the n = 2 case:[

a b
c d

]
=

[
1 0

c/a 1

] [
a b
0 d − (c/a)b

]
.



4.1. Diagonal Dominance and Symmetry 155

If a and d “dominate” b and c in magnitude, then the elements of L and U will be
nicely bounded. To quantify this we make a definition. We say that A ∈ IRn×n is row
diagonally dominant if

|aii| ≥
n∑

j=1
j �=i

|aij |, i = 1:n . (4.1.1)

Similarly, column diagonal dominance means that |ajj | is larger than the sum of all
off-diagonal element magnitudes in the same column. If these inequalities are strict,
then A is strictly (row/column) diagonally dominant. A diagonally dominant matrix
can be singular, e.g., the 2-by-2 matrix of 1’s. However, if a nonsingular matrix is
diagonally dominant, then it has a “safe” LU factorization.

Theorem 4.1.1. If A is nonsingular and column diagonally dominant, then it has an
LU factorization and the entries in L = (�ij) satisfy |lij | ≤ 1.

Proof. We proceed by induction. The theorem is obviously true if n = 1. Assume
that it is true for (n − 1)-by-(n − 1) nonsingular matrices that are column diagonally
dominant. Partition A ∈ IRn×n as follows:

A =
[

α wT

v C

]
, α ∈ IR, v, w ∈ IRn−1, C ∈ IR(n−1)×(n−1).

If α = 0, then v = 0 and A is singular. Thus, α 
= 0 and we have the factorization[
α wT

v C

]
=

[
1 0

v/α I

] [
1 0
0 B

] [
α wT

0 I

]
, (4.1.2)

where
B = C − 1

α
vwT .

Since det(A) = α ·det(B), it follows that B is nonsingular. It is also column diagonally
dominant because

n−1∑
i=1
i �=j

|bij | =
n−1∑
i=1
i �=j

|cij − viwj/α| ≤
n−1∑
i=1
i �=j

|cij | +
|wj |
|α|

n−1∑
i=1
i �=j

|vi|

< (|cjj | − |wj |) +
|wj |
|α| (|α| − |vj |) ≤

∣∣∣cjj −
wjvj

α

∣∣∣ = |bjj |.

By induction, B has an LU factorization L1U1 and so from (4.1.2) we have

A =
[

1 0
v/α L1

] [
α wT

0 U1

]
≡ LU.

The entries in |v/α| are bounded by 1 because A is column diagonally dominant. By
induction, the same can be said about the entries in |L1|. Thus, the entries in |L| are
all bounded by 1 completing the proof.



156 Chapter 4. Special Linear Systems

The theorem shows that Gaussian elimination without pivoting is a stable solution
procedure for a column diagonally dominant matrix. If the diagonal elements strictly
dominate the off-diagonal elements, then we can actually bound ‖ A−1 ‖.

Theorem 4.1.2. If A ∈ IRn×n and

δ = min
1≤j≤n

⎛⎜⎝|ajj | −
n∑

i=1
i �=j

|aij |

⎞⎟⎠ > 0 (4.1.3)

then
‖ A−1 ‖1 ≤ 1/δ.

Proof. Define D = diag(a11, . . . , ann) and E = A − D. If e is the column n-vector of
1’s, then

eT |E| ≤ eT |D| − δeT .

If x ∈ IRn, then Dx = Ax − Ex and

|D| |x| ≤ |Ax| + |E| |x|.

Thus,
eT |D| |x| ≤ eT |Ax| + eT |E| |x| ≤ ‖ Ax ‖1 +

(
eT |D| − δeT

)
|x|

and so δ‖ x ‖1 = δeT |x| ≤ ‖ Ax ‖1. The bound on ‖ A−1 ‖1 follows from the fact that
for any y ∈ IRn,

δ‖ A−1y ‖1 ≤ ‖ A(A−1y) ‖1 = ‖ y ‖1.

The “dominance” factor δ defined in (4.1.3) is important because it has a bearing on
the condition of the linear system. Moreover, if it is too small, then diagonal dominance
may be lost during the elimination process because of roundoff. That is, the computed
version of the B matrix in (4.1.2) may not be column diagonally dominant.

4.1.2 Symmetry and the LDLT Factorization

If A is symmetric and has an LU factorization A = LU , then L and U have a connection.
For example, if n = 2 we have[

a c

c d

]
=

[
1 0

c/a 1

]
·
[

a c

0 d − (c/a)c

]

=

[
1 0

c/a 1

]
·
([

a 0

0 d − (c/a)c

][
1 c/a

0 1

])
.

It appears that U is a row scaling of LT . Here is a result that makes this precise.
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Theorem 4.1.3. (LDLT Factorization) If A ∈ IRn×n is symmetric and the principal
submatrix A(1:k, 1:k) is nonsingular for k = 1:n − 1, then there exists a unit lower
triangular matrix L and a diagonal matrix

D = diag(d1, . . . , dn)

such that A = LDLT . The factorization is unique.

Proof. By Theorem 3.2.1 we know that A has an LU factorization A = LU . Since the
matrix

L−1AL−T = UL−T

is both symmetric and upper triangular, it must be diagonal. The theorem follows by
setting D = UL−T and the uniqueness of the LU factorization.

Note that once we have the LDLT factorization, then solving Ax = b is a 3-step process:

Lz = b, Dy = z, LT x = y.

This works because Ax = L(D(LT x)) = L(Dy) = Lz = b.
Because there is only one triangular matrix to compute, it is not surprising that

the factorization A = LDLT requires half as many flops to compute as A = LU . To
see this we derive a Gaxpy-rich procedure that, for j = 1:n, computes L(j +1:n, j) and
dj in step j. Note that

A(j:n, j) = L(j:n, 1:j)·v(1:j)

where

v(1:j) =

⎡⎢⎢⎢⎢⎢⎣
d1�j1
d2�j2

...
dj−1�j,j−1

dj

⎤⎥⎥⎥⎥⎥⎦ .

From this we conclude that

dj = ajj −
j−1∑
k=1

dk�2jk.

With dj available, we can rearrange the equation

A(j + 1:n, j) = L(j + 1:n, 1:j)·v(1:j)

= L(j + 1:n, 1:j − 1)·v(1:j − 1) + dj ·L(j + 1:n, j)

to get a recipe for L(j + 1:n, j):

L(j + 1:n, j) =
1
dj

(A(j + 1:n, j) − L(j + 1:n, 1:j − 1)·v(1:j − 1)) .

Properly sequenced, we obtain the following overall procedure:
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for j = 1:n
for i = 1:j − 1

v(i) = L(j, i) · d(i)
end

d(j) = A(j, j) − L(j, 1:j − 1)·v(1:j − 1)

L(j + 1:n, j) = (A(j + 1:n, j) − L(j + 1:n, 1:j − 1)·v(1:j − 1))/d(j)
end

With overwriting we obtain the following procedure.

Algorithm 4.1.1 (LDLT) If A ∈ IRn×n is symmetric and has an LU factorization, then
this algorithm computes a unit lower triangular matrix L and a diagonal matrix D =
diag(d1, . . . , dn) so A = LDLT . The entry aij is overwritten with �ij if i > j and with
di if i = j.

for j = 1:n

for i = 1:j − 1

v(i) = A(j, i)A(i, i)
end

A(j, j) = A(j, j) − A(j, 1:j − 1)·v(1:j − 1)

A(j + 1:n, j) = (A(j + 1:n, j) − A(j + 1:n, 1:j − 1)·v(1:j − 1))/A(j, j)
end

This algorithm requires n3/3 flops, about half the number of flops involved in Gaussian
elimination.

The computed solution x̂ to Ax = b obtained via Algorithm 4.1.1 and the usual
triangular system solvers of §3.1 can be shown to satisfy a perturbed system (A+E)x̂ =
b, where

|E| ≤ nu
(
2|A| + 4|L̂||D̂||L̂T |

)
+ O(u2) (4.1.4)

and L̂ and D̂ are the computed versions of L and D, respectively.
As in the case of the LU factorization considered in the previous chapter, the

upper bound in (4.1.4) is without limit unless A has some special property that guar-
antees stability. In the next section, we show that if A is symmetric and positive
definite, then Algorithm 4.1.1 not only runs to completion, but is extremely stable. If
A is symmetric but not positive definite, then, as we discuss in §4.4, it is necessary to
consider alternatives to the LDLT factorization.

Problems

P4.1.1 Show that if all the inequalities in (4.1.1) are strict inequalities, then A is nonsingular.

P4.1.2 State and prove a result similar to Theorem 4.1.2 that applies to a row diagonally dominant
matrix. In particular, show that ‖A−1 ‖∞ ≤ 1/δ where δ measures the strength of the row diagonal
dominance as defined in Equation 4.1.3.

P4.1.3 Suppose A is column diagonally dominant, symmetric, and nonsingular and that A = LDLT .
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What can you say about the size of entries in L and D? Give the smallest upper bound you can for
‖ L ‖1.
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4.2 Positive Definite Systems
A matrix A ∈ IRn×n is positive definite if xT Ax > 0 for all nonzero x ∈ IRn, positive
semidefinite if xT Ax ≥ 0 for all x ∈ IRn, and indefinite if we can find x, y ∈ IRn so(
xT Ax

) (
yT Ay

)
< 0. Symmetric positive definite systems constitute one of the most

important classes of special Ax = b problems. Consider the 2-by-2 symmetric case. If

A =

[
α β

β γ

]
is positive definite then

x = [ 1, 0 ]T ⇒ xT Ax = α > 0,

x = [ 0, 1 ]T ⇒ xT Ax = γ > 0,

x = [ 1, 1 ]T ⇒ xT Ax = α + 2β + γ > 0,

x = [ 1, −1 ]T ⇒ xT Ax = α − 2β + γ > 0.
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The last two equations imply |β| ≤ (α+γ)/2. From these results we see that the largest
entry in A is on the diagonal and that it is positive. This turns out to be true in general.
(See Theorem 4.2.8 below.) A symmetric positive definite matrix has a diagonal that is
sufficiently “weighty” to preclude the need for pivoting. A special factorization called
the Cholesky factorization is available for such matrices. It exploits both symmetry and
definiteness and its implementation is the main focus of this section. However, before
those details are pursued we discuss unsymmetric positive definite matrices. This class
of matrices is important in its own right and and presents interesting pivot-related
issues.

4.2.1 Positive Definiteness

Suppose A ∈ IRn×n is positive definite. It is obvious that a positive definite matrix is
nonsingular for otherwise we could find a nonzero x so xT Ax = 0. However, much
more is implied by the positivity of the quadratic form xT Ax as the following results
show.

Theorem 4.2.1. If A ∈ IRn×n is positive definite and X ∈ IRn×k has rank k, then
B = XT AX ∈ IRk×k is also positive definite.

Proof. If z ∈ IRk satisfies 0 ≥ zT Bz = (Xz)T A(Xz), then Xz = 0. But since X has
full column rank, this implies that z = 0.

Corollary 4.2.2. If A is positive definite, then all its principal submatrices are positive
definite. In particular, all the diagonal entries are positive.

Proof. If v is an integer length-k vector with 1 ≤ v1 < · · · < vk ≤ n, then X = In(:, v)
is a rank-k matrix made up of columns v1, . . . , vk of the identity. It follows from
Theorem 4.2.1 that A(v, v) = XT AX is positive definite.

Theorem 4.2.3. The matrix A ∈ IRn×n is positive definite if and only if the symmetric
matrix

T =
A + AT

2
has positive eigenvalues.

Proof. Note that xT Ax = xT Tx. If Tx = λx then xT Ax = λ · xT x. Thus, if A is
positive definite then λ is positive. Conversely, suppose T has positive eigenvalues and
QT TQ = diag(λi) is its Schur decomposition. (See §2.1.7.) It follows that if x ∈ IRn

and y = QT x, then

xT Ax = xT Tx = yT (QT TQ)y =
n∑

k=1

λky2
k > 0,

completing the proof of the theorem.
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Corollary 4.2.4. If A is positive definite, then it has an LU factorization and the
diagonal entries of U are positive.

Proof. From Corollary 4.2.2, it follows that the submatrices A(1:k, 1:k) are nonsingular
for k = 1:n and so from Theorem 3.2.1 the factorization A = LU exists. If we apply
Theorem 4.2.1 with X = (L−1)T = L−T , then B = XT AX = L−1(LU)L−1 = UL−T

is positive definite and therefore has positive diagonal entries. The corollary follows
because L−T is unit upper triangular and this implies bii = uii, i = 1:n.

The mere existence of an LU factorization does not mean that its computation
is advisable because the resulting factors may have unacceptably large elements. For
example, if ε > 0, then the matrix

A =
[

ε m
−m ε

]
=

[
1 0

−m/ε 1

] [
ε m
0 1 + m2/ε

]
is positive definite. However, if m/ε  1, then it appears that some kind of pivoting
is in order. This prompts us to pose an interesting question. Are there conditions
that guarantee when it is safe to compute the LU-without-pivoting factorization of a
positive definite matrix?

4.2.2 Unsymmetric Positive Definite Systems

The positive definiteness of a general matrix A is inherited from its symmetric part:

T =
A + AT

2
.

Note that for any square matrix we have A = T + S where

S =
A − AT

2

is the skew-symmetric part of A. Recall that a matrix S is skew symmetric if ST = −S.
If S is skew-symmetric, then xT Sx = 0 for all x ∈ IRn and sii = 0, i = 1:n. It follows
that A is positive definite if and only if its symmetric part is positive definite.

The derivation and analysis of methods for positive definite systems require an
understanding about how the symmetric and skew-symmetric parts interact during the
LU process.

Theorem 4.2.5. Suppose

A =

[
α vT

v B

]
+

[
0 −wT

w C

]

is positive definite and that B ∈ IR(n−1)×(n−1) is symmetric and C ∈ IR(n−1)×(n−1) is
skew-symmetric. Then it follows that

A =

[
1 0

(v + w)/α I

][
α (v − w)T

0 B1 + C1

]
(4.2.1)
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where

B1 = B − 1
α

(
vvT − wwT

)
(4.2.2)

is symmetric positive definite and

C1 = C − 1
α

(
wvT − vwT

)
(4.2.3)

is skew-symmetric.

Proof. Since α 
= 0 it follows that (4.2.1) holds. It is obvious from their definitions
that B1 is symmetric and that C1 is skew-symmetric. Thus, all we have to show is that
B1 is positive definite i.e.,

0 < zT B1z = zT Bz − 1
α

(
vT z

)2
+

1
α

(
wT z

)2
(4.2.4)

for all nonzero z ∈ IRn−1. For any µ ∈ IR and 0 
= z ∈ IRn−1 we have

0 <

[
µ
z

]T

A

[
µ
z

]
=

[
µ
z

]T [
α vT

v B

] [
µ
z

]
= µ2α + 2µvT z + zT Bz.

If µ = −(vT z)/α, then

0 < zT Bz − 1
α

(
vT z

)2
,

which establishes the inequality (4.2.4).

From (4.2.1) we see that if B1 +C1 = L1U1 is the LU factorization, then A = LU
where

L =

[
1 0

(v + w)/α L1

][
α (v − w)T

0 U1

]
.

Thus, the theorem shows that triangular factors in A = LU are nicely bounded if S is
not too big compared to T−1. Here is a result that makes this precise:

Theorem 4.2.6. Let A ∈ IRn×n be positive definite and set T = (A + AT )/2 and
S = (A − AT )/2. If A = LU is the LU factorization, then

‖ |L||U | ‖
F

≤ n
(
‖ T ‖2 + ‖ ST−1S ‖2

)
. (4.2.5)

Proof. See Golub and Van Loan (1979).

The theorem suggests when it is safe not to pivot. Assume that the computed factors
L̂ and Û satisfy

‖ |L̂||Û | ‖
F

≤ c‖ |L||U | ‖
F
, (4.2.6)
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where c is a constant of modest size. It follows from (4.2.1) and the analysis in §3.3
that if these factors are used to compute a solution to Ax = b, then the computed
solution x̂ satisfies (A + E)x̂ = b with

‖ E ‖
F

≤ u
(
2n‖ A ‖F + 4cn2 (‖ T ‖2 + ‖ ST−1S ‖2

))
+ O(u2). (4.2.7)

It is easy to show that ‖ T ‖2 ≤ ‖ A ‖2, and so it follows that if

Ω =
‖ ST−1S ‖2

‖ A ‖2
(4.2.8)

is not too large, then it is safe not to pivot. In other words, the norm of the skew-
symmetric part S has to be modest relative to the condition of the symmetric part T .
Sometimes it is possible to estimate Ω in an application. This is trivially the case when
A is symmetric for then Ω = 0.

4.2.3 Symmetric Positive Definite Systems

If we apply the above results to a symmetric positive definite matrix we know that
the factorization A = LU exists and is stable to compute. The computation of the
factorization A = LDLT via Algorithm 4.1.2 is also stable and exploits symmetry.
However, for symmetric positive definite systems it is often handier to work with a
variation of LDLT .

Theorem 4.2.7 (Cholesky Factorization). If A ∈ IRn×n is symmetric positive
definite, then there exists a unique lower triangular G ∈ IRn×n with positive diagonal
entries such that A = GGT .

Proof. From Theorem 4.1.3, there exists a unit lower triangular L and a diagonal

D = diag(d1, . . . , dn)

such that A = LDLT . Theorem 4.2.1 tells us that L−1AL−T = D is positive definite.
Thus, the dk are positive and the matrix G = L diag(

√
d1, . . . ,

√
dn) is real and lower

triangular with positive diagonal entries. It also satisfies A = GGT . Uniqueness follows
from the uniqueness of the LDLT factorization.

The factorization A = GGT is known as the Cholesky factorization and G is the
Cholesky factor. Note that if we compute the Cholesky factorization and solve the
triangular systems Gy = b and GT x = y, then b = Gy = G(GT x) = (GGT )x = Ax.

4.2.4 The Cholesky Factor is not a Square Root

A matrix X ∈ IRn×n that satisfies A = X2 is a square root of A. Note that if A
symmetric, positive definite, and not diagonal, then its Cholesky factor is not a square
root. However, if A = GGT and X = UΣUT where G = UΣV T is the SVD, then

X2 = (UΣUT )(UΣUT ) = UΣ2UT = (UΣV T )(UΣV T )T = GGT = A.

Thus, a symmetric positive definite matrix A has a symmetric positive definite square
root denoted by A1/2. We have more to say about matrix square roots in §9.4.2.
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4.2.5 A Gaxpy-Rich Cholesky Factorization

Our proof of the Cholesky factorization in Theorem 4.2.7 is constructive. However,
we can develop a more effective procedure by comparing columns in A = GGT . If
A ∈ IRn×n and 1 ≤ j ≤ n, then

A(:, j) =
j∑

k=1

G(j, k)·G(:, k).

This says that

G(j, j)G(:, j) = A(:, j) −
j−1∑
k=1

G(j, k)·G(:, k) ≡ v. (4.2.9)

If the first j − 1 columns of G are known, then v is computable. It follows by equating
components in (4.2.9) that

G(j:n, j) = v(j:n)/
√

v(j)

and so we obtain

for j = 1:n
v(j:n) = A(j:n, j)
for k = 1:j − 1

v(j:n) = v(j:n) − G(j, k)·G(j:n, k)
end
G(j:n, j) = v(j:n)/

√
v(j)

end

It is possible to arrange the computations so that G overwrites the lower triangle of A.

Algorithm 4.2.1 (Gaxpy Cholesky) Given a symmetric positive definite A ∈ IRn×n,
the following algorithm computes a lower triangular G such that A = GGT . For all
i ≥ j, G(i, j) overwrites A(i, j).

for j = 1:n
if j > 1

A(j:n, j) = A(j:n, j) − A(j:n, 1:j − 1)·A(j, 1:j − 1)T

end
A(j:n, j) = A(j:n, j)/

√
A(j, j)

end

This algorithm requires n3/3 flops.

4.2.6 Stability of the Cholesky Process

In exact arithmetic, we know that a symmetric positive definite matrix has a Cholesky
factorization. Conversely, if the Cholesky process runs to completion with strictly
positive square roots, then A is positive definite. Thus, to find out if a matrix A is
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positive definite, we merely try to compute its Cholesky factorization using any of the
methods given above.

The situation in the context of roundoff error is more interesting. The numerical
stability of the Cholesky algorithm roughly follows from the inequality

g2
ij ≤

i∑
k=1

g2
ik = aii.

This shows that the entries in the Cholesky triangle are nicely bounded. The same
conclusion can be reached from the equation ‖ G ‖2

2 = ‖ A ‖2.
The roundoff errors associated with the Cholesky factorization have been exten-

sively studied in a classical paper by Wilkinson (1968). Using the results in this paper,
it can be shown that if x̂ is the computed solution to Ax = b, obtained via the Cholesky
process, then x̂ solves the perturbed system

(A + E)x̂ = b ‖ E ‖2 ≤ cnu‖ A ‖2,

where cn is a small constant that depends upon n. Moreover, Wilkinson shows that if
qnuκ2(A) ≤ 1 where qn is another small constant, then the Cholesky process runs to
completion, i.e., no square roots of negative numbers arise.

It is important to remember that symmetric positive definite linear systems can
be ill-conditioned. Indeed, the eigenvalues and singular values of a symmetric positive
definite matrix are the same. This follows from (2.4.1) and Theorem 4.2.3. Thus,

κ2(A) =
λmax(A)
λmin(A)

.

The eigenvalue λmin(A) is the “distance to trouble” in the Cholesky setting. This
prompts us to consider a permutation strategy that steers us away from using small
diagonal elements that jeopardize the factorization process.

4.2.7 The LDLT Factorization with Symmetric Pivoting

With an eye towards handling ill-conditioned symmetric positive definite systems, we
return to the LDLT factorization and develop an outer product implementation with
pivoting. We first observe that if A is symmetric and P1 is a permutation, then P1A is
not symmetric. On the other hand, P1APT

1 is symmetric suggesting that we consider
the following factorization:

P1APT
1 =

[
α vT

v B

]
=

[
1 0

v/α In−1

][
α 0

0 Ã

][
1 0

v/α In−1

]T

where
Ã = B − 1

α
vvT .

Note that with this kind of symmetric pivoting, the new (1,1) entry α is some diagonal
entry aii. Our plan is to choose P1 so that α is the largest of A’s diagonal entries. If
we apply the same strategy recursively to Ã and compute

P̃ ÃP̃T = L̃D̃L̃T ,
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then we emerge with the factorization

PAPT = LDLT (4.2.10)

where

P =

[
1 0

0 P̃

]
P1, L =

[
1 0

v/α L̃

]
, D =

[
α 0

0 D̃

]
.

By virtue of this pivot strategy,

d1 ≥ d2 ≥ · · · ≥ dn > 0.

Here is a nonrecursive implementation of the overall algorithm:

Algorithm 4.2.2 (Outer Product LDLT with Pivoting) Given a symmetric positive
semidefinite A ∈ IRn×n, the following algorithm computes a permutation P , a unit
lower triangular L, and a diagonal matrix D = diag(d1, . . . , dn) so PAPT = LDLT

with d1 ≥ d2 ≥ · · · ≥ dn > 0. The matrix element aij is overwritten by di if i = j
and by �ij if i > j. P = P1 · · ·Pn where Pk is the identity with rows k and piv(k)
interchanged.

for k = 1:n

piv(k) = j where ajj = max{akk, . . . , ann}
A(k, :) ↔ A(j, :)

A(:, k) ↔ A(:, j)

α = A(k, k)

v = A(k + 1:n, k)

A(k + 1:n, k) = v/α

A(k + 1:n, k + 1:n) = A(k + 1:n, k + 1:n) − vvT /α
end

If symmetry is exploited in the outer product update, then n3/3 flops are required. To
solve Ax = b given PAPT = LDLT , we proceed as follows:

Lw = Pb, Dy = w, LT z = y, x = PT z.

We mention that Algorithm 4.2.2 can be implemented in a way that only references
the lower trianglar part of A.

It is reasonable to ask why we even bother with the LDLT factorization given that
it appears to offer no real advantage over the Cholesky factorization. There are two
reasons. First, it is more efficient in narrow band situations because it avoids square
roots; see §4.3.6. Second, it is a graceful way to introduce factorizations of the form

PAPT =
(

lower
triangular

)
×

(
simple
matrix

)
×

(
lower

triangular

)T

,

where P is a permutation arising from a symmetry-exploiting pivot strategy. The
symmetric indefinite factorizations that we develop in §4.4 fall under this heading as
does the “rank revealing” factorization that we are about to discuss for semidefinite
problems.
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4.2.8 The Symmetric Semidefinite Case

A symmetric matrix A ∈ IRn×n is positive semidefinite if

xT Ax ≥ 0

for every x ∈ IRn. It is easy to show that if A ∈ IRn×n is symmetric and positive
semidefinite, then its eigenvalues satisfy

0 = λn(A) = · · · = λr+1(A) < λr(A) ≤ · · · ≤ λ1(A) (4.2.11)

where r is the rank of A. Our goal is to show that Algorithm 4.2.2 can be used to
estimate r and produce a streamlined version of (4.2.10). But first we establish some
useful properties.

Theorem 4.2.8. If A ∈ IRn×n is symmetric positive semidefinite, then

|aij | ≤ (aii + ajj)/2, (4.2.12)

|aij | ≤
√

aiiajj , (i 
= j), (4.2.13)

max |aij | = max aii, (4.2.14)

aii = 0 ⇒ A(i, :) = 0, A(:, i) = 0. (4.2.15)

Proof. Let ei denote the ith column of In. Since

x = ei + ej ⇒ 0 ≤ xT Ax = aii + 2aij + ajj ,

x = ei − ej ⇒ 0 ≤ xT Ax = aii − 2aij + ajj ,

it follows that

−2aij ≤ aii + ajj ,

2aij ≤ aii + ajj .

These two equations confirm (4.2.12), which in turn implies (4.2.14).
To prove (4.2.13), set x = τei + ej where τ ∈ IR. It follows that

0 < xT Ax = aiiτ
2 + 2aijτ + ajj

must hold for all τ . This is a quadratic equation in τ and for the inequality to hold,
the discriminant 4a2

ij − 4aiiajj must be negative, i.e., |aij | ≤ √
aiiajj . The implication

in (4.2.15) follows immediately from (4.2.13).

Let us examine what happens when Algorithm 4.2.2 is applied to a rank-r positive
semidefinite matrix. If k ≤ r, then after k steps we have the factorization

P̃AP̃T =

[
L11 0

L21 In−k

][
Dk 0

0 Ak

][
LT

11 LT
21

0 In−k

]
(4.2.16)
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where Dk = diag(d1, . . . , dk) ∈ IRk×k and d1 ≥ · · · ≥ dk ≥ 0. By virtue of the pivot
strategy, if dk = 0, then Ak has a zero diagonal. Since Ak is positive semidefinite, it
follows from (4.2.15) that Ak = 0. This contradicts the assumption that A has rank r
unless k = r. Thus, if k ≤ r, then dk > 0. Moreover, we must have Ar = 0 since A has
the same rank as diag(Dr, Ar). It follows from (4.2.16) that

PAPT =

[
L11

L21

]
Dr

[
LT

11 LT
21

]
(4.2.17)

where Dr = diag(d1, . . . , dr) has positive diagonal entries, L11 ∈ IRr×r is unit lower
triangular, and L21 ∈ IR(n−r)×r. If �j is the jth column of the L-matrix, then we can
rewrite (4.2.17) as a sum of rank-1 matrices:

PAPT =
r∑

j=1

dj �j�
T
j .

This can be regarded as a relatively cheap alternative to the SVD rank-1 expansion.
It is important to note that our entire semidefinite discussion has been an exact

arithmetic discussion. In practice, a threshold tolerance for small diagonal entries
has to be built into Algorithm 4.2.2. If the diagonal of the computed Ak in (4.2.16)
is sufficiently small, then the loop can be terminated and r̃ can be regarded as the
numerical rank of A. For more details, see Higham (1989).

4.2.9 Block Cholesky

Just as there are block methods for computing the LU factorization, so are there are
block methods for computing the Cholesky factorization. Paralleling the derivation of
the block LU algorithm in §3.2.11, we start by blocking A = GGT as follows[

A11 AT
21

A21 A22

]
=

[
G11 0

G21 G22

][
G11 0

G21 G22

]T

. (4.2.18)

Here, A11 ∈ IRr×r, A22 ∈ IR(n−r)×(n−r), r is a blocking parameter, and G is partitioned
conformably. Comparing blocks in (4.2.18) we conclude that

A11 = G11G
T
11,

A21 = G21G
T
11,

A22 = G21G
T
21 + G22G

T
22,

which suggests the following 3-step procedure:

Step 1: Compute the Cholesky factorization of A11 to get G11.

Step 2: Solve a lower triangular multiple-right-hand-side system for G21.

Step 3: Compute the Cholesky factor G22 of A22 −G21G
T
21 = A22 −A21A

−1
11 AT

21.

In recursive form we obtain the following algorithm.
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Algorithm 4.2.3 (Recursive Block Cholesky) Suppose A ∈ IRn×n is symmetric pos-
itive definite and r is a positive integer. The following algorithm computes a lower
triangular G ∈ IRn×n so A = GGT .

function G = BlockCholesky(A, n, r)

if n ≤ r
Compute the Cholesky factorization A = GGT .

else
Compute the Cholesky factorization A(1:r, 1:r) = G11G

T
11.

Solve G21G
T
11 = A(r + 1:n, 1:r) for G21.

Ã = A(r + 1:n, r + 1:n) − G21G
T
21

G22 = BlockCholesky(Ã, n − r, r)

G =

[
G11 0

G21 G22

]
end

end

If symmetry is exploited in the computation of Ã, then this algorithm requires n3/3
flops. A careful accounting of flops reveals that the level-3 fraction is about 1 − 1/N2

where N ≈ n/r. The “small” Cholesky computation for G11 and the “thin” solution
process for G21 are dominated by the “large” level-3 update for Ã.

To develop a nonrecursive implementation, we assume for clarity that n = Nr
where N is a positive integer and consider the partitioning

⎡⎢⎢⎣
A11 · · · A1N

...
. . .

...

AN1 · · · ANN

⎤⎥⎥⎦ =

⎡⎢⎢⎣
G11 · · · 0

...
. . .

...

GN1 · · · GNN

⎤⎥⎥⎦
⎡⎢⎢⎣

G11 · · · 0
...

. . .
...

GN1 · · · GNN

⎤⎥⎥⎦
T

(4.2.19)

where all blocks are r-by-r. By equating (i, j) blocks with i ≥ j it follows that

Aij =
j∑

k=1

GikGT
jk.

Define

S = Aij −
j−1∑
k=1

GikGT
jk = Aij − [ Gi1 | · · · | Gi,j−1 ]

⎡⎢⎣ GT
j1
...

GT
j,j−1

⎤⎥⎦ .

If i = j, then Gjj is the Cholesky factor of S. If i > j, then GijG
T
jj = S and Gij is the

solution to a triangular multiple right hand side problem. Properly sequenced, these
equations can be arranged to compute all the G-blocks.
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Algorithm 4.2.4 (Nonrecursive Block Cholesky) Given a symmetric positive definite
A ∈ IRn×n with n = Nr with blocking (4.2.19), the following algorithm computes a
lower triangular G ∈ IRn×n such that A = GGT . The lower triangular part of A is
overwritten by the lower triangular part of G.

for j = 1:N
for i = j:N

Compute S = Aij −
j−1∑
k=1

GikGT
jk.

if i = j
Compute Cholesky factorization S = GjjG

T
jj .

else
Solve GijG

T
jj = S for Gij .

end
Aij = Gij .

end
end

The overall process involves n3/3 flops like the other Cholesky procedures that we have
developed. The algorithm is rich in matrix multiplication with a level-3 fraction given
by 1 − (1/N2). The algorithm can be easily modified to handle the case when r does
not divide n.

4.2.10 Recursive Blocking

It is instructive to look a little more deeply into the implementation of a block Cholesky
factorization as it is an occasion to stress the importance of designing data structures
that are tailored to the problem at hand. High-performance matrix computations
are filled with tensions and tradeoffs. For example, a successful pivot strategy might
balance concerns about stability and memory traffic. Another tension is between per-
formance and memory constraints. As an example of this, we consider how to achieve
level-3 performance in a Cholesky implementation given that the matrix is represented
in packed format. This data structure houses the lower (or upper) triangular portion
of a matrix A ∈ IRn×n in a vector of length N = n(n + 1)/2. The symvec arrangement
stacks the lower triangular subcolumns, e.g.,

symvec(A) = [ a11 a21 a31 a41 a22 a32 a42 a33 a43 a44 ]T . (4.2.20)

This layout is not very friendly when it comes to block Cholesky calculations because
the assembly of an A-block (say A(i1:i2, j1:j2)) involves irregular memory access pat-
terns. To realize a high-performance matrix multiplication it is usually necessary to
have the matrices laid out conventionally as full rectangular arrays that are contiguous
in memory, e.g.,

vec(A) = [ a11 a21 a31 a41 a12 a22 a32 a42 a13 a23 a33 a43 a14 a24 a34 a44 ]T . (4.2.21)

(Recall that we introduced the vec operation in §1.3.7.) Thus, the challenge is to de-
velop a high performance block algorithm that overwrites a symmetric positive definite
A in packed format with its Cholesky factor G in packed format. Toward that end, we
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present the main ideas behind a recursive data structure that supports level-3 compu-
tation and is storage efficient. As memory hierarchies get deeper and more complex,
recursive data structures are an interesting way to address the problem of blocking for
performance.

The starting point is once again a 2-by-2 blocking of the equation A = GGT :

[
A11 A12

A21 A22

]
=

[
G11 0

G21 G22

][
G11 0

G21 G22

]T

.

However, unlike in (4.2.18) where A11 has a chosen block size, we now assume that
A11 ∈ IRm×m where m = ceil(n/2). In other words, the four blocks are roughly the
same size. As before, we equate entries and identify the key subcomputations:

G11G
T
11 = A11 half-sized Cholesky.

G21G
T
11 = A21 multiple-right-hand-side triangular solve.

Ã22 = A22 − G21G
T
21 symmetric matrix multiplication update.

G22G
T
22 = Ã22 half-sized Cholesky.

Our goal is to develop a symmetry-exploiting, level-3-rich procedure that overwrites
A with its Cholesky factor G. To do this we introduce the mixed packed format. An
n = 9 example with A11 ∈ IR5×5 serves to distinguish this layout from the conventional
packed format layout:

1
2 10
3 11 18
4 12 19 25
5 13 20 26 31
6 14 21 27 32 36
7 15 22 28 33 37 40
8 16 23 29 34 38 41 43
9 17 24 30 35 39 42 44 45

1
2 6
3 7t 10
4 8 11 13
5 9 12 14 15
16 20 24 28 32 36
17 21 25 29 33 37 40
18 22 26 30 34 38 41 43
19 23 27 31 35 39 42 44 45

Packed format Mixed packed format

Notice how the entries from A11 and A21 are shuffled with the conventional packed
format layout. On the other hand, with the mixed packed format layout, the 15 entries
that define A11 are followed by the 20 numbers that define A21 which in turn are
followed by the 10 numbers that define A22. The process can be repeated on A11 and
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A22:
1
2 4
3 5 6
7 9 11 13
8 10 12 14 15

16 20 24 28 32 36
17 21 25 29 33 37 38
18 22 26 30 34 39 41 43
19 23 27 31 35 40 42 44 45

Thus, the key to this recursively defined data layout is the idea of representing square
diagonal blocks in a mixed packed format. To be precise, recall the definition of vec
and symvec in (4.2.20) and (4.2.21). If C ∈ IRq×q is such a block, then

mixvec(C) =

⎡⎢⎣ symvec(C11)

vec(C21)

symvec(C22)

⎤⎥⎦ (4.2.22)

where m = ceil(q/2), C11 = C(1:m, 1:m), C22 = C(m + 1:n, m + 1:n), and C21 =
C(m + 1:n, 1:m). Notice that since C21 is conventionally stored, it is ready to be
engaged in a high-performance matrix multiplication.

We now outline a recursive, divide-and-conquer block Cholesky procedure that
works with A in packed format. To achieve high performance the incoming A is con-
verted to mixed format at each level of the recursion. Assuming the existence of a
triangular system solve procedure TriSol (for the system G21G

T
11 = A21) and a sym-

metric update procedure SymUpdate (for A22 ← A22 − G21G
T
21) we have the following

framework:

function G = PackedBlockCholesky(A)

{A and G in packed format}
n = size(A)

if n ≤ nmin

G is obtained via any level-2, packed-format Cholesky method .
else

Set m = ceil(n/2) and overwrite A’s packed-format representation
with its mixed-format representation.

G11 = PackedBlockCholesky(A11)

G21 = TriSol(G11, A21)

A22 = SymUpdate(A22, G21)

G22 = PackedBlockCholesky(A22)
end
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Here, nmin is a threshold dimension below which it is not possible to achieve level-
3 performance. To take full advantage of the mixed format, the procedures TriSol
and SymUpdate require a recursive design based on blockings that halve problem size.
For example, TriSol should take the incoming packed format A11, convert it to mixed
format, and solve a 2-by-2 blocked system of the form

[
X1 X2

] [ L11 0

L21 L22

]T

=
[

B1 B2

]
.

This sets up a recursive solution based on the half-sized problems

X1L
T
11 = B1,

X2L
T
22 = B2 − X1L

T
21.

Likewise, SymUpdate should take the incoming packed format A22, convert it to mixed
format, and block the required update as follows:[

C11 CT
21

C21 C22

]
=

[
C11 CT

21

C21 C22

]
−

[
Y1

Y2

][
Y1

Y2

]T

.

The evaluation is recursive and based on the half-sized updates

C11 = C11 − Y1Y
T
1 ,

C21 = C21 − Y2Y
T
1 ,

C22 = C22 − Y2Y
T
2 .

Of course, if the incoming matrices are small enough relative to nmin, then TriSol and
SymUpdate carry out their tasks conventionally without any further subdivisions.

Overall, it can be shown that PackedBlockCholesky has a level-3 fraction approx-
imately equal to 1 − O(nmin/n).

Problems

P4.2.1 Suppose that H = A + iB is Hermitian and positive definite with A, B ∈ IRn×n. This means
that xHHx > 0 whenever x = 0. (a) Show that

C =

[
A −B

B A

]
is symmetric and positive definite. (b) Formulate an algorithm for solving (A+ iB)(x+ iy) = (b+ ic),
where b, c, x, and y are in IRn. It should involve 8n3/3 flops. How much storage is required?

P4.2.2 Suppose A ∈ IRn×n is symmetric and positive definite. Give an algorithm for computing an
upper triangular matrix R ∈ IRn×n such that A = RRT .

P4.2.3 Let A ∈ IRn×n be positive definite and set T = (A + AT )/2 and S = (A − AT )/2. (a) Show
that ‖A−1 ‖2 ≤ ‖ T−1 ‖2 and xT A−1x ≤ xT T−1x for all x ∈ IRn. (b) Show that if A = LDMT , then
dk ≥ 1/‖ T−1 ‖2 for k = 1:n.

P4.2.4 Find a 2-by-2 real matrix A with the property that xT Ax > 0 for all real nonzero 2-vectors
but which is not positive definite when regarded as a member of C2×2.

P4.2.5 Suppose A ∈ IRn×n has a positive diagonal. Show that if both A and AT are strictly diagonally
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dominant, then A is positive definite.

P4.2.6 Show that the function f(x) =
√

xT Ax/2 is a vector norm on IRn if and only if A is positive
definite.

P4.2.7 Modify Algorithm 4.2.1 so that if the square root of a negative number is encountered, then
the algorithm finds a unit vector x so that xT Ax < 0 and terminates.

P4.2.8 Develop an outer product implementation of Algorithm 4.2.1 and a gaxpy implementation of
Algorithm 4.2.2.

P4.2.9 Assume that A ∈ Cn×n is Hermitian and positive definite. Show that if a11 = · · · = ann = 1
and |aij | < 1 for all i = j, then diag(A−1) ≥ diag((Re(A))−1).

P4.2.10 Suppose A = I+uuT where A ∈ IRn×n and ‖ u ‖2 = 1. Give explicit formulae for the diagonal
and subdiagonal of A’s Cholesky factor.

P4.2.11 Suppose A ∈ IRn×n is symmetric positive definite and that its Cholesky factor is available.
Let ek = In(:, k). For 1 ≤ i < j ≤ n, let αij be the smallest real that makes A + α(eie

T
j + ejeT

i )
singular. Likewise, let αii be the smallest real that makes (A+αeie

T
i ) singular. Show how to compute

these quantities using the Sherman-Morrison-Woodbury formula. How many flops are required to find
all the αij?

P4.2.12 Show that if

M =

[
A B

BT C

]
is symmetric positive definite and A and C are square, then

M−1 =

[
A−1 + A−1BS−1BT A−1 −A−1BS−1

S−1BT A−1 S−1

]
, S = C −BT A−1B.

P4.2.13 Suppose σ ∈ IR and u ∈ IRn. Under what conditions can we find a matrix X ∈ IRn×n so that
X(I + σuuT )X = In? Give an efficient algorithm for computing X if it exists.

P4.2.14 Suppose D = diag(d1, . . . , dn) with di > 0 for all i. Give an efficient algorithm for computing
the largest entry in the matrix (D + CCT )−1 where C ∈ IRn×r. Hint: Use the Sherman-Morrison-
Woodbury formula.

P4.2.15 Suppose A(λ) has continuously differentiable entries and is always symmetric and positive
definite. If f(λ) = log(det(A(λ))), then how would you compute f ′(0)?
P4.2.16 Suppose A ∈ IRn×n is a rank-r symmetric positive semidefinite matrix. Assume that it costs
one dollar to evaluate each aij . Show how to compute the factorization (4.2.17) spending only O(nr)
dollars on aij evaluation.

P4.2.17 The point of this problem is to show that from the complexity point of view, if you have a
fast matrix multiplication algorithm, then you have an equally fast matrix inversion algorithm, and
vice versa. (a) Suppose Fn is the number of flops required by some method to form the inverse of an
n-by-n matrix. Assume that there exists a constant c1 and a real number α such that Fn ≤ c1nα for
all n. Show that there is a method that can compute the n-by-n matrix product AB with fewer than
c2nα flops where c2 is a constant independent of n. Hint: Consider the inverse of

C =

[
In A 0
0 In B
0 0 In

]
.

(b) Let Gn be the number of flops required by some method to form the n-by-n matrix product AB.
Assume that there exists a constant c1 and a real number α such that Gn ≤ c1nα for all n. Show that
there is a method that can invert a nonsingular n-by-n matrix A with fewer than c2nα flops where c2
is a constant. Hint: First show that the result applies for triangular matrices by applying recursion to[

G11 0

G21 G22

]−1

=

[
G−1

11 0

−G−1
22 G21G−1

11 G−1
22

]
.

Then observe that for general A, A−1 = AT (AAT )−1 = AT G−T G−1 where AAT = GGT is the
Cholesky factorization.
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4.3 Banded Systems
In many applications that involve linear systems, the matrix of coefficients is banded.
This is the case whenever the equations can be ordered so that each unknown xi appears
in only a few equations in a “neighborhood”of the ith equation. Recall from §1.2.1 that
A = (aij) has upper bandwidth q if aij = 0 whenever j > i + q and lower bandwidth p if
aij = 0 whenever i > j+p. Substantial economies can be realized when solving banded
systems because the triangular factors in LU, GGT , and LDLT are also banded.

4.3.1 Band LU Factorization

Our first result shows that if A is banded and A = LU , then L inherits the lower
bandwidth of A and U inherits the upper bandwidth of A.
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Theorem 4.3.1. Suppose A ∈ IRn×n has an LU factorization A = LU . If A has upper
bandwidth q and lower bandwidth p, then U has upper bandwidth q and L has lower
bandwidth p.

Proof. The proof is by induction on n. Since

A =

[
α wT

v B

]
=

[
1 0

v/α In−1

][
1 0

0 B − vwT /α

][
α wT

0 In−1

]
.

It is clear that B−vwT /α has upper bandwidth q and lower bandwidth p because only
the first q components of w and the first p components of v are nonzero. Let L1U1 be
the LU factorization of this matrix. Using the induction hypothesis and the sparsity
of w and v, it follows that

L =

[
1 0

v/α L1

]
, U =

[
α wT

0 U1

]

have the desired bandwidth properties and satisfy A = LU.

The specialization of Gaussian elimination to banded matrices having an LU factoriza-
tion is straightforward.

Algorithm 4.3.1 (Band Gaussian Elimination) Given A ∈ IRn×n with upper band-
width q and lower bandwidth p, the following algorithm computes the factorization
A = LU , assuming it exists. A(i, j) is overwritten by L(i, j) if i > j and by U(i, j)
otherwise.

for k = 1:n − 1

for i = k + 1:min{k + p, n}
A(i, k) = A(i, k)/A(k, k)

end

for j = k + 1:min{k + q, n}
for i = k + 1:min{k + p, n}

A(i, j) = A(i, j) − A(i, k)·A(k, j)
end

end
end

If n  p and n  q, then this algorithm involves about 2npq flops. Effective imple-
mentations would involve band matrix data structures; see §1.2.5. A band version of
Algorithm 4.1.1 (LDLT) is similar and we leave the details to the reader.

4.3.2 Band Triangular System Solving

Banded triangular system solving is also fast. Here are the banded analogues of Algo-
rithms 3.1.3 and 3.1.4:
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Algorithm 4.3.2 (Band Forward Substitution) Let L ∈ IRn×n be a unit lower triangu-
lar matrix with lower bandwidth p. Given b ∈ IRn, the following algorithm overwrites
b with the solution to Lx = b.

for j = 1:n

for i = j + 1:min{j + p, n}
b(i) = b(i) − L(i, j)·b(j)

end
end

If n  p, then this algorithm requires about 2np flops.

Algorithm 4.3.3 (Band Back Substitution) Let U ∈ IRn×n be a nonsingular upper
triangular matrix with upper bandwidth q. Given b ∈ IRn, the following algorithm
overwrites b with the solution to Ux = b.

for j = n: − 1:1

b(j) = b(j)/U(j, j)

for i = max{1, j − q}:j − 1

b(i) = b(i) − U(i, j)·b(j)
end

end

If n  q, then this algorithm requires about 2nq flops.

4.3.3 Band Gaussian Elimination with Pivoting

Gaussian elimination with partial pivoting can also be specialized to exploit band
structure in A. However, if PA = LU , then the band properties of L and U are not quite
so simple. For example, if A is tridiagonal and the first two rows are interchanged at the
very first step of the algorithm, then u13 is nonzero. Consequently, row interchanges
expand bandwidth. Precisely how the band enlarges is the subject of the following
theorem.

Theorem 4.3.2. Suppose A ∈ IRn×n is nonsingular and has upper and lower band-
widths q and p, respectively. If Gaussian elimination with partial pivoting is used to
compute Gauss transformations

Mj = I − α(j)eT
j j = 1:n − 1

and permutations P1, . . . , Pn−1 such that Mn−1Pn−1 · · ·M1P1A = U is upper triangu-
lar, then U has upper bandwidth p + q and α

(j)
i = 0 whenever i ≤ j or i > j + p.

Proof. Let PA = LU be the factorization computed by Gaussian elimination with
partial pivoting and recall that P = Pn−1 · · ·P1. Write PT = [ es1 | · · · | esn

] , where
{s1, ..., sn} is a permutation of {1, 2, ..., n}. If si > i+p then it follows that the leading
i-by-i principal submatrix of PA is singular, since [PA]ij = asi,j for j = 1:si − p − 1
and si − p − 1 ≥ i. This implies that U and A are singular, a contradiction. Thus,
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si ≤ i + p for i = 1:n and therefore, PA has upper bandwidth p + q. It follows from
Theorem 4.3.1 that U has upper bandwidth p + q. The assertion about the α(j) can
be verified by observing that Mj need only zero elements (j +1, j), . . . , (j + p, j) of the
partially reduced matrix PjMj−1Pj−1 · · ·1 P1A.

Thus, pivoting destroys band structure in the sense that U becomes “wider” than A’s
upper triangle, while nothing at all can be said about the bandwidth of L. However,
since the jth column of L is a permutation of the jth Gauss vector αj , it follows that
L has at most p + 1 nonzero elements per column.

4.3.4 Hessenberg LU

As an example of an unsymmetric band matrix computation, we show how Gaussian
elimination with partial pivoting can be applied to factor an upper Hessenberg matrix
H. (Recall that if H is upper Hessenberg then hij = 0, i > j + 1.) After k − 1 steps
of Gaussian elimination with partial pivoting we are left with an upper Hessenberg
matrix of the form ⎡⎢⎢⎢⎢⎣

× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 0 × ×

⎤⎥⎥⎥⎥⎦ , k = 3, n = 5.

By virtue of the special structure of this matrix, we see that the next permutation, P3,
is either the identity or the identity with rows 3 and 4 interchanged. Moreover, the
next Gauss transformation Mk has a single nonzero multiplier in the (k+1, k) position.
This illustrates the kth step of the following algorithm.

Algorithm 4.3.4 (Hessenberg LU) Given an upper Hessenberg matrix H ∈ IRn×n, the
following algorithm computes the upper triangular matrix Mn−1Pn−1 · · ·M1P1H = U
where each Pk is a permutation and each Mk is a Gauss transformation whose entries
are bounded by unity. H(i, k) is overwritten with U(i, k) if i ≤ k and by −[Mk]k+1,k

if i = k + 1. An integer vector piv(1:n − 1) encodes the permutations. If Pk = I, then
piv(k) = 0. If Pk interchanges rows k and k + 1, then piv(k) = 1.

for k = 1:n − 1

if |H(k, k)| < |H(k + 1, k)|
piv(k) = 1; H(k, k:n) ↔ H(k + 1, k:n)

else
piv(k) = 0

end
if H(k, k) 
= 0

τ = H(k + 1, k)/H(k, k)

H(k + 1, k + 1:n) = H(k + 1, k + 1:n) − τ ·H(k, k + 1:n)

H(k + 1, k) = τ
end

end

This algorithm requires n2 flops.
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4.3.5 Band Cholesky

The rest of this section is devoted to banded Ax = b problems where the matrix A is
also symmetric positive definite. The fact that pivoting is unnecessary for such matrices
leads to some very compact, elegant algorithms. In particular, it follows from Theorem
4.3.1 that if A = GGT is the Cholesky factorization of A, then G has the same lower
bandwidth as A. This leads to the following banded version of Algorithm 4.2.1.

Algorithm 4.3.5 (Band Cholesky) Given a symmetric positive definite A ∈ IRn×n

with bandwidth p, the following algorithm computes a lower triangular matrix G with
lower bandwidth p such that A = GGT . For all i ≥ j, G(i, j) overwrites A(i, j).

for j = 1:n

for k = max(1, j − p):j − 1

λ = min(k + p, n)

A(j:λ, j) = A(j:λ, j) − A(j, k)·A(j:λ, k)
end

λ = min(j + p, n)

A(j:λ, j) = A(j:λ, j)/
√

A(j, j)
end

If n  p, then this algorithm requires about n(p2 + 3p) flops and n square roots. Of
course, in a serious implementation an appropriate data structure for A should be used.
For example, if we just store the nonzero lower triangular part, then a (p + 1)-by-n
array would suffice.

If our band Cholesky procedure is coupled with appropriate band triangular solve
routines, then approximately np2 + 7np + 2n flops and n square roots are required to
solve Ax = b. For small p it follows that the square roots represent a significant portion
of the computation and it is preferable to use the LDLT approach. Indeed, a careful
flop count of the steps A = LDLT , Ly = b, Dz = y, and LT x = z reveals that
np2 + 8np + n flops and no square roots are needed.

4.3.6 Tridiagonal System Solving

As a sample narrow band LDLT solution procedure, we look at the case of symmetric
positive definite tridiagonal systems. Setting

L =

⎡⎢⎢⎢⎢⎣
1 0 · · · 0

�1 1
...

...
. . . . . . 0

0 · · · �n−1 1

⎤⎥⎥⎥⎥⎦
and D = diag(d1, . . . , dn), we deduce from the equation A = LDLT that

a11 = d1,

ak,k−1 = �k−1dk−1, k = 2:n,

akk = dk + �2k−1dk−1 = dk + �k−1ak,k−1, k = 2:n.
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Thus, the di and �i can be resolved as follows:

d1 = a11

for k = 2:n

�k−1 = ak,k−1/dk−1

dk = akk − �k−1ak,k−1
end

To obtain the solution to Ax = b we solve Ly = b, Dz = y, and LT x = z. With
overwriting we obtain

Algorithm 4.3.6 (Symmetric, Tridiagonal, Positive Definite System Solver) Given
an n-by-n symmetric, tridiagonal, positive definite matrix A and b ∈ IRn, the following
algorithm overwrites b with the solution to Ax = b. It is assumed that the diagonal of
A is stored in α(1:n) and the superdiagonal in β(1:n − 1).

for k = 2:n

t = β(k − 1), β(k − 1) = t/α(k − 1), α(k) = α(k) − t·β(k − 1)
end

for k = 2:n

b(k) = b(k) − β(k − 1)·β(k − 1)
end
b(n) = b(n)/α(n)

for k = n − 1: − 1:1

b(k) = b(k)/α(k) − β(k)·b(k + 1)
end

This algorithm requires 8n flops.

4.3.7 Vectorization Issues

The tridiagonal example brings up a sore point: narrow band problems and vectoriza-
tion do not mix. However, it is sometimes the case that large, independent sets of such
problems must be solved at the same time. Let us examine how such a computation
could be arranged in light of the issues raised in §1.5. For simplicity, assume that we
must solve the n-by-n unit lower bidiagonal systems

A(k)x(k) = b(k), k = 1:m,

and that m  n. Suppose we have arrays E(1:n − 1, 1:m) and B(1:n, 1:m) with the
property that E(1:n − 1, k) houses the subdiagonal of A(k) and B(1:n, k) houses the
kth right-hand side b(k) . We can overwrite b(k) with the solution x(k) as follows:

for k = 1:m
for i = 2:n

B(i, k) = B(i, k) − E(i − 1, k)·B(i − 1, k)
end

end
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This algorithm sequentially solves each bidiagonal system in turn. Note that the inner
loop does not vectorize because of the dependence of B(i, k) on B(i − 1, k). However,
if we interchange the order of the two loops, then the calculation does vectorize:

for i = 2:n
B(i, :) = B(i, : ) − E(i − 1, : ) . ∗ B(i − 1, : )

end

A column-oriented version can be obtained simply by storing the matrix subdiagonals
by row in E and the right-hand sides by row in B:

for i = 2:n
B( : , i) = B( : , i) − E( : , i − 1) . ∗ B( : , i − 1)

end

Upon completion, the transpose of solution x(k) is housed on B(k, : ).

4.3.8 The Inverse of a Band Matrix

In general, the inverse of a nonsingular band matrix A is full. However, the off-diagonal
blocks of A−1 have low rank.

Theorem 4.3.3. Suppose

A =

[
A11 A12

A21 A22

]
is nonsingular and has lower bandwidth p and upper bandwidth q. Assume that the
diagonal blocks are square. If

A−1 = X =

[
X11 X12

X21 X22

]

is partitioned conformably, then

rank(X21) ≤ p, (4.3.1)

rank(X12) ≤ q. (4.3.2)

Proof. Assume that A11 and A22 are nonsingular. From the equation AX = I we
conclude that

A21X11 + A22X21 = 0,

A11X12 + A12X22 = 0,

and so

rank(X21) = rank(A−1
22 A21X11) ≤ rank(A21)

rank(X12) = rank(A−1
11 A12X22) ≤ rank(A12).
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From the bandedness assumptions it follows that A21 has at most p nonzero rows and
A12 has at most q nonzero rows. Thus, rank(A21) ≤ p and rank(A12) ≤ q which proves
the theorem for the case when both A11 and A22 are nonsingular. A simple limit
argument can be used to handle the situation when A11 and/or A22 are singular. See
P4.3.11.

It can actually be shown that rank(A21) = rank(X21) and rank(A12) = rank(X12). See
Strang and Nguyen (2004). As we will see in §11.5.9 and §12.2, the low-rank, off-
diagonal structure identified by the theorem has important algorithmic ramifications.

4.3.9 Band Matrices with Banded Inverse

If A ∈ IRn×n is a product
A = F1 · · ·FN (4.3.3)

and each Fi ∈ IRn×n is block diagonal with 1-by-1 and 2-by-2 diagonal blocks, then it
follows that both A and

A−1 = F−1
N · · ·F−1

1

are banded, assuming that N is not too big. For example, if

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0 0 0
0 × × 0 0 0 0 0 0
0 × × 0 0 0 0 0 0
0 0 0 × × 0 0 0 0
0 0 0 × × 0 0 0 0
0 0 0 0 0 × × 0 0
0 0 0 0 0 × × 0 0
0 0 0 0 0 0 0 × ×
0 0 0 0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0 0 0 0 0 0 0
× × 0 0 0 0 0 0 0
0 0 × × 0 0 0 0 0
0 0 × × 0 0 0 0 0
0 0 0 0 × × 0 0 0
0 0 0 0 × × 0 0 0
0 0 0 0 0 0 × × 0
0 0 0 0 0 0 × × 0
0 0 0 0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
then

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0 0 0 0 0 0 0
× × × × 0 0 0 0 0
× × × × 0 0 0 0 0
0 0 × × × × 0 0 0
0 0 × × × × 0 0 0
0 0 0 0 × × × × 0
0 0 0 0 × × × × 0
0 0 0 0 0 0 × × ×
0 0 0 0 0 0 × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × 0 0 0 0 0 0
× × × 0 0 0 0 0 0
0 × × × × 0 0 0 0
0 × × × × 0 0 0 0
0 0 0 × × × × 0 0
0 0 0 × × × × 0 0
0 0 0 0 0 × × × ×
0 0 0 0 0 × × × ×
0 0 0 0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Strang (2010a, 2010b) has pointed out a very important “reverse” fact. If A and A−1

are banded, then there is a factorization of the form (4.3.3) with relatively small N .
Indeed, he shows that N is very small for certain types of matrices that arise in signal
processing. An important consequence of this is that both the forward transform Ax
and the inverse transform A−1x can be computed very fast.
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Problems

P4.3.1 Develop a version of Algorithm 4.3.1 which assumes that the matrix A is stored in band format
style. (See §1.2.5.)
P4.3.2 Show how the output of Algorithm 4.3.4 can be used to solve the upper Hessenberg system
Hx = b.

P4.3.3 Show how Algorithm 4.3.4 could be used to solve a lower hessenberg system Hx = b.

P4.3.4 Give an algorithm for solving an unsymmetric tridiagonal system Ax = b that uses Gaussian
elimination with partial pivoting. It should require only four n-vectors of floating point storage for
the factorization.

P4.3.5 (a) For C ∈ IRn×n define the profile indices m(C, i) = min{j:cij = 0}, where i = 1:n. Show
that if A = GGT is the Cholesky factorization of A, then m(A, i) = m(G, i) for i = 1:n. (We say
that G has the same profile as A.) (b) Suppose A ∈ IRn×n is symmetric positive definite with profile
indices mi = m(A, i) where i = 1:n. Assume that A is stored in a one-dimensional array v as follows:

v = (a11, a2,m2 , . . . , a22, a3,m3 , . . . , a33, . . . , an,mn , . . . , ann).

Give an algorithm that overwrites v with the corresponding entries of the Cholesky factor G and then
uses this factorization to solve Ax = b. How many flops are required? (c) For C ∈ IRn×n define p(C, i)
= max{j:cij = 0}. Suppose that A ∈ IRn×n has an LU factorization A = LU and that

m(A, 1) ≤ m(A, 2) ≤ · · · ≤ m(A, n),

p(A, 1) ≤ p(A, 2) ≤ · · · ≤ p(A, n).

Show that m(A, i) = m(L, i) and p(A, i) = p(U, i) for i = 1:n.

P4.3.6 Develop a gaxpy version of Algorithm 4.3.1.

P4.3.7 Develop a unit stride, vectorizable algorithm for solving the symmetric positive definite tridi-
agonal systems A(k)x(k) = b(k). Assume that the diagonals, superdiagonals, and right hand sides are
stored by row in arrays D, E, and B and that b(k) is overwritten with x(k).

P4.3.8 Give an example of a 3-by-3 symmetric positive definite matrix whose tridiagonal part is not
positive definite.

P4.3.9 Suppose a symmetric positive definite matrix A ∈ IRn×n has the “arrow structure”, e.g.,

A =

⎡⎢⎢⎣
× × × × ×
× × 0 0 0
× 0 × 0 0
× 0 0 × 0
× 0 0 0 ×

⎤⎥⎥⎦ .

(a) Show how the linear system Ax = b can be solved with O(n) flops using the Sherman-Morrison-
Woodbury formula. (b) Determine a permutation matrix P so that the Cholesky factorization

PAP T = GGT

can be computed with O(n) flops.

P4.3.10 Suppose A ∈ IRn×n is tridiagonal, positive definite, but not symmetric. Give an efficient
algorithm for computing the largest entry of |ST−1S| where S = (A−AT )/2 and T = (A + AT )/2.

P4.3.11 Show that if A ∈ IRn×n and ε > 0, then there is a B ∈ IRn×n such that ‖A−B ‖ ≤ ε and
B has the property that all its principal submatrices are nonsingular. Use this result to formally
complete the proof of Theorem 4.3.3.

P4.3.12 Give an upper bound on the bandwidth of the matrix A in (4.3.3).

P4.3.13 Show that AT and A−1 have the same upper and lower bandwidths in (4.3.3).

P4.3.14 For the A = F1F2 example in §4.3.9, show that A(2:3, :), A(4:5, :), A(6:7, :), . . . each consist
of two singular 2-by-2 blocks.
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4.4 Symmetric Indefinite Systems
Recall that a matrix whose quadratic form xT Ax takes on both positive and negative
values is indefinite. In this section we are concerned with symmetric indefinite lin-
ear systems. The LDLT factorization is not always advisable as the following 2-by-2
example illustrates:[

ε 1
1 0

]
=

[
1 0

1/ε 1

] [
ε 0
0 −1/ε

] [
1 0

1/ε 1

]T

.

Of course, any of the pivot strategies in §3.4 could be invoked. However, they destroy
symmetry and, with it, the chance for a “Cholesky speed” symmetric indefinite system
solver. Symmetric pivoting, i.e., data reshufflings of the form A ← PAPT , must be
used as we discussed in §4.2.8. Unfortunately, symmetric pivoting does not always
stabilize the LDLT computation. If ε1 and ε2 are small, then regardless of P , the
matrix

Ã = P

[
ε1 1
1 ε2

]
PT

has small diagonal entries and large numbers surface in the factorization. With sym-
metric pivoting, the pivots are always selected from the diagonal and trouble results if
these numbers are small relative to what must be zeroed off the diagonal. Thus, LDLT

with symmetric pivoting cannot be recommended as a reliable approach to symmetric
indefinite system solving. It seems that the challenge is to involve the off-diagonal
entries in the pivoting process while at the same time maintaining symmetry.

In this section we discuss two ways to do this. The first method is due to Aasen
(1971) and it computes the factorization

PAPT = LTLT , (4.4.1)

where L = (�ij) is unit lower triangular and T is tridiagonal. P is a permutation
chosen such that |�ij | ≤ 1. In contrast, the diagonal pivoting method due to Bunch
and Parlett (1971) computes a permutation P such that

PAPT = LDLT , (4.4.2)

where D is a direct sum of 1-by-1 and 2-by-2 pivot blocks. Again, P is chosen so that
the entries in the unit lower triangular L satisfy |�ij | ≤ 1. Both factorizations involve
n3/3 flops and once computed, can be used to solve Ax = b with O(n2) work:

PAPT = LTLT , Lz = Pb, Tw = z, LT y = w, x = PT y ⇒ Ax = b,

PAPT = LDLT , Lz = Pb, Dw = z, LT y = w, x = PT y ⇒ Ax = b.

A few comments need to be made about the Tw = z and Dw = z systems that arise
when these methods are invoked.

In Aasen’s method, the symmetric indefinite tridiagonal system Tw = z is solved
in O(n) time using band Gaussian elimination with pivoting. Note that there is no
serious price to pay for the disregard of symmetry at this level since the overall process
is O(n3).
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In the diagonal pivoting approach, the Dw = z system amounts to a set of 1-by-1
and 2-by-2 symmetric indefinite systems. The 2-by-2 problems can be handled via
Gaussian elimination with pivoting. Again, there is no harm in disregarding symmetry
during this O(n) phase of the calculation. Thus, the central issue in this section is the
efficient computation of the factorizations (4.4.1) and (4.4.2).

4.4.1 The Parlett-Reid Algorithm

Parlett and Reid (1970) show how to compute (4.4.1) using Gauss transforms. Their
algorithm is sufficiently illustrated by displaying the k = 2 step for the case n = 5. At
the beginning of this step the matrix A has been transformed to

A(1) = M1P1APT
1 MT

1 =

⎡⎢⎢⎢⎢⎣
α1 β1 0 0 0
β1 α2 v3 v4 v5
0 v3 × × ×
0 v4 × × ×
0 v5 × × ×

⎤⎥⎥⎥⎥⎦ ,

where P1 is a permutation chosen so that the entries in the Gauss transformation M1
are bounded by unity in modulus. Scanning the vector [ v3 v4 v5 ]T for its largest entry,
we now determine a 3-by-3 permutation P̃2 such that

P̃2

⎡⎣ v3
v4
v5

⎤⎦ =

⎡⎣ ṽ3
ṽ4
ṽ5

⎤⎦ ⇒ |ṽ3| = max{|ṽ3|, |ṽ4|, |ṽ5|}.

If this maximal element is zero, we set M2 = P2 = I and proceed to the next step.
Otherwise, we set P2 = diag(I2, P̃2) and M2 = I − α(2)eT

3 with

α(2) =
[

0 0 0 ṽ4/ṽ3 ṽ5/ṽ3
]T

.

Observe that

A(2) = M2P2A
(1)PT

2 MT
2 =

⎡⎢⎢⎢⎢⎣
α1 β1 0 0 0
β1 α2 ṽ3 0 0
0 ṽ3 × × ×
0 0 × × ×
0 0 × × ×

⎤⎥⎥⎥⎥⎦ .

In general, the process continues for n − 2 steps leaving us with a tridiagonal matrix

T = A(n−2) = (Mn−2Pn−2 · · ·M1P1)A(Mn−2Pn−2 · · ·M1P1)T .

It can be shown that (4.4.1) holds with P = Pn−2 · · ·P1 and

L = (Mn−2Pn−2 · · ·M1P1P
T )−1.

Analysis of L reveals that its first column is e1 and that its subdiagonal entries in
column k with k > 1 are “made up” of the multipliers in Mk−1.
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The efficient implementation of the Parlett-Reid method requires care when com-
puting the update

A(k) = Mk(PkA(k−1)PT
k )MT

k . (4.4.3)

To see what is involved with a minimum of notation, suppose B = BT ∈ IR(n−k)×(n−k)

has and that we wish to form

B+ = (I − weT
1 )B(I − weT

1 )T ,

where w ∈ IRn−k and e1 is the first column of In−k. Such a calculation is at the heart
of (4.4.3). If we set

u = Be1 −
b11

2
w,

then B+ = B−wuT −uwT and its lower triangular portion can be formed in 2(n−k)2

flops. Summing this quantity as k ranges from 1 to n−2 indicates that the Parlett-Reid
procedure requires 2n3/3 flops—twice the volume of work associated with Cholesky.

4.4.2 The Method of Aasen

An n3/3 approach to computing (4.4.1) due to Aasen (1971) can be derived by re-
considering some of the computations in the Parlett-Reid approach. We examine the
no-pivoting case first where the goal is to compute a unit lower triangular matrix L
with L(:, 1) = e1 and a tridiagonal matrix

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 · · · 0

β1 α2
. . .

...
. . . . . . . . .

...
. . . . . . βn−1

0 · · · βn−1 αn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

such that A = LTLT . The Aasen method is structured as follows:

for j = 1:n

{α(1:j − 1), β(1:j − 1) and L(:, 1:j) are known}
Compute αj .

if j ≤ n − 1

Compute βj .
end (4.4.4)

if j ≤ n − 2

Compute L(j + 2:n, j + 1).
end

end
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To develop recipes for αj , βj , and L(j +2:n, j +1), we compare the jth columns in the
equation A = LH where H = TLT . Noting that H is an upper Hessenberg matrix we
obtain

A(:, j) = LH(:, j) =
j+1∑
k=1

L(:, k) · h(k), (4.4.5)

where h(1:j + 1) = H(1:j + 1, j) and we assume that j ≤ n − 1. It follows that

hj+1 ·L(j + 1:n, j + 1) = v(j + 1:n), (4.4.6)

where
v(j + 1:n) = A(j + 1:n, j) − L(j + 1:n, 1:j) · h(1:j). (4.4.7)

Since L is unit lower triangular and L(:, 1:j) is known, this gives us a working recipe
for L(j + 2:n, j + 1) provided we know h(1:j). Indeed, from (4.4.6) and (4.4.7) it is
easy to show that

L(j + 2:n, j + 1) = v(j + 2:n)/v(j + 1). (4.4.8)

To compute h(1:j) we turn to the equation H = TLT and examine its jth column.
The case j = 5 amply displays what is going on:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1

h2

h3

h4

h5

h6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 0 0 0

β1 α2 β2 0 0

0 β2 α3 β3 0

0 0 β3 α4 β4

0 0 0 β4 α5

0 0 0 0 β5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0

�52

�53

�54

1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1�52

α2�52 + β2�53

β2�52 + α3�53 + β3�54

β3�53 + α4�54 + β4

β4�54 + α5

β5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.4.9)

At the start of step j, we know α(1:j − 1), β(1:j − 1) and L(:, 1:j). Thus, we can
determine h(1:j − 1) as follows

h1 = β1�j2

for k = 1:j − 1

hk = βk−1�j,k−1 + αk�jk + βk�j,k+1 (4.4.10)
end

Equation (4.4.5) gives us a formula for hj :

hj = A(j, j) −
j−1∑
k=1

L(j, k)hk. (4.4.11)

From (4.4.9) we infer that

αj = hj − βj−1�j,j−1, (4.4.12)

βj = hj+1. (4.4.13)

Combining these equations with (4.4.4), (4.4.7), (4.4.8), (4.4.10), and (4.4.11) we obtain
the Aasen method without pivoting:
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L = In

for j = 1:n

if j = 1

α1 = a11

v(2:n) = A(2:n, 1)
else

h1 = β1 ·�j2

for k = 2:j − 1

hk = βk−1�j,k−1 + αk�jk + βk�j,k+1
end

hj = ajj − L(j, 1:j − 1)·h(1:j − 1)

αj = hj − βj−1�j,j−1 (4.4.14)

v(j + 1:n) = A(j + 1:n, j) − L(j + 1:n, 1:j)·h(1:j)
end

if j <= n − 1

βj = v(j + 1)
end

if j <= n − 2

L(j + 2:n, j + 1) = v(j + 2:n)/v(j + 1)
end

end

The dominant operation each pass through the j-loop is an (n−j)-by-j gaxpy operation.
Accounting for the associated flops we see that the overall Aasen ccomputation involves
n3/3 flops, the same as for the Cholesky factorization.

As it now stands, the columns of L are scalings of the v-vectors in (4.4.14). If
any of these scalings are large, i.e., if any v(j + 1) is small, then we are in trouble.
To circumvent this problem, it is only necessary to permute the largest component of
v(j +1:n) to the top position. Of course, this permutation must be suitably applied to
the unreduced portion of A and the previously computed portion of L. With pivoting,
Aasen’s method is stable in the same sense that Gaussian elimination with partial
pivoting is stable.

In a practical implementation of the Aasen algorithm, the lower triangular portion
of A would be overwritten with L and T , e.g.,

A ←

⎡⎢⎢⎢⎢⎢⎢⎣

α1

β1 α2

�32 β2 α3

�42 �43 β3 α4

�52 �53 �54 β4 α5

⎤⎥⎥⎥⎥⎥⎥⎦ .

Notice that the columns of L are shifted left in this arrangement.
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4.4.3 Diagonal Pivoting Methods

We next describe the computation of the block LDLT factorization (4.4.2). We follow
the discussion in Bunch and Parlett (1971). Suppose

P1APT
1 =

[
E

C

CT

B

]
s

n−s

s n−s

where P1 is a permutation matrix and s = 1 or 2. If A is nonzero, then it is always
possible to choose these quantities so that E is nonsingular, thereby enabling us to
write

P1APT
1 =

[
Is 0

CE−1 In−s

][
E 0

0 B − CE−1CT

][
Is E−1CT

0 In−s

]
.

For the sake of stability, the s-by-s “pivot” E should be chosen so that the entries in

Ã = (ãij) ≡ B − CE−1CT (4.4.15)

are suitably bounded. To this end, let α ∈ (0, 1) be given and define the size measures

µ0 = max
i,j

|aij |,

µ1 = max
i

|aii| .

The Bunch-Parlett pivot strategy is as follows:

if µ1 ≥ αµ0

s = 1
Choose P1 so |e11| = µ1.

else
s = 2
Choose P1 so |e21| = µ0.

end

It is easy to verify from (4.4.15) that if s = 1, then

|ãij | ≤ (1 + α−1) µ0, (4.4.16)

while s = 2 implies

|ãij | ≤ 3 − α

1 − α
µ0. (4.4.17)

By equating (1 + α−1)2, the growth factor that is associated with two s = 1 steps,
and (3− α)/(1− α), the corresponding s = 2 factor, Bunch and Parlett conclude that
α = (1 +

√
17)/8 is optimum from the standpoint of minimizing the bound on element

growth.
The reductions outlined above can be repeated on the order-(n−s) symmetric

matrix Ã. A simple induction argument establishes that the factorization (4.4.2) exists
and that n3/3 flops are required if the work associated with pivot determination is
ignored.
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4.4.4 Stability and Efficiency

Diagonal pivoting with the above strategy is shown by Bunch (1971) to be as stable
as Gaussian elimination with complete pivoting. Unfortunately, the overall process
requires between n3/12 and n3/6 comparisons, since µ0 involves a two-dimensional
search at each stage of the reduction. The actual number of comparisons depends
on the total number of 2-by-2 pivots but in general the Bunch-Parlett method for
computing (4.4.2) is considerably slower than the technique of Aasen. See Barwell and
George (1976).

This is not the case with the diagonal pivoting method of Bunch and Kaufman
(1977). In their scheme, it is only necessary to scan two columns at each stage of the
reduction. The strategy is fully illustrated by considering the very first step in the
reduction:

α = (1 +
√

17)/8
λ = |ar1| = max{|a21|, . . . , |an1|}
if λ > 0

if |a11| ≥ αλ

Set s = 1 and P1 = I.
else

σ = |apr| = max{|a1r, . . . , |ar−1,r|, |ar+1,r|, . . . , |anr|}
if σ|a11| ≥ αλ2

Set s = 1 and P1 = I

elseif |arr| ≥ ασ

Set s = 1 and choose P1 so (PT
1 AP1)11 = arr.

else
Set s = 2 and choose P1 so (PT

1 AP1)21 = arp.
end

end
end

Overall, the Bunch-Kaufman algorithm requires n3/3 flops, O(n2) comparisons, and,
like all the methods of this section, n2/2 storage.

4.4.5 A Note on Equilibrium Systems

A very important class of symmetric indefinite matrices have the form

A =
[

C

BT

B

0

]
n

p

n p

(4.4.18)

where C is symmetric positive definite and B has full column rank. These conditions
ensure that A is nonsingular.

Of course, the methods of this section apply to A. However, they do not exploit
its structure because the pivot strategies “wipe out” the zero (2,2) block. On the other
hand, here is a tempting approach that does exploit A’s block structure:
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Step 1. Compute the Cholesky factorization C = GGT .

Step 2. Solve GK = B for K ∈ IRn×p.

Step 3. Compute the Cholesky factorization HHT = KT K = BT C−1B.

From this it follows that

A =

[
G 0

KT H

][
GT K

0 −HT

]
.

In principle, this triangular factorization can be used to solve the equilibrium system[
C B

BT 0

][
x

y

]
=

[
f

g

]
. (4.4.19)

However, it is clear by considering steps (b) and (c) above that the accuracy of the
computed solution depends upon κ(C) and this quantity may be much greater than
κ(A). The situation has been carefully analyzed and various structure-exploiting algo-
rithms have been proposed. A brief review of the literature is given at the end of the
section.

It is interesting to consider a special case of (4.4.19) that clarifies what it means
for an algorithm to be stable and illustrates how perturbation analysis can structure
the search for better methods. In several important applications, g = 0, C is diagonal,
and the solution subvector y is of primary importance. A manipulation shows that this
vector is specified by

y = (BT C−1B)−1BT C−1f. (4.4.20)

Looking at this we are again led to believe that κ(C) should have a bearing on the
accuracy of the computed y. However, it can be shown that

‖ (BT C−1B)−1BT C−1 ‖ ≤ ψB (4.4.21)

where the upper bound ψB is independent of C, a result that (correctly) suggests that y
is not sensitive to perturbations in C. A stable method for computing this vector should
respect this, meaning that the accuracy of the computed y should be independent of
C. Vavasis (1994) has developed a method with this property. It involves the careful
assembly of a matrix V ∈ IRn×(n−p) whose columns are a basis for the nullspace of
BT C−1. The n-by-n linear system

[ B | V ]
[

y
q

]
= f

is then solved implying f = By +V q. Thus, BT C−1f = BT C−1By and (4.4.20) holds.

Problems

P4.4.1 Show that if all the 1-by-1 and 2-by-2 principal submatrices of an n-by-n symmetric matrix
A are singular, then A is zero.

P4.4.2 Show that no 2-by-2 pivots can arise in the Bunch-Kaufman algorithm if A is positive definite.



194 Chapter 4. Special Linear Systems

P4.4.3 Arrange (4.4.14) so that only the lower triangular portion of A is referenced and so that
α(j) overwrites A(j, j) for j = 1:n, β(j) overwrites A(j + 1, j) for j = 1:n − 1, and L(i, j) overwrites
A(i, j − 1) for j = 2:n− 1 and i = j + 1:n.

P4.4.4 Suppose A ∈ IRn×n is symmetric and strictly diagonally dominant. Give an algorithm that
computes the factorization

ΠAΠT =

[
R 0

S −M

][
RT ST

0 MT

]
where Π is a permuation and the diagonal blocks R and M are lower triangular.

P4.4.5 A symmetric matrix A is quasidefinite if it has the form

A =
[

A11

A21

A12

−A22

]
n

p

n p

with A11 and A22 positive definite. (a) Show that such a matrix has an LDLT factorization with the
property that

D =

[
D1 0

0 −D2

]
where D1 ∈ IRn×n and D2 ∈ IRp×p have positive diagonal entries. (b) Show that if A is quasidefinite
then all its principal submatrices are nonsingular. This means that PAP T has an LDLT factorization
for any permutation matrix P .

P4.4.6 Prove (4.4.16) and (4.4.17).

P4.4.7 Show that −(BT C−1B)−1 is the (2,2) block of A−1 where A is given by equation (4.4.18).

P4.4.8 The point of this problem is to consider a special case of (4.4.21). Define the matrix

M(α) = (BT C−1B)−1BT C−1

where C = (In + αekeT
k ), α > −1, and ek = In(:, k). (Note that C is just the identity with α added

to the (k, k) entry.) Assume that B ∈ IRn×p has rank p and show that

M(α) = (BT B)−1BT
(

In −
α

1 + αwT w
ekwT

)
where

w = (In −B(BT B)−1BT )ek.

Show that if ‖ w ‖2 = 0 or ‖ w ‖2 = 1, then ‖M(α) ‖2 = 1/σmin(B). Show that if 0 < ‖ w ‖2 < 1,
then

‖M(α) ‖2 ≤ max

{
1

1− ‖ w ‖2
, 1 +

1
‖ w ‖2

}/
σmin(B).

Thus, ‖M(α) ‖2 has an α-independent upper bound.

Notes and References for §4.4
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important role to play. Nice overviews with pointers to this literature include:

G. Strang (1988). “A Framework for Equilibrium Equations,” SIAM Review 30, 283–297.
S.A. Vavasis (1994). “Stable Numerical Algorithms for Equilibrium Systems,” SIAM J. Matrix Anal.

Applic. 15, 1108–1131.
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G.W. Stewart (1989). “On Scaled Projections and Pseudoinverses,” Lin. Alg. Applic. 112, 189–193.
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D.P. O’Leary (1990). “On Bounds for Scaled Projections and Pseudoinverses,” Lin. Alg. Applic. 132,
115–117.

M.J. Todd (1990). “A Dantzig-Wolfe-like Variant of Karmarkar’s Interior-Point Linear Programming
Algorithm,” Oper. Res. 38, 1006–1018.

An equilibrium system is a special case of a saddle point system. See §11.5.10.

4.5 Block Tridiagonal Systems
Block tridiagonal linear systems of the form⎡⎢⎢⎢⎢⎢⎢⎢⎣

D1 F1 · · · 0

E1 D2
. . .

...
. . . . . . . . .

...
. . . . . . FN−1

0 · · · EN−1 DN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2
...
...

xN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2
...
...

bN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.5.1)

frequently arise in practice. We assume for clarity that all blocks are q-by-q. In this
section we discuss both a block LU approach to this problem as well as a pair of
divide-and-conquer schemes.

4.5.1 Block Tridiagonal LU Factorization

If

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D1 F1 · · · 0

E1 D2
. . .

...
. . . . . . . . .

...
. . . . . . FN−1

0 · · · EN−1 DN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.5.2)

then by comparing blocks in

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I · · · 0

L1 I
...

. . . . . .
...

. . .
0 · · · LN−1 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

U1 F1 · · · 0

0 U2
. . .

...
. . . . . . . . .

...
. . . . . . FN−1

0 · · · 0 UN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.5.3)

we formally obtain the following algorithm for computing the Li and Ui:

U1 = D1

for i = 2:N

Solve Li−1Ui−1 = Ei−1 for Li−1. (4.5.4)

Ui = Di − Li−1Fi−1
end
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The procedure is defined as long as the Ui are nonsingular.
Having computed the factorization (4.5.3), the vector x in (4.5.1) can be obtained

via block forward elimination and block back substitution:

y1 = b1

for i = 2:N

yi = bi − Li−1yi−1
end (4.5.5)

Solve UNxN = yN for xN

for i = N − 1: − 1:1

Solve Uixi = yi − Fixi+1 for xi

end

To carry out both (4.5.4) and (4.5.5), each Ui must be factored since linear systems
involving these submatrices are solved. This could be done using Gaussian elimination
with pivoting. However, this does not guarantee the stability of the overall process.

4.5.2 Block Diagonal Dominance

In order to obtain satisfactory bounds on the Li and Ui it is necessary to make addi-
tional assumptions about the underlying block matrix. For example, if we have

‖ D−1
i ‖1 (‖ Fi−1 ‖1 + ‖ Ei ‖1) < 1, EN ≡ F0 ≡ 0, (4.5.6)

for i = 1:N , then the factorization (4.5.3) exists and it is possible to show that the Li

and Ui satisfy the inequalities

‖ Li ‖1 ≤ 1, (4.5.7)

‖ Ui ‖1 ≤ ‖ An ‖1. (4.5.8)

The conditions (4.5.6) define a type of block diagonal dominance.

4.5.3 Block-Cyclic Reduction

We next describe the method of block-cyclic reduction that can be used to solve some
important special instances of the block tridiagonal system (4.5.1). For simplicity, we
assume that A has the form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D F · · · 0

F D
. . .

...
. . . . . . . . .

...
. . . . . . F

0 · · · F D

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ IRNq×Nq (4.5.9)

where F and D are q-by-q matrices that satisfy DF = FD. We also assume that
N = 2k − 1. These conditions hold in certain important applications such as the
discretization of Poisson’s equation on a rectangle. (See §4.8.4.)
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The basic idea behind cyclic reduction is to halve repeatedly the dimension of the
problem on hand repeatedly until we are left with a single q-by-q system for the un-
known subvector x2k−1 . This system is then solved by standard means. The previously
eliminated xi are found by a back-substitution process.

The general procedure is adequately illustrated by considering the case N = 7:

b1 = Dx1 + Fx2,

b2 = Fx1 + Dx2 + Fx3,

b3 = Fx2 + Dx3 + Fx4,

b4 = Fx3 + Dx4 + Fx5,

b5 = Fx4 + Dx5 + Fx6,

b6 = Fx5 + Dx6 + Fx7,

b7 = Fx6 + Dx7.

For i = 2, 4, and 6 we multiply equations i − 1, i, and i + 1 by F , −D, and F ,
respectively, and add the resulting equations to obtain

(2F 2 − D2)x2 + F 2x4 = F (b1 + b3) − Db2,

F 2x2 + (2F 2 − D2)x4 + F 2x6 = F (b3 + b5) − Db4,

F 2x4 + (2F 2 − D2)x6 = F (b5 + b7) − Db6.

Thus, with this tactic we have removed the odd-indexed xi and are left with a reduced
block tridiagonal system of the form

D(1)x2 + F (1)x4 = b
(1)
2 ,

F (1)x2 + D(1)x4 + F (1)x6 = b
(1)
4 ,

F (1)x4 + D(1)x6 = b
(1)
6 ,

where D(1) = 2F 2 − D2 and F (1) = F 2 commute. Applying the same elimination
strategy as above, we multiply these three equations respectively by F (1), −D(1), and
F (1). When these transformed equations are added together, we obtain the single
equation (

2[F (1)]2 − D(1)2
)

x4 = F (1)
(
b
(1)
2 + b

(1)
6

)
− D(1)b

(1)
4 ,

which we write as
D(2)x4 = b(2).

This completes the cyclic reduction. We now solve this (small) q-by-q system for x4.
The vectors x2 and x6 are then found by solving the systems

D(1)x2 = b
(1)
2 − F (1)x4,

D(1)x6 = b
(1)
6 − F (1)x4.

Finally, we use the first, third, fifth, and seventh equations in the original system to
compute x1, x3, x5, and x7, respectively.

The amount of work required to perform these recursions for general N depends
greatly upon the sparsity of the D(p) and F (p). In the worst case when these matrices
are full, the overall flop count has order log(N)q3. Care must be exercised in order to
ensure stability during the reduction. For further details, see Buneman (1969).
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4.5.4 The SPIKE Framework

A bandwidth-p matrix A ∈ IRNq×Nq can also be regarded as a block tridiagonal matrix
with banded diagonal blocks and low-rank off-diagonal blocks. Here is an example
where N = 4, q = 7, and p = 2:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × ×
× × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

× × × × ×
× × × × ×
× × × × ×
× × × ×
× × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.5.11)

Note that the diagonal blocks have bandwidth p and the blocks along the subdiagonal
and superdiagonal have rank p. The low rank of the off-diagonal blocks makes it
possible to formulate a divide-and-conquer procedure known as the “SPIKE” algorithm.
The method is of interest because it parallelizes nicely. Our brief discussion is based
on Polizzi and Sameh (2007).

Assume for clarity that the diagonal blocks D1, . . . , D4 are sufficiently well con-
ditioned. If we premultiply the above matrix by the inverse of diag(D1, D2, D3, D4),
then we obtain

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + +
1 + +

1 + +
1 + +

1 + +
1 + +

1 + +

+ + 1 + +
+ + 1 + +
+ + 1 + +
+ + 1 + +
+ + 1 + +
+ + 1 + +
+ + 1 + +

+ + 1 + +
+ + 1 + +
+ + 1 + +
+ + 1 + +
+ + 1 + +
+ + 1 + +
+ + 1 + +

+ + 1
+ + 1
+ + 1
+ + 1
+ + 1
+ + 1
+ + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.5.12)
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With this maneuver, the original linear system

⎡⎢⎢⎣
D1 F1 0 0
E1 D2 F2 0
0 E2 D3 F3
0 0 E3 D4

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
b1

b2

b3

b4

⎤⎥⎥⎥⎦ , (4.5.13)

which corresponds to (4.5.11), transforms to

⎡⎢⎢⎣
I7 F̃1 0 0
Ẽ1 I7 F̃2 0
0 Ẽ2 I7 F̃3

0 0 Ẽ3 I7

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
b̃1

b̃2

b̃3

b̃4

⎤⎥⎥⎥⎦ , (4.5.14)

where Dib̃i = bi, DiF̃i = Fi, and Di+1Ẽi = Ei. Next, we refine the blocking (4.5.14)
by turning each submatrix into a 3-by-3 block matrix and each subvector into a 3-by-1
block vector as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2 0 0 K1 0 0 0 0 0 0 0 0
0 I3 0 H1 0 0 0 0 0 0 0 0
0 0 I2 G1 0 0 0 0 0 0 0 0
0 0 R1 I2 0 0 K2 0 0 0 0 0
0 0 S1 0 I3 0 H2 0 0 0 0 0
0 0 T1 0 0 I2 G2 0 0 0 0 0
0 0 0 0 0 R2 I2 0 0 K3 0 0
0 0 0 0 0 S2 0 I3 0 H3 0 0
0 0 0 0 0 T2 0 0 I2 G3 0 0
0 0 0 0 0 0 0 0 R3 Iq 0 0
0 0 0 0 0 0 0 0 S3 0 Im 0
0 0 0 0 0 0 0 0 T3 0 0 Iq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1
y1
z1

w2
y2
z2

w3
y3
z3

w4
y4
z4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
d1
f1

c2
d2
f2

c3
d3
f3

c4
d4
f4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.5.15)

The block rows and columns in this equation can be reordered to produce the following
equivalent system:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2 0 K1 0 0 0 0 0 0 0 0 0
0 I2 G1 0 0 0 0 0 0 0 0 0
0 R1 I2 0 K2 0 0 0 0 0 0 0
0 T1 0 I2 G2 0 0 0 0 0 0 0
0 0 0 R2 I2 0 K3 0 0 0 0 0
0 0 0 T2 0 I2 G3 0 0 0 0 0
0 0 0 0 0 R3 I2 0 0 0 0 0
0 0 0 0 0 T3 0 I2 0 0 0 0
0 0 H1 0 0 0 0 0 I3 0 0 0
0 S1 0 0 H2 0 0 0 0 I3 0 0
0 0 0 S2 0 0 H3 0 0 0 I3 0
0 0 0 0 0 S3 0 0 0 0 0 I3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1
z1
w2
z2
w3
z3
w4
z4

y1
y2
y3
y4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
f1
c2
f2
c3
f3
c4
f4

d1
d2
d3
d4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.5.16)
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If we assume that N  1, then the (1,1) block is a relatively small banded matrix that
define the zi and wi. Once these quantities are computed, then the remaining unknowns
follow from a decoupled set of large matrix-vector multiplications, e.g., y1 = d1−H1w2,
y2 = d2 −S1z1 −H2w3, y3 = d3 −S2z2 −H3w4, and y4 = d4 −S3z3. Thus, in a four-
processor execution of this method, there are (short) communications that involves the
wi and zi and a lot of large, local gaxpy computations.

Problems

P4.5.1 (a) Show that a block diagonally dominant matrix is nonsingular. (b) Verify that (4.5.6)
implies (4.5.7) and (4.5.8).

P4.5.2 Write a recursive function x = CR(D, F, N, b) that returns the solution to Ax = b where A is
specified by (4.5.9). Assume that N = 2k− 1 for some positive integer k, D, F ∈ IRq×q, and b ∈ IRNq .

P4.5.3 How would you solve a system of the form[
D1 F1

E1 D2

][
x1

x2

]
=

[
b1

b2

]
where D1 and D2 are diagonal and F1 and E1 are tridiagonal? Hint: Use the perfect shuffle permu-
tation.

P4.5.4 In the simplified SPIKE framework that we presented in §4.5.4, we treat A as an N -by-N
block matrix with q-by-q blocks. It is assumed that A ∈ IRNq×Nq has bandwidth p and that p � q.
For this general case, describe the block sizes that result when the transition from (4.5.11) to (4.5.16)
is carried out. Assuming that A’s band is dense, what fraction of flops are gaxpy flops?
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4.6 Vandermonde Systems
Supposex(0:n) ∈ IRn+1. A matrix V ∈ IR(n+1)×(n+1) of the form

V = V (x0, . . . , xn) =

⎡⎢⎢⎢⎢⎣
1 1 · · · 1

x0 x1 · · · xn

...
...

...

xn
0 xn

1 · · · xn
n

⎤⎥⎥⎥⎥⎦
is said to be a Vandermonde matrix. Note that the discrete Fourier transform matrix
(§1.4.1) is a very special complex Vandermonde matrix.

In this section, we show how the systems V T a = f = f(0:n) and V z = b = b(0:n)
can be solved in O(n2) flops. For convenience, vectors and matrices are subscripted
from 0 in this section.

4.6.1 Polynomial Interpolation: V T a = f

Vandermonde systems arise in many approximation and interpolation problems. In-
deed, the key to obtaining a fast Vandermonde solver is to recognize that solving
V T a = f is equivalent to polynomial interpolation. This follows because if V T a = f
and

p(x) =
n∑

j=0

ajx
j , (4.6.1)

then p(xi) = fi for i = 0:n.
Recall that if the xi are distinct then there is a unique polynomial of degree n

that interpolates (x0, f0), . . . , (xn, fn). Consequently, V is nonsingular as long as the
xi are distinct. We assume this throughout the section.

The first step in computing the aj of (4.6.1) is to calculate the Newton represen-
tation of the interpolating polynomial p:

p(x) =
n∑

k=0

ck

(
k−1∏
i=0

(x − xi)

)
. (4.6.2)

The constants ck are divided differences and may be determined as follows:

c(0:n) = f(0:n)
for k = 0 :n−1

for i = n : −1 : k+1 (4.6.3)

ci = (ci − ci−1)/(xi − xi−k−1)
end

end

See Conte and deBoor (1980).
The next task is to generate the coefficients a0, . . . , an in (4.6.1) from the Newton

representation coefficients c0, . . . , cn. Define the polynomials pn(x), . . . , p0(x) by the
iteration
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pn(x) = cn

for k = n − 1 : −1 : 0

pk(x) = ck + (x − xk)·pk+1(x)

end

and observe that p0(x) = p(x). Writing

pk(x) = a
(k)
k + a

(k)
k+1x + · · · + a(k)

n xn−k

and equating like powers of x in the equation pk = ck +(x−xk)pk+1 gives the following
recursion for the coefficients a

(k)
i :

a
(n)
n = cn

for k = n−1: −1 : 0

a
(k)
k = ck − xka

(k+1)
k+1

for i = k + 1 :n − 1

a
(k)
i = a

(k+1)
i − xka

(k+1)
i+1

end

a
(k)
n = a

(k+1)
n

end

Consequently, the coefficients ai = a
(0)
i can be calculated as follows:

a(0:n) = c(0:n)

for k = n−1: −1 : 0

for i = k:n − 1 (4.6.4)

ai = ai − xkai+1
end

end

Combining this iteration with (4.6.3) gives the following algorithm.

Algorithm 4.6.1 Given x(0 :n) ∈ IRn+1 with distinct entries and f = f(0 :n) ∈ IRn+1,
the following algorithm overwrites f with the solution a = a(0 :n) to the Vandermonde
system V (x0, . . . , xn)T a = f .

for k = 0 :n − 1
for i = n: −1 :k + 1

f(i) = (f(i) − f(i − 1))/(x(i) − x(i − k − 1))
end

end
for k = n − 1: −1 : 0

for i = k : n − 1

f(i) = f(i) − f(i + 1)·x(k)
end

end

This algorithm requires 5n2/2 flops.
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4.6.2 The System V z = b

Now consider the system V z = b. To derive an efficient algorithm for this problem,
we describe what Algorithm 4.6.1 does in matrix-vector language. Define the lower
bidiagonal matrix Lk(α) ∈ IR(n+1)×(n+1) by

Lk(α) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik 0

0

1 0 · · · 0
−α 1

0
. . . . . .

...
. . . . . .

...
. . . 1

0 · · · −α 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the diagonal matrix Dk by

Dk = diag( 1, . . . , 1︸ ︷︷ ︸
k+1

, xk+1 − x0, . . . , xn − xn−k−1).

With these definitions it is easy to verify from (4.6.3) that, if f = f(0 :n) and c = c(0 :n)
is the vector of divided differences, then

c = UT f

where U is the upper triangular matrix defined by

UT = D−1
n−1Ln−1(1) · · ·D−1

0 L0(1).

Similarly, from (4.6.4) we have
a = LT c,

where L is the unit lower triangular matrix defined by

LT = L0(x0)T · · ·Ln−1(xn−1)T .

It follows that a = V −T f is given by

a = LT UT f.

Thus,
V −T = LT UT

which shows that Algorithm 4.6.1 solves V T a = f by tacitly computing the “UL
factorization” of V −1. Consequently, the solution to the system V z = b is given by

z = V −1b = U(Lb)

=
(
L0(1)T D−1

0 · · ·Ln−1(1)T D−1
n−1

)(
Ln−1(xn−1) · · ·L0(x0)b

)
.
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This observation gives rise to the following algorithm:

Algorithm 4.6.2 Given x(0 :n) ∈ IRn+1 with distinct entries and b = b(0 :n) ∈ IRn+1,
the following algorithm overwrites b with the solution z = z(0 :n) to the Vandermonde
system V (x0, . . . , xn)z = b.

for k = 0 :n − 1
for i = n: −1 : k + 1

b(i) = b(i) − x(k)b(i − 1)
end

end

for k = n − 1: −1 : 0

for i = k + 1 :n

b(i) = b(i)/(x(i) − x(i − k − 1))
end

for i = k : n − 1

b(i) = b(i) − b(i + 1)
end

end

This algorithm requires 5n2/2 flops.
Algorithms 4.6.1 and 4.6.2 are discussed and analyzed by Björck and Pereyra

(1970). Their experience is that these algorithms frequently produce surprisingly ac-
curate solutions, even if V is ill-conditioned.

We mention that related techniques have been developed and analyzed for con-
fluent Vandermonde systems, e.g., systems of the form⎡⎢⎢⎢⎣

1 1 0 1
x0 x1 1 x3

x2
0 x2

1 2x1 x2
3

x3
0 x3

1 3x2
1 x3

3

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

a0

a1

a2

a3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f0

f1

f2

f3

⎤⎥⎥⎥⎦ .

See Higham (1990).

Problems

P4.6.1 Show that if V = V (x0, . . . , xn), then

det(V ) =
∏

n≥i>j≥0

(xi − xj).

P4.6.2 (Gautschi 1975) Verify the following inequality for the n = 1 case above:

‖ V −1 ‖∞ ≤ max
0≤k≤n

n∏
i=0
i	=k

1 + |xi|
|xk − xi|

.

Equality results if the xi are all on the same ray in the complex plane.
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4.7 Classical Methods for Toeplitz Systems
Matrices whose entries are constant along each diagonal arise in many applications
and are called Toeplitz matrices. Formally, T ∈ IRn×n is Toeplitz if there exist scalars
r−n+1, . . . , r0, . . . , rn−1 such that aij = rj−i for all i and j. Thus,

T =

⎡⎢⎢⎢⎣
r0 r1 r2 r3

r−1 r0 r1 r2

r−2 r−1 r0 r1

r−3 r−2 r−1 r0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
3 1 7 6
4 3 1 7
0 4 3 1
9 0 4 3

⎤⎥⎥⎥⎦
is Toeplitz. In this section we show that Toeplitz systems can be solved in O(n2) flops
The discussion focuses on the important case when T is also symmetric and positive
definite, but we also include a few comments about general Toeplitz systems. An
alternative approach to Toeplitz system solving based on displacement rank is given in
§12.1.

4.7.1 Persymmetry

The key fact that makes it possible to solve a Toeplitz system Tx = b so fast has to do
with the structure of T−1. Toeplitz matrices belong to the larger class of persymmetric
matrices. We say that B ∈ IRn×n is persymmetric if

EnBEn = BT

where En is the n-by-n exchange matrix defined in §1.2.11, e.g.,

E4 =

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ .

If B is persymmetric, then EnB is symmetric. This means that B is symmetric about
its antidiagonal. Note that the inverse of a persymmetric matrix is also persymmetric:

EnB−1En = (EnBEn)−1 = (BT )−1 = (B−1)T .

Thus, the inverse of a nonsingular Toeplitz matrix is persymmetric.

4.7.2 Three Problems

Assume that we have scalars r1, . . . , rn such that for k = 1:n the matrices

Tk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 r1 · · · rk−2 rk−1

r1 1
. . . rk−2

...
. . . . . . . . .

...

rk−2
. . . . . . r1

rk−1 rk−2 · · · r1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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are positive definite. (There is no loss of generality in normalizing the diagonal.) We
set out to describe three important algorithms:

• Durbin’s algorithm for the Yule-Walker problem Tny = −[r1, . . . , rn]T .

• Levinson’s algorithm for the general right-hand-side problem Tnx = b.

• Trench’s algorithm for computing B = T−1
n .

4.7.3 Solving the Yule-Walker Equations

We begin by presenting Durbin’s algorithm for the Yule-Walker equations which arise
in conjunction with certain linear prediction problems. Suppose for some k that sat-
isfies 1 ≤ k ≤ n − 1 we have solved the kth order Yule-Walker system Tky = −r =
−[r1, . . . , rk]T . We now show how the (k + 1)st order Yule-Walker system[

Tk Ekr

rTEk 1

][
z

α

]
= −

[
r

rk+1

]

can be solved in O(k) flops. First observe that

z = T−1
k (−r − αEkr) = y − αT−1

k Ekr

and
α = −rk+1 − rTEkz.

Since T−1
k is persymmetric, T−1

k Ek = Ek T−1
k and thus

z = y − α EkT−1
k r = y + α Ek y.

By substituting this into the above expression for α we find

α = −rk+1 − rTEk(y + αEky) = −(rk+1 + rTEky)/(1 + rT y).

The denominator is positive because Tk+1 is positive definite and because

[
I Eky

0 1

]T [
Tk Ekr

rTEk 1

][
I Eky

0 1

]
=

[
Tk 0

0 1 + rT y

]
.

We have illustrated the kth step of an algorithm proposed by Durbin (1960). It proceeds
by solving the Yule-Walker systems

Tky(k) = −r(k) = − [r1, . . . , rk]T

for k = 1:n as follows:
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y(1) = −r1

for k = 1:n − 1

βk = 1 + [r(k)]T y(k)

αk = −(rk+1 + r(k)TEky(k))/βk (4.7.1)

z(k) = y(k) + αkEky(k)

y(k+1) =
[

z(k)

αk

]
end

As it stands, this algorithm would require 3n2 flops to generate y = y(n). It is possible,
however, to reduce the amount of work even further by exploiting some of the above
expressions:

βk = 1 + [r(k)]T y(k)

= 1 +
[

r(k−1)

rk

]T [
y(k−1) + αk−1Ek−1y

(k−1)

αk−1

]
= (1 + [r(k−1)]T y(k−1)) + αk−1

(
[r(k−1)]TEk−1y

(k−1) + rk

)
= βk−1 + αk−1(−βk−1αk−1)

= (1 − α2
k−1)βk−1.

Using this recursion we obtain the following algorithm:

Algorithm 4.7.1 (Durbin) Given real numbers r0, r1, . . . , rn with r0 = 1 such that
T = (r|i−j|) ∈ IRn×n is positive definite, the following algorithm computes y ∈ IRn such
that Ty = −[r1, . . . , rn]T .

y(1) = −r(1); β = 1; α = −r(1)

for k = 1:n − 1

β = (1 − α2)β

α = −
(
r(k + 1) + r(k: − 1:1)T y(1:k)

)
/β

z(1:k) = y(1:k) + αy(k: − 1:1)

y(1:k + 1) =
[

z(1:k)
α

]
end

This algorithm requires 2n2 flops. We have included an auxiliary vector z for clarity,
but it can be avoided.

4.7.4 The General Right-Hand-Side Problem

With a little extra work, it is possible to solve a symmetric positive definite Toeplitz
system that has an arbitrary right-hand side. Suppose that we have solved the system

Tkx = b = [b1, . . . , bk]T (4.7.2)
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for some k satisfying 1 ≤ k < n and that we now wish to solve[
Tk Ekr

rTEk 1

][
v

µ

]
=

[
b

bk+1

]
. (4.7.3)

Here, r = [r1, . . . , rk]T as above. Assume also that the solution to the order-k Yule-
Walker system Tky = −r is also available. From Tkv + µEkr = b it follows that

v = T−1
k (b − µEkr) = x − µT−1

k Ekr = x + µEky

and so

µ = bk+1 − rTEkv

= bk+1 − rTEkx − µrT y

=
(
bk+1 − rTEkx

)
/
(
1 + rT y

)
.

Consequently, we can effect the transition from (4.7.2) to (4.7.3) in O(k) flops.
Overall, we can efficiently solve the system Tnx = b by solving the systems

Tkx(k) = b(k) = [b1, . . . , bk]T

and
Tky(k) = −r(k) = −[r1, . . . , rk]T

“in parallel” for k = 1:n. This is the gist of the Levinson algorithm.

Algorithm 4.7.2 (Levinson) Given b ∈ IRn and real numbers 1 = r0, r1, . . . , rn such
that T = (r|i−j|) ∈ IRn×n is positive definite, the following algorithm computes x ∈ IRn

such that Tx = b.

y(1) = −r(1); x(1) = b(1); β = 1; α = −r(1)

for k = 1 :n − 1

β = (1 − α2)β

µ =
(
b(k + 1) − r(1:k)T x(k: − 1:1)

)
/β

v(1:k) = x(1:k) + µ·y(k: − 1:1)

x(1:k + 1) =
[

v(1:k)
µ

]
if k < n − 1

α = −
(
r(k + 1) + r(1:k)T y(k: − 1:1)

)
/β

z(1:k) = y(1:k) + α·y(k: − 1:1)

y(1:k + 1) =
[

z(1:k)
α

]
end

end

This algorithm requires 4n2 flops. The vectors z and v are for clarity and can be
avoided in a detailed implementation.
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4.7.5 Computing the Inverse

One of the most surprising properties of a symmetric positive definite Toeplitz matrix
Tn is that its complete inverse can be calculated in O(n2) flops. To derive the algorithm
for doing this, partition T−1

n as follows:

T−1
n =

[
A Er

rT E 1

]−1

=

[
B v

vT γ

]
(4.7.4)

where A = Tn−1, E = En−1, and r = [r1, . . . , rn−1]T . From the equation[
A Er

rT E 1

][
v

γ

]
=

[
0

1

]
it follows that Av = −γEr = −γE(r1, . . . , rn−1)T and γ = 1 − rT Ev. If y solves the
order-(n−1) Yule-Walker system Ay = −r, then these expressions imply that

γ = 1/(1 + rT y),

v = γEy.

Thus, the last row and column of T−1
n are readily obtained.

It remains for us to develop working formulae for the entries of the submatrix B
in (4.7.4). Since AB + ErvT = In−1, it follows that

B = A−1 − (A−1Er)vT = A−1 +
vvT

γ
.

Now since A = Tn−1 is nonsingular and Toeplitz, its inverse is persymmetric. Thus,

bij = (A−1)ij +
vivj

γ

= (A−1)n−j,n−i +
vivj

γ
(4.7.5)

= bn−j,n−i − vn−jvn−i

γ
+

vivj

γ

= bn−j,n−i +
1
γ

(vivj − vn−jvn−i) .

This indicates that although B is not persymmetric, we can readily compute an element
bij from its reflection across the northeast-southwest axis. Coupling this with the fact
that A−1 is persymmetric enables us to determine B from its “edges” to its “interior.”

Because the order of operations is rather cumbersome to describe, we preview the
formal specification of the algorithm pictorially. To this end, assume that we know the
last column and row of T−1

n :

T−1
n =

⎡⎢⎢⎢⎢⎢⎢⎣
u u u u u k
u u u u u k
u u u u u k
u u u u u k
u u u u u k
k k k k k k

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Here “u” and “k” denote the unknown and the known entries, respectively, and n =
6. Alternately exploiting the persymmetry of T−1

n and the recursion (4.7.5), we can
compute B, the leading (n − 1)-by-(n − 1) block of T−1

n , as follows:

persym−→

⎡⎢⎢⎢⎢⎢⎣
k k k k k k
k u u u u k
k u u u u k
k u u u u k
k u u u u k
k k k k k k

⎤⎥⎥⎥⎥⎥⎦
(4.7.5)−→

⎡⎢⎢⎢⎢⎢⎣
k k k k k k
k u u u k k
k u u u k k
k u u u k k
k k k k k k
k k k k k k

⎤⎥⎥⎥⎥⎥⎦
persym−→

⎡⎢⎢⎢⎢⎢⎣
k k k k k k
k k k k k k
k k u u k k
k k u u k k
k k k k k k
k k k k k k

⎤⎥⎥⎥⎥⎥⎦

(4.7.5)−→

⎡⎢⎢⎢⎢⎢⎣
k k k k k k
k k k k k k
k k u k k k
k k k k k k
k k k k k k
k k k k k k

⎤⎥⎥⎥⎥⎥⎦
persym−→

⎡⎢⎢⎢⎢⎢⎣
k k k k k k
k k k k k k
k k k k k k
k k k k k k
k k k k k k
k k k k k k

⎤⎥⎥⎥⎥⎥⎦ .

Of course, when computing a matrix that is both symmetric and persymmetric, such
as T−1

n , it is only necessary to compute the “upper wedge” of the matrix—e.g.,

× × × × × ×
× × × ×

× ×
(n = 6).

With this last observation, we are ready to present the overall algorithm.

Algorithm 4.7.3 (Trench) Given real numbers 1 = r0, r1, . . . , rn such that T =
(r|i−j|) ∈ IRn×n is positive definite, the following algorithm computes B = T−1

n . Only
those bij for which i ≤ j and i + j ≤ n + 1 are computed.

Use Algorithm 4.7.1 to solve Tn−1y = −(r1, . . . , rn−1)T .

γ = 1/(1 + r(1:n − 1)T y(1:n − 1))

v(1:n − 1) = γy(n − 1: − 1:1)

B(1, 1) = γ

B(1, 2:n) = v(n − 1: − 1:1)T

for i = 2 : floor((n − 1)/2) + 1

for j = i:n − i + 1

B(i, j) = B(i − 1, j − 1) + (v(n+1−j)v(n + 1 − i) − v(i − 1)v(j − 1)) /γ
end

end

This algorithm requires 13n2/4 flops.
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4.7.6 Stability Issues

Error analyses for the above algorithms have been performed by Cybenko (1978), and
we briefly report on some of his findings.

The key quantities turn out to be the αk in (4.7.1). In exact arithmetic these
scalars satisfy

|αk| < 1

and can be used to bound ‖ T−1 ‖1:

max

⎧⎪⎨⎪⎩
1

n−1∏
j=1

(1 − α2
j )

, 1
n−1∏
j=1

(1 − αj)

⎫⎪⎬⎪⎭ ≤ ‖ T−1
n ‖ ≤

n−1∏
j=1

1 + |αj |
1 − |αj |

. (4.7.6)

Moreover, the solution to the Yule-Walker system Tny = −r(1:n) satisfies

‖ y ‖1 =

(
n∏

k=1

(1 + αk)

)
− 1 (4.7.7)

provided all the αk are nonnegative.
Now if x̂ is the computed Durbin solution to the Yule-Walker equations, then the

vector rD = Tnx̂ + r can be bounded as follows

‖ rD ‖ ≈ u
n∏

k=1

(1 + |α̂k|),

where α̂k is the computed version of αk. By way of comparison, since each |ri| is
bounded by unity, it follows that ‖ rC ‖ ≈ u‖ y ‖1 where rC is the residual associated
with the computed solution obtained via the Cholesky factorization. Note that the two
residuals are of comparable magnitude provided (4.7.7) holds. Experimental evidence
suggests that this is the case even if some of the αk are negative. Similar comments
apply to the numerical behavior of the Levinson algorithm.

For the Trench method, the computed inverse B̂ of T−1
n can be shown to satisfy

‖ T−1
n − B̂ ‖1

‖ T−1
n ‖1

≈ u
n∏

k=1

1 + |α̂k|
1 − |α̂k|

.

In light of (4.7.7) we see that the right-hand side is an approximate upper bound for
u‖ T−1

n ‖ which is approximately the size of the relative error when T−1
n is calculated

using the Cholesky factorization.

4.7.7 A Toeplitz Eigenvalue Problem

Our discussion of the symmetric eigenvalue problem begins in Chapter 8. However, we
are able to describe a solution procedure for an important Toeplitz eigenvalue problem
that does not require the heavy machinery from that later chapter. Suppose

T =

[
1 rT

r B

]
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is symmetric, positive definite, and Toeplitz with r ∈ IRn−1. Cybenko and Van Loan
(1986) show how to pair the Durbin algorithm with Newton’s method to compute
λmin(T ) assuming that

λmin(T ) < λmin(B). (4.7.8)

This assumption is typically the case in practice. If[
1 rT

r B

] [
α
y

]
= λmin

[
α
y

]
,

then y = −α(B − λminI)−1r, α 
= 0, and

α + rT
[
−α(B − λminI)−1r

]
= λminα.

Thus, λmin is a zero of the rational function

f(λ) = 1 − λ − rT (B − λI)−1r.

Note that if λ < λmin(B), then

f ′(λ) = −1 − ‖ (B − λI)−1r ‖2
2 ≤ −1,

f ′′(λ) = −2rT (B − λI)−3r ≤ 0.

Using these facts it can be shown that if

λmin(T ) ≤ λ(0) < λmin(B), (4.7.9)

then the Newton iteration

λ(k+1) = λ(k) − f(λ(k))
f ′(λ(k))

(4.7.10)

converges to λmin(T ) monotonically from the right. The iteration has the form

λ(k+1) = λ(k) +
1 + rT w − λ(k)

1 + wT w
,

where w solves the “shifted” Yule-Walker system

(B − λ(k)I)w = −r.

Since λ(k) < λmin(B), this system is positive definite and the Durbin algorithm (Algo-
rithm 4.7.1) can be applied to the normalized Toeplitz matrix (B − λ(k)I)/(1 − λ(k)).

The Durbin algorithm can also be used to determine a starting value λ(0) that
satisfies (4.7.9). If that algorithm is applied to

Tλ = (T − λI)/(1 − λ)

then it runs to completion if Tλ is positive definite. In this case, the βk defined in
(4.7.1) are all positive. On the other hand, if k ≤ n−1, βk ≤ 0 and β1, . . . , βk−1 are all
positive, then it follows that Tλ(1:k, 1:k) is positive definite but that Tλ(1:k+1, k+1) is
not. Let m(λ) be the index of the first nonpositive β and observe that if m(λ(0)) = n−1,
then B − λ(0)I is positive definite and T − λ(0)I is not, thereby establishing (4.7.9). A
bisection scheme can be formulated to compute λ(0) with this property:
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L = 0

R = 1 − |r1|
µ = (L + R)/2

while m(µ) 
= n − 1

if m(µ) < n − 1

R = µ
else (4.7.11)

L = µ
end
µ = (L + R)/2

end

λ(0) = µ

At all times during the iteration we have m(L) ≤ n − 1 ≤ m(R). The initial value for
R follows from the inequality

0 < λmin(T ) < λmin(B) ≤ λmin

([
1 r1
r1 1

])
= 1 − |r1|.

Note that the iterations in (4.7.10) and (4.7.11) involve at most O(n2) flops per pass.
A heuristic argument that O(log n) iterations are required is given by Cybenko and
Van Loan (1986).

4.7.8 Unsymmetric Toeplitz System Solving

We close with some remarks about unsymmetric Toeplitz system-solving. Suppose we
are given scalars r1, . . . , rn−1, p1, . . . , pn−1, and b1, . . . , bn and that we want to solve a
linear system Tx = b of the form

⎡⎢⎢⎢⎢⎣
1 r1 r2 r3 r4
p1 1 r1 r2 r3
p2 p1 1 r1 r2
p3 p2 p1 1 r1
p4 p3 p2 p1 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
b1
b2
b3
b4
b5

⎤⎥⎥⎥⎥⎦ (n = 5).

Assume that Tk = T (1:k, 1:k) is nonsingular for k = 1:n. It can shown that if we have
the solutions to the k-by-k systems

TT
k y = −r = − [r1 r2 · · · rk ]T ,

Tkw = −p = − [p1 p2 · · · pk ]T ,

Tkx = b = [b1 b2 · · · bk ]T ,

(4.7.12)
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then we can obtain solutions to[
Tk Ekr

pTEk 1

]T[
z

α

]
= −

[
r

rk+1

]
,

[
Tk Ekr

pTEk 1

] [
u

ν

]
= −

[
p

pk+1

]
,

[
Tk Ekr

pTEk 1

] [
v

µ

]
=

[
b

bk+1

]
(4.7.13)

in O(k) flops. The update formula derivations are very similar to the Levinson algo-
rithm derivations in §4.7.3. Thus, if the process is repeated for k = 1:n − 1, then we
emerge with the solution to Tx = Tnx = b. Care must be exercised if a Tk matrix is
singular or ill-conditioned. One strategy involves a lookahead idea. In this framework,
one might transition from the Tk problem directly to the Tk+2 problem if it is deemed
that the Tk+1 problem is dangerously ill-conditioned. See Chan and Hansen (1992).
An alternative approach based on displacement rank is given in §12.1.

Problems

P4.7.1 For any v ∈ IRn define the vectors v+ = (v+Env)/2 and v− = (v−Env)/2. Suppose A ∈ IRn×n

is symmetric and persymmetric. Show that if Ax = b then Ax+ = b+ and Ax− = b−.

P4.7.2 Let U ∈ IRn×n be the unit upper triangular matrix with the property that U(1:k − 1, k) =
Ek−1y(k−1) where y(k) is defined by (4.7.1). Show that UT TnU = diag(1, β1, . . . , βn−1).

P4.7.3 Suppose that z ∈ IRn and that S ∈ IRn×n is orthogonal. Show that if X =
[
z, Sz, . . . , Sn−1z

]
,

then XT X is Toeplitz.

P4.7.4 Consider the LDLT factorization of an n-by-n symmetric, tridiagonal, positive definite Toeplitz
matrix. Show that dn and �n,n−1 converge as n →∞.

P4.7.5 Show that the product of two lower triangular Toeplitz matrices is Toeplitz.

P4.7.6 Give an algorithm for determining µ ∈ IR such that Tn +µ
(
eneT

1 + e1eT
n

)
is singular. Assume

Tn = (r|i−j|) is positive definite, with r0 = 1.

P4.7.7 Suppose T ∈ IRn×n is symmetric, positive definite, and Toeplitz with unit diagonal. What is
the smallest perturbation of the the ith diagonal that makes T semidefinite?

P4.7.8 Rewrite Algorithm 4.7.2 so that it does not require the vectors z and v.

P4.7.9 Give an algorithm for computing κ∞(Tk) for k = 1:n.

P4.7.10 A p-by-p block matrix A = (Aij) with m-by-m blocks is block Toeplitz if there exist
A−p+1, . . . , A−1, A0, A1, . . . , Ap−1 ∈ IRm×m so that Aij = Ai−j , e.g.,

A =

⎡⎣ A0 A1 A2 A3
A−1 A0 A1 A2
A−2 A−1 A0 A1
A−3 A−2 A−1 A0

⎤⎦ .

(a) Show that there is a permutation Π such that

ΠT AΠ = :

⎡⎢⎢⎢⎣
T11 T12 · · · T1m

T21 T22
...

...
. . .

...
Tm1 · · · Tmm

⎤⎥⎥⎥⎦
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where each Tij is p-by-p and Toeplitz. Each Tij should be “made up” of (i, j) entries selected from
the Ak matrices. (b) What can you say about the Tij if Ak = A−k, k = 1:p− 1?

P4.7.11 Show how to compute the solutions to the systems in (4.7.13) given that the solutions to the
systems in (4.7.12) are available. Assume that all the matrices involved are nonsingular. Proceed to
develop a fast unsymmetric Toeplitz solver for Tx = b assuming that T ’s leading principal submatrices
are all nonsingular.

P4.7.12 Consider the order-k Yule-Walker system Tky(k) = −r(k) that arises in (4.7.1). Show that if
y(k) = [yk1, . . . , ykk]T for k = 1:n− 1 and

L =

⎡⎢⎢⎢⎣
1 0 0 0 · · · 0

y11 1 0 0 · · · 0
y22 y21 1 0 · · · 0
...

...
...

...
. . .

...
yn−1,n−1 yn−1,n−2 yn−1,n−3 · · · yn−1,1 1

⎤⎥⎥⎥⎦ ,

then LT TnL = diag(1, β1, . . . , βn−1) where βk = 1 + r(k)T
y(k). Thus, the Durbin algorithm can be

thought of as a fast method for computing and LDLT factorization of T−1
n .

P4.7.13 Show how the Trench algorithm can be used to obtain an initial bracketing interval for the
bisection scheme (4.7.11).
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A.W. Bojanczyk, R.P. Brent, F.R. de Hoog, and D.R. Sweet (1995). “On the Stability of the Bareiss
and Related Toeplitz Factorization Algorithms,” SIAM J. Matrix Anal. Applic. 16, 40–57.
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P. Favati, G. Lotti, and O. Menchi (2010). “Stability of the Levinson Algorithm for Toeplitz-Like
Systems,” SIAM J. Matrix Anal. Applic. 31, 2531–2552.

Papers concerned with the lookahead idea include:

T.F. Chan and P. Hansen (1992). “A Look-Ahead Levinson Algorithm for Indefinite Toeplitz Systems,”
SIAM J. Matrix Anal. Applic. 13, 490–506.
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M. Van Barel and A. Bultheel (1997). “A Lookahead Algorithm for the Solution of Block Toeplitz
Systems,” Lin. Alg. Applic. 266, 291–335.

Various Toeplitz eigenvalue computations are presented in:

G. Cybenko and C. Van Loan (1986). “Computing the Minimum Eigenvalue of a Symmetric Positive
Definite Toeplitz Matrix,” SIAM J. Sci. Stat. Comput. 7, 123–131.

W.F. Trench (1989). “Numerical Solution of the Eigenvalue Problem for Hermitian Toeplitz Matrices,”
SIAM J. Matrix Anal. Appl. 10, 135–146.

H. Voss (1999). “Symmetric Schemes for Computing the Minimum Eigenvalue of a Symmetric Toeplitz
Matrix,” Lin. Alg. Applic. 287, 359–371.

A. Melman (2004). “Computation of the Smallest Even and Odd Eigenvalues of a Symmetric Positive-
Definite Toeplitz Matrix,” SIAM J. Matrix Anal. Applic. 25, 947–963.

4.8 Circulant and Discrete Poisson Systems
If A ∈ Cn×n has a factorization of the form

V −1AV = Λ = diag(λ1, . . . , λn), (4.8.1)

then the columns of V are eigenvectors and the λi are the corresponding eigenvalues2.
In principle, such a decomposition can be used to solve a nonsingular Au = b problem:

u = A−1b = (V ΛV −1)−1b = V (Λ−1(V −1b)). (4.8.2)

However, if this solution framework is to rival the efficiency of Gaussian elimination or
the Cholesky factorization, then V and Λ need to be very special. We say that A has
a fast eigenvalue decomposition (4.8.1) if

(1) Matrix-vector products of the form y = Vx require O(n log n) flops
to evaluate.

(2) The eigenvalues λ1, . . . , λn require O(n log n) flops to evaluate.

(3) Matrix-vector products of the form b̃ = V −1b require O(n log n) flops
to evaluate.

If these three properties hold, then it follows from (4.8.2) that O(n log n) flops are
required to solve Au = b.

Circulant systems and related discrete Poisson systems lend themselves to this
strategy and are the main concern of this section. In these applications, the V -matrices
are associated with the discrete Fourier transform and various sine and cosine trans-
forms. (Now is the time to review §1.4.1 and §1.4.2 and to recall that we have n log n
methods for the DFT, DST, DST2, and DCT.) It turns out that fast methods ex-
ist for the inverse of these transforms and that is important because of (3). We will
not be concerned with precise flop counts because in the fast transform “business”,
some n are friendlier than others from the efficiency point of view. While this issue
may be important in practice, it is not something that we have to worry about in our
brief, proof-of-concept introduction. Our discussion is modeled after §4.3–§4.5 in Van
Loan (FFT) where the reader can find complete derivations and greater algorithmic de-
tail. The interconnection between boundary conditions and fast transforms is a central
theme and in that regard we also recommend Strang (1999).

2This section does not depend on Chapters 7 and 8 which deal with computing eigenvalues and
eigenvectors. The eigensystems that arise in this section have closed-form expressions and thus the
algorithms in those later chapters are not relevant to the discussion.
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4.8.1 The Inverse of the DFT Matrix

Recall from §1.4.1 that the DFT matrix Fn ∈ Cn×n is defined by

[Fn]kj = ω(k−1)(j−1)
n , ωn = cos

(
2π

n

)
− i sin

(
2π

n

)
.

It is easy to verify that
FH

n = F̄n

and so for all p and q that satisfy 0 ≤ p < n and 0 ≤ q < n we have

Fn(:, p + 1)HFn(:, q + 1) =
n−1∑
k=0

ω̄kp
n ωkq

n =
n−1∑
k=0

ωk(q−p)
n .

If q = p, then this sum equals n. Otherwise,
n−1∑
k=0

ωk(q−p)
n =

1 − ω
n(q−p)
n

1 − ωq−p
n

=
1 − 1

1 − ωq−p
n

= 0.

It follows that
nIn = FH

n Fn = F̄nFn.

Thus, the DFT matrix is a scaled unitary matrix and

F−1
n =

1
n

F̄n.

A fast Fourier transform procedure for Fnx can be turned into a fast inverse Fourier
transform procedure for F−1

n x. Since

y = F−1
n x =

1
n

F̄nx,

simply replace each reference to ωn with a reference to ω̄n and scale. See Algorithm
1.4.1.

4.8.2 Circulant Systems

A circulant matrix is a Toeplitz matrix with “wraparound”, e.g.,

C(z) =

⎡⎢⎢⎢⎢⎣
z0 z4 z3 z2 z1
z1 z0 z4 z3 z2
z2 z1 z0 z4 z3
z3 z2 z1 z0 z4
z4 z3 z2 z1 z0

⎤⎥⎥⎥⎥⎦ .

We assume that the vector z is complex. Any circulant C(z) ∈ Cn×n is a linear combi-
nation of In, Dn, . . . , Dn−1

n where Dn is the downshift permutation defined in §1.2.11.
For example, if n = 5, then

D5 =

⎡⎢⎢⎢⎢⎣
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎦
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and

D2
5 =

⎡⎢⎢⎢⎢⎣
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤⎥⎥⎥⎥⎦ , D3
5 =

⎡⎢⎢⎢⎢⎣
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

⎤⎥⎥⎥⎥⎦ , D4
5 =

⎡⎢⎢⎢⎢⎣
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤⎥⎥⎥⎥⎦ .

Thus, the 5-by-5 circulant matrix displayed above is given by

C(z) = z0I + z1Dn + z2D2
n + z3D3

n + z4D4
n.

Note that D5
5 = I5. More generally,

z =

⎡⎢⎢⎢⎣
z0
z1
...

zn−1

⎤⎥⎥⎥⎦ ⇒ C(z) =
n−1∑
k=0

zkDk
n. (4.8.3)

Note that if V −1DnV = Λ is diagonal, then

V −1C(z)V = V −1

(
n−1∑
k=0

zkDk
n

)
V =

n−1∑
k=0

zk

(
V −1DnV −1)k

=
n−1∑
k=0

zkΛk (4.8.4)

is diagonal. It turns out that the DFT matrix diagonalizes the downshift permutation.

Lemma 4.8.1. If V = Fn, then V −1DnV = Λ = diag(λ1, . . . , λn) where

λj+1 = ω̄j
n = cos

(
2jπ

n

)
+ i sin

(
2jπ

n

)
for j = 0:n − 1.

Proof. For j = 0:n − 1 we have

DnFn(:, j + 1) = Dn

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

ωj
n

ω2j
n
...

ω
(n−1)j
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ω
(n−1)j
n

1

ωj
n
...

ω
(n−2)j
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= ω̄j

n

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

ωj
n

ω2j
n
...

ω
(n−1)j
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This vector is precisely FnΛ(:, j + 1). Thus, DnV = V Λ, i.e., V −1DnV = Λ.

It follows from (4.8.4) that any circulant C(z) is diagonalized by Fn and the eigenvalues
of C(z) can be computed fast.
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Theorem 4.8.2. Suppose z ∈ Cn and C(z) are defined by (4.8.3). If V = Fn and
λ = F̄nz, then V −1C(z)V = diag(λ1, . . . , λn).

Proof. Define

f =

⎡⎢⎢⎢⎣
1

ω̄n

...
ω̄n−1

n

⎤⎥⎥⎥⎦
and note that the columns of F̄n are componentwise powers of this vector. In particular,
F̄n(:, k + 1) = f.̂ k where [f.̂ k]j = fk

j . Since Λ = diag(f), it follows from Lemma 4.8.1
that

V −1C(z)V =
n−1∑
k=0

zkΛk =
n−1∑
k=0

zk diag(f)k =
n−1∑
k=0

zk diag(f.̂ k)

= diag

(
n−1∑
k=0

zk f.̂ k

)
= diag

(
F̄nz

)
completing the proof of the theorem

Thus, the eigenvalues of the circulant matrix C(z) are the components of the vector
F̄nz. Using this result we obtain the following algorithm.

Algorithm 4.8.1 If z ∈ Cn, y ∈ Cn, and C(z) is nonsingular, then the following
algorithm solves the linear system C(z)x = y.

Use an FFT to compute c = F̄ny and d = F̄nz.
w = c./d

Use an FFT to compute u = Fnw.
x = u/n

This algorithm requires O(n log n) flops.

4.8.3 The Discretized Poisson Equation in One Dimension

We now turn our attention to a family of real matrices that have real, fast eigenvalue
decompositions. The starting point in the discussion is the differential equation

d2u

dx2 = −f(x) α ≤ u(x) ≤ β, (4.8.5)

together with one of four possible specifications of u(x) on the boundary.

Dirichlet-Dirichlet (DD): u(α) = uα, u(β) = uβ ,

Dirichlet-Neumann (DN): u(α) = uα, u′(β) = u′β ,

Neumann-Neumann (NN): u′(α) = u′α, u′(β) = u′β ,

Periodic (P): u(α) = u(β).
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By replacing the derivatives in (4.8.5) with divided differences, we obtain a system of
linear equations. Indeed, if m is a positive integer and

h =
β − α

m
,

then for i = 1:m − 1 we have

ui+1 − ui

h
− ui − ui−1

h

h
=

ui−1 − 2ui + ui+1

h2 = −fi (4.8.6)

where fi = f(α+ih) and ui ≈ u(α+ih). To appreciate this discretization we display the
linear equations that result when m = 5 for the various possible boundary conditions.
The matrices T (DD)

n , T (DN)
n , T (NN)

n , and T (P)
n are formally defined afterwards.

For the Dirichlet-Dirichlet problem, the system is 4-by-4 and tridiagonal:

T (DD)
4 · u(1:4) ≡

⎡⎢⎢⎢⎣
2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u1

u2

u3

u4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
h2f1 + uα

h2f2

h2f3

h2f4 + uβ

⎤⎥⎥⎥⎦ .

For the Dirichlet-Neumann problem the system is still tridiagonal, but u5 joins u1, . . . , u4
as an unknown:

T (DN)
5 · u(1:5) ≡

⎡⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −2 2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

h2f1 + uα

h2f2

h2f3

h2f4

2hu′β

⎤⎥⎥⎥⎥⎥⎥⎦ .

The new equation on the bottom is derived from the approximation u′(β) ≈ (u5−u4)/h.
(The scaling of this equation by 2 simplifies some of the derivations below.) For the
Neumann-Neumann problem, u5 and u0 need to be determined:

T (NN)
6 · u(0:5) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

u2

u3

u4

u5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2hu′α
h2f1

h2f2

h2f3

h2f3

2hu′β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Finally, for the periodic problem we have

T (P)
5 · u(1:5) ≡

⎡⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

h2f1

h2f2

h2f3

h2f4

h2f5

⎤⎥⎥⎥⎥⎥⎥⎦ .
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The first and last equations use the conditions u0 = u5 and u1 = u6. These constraints
follow from the assumption that u has period β − α.

As we show below, the n-by-n matrix

T (DD)
n =

⎡⎢⎢⎢⎢⎣
2 −1 · · · 0

−1 2
. . .

...
...

. . . . . . −1
0 · · · −1 2

⎤⎥⎥⎥⎥⎦ (4.8.7)

and its low-rank adjustments

T (DN)
n = T (DD)

n − eneT
n−1, (4.8.8)

T (NN)
n = T (DD)

n − eneT
n−1 − e1e

T
2 , (4.8.9)

T (P)
n = T (DD)

n − e1e
T
n − eneT

1 . (4.8.10)

have fast eigenvalue decompositions. However, the existence of O(n log n) methods for
these systems is not very interesting because algorithms based on Gaussian elimina-
tion are faster: O(n) versus O(n log n). Things get much more interesting when we
discretize the 2-dimensional analogue of (4.8.5).

4.8.4 The Discretized Poisson Equation in Two Dimensions

To launch the 2D discussion, suppose F (x, y) is defined on the rectangle

R = {(x, y) : αx ≤ x ≤ βx, αy ≤ y ≤ βy}
and that we wish to find a function u that satisfies

∂2u

∂x2 +
∂2u

∂y2 = −F (x, y) (4.8.11)

on R and has its value prescribed on the boundary of R. This is Poisson’s equation
with Dirichlet boundary conditions. Our plan is to approximate u at the grid points
(αx + ihx, αy + jhy) where i = 1:m1 − 1, j = 1:m2 − 1, and

hx =
βx − αx

m1
hy =

βy − αy

m2
.

Refer to Figure 4.8.1, which displays the case when m1 = 6 and m2 = 5. Notice that
there are two kinds of grid points. The function u is known at the “•” grid points on
the boundary. The function u is to be determined at the “◦” grid points in the interior.
The interior grid points have been indexed in a top-to-bottom, left-to-right order. The
idea is to have uk approximate the value of u(x, y) at grid point k.

As in the one-dimensional problem considered §4.8.3, we use divided differences
to obtain a set of linear equations that define the unknowns. An interior grid point P
has a north (N), east (E), south (S), and west (W ) neighbor. Using this “compass
point” notation we obtain the following approximation to (4.8.11) at P :

u(E) − u(P )
hx

− u(P ) − u(W )
hx

hx

+

u(N) − u(P )
hy

− u(P ) − u(S)
hy

hy

= −F (P )
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 4.8.1. A grid with m1 = 6 and m2 = 5.

The x-partial and y-partial have been replaced by second-order divided differences.
Assume for clarity that the horizontal and vertical grid spacings are equal, i.e., hx =
hy = h. With this assumption, the linear equation at point P has the form

4u(P ) − u(N) − u(E) − u(S) − u(W ) = h2F (P ).

In our example, there are 20 such equations. It should be noted that some of P ’s
neighbors may be on the boundary, in which case the corresponding linear equation
involves fewer than 5 unknowns. For example, if P is the third grid point then we see
from Figure 4.8.1 that the north neighbor N is on the boundary. It follows that the
associated linear equation has the form

4u(P ) − u(E) − u(S) − u(W ) = h2F (P ) + u(N).

Reasoning like this, we conclude that the matrix of coefficients has the following block
tridiagonal form

A =

⎡⎢⎢⎢⎢⎢⎣
T (DD)

5 0 0 0

0 T (DD)
5 0 0

0 0 T (DD)
5 0

0 0 0 T (DD)
5

⎤⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎣
2I5 −I5 0 0

−I5 2I5 −I5 0

0 −I5 2I5 −I5

0 0 −I5 2I5

⎤⎥⎥⎥⎥⎦
i.e.,

A = I4 ⊗ T (DD)
5 + T (DD)

4 ⊗ I5.

Notice that the first matrix is associated with the x-partials while the second matrix
is associated with the y-partials. The right-hand side in Au = b is made up of F -
evaluations and specified values of u(x, y) on the boundary.
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Extrapolating from our example, we conclude that the matrix of coefficients is an
(m2 − 1)-by-(m2 − 1) block tridiagonal matrix with (m1 − 1)-by-(m1 − 1) blocks:

A = Im2−1 ⊗ T (DD)
m1−1 + T (DD)

m2−1 ⊗ Im1−1.

Alternative specifications along the boundary lead to systems with similar structure,
e.g.,

Au ≡ (In2
⊗ A1 + A2 ⊗ In1) u = b. (4.8.12)

For example, if we impose Dirichet-Neumann, Neumann-Neumann, or periodic bound-
ary conditions along the left and right edges of the rectangular domain R, then A1 will
equal T (DN)

m1 , T (NN)
m1+1, or T (P)

m1 accordingly. Likewise, if we impose Dirichet-Neumann,
Neumann-Neumann, or periodic boundary conditions along the bottom and top edges
of R, then A2 will equal T (DN)

m2 , T (NN)
m2+1, or T (P)

m2 . If the system (4.8.12) is nonsingular
and A1 and A2 have fast eigenvalue decompositions, then it can be solved with just
O(N log N) flops where N = n1n2. To see why this is possible, assume that

V −1A1V = D1 = diag(λ1, . . . , λn1), (4.8.13)

W−1A2W = D2 = diag(µ1, . . . , µn2) (4.8.14)

are fast eigenvalue decompositions. Using facts about the Kronecker product that are
set forth in §1.3.6–§1.3.8, we can reformulate (4.8.12) as a matrix equation

A1U + UAT
2 = B

where U = reshape(u, n1, n2) and B = reshape(b, n1, n2). Substituting the above eigen-
value decompositions into this equation we obtain

D1Ũ + ŨD2 = B̃,

where Ũ = (ũij) = V −1UW−T and B̃ = (b̃ij) = V −1BW−T . Note how easy it is to
solve this transformed system because D1 and D2 are diagonal:

ũij =
b̃ij

λi + µj
i = 1:n1, j = 1:n2.

For this to be well-defined, no eigenvalue of A1 can be the negative of an eigenvalue of
A2. In our example, all the λi and µi are positive. Overall we obtain

Algorithm 4.8.2 (Fast Poisson Solver Framework) Assume that A1 ∈ IRn1×n1 and
A2 ∈ IRn2×n2 have fast eigenvalue decompositions (4.8.13) and (4.8.14) and that the
matrix A = In2

⊗ A1 + A2 ⊗ In1 is nonsingular. The following algorithm solves the
linear system Au = b where b ∈ IRn1n2 .

B̃ = (W−1(V −1B)T )T where B = reshape(b, n1, n2)
for i = 1:n1

for j = 1:n2

ũij = b̃ij/(λi + µj)
end

end
u = reshape(U, n1n2, 1) where U = (W (V Ũ)T )T
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The following table accounts for the work involved:

Operation How Many? Work

V −1 times n1-vector n2 O(n2 ·n1 ·log n1)

W−1 times n2-vector n1 O(n1 ·n2 ·log n2)

V times n1-vector n2 O(n2 ·n1 ·log n1)

W times n2-vector n1 O(n1 ·n2 ·log n2)

Adding up the operation counts, we see that O(n1n2 log(n1n2)) = O(N log N) flops
are required where N = n1n2 is the size of the matrix A.

Below we show that the matrices T (DD)
n , T (DN)

n , T (NN)
n , and T (P)

n have fast eigen-
value decompositions and this means that Algorithm 4.8.2 can be used to solve dis-
crete Poisson systems. To appreciate the speedup over conventional methods, suppose
A1 = T (DD)

n1 and A2 = T (DD)
n2 . It can be shown that A is symmetric positive definite

with bandwidth n1 + 1. Solving Au = b using Algorithm 4.3.5 (band Cholesky) would
require O(n3

1 n2) = O(N n2
1) flops.

4.8.5 The Inverse of the DST and DCT Matrices

The eigenvector matrices for T (DD)
n , T (DN)

n , T (NN)
n , and T (P)

n are associated with the
fast trigonometric transforms presented in §1.4.2. It is incumbent upon us to show that
the inverse of these transforms can also be computed fast. We do this for the discrete
sine transform (DST) and the discrete cosine transform (DCT) and leave similar fast
inverse verifications to the exercises at the end of the section.

By considering the blocks of the DFT matrix F2m, we can determine the inverses
of the transform matrices DST(m − 1) and DCT(m + 1). Recall from §1.4.2 that if
Cr ∈ IRr×r and Sr ∈ IRr×r are defined by

[Cr]kj = cos
(

kjπ

r + 1

)
, [Sr]kj = sin

(
kjπ

r + 1

)
then

F2m =

⎡⎢⎢⎢⎣
1 eT 1 eT

e C − iS v (C + iS)E

1 vT (−1)m vT E

e E(C + iS) Ev E(C − iS)E

⎤⎥⎥⎥⎦
where C = Cm−1, S = Sm−1, E = Em−1, and

eT = ( 1, 1, . . . , 1︸ ︷︷ ︸
m−1

) vT = ( −1, 1, . . . , (−1)m−1︸ ︷︷ ︸
m−1

).

By comparing the (2,1), (2,2), (2,3), and (2,4) blocks in the equation 2mI = F̄2mF2m

we conclude that

0 = 2Ce + e + v,
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2mIm−1 = 2C2 + 2S2 + eeT + vvT ,

0 = 2Cv + e + (−1)mv,

0 = 2C2 − 2S2 + eeT + vvT .

It follows that 2S2 = mIm−1 and 2C2 = mIm−1 − eeT − vvT . Using these equations it
is easy to verify that

S−1
m−1 =

2
m

Sm−1

and ⎡⎢⎣ 1/2 eT 1/2

e/2 Cm−1 v/2

1/2 vT (−1)m/2

⎤⎥⎦
−1

=
2
m

⎡⎢⎣ 1/2 eT 1/2

e/2 Cm−1 v/2

1/2 vT (−1)m/2

⎤⎥⎦ .

Thus, it follows from the definitions (1.4.8) and (1.4.10) that

V = DST(m − 1) ⇒ V −1 =
2
m

DST(m − 1),

V = DCT(m + 1) ⇒ V −1 =
2
m

DCT(m + 1).

In both cases, the inverse transform is a multiple of the “forward” transform and can
be computed fast. See Algorithms 1.4.2 and 1.4.3.

4.8.6 Four Fast Eigenvalue Decompositions

The matrices T (DD)
n , T (DN)

n , T (NN)
n , and T (P)

n do special things to vectors of sines and
cosines.

Lemma 4.8.3. Define the real n-vectors s(θ) and c(θ) by

s(θ) =

⎡⎢⎣ s1
...

sn

⎤⎥⎦ , c(θ) =

⎡⎢⎣ c0
...

cn−1

⎤⎥⎦ , (4.8.15)

where sk = sin(kθ) and ck = cos(kθ). If ek = In(:, k) and λ = 4 sin2(θ/2), then

T (DD)
n ·s(θ) = λ·s(θ) + sn+1en, (4.8.16)

T (DD)
n ·c(θ) = λ·c(θ) + c1e1 + cnen, (4.8.17)

T (DN)
n ·s(θ) = λ·s(θ) + (sn+1 − sn−1)en, (4.8.18)

T (NN)
n ·c(θ) = λ·c(θ) + (cn − cn−2)en, (4.8.19)

T (P)
n ·s(θ) = λ·s(θ) − sne1 + (sn+1 − s1)en, (4.8.20)

T (P)
n ·c(θ) = λ·c(θ) + (c1 − cn−1)e1 + (cn − 1)en. (4.8.21)
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Proof. The proof is mainly an exercise in using the trigonometric identities

sk−1 = c1sk − s1ck, ck−1 = c1ck + s1sk,

sk+1 = c1sk + s1ck, ck+1 = c1ck − s1sk.

For example, if y = T (DD)
n s(θ), then

yk =

⎧⎪⎨⎪⎩
2s1 − s2 = 2s1(1 − c1), if k = 1,

−sk−1 + 2sk − sk+1 = 2sk(1 − c1), if 2 ≤ k ≤ n − 1,

−sn−1 + 2sn = 2sn(1 − c1) + sn+1, if k = n.

Equation (4.8.16) follows since (1−c1) = 1−cos(θ) = 2 sin2(θ/2). The proof of (4.8.17)
is similar while the remaining equations follow from Equations (4.8.8)–(4.8.10).

Notice that (4.8.16)-(4.8.21) are eigenvector equations except for the “e1” and “en”
terms. By choosing the right value for θ, we can make these residuals disappear,
thereby obtaining recipes for the eigensystems of T (DD)

n , T (DN)
n , T (NN)

n , and T (P)
n .

The Dirichlet-Dirichlet Matrix

If j is an integer and θ = jπ/(n + 1), then sn+1 = sin((n + 1)θ) = 0. It follows
from (4.8.16) that

T (DD)
n s(θj) = 4 sin2(θj/2)s(θj), θj =

jπ

n + 1
,

for j = 1:n. Thus, the columns of the matrix V
(DD)
n ∈ IRn×n defined by

[V (DD)
n ]kj = sin

(
kjπ

n + 1

)
are eigenvectors for T (DD)

n and the corresponding eigenvalues are given by

λj = 4 sin2

(
jπ

2(n + 1)

)
,

for j = 1:n. Note that V
(DD)
n = DST(n). It follows that T (DD)

n has a fast eigenvalue
decomposition.

The Dirichlet-Neumann Matrix

If j is an integer and θ = (2j − 1)π/(2n), then sn+1 − sn−1 = 2s1cn = 0. It
follows from (4.8.18) that

T (DN)
n · s(θj) = 4 sin2(θj/2) · s(θj), θj =

(2j − 1)π
2n

,

for j = 1:n. Thus, the columns of the matrix V
(DN)
n ∈ IRn×n defined by

[V (DN)
n ]kj = sin

(
k(2j − 1)π

2n

)
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are eigenvectors of the matrix T (DN)
n and the corresponding eigenvalues are given by

λj = 4 sin2

(
(2j − 1)π

4n

)

for j = 1:n. Comparing with (1.4.13) we see that that V
(DN)
n = DST2(n). The inverse

DST2 can be evaluated fast. See Van Loan (FFT, p. 242) for details, but also P4.8.11.
It follows that T (DN) has a fast eigenvalue decomposition.

The Neumann-Neumann Matrix

If j is an integer and θ = (j − 1)π/(n − 1), then cn − cn−2 = −2s1sn−1 = 0. It
follows from (4.8.19) that

T (NN)
n · c(θj) = 4 sin2

(
θj

2

)
· c(θj), θj =

(j − 1)π
n − 1

.

Thus, the columns of the matrix V
(DN)
n ∈ IRn×n defined by

[V (NN)
n ]kj = cos

(
(k − 1)(j − 1)π

n − 1

)
are eigenvectors of the matrix T (DN)

n and the corresponding eigenvalues are given by

λj = 4 sin2

(
(j − 1)π

2(n − 1)

)

for j = 1:n. Comparing with (1.4.10) we see that

V (NN)
n = DCT(n) · diag(2, In−2, 2)

and therefore T (NN) has a fast eigenvalue decomposition.

The Periodic Matrix

We can proceed to work out the eigenvalue decomposition for T (P)
n as we did in

the previous three cases, i.e., by zeroing the residuals in (4.8.20) and (4.8.21). However,
T (P)

n is a circulant matrix and so we know from Theorem 4.8.2 that

F−1
n T (P)

n Fn = diag(λ1, . . . , λn)

where

λ = F̄n

⎡⎢⎢⎢⎢⎢⎣
2

−1
0
...

−1

⎤⎥⎥⎥⎥⎥⎦ = 2F̄n(:, 1) − F̄n(:, 2) − F̄n(:, n).

It can be shown that

λj = 4 sin2
(

(j − 1)π
n

)
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for j = 1:n. It follows that T (P)
n has a fast eigenvalue decomposition. However, since

this matrix is real it is preferable to have a real V -matrix. Using the facts that

λj = λn+2−j (4.8.22)

and
F̄n(:, j) = Fn(:, (n + 2 − j)) (4.8.23)

for j = 2:n, it can be shown that if m = ceil((n + 1)/2) and

V (P)
n = [Re(Fn(:, 1:m) | Im(Fn(:, m + 1:n)) ] (4.8.24)

then
T (P)

n V (P)
n (:, j) = λjV

(P)
n (:, j) (4.8.25)

for j = 1:n. Manipulations with this real matrix and its inverse can be carried out
rapidly as discussed in Van Loan (FFT, Chap. 4).

4.8.7 A Note on Symmetry and Boundary Conditions

In our presentation, the matrices T (DN)
n and T (NN)

n are not symmetric. However, a sim-
ple diagonal similarity transformation changes this. For example, if D = diag(In−1,

√
2),

then D−1T (DN)
n D is symmetric. Working with symmetric second difference matrices

has certain attractions, i.e., the automatic orthogonality of the eigenvector matrix. See
Strang (1999).

Problems

P4.8.1 Suppose z ∈ IRn has the property that z(2:n) = En−1z(2:n). Show that C(z) is symmetric
and F̄nz is real.

P4.8.2 As measured in the Frobenius norm, what is the nearest real circulant matrix to a given real
Toeplitz matrix?

P4.8.3 Given x, z ∈ Cn, show how to compute y = C(z)·x in O(n log n) flops. In this case, y is the
cyclic convolution of x and z.

P4.8.4 Suppose a = [ a−n+1, . . . , a−1, a0, a1, . . . , an−1 ] and let T = (tkj) be the n-by-n Toeplitz
matrix defined by tkj = ak−j . Thus, if a = [ a−2, a−1, a0, a1, a2 ], then

T = T (a) =

[
a0 a−1 a−2
a1 a0 a−1
a2 a1 a0

]
.

It is possible to “embed” T into a circulant, e.g.,

C =

⎡⎢⎢⎢⎢⎢⎢⎣

a0 a−1 a−2 0 0 0 a2 a1
a1 a0 a−1 a−2 0 0 0 a2
a2 a1 a0 a−1 a−2 0 0 0
0 a2 a1 a0 a−1 a−2 0 0
0 0 a2 a1 a0 a−1 a−2 0
0 0 0 a2 a1 a0 a−1 a−2

a−2 0 0 0 a2 a1 a0 a−1
a−1 a−2 0 0 0 a2 a1 a0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Given a−n+1, . . . , a−1, 10, a1, . . . , an−1 and m ≥ 2n− 1, show how to construct a vector v ∈ Cm so
that if C = C(v), then C(1:n, 1:n) = T . Note that v is not unique if m > 2n− 1.

P4.8.5 Complete the proof of Lemma 4.8.3.
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P4.8.6 Show how to compute a Toeplitz-vector product y = Tu in n log n time using the embedding
idea outlined in the previous problem and the fact that circulant matrices have a fast eigenvalue
decomposition.

P4.8.7 Give a complete specification of the vector b in (4.8.12) if A1 = T (DD)
n1 , A2 = T (DD)

n2 , and
u(x, y) = 0 on the boundary of the rectangular domain R. In terms of the underlying grid, n1 = m1−1
and n2 = m2 − 1.

P4.8.8 Give a complete specification of the vector b in (4.8.12) if A1 = T (DN)
n1 , A2 = T (DN)

n2 ,
u(x, y) = 0 on the bottom and left edge of R, ux(x, y) = 0 along the right edge of R, and uy(x, y) = 0
along the top edge of R. In terms of the underlying grid, n1 = m1 and n2 = m2.

P4.8.9 Define a Neumann-Dirichlet matrix T (ND)
n that would arise in conjunction with (4.8.5) if u′(α)

and u(β) were specified. Show that T (ND)
n has a fast eigenvalue decomposition.

P4.8.10 . The matrices T (NN)
n and T (P )

n are singular. (a) Assuming that b is in the range of A =
In2

⊗ T (P )
n1 + T (P )

n2
⊗ In1 , how would you solve the linear system Au = b subject to the constraint

that the mean of u’s components is zero? Note that this constraint makes the system solvable. (b)
Repeat part (a) replacing T (P )

n1 with T (NN)
n1 and T (P )

n2 with T (NN)
n2 .

P4.8.11 Let V be the matrix that defines the DST2(n) transformation in (1.4.12). (a) Show that

V T V =
n

2
In +

1
2

vvT

where v = [1, −1, 1, . . . , (−1)n]T . (b) Verify that

V −1 =
2
n

(
I − 1

2n
vvT

)
V T .

(c) Show how to compute V −1x rapidly.

P4.8.12 Verify (4.8.22), (4.8.23), and (4.8.25).

P4.8.13 Show that if V = V
(P )
2m defined in (4.8.24), then

V T V = m (In + e1eT
1 + em+1eT

m+1).

What can you say about V T V if V = V
(P )
2m−1?

Notes and References for §4.8

As we mentioned, this section is based on Van Loan (FFT). For more details about fast Poisson solvers,
see:

R.W. Hockney (1965). “A Fast Direct Solution of Poisson’s Equation Using Fourier Analysis,” J.
Assoc. Comput. Mach. 12, 95–113.

B. Buzbee, G. Golub, and C. Nielson (1970). “On Direct Methods for Solving Poisson’s Equation,”
SIAM J. Numer. Anal. 7, 627–656.

F. Dorr (1970). “The Direct Solution of the Discrete Poisson Equation on a Rectangle,” SIAM Review
12, 248–263.

R. Sweet (1973). “Direct Methods for the Solution of Poisson’s Equation on a Staggered Grid,” J.
Comput. Phys. 12, 422–428.

P.N. Swarztrauber (1974). “A Direct Method for the Discrete Solution of Separable Elliptic Equa-
tions,” SIAM J. Numer. Anal. 11, 1136–1150.

P.N. Swarztrauber (1977). “The Methods of Cyclic Reduction, Fourier Analysis and Cyclic Reduction-
Fourier Analysis for the Discrete Solution of Poisson’s Equation on a Rectangle,” SIAM Review
19, 490–501.

There are actually eight variants of the discrete cosine transform each of which corresponds to the
location of the Neumann conditions and how the divided difference approximations are set up. For a
unified, matrix-based treatment, see:

G. Strang (1999). “The Discrete Cosine Transform,” SIAM Review 41, 135–147.



Chapter 5

Orthogonalization and
Least Squares

5.1 Householder and Givens Transformations

5.2 The QR Factorization

5.3 The Full-Rank Least Squares Problem

5.4 Other Orthogonal Factorizations

5.5 The Rank-Deficient Least Squares Problem

5.6 Square and Underdetermined Systems

This chapter is primarily concerned with the least squares solution of overdeter-
mined systems of equations, i.e., the minimization of ‖ Ax − b ‖2 where A ∈ IRm×n,
b ∈ IRm, and m ≥ n. The most reliable solution procedures for this problem involve
the reduction of A to various canonical forms via orthogonal transformations. House-
holder reflections and Givens rotations are central to this process and we begin the
chapter with a discussion of these important transformations. In §5.2 we show how to
compute the factorization A = QR where Q is orthogonal and R is upper triangular.
This amounts to finding an orthonormal basis for the range of A. The QR factorization
can be used to solve the full-rank least squares problem as we show in §5.3. The tech-
nique is compared with the method of normal equations after a perturbation theory
is developed. In §5.4 and §5.5 we consider methods for handling the difficult situation
when A is (nearly) rank deficient. QR with column pivoting and other rank-revealing
procedures including the SVD are featured. Some remarks about underdetermined
systems are offered in §5.6.

Reading Notes

Knowledge of chapters 1, 2, and 3 and §§4.1–§4.3 is assumed. Within this chapter
there are the following dependencies:

§5.1 → §5.2 → §5.3 → §5.4 → §5.5 → §5.6
↓

§5.4

233
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For more comprehensive treatments of the least squares problem, see Björck (NMLS)
and Lawson and Hansen (SLS). Other useful global references include Stewart ( MABD),
Higham (ASNA), Watkins (FMC), Trefethen and Bau (NLA), Demmel (ANLA), and
Ipsen (NMA).

5.1 Householder and Givens Transformations
Recall that Q ∈ IRm×m is orthogonal if

QT Q = QQT = Im.

Orthogonal matrices have an important role to play in least squares and eigenvalue
computations. In this section we introduce Householder reflections and Givens rota-
tions, the key players in this game.

5.1.1 A 2-by-2 Preview

It is instructive to examine the geometry associated with rotations and reflections at
the m = 2 level. A 2-by-2 orthogonal matrix Q is a rotation if it has the form

Q =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
.

If y = QT x, then y is obtained by rotating x counterclockwise through an angle θ.
A 2-by-2 orthogonal matrix Q is a reflection if it has the form

Q =

[
cos(θ) sin(θ)

sin(θ) − cos(θ)

]
.

If y = QT x = Qx, then y is obtained by reflecting the vector x across the line defined
by

S = span

{[
cos(θ/2)

sin(θ/2)

]}
.

Reflections and rotations are computationally attractive because they are easily con-
structed and because they can be used to introduce zeros in a vector by properly
choosing the rotation angle or the reflection plane.

5.1.2 Householder Reflections

Let v ∈ IRm be nonzero. An m-by-m matrix P of the form

P = I − βvvT , β =
2

vT v
(5.1.1)

is a Householder reflection. (Synonyms are Householder matrix and Householder trans-
formation.) The vector v is the Householder vector. If a vector x is multiplied by P ,
then it is reflected in the hyperplane span{v}⊥. It is easy to verify that Householder
matrices are symmetric and orthogonal.
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Householder reflections are similar to Gauss transformations introduced in §3.2.1
in that they are rank-1 modifications of the identity and can be used to zero selected
components of a vector. In particular, suppose we are given 0 
= x ∈ IRm and want

Px =
(

I − 2vvT

vT v

)
x = x − 2vT x

vT v
v

to be a multiple of e1 = Im(:, 1). From this we conclude that v ∈ span{x, e1}. Setting

v = x + αe1

gives
vT x = xT x + αx1

and
vT v = xT x + 2αx1 + α2.

Thus,

Px =
(

1 − 2
xT x + αx1

xT x + 2αx1 + α2

)
x − 2α

vT x

vT v
e1

=

(
α2 − ‖ x ‖2

2

xT x + 2αx1 + α2

)
x − 2α

vT x

vT v
e1.

In order for the coefficient of x to be zero, we set α = ±‖ x ‖2 for then

v = x ± ‖ x ‖2e1 ⇒ Px =
(

I − 2
vvT

vT v

)
x = ∓‖ x ‖2e1. (5.1.2)

It is this simple determination of v that makes the Householder reflections so useful.

5.1.3 Computing the Householder Vector

There are a number of important practical details associated with the determination of
a Householder matrix, i.e., the determination of a Householder vector. One concerns
the choice of sign in the definition of v in (5.1.2). Setting

v1 = x1 − ‖ x ‖2

leads to the nice property that Px is a positive multiple of e1. But this recipe is
dangerous if x is close to a positive multiple of e1 because severe cancellation would
occur. However, the formula

v1 = x1 − ‖ x ‖2 =
x2

1 − ‖ x ‖2
2

x1 + ‖ x ‖2
=

−(x2
2 + · · · + x2

n)
x1 + ‖ x ‖2

suggested by Parlett (1971) does not suffer from this defect in the x1 > 0 case.
In practice, it is handy to normalize the Householder vector so that v(1) = 1.

This permits the storage of v(2:m) where the zeros have been introduced in x, i.e.,
x(2:m). We refer to v(2:m) as the essential part of the Householder vector. Recalling



236 Chapter 5. Orthogonalization and Least Squares

that β = 2/vT v and letting length(x) specify vector dimension, we may encapsulate
the overall process as follows:

Algorithm 5.1.1 (Householder Vector) Given x ∈ IRm, this function computes v ∈ IRm

with v(1) = 1 and β ∈ IR such that P = Im − βvvT is orthogonal and Px = ‖ x ‖2e1.

function [v, β] = house(x)

m = length(x), σ = x(2:m)T x(2:m), v =
[

1
x(2:m)

]
if σ = 0 and x(1) >= 0

β = 0
elseif σ = 0 & x(1) < 0

β = −2
else

µ =
√

x(1)2 + σ

if x(1) <= 0
v(1) = x(1) − µ

else
v(1) = −σ/(x(1) + µ)

end
β = 2v(1)2/(σ + v(1)2)
v = v/v(1)

end

Here, length(·) returns the dimension of a vector. This algorithm involves about 3m
flops. The computed Householder matrix that is orthogonal to machine precision, a
concept discussed below.

5.1.4 Applying Householder Matrices

It is critical to exploit structure when applying P = I − βvvT to a matrix A. Premul-
tiplication involves a matrix-vector product and a rank-1 update:

PA =
(
I − βvvT

)
A = A − (βv)(vT A).

The same is true for post-multiplication,

AP = A
(
I − βvvT

)
= A − (Av)(βv)T .

In either case, the update requires 4mn flops if A ∈ IRm×n. Failure to recognize this and
to treat P as a general matrix increases work by an order of magnitude. Householder
updates never entail the explicit formation of the Householder matrix.

In a typical situation, house is applied to a subcolumn or subrow of a matrix and
(I − βvvT ) is applied to a submatrix. For example, if A ∈ IRm×n, 1 ≤ j < n, and
A(j:m, 1:j − 1) is zero, then the sequence

[v, β] = house(A(j:m, j))

A(j:m, j:n) = A(j:m, j:n) − (βv)(vT A(j:m, j:n))

A(j + 1:m, j) = v(2:m − j + 1)
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applies (Im−j+1 − βvvT ) to A(j:m, 1:n) and stores the essential part of v where the
“new” zeros are introduced.

5.1.5 Roundoff Properties

The roundoff properties associated with Householder matrices are very favorable. Wilkin-
son (AEP, pp. 152–162) shows that house produces a Householder vector v̂ that is
very close to the exact v. If P̂ = I − 2v̂v̂T /v̂T v̂ then

‖ P̂ − P ‖2 = O(u).

Moreover, the computed updates with P̂ are close to the exact updates with P :

fl(P̂A) = P (A + E), ‖ E ‖2 = O(u‖ A ‖2),

fl(AP̂ ) = (A + E)P, ‖ E ‖2 = O(u‖ A ‖2).

For a more detailed analysis, see Higham(ASNA, pp. 357–361).

5.1.6 The Factored-Form Representation

Many Householder-based factorization algorithms that are presented in the following
sections compute products of Householder matrices

Q = Q1Q2 · · ·Qn Qj = Im − βjv
(j)[v(j)]T (5.1.3)

where n ≤ m and each v(j) has the form

v(j) = [ 0, 0, . . . 0︸ ︷︷ ︸
j−1

, 1 v
(j)
j+1, . . . , v(j)

m ]T .

It is usually not necessary to compute Q explicitly even if it is involved in subsequent
calculations. For example, if C ∈ IRm×p and we wish to compute QT C , then we merely
execute the loop

for j = 1:n
C = QjC

end

The storage of the Householder vectors v(1) · · · v(n) and the corresponding βj amounts
to a factored-form representation of Q.

To illustrate the economies of the factored-form representation, suppose we have
an array A and that for j = 1:n, A(j + 1:m, j) houses v(j)(j + 1:m), the essential part
of the jth Householder vector. The overwriting of C ∈ IRm×p with QT C can then be
implemented as follows:

for j = 1:n

v(j:m) =
[

1
A(j + 1:m, j)

]
βj = 2/(1 + ‖ A(j + 1:m, j) ‖2

2 (5.1.4)

C(j:m, :) = C(j:m, :) − (βj ·v(j:m)) · (v(j:m)T C(j:m, :))
end
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This involves about pn(2m − n) flops. If Q is explicitly represented as an m-by-m
matrix, then QT C would involve 2m2p flops. The advantage of the factored form
representation is apparant if n << m.

Of course, in some applications, it is necessary to explicitly form Q (or parts of
it). There are two possible algorithms for computing the matrix Q in (5.1.3):

Forward accumulation Backward accumulation

Q = Im Q = Im

for j = 1:n for j = n: − 1:1
Q = Q Qj Q = QjQ

end end

Recall that the leading (j − 1)-by-(j − 1) portion of Qj is the identity. Thus, at
the beginning of backward accumulation, Q is “mostly the identity” and it gradually
becomes full as the iteration progresses. This pattern can be exploited to reduce the
number of required flops. In contrast, Q is full in forward accumulation after the first
step. For this reason, backward accumulation is cheaper and the strategy of choice.
Here are the details with the proviso that we only need Q(:, 1:k) where 1 ≤ k ≤ m:

Q = Im(:, 1:k)
for j = n: − 1:1

v(j:m) =
[

1
A(j + 1:m, j)

]
(5.1.5)

βj = 2/(1 + ‖ A(j + 1:m, j) ‖2
2

Q(j:m, j:k) = Q(j:m, j:k) − (βjv(j:m))(v(j:m)T Q(j:m, j:k))
end

This involves about 4mnk − 2(m + k)n2 + (4/3)n3 flops.

5.1.7 The WY Representation

Suppose Q = Q1 · · ·Qr is a product of m-by-m Householder matrices. Since each Qj is
a rank-1 modification of the identity, it follows from the structure of the Householder
vectors that Q is a rank-r modification of the identity and can be written in the form

Q = Im − WY T (5.1.6)

where W and Y are m-by-r matrices. The key to computing the WY representation
(5.1.6) is the following lemma.

Lemma 5.1.1. Suppose Q = Im − WY T is an m-by-m orthogonal matrix with
W, Y ∈ IRm×j. If P = Im − βvvT with v ∈ IRm and z = βQv, then

Q+ = QP = Im − W+Y T
+

where W+ = [ W | z ] and Y+ = [ Y | v ] are each m-by-(j + 1).
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Proof. Since

QP =
(
Im − WY T

) (
Im − βvvT

)
= Im − WY T − βQvvT

it follows from the definition of z that

Q+ = Im − WY T − zvT = Im − [ W | z ] [ Y | v ]T = Im − W+Y T
+ .

By repeatedly applying the lemma, we can transition from a factored-form representa-
tion to a block representation.

Algorithm 5.1.2 Suppose Q = Q1 · · ·Qr where the Qj = Im − βjv
(j)v(j)T

are stored
in factored form. This algorithm computes matrices W, Y ∈ IRm×r such that Q =
Im − WY T .

Y = v(1); W = β1v
(1)

for j = 2:r

z = βj(Im − WY T )v(j)

W = [W | z]

Y = [ Y | v(j) ]
end

This algorithm involves about 2r2m− 2r3/3 flops if the zeros in the v(j) are exploited.
Note that Y is merely the matrix of Householder vectors and is therefore unit lower
triangular. Clearly, the central task in the generation of the WY representation (5.1.6)
is the computation of the matrix W .

The block representation for products of Householder matrices is attractive in
situations where Q must be applied to a matrix. Suppose C ∈ IRm×p. It follows that
the operation

C = QT C = (Im − WY T )T C = C − Y (WT C)

is rich in level-3 operations. On the other hand, if Q is in factored form, then the
formation of QT C is just rich in the level-2 operations of matrix-vector multiplication
and outer product updates. Of course, in this context, the distinction between level-2
and level-3 diminishes as C gets narrower.

We mention that the WY representation (5.1.6) is not a generalized Householder
transformation from the geometric point of view. True block reflectors have the form

Q = I − 2V V T

where V ∈ IRn×r satisfies V T V = Ir. See Schreiber and Parlett (1987).

5.1.8 Givens Rotations

Householder reflections are exceedingly useful for introducing zeros on a grand scale,
e.g., the annihilation of all but the first component of a vector. However, in calcula-
tions where it is necessary to zero elements more selectively, Givens rotations are the
transformation of choice. These are rank-2 corrections to the identity of the form
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G(i, k, θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
0
...
0
...
0

· · ·
. . .
· · ·

· · ·

· · ·

0
...
c
...

− s
...
0

· · ·

· · ·
. . .
· · ·

· · ·

0
...
s
...
c
...
0

· · ·

· · ·

· · ·
. . .
· · ·

0
...
0
...
0
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i

k

i k

(5.1.7)

where c = cos(θ) and s = sin(θ) for some θ. Givens rotations are clearly orthogonal.
Premultiplication by G(i, k, θ)T amounts to a counterclockwise rotation of θ ra-

dians in the (i, k) coordinate plane. Indeed, if x ∈ IRm and

y = G(i, k, θ)T x,

then

yj =

⎧⎪⎨⎪⎩
cxi − sxk, j = i,

sxi + cxk, j = k,

xj , j 
= i, k.

.

From these formulae it is clear that we can force yk to be zero by setting

c =
xi√

x2
i + x2

k

, s =
−xk√
x2

i + x2
k

. (5.1.8)

Thus, it is a simple matter to zero a specified entry in a vector by using a Givens
rotation. In practice, there are better ways to compute c and s than (5.1.8), e.g.,

Algorithm 5.1.3 Given scalars a and b, this function computes c = cos(θ) and
s = sin(θ) so [

c s

−s c

]T [
a

b

]
=

[
r

0

]
.

function [c, s] = givens(a, b)
if b = 0

c = 1; s = 0
else

if |b| > |a|
τ = −a/b; s = 1/

√
1 + τ2; c = sτ

else
τ = −b/a; c = 1/

√
1 + τ2; s = cτ

end
end

This algorithm requires 5 flops and a single square root. Note that inverse trigonometric
functions are not involved.
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5.1.9 Applying Givens Rotations

It is critical that the simple structure of a Givens rotation matrix be exploited when it
is involved in a matrix multiplication. Suppose A ∈ IRm×n, c = cos(θ), and s = sin(θ).
If G(i, k, θ) ∈ IRm×m, then the update A = G(i, k, θ)T A affects just two rows,

A([i, k], :) =
[

c s

−s c

]T

A([i, k], :),

and involves 6n flops:

for j = 1:n
τ1 = A(i, j)

τ2 = A(k, j)

A(i, j) = cτ1 − sτ2

A(k, j) = sτ1 + cτ2
end

Likewise, if G(i, k, θ) ∈ IRn×n, then the update A = AG(i, k, θ) affects just two columns,

A(:, [i, k]) = A(:, [i, k])
[

c s

−s c

]
,

and involves 6m flops:

for j = 1:m
τ1 = A(j, i)

τ2 = A(j, k)

A(j, i) = cτ1 − sτ2

A(j, k) = sτ1 + cτ2
end

5.1.10 Roundoff Properties

The numerical properties of Givens rotations are as favorable as those for Householder
reflections. In particular, it can be shown that the computed ĉ and ŝ in givens satisfy

ĉ = c(1 + εc), εc = O(u),

ŝ = s(1 + εs), εs = O(u).

If ĉ and ŝ are subsequently used in a Givens update, then the computed update is the
exact update of a nearby matrix:

fl[Ĝ(i, k, θ)T A] = G(i, k, θ)T (A + E), ‖ E ‖2 ≈ u‖ A ‖2,

fl[AĜ(i, k, θ)] = (A + E)G(i, k, θ), ‖ E ‖2 ≈ u‖ A ‖2.

Detailed error analysis of Givens rotations may be found in Wilkinson (AEP, pp. 131-
39), Higham(ASNA, pp. 366–368), and Bindel, Demmel, Kahan, and Marques (2002).
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5.1.11 Representing Products of Givens Rotations

Suppose Q = G1 · · ·Gt is a product of Givens rotations. As with Householder re-
flections, it is sometimes more economical to keep Q in factored form rather than to
compute explicitly the product of the rotations. Stewart (1976) has shown how to do
this in a very compact way. The idea is to associate a single floating point number ρ
with each rotation. Specifically, if

Z =
[

c s

−s c

]
, c2 + s2 = 1,

then we define the scalar ρ by

if c = 0
ρ = 1

elseif |s| < |c|
ρ = sign(c) · s/2 (5.1.9)

else

ρ = 2 · sign(s)/c
end

Essentially, this amounts to storing s/2 if the sine is smaller and 2/c if the cosine is
smaller. With this encoding, it is possible to reconstruct Z (or −Z) as follows:

if ρ = 1
c = 0; s = 1

elseif |ρ| < 1

s = 2ρ; c =
√

1 − s2 (5.1.10)
else

c = 2/ρ; s =
√

1 − c2

end

Note that the reconstruction of −Z is not a problem, for if Z introduces a strategic
zero then so does −Z. The reason for essentially storing the smaller of c and s is that
the formula

√
1 − x2 renders poor results if x is near unity. More details may be found

in Stewart (1976). Of course, to “reconstruct” G(i, k, θ) we need i and k in addition
to the associated ρ. This poses no difficulty if we agree to store ρ in the (i, k) entry of
some array.

5.1.12 Error Propagation

An m-by-m floating point matrix Q̂ is orthogonal to working precision if there exists
an orthogonal Q ∈ IRm×m such that

‖ Q̂ − Q ‖ = O(u).

A corollary of this is that
‖ Q̂T Q̂ − Im ‖ = O(u).
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The matrices defined by the floating point output of house and givens are orthogonal
to working precision.

In many applications, sequences of Householders and/or Given transformations
are generated and applied. In these settings, the rounding errors are nicely bounded.
To be precise, suppose A = A0 ∈ IRm×n is given and that matrices A1, . . . , Ap = B are
generated via the formula

Ak = fl(Q̂kAk−1Ẑk), k = 1:p .

Assume that the above Householder and Givens algorithms are used for both the gen-
eration and application of the Q̂k and Ẑk. Let Qk and Zk be the orthogonal matrices
that would be produced in the absence of roundoff. It can be shown that

B = (Qp · · ·Q1)(A + E)(Z1 · · ·Zp), (5.1.11)

where ‖ E ‖2 ≤ c ·u‖ A ‖2 and c is a constant that depends mildly on n, m, and
p. In other words, B is an exact orthogonal update of a matrix near to A. For a
comprehensive error analysis of Householder and Givens computations, see Higham
(ASNA, §19.3, §19.6).

5.1.13 The Complex Case

Most of the algorithms that we present in this book have complex versions that are
fairly straightforward to derive from their real counterparts. (This is not to say that
everything is easy and obvious at the implementation level.) As an illustration we
briefly discuss complex Householder and complex Givens transformations.

Recall that if A = (aij) ∈ Cm×n, then B = AH ∈ Cn×m is its conjugate transpose.
The 2-norm of a vector x ∈ Cn is defined by

‖ x ‖2
2 = xHx = |x1|2 + · · · + |xn|2

and Q ∈ Cn×n is unitary if QHQ = In. Unitary matrices preserve the 2-norm.
A complex Householder transformation is a unitary matrix of the form

P = Im − βvvH , 0 
= v ∈ Cm,

where β = 2/vHv. Given a nonzero vector x ∈ Cm, it is easy to determine v so that
if y = Px, then y(2:m) = 0. Indeed, if

x1 = reiθ

where r, θ ∈ IR and
v = x ± eiθ‖ x ‖2e1, e1 = Im(:, 1),

then Px = ∓eiθ‖ x ‖2e1. The sign can be determined to maximize ‖ v ‖2 for the sake
of stability.

Regarding complex Givens rotations, it is easy to verify that a 2-by-2 matrix of
the form

Q =

[
cos(θ) sin(θ)eiφ

− sin(θ)e−iφ cos(θ)

]
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where θ, φ ∈ IR is unitary. We show how to compute c = cos(θ) and s = sin(θ)eiφ so
that [

c s
−s̄ c

]H [
u
v

]
=

[
r
0

]
(5.1.12)

where u = u1+iu2 and v = v1+iv2 are given complex numbers. First, givens is applied
to compute real cosine-sine pairs {cα, sα}, {cβ , sβ}, and {cθ, sθ} so that[

cα sα

−sα cα

]T [
u1

u2

]
=

[
ru

0

]
,

[
cβ sβ

−sβ cβ

]T [
v1

v2

]
=

[
rv

0

]
,

and [
cθ sθ

−sθ cθ

]T [
ru

rv

]
=

[
r

0

]
.

Note that u = rue−iα and v = rve−iβ . If we set

eiφ = ei(β−α) = (cαcβ + sαsβ) + i(cαsβ − cβsα),

c = cθ, and s = sθe
iφ, then

s̄u + cv = sθe
−iφrue−iα + cθrve−iβ = e−iβ(sθru + cθrv) = 0

which confirms (5.1.12).

Problems

P5.1.1 Let x and y be nonzero vectors in IRm. Give an algorithm for determining a Householder
matrix P such that Px is a multiple of y.

P5.1.2 Use Householder matrices to show that det(I + xyT ) = 1 + xT y where x and y are given
m-vectors.

P5.1.3 (a) Assume that x, y ∈ IR2 have unit 2-norm. Give an algorithm that computes a Givens
rotation Q so that y = QT x. Make effective use of givens. (b) Suppose x and y are unit vectors in IRm.
Give an algorithm using Givens transformations which computes an orthogonal Q such that QT x = y.

P5.1.4 By generalizing the ideas in §5.1.11, develop a compact representation scheme for complex
givens rotations.

P5.1.5 Suppose that Q = I−Y TY T is orthogonal where Y ∈ IRm×j and T ∈ IRj×j is upper triangular.
Show that if Q+ = QP where P = I − 2vvT /vT v is a Householder matrix, then Q+ can be expressed
in the form Q+ = I − Y+T+Y T

+ where Y+ ∈ IRm×(j+1) and T+ ∈ IR(j+1)×(j+1) is upper triangular.
This is the main idea behind the compact WY representation. See Schreiber and Van Loan (1989).

P5.1.6 Suppose Q1 = Im − Y1T1Y1 and Q2 = Im − Y2T2Y T
2 are orthogonal where Y1 ∈ IRm×r1,

Y2 ∈ IRm×r2, T1 ∈ IRr1×r1, and T2 ∈ IRr2×r2. Assume that T1 and T2 are upper triangular. Show how
to compute Y ∈ IRm×r and upper triangular T ∈ IRr×r with r = r1 + r2 so that Q2Q1 = Im−Y TY T .

P5.1.7 Give a detailed implementation of Algorithm 5.1.2 with the assumption that v(j)(j + 1:m),
the essential part of the jth Householder vector, is stored in A(j + 1:m, j). Since Y is effectively
represented in A, your procedure need only set up the W matrix.
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P5.1.8 Show that if S is skew-symmetric (ST = −S), then Q = (I + S)(I −S)−1 is orthogonal. (The
matrix Q is called the Cayley transform of S.) Construct a rank-2 S so that if x is a vector, then Qx
is zero except in the first component.

P5.1.9 Suppose P ∈ IRm×m satisfies ‖ P T P − Im ‖2 = ε < 1. Show that all the singular values of P

are in the interval [1− ε, 1 + ε] and that ‖ P − UV T ‖2 ≤ ε where P = UΣV T is the SVD of P .

P5.1.10 Suppose A ∈ IR2×2. Under what conditions is the closest rotation to A closer than the closest
reflection to A? Work with the Frobenius norm.

P5.1.11 How could Algorithm 5.1.3 be modified to ensure r ≥ 0?

P5.1.12 (Fast Givens Transformations) Suppose

x =

[
x1

x2

]
and D =

[
d1 0

0 d2

]
with d1 and d2 positive. Show how to compute

M1 =

[
β1 1

1 α1

]
so that if y = M1x and D̃ = MT

1 DM1, then y2 = 0 and D̃ is diagonal. Repeat with M1 replaced by

M2 =

[
1 α2

β2 1

]
.

(b) Show that either ‖MT
1 DM1 ‖2 ≤ 2‖D ‖2 or ‖MT

2 DM2 ‖2 ≤ 2‖D ‖2. (c) Suppose x ∈ IRm and
that D ∈ IRn×n is diagonal with positive diagonal entries. Given indices i and j with 1 ≤ i < j ≤ m,
show how to compute M ∈ IRn×n so that if y = Mx and D̃ = MT DM , then yj = 0 and D̃ is diagonal
with ‖ D̃ ‖2 ≤ 2‖D ‖2. (d) From part (c) conclude that Q = D1/2MD̃−1/2 is orthogonal and that
the update y = Mx can be diagonally transformed to (D1/2y) = Q(D1/2x).
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5.2 The QR Factorization
A rectangular matrix A ∈ IRm×n can be factored into a product of an orthogonal matrix
Q ∈ IRm×m and an upper triangular matrix R ∈ IRm×n:

A = QR.

This factorization is referred to as the QR factorization and it has a central role to
play in the linear least squares problem. In this section we give methods for computing
QR based on Householder, block Householder, and Givens transformations. The QR
factorization is related to the well-known Gram-Schmidt process.

5.2.1 Existence and Properties

We start with a constructive proof of the QR factorization.

Theorem 5.2.1 (QR Factorization). If A ∈ IRm×n, then there exists an orthogonal
Q ∈ IRm×m and an upper triangular R ∈ IRm×n so that A = QR.
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Proof. We use induction. Suppose n = 1 and that Q is a Householder matrix so that
if R = QT A, then R(2:m) = 0. It follows that A = QR is a QR factorization of A. For
general n we partition A,

A = [ A1 | v ],

where v = A(:, n). By induction, there exists an orthogonal Q1 ∈ IRm×m so that
R1 = QT

1 A1 is upper triangular. Set w = QT v and let w(n:m) = Q2R2 be the QR
factorization of w(n:m). If

Q = Q1

[
In−1 0

0 Q2

]
,

then

A = Q

[
R1

w(1:n − 1)
R2

]
is a QR factorization of A.

The columns of Q have an important connection to the range of A and its orthogonal
complement.

Theorem 5.2.2. If A = QR is a QR factorization of a full column rank A ∈ IRm×n

and

A = [ a1 | · · · | an ] ,

Q = [ q1 | · · · | qm ]

are column partitionings, then for k = 1:n

span{a1, . . . , ak} = span{q1, . . . , qk} (5.2.1)

and rkk 
= 0. Moreover, if Q1 = Q(1:m, 1:n), Q2 = Q(1:m, n + 1:m), and R1 =
R(1:n, 1:n), then

ran(A) = ran(Q1),

ran(A)⊥ = ran(Q2),

and
A = Q1R1. (5.2.2)

Proof. Comparing the kth columns in A = QR we conclude that

ak =
k∑

i=1

rikqi ∈ span{q1, . . . , qk}, (5.2.3)

and so
span{a1, . . . , ak} ⊆ span{q1, . . . , qk}.

If rkk = 0, then a1, . . . , ak are dependent. Thus, R cannot have a zero on its diagonal
and so span{a1, . . . , ak} has dimension k. Coupled with (5.2.3) this establishes (5.2.1).
To prove (5.2.2) we note that
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A = QR =
[

Q1 Q2
] [ R1

0

]
= Q1R1.

The matrices Q1 = Q(1:m, 1:n) and Q2 = Q(1:m, n+1:m) can be easily computed from
a factored form representation of Q. We refer to (5.2.2) as the thin QR factorization.
The next result addresses its uniqueness.

Theorem 5.2.3 (Thin QR Factorization). Suppose A ∈ IRm×n has full column
rank. The thin QR factorization

A = Q1R1

is unique where Q1 ∈ IRm×n has orthonormal columns and R1 is upper triangular with
positive diagonal entries. Moreover, R1 = GT where G is the lower triangular Cholesky
factor of AT A.

Proof. Since AT A = (Q1R1)T (Q1R1) = RT
1 R1 we see that G = RT

1 is the Cholesky
factor of AT A. This factor is unique by Theorem 4.2.7. Since Q1 = AR−1

1 it follows
that Q1 is also unique.

How are Q1 and R1 affected by perturbations in A? To answer this question
we need to extend the notion of 2-norm condition to rectangular matrices. Recall
from §2.6.2 that for square matrices, κ2(A) is the ratio of the largest to the smallest
singular value. For rectangular matrices A with full column rank we continue with this
definition:

κ2(A) =
σmax(A)
σmin(A)

. (5.2.4)

If the columns of A are nearly dependent, then this quotient is large. Stewart (1993)
has shown that O(ε) relative error in A induces O(ε·κ2(A) ) error in Q1 and R1.

5.2.2 Householder QR

We begin with a QR factorization method that utilizes Householder transformations.
The essence of the algorithm can be conveyed by a small example. Suppose m = 6,
n = 5, and assume that Householder matrices H1 and H2 have been computed so that

H2H1A =

⎡⎢⎢⎢⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 x × ×
0 0 x × ×
0 0 x × ×
0 0 x × ×

⎤⎥⎥⎥⎥⎥⎥⎦ .

Concentrating on the highlighted entries, we determine a Householder matrix H̃3 ∈ IR4×4

such that

H̃3

⎡⎢⎢⎣
x
x
x
x

⎤⎥⎥⎦ =

⎡⎢⎢⎣
×
0
0
0

⎤⎥⎥⎦ .
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If H3 = diag(I2, H̃3), then

H3H2H1A =

⎡⎢⎢⎢⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 × ×
0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎥⎦ .

After n such steps we obtain an upper triangular HnHn−1 · · ·H1A = R and so by
setting Q = H1 · · ·Hn we obtain A = QR.

Algorithm 5.2.1 (Householder QR) Given A ∈ IRm×n with m ≥ n, the following
algorithm finds Householder matrices H1, . . . , Hn such that if Q = H1 · · ·Hn, then
QT A = R is upper triangular. The upper triangular part of A is overwritten by the
upper triangular part of R and components j + 1:m of the jth Householder vector are
stored in A(j + 1:m, j), j < m.

for j = 1:n

[v, β] = house(A(j:m, j))

A(j:m, j:n) = (I − βvvT )A(j:m, j:n)

if j < m

A(j + 1:m, j) = v(2:m − j + 1)
end

end

This algorithm requires 2n2(m − n/3) flops.
To clarify how A is overwritten, if

v(j) = [ 0, . . . , 0︸ ︷︷ ︸
j−1

, 1, v
(j)
j+1, . . . , v

(j)
m ]T

is the jth Householder vector, then upon completion

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13 r14 r15

v
(1)
2 r22 r23 r24 r25

v
(1)
3 v

(2)
3 r33 r34 r35

v
(1)
4 v

(2)
4 v

(3)
4 r44 r45

v
(1)
5 v

(2)
5 v

(3)
5 v

(4)
5 r55

v
(1)
6 v

(2)
6 v

(3)
6 v

(4)
6 v

(5)
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If the matrix Q = H1 · · ·Hn is required, then it can be accumulated using (5.1.5). This
accumulation requires 4(m2n − mn2 + n3/3) flops. Note that the β-values that arise
in Algorithm 5.2.1 can be retrieved from the stored Householder vectors:

βj =
2

1 + ‖ A(j + 1:m, j) ‖2 .
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We mention that the computed upper triangular matrix R̂ is the exact R for a nearby
A in the sense that ZT (A + E) = R̂ where Z is some exact orthogonal matrix and
‖ E ‖2 ≈ u‖ A ‖2.

5.2.3 Block Householder QR Factorization

Algorithm 5.2.1 is rich in the level-2 operations of matrix-vector multiplication and
outer product updates. By reorganizing the computation and using the WY repre-
sentation discussed in §5.1.7 we can obtain a level-3 procedure. The idea is to apply
the underlying Householder transformations in clusters of size r. Suppose n = 12 and
r = 3. The first step is to generate Householders H1, H2, and H3 as in Algorithm 5.2.1.
However, unlike Algorithm 5.2.1 where each Hi is applied across the entire remaining
submatrix, we apply only H1, H2, and H3 to A(:, 1:3). After this is accomplished we
generate the block representation H1H2H3 = I − W1Y

T
1 and then perform the level-3

update
A(:, 4:12) = (I − WY T )A(:, 4:12).

Next, we generate H4, H5, and H6 as in Algorithm 5.2.1. However, these transforma-
tions are not applied to A(:, 7:12) until their block representation H4H5H6 = I−W2Y

T
2

is found. This illustrates the general pattern.

Algorithm 5.2.2 (Block Householder QR) If A ∈ IRm×n and r is a positive inte-
ger, then the following algorithm computes an orthogonal Q ∈ IRm×m and an upper
triangular R ∈ IRm×n so that A = QR.

Q = Im; λ = 1; k = 0

while λ ≤ n

τ ←min(λ + r − 1, n); k = k + 1

Use Algorithm 5.2.1, to upper triangularize A(λ:m, λ:τ),
generating Householder matrices Hλ, . . . , Hτ .

Use Algorithm 5.1.2 to get the block representation
I − WkYk = Hλ · · ·Hτ .

A(λ:m, τ + 1:n) = (I − WkY T
k )T A(λ:m, τ + 1:n)

Q(:, λ:m) = Q(:, λ:m)(I − WkY T
k )

λ = τ + 1
end

The zero-nonzero structure of the Householder vectors that define Hλ, . . . , Hτ implies
that the first λ − 1 rows of Wk and Yk are zero. This fact would be exploited in a
practical implementation.

The proper way to regard Algorithm 5.2.2 is through the partitioning

A = [ A1 | · · · | AN ] , N = ceil(n/r)

where block column Ak is processed during the kth step. In the kth step of the
reduction, a block Householder is formed that zeros the subdiagonal portion of Ak.
The remaining block columns are then updated.
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The roundoff properties of Algorithm 5.2.2 are essentially the same as those for
Algorithm 5.2.1. There is a slight increase in the number of flops required because
of the W -matrix computations. However, as a result of the blocking, all but a small
fraction of the flops occur in the context of matrix multiplication. In particular, the
level-3 fraction of Algorithm 5.2.2 is approximately 1 − O(1/N). See Bischof and Van
Loan (1987) for further details.

5.2.4 Block Recursive QR

A more flexible approach to blocking involves recursion. Suppose A ∈ IRm×n and as-
sume for clarity that A has full column rank. Partition the thin QR factorization of A
as follows:

[
A1 A2

]
=

[
Q1 Q2

] [ R11 R12

0 R22

]
.

where n1 = floor(n/2), n2 = n − n1, A1, Q1 ∈ IRm×n1 and A2, Q2 ∈ IRm×n2. From
the equations Q1R11 = A1, R12 = QT

1 A2, and Q2R22 = A2 − Q1R12 we obtain the
following recursive procedure:

Algorithm 5.2.3 (Recursive Block QR) Suppose A ∈ IRm×n has full column rank
and nb is a positive blocking parameter. The following algorithm computes Q ∈ IRm×n

with orthonormal columns and upper triangular R ∈ IRn×n such that A = QR.

function [Q, R] = BlockQR(A, n, nb)

if n ≤ nb

Use Algorithm 5.2.1 to compute the thin QR factorization A = QR.
else

n1 = floor(n/2)

[Q1 , R11] = BlockQR(A(:, 1:n1), n1, nb)

R12 = QT
1 A(:, n1 + 1:n)

A(:, n1 + 1:n) = A(:, n1 + 1:n) − Q1R12

[Q2 , R22] = BlockQR(A(:, n1 + 1:n), n − n1, nb)

Q = [ Q1 | Q2 ], R =

[
R11 R12

0 R22

]
end

end

This divide-and-conquer approach is rich in matrix-matrix multiplication and provides
a framework for the effective parallel computation of the QR factorization. See Elmroth
and Gustavson (2001). Key implementation ideas concern the representation of the Q-
matrices and the incorporation of the §5.2.3 blocking strategies.
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5.2.5 Givens QR Methods

Givens rotations can also be used to compute the QR factorization and the 4-by-3 case
illustrates the general idea:⎡⎢⎢⎣

× × ×
× × ×
x × ×
x × ×

⎤⎥⎥⎦ (3,4)−→

⎡⎢⎢⎣
× × ×
x × ×
x × ×
0 × ×

⎤⎥⎥⎦ (2,3)−→

⎡⎢⎢⎣
x × ×
x × ×
0 × ×
0 × ×

⎤⎥⎥⎦ (1,2)−→

⎡⎢⎢⎣
× × ×
0 × ×
0 x ×
0 x ×

⎤⎥⎥⎦ (3,4)−→

⎡⎢⎢⎣
× × ×
0 x ×
0 x ×
0 0 ×

⎤⎥⎥⎦ (2,3)−→

⎡⎢⎢⎣
× × ×
0 × ×
0 0 x
0 0 x

⎤⎥⎥⎦ (3,4)−→ R.

We highlighted the 2-vectors that define the underlying Givens rotations. If Gj denotes
the jth Givens rotation in the reduction, then QT A = R is upper triangular, where
Q = G1 · · ·Gt and t is the total number of rotations. For general m and n we have:

Algorithm 5.2.4 (Givens QR) Given A ∈ IRm×n with m ≥ n, the following algorithm
overwrites A with QT A = R, where R is upper triangular and Q is orthogonal.

for j = 1:n

for i = m: − 1:j + 1

[c, s] = givens(A(i − 1, j), A(i, j))

A(i − 1:i, j:n) =
[

c s
−s c

]T

A(i − 1:i, j:n)

end
end

This algorithm requires 3n2(m − n/3) flops. Note that we could use the represen-
tation ideas from §5.1.11 to encode the Givens transformations that arise during the
calculation. Entry A(i, j) can be overwritten with the associated representation.

With the Givens approach to the QR factorization, there is flexibility in terms
of the rows that are involved in each update and also the order in which the zeros are
introduced. For example, we can replace the inner loop body in Algorithm 5.2.4 with

[c, s] = givens(A(j, j), A(i, j))

A([ j i ], j:n) =
[

c s
−s c

]T

A([ j i ], j:n)

and still emerge with the QR factorization. It is also possible to introduce zeros by
row. Whereas Algorithm 5.2.4 introduces zeros by column,⎡⎢⎢⎣

× × ×
3 × ×
2 5 ×
1 4 6

⎤⎥⎥⎦ ,

the implementation
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for i = 2:m

for j = 1:i − 1

[c, s] = givens(A(j, j), A(i, j))

A([j i], j:n) =
[

c s
−s c

]T

A( [j i] , j:n )

end
end

introduces zeros by row, e.g., ⎡⎢⎢⎣
× × ×
1 × ×
2 3 ×
4 5 6

⎤⎥⎥⎦ .

5.2.6 Hessenberg QR via Givens

As an example of how Givens rotations can be used in a structured problem, we show
how they can be employed to compute the QR factorization of an upper Hessenberg
matrix. (Other structured QR factorizations are discussed in Chapter 6 and §11.1.8.)
A small example illustrates the general idea. Suppose n = 6 and that after two steps
we have computed

G(2, 3, θ2)T G(1, 2, θ1)T A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 x × × ×
0 0 0 × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Next, we compute G(3, 4, θ3) to zero the current (4,3) entry, thereby obtaining

G(3, 4, θ3)T G(2, 3, θ2)T G(1, 2, θ1)T A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Continuing in this way we obtain the following algorithm.

Algorithm 5.2.5 (Hessenberg QR) If A ∈ IRn×n is upper Hessenberg, then the fol-
lowing algorithm overwrites A with QT A = R where Q is orthogonal and R is upper
triangular. Q = G1 · · ·Gn−1 is a product of Givens rotations where Gj has the form
Gj = G(j, j + 1, θj).
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for j = 1:n − 1

[ c , s ] = givens(A(j, j), A(j + 1, j))

A(j:j + 1, j:n) =
[

c s
−s c

]T

A(j:j + 1, j:n)

end

This algorithm requires about 3n2 flops.

5.2.7 Classical Gram-Schmidt Algorithm

We now discuss two alternative methods that can be used to compute the thin QR
factorization A = Q1R1 directly. If rank(A) = n, then equation (5.2.3) can be solved
for qk:

qk =

(
ak −

k−1∑
i=1

rikqi

)/
rkk.

Thus, we can think of qk as a unit 2-norm vector in the direction of

zk = ak −
k−1∑
i=1

rikqi

where to ensure zk ∈ span{q1, . . . , qk−1}⊥ we choose

rik = qT
i ak, i = 1:k−1.

This leads to the classical Gram-Schmidt (CGS) algorithm for computing A = Q1R1.

R(1, 1) = ‖ A(:, 1) ‖2

Q(:, 1) = A(:, 1)/R(1, 1)

for k = 2:n

R(1:k − 1, k) = Q(1:m, 1:k − 1)T A(1:m, k)

z = A(1:m, k) − Q(1:m, 1:k − 1)·R(1:k − 1, k)

R(k, k) = ‖ z ‖2

Q(1:m, k) = z/R(k, k)
end

In the kth step of CGS, the kth columns of both Q and R are generated.

5.2.8 Modified Gram-Schmidt Algorithm

Unfortunately, the CGS method has very poor numerical properties in that there is
typically a severe loss of orthogonality among the computed qi. Interestingly, a re-
arrangement of the calculation, known as modified Gram-Schmidt (MGS), leads to a
more reliable procedure. In the kth step of MGS, the kth column of Q (denoted by qk)
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and the kth row of R (denoted by rT
k ) are determined. To derive the MGS method,

define the matrix A(k) ∈ IRm×(n−k+1) by

[ 0 | A(k) ] = A −
k−1∑
i=1

qir
T
i =

n∑
i=k

qir
T
i .

It follows that if
A(k) = [ z | B ]

1 n−k

then rkk = ‖ z ‖2, qk = z/rkk, and [rk,k+1, . . . , rkn] = qT
k B. We then compute the

outer product A(k+1) = B − qk [rk,k+1 · · · rkn] and proceed to the next step. This
completely describes the kth step of MGS.

Algorithm 5.2.6 (Modified Gram-Schmidt) Given A ∈ IRm×n with rank(A) = n, the
following algorithm computes the thin QR factorization A = Q1R1 where Q1 ∈ IRm×n

has orthonormal columns and R1 ∈ IRn×n is upper triangular.

for k = 1:n

R(k, k) = ‖ A(1:m, k) ‖2

Q(1:m, k) = A(1:m, k)/R(k, k)

for j = k + 1:n

R(k, j) = Q(1:m, k)T A(1:m, j)

A(1:m, j) = A(1:m, j) − Q(1:m, k)R(k, j)
end

end

This algorithm requires 2mn2 flops. It is not possible to overwrite A with both Q1 and
R1. Typically, the MGS computation is arranged so that A is overwritten by Q1 and
the matrix R1 is stored in a separate array.

5.2.9 Work and Accuracy

If one is interested in computing an orthonormal basis for ran(A), then the Householder
approach requires 2mn2 − 2n3/3 flops to get Q in factored form and another 2mn2 −
2n3/3 flops to get the first n columns of Q. (This requires “paying attention” to just the
first n columns of Q in (5.1.5).) Therefore, for the problem of finding an orthonormal
basis for ran(A), MGS is about twice as efficient as Householder orthogonalization.
However, Björck (1967) has shown that MGS produces a computed Q̂1 = [ q̂1 | · · · | q̂n ]
that satisfies

Q̂T
1 Q̂1 = I + EMGS, ‖ EMGS ‖2 ≈ uκ2(A),

whereas the corresponding result for the Householder approach is of the form

Q̂T
1 Q̂1 = I + EH , ‖ EH ‖2 ≈ u.

Thus, if orthonormality is critical, then MGS should be used to compute orthonormal
bases only when the vectors to be orthogonalized are fairly independent.
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We also mention that the computed triangular factor R̂ produced by MGS satisfies
‖ A − Q̂R̂ ‖ ≈ u‖ A ‖ and that there exists a Q with perfectly orthonormal columns
such that ‖ A − QR̂ ‖ ≈ u‖ A ‖. See Higham (ASNA, p. 379) and additional references
given at the end of this section.

5.2.10 A Note on Complex Householder QR

Complex Householder transformations (§5.1.13) can be used to compute the QR fac-
torization of a complex matrix A ∈ Cm×n. Analogous to Algorithm 5.2.1 we have

for j = 1:n
Compute a Householder matrix Qj so that QjA is upper triangular

through its first j columns.
A = QjA

end

Upon termination, A has been reduced to an upper triangular matrix R ∈ Cm×n and
we have A = QR where Q = Q1 · · ·Qn is unitary. The reduction requires about four
times the number of flops as the real case.

Problems

P5.2.1 Adapt the Householder QR algorithm so that it can efficiently handle the case when A ∈ IRm×n

has lower bandwidth p and upper bandwidth q.

P5.2.2 Suppose A ∈ IRn×n and let E be the exchange permutation En obtained by reversing the order
of the rows in In. (a) Show that if R ∈ IRn×n is upper triangular, then L = ERE is lower triangular.
(b) Show how to compute an orthogonal Q ∈ IRn×n and a lower triangular L ∈ IRn×n so that A = QL
assuming the availability of a procedure for computing the QR factorization.

P5.2.3 Adapt the Givens QR factorization algorithm so that the zeros are introduced by diagonal.
That is, the entries are zeroed in the order (m, 1), (m − 1, 1), (m, 2), (m − 2, 1), (m − 1, 2), (m, 3) ,
etc.

P5.2.4 Adapt the Givens QR factorization algorithm so that it efficiently handles the case when A is
n-by-n and tridiagonal. Assume that the subdiagonal, diagonal, and superdiagonal of A are stored in
e(1:n−1), a(1:n), f(1:n−1), respectively. Design your algorithm so that these vectors are overwritten
by the nonzero portion of T .

P5.2.5 Suppose L ∈ IRm×n with m ≥ n is lower triangular. Show how Householder matrices
H1, . . . , Hn can be used to determine a lower triangular L1 ∈ IRn×n so that

Hn · · ·H1L =
[

L1
0

]
.

Hint: The second step in the 6-by-3 case involves finding H2 so that

H2

⎡⎢⎢⎢⎣
× 0 0
× × 0
× × ×
× × 0
× × 0
× × 0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
× 0 0
× × 0
× × ×
× 0 0
× 0 0
× 0 0

⎤⎥⎥⎥⎦
with the property that rows 1 and 3 are left alone.

P5.2.6 Suppose A ∈ IRn×n and D = diag(d1, . . . , dn) ∈ IRn×n. Show how to construct an orthogonal
Q such that

QT A−DQT = R

is upper triangular. Do not worry about efficiency—this is just an exercise in QR manipulation.
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P5.2.7 Show how to compute the QR factorization of the product

A = Ap · · ·A2A1

without explicitly multiplying the matrices A1, . . . , Ap together. Assume that each Ai is square. Hint:
In the p = 3 case, write

QT
3 A = QT

3 A3Q2QT
2 A2Q1QT

1 A1

and determine orthogonal Qi so that QT
i (AiQi−1) is upper triangular. (Q0 = I.)

P5.2.8 MGS applied to A ∈ IRm×n is numerically equivalent to the first step in Householder QR
applied to

Ã =
[

On

A

]
where On is the n-by-n zero matrix. Verify that this statement is true after the first step of each
method is completed.

P5.2.9 Reverse the loop orders in Algorithm 5.2.6 (MGS) so that R is computed column by column.

P5.2.10 How many flops are required by the complex QR factorization procedure outlined in §5.10?
P5.2.11 Develop a complex version of the Givens QR factorization in which the diagonal of R is
nonnegative. See §5.1.13.
P5.2.12 Show that if A ∈ IRn×n and ai = A(:, i), then

|det(A)| ≤ ‖ a1 ‖2 · · · ‖ an ‖2.

Hint: Use the QR factorization.

P5.2.13 Suppose A ∈ IRm×n with m ≥ n. Construct an orthogonal Q ∈ IR(m+n)×(m+n) with the
property that Q(1:m, 1:n) is a scalar multiple of A. Hint. If α ∈ IR is chosen properly, then I−α2AT A
has a Cholesky factorization.

P5.2.14 Suppose A ∈ IRm×n. Analogous to Algorithm 5.2.4, show how fast Givens transformations
(P5.1.12) can be used to compute M ∈ IRm×m and a diagonal D ∈ IRm×m with positive diagonal
entries so that MT A = S is upper triangular and MMT = D. Relate M and S to A’s QR factors.

P5.2.15 (Parallel Givens QR) Suppose A ∈ IR9×3 and that we organize a Givens QR so that the
subdiagonal entries are zeroed over the course of ten “time steps” as follows:

Step Entries Zeroed

T = 1 (9,1)

T = 2 (8,1)

T = 3 (7,1) (9,2)

T = 4 (6,1) (8,2)

T = 5 (5,1) (7,2) (9,3)

T = 6 (4,1) (6,2) (8,3)

T = 7 (3,1) (5,2) (7,3)

T = 8 (2,1) (4,2) (6,3)

T = 9 (3,2) (5,3)

T = 10 (4,3)

Assume that a rotation in plane (i − 1, i) is used to zero a matrix entry (i, j). It follows that the
rotations associated with any given time step involve disjoint pairs of rows and may therefore be
computed in parallel. For example, during time step T = 6, there is a (3,4), (5,6), and (7,8) rotation.
Three separate processors could oversee the three updates. Extrapolate from this example to the
m-by-n case and show how the QR factorization could be computed in O(m + n) time steps. How
many of those time steps would involve n “nonoverlapping” rotations?

Notes and References for §5.2

The idea of using Householder transformations to solve the least squares problem was proposed in:
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H. Zha (1993). “A Componentwise Perturbation Analysis of the QR Decomposition,” SIAM J. Matrix
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G.W. Stewart (1993). “On the Perturbation of LU Cholesky, and QR Factorizations,” SIAM J. Matrix
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5.3 The Full-Rank Least Squares Problem
Consider the problem of finding a vector x ∈ IRn such that Ax = b where the data matrix
A ∈ IRm×n and the observation vector b ∈ IRm are given and m ≥ n. When there are
more equations than unknowns, we say that the system Ax = b is overdetermined.
Usually an overdetermined system has no exact solution since b must be an element of
ran(A), a proper subspace of IRm.

This suggests that we strive to minimize ‖ Ax − b ‖p for some suitable choice of
p. Different norms render different optimum solutions. For example, if A = [ 1, 1, 1 ]T

and b = [ b1, b2, b3 ]T with b1 ≥ b2 ≥ b3 ≥ 0, then it can be verified that

p = 1 ⇒ xopt = b2,

p = 2 ⇒ xopt = (b1 + b2 + b3)/3,

p = ∞ ⇒ xopt = (b1 + b3)/2.

Minimization in the 1-norm and infinity-norm is complicated by the fact that the func-
tion f(x) = ‖ Ax − b ‖p is not differentiable for these values of p. However, there are
several good techniques available for 1-norm and ∞-norm minimization. See Coleman
and Li (1992), Li (1993), and Zhang (1993).

In contrast to general p-norm minimization, the least squares (LS) problem

min
x∈IRn

‖ Ax − b ‖2 (5.3.1)

is more tractable for two reasons:

• φ(x) = 1
2‖ Ax − b ‖2

2 is a differentiable function of x and so the minimizers of φ
satisfy the gradient equation ∇φ(x)= 0. This turns out to be an easily constructed
symmetric linear system which is positive definite if A has full column rank.

• The 2-norm is preserved under orthogonal transformation. This means that
we can seek an orthogonal Q such that the equivalent problem of minimizing
‖ (QT A)x − (QT b) ‖2 is “easy” to solve.

In this section we pursue these two solution approaches for the case when A has full
column rank. Methods based on normal equations and the QR factorization are detailed
and compared.

5.3.1 Implications of Full Rank

Suppose x ∈ IRn, z ∈ IRn , α ∈ IR, and consider the equality

‖ A(x + αz) − b ‖2
2 = ‖ Ax − b ‖2

2 + 2αzT AT (Ax − b) + α2‖ Az ‖2
2

where A ∈ IRm×n and b ∈ IRm. If x solves the LS problem (5.3.1), then we must have
AT (Ax − b) = 0. Otherwise, if z = −AT (Ax − b) and we make α small enough, then
we obtain the contradictory inequality ‖ A(x + αz) − b ‖2 < ‖ Ax − b ‖2. We may also
conclude that if x and x + αz are LS minimizers, then z ∈ null(A).

Thus, if A has full column rank, then there is a unique LS solution xLS and it
solves the symmetric positive definite linear system

AT AxLS = AT b.
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These are called the normal equations. Note that if

φ(x) =
1
2
‖ Ax − b ‖2

2,

then
∇φ(x) = AT (Ax − b),

so solving the normal equations is tantamount to solving the gradient equation ∇φ = 0.
We call

rLS = b − AxLS

the minimum residual and we use the notation

ρLS = ‖ AxLS − b ‖2

to denote its size. Note that if ρLS is small, then we can do a good job “predicting” b
by using the columns of A.

Thus far we have been assuming that A ∈ IRm×n has full column rank, an assump-
tion that is dropped in §5.5. However, even if rank(A) = n, trouble can be expected if
A is nearly rank deficient. The SVD can be used to substantiate this remark. If

A = UΣV T =
n∑

i=1

σiuiv
T
i

is the SVD of a full rank matrix A ∈ IRm×n, then

‖ Ax − b ‖2
2 = ‖ (UT AV )(V T x) − UT b ‖2

2 =
n∑

i=1

(σiyi − (uT
i b))2 +

m∑
i=n+1

(uT
i b)2

where y = V T x. It follows that this summation is minimized by setting yi = uT
i b/σi,

i = 1:n. Thus,

xLS =
n∑

i=1

uT
i b

σi
vi (5.3.2)

and

ρ2
LS =

2∑
i=n+1

(uT
i b)2. (5.3.3)

It is clear that the presence of small singular values means LS solution sensitivity. The
effect of perturbations on the minimum sum of squares is less clear and requires further
analysis which we offer below.

When assessing the quality of a computed LS solution x̂LS, there are two important
issues to bear in mind:

• How close is x̂LS to xLS?

• How small is r̂LS = b − Ax̂LS compared to rLS = b − AxLS?
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The relative importance of these two criteria varies from application to application. In
any case it is important to understand how xLS and rLS are affected by perturbations
in A and b. Our intuition tells us that if the columns of A are nearly dependent, then
these quantities may be quite sensitive. For example, suppose

A =

⎡⎣ 1 0
0 10−6

0 0

⎤⎦ , δA =

⎡⎣ 0 0
0 0
0 10−8

⎤⎦ , b =

⎡⎣ 1
0
1

⎤⎦ , δb =

⎡⎣ 0
0
0

⎤⎦ ,

and that xLS and x̂LS minimize ‖ Ax − b ‖2 and ‖ (A + δA)x − (b + δb) ‖2, respectively.
If rLS and r̂LS are the corresponding minimum residuals, then it can be shown that

xLS =
[

1
0

]
, x̂LS =

[
1

.9999 · 104

]
, rLS =

⎡⎣ 0
0
1

⎤⎦ , r̂LS =

⎡⎣ 0
−.9999 · 10−2

.9999 · 100

⎤⎦ .

Recall that the 2-norm condition of a rectangular matrix is the ratio of its largest to
smallest singular values. Since κ2(A)= 106 we have

‖ x̂LS − xLS ‖2

‖ xLS ‖2
≈ .9999 · 104 ≤ κ2(A)2

‖ δA ‖2

‖ A ‖2
= 1012 · 10−8

and
‖ r̂LS − rLS ‖2

‖ b ‖2
≈ .7070 · 10−2 ≤ κ2(A)

‖ δA ‖2

‖ A ‖2
= 106 · 10−8.

The example suggests that the sensitivity of xLS can depend upon κ2(A)2. Below we
offer an LS perturbation theory that confirms the possibility.

5.3.2 The Method of Normal Equations

A widely-used method for solving the full-rank LS problem is the method of normal
equations.

Algorithm 5.3.1 (Normal Equations) Given A ∈ IRm×n with the property that rank(A) =
n and b ∈ IRm, this algorithm computes a vector xLS that minimizes ‖ Ax − b ‖2.

Compute the lower triangular portion of C = AT A.

Form the matrix-vector product d = AT b.

Compute the Cholesky factorization C = GGT .

Solve Gy = d and GT xLS = y.

This algorithm requires (m + n/3)n2 flops. The normal equation approach is conve-
nient because it relies on standard algorithms: Cholesky factorization, matrix-matrix
multiplication, and matrix-vector multiplication. The compression of the m-by-n data
matrix A into the (typically) much smaller n-by-n cross-product matrix C is attractive.

Let us consider the accuracy of the computed normal equations solution x̂LS. For
clarity, assume that no roundoff errors occur during the formation of C = AT A and



5.3. The Full-Rank Least Squares Problem 263

d = AT b. It follows from what we know about the roundoff properties of the Cholesky
factorization (§4.2.6) that

(AT A + E)x̂LS = AT b

where
‖ E ‖2 ≈ u‖ AT ‖2‖ A ‖2 = u‖ AT A ‖2.

Thus, we can expect

‖ x̂LS − xLS ‖2

‖ xLS ‖2
≈ uκ2(AT A) = uκ2(A)2 . (5.3.4)

In other words, the accuracy of the computed normal equations solution depends on
the square of the condition. See Higham (ASNA, §20.4) for a detailed roundoff analysis
of the normal equations approach.

It should be noted that the formation of AT A can result in a significant loss of
information. If

A =

⎡⎣ 1 1√
u 0

0
√

u

⎤⎦ ,

then κ2(A) ≈ √
u. However,

fl(AT A) =
[

1 1
1 1

]
is exactly singular. Thus, the method of normal equations can break down on matrices
that are not particularly close to being numerically rank deficient.

5.3.3 LS Solution Via QR Factorization

Let A ∈ IRm×n with m ≥ n and b ∈ IRm be given and suppose that an orthogonal
matrix Q ∈ IRm×m has been computed such that

QT A = R =
[

R1
0

]
n

m−n
(5.3.5)

is upper triangular. If

QT b =
[

c
d

]
n

m−n

then

‖ Ax − b ‖2
2 = ‖ QT Ax − QT b ‖2

2 = ‖ R1x − c ‖2
2 + ‖ d ‖2

2

for any x ∈ IRn. Since rank(A) = rank(R1) = n, it follows that xLS is defined by the
upper triangular system

R1xLS = c.

Note that
ρLS = ‖ d ‖2.
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We conclude that the full-rank LS problem can be readily solved once we have computed
the QR factorization of A. Details depend on the exact QR procedure. If Householder
matrices are used and QT is applied in factored form to b, then we obtain

Algorithm 5.3.2 (Householder LS Solution) If A ∈ IRm×n has full column rank
and b ∈ IRm, then the following algorithm computes a vector xLS ∈ IRn such that
‖ AxLS − b ‖2 is minimum.

Use Algorithm 5.2.1 to overwrite A with its QR factorization.

for j = 1:n

v =
[

1
A(j + 1 :m, j)

]
β = 2/vT v

b(j : m) = b(j : m) − β(vT b(j : m))v
end

Solve R(1 :n, 1 : n)·xLS = b(1:n) .

This method for solving the full-rank LS problem requires 2n2(m − n/3) flops. The
O(mn) flops associated with the updating of b and the O(n2) flops associated with the
back substitution are not significant compared to the work required to factor A.

It can be shown that the computed x̂LS solves

min‖ (A + δA)x − (b + δb) ‖2 (5.3.6)

where
‖ δA ‖

F
≤ (6m − 3n + 41)nu ‖ A ‖

F
+ O(u2) (5.3.7)

and
‖ δb ‖2 ≤ (6m − 3n + 40) nu ‖ b ‖2 + O(u2). (5.3.8)

These inequalities are established in Lawson and Hanson (SLS, p. 90ff) and show that
x̂LS satisfies a “nearby” LS problem. (We cannot address the relative error in x̂LS

without an LS perturbation theory, to be discussed shortly.) We mention that similar
results hold if Givens QR is used.

5.3.4 Breakdown in Near-Rank-Deficient Case

As with the method of normal equations, the Householder method for solving the LS
problem breaks down in the back-substitution phase if rank(A) < n. Numerically,
trouble can be expected if κ2(A) = κ2(R) ≈ 1/u. This is in contrast to the normal
equations approach, where completion of the Cholesky factorization becomes problem-
atical once κ2(A) is in the neighborhood of 1/

√
u as we showed above. Hence the claim

in Lawson and Hanson (SLS, pp. 126–127) that for a fixed machine precision, a wider
class of LS problems can be solved using Householder orthogonalization.

5.3.5 A Note on the MGS Approach

In principle, MGS computes the thin QR factorization A = Q1R1. This is enough
to solve the full-rank LS problem because it transforms the normal equation system
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(AT A)x = AT b to the upper triangular system R1x = QT
1 b. But an analysis of this

approach when QT
1 b is explicitly formed introduces a κ2(A)2 term. This is because the

computed factor Q̂1 satisfies ‖ Q̂T
1 Q̂1 − In ‖2 ≈ uκ2(A) as we mentioned in §5.2.9.

However, if MGS is applied to the augmented matrix

A+ = [ A | b ] = [ Q1 | qn+1 ]
[

R1 z
0 ρ

]
,

then z = QT
1 b. Computing QT

1 b in this fashion and solving R1xLS = z produces an LS
solution x̂LS that is “just as good” as the Householder QR method. That is to say, a
result of the form (5.3.6)–(5.3.8) applies. See Björck and Paige (1992).

It should be noted that the MGS method is slightly more expensive than House-
holder QR because it always manipulates m-vectors whereas the latter procedure deals
with vectors that become shorter in length as the algorithm progresses.

5.3.6 The Sensitivity of the LS Problem

We now develop a perturbation theory for the full-rank LS problem that assists in the
comparison of the normal equations and QR approaches. LS sensitivity analysis has
a long and fascinating history. Grcar (2009, 2010) compares about a dozen different
results that have appeared in the literature over the decades and the theorem below
follows his analysis. It examines how the LS solution and its residual are affected by
changes in A and b and thereby sheds light on the condition of the LS problem. Four
facts about A ∈ IRm×n are used in the proof, where it is assumed that m > n:

1 = ‖ A(AT A)−1AT ‖2,
1

σn(A) = ‖ (AT A)−1AT ‖2,

1 = ‖ I − A(AT A)−1AT ‖2,
1

σn(A)2
= ‖ (AT A)−1 ‖2.

(5.3.9)

These equations are easily verified using the SVD.

Theorem 5.3.1. Suppose that xLS, rLS, x̂LS, and r̂LS satisfy

‖ AxLS − b ‖2 = min, rLS = b − AxLS,

‖ (A + δA)x̂LS − (b + δb) ‖2 = min, r̂LS = (b + δb) − (A + δA)x̂LS,

where A has rank n and ‖ δA ‖2 < σn(A). Assume that b, rLS, and xLS are not zero.
Let θLS ∈ (0, π/2) be defined by

sin(θLS) =
‖ rLS ‖2

‖ b ‖2
.

If

ε = max

{
‖ δA ‖2

‖ A ‖2
,
‖ δb ‖2

‖ b ‖2

}
and

νLS =
‖ AxLS ‖2

σn(A)‖ xLS ‖2
, (5.3.10)
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then

‖ x̂LS − xLS ‖2

‖ x ‖2
≤ ε

{
vLS

cos(θLS)
+ [ 1 + νLS tan(θLS)]κ2(A)

}
+ O(ε2) (5.3.11)

and

‖ r̂LS − rLS ‖2

‖ rLS ‖2
≤ ε

{
1

sin(θLS)
+

[
1

νLS tan(θLS)
+ 1

]
κ2(A)

}
+ O(ε2). (5.3.12)

Proof. Let E and f be defined by E = δA/ε and f = δb/ε. By Theorem 2.5.2 we have
rank(A + tE) = n for all t ∈ [0, ε]. It follows that the solution x(t) to

(A + tE)T (A + tE)x(t) = (A + tE)T (b + tf) (5.3.13)

is continuously differentiable for all t ∈ [0, ε]. Since xLS = x(0) and x̂LS = x(ε), we have

x̂LS = xLS + εẋ(0) + O(ε2).

By taking norms and dividing by ‖ xLS ‖2 we obtain

‖ x̂LS − xLS ‖2

‖ xLS ‖2
= ε

‖ ẋ(0) ‖2

‖ xLS ‖2
+ O(ε2). (5.3.14)

In order to bound ‖ ẋ(0) ‖2, we differentiate (5.3.13) and set t = 0 in the result. This
gives

ET AxLS + AT ExLS + AT Aẋ(0) = AT f + ET b,

i.e.,
ẋ(0) = (AT A)−1AT (f − ExLS) + (AT A)−1ET rLS. (5.3.15)

Using (5.3.9) and the inequalities ‖ f ‖2 ≤ ‖ b ‖2 and ‖ E ‖2 ≤ ‖ A ‖2, it follows that

‖ ẋ(0) ‖ ≤ ‖ (AT A)−1AT f ‖2 + ‖ (AT A)−1AT ExLS ‖2 + ‖ (AT A)−1ET rLS ‖2

≤ ‖ b ‖2

σn(A)
+

‖ A ‖2‖ xLS ‖2

σn(A)
+

‖ A ‖2‖ rLS ‖2

σn(A)2
.

By substituting this into (5.3.14) we obtain

‖ x̂LS − xLS ‖2

‖ xLS ‖2
≤ ε

( ‖ b ‖2

σn(A)‖ xLS ‖2
+

‖ A ‖2

σn(A)
+

‖ A ‖2‖ rLS ‖2

σn(A)2‖ xLS ‖2
.

)
+ O(ε2).

Inequality (5.3.11) follows from the definitions of κ2(A) and νLS and the identities

cos(θLS) =
‖ AxLS ‖2

‖ b ‖2
, tan(θLS) =

‖ rLS ‖2

‖ AxLS ‖2
. (5.3.16)

The proof of the residual bound (5.3.12) is similar. Define the differentiable vector
function r(t) by

r(t) = (b + tf) − (A + tE)x(t)
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and observe that rLS = r(0) and r̂LS = r(ε). Thus,

‖ r̂LS − rLS ‖2

‖ rLS ‖2
= ε

‖ ṙ(0) ‖2

‖ rLS ‖2
+ O(ε2). (5.3.17)

From (5.3.15) we have

ṙ(0) =
(
I − A(AT A)−1AT

)
(f − ExLS) − A(AT A)−1ET rLS.

By taking norms, using (5.3.9) and the inequalities ‖ f ‖2 ≤ ‖ b ‖2 and ‖ E ‖2 ≤ ‖ A ‖2,
we obtain

‖ ṙ(0) ‖2 ≤ ‖ b ‖2 + ‖ A ‖2‖ xLS ‖2 +
‖ A ‖2‖ rLS ‖2

σn(A)

and thus from (5.3.17) we have

‖ r̂LS − rLS ‖2

‖ rLS ‖2
≤ ‖ b ‖2

‖ rLS ‖2
+

‖ A ‖2‖ xLS ‖2

‖ rLS ‖2
+

‖ A ‖2

σn(A)
.

The inequality (5.3.12) follows from the definitions of κ2(A) and νLS and the identities
(5.3.16).

It is instructive to identify conditions that turn the upper bound in (5.3.11) into a
bound that involves κ2(A)2. The example in §5.3.1 suggests that this factor might
figure in the definition of an LS condition number. However, the theorem shows that
the situation is more subtle. Note that

νLS =
‖ AxLS ‖2

σn(A)‖ xLS ‖2
≤ ‖ A ‖2

σn(A)
= κ2(A).

The SVD expansion (5.3.2) suggests that if b has a modest component in the direction
of the left singular vector un, then

νLS ≈ κ2(A).

If this is the case and θLS is sufficiently bounded away from π/2, then the inequality
(5.3.11) essentially says that

‖ x̂LS − xLS ‖2

‖ xLS ‖2
≈ ε

(
κ2(A) +

ρLS

‖ b ‖2
κ2(A)2

)
. (5.3.18)

Although this simple heuristic assessment of LS sensitivity is almost always applicable,
it important to remember that the true condition of a particular LS problem depends
on νLS, θLS, and κ2(A).

Regarding the perturbation of the residual, observe that the upper bound in the
residual result (5.3.12) is less than the upper bound in the solution result (5.3.11) by
a factor of νLS tan(θLS). We also observe that if θLS is sufficiently bounded away from
both 0 and π/2, then (5.3.12) essentially says that

‖ r̂LS − rLS ‖2

‖ rLS ‖2
≈ ε · κ2(A). (5.3.19)

For more insights into the subtleties behind Theorem 5.3.1., see Wedin (1973), Van-
dersluis (1975), Björck (NMLS, p. 30), Higham (ASNA, p. 382), and Grcar(2010).
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5.3.7 Normal Equations Versus QR

It is instructive to compare the normal equation and QR approaches to the full-rank
LS problem in light of Theorem 5.3.1.

• The method of normal equations produces an x̂LS whose relative error depends
on κ2(A)2, a factor that can be considerably larger than the condition number
associated with a “small residual” LS problem.

• The QR approach (Householder, Givens, careful MGS) solves a nearby LS prob-
lem. Therefore, these methods produce a computed solution with relative error
that is “predicted” by the condition of the underlying LS problem.

Thus, the QR approach is more appealing in situations where b is close to the span of
A’s columns.

Finally, we mention two other factors that figure in the debate about QR versus
normal equations. First, the normal equations approach involves about half of the
arithmetic when m  n and does not require as much storage, assuming that Q(:, 1:n)
is required. Second, QR approaches are applicable to a wider class of LS problems.
This is because the Cholesky solve in the method of normal equations is “in trouble”
if κ2(A) ≈ 1/

√
u while the R-solve step in a QR approach is in trouble only if κ2(A) ≈

1/u. Choosing the “right” algorithm requires having an appreciation for these tradeoffs.

5.3.8 Iterative Improvement

A technique for refining an approximate LS solution has been analyzed by Björck (1967,
1968). It is based on the idea that if[

Im A

AT 0

] [
r

x

]
=

[
b

0

]
, A ∈ IRm×n, b ∈ IRm, (5.3.20)

then ‖ b − Ax ‖2 = min. This follows because r + Ax = b and AT r = 0 imply AT Ax =
AT b. The above augmented system is nonsingular if rank(A) = n, which we hereafter
assume. By casting the LS problem in the form of a square linear system, the iterative
improvement scheme §3.5.3 can be applied:

r(0) = 0, x(0) = 0

for k = 0, 1, . . .[
f (k)

g(k)

]
=

[
b
0

]
−

[
I A

AT 0

][
r(k)

x(k)

]
[

I A

AT 0

] [
p(k)

z(k)

]
=

[
f (k)

g(k)

]
[

r(k+1)

x(k+1)

]
=

[
r(k)

x(k)

]
+

[
p(k)

z(k)

]

end
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The residuals f (k) and g(k) must be computed in higher precision, and an original copy
of A must be around for this purpose.

If the QR factorization of A is available, then the solution of the augmented
system is readily obtained. In particular, if A = QR and R1 = R(1:n, 1:n), then a
system of the form [

I A
AT 0

][
p

z

]
=

[
f

g

]
transforms to ⎡⎢⎢⎣ In 0 R1

0 Im−n 0

RT
1 0 0

⎤⎥⎥⎦
⎡⎢⎣ h

f2

z

⎤⎥⎦ =

⎡⎢⎣ f1

f2

g

⎤⎥⎦
where

QT f =
[

f1
f2

]
n

m−n
, QT p =

[
h
f2

]
n

m−n
.

Thus, p and z can be determined by solving the triangular systems RT
1 h = g and

R1z = f1 − h and setting

p = Q

[
h

f2

]
.

Assuming that Q is stored in factored form, each iteration requires 8mn − 2n2 flops.
The key to the iteration’s success is that both the LS residual and solution are

updated—not just the solution. Björck (1968) shows that if κ2(A) ≈ βq and t-digit,
β-base arithmetic is used, then x(k) has approximately k(t − q) correct base-β digits,
provided the residuals are computed in double precision. Notice that it is κ2(A), not
κ2(A)2, that appears in this heuristic.

5.3.9 Some Point/Line/Plane Nearness Problems in 3-Space

The fields of computer graphics and computer vision are replete with many interesting
matrix problems. Below we pose three geometric “nearness” problems that involve
points, lines, and planes in 3-space. Each is a highly structured least squares problem
with a simple, closed-form solution. The underlying trigonometry leads rather naturally
to the vector cross product, so we start with a quick review of this important operation.

The cross product of a vector p ∈ IR3 with a vector q ∈ IR3 is defined by

p × q =

⎡⎢⎣ p2q3 − p3q2

p3q1 − p1q3

p1q2 − p2q1

⎤⎥⎦ .

This operation can be framed as a matrix-vector product. For any v ∈ IR3, define the
skew-symmetric matrix vc by

vc =

⎡⎢⎣ 0 −v3 v2

v3 0 −v1

−v2 v1 0

⎤⎥⎦ .
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It follows that

p × q = pc · q = −qc · p = −(q × p).

Using the skew-symmetry of pc and qc, it is easy to show that

p × q ∈ span{p , q}⊥. (5.3.21)

Other properties include

(p × q) × r = (pc · q)cr =
(
qpT − pqT

)
r = (pT r)·q − (qT r)·p, (5.3.22)

(p × q)T (r × s) = (pcq)T ·(rcs) = det([p q]T [r s]), (5.3.23)

pcpc = ppT − ‖ p ‖2
2 ·I3, (5.3.24)

‖ pcq ‖2
2 = ‖ p ‖2

2 ·‖ q ‖2
2 ·
(

1 −
(

pT q

‖ p ‖2 ·‖ q ‖2

)2
)

. (5.3.25)

We are now set to state the three problems and specify their theoretical solutions.
For hints at how to establish the correctness of the solutions, see P5.3.13–P5.3.15.

Problem 1. Given a line L and a point y, find the point zopt on L that is closest to y,
i.e., solve

min
z∈L

‖ z − y ‖2.

If L passes through distinct points p1 and p2, then it can be shown that

zopt = y +
1

vT v
vcvc(y − p1), v = p2 − p1. (5.3.26)

Problem 2. Given lines L1 and L2, find the point zopt
1 on L1 that is closest to L2 and

the point zopt
2 on L2 that is closest to L1, i.e., solve

min
z1∈L1 , z2∈L2

‖ z1 − z2 ‖2.

If L1 passes through distinct points p1 and p2 and L2 passes through distinct points q1
and q2, then it can be shown that

zopt
1 = p1 +

1
rT r

· vwT · rc(q1 − p1), (5.3.27)

zopt
2 = q1 +

1
rT r

· wvT · rc(q1 − p1), (5.3.28)

where v = p2 − p1, w = q2 − q1, and r = vcw.

Problem 3. Given a plane P and a point y, find the point zopt on P that is closest to
y, i.e., solve

min
z∈P

‖ z − y ‖2.
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If P passes through three distinct points p1, p2, and p3, then it can be shown that

zopt = p1 − 1
vT v

· vcvc(y − p1) (5.3.29)

where v = (p2 − p1)c (p3 − p1).

The nice closed-form solutions (5.3.26)–(5.3.29) are deceptively simple and great care
must be exercised when computing with these formulae or their mathematical equiva-
lents. See Kahan (2011).

Problems

P5.3.1 Assume AT Ax = AT b, (AT A + F )x̂ = AT b, and 2‖ F ‖2 ≤ σn(A)2. Show that if r = b− Ax
and r̂ = b−Ax̂, then r̂ − r = A(AT A + F )−1Fx and

‖ r̂ − r ‖2 ≤ 2 κ2(A)
‖ F ‖2
‖A ‖2

‖ x ‖2.

P5.3.2 Assume that AT Ax = AT b and that AT Ax̂ = AT b + f where ‖ f ‖2 ≤ cu‖AT ‖2‖ b ‖2 and A
has full column rank. Show that

‖ x− x̂ ‖2
‖ x ‖2

≤ cuκ2(A)2
‖AT ‖2‖ b ‖2
‖AT b ‖

.

P5.3.3 Let A ∈ IRm×n (m ≥ n), w ∈ IRn, and define

B =
[

A
wT

]
.

Show that σn(B) ≥ σn(A) and σ1(B) ≤
√
‖A ‖22 + ‖ w ‖22. Thus, the condition of a matrix may

increase or decrease if a row is added.

P5.3.4 (Cline 1973) Suppose that A ∈ IRm×n has rank n and that Gaussian elimination with partial
pivoting is used to compute the factorization PA = LU , where L ∈ IRm×n is unit lower triangular,
U ∈ IRn×n is upper triangular, and P ∈ IRm×m is a permutation. Explain how the decomposition in
P5.2.5 can be used to find a vector z ∈ IRn such that ‖ Lz − Pb ‖2 is minimized. Show that if Ux = z,
then ‖Ax− b ‖2 is minimum. Show that this method of solving the LS problem is more efficient than
Householder QR from the flop point of view whenever m ≤ 5n/3.

P5.3.5 The matrix C = (AT A)−1, where rank(A) = n, arises in many statistical applications. Assume
that the factorization A = QR is available. (a) Show C = (RT R)−1. (b) Give an algorithm for
computing the diagonal of C that requires n3/3 flops. (c) Show that

R =
[

α vT

0 S

]
⇒ C = (RT R)−1 =

[
(1 + vT C1v)/α2 −vT C1/α

−C1v/α C1

]
where C1 = (ST S)−1. (d) Using (c), give an algorithm that overwrites the upper triangular portion
of R with the upper triangular portion of C. Your algorithm should require 2n3/3 flops.

P5.3.6 Suppose A ∈ IRn×n is symmetric and that r = b − Ax where r, b, x ∈ IRn and x is nonzero.
Show how to compute a symmetric E ∈ IRn×n with minimal Frobenius norm so that (A + E)x = b.
Hint: Use the QR factorization of [ x | r ] and note that Ex = r ⇒ (QT EQ)(QT x) = QT r.

P5.3.7 Points P1, . . . , Pn on the x-axis have x-coordinates x1, . . . , xn. We know that x1 = 0 and wish
to compute x2, . . . , xn given that we have estimates dij of the separations:

xi − xj ≈ dij , 1 ≤ i < j ≤ n.

Using the method of normal equations, show how to minimize

φ(x1, . . . , xn) =
n−1∑
i=1

n∑
j=i+1

(xi − xj − dij)2
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subject to the constraint x1 = 0.

P5.3.8 Suppose A ∈ IRm×n has full rank and that b ∈ IRm and c ∈ IRn are given. Show how to compute
α = cT xLS without computing xLS explicitly. Hint: Suppose Z is a Householder matrix such that
ZT c is a multiple of In(:, n). It follows that α = (ZT c)T yLS where yLS minimizes ‖ Ãy − b ‖2 with
y = ZT x and Ã = AZ.

P5.3.9 Suppose A ∈ IRm×n and b ∈ IRm with m ≥ n. How would you solve the full rank least squares
problem given the availability of a matrix M ∈ IRm×m such that MT A = S is upper triangular and
MT M = D is diagonal?

P5.3.10 Let A ∈ IRm×n have rank n and for α ≥ 0 define

M(α) =

[
αIm A

AT 0

]
.

Show that

σm+n(M(α)) = min

{
α , −α

2
+

√
σn(A)2 +

(
α

2

)2
}

and determine the value of α that minimizes κ2(M(α)).

P5.3.11 Another iterative improvement method for LS problems is the following:

x(0) = 0
for k = 0, 1, ...

r(k) = b−Ax(k) (double precision)
‖Az(k) − r(k) ‖2 = min
x(k+1) = x(k) + z(k)

end

(a) Assuming that the QR factorization of A is available, how many flops per iteration are required?
(b) Show that the above iteration results by setting g(k) = 0 in the iterative improvement scheme
given in §5.3.8.

P5.3.12 Verify (5.3.21)–(5.3.25).

P5.3.13 Verify (5.3.26) noting that L = { p1 + τ(p2 − p1) : τ ∈ IR }.

P5.3.14 Verify (5.3.27) noting that the minimizer τopt ∈ IR2 of ‖ (p1 − q1) − [ p2 − p1 | q2 − q1 ]τ ‖2
is relevant.

P5.3.15 Verify (5.3.29) noting that P = { x : xT ((p2 − p1)× (p3 − p1)) = 0.
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vision:

A.S. Glassner (1989). An Introduction to Ray Tracing, Morgan Kaufmann, Burlington, MA.
R. Hartley and A. Zisserman (2004). Multiple View Geometry in Computer Vision, Second Edition,

Cambridge University Press, New York.
M. Pharr and M. Humphreys (2010). Physically Based Rendering, from Theory to Implementation,

Second Edition, Morgan Kaufmann, Burlington, MA.

For a numerical perspective, see:

W. Kahan (2008). “Computing Cross-Products and Rotations in 2- and 3-dimensional Euclidean
Spaces,” http://www.cs.berkeley.edu/ wkahan/MathH110/Cross.pdf.

5.4 Other Orthogonal Factorizations
Suppose A ∈ IRm×4 has a thin QR factorization of the following form:

A = [ a1, a2, a3, a4 ] = [ q1, q2, q3, q4 ]

⎡⎢⎢⎣
1 1 1 1
0 0 1 1
0 0 0 1
0 0 0 1

⎤⎥⎥⎦ .

Note that ran(A) has dimension 3 but does not equal span{q1, q2, q3}, span{q1, q2, q4},
span{q1, q3, q4}, or span{q2, q3, q4} because a4 does not belong to any of these subspaces.
In this case, the QR factorization reveals neither the range nor the nullspace of A and
the number of nonzeros on R’s diagonal does not equal its rank. Moreover, the LS
solution process based on the QR factorization (Algorithm 5.3.2) breaks down because
the upper triangular portion of R is singular.

We start this section by introducing several decompositions that overcome these
shortcomings. They all have the form QT AZ = T where T is a structured block
triangular matrix that sheds light on A’s rank, range, and nullspace. We informally
refer to matrix reductions of this form as rank revealing. See Chandrasekaren and Ipsen
(1994) for a more precise formulation of the concept.

Our focus is on a modification of the QR factorization that involves column
pivoting. The resulting R-matrix has a structure that supports rank estimation. To
set the stage for updating methods, we briefly discus the ULV and UTV frameworks
Updating is discussed in §6.5 and refers to the efficient recomputation of a factorization
after the matrix undergoes a low-rank change.

All these methods can be regarded as inexpensive alternatives to the SVD, which
represents the “gold standard” in the area of rank determination. Nothing “takes
apart” a matrix so conclusively as the SVD and so we include an explanation of its
airtight reliability. The computation of the full SVD, which we discuss in §8.6, begins

http://www.cs.berkeley.edu/wkahan/MathH110/Cross.pdf
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with the reduction to bidiagonal form using Householder matrices. Because this de-
composition is important in its own right, we provide some details at the end of this
section.

5.4.1 Numerical Rank and the SVD

Suppose A ∈ IRm×n has SVD UT AV = Σ = diag(σi). If rank(A) = r < n, then
according to the exact arithmetic discussion of §2.4 the singular values σr+1, . . . , σn

are zero and

A =
r∑

i=1

σkukvT
k . (5.4.1)

The exposure of rank degeneracy could not be more clear.
In Chapter 8 we describe the Golub-Kahan-Reinsch algorithm for computing the

SVD. Properly implemented, it produces nearly orthogonal matrices Û and V̂ so that

ÛT AV̂ ≈ Σ̂ = diag(σ̂1, . . . , σ̂n), σ̂1 ≥ · · · ≥ σ̂n ≥ 0.

(Other SVD procedures have this property as well.) Unfortunately, unless remark-
able cancellation occurs, none of the computed singular values will be zero because of
roundoff error. This forces an issue. On the one hand, we can adhere to the strict math-
ematical definition of rank, count the number of nonzero computed singular values, and
conclude from

A ≈
n∑

i=1

σ̂kûkv̂T
k (5.4.2)

that A has full rank. However, working with every matrix as if it possessed full col-
umn rank is not particularly useful. It is more productive to liberalize the notion of
rank by setting small computed singular values to zero in (5.4.2). This results in an
approximation of the form

A ≈
r̂∑

i=1

σ̂kûkv̂T
k , r̂ ≤ n̂ (5.4.3)

where we regard r̂ as the numerical rank. For this approach to make sense we need to
guarantee that |σ̂i − σi| is small.

For a properly implemented Golub-Kahan-Reinsch SVD algorithm, it can be
shown that

Û = W + ∆U, WT W = Im, ‖ ∆U ‖2 ≤ ε,

V̂ = Z + ∆V, ZT Z = In, ‖ ∆V ‖2 ≤ ε,

Σ̂ = WT (A + ∆A)Z, ‖ ∆A ‖2 ≤ ε‖ A ‖2,

(5.4.4)

where ε is a small multiple of u, the machine precision. In other words, the SVD
algorithm computes the singular values of a nearby matrix A + ∆A.



276 Chapter 5. Orthogonalization and Least Squares

Note that Û and V̂ are not necessarily close to their exact counterparts. However,
we can show that σ̂k is close to σk as follows. Using Corollary 2.4.6 we have

σk = min
rank(B)=k−1

‖ A − B ‖2 = min
rank(B)=k−1

‖ (Σ̂ − B) − E ‖2

where
E = WT (∆A)Z

and
‖ E ‖2 ≤ ε ‖ A ‖2 = ε σ1.

Since
‖ Σ̂ − B ‖ − ‖ E ‖ ≤ ‖ Σ̂ − B ‖ ≤ ‖ Σ̂ − B ‖ + ‖ E ‖

and

min
rank(B)=k−1

‖ Σ̂k − B ‖2 = σ̂k,

it follows that
|σk − σ̂k| ≤ ε σ1

for k = 1:n. Thus, if A has rank r, then we can expect n− r of the computed singular
values to be small. Near rank deficiency in A cannot escape detection if the SVD of A
is computed.

Of course, all this hinges on having a definition of “small.” This amounts to
choosing a tolerance δ > 0 and declaring A to have numerical rank r̂ if the computed
singular values satisfy

σ̂1 ≥ · · · ≥ σ̂r̂ > δ ≥ σ̂r̂+1 ≥ · · · ≥ σ̂n . (5.4.5)

We refer to the integer r̂ as the δ-rank of A. The tolerance should be consistent with the
machine precision, e.g., δ = u‖ A ‖∞. However, if the general level of relative error in
the data is larger than u, then δ should be correspondingly bigger, e.g., δ = 10−2‖ A ‖∞
if the entries in A are correct to two digits.

For a given δ it is important to stress that, although the SVD provides a great deal
of rank-related insight, it does not change the fact that the determination of numerical
rank is a sensitive computation. If the gap between σ̂

r̂
and σ̂

r̂+1 is small, then A is
also close (in the δ sense) to a matrix with rank r̂− 1. Thus, the amount of confidence
we have in the correctness of r̂ and in how we proceed to use the approximation (5.4.2)
depends on the gap between σ̂

r̂
and σ̂

r̂+1.

5.4.2 QR with Column Pivoting

We now examine alternative rank-revealing strategies to the SVD starting with a mod-
ification of the Householder QR factorization procedure (Algorithm 5.2.1). In exact
arithmetic, the modified algorithm computes the factorization

QT AΠ =
[

R11

0

R12

0

]
r

m−r

r n−r

(5.4.6)
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where r = rank(A), Q is orthogonal, R11 is upper triangular and nonsingular, and
Π is a permutation. If we have the column partitionings AΠ = [ ac1 | · · · | acn

] and
Q = [ q1 | · · · | qm ] , then for k = 1:n we have

ack
=

min{r,k}∑
i=1

rikqi ∈ span{q1, . . . , qr}

implying
ran(A) = span{q1, . . . , qr}.

To see how to compute such a factorization, assume for some k that we have
computed Householder matrices H1, . . . , Hk−1 and permutations Π1, . . . ,Πk−1 such
that

(Hk−1 · · ·H1)A(Π1 · · ·Πk−1) = R(k−1) =
[

R
(k−1)
11

0

R
(k−1)
12

R
(k−1)
22

]
k−1

m−k+1

k−1 n−k+1

(5.4.7)

where R
(k−1)
11 is a nonsingular and upper triangular matrix. Now suppose that

R
(k−1)
22 = [ z

(k−1)
k | · · · | z(k−1)

n ]

is a column partitioning and let p ≥ k be the smallest index such that

‖ z
(k−1)
p ‖2 = max

{
‖ z

(k−1)
k ‖2 , . . . , ‖ z

(k−1)
n ‖2

}
. (5.4.8)

Note that if rank(A) = k−1, then this maximum is zero and we are finished. Otherwise,
let Πk be the n-by-n identity with columns p and k interchanged and determine a
Householder matrix Hk such that if

R(k) = HkR(k−1)Πk,

then R(k)(k + 1:m, k) = 0. In other words, Πk moves the largest column in R
(k−1)
22 to

the lead position and Hk zeroes all of its subdiagonal components.
The column norms do not have to be recomputed at each stage if we exploit the

property

QT z =
[

α

w

]
1

s−1
=⇒ ‖ w ‖2

2 = ‖ z ‖2
2 − α2,

which holds for any orthogonal matrix Q ∈ IRs×s. This reduces the overhead associated
with column pivoting from O(mn2) flops to O(mn) flops because we can get the new
column norms by updating the old column norms, e.g.,

‖ z
(k)
j ‖2

2 = ‖ z
(k−1)
j ‖2

2 − r2
kj j = k + 1:n.

Combining all of the above we obtain the following algorithm first presented by Businger
and Golub (1965):
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Algorithm 5.4.1 (Householder QR With Column Pivoting) Given A ∈ IRm×n with
m ≥ n, the following algorithm computes r = rank(A) and the factorization (5.4.6)
with Q = H1 · · ·Hr and Π = Π1 · · ·Πr. The upper triangular part of A is overwritten
by the upper triangular part of R and components j + 1:m of the jth Householder
vector are stored in A(j + 1:m, j). The permutation Π is encoded in an integer vector
piv. In particular, Πj is the identity with rows j and piv(j) interchanged.

for j = 1:n

c(j) = A(1:m, j)T A(1:m, j)
end

r = 0

τ = max{c(1), . . . , c(n)}
while τ > 0 and r < n

r = r + 1

Find smallest k with r ≤ k ≤ n so c(k) = τ .

piv(r) = k

A(1:m, r) ↔ A(1:m, k)

c(r) ↔ c(k)

[v, β] = house(A(r:m, r))

A(r:m, r:n) = (Im−r+1 − βvvT )A(:r:m, r:n)

A(r + 1:m, r) = v(2:m − r + 1)

for i = r + 1:n

c(i) = c(i) − A(r, i)2

end

τ = max{c(r + 1), . . . , c(n)}
end

This algorithm requires 4mnr − 2r2(m + n) + 4r3/3 flops where r = rank(A).

5.4.3 Numerical Rank and AΠ = QR

In principle, QR with column pivoting reveals rank. But how informative is the method
in the context of floating point arithmetic? After k steps we have

fl(Hk · · ·H1AΠ1 · · ·Πk) = R̂(k) =
[

R̂
(k)
11

0

R̂
(k)
12

R̂
(k)
22

]
k

m−k

k n−k

. (5.4.9)

If R̂
(k)
22 is suitably small in norm, then it is reasonable to terminate the reduction and

declare A to have rank k. A typical termination criteria might be

‖ R̂
(k)
22 ‖2 ≤ ε1‖ A ‖2
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for some small machine-dependent parameter ε1. In view of the roundoff properties
associated with Householder matrix computation (cf. §5.1.12), we know that R̂(k) is
the exact R-factor of a matrix A + Ek, where

‖ Ek ‖2 ≤ ε2‖ A ‖2, ε2 = O(u).

Using Corollary 2.4.4 we have

σk+1(A + Ek) = σk+1(R̂(k)) ≤ ‖ R̂
(k)
22 ‖2 .

Since σk+1(A) ≤ σk+1(A + Ek) + ‖ Ek ‖2, it follows that

σk+1(A) ≤ (ε1 + ε2)‖ A ‖2.

In other words, a relative perturbation of O(ε1 + ε2) in A can yield a rank-k matrix.
With this termination criterion, we conclude that QR with column pivoting discovers
rank deficiency if R̂

(k)
22 is small for some k < n. However, it does not follow that the

matrix R̂
(k)
22 in (5.4.9) is small if rank(A) = k. There are examples of nearly rank

deficient matrices whose R-factor look perfectly “normal.” A famous example is the
Kahan matrix

Kahn(s) = diag(1, s, . . . , sn−1)

⎡⎢⎢⎢⎢⎢⎢⎣

1 −c −c · · · −c
0 1 −c · · · −c

. . .
...

...
... 1 −c
0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Here, c2 +s2 = 1 with c, s > 0. (See Lawson and Hanson (SLS, p. 31).) These matrices
are unaltered by Algorithm 5.4.1 and thus ‖ R

(k)
22 ‖2 ≥ sn−1 for k = 1:n − 1 . This

inequality implies (for example) that the matrix Kah300(.99) has no particularly small
trailing principal submatrix since s299 ≈ .05. However, a calculation shows that σ300
= O(10−19).

Nevertheless, in practice, small trailing R-submatrices almost always emerge that
correlate well with the underlying rank. In other words, it is almost always the case
that R̂

(k)
22 is small if A has rank k.

5.4.4 Finding a Good Column Ordering

It is important to appreciate that Algorithm 5.4.1 is just one way to determine the
column permutation Π. The following result sets the stage for a better way.

Theorem 5.4.1. If A ∈ IRm×n and v ∈ IRn is a unit 2-norm vector, then there exists
a permutation Π so that the QR factorization

AΠ = QR

satisfies |rnn| ≤ √
nσ where σ = ‖ Av ‖2.
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Proof. Suppose Π ∈ IRn×n is a permutation such that if w = ΠT v, then

|wn| = max |vi|.

Since wn is the largest component of a unit 2-norm vector, |wn| ≥ 1/
√

n. If AΠ = QR
is a QR factorization, then

σ = ‖ Av ‖2 = ‖ (QT AΠ)(ΠT v) ‖2 = ‖ R(1:n, 1:n)w ‖2 ≥ |rnnwn| ≥ |rnn|/
√

n.

Note that if v = vn is the right singular vector corresponding to σmin(A), then |rnn| ≤√
nσn. This suggests a framework whereby the column permutation matrix Π is based

on an estimate of vn:
Step 1. Compute the QR factorization A = Q0R0 and note that R0 has the

same right singular vectors as A.

Step 2. Use condition estimation techniques to obtain a unit vector v with
‖ R0v ‖2 ≈ σn.

Step 3. Determine Π and the QR factorization AΠ = QR.

See Chan (1987) for details about this approach to rank determination. The permu-
tation Π can be generated as a sequence of swap permutations. This supports a very
economical Givens rotation method for generating of Q and R from Q0 and R0.

5.4.5 More General Rank-Revealing Decompositions

Additional rank-revealing strategies emerge if we allow general orthogonal recombina-
tions of the A’s columns instead of just permutations. That is, we look for an orthogonal
Z so that the QR factorization

AZ = QR

produces a rank-revealing R. To impart the spirit of this type of matrix reduction,
we show how the rank-revealing properties of a given AZ = QR factorization can be
improved by replacing Z, Q, and R with

Znew = ZZG, Qnew = QQG, Rnew = QT
GRZG,

respectively, where QG and ZG are products of Givens rotations and Rnew is upper
triangular. The rotations are generated by introducing zeros into a unit 2-norm n-
vector v which we assume approximates the n-th right singular vector of AZ. In
particular, if ZT

G v = en = In(:, n) and ‖ Rv ‖2 ≈ σn, then

‖ Rnewen ‖2 = ‖ QT
GRZGen ‖2 = ‖ QT

GRv ‖2 = ‖ Rv ‖2 ≈ σn

This says that the norm of the last column of Rnew is approximately the smallest
singular value of A, which is certainly one way to reveal the underlying matrix rank.

We use the case n = 4 to illustrate how the Givens rotations arise and why the
overall process is economical. Because we are transforming v to en and not e1, we
need to “flip” the mission of the 2-by-2 rotations in the ZG computations so that top
components are zeroed, i.e.,[

0

×

]
=

[
c s

−s c

][
×
×

]
.
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This requires only a slight modification of Algorithm 5.1.3.
In the n = 4 case we start with

R =

⎡⎢⎢⎣
× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

⎤⎥⎥⎦ v =

⎡⎢⎢⎣
×
×
×
×

⎤⎥⎥⎦
and proceed to compute

ZG = G12G23G34

and
QG = H12H23H34

as products of Givens rotations. The first step is to zero the top component of v with
a “flipped” (1,2) rotation and update R accordingly:

R ← RG12 =

⎡⎢⎢⎣
× × × ×
× × × ×
0 0 × ×
0 0 0 ×

⎤⎥⎥⎦ , v ← GT
12v =

⎡⎢⎢⎣
0
×
×
×

⎤⎥⎥⎦ .

To remove the unwanted subdiagonal in R, we apply a conventional (nonflipped) Givens
rotation from the left to R (but not v):

R ← HT
12R =

⎡⎢⎢⎣
× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

⎤⎥⎥⎦ , v =

⎡⎢⎢⎣
0
×
×
×

⎤⎥⎥⎦ .

The next step is analogous:

R ← RG23 =

⎡⎢⎢⎣
× × × ×
0 × × ×
0 × × ×
0 0 0 ×

⎤⎥⎥⎦ , v ← GT
23v =

⎡⎢⎢⎣
0
0
×
×

⎤⎥⎥⎦ .

R ← HT
23R =

⎡⎢⎢⎣
× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

⎤⎥⎥⎦ , v =

⎡⎢⎢⎣
0
0
×
×

⎤⎥⎥⎦ .

And finally,

R ← RG34 =

⎡⎢⎢⎣
× × × ×
0 × × ×
0 0 × ×
0 0 × ×

⎤⎥⎥⎦ , v = GT
34v =

⎡⎢⎢⎣
0
0
0
×

⎤⎥⎥⎦ ,
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R ← HT
34R =

⎡⎢⎢⎣
× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

⎤⎥⎥⎦ , v =

⎡⎢⎢⎣
0
0
0
×

⎤⎥⎥⎦ .

The pattern is clear, for i = 1:n − 1, a Gi,i+1 is used to zero the current vi and an
Hi,i+1 is used to zero the current ri+1,i. The overall transition from {Q, Z, R} to
{Qnew, Znew, Rnew} involves O(mn) flops. If the Givens rotations are kept in factored
form, this flop count is reduced to O(n2). We mention that the ideas in this subsection
can be iterated to develop matrix reductions that expose the structure of matrices
whose rank is less than n − 1. “Zero-chasing” with Givens rotations is at the heart of
many important matrix algorithms; see §6.3, §7.5, and §8.3.

5.4.6 The UTV Framework

As mentioned at the start of this section, we are interested in factorizations that are
cheaper than the SVD but which provide the same high quality information about rank,
range, and nullspace. Factorizations of this type are referred to as UTV factorizations
where the “T” stands for triangular and the “U” and “V ” remind us of the SVD and
orthogonal U and V matrices of singular vectors.

The matrix T can be upper triangular (these are the URV factorizations) or
lower triangular (these are the ULV factorizations). It turns out that in a particular
application one may favor a URV approach over a ULV approach, see §6.3. More-
over, the two reductions have different approximation properties. For example, sup-
pose σk(A) > σk+1(A) and S is the subspace spanned by A’s right singular vectors
vk+1, . . . , vn. Think of S as an approximate nullspace of A. Following Stewart (1993),
if

UT AV = R =
[

R11

0

R12

R22

]
k

m−k

k n−k

and V = [ V1 | V2 ] is partitioned conformably, then

dist(ran(V2), S) ≤ ‖ R12 ‖2

(1 − ρ2
R)σmin(R11)

(5.4.10)

where

ρR =
‖ R22 ‖2

σmin(R11)

is assumed to be less than 1. On the other hand, in the ULV setting we have

UT AV = L =
[

L11

L21

0

L22

]
k

m−k

k n−k

.
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If V = [ V1 | V2 ] is partitioned conformably, then

dist(ran(V2), S) ≤ ρL

‖ L12 ‖2

(1 − ρ2
L)σmin(L11)

(5.4.11)

where

ρL =
‖ L22 ‖2

σmin(L11)

is also assumed to be less than 1. However, in practice the ρ-factors in both (5.4.10)
and (5.4.11) are often much less than 1. Observe that when this is the case, the upper
bound in (5.4.11) is much smaller than the upper bound in (5.4.10).

5.4.7 Complete Orthogonal Decompositions

Related to the UTV framework is the idea of a complete orthogonal factorization. Here
we compute orthogonal U and V such that

UT AV =
[

T11

0

0

0

]
r

m−r

r n−r

(5.4.12)

where r = rank(A). The SVD is obviously an example of a decomposition that has
this structure. However, a cheaper, two-step QR process is also possible. We first use
Algorithm 5.4.1 to compute

UT AΠ =
[

R11

0

R12

0

]
r

m−r

r n−r

and then follow up with a second QR factorization

QT

[
RT

11

RT
12

]
=

[
S1

0

]

via Algorithm 5.2.1. If we set V = ΠQ, then (5.4.12) is realized with T11 = ST
1 . Note

that two important subspaces are defined by selected columns of U = [ u1 | · · · | um ]
and V = [ v1 | · · · | vn ] :

ran(A) = span{u1, . . . , ur},

null(A) = span{vr+1, . . . , vn}.

Of course, the computation of a complete orthogonal decomposition in practice would
require the careful handling of numerical rank.
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5.4.8 Bidiagonalization

There is one other two-sided orthogonal factorization that is important to discuss and
that is the bidiagonal factorization. It is not a rank-revealing factorization per se, but
it has a useful role to play because it rivals the SVD in terms of data compression.

Suppose A ∈ IRm×n and m ≥ n. The idea is to compute orthogonal UB (m-by-m)
and VB (n-by-n) such that

UT
B AVB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 f1 0 · · · 0
0 d2 f2 0
...

. . . . . . . . .
...

0 · · · dn−1 fn−1
0 · · · 0 dn

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.4.13)

UB = U1 · · ·Un and VB = V1 · · ·Vn−2 can each be determined as a product of House-
holder matrices, e.g.,

⎡⎢⎢⎢⎢⎣
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

⎤⎥⎥⎥⎥⎦ U1−→

⎡⎢⎢⎢⎢⎣
× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×

⎤⎥⎥⎥⎥⎦ V1−→

⎡⎢⎢⎢⎢⎣
× × 0 0
0 × × ×
0 × × ×
0 × × ×
0 × × ×

⎤⎥⎥⎥⎥⎦ U2−→

⎡⎢⎢⎢⎢⎣
× × 0 0
0 × × ×
0 0 × ×
0 0 × ×
0 0 × ×

⎤⎥⎥⎥⎥⎦ V2−→

⎡⎢⎢⎢⎢⎣
× × 0 0
0 × × 0
0 0 × ×
0 0 × ×
0 0 × ×

⎤⎥⎥⎥⎥⎦ U3−→

⎡⎢⎢⎢⎢⎣
× × 0 0
0 × × 0
0 0 × ×
0 0 0 ×
0 0 0 ×

⎤⎥⎥⎥⎥⎦ U4−→

⎡⎢⎢⎢⎢⎣
× × 0 0
0 × × 0
0 0 × ×
0 0 0 ×
0 0 0 0

⎤⎥⎥⎥⎥⎦ .

In general, Uk introduces zeros into the kth column, while Vk zeros the appropriate
entries in row k. Overall we have:

Algorithm 5.4.2 (Householder Bidiagonalization) Given A ∈ IRm×n with m ≥ n, the
following algorithm overwrites A with UT

B AVB = B where B is upper bidiagonal and
UB = U1 · · ·Un and VB = V1 · · ·Vn−2. The essential part of Uj ’s Householder vector is
stored in A(j + 1:m, j) and the essential part of Vj ’s Householder vector is stored in
A(j, j + 2:n).
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for j = 1:n

[v, β] = house(A(j:m, j))

A(j:m, j:n) = (Im−j+1 − βvvT )A(j:m, j:n)

A(j + 1:m, j) = v(2:m − j + 1)

if j ≤ n − 2

[v, β] = house(A(j, j + 1:n)T )

A(j:m, j + 1:n) = A(j:m, j + 1:n)(In−j − βvvT )

A(j, j + 2:n) = v(2:n − j)T

end
end

This algorithm requires 4mn2 − 4n3/3 flops. Such a technique is used by Golub and
Kahan (1965), where bidiagonalization is first described. If the matrices UB and VB

are explicitly desired, then they can be accumulated in 4m2n− 4n3/3 and 4n3/3 flops,
respectively. The bidiagonalization of A is related to the tridiagonalization of AT A.
See §8.3.1.

5.4.9 R-Bidiagonalization

If m  n, then a faster method of bidiagonalization method results if we upper trian-
gularize A first before applying Algorithm 5.4.2. In particular, suppose we compute an
orthogonal Q ∈ IRm×m such that

QT A =
[

R1
0

]
is upper triangular. We then bidiagonalize the square matrix R1,

UT
R R1VB = B1,

where UR and VB are orthogonal. If UB = Q diag (UR, Im−n), then

UT AV =
[

B1
0

]
≡ B

is a bidiagonalization of A.
The idea of computing the bidiagonalization in this manner is mentioned by

Lawson and Hanson (SLS, p. 119) and more fully analyzed by Chan (1982). We refer
to this method as R-bidiagonalization and it requires (2mn2 + 2n3) flops. This is less
than the flop count for Algorithm 5.4.2 whenever m ≥ 5n/3.

Problems

P5.4.1 Let x, y ∈ IRm and Q ∈ IRm×m be given with Q orthogonal. Show that if

QT x =
[

α
u

]
1

m−1
, QT y =

[
β
v

]
1

m−1

then uT v = xT y − αβ.
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P5.4.2 Let A = [ a1 | · · · | an ] ∈ IRm×n and b ∈ IRm be given. For any column subset {ac1 , . . . , ack}
define

res ( [ ac1 | · · · | ack ] ) = min
x∈ IRk

‖ [ ac1 | · · · | ack ] x− b ‖2

Describe an alternative pivot selection procedure for Algorithm 5.4.1 such that if QR = AΠ =
[ ac1 | · · · | acn ] in the final factorization, then for k = 1:n:

res ( [ ac1 | · · · | ack ] ) = min
i≥ k

res
(
[ac1 , . . . , ack−1 , aci ]

)
.

P5.4.3 Suppose T ∈ IRn×n is upper triangular and tkk = σmin(T ). Show that T (1:k − 1, k) = 0 and
T (k, k + 1:n) = 0.

P5.4.4 Suppose A ∈ IRm×n with m ≥ n. Give an algorithm that uses Householder matrices to
compute an orthogonal Q ∈ IRm×m so that if QT A = L, then L(n + 1:m, :) = 0 and L(1:n, 1:n) is
lower triangular.

P5.4.5 Suppose R ∈ IRn×n is upper triangular and Y ∈ IRn×j has orthonormal columns and satisfies
‖RY ‖2 = σ. Give an algorithm that computes orthogonal U and V , each products of Givens rotations,
so that UT RV = Rnew is upper triangular and V T Y = Ynew has the property that

Ynew(n− j + 1:n, :) = diag(±1).

What can you say about Rnew(n− j + 1:n, n− j + 1:n)?

P5.4.6 Give an algorithm for reducing a complex matrix A to real bidiagonal form using complex
Householder transformations.

P5.4.7 Suppose B ∈ IRn×n is upper bidiagonal with bnn = 0. Show how to construct orthogonal U
and V (product of Givens rotations) so that UT BV is upper bidiagonal with a zero nth column.

P5.4.8 Suppose A ∈ IRm×n with m < n. Give an algorithm for computing the factorization

UT AV = [ B |O ]

where B is an m-by-m upper bidiagonal matrix. (Hint: Obtain the form⎡⎣ × × 0 0 0 0
0 × × 0 0 0
0 0 × × 0 0
0 0 0 × × 0

⎤⎦ .

using Householder matrices and then “chase” the (m, m+1) entry up the (m+1)st column by applying
Givens rotations from the right.)

P5.4.9 Show how to efficiently bidiagonalize an n-by-n upper triangular matrix using Givens rotations.

P5.4.10 Show how to upper bidiagonalize a tridiagonal matrix T ∈ IRn×n using Givens rotations.

P5.4.11 Show that if B ∈ IRn×n is an upper bidiagonal matrix having a repeated singular value, then
B must have a zero on its diagonal or superdiagonal.
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5.5 The Rank-Deficient Least Squares Problem
If A is rank deficient, then there are an infinite number of solutions to the LS problem.
We must resort to techniques that incorporate numerical rank determination and iden-
tify a particular solution as “special.” In this section we focus on using the SVD to
compute the minimum norm solution and QR-with-column-pivoting to compute what
is called the basic solution. Both of these approaches have their merits and we conclude
with a subset selection procedure that combines their positive attributes.

5.5.1 The Minimum Norm Solution

Suppose A ∈ IRm×n and rank(A) = r < n. The rank-deficient LS problem has an
infinite number of solutions, for if x is a minimizer and z ∈ null(A), then x + z is also
a minimizer. The set of all minimizers

X = {x ∈ IRn : ‖ Ax − b ‖2 = min }

is convex and so if x1, x2 ∈ X and λ ∈ [0, 1], then

‖ A(λx1 + (1 − λ)x2) − b ‖2 ≤ λ‖ Ax1 − b ‖2+(1−λ)‖ Ax2 − b ‖2 = min
x∈IRn

‖ Ax − b ‖2 .
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Thus, λx1 + (1 − λ)x2 ∈ X . It follows that X has a unique element having minimum
2-norm and we denote this solution by xLS. (Note that in the full-rank case, there is
only one LS solution and so it must have minimal 2-norm. Thus, we are consistent
with the notation in §5.3.)

Any complete orthogonal factorization (§5.4.7) can be used to compute xLS. In
particular, if Q and Z are orthogonal matrices such that

QT AZ = T =
[

T11

0
0

0

]
r

m−r

r n−r

, r = rank(A)

then
‖ Ax − b ‖2

2 = ‖ (QT AZ)ZT x − QT b ‖2
2 = ‖ T11w − c ‖2

2 + ‖ d ‖2
2

where

ZT x =
[

w

y

]
r

n−r
, QT b =

[
c

d

]
r

m−r
.

Clearly, if x is to minimize the sum of squares, then we must have w = T−1
11 c. For x to

have minimal 2-norm, y must be zero, and thus

xLS = Z

[
T−1

11 c

0

]
.

Of course, the SVD is a particularly revealing complete orthogonal decomposition.
It provides a neat expression for xLS and the norm of the minimum residual ρLS =
‖ AxLS − b ‖2.

Theorem 5.5.1. Suppose UT AV = Σ is the SVD of A ∈ IRm×n with r = rank(A). If
U = [ u1 | · · · | um ] and V = [ v1 | · · · | vn ] are column partitionings and b ∈ IRm, then

xLS =
r∑

i=1

uT
i b

σi
vi (5.5.1)

minimizes ‖ Ax − b ‖2 and has the smallest 2-norm of all minimizers. Moreover

ρ2
LS = ‖ AxLS − b ‖2

2 =
m∑

i=r+1

(uT
i b)2. (5.5.2)

Proof. For any x ∈ IRn we have

‖ Ax − b ‖2
2 = ‖ (UT AV )(V T x) − UT b ‖2

2 = ‖ Σα − UT b ‖2
2

=
r∑

i=1

(σiαi − uT
i b)2 +

m∑
i=r+1

(uT
i b)2,

where α = V T x. Clearly, if x solves the LS problem, then αi = (uT
i b/σi) for i = 1:r. If

we set α(r + 1:n) = 0, then the resulting x has minimal 2-norm.
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5.5.2 A Note on the Pseudoinverse

If we define the matrix A+ ∈ IRn×m by A+ = V Σ+UT where

Σ+ = diag
(

1
σ1

, . . . ,
1
σr

, 0, . . . , 0
)

∈ IRn×m, r = rank(A),

then xLS = A+b and ρLS = ‖ (I − AA+)b ‖2. A+ is referred to as the pseudo-inverse
of A. It is the unique minimal Frobenius norm solution to the problem

min
X∈IRm×n

‖ AX − Im ‖
F
. (5.5.3)

If rank(A) = n, then A+ = (AT A)−1AT , while if m = n = rank(A), then A+ = A−1.
Typically, A+ is defined to be the unique matrix X ∈ IRn×m that satisfies the four
Moore-Penrose conditions:

(i) AXA = A, (iii), (AX)T = AX,

(ii) XAX = X, (iv) (XA)T = XA.

These conditions amount to the requirement that AA+ and A+A be orthogonal pro-
jections onto ran(A) and ran(AT ), respectively. Indeed,

AA+ = U1U
T
1

where U1 = U(1:m, 1:r) and
A+A = V1V

T
1

where V1 = V (1:n, 1:r).

5.5.3 Some Sensitivity Issues

In §5.3 we examined the sensitivity of the full-rank LS problem. The behavior of xLS

in this situation is summarized in Theorem 5.3.1. If we drop the full-rank assumption,
then xLS is not even a continuous function of the data and small changes in A and
b can induce arbitrarily large changes in xLS = A+b . The easiest way to see this is
to consider the behavior of the pseudoinverse. If A and δA are in IRm×n, then Wedin
(1973) and Stewart (1975) show that

‖ (A + δA)+ − A+ ‖
F

≤ 2‖ δA ‖
F

max
{
‖ A+ ‖2

2 , ‖ (A + δA)+ ‖2
2
}

.

This inequality is a generalization of Theorem 2.3.4 in which perturbations in the
matrix inverse are bounded. However, unlike the square nonsingular case, the upper
bound does not necessarily tend to zero as δA tends to zero. If

A =

⎡⎣ 1 0
0 0
0 0

⎤⎦ and δA =

⎡⎣ 0 0
0 ε
0 0

⎤⎦
then

A+ =
[

1 0 0
0 0 0

]
and (A + δA)+ =

[
1 0 0
1 1/ε 0

]
,
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and
‖ A+ − (A + δA)+ ‖2 = 1/ε.

The numerical determination of an LS minimizer in the presence of such discontinuities
is a major challenge.

5.5.4 The Truncated SVD Solution

Suppose Û , Σ̂, and V̂ are the computed SVD factors of a matrix A and r̂ is accepted
as its δ-rank, i.e.,

σ̂n ≤ · · · ≤ σ̂r̂ ≤ δ < σ̂r̂ ≤ · · · ≤ σ̂1.

It follows that we can regard

xr̂ =
r̂∑

i=1

ûT
i b

σ̂i
v̂i

as an approximation to xLS. Since ‖ xr̂ ‖2 ≈ 1/σr̂ ≤ 1/δ, then δ may also be chosen
with the intention of producing an approximate LS solution with suitably small norm.
In §6.2.1, we discuss more sophisticated methods for doing this.

If σ̂r̂  δ, then we have reason to be comfortable with xr̂ because A can then be
unambiguously regarded as a rank(Ar̂) matrix (modulo δ).

On the other hand, {σ̂1, . . . , σ̂n} might not clearly split into subsets of small and
large singular values, making the determination of r̂ by this means somewhat arbitrary.
This leads to more complicated methods for estimating rank, which we now discuss in
the context of the LS problem. The issues are readily communicated by making two
simplifying assumptions. Assume that r = n, and that ∆A = 0 in (5.4.4), which
implies that WT AZ = Σ̂ = Σ is the SVD. Denote the ith columns of the matrices Û ,
W , V̂ , and Z by ûi, wi, v̂i, and zi, respectively. Because

xLS − xr̂ =
n∑

i=1

wT
i b

σi
zi −

r̂∑
i=1

ûT
i b

σi
v̂i

=
r̂∑

i=1

((wi − ûi)T b)zi + (ûT
i b)(zi − v̂i)

σi
+

n∑
i=r̂+1

wT
i b

σi
zi

it follows from ‖ wi − ûi ‖2 ≤ ε, ‖ ûi ‖2 ≤ 1 + ε, and ‖ zi − v̂i ‖2 ≤ ε that

‖ xr̂ − xLS ‖2 ≤ r̂

σr̂
2(1 + ε)ε‖ b ‖2 +

√√√√ n∑
i=r̂+1

(
wT

i b

σi

)2

.

The parameter r̂ can be determined as that integer which minimizes the upper bound.
Notice that the first term in the bound increases with r̂, while the second decreases.

On occasions when minimizing the residual is more important than accuracy in
the solution, we can determine r̂ on the basis of how close we surmise ‖ b − Axr̂ ‖2 is
to the true minimum. Paralleling the above analysis, it can be shown that

‖ b − Axr̂ ‖2 ≤ ‖ b − AxLS ‖2 + (n − r̂)‖ b ‖2 + εr̂‖ b ‖2

(
1 + (1 + ε)

σ̂1

σ̂r̂

)
.

Again r̂ could be chosen to minimize the upper bound. See Varah (1973) for practical
details and also LAPACK.
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5.5.5 Basic Solutions via QR with Column Pivoting

Suppose A ∈ IRm×n has rank r. QR with column pivoting (Algorithm 5.4.1) produces
the factorization AΠ = QR where

R =
[

R11

0

R12

0

]
r

m−r

r n−r

.

Given this reduction, the LS problem can be readily solved. Indeed, for any x ∈ IRn

we have

‖ Ax − b ‖2
2 = ‖ (QT AΠ)(ΠT x) − (QT b) ‖2

2 = ‖ R11y − (c − R12z) ‖2
2 + ‖ d ‖2

2,

where

ΠT x =
[

y

z

]
r

n−r
and QT b =

[
c

d

]
r

m−r
.

Thus, if x is an LS minimizer, then we must have

x = Π

[
R−1

11 (c − R12z)

z

]
.

If z is set to zero in this expression, then we obtain the basic solution

xB = Π

[
R−1

11 c

0

]
.

Notice that xB has at most r nonzero components and so AxB involves a subset of A’s
columns.

The basic solution is not the minimal 2-norm solution unless the submatrix R12
is zero since

‖ xLS ‖2 = min
z∈IRn−2

∥∥∥∥∥ xB − Π

[
R−1

11 R12

−In−r

]
z

∥∥∥∥∥
2

. (5.5.4)

Indeed, this characterization of ‖ xLS ‖2 can be used to show that

1 ≤ ‖ xB ‖2

‖ xLS ‖2
≤

√
1 + ‖ R−1

11 R12 ‖2
2 . (5.5.5)

See Golub and Pereyra (1976) for details.

5.5.6 Some Comparisons

As we mentioned, when solving the LS problem via the SVD, only Σ and V have to be
computed assuming that the right hand side b is available. The table in Figure 5.5.1
compares the flop efficiency of this approach with the other algorithms that we have
presented.
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LS Algorithm Flop Count

Normal equations mn2 + n3/3

Householder QR n3/3

Modified Gram-Schmidt 2mn2

Givens QR 3mn2 − n3

Householder Bidiagonalization 4mn2 − 2n3

R-Bidiagonalization 2mn2 + 2n3

SVD 4mn2 + 8n3

R-SVD 2mn2 + 11n3

Figure 5.5.1. Flops associated with various least squares methods

5.5.7 SVD-Based Subset Selection

Replacing A by Ar̃ in the LS problem amounts to filtering the small singular values
and can make a great deal of sense in those situations where A is derived from noisy
data. In other applications, however, rank deficiency implies redundancy among the
factors that comprise the underlying model. In this case, the model-builder may not be
interested in a predictor such as Ar̃xr̃ that involves all n redundant factors. Instead, a
predictor Ay may be sought where y has at most r̃ nonzero components. The position
of the nonzero entries determines which columns of A, i.e., which factors in the model,
are to be used in approximating the observation vector b. How to pick these columns
is the problem of subset selection.

QR with column pivoting is one way to proceed. However, Golub, Klema, and
Stewart (1976) have suggested a technique that heuristically identifies a more indepen-
dent set of columns than are involved in the predictor AxB. The method involves both
the SVD and QR with column pivoting:

Step 1. Compute the SVD A = UΣV T and use it to determine
a rank estimate r̃.

Step 2. Calculate a permutation matrix P such that the columns of the
matrix B1 ∈ IRm×r̃ in AP = [ B1 | B2 ] are “sufficiently independent.”

Step 3. Predict b with Ay where y = P

[
z
0

]
and z ∈ IRr̃ minimizes ‖ B1z − b ‖2.

The second step is key. Because

min
z∈IRr̃

‖ B1z − b ‖2 = ‖ Ay − b ‖2 ≥ min
x∈IRn

‖ Ax − b ‖2

it can be argued that the permutation P should be chosen to make the residual r =
(I − B1B

+
1 )b as small as possible. Unfortunately, such a solution procedure can be
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unstable. For example, if

A =

⎡⎣ 1 1 0
1 1 + ε 1
0 0 1

⎤⎦ , b =

⎡⎣ 1
−1

0

⎤⎦ ,

r̃ = 2, and P = I, then min ‖ B1z − b ‖2 = 0, but ‖ B+
1 b ‖2 = O(1/ε). On the other

hand, any proper subset involving the third column of A is strongly independent but
renders a much larger residual.

This example shows that there can be a trade-off between the independence of
the chosen columns and the norm of the residual that they render. How to proceed in
the face of this trade-off requires useful bounds on σr̃(B1), the smallest singular value
of B1.

Theorem 5.5.2. Let the SVD of A ∈ IRm×n be given by UT AV = Σ = diag(σi) and
define the matrix B1 ∈ IRm×r̃, r̃ ≤ rank(A), by

AP = [ B1 | B2 ]
r̃ n−r̃

where P ∈ IRn×n is a permutation. If

PT V =

[
Ṽ11

Ṽ21

Ṽ12

Ṽ22

]
r̃

n−r̃

r̃ n−r̃

(5.5.6)

and Ṽ11 is nonsingular, then

σr̃(A)

‖ Ṽ −1
11 ‖2

≤ σr̃(B1) ≤ σr̃(A).

Proof. The upper bound follows from Corollary 2.4.4. To establish the lower bound,
partition the diagonal matrix of singular values as follows:

Σ =
[

Σ1

0

0

Σ2

]
r̃

m−r̃

r̃ n−r̃

.

If w ∈ IRr̃ is a unit vector with the property that ‖ B1w ‖2 = σr̃(B1), then

σr̃(B1)2 = ‖ B1w ‖2
2 =

∥∥∥∥UΣV T P

[
w
0

]∥∥∥∥2

2
= ‖ Σ1Ṽ

T
11w ‖2

2 + ‖ Σ2Ṽ
T
12w ‖2

2.

The theorem now follows because ‖ Σ1Ṽ
T
11w ‖2 ≥ σr̃(A)/‖ Ṽ −1

11 ‖2.

This result suggests that in the interest of obtaining a sufficiently independent subset
of columns, we choose the permutation P such that the resulting Ṽ11 submatrix is as
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well-conditioned as possible. A heuristic solution to this problem can be obtained by
computing the QR with column-pivoting factorization of the matrix [ V T

11 V T
21 ], where

V =
[

V11

V21

V12

V22

]
r̃

n−r̃

r̃ n−r̃

is a partitioning of the matrix V , A’s matrix of right singular vectors. In particular, if
we apply QR with column pivoting (Algorithm 5.4.1) to compute

QT [ V T
11 V T

21 ]P = [ R11 | R12 ]
r̃ n−r̃

where Q is orthogonal, P is a permutation matrix, and R11 is upper triangular, then
(5.5.6) implies [

Ṽ11

Ṽ21

]
= PT

[
V11

V21

]
=

[
RT

11Q
T

RT
12Q

T

]
.

Note that R11 is nonsingular and that ‖ Ṽ −1
11 ‖2 = ‖ R−1

11 ‖2. Heuristically, column
pivoting tends to produce a well-conditioned R11, and so the overall process tends to
produce a well-conditioned Ṽ11.

Algorithm 5.5.1 Given A ∈ IRm×n and b ∈ IRm the following algorithm computes a
permutation P , a rank estimate r̃, and a vector z ∈ IRr̃ such that the first r̃ columns
of B = AP are independent and ‖ B(:, 1:r̃)z − b ‖2 is minimized.

Compute the SVD UT AV = diag(σ1, . . . , σn) and save V .

Determine r̃ ≤ rank(A) .

Apply QR with column pivoting: QT V (:, 1:r̃)T P = [ R11 | R12 ] and set

AP = [ B1 | B2 ] with B1 ∈ IRm×r̃ and B2 ∈ IRm×(n−r̃).

Determine z ∈ IRr̃ such that ‖ b − B1z ‖2 = min.

5.5.8 Column Independence Versus Residual Size

We return to the discussion of the trade-off between column independence and norm
of the residual. In particular, to assess the above method of subset selection we need
to examine the residual of the vector y that it produces

ry = b − Ay = b − B1z = (I − B1B
+
1 )b.

Here, B1 = B(:, 1:r̃) with B = AP . To this end, it is appropriate to compare ry with

rxr̃ = b − Axr̃

since we are regarding A as a rank-r̃ matrix and since xr̃ solves the nearest rank-r̃ LS
problem min ‖ Ar̃x − b ‖2.
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Theorem 5.5.3. Assume that UT AV = Σ is the SVD of A ∈ IRm×n and that ry and
rxr̃ are defined as above. If Ṽ11 is the leading r-by-r principal submatrix of PT V , then

‖ rxr̃ − ry ‖2 ≤ σr̃+1(A)
σr̃(A)

‖ Ṽ −1
11 ‖2‖ b ‖2.

Proof. Note that rxr̃
= (I − U1U

T
1 )b and ry = (I − Q1Q

T
1 )b where

U = [ U1 | U2 ]
r̃ m−r̃

is a partitioning of the matrix U and Q1 = B1(BT
1 B1)−1/2. Using Theorem 2.6.1 we

obtain
‖ rxr̃ − ry ‖2 ≤ ‖ U1U

T
1 − Q1Q

T
1 ‖2 ‖ b ‖2 = ‖ UT

2 Q1 ‖2 ‖ b ‖2

while Theorem 5.5.2 permits us to conclude

‖ UT
2 Q1 ‖2 ≤ ‖ UT

2 B1 ‖2‖ (BT
1 B1)−1/2 ‖2

≤ σr̃+1(A)
1

σr̃(B1)
≤ σr̃+1(A)

σr̃(A)
‖ Ṽ −1

11 ‖2,

and this establishes the theorem.

Noting that

‖ rxr̃ − ry ‖2 =

∥∥∥∥∥B1y −
r∑

i=1

(uT
i b)ui

∥∥∥∥∥
2

we see that Theorem 5.5.3 sheds light on how well B1y can predict the “stable” compo-
nent of b, i.e., UT

1 b. Any attempt to approximate UT
2 b can lead to a large norm solution.

Moreover, the theorem says that if σr̃+1(A) � σr̃(A), then any reasonably independent
subset of columns produces essentially the same-sized residual. On the other hand, if
there is no well-defined gap in the singular values, then the determination of r̃ becomes
difficult and the entire subset selection problem becomes more complicated.

Problems

P5.5.1 Show that if

A =
[ T

0

S

0

]
r

m−r

r n−r

where r = rank(A) and T is nonsingular, then

X =
[ T−1

0

0

0

]
r

n−r

r m−r

satisfies AXA = A and (AX)T = (AX). In this case, we say that X is a (1,3) pseudoinverse of A.
Show that for general A, xB = Xb where X is a (1,3) pseudoinverse of A.

P5.5.2 Define B(λ) ∈ IRn×m by
B(λ) = (AT A + λI)−1AT
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where λ > 0. Show that

‖B(λ)−A+ ‖2 =
λ

σr(A)[σr(A)2 + λ]
, r = rank(A),

and therefore that B(λ) → A+ as λ → 0.

P5.5.3 Consider the rank-deficient LS problem

min
y∈IRr , z∈IRn−r

∥∥∥[ R S
0 0

][
y
z

]
−

[
c
d

]∥∥∥
2

where R ∈ IRr×r, S ∈ IRr×n−r, y ∈ IRr, and z ∈ IRn−r. Assume that R is upper triangular and nonsin-
gular. Show how to obtain the minimum norm solution to this problem by computing an appropriate
QR factorization without pivoting and then solving for the appropriate y and z.

P5.5.4 Show that if Ak → A and A+
k
→ A+, then there exists an integer k0 such that rank(Ak) is

constant for all k ≥ k0.

P5.5.5 Show that if A ∈ IRm×n has rank n, then so does A + E if ‖ E ‖2‖A+ ‖2 < 1.

P5.5.6 Suppose A ∈ IRm×n is rank deficient and b ∈ IRm. Assume for k = 0, 1, . . . that x(k+1) mini-
mizes

φk(x) = ‖Ax− b ‖22 + λ‖ x− x(k) ‖22
where λ > 0 and x(0) = 0. Show that x(k) → xLS .

P5.5.8 Suppose A ∈ IRm×n and that ‖ uT A ‖2 = σ with uT u = 1. Show that if uT (Ax − b) = 0 for
x ∈ IRn and b ∈ IRm, then ‖ x ‖2 ≥ |uT b|/σ.

P5.5.9 In Equation (5.5.6) we know that the matrix P T V is orthogonal. Thus, ‖ Ṽ −1
11 ‖2 = ‖ Ṽ −1

22 ‖2
from the CS decomposition (Theorem 2.5.3). Show how to compute P by applying the QR with
column-pivoting algorithm to [ Ṽ T

22 | Ṽ T
12 ]. (For r̃ > n/2, this procedure would be more economical than

the technique discussed in the text.) Incorporate this observation in Algorithm 5.5.1.

P5.5.10 Suppose F ∈ IRm×r and G ∈ IRn×r each have rank r. (a) Give an efficient algorithm for
computing the minimum 2-norm minimizer of ‖ FGT x− b ‖2 where b ∈ IRm. (b) Show how to compute
the vector xB .

Notes and References for §5.5

For a comprehensive treatment of the pseudoinverse and its manipulation, see:

M.Z. Nashed (1976). Generalized Inverses and Applications, Academic Press, New York.
S.L. Campbell and C.D. Meyer (2009). Generalized Inverses of Linear Transformations, SIAM Pub-

lications, Philadelphia, PA.

For an analysis of how the pseudo-inverse is affected by perturbation, see:

P.A. Wedin (1973). “Perturbation Theory for Pseudo-Inverses,” BIT 13, 217–232.
G.W. Stewart (1977). “On the Perturbation of Pseudo-Inverses, Projections, and Linear Least Squares,”

SIAM Review 19, 634–662.

Even for full rank problems, column pivoting seems to produce more accurate solutions. The error
analysis in the following paper attempts to explain why:

L.S. Jennings and M.R. Osborne (1974). “A Direct Error Analysis for Least Squares,” Numer. Math.
22, 322–332.

Various other aspects of the rank-deficient least squares problem are discussed in:

J.M. Varah (1973). “On the Numerical Solution of Ill-Conditioned Linear Systems with Applications
to Ill-Posed Problems,” SIAM J. Numer. Anal. 10, 257–67.

G.W. Stewart (1984). “Rank Degeneracy,” SIAM J. Sci. Stat. Comput. 5, 403–413.
P.C. Hansen (1987). “The Truncated SVD as a Method for Regularization,” BIT 27, 534–553.
G.W. Stewart (1987). “Collinearity and Least Squares Regression,” Stat. Sci. 2, 68–100.



298 Chapter 5. Orthogonalization and Least Squares

R.D. Fierro and P.C. Hansen (1995). “Accuracy of TSVD Solutions Computed from Rank-Revealing
Decompositions,” Numer. Math. 70, 453–472.

P.C. Hansen (1997). Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear
Inversion, SIAM Publications, Philadelphia, PA.

A. Dax and L. Elden (1998). “Approximating Minimum Norm Solutions of Rank-Deficient Least
Squares Problems,” Numer. Lin. Alg. 5, 79–99.

G. Quintana-Orti, E.S. Quintana-Orti, and A. Petitet (1998). “Efficient Solution of the Rank-Deficient
Linear Least Squares Problem,” SIAM J. Sci. Comput. 20, 1155–1163.

L.V. Foster (2003). “Solving Rank-Deficient and Ill-posed Problems Using UTV and QR Factoriza-
tions,” SIAM J. Matrix Anal. Applic. 25, 582–600.

D.A. Huckaby and T.F. Chan (2004). “Stewart’s Pivoted QLP Decomposition for Low-Rank Matri-
ces,” Numer. Lin. Alg. 12, 153–159.

L. Foster and R. Kommu (2006). “Algorithm 853: An Efficient Algorithm for Solving Rank-Deficient
Least Squares Problems,” ACM Trans. Math. Softw. 32, 157–165.

For a sampling of the subset selection literature, we refer the reader to:

H. Hotelling (1957). “The Relations of the Newer Multivariate Statistical Methods to Factor Analysis,”
Brit. J. Stat. Psych. 10, 69–79.
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in Collinearity Problems with Errors in the Variables,” Lin. Alg. Applic. 88/89, 695–714.
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5.6 Square and Underdetermined Systems
The orthogonalization methods developed in this chapter can be applied to square
systems and also to systems in which there are fewer equations than unknowns. In this
brief section we examine the various possibilities.

5.6.1 Square Systems

The least squares solvers based on the QR factorization and the SVD can also be used
to solve square linear systems. Figure 5.6.1 compares the associated flop counts. It is

Method Flops

Gaussian elimination 2n3/3

Householder QR 4n3/3

Modified Gram-Schmidt 2n3

Singular value decomposition 12n3

Figure 5.6.1. Flops associated with various methods for square linear systems

assumed that the right-hand side is available at the time of factorization. Although
Gaussian elimination involves the least amount of arithmetic, there are three reasons
why an orthogonalization method might be considered:
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• The flop counts tend to exaggerate the Gaussian elimination advantage. When
memory traffic and vectorization overheads are considered, the QR approach is
comparable in efficiency.

• The orthogonalization methods have guaranteed stability; there is no “growth
factor” to worry about as in Gaussian elimination.

• In cases of ill-conditioning, the orthogonal methods give an added measure of
reliability. QR with condition estimation is very dependable and, of course, SVD
is unsurpassed when it comes to producing a meaningful solution to a nearly
singular system.

We are not expressing a strong preference for orthogonalization methods but merely
suggesting viable alternatives to Gaussian elimination.

We also mention that the SVD entry in the above table assumes the availability
of b at the time of decomposition. Otherwise, 20n3 flops are required because it then
becomes necessary to accumulate the U matrix.

If the QR factorization is used to solve Ax = b, then we ordinarily have to carry
out a back substitution: Rx = QT b. However, this can be avoided by “preprocessing”
b. Suppose H is a Householder matrix such that Hb = βen where en is the last column
of In. If we compute the QR factorization of (HA)T , then A = HT RT QT and the
system transforms to

RT y = βen

where y = QT x. Since RT is lower triangular, y = (β/rnn)en and so

x =
β

rnn
Q(:, n).

5.6.2 Underdetermined Systems

In §3.4.8 we discussed how Gaussian elimination with either complete pivoting or rook
pivoting can be used to solve a full-rank, underdetermined linear system

Ax = b, A ∈ IRm×n, b ∈ IRm. (5.6.1)

Various orthogonal factorizations can also be used to solve this problem. Notice that
(5.6.1) either has no solution or has an infinity of solutions. In the second case, it is
important to distinguish between algorithms that find the minimum 2-norm solution
and those that do not. The first algorithm we present is in the latter category.

Assume that A has full row rank and that we apply QR with column pivoting to
obtain

QT AΠ = [ R1 | R2 ]

where R1 ∈ IRm×m is upper triangular and R2 ∈ IRm×(n−m). Thus, Ax = b transforms
to

(QT AΠ)(ΠT x) = [ R1 | R2 ]

[
z1

z2

]
= QT b

where

ΠT x =

[
z1

z2

]
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with z1 ∈ IRm and z2 ∈ IR(n−m). By virtue of the column pivoting, R1 is nonsingular
because we are assuming that A has full row rank. One solution to the problem is
therefore obtained by setting z1 = R−1

1 QT b and z2 = 0.

Algorithm 5.6.1 Given A ∈ IRm×n with rank(A) = m and b ∈ IRm, the following
algorithm finds an x ∈ IRn such that Ax = b.

Compute QR-with-column-pivoting factorization: QT AΠ = R.

Solve R(1:m, 1:m)z1 = QT b.

Set x = Π

[
z1

0

]
.

This algorithm requires 2m2n − m3/3 flops. The minimum norm solution is not guar-
anteed. (A different Π could render a smaller z1.) However, if we compute the QR
factorization

AT = QR = Q

[
R1

0

]
with R1 ∈ IRm×m, then Ax = b becomes

(QR)T x =
[

RT
1 0

] [ z1

z2

]
= b,

where

QT x =

[
z1

z2

]
, z1 ∈ IRm, z2 ∈ IRn−m.

In this case the minimum norm solution does follow by setting z2 = 0.

Algorithm 5.6.2 Given A ∈ IRm×n with rank(A) = m and b ∈ IRm, the following algo-
rithm finds the minimum 2-norm solution to Ax = b.

Compute the QR factorization AT = QR.

Solve R(1:m, 1:m)T z = b.

Set x = Q(:, 1:m)z.

This algorithm requires at most 2m2n − 2m3/3 flops.
The SVD can also be used to compute the minimum norm solution of an under-

determined Ax = b problem. If

A =
r∑

i=1

σiuiv
T
i , r = rank(A)

is the SVD of A, then

x =
r∑

i=1

uT
i b

σi
vi.

As in the least squares problem, the SVD approach is desirable if A is nearly rank
deficient.
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5.6.3 Perturbed Underdetermined Systems

We conclude this section with a perturbation result for full-rank underdetermined sys-
tems.

Theorem 5.6.1. Suppose rank(A) = m ≤ n and that A ∈ IRm×n, δA ∈ IRm×n, 0 
=
b ∈ IRm, and δb ∈ IRm satisfy

ε = max{εA, εb} < σm(A),

where εA = ‖ δA ‖2/‖ A ‖2 and εb = ‖ δb ‖2/‖ b ‖2. If x and x̂ are minimum norm
solutions that satisfy

Ax = b, (A + δA)x̂ = b + δb,

then
‖ x̂ − x ‖2

‖ x ‖2
≤ κ2(A) (εA min{2, n − m + 1} + εb) + O(ε2).

Proof. Let E and f be defined by δA/ε and δb/ε. Note that rank(A + tE) = m for all
0 < t < ε and that

x(t) = (A + tE)T
(
(A + tE)(A + tE)T

)−1
(b + tf)

satisfies (A + tE)x(t) = b + tf . By differentiating this expression with respect to t and
setting t = 0 in the result we obtain

ẋ(0) =
(
I − AT (AAT )−1A

)
ET (AAT )−1b + AT (AAT )−1(f − Ex). (5.6.2)

Because
‖ x ‖2 = ‖ AT (AAT )−1b ‖2 ≥ σm(A)‖ (AAT )−1b ‖2,

‖ I − AT (AAT )−1A ‖2 = min(1, n − m),

and
‖ f ‖2

‖ x ‖2
≤ ‖ f ‖2‖ A ‖2

‖ b ‖2
,

we have
‖ x̂ − x ‖2

‖ x ‖2
=

x(ε) − x(0)
‖ x(0) ‖2

= ε
‖ ẋ(0) ‖2

‖ x ‖2
+ O(ε2)

≤ ε min(1, n − m)
{‖ E ‖2

‖ A ‖2
+

‖ f ‖2

‖ b ‖2
+

‖ E ‖2

‖ A ‖2

}
κ2(A) + O(ε2),

from which the theorem follows.

Note that there is no κ2(A)2 factor as in the case of overdetermined systems.

Problems

P5.6.1 Derive equation (5.6.2).
P5.6.2 Find the minimal norm solution to the system Ax = b where A = [ 1 2 3 ] and b = 1.
P5.6.3 Show how triangular system solving can be avoided when using the QR factorization to solve
an underdetermined system.
P5.6.4 Suppose b, x ∈ IRn are given and consider the following problems:
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(a) Find an unsymmetric Toeplitz matrix T so Tx = b.

(b) Find a symmetric Toeplitz matrix T so Tx = b.

(c) Find a circulant matrix C so Cx = b.

Pose each problem in the form Ap = b where A is a matrix made up of entries from x and p is the
vector of sought-after parameters.

Notes and References for §5.6
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This strategy tends to produce a highly sparse solution vector x.



Chapter 6

Modified Least Squares
Problems and Methods

6.1 Weighting and Regularization

6.2 Constrained Least Squares

6.3 Total Least Squares

6.4 Subspace Computations with the SVD

6.5 Updating Matrix Factorizations

In this chapter we discuss an assortment of least square problems that can be
solved using QR and SVD. We also introduce a generalization of the SVD that can
be used to simultaneously diagonalize a pair of matrices, a maneuver that is useful in
certain applications.

The first three sections deal with variations of the ordinary least squares problem
that we treated in Chapter 5. The unconstrained minimization of ‖ Ax − b ‖2 does not
always make a great deal of sense. How do we balance the importance of each equation
in Ax = b? How might we control the size of x if A is ill-conditioned? How might we
minimize ‖ Ax − b ‖2 over a proper subspace of IRn? What if there are errors in the
“data matrix” A in addition to the usual errors in the “vector of observations” b?

In §6.4 we consider a number of multidimensional subspace computations includ-
ing the problem of determining the principal angles between a pair of given subspaces.
The SVD plays a prominent role.

The final section is concerned with the updating of matrix factorizations. In many
applications, one is confronted with a succession of least squares (or linear equation)
problems where the matrix associated with the current step is highly related to the
matrix associated with the previous step. This opens the door to updating strategies
that can reduce factorization overheads by an order of magnitude.

Reading Notes

Knowledge of Chapter 5 is assumed. The sections in this chapter are independent
of each other except that §6.1 should be read before §6.2. Excellent global references
include Björck (NMLS) and Lawson and Hansen (SLS).

303
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6.1 Weighting and Regularization
We consider two basic modifications to the linear least squares problem. The first
concerns how much each equation “counts” in the ‖ Ax − b ‖2 minimization. Some
equations may be more important than others and there are ways to produce approx-
imate minimzers that reflect this. Another situation arises when A is ill-conditioned.
Instead of minimizing ‖ Ax − b ‖2 with a possibly wild, large norm x-vector, we settle
for a predictor Ax in which x is “nice” according to some regularizing metric.

6.1.1 Row Weighting

In ordinary least squares, the minimization of ‖ Ax − b ‖2 amounts to minimizing the
sum of the squared discrepancies in each equation:

‖ Ax − b ‖2 =
m∑

i=1

(
aT

i x − bi

)2
.

We assume that A ∈ IRm×n, b ∈ IRm, and aT
i = A(i, :). In the weighted least squares

problem the discrepancies are scaled and we solve

min
x∈IRn

‖ D(Ax − b) ‖2 = min
x∈IRn

m∑
i=1

d2
i

(
aT

i x − bi

)2
(6.1.1)

where D = diag(d1, . . . , dm) is nonsingular. Note that if xD minimizes this summation,
then it minimizes ‖ Ãx − b̃ ‖2 where Ã = DA and b̃ = Db. Although there can be
numerical issues associated with disparate weight values, it is generally possible to
solve the weighted least squares problem by applying any Chapter 5 method to the
“tilde problem.” For example, if A has full column rank and we apply the method of
normal equations, then we are led to the following positive definite system:

(AT D2A)xD = AT D2b. (6.1.2)

Subtracting the unweighted system AT AxLS = AT b we see that

xD − xLS = (AT D2A)−1AT (D2 − I)(b − AxLS). (6.1.3)

Note that weighting has less effect if b is almost in the range of A.
At the component level, increasing dk relative to the other weights stresses the

importance of the kth equation and the resulting residual r = b − AxD tends to be
smaller in that component. To make this precise, define

D(δ) = diag(d1, . . . , dk−1, dk

√
1 + δ , dk+1, . . . , dm)

where δ > −1. Assume that x(δ) minimizes ‖ D(δ)(Ax − b) ‖2 and set

rk(δ) = eT
k (b − Ax(δ)) = bk − aT

k (AT D(δ)2A)−1AT D(δ)2b

where ek = Im(:, k). We show that the penalty for disagreement between aT
k x and bk

increases with δ. Since
d

dδ

[
D(δ)2

]
= d2

kekeT
k
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and
d

dδ

[
(AT D(δ)2A)−1] = −(AT D(δ)2A)−1(AT (d2

kekeT
k )A)(AT D(δ)2A)−1,

it can be shown that
d

dδ
rk(δ) = −d2

k

(
aT

k (AT D(δ)2A)−1ak

)
rk(δ). (6.1.4)

Assuming that A has full rank, the matrix (AT D(δ)A)−1 is positive definite and so

d

dδ
[rk(δ)2] = 2 rk(δ) · d

dδ
rk(δ) = −2d2

k

(
aT

k (AT D(δ)2A)−1ak

)
rk(δ)2 < 0.

It follows that |rk(δ)| is a monotone decreasing function of δ. Of course, the change in
rk when all the weights are varied at the same time is much more complicated.

Before we move on to a more general type of row weighting, we mention that
(6.1.1) can be framed as a symmetric indefinite linear system. In particular, if[

D−2 A

AT 0

][
r

x

]
=

[
b

0

]
, (6.1.5)

then x minimizes (6.1.1). Compare with (5.3.20).

6.1.2 Generalized Least Squares

In statistical data-fitting applications, the weights in (6.1.1) are often chosen to increase
the relative importance of accurate measurements. For example, suppose the vector
of observations b has the form btrue + ∆ where ∆i is normally distributed with mean
zero and standard deviation σi. If the errors are uncorrelated, then it makes statistical
sense to minimize (6.1.1) with di = 1/σi.

In more general estimation problems, the vector b is related to x through the
equation

b = Ax + w (6.1.6)

where the noise vector w has zero mean and a symmetric positive definite covariance
matrix σ2W . Assume that W is known and that W = BBT for some B ∈ IRm×m.
The matrix B might be given or it might be W ’s Cholesky triangle. In order that
all the equations in (6.1.6) contribute equally to the determination of x, statisticians
frequently solve the LS problem

min
x∈IRn

‖ B−1(Ax − b) ‖2 . (6.1.7)

An obvious computational approach to this problem is to form Ã = B−1A and b̃ = B−1b
and then apply any of our previous techniques to minimize ‖ Ãx − b̃ ‖2. Unfortunately,
if B is ill-conditioned, then x will be poorly determined by such a procedure.

A more stable way of solving (6.1.7) using orthogonal transformations has been
suggested by Paige (1979a, 1979b). It is based on the idea that (6.1.7) is equivalent to
the generalized least squares problem,

min
b=Ax+Bv

vT v . (6.1.8)
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Notice that this problem is defined even if A and B are rank deficient. Although in
the Paige technique can be applied when this is the case, we shall describe it under the
assumption that both these matrices have full rank.

The first step is to compute the QR factorization of A:

QT A =
[

R1
0

]
, Q = [ Q1 | Q2 ]

n m−n

.

Next, an orthogonal matrix Z ∈ IRm×m is determined such that

(QT
2 B)Z = [ 0 | S ]

n m−n

, Z = [ Z1 | Z2 ]
n m−n

where S is upper triangular. With the use of these orthogonal matrices, the constraint
in (6.1.8) transforms to⎡⎣ QT

1 b

QT
2 b

⎤⎦ =

⎡⎣ R1

0

⎤⎦x +

⎡⎣ QT
1 BZ1 QT

1 BZ2

0 S

⎤⎦⎡⎣ ZT
1 v

ZT
2 v

⎤⎦ .

The bottom half of this equation determines v while the top half prescribes x:

Su = QT
2 b, v = Z2u, (6.1.9)

R1x = QT
1 b − (QT

1 BZ1Z
T
1 + QT

1 BZ2Z
T
2 )v = QT

1 b − QT
1 BZ2u. (6.1.10)

The attractiveness of this method is that all potential ill-conditioning is concentrated
in the triangular systems (6.1.9) and (6.1.10). Moreover, Paige (1979b) shows that the
above procedure is numerically stable, something that is not true of any method that
explicitly forms B−1A.

6.1.3 A Note on Column Weighting

Suppose G ∈ IRn×n is nonsingular and define the G-norm ‖ · ‖
G

on IRn by

‖ z ‖
G

= ‖ Gz ‖2 .

If A ∈ IRm×n, b ∈ IRm, and we compute the minimum 2-norm solution yLS to

min
x∈IRn

‖ (AG−1)y − b ‖2 ,

then xG = G−1yLS is a minimizer of ‖ Ax − b ‖2. If rank(A) < n, then within the set
of minimizers, xG has the smallest G-norm.

The choice of G is important. Sometimes its selection can be based upon a
priori knowledge of the uncertainties in A. On other occasions, it may be desirable to
normalize the columns of A by setting

G = G0 ≡ diag(‖ A(:, 1) ‖2, . . . , ‖ A(:, n) ‖2).
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Van der Sluis (1969) has shown that with this choice, κ2(AG−1) is approximately
minimized. Since the computed accuracy of yLS depends on κ2(AG−1), a case can be
made for setting G = G0.

We remark that column weighting affects singular values. Consequently, a scheme
for determining numerical rank may not return the same estimate when applied to A
and AG−1. See Stewart (1984).

6.1.4 Ridge Regression

In the ridge regression problem we are given A ∈ IRm×n and b ∈ IRm and proceed to
solve

min
x

∥∥∥∥[ A√
λI

]
x −

[
b
0

]∥∥∥∥2

2
= min

x
‖ Ax − b ‖2

2 + λ‖ x ‖2
2 . (6.1.11)

where the value of the ridge parameter λ is chosen to “shape” the solution x = x(λ)
in some meaningful way. Notice that the normal equation system for this problem is
given by

(AT A + λI)x = AT b. (6.1.12)

It follows that if

A = UΣV T =
r∑

i=1

σiuiv
T
i (6.1.13)

is the SVD of A, then (6.1.12) converts to

(ΣT Σ + λIn)(V T x) = ΣT UT b

and so

x(λ) =
r∑

i=1

σi uT
i b

σ2
i + λ

vi. (6.1.14)

By inspection, it is clear that
lim
λ→0

x(λ) = xLS

and ‖ x(λ) ‖2 is a monotone decreasing function of λ. These two facts show how an
ill-conditioned least squares solution can be regularized by judiciously choosing λ. The
idea is to get sufficiently close to xLS subject to the constraint that the norm of the
ridge regression minimzer x(λ) is sufficiently modest. Regularization in this context is
all about the intelligent balancing of these two tensions.

The ridge parameter can also be chosen with an eye toward balancing the “im-
pact” of each equation in the overdetermined system Ax = b. We describe a λ-selection
procedure due to Golub, Heath, and Wahba (1979). Set

Dk = I − ekeT
k = diag(1, . . . , 1, 0, 1, . . . , 1) ∈ IRm×m

and let xk(λ) solve
min

x∈IRn

‖ Dk(Ax − b) ‖2
2 + λ‖ x ‖2

2 . (6.1.15)
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Thus, xk(λ) is the solution to the ridge regression problem with the kth row of A and
kth component of b deleted, i.e., the kth equation in the overdetermined system Ax = b
is deleted. Now consider choosing λ so as to minimize the cross-validation weighted
square error C(λ) defined by

C(λ) =
1
m

m∑
k=1

wk(aT
k xk(λ) − bk)2 .

Here, w1, . . . , wm are nonnegative weights and aT
k is the kth row of A. Noting that

‖ Axk(λ) − b ‖2
2 = ‖ Dk(Axk(λ) − b) ‖2

2 + (aT
k xk(λ) − bk)2,

we see that
(
aT

k xk(λ) − bk

)2 is the increase in the sum of squares that results when the
kth row is “reinstated.” Minimizing C(λ) is tantamount to choosing λ such that the
final model is not overly dependent on any one experiment.

A more rigorous analysis can make this statement precise and also suggest a
method for minimizing C(λ). Assuming that λ > 0, an algebraic manipulation shows
that

xk(λ) = x(λ) +
aT

k x(λ) − bk

1 − zT
k ak

zk (6.1.16)

where zk = (AT A + λI)−1ak and x(λ) = (AT A + λI)−1AT b. Applying −aT
k to

(6.1.16) and then adding bk to each side of the resulting equation gives

rk = bk − aT
k xk(λ) =

eT
k (I − A(AT A + λI)−1AT )b

eT
k (I − A(AT A + λI)−1AT )ek

. (6.1.17)

Noting that the residual r = [ r1, . . . , rm ]T = b − Ax(λ) is given by the formula

r = [I − A(AT A + λI)−1AT ]b,

we see that

C(λ) =
1
m

m∑
k=1

wk

(
rk

∂rk/∂bk

)2

. (6.1.18)

The quotient rk/(∂rk/∂bk) may be regarded as an inverse measure of the “impact” of
the kth observation bk on the model. If ∂rk/∂bk is small, then this says that the error
in the model’s prediction of bk is somewhat independent of bk. The tendency for this
to be true is lessened by basing the model on the λ∗ that minimizes C(λ).

The actual determination of λ∗ is simplified by computing the SVD of A. Using
the SVD (6.1.13) and Equations (6.1.17) and (6.1.18), it can be shown that

C(λ) =
1
m

m∑
k=1

wk

⎡⎢⎢⎢⎢⎢⎣
b̃k −

r∑
j=1

ukj b̃j

(
σ2

j

σ2
j + λ

)

1 −
r∑

j=1

u2
kj

(
σ2

j

σ2
j + λ

)
⎤⎥⎥⎥⎥⎥⎦

2

(6.1.19)

where b̃ = UT b. The minimization of this expression is discussed in Golub, Heath, and
Wahba (1979).
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6.1.5 Tikhonov Regularization

In the Tikhonov regularization problem, we are given A ∈ IRm×n, B ∈ IRn×n, and b ∈ IRm

and solve

min
x

∥∥∥∥[ A√
λB

]
x −

[
b
0

]∥∥∥∥2

2
= min

x
‖ Ax − b ‖2

2 + λ‖ Bx ‖2
2. (6.1.20)

The normal equations for this problem have the form

(AT A + λBT B)x = AT b. (6.1.21)

This system is nonsingular if null(A) ∩ null(B) = {0}. The matrix B can be chosen
in several ways. For example, in certain data-fitting applications second derivative
smoothness can be promoted by setting B = TDD, the second difference matrix defined
in Equation 4.8.7.

To analyze how A and B interact in the Tikhonov problem, it would be handy
to transform (6.1.21) into an equivalent diagonal problem. For the ridge regression
problem (B = In) the SVD accomplishes this task. For the Tikhonov problem, we
need a generalization of the SVD that simultaneously diagonalizes both A and B.

6.1.6 The Generalized Singular Value Decomposition

The generalized singular value decomposition (GSVD) set forth in Van Loan (1974)
provides a useful way to simplify certain two-matrix problems such as the Tychanov
regularization problem.

Theorem 6.1.1 (Generalized Singular Value Decomposition). Assume that
A ∈ IRm1×n1 and B ∈ IRm2×n1 with m1 ≥ n1 and

r = rank
([

A
B

])
.

There exist orthogonal U1 ∈ IRm1×m1 and U2 ∈ IRm2×m2 and invertible X ∈ IRn1×n1

such that

UT
1 AX = DA =

⎡⎢⎣ I 0 0

0 diag(αp+1, . . . , αr) 0

0 0 0

⎤⎥⎦ p

r−p

m1−r

p r−p n1−r

, (6.1.22)

UT
2 BX = DB =

⎡⎢⎣ 0 0 0

0 diag(βp+1, . . . , βr) 0

0 0 0

⎤⎥⎦ p

r−p

m2−r

p r−p n1−r

, (6.1.23)

where p = max{r − m2, 0}.
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Proof. The proof makes use of the SVD and the CS decomposition (Theorem 2.5.3).
Let [

A

B

]
=

[
Q11 Q12

Q21 Q22

][
Σr 0

0 0

]
ZT (6.1.24)

be the SVD where Σr ∈ IRr×r is nonsingular, Q11 ∈ IRm1×r, and Q21 ∈ IRm2×r. Using
the CS decomposition, there exist orthogonal matrices U1 (m1-by-m1), U2 (m2-by-m2),
and V1 (r-by-r) such that[

U1 0

0 U2

]T [
Q11

Q21

]
V1 =

[
DA(:, 1:r)

DB(:, 1:r)

]
(6.1.25)

where DA and DB have the forms specified by (6.1.21) and (6.1.22). It follows from
(6.1.24) and (6.1.25) that[

U1 0

0 U2

]T [
A

B

]
Z =

[
DA(:, 1:r) U1Q12

DB(:, 1:r) U2Q22

][
V T

1 Σr 0

0 0

]

=

[
DA(:, 1:r) 0

DB(:, 1:r) 0

][
V T

1 Σr 0

0 In1−r

]

=

[
DA

DB

][
V T

1 Σr 0

0 In1−r

]
.

By setting

X = Z

[
V T

1 Σr 0

0 In1−r

]−1

the proof is complete.

Note that if B = In1 and we set X = U2, then we obtain the SVD of A. The GSVD is
related to the generalized eigenvalue problem

AT Ax = µ2BT Bx

which is considered in §8.7.4. As with the SVD, algorithmic issues cannot be addressed
until we develop procedures for the symmetric eigenvalue problem in Chapter 8.

To illustrate the insight that can be provided by the GSVD, we return to the
Tikhonov regularization problem (6.1.20). If B is square and nonsingular, then the
GSVD defined by (6.1.22) and (6.1.23) transforms the system (6.1.21) to

(DT
A DA + λDT

B DB)y = DT
A b̃

where x = Xy, b̃ = UT
1 b, and

(DT
A DA + λDT

B DB) = diag(α2
1 + λβ2

1 , . . . , α2
n + λβ2

n).
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Thus, if
X = [ x1 | · · · | xn ]

is a column partitioning, then

x(λ) =
n∑

k=1

(
αk b̃k

α2
k + λβ2

k

)
xk (6.1.26)

solves (6.1.20). The “calming influence” of the regularization is revealed through this
representation. Use of λ to manage “trouble” in the direction of xk depends on the
values of αk and βk.

Problems

P6.1.1 Verify (6.1.4).

P6.1.2 What is the inverse of the matrix in (6.1.5)?

P6.1.3 Show how the SVD can be used to solve the generalized LS problem (6.1.8) if the matrices A
and B are rank deficient.

P6.1.4 Suppose A is the m-by-1 matrix of 1’s and letb ∈ IRm. Show that the cross-validation technique
with unit weights prescribes an optimal λ given by

λ =

((
b̃

s

)2

− 1
m

)−1

where b̃ = (b1 + · · ·+ bm)/m and

s =
m∑

i=1

(bi − b̃)2/(m− 1).

P6.1.5 Using the GSVD, give bounds for ‖ x(λ)− x(0) ‖ and ‖Ax(λ)− b ‖22 − ‖Ax(0)− b ‖22 where
x(λ) is defined by (6.1.26).
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6.2 Constrained Least Squares
In the least squares setting it is sometimes natural to minimize ‖ Ax − b ‖2 over a
proper subset of IRn. For example, we may wish to predict b as best we can with Ax
subject to the constraint that x is a unit vector. Or perhaps the solution defines a
fitting function f(t) which is to have prescribed values at certain points. This can lead
to an equality-constrained least squares problem. In this section we show how these
problems can be solved using the QR factorization, the SVD, and the GSVD.

6.2.1 Least Squares Minimization Over a Sphere

Given A ∈ IRm×n, b ∈ IRm, and a positive α ∈ IR, we consider the problem

min
‖x‖2 ≤ α

‖ Ax − b ‖2 . (6.2.1)

This is an example of the LSQI (least squares with quadratic inequality constraint)
problem. This problem arises in nonlinear optimization and other application areas.
As we are soon to observe, the LSQI problem is related to the ridge regression problem
discussed in §6.1.4.

Suppose

A = UΣV T =
r∑

i=1

σiuiv
T
i (6.2.2)

is the SVD of A which we assume to have rank r. If the unconstrained minimum norm
solution

xLS =
r∑

i=1

uT
i b

σi
vi

satisfies ‖ xLS ‖2 ≤ α, then it obviously solves (6.2.1). Otherwise,

‖ xLS ‖2
2 =

r∑
i=1

(
uT

i b

σi

)2

> α2, (6.2.3)

and it follows that the solution to (6.2.1) is on the boundary of the constraint sphere.
Thus, we can approach this constrained optimization problem using the method of
Lagrange multipliers. Define the parameterized objective function φ by

φ(x, λ) =
1
2
‖ Ax − b ‖2

2 +
λ

2

(
‖ x ‖2

2 − α2
)

and equate its gradient to zero. This gives a shifted normal equation system:

(AT A + λI)·x(λ) = AT b.

The goal is to choose λ so that ‖ x(λ) ‖2 = α. Using the SVD (6.2.2), this leads to the
problem of finding a zero of the function

f(λ) = ‖ x(λ) ‖2
2 − α2 =

n∑
k=1

(
σkuT

k b

σ2
k + λ

)2

− α2.
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This is an example of a secular equation problem. From (6.2.3), f(0) > 0. Since
f ′(λ) < 0 for λ ≥ 0, it follows that f has a unique positive root λ+. It can be shown
that

ρ(λ) = ‖ Ax(λ) − b ‖2
2 = ‖ AxLS − b ‖2

2 +
r∑

i=1

(
λuT

i b

σ2
i + λ

)2

. (6.2.4)

It follows that x(λ+) solves (6.2.1).

Algorithm 6.2.1 Given A ∈ IRm×n with m ≥ n, b ∈ IRm, and α > 0, the following
algorithm computes a vector x ∈ IRn such that ‖ Ax − b ‖2 is minimum subject to the
constraint that ‖ x ‖2 ≤ α.

Compute the SVD A = UΣV T , save V = [ v1 | · · · | vn ] , form b̃ = UT b,
and determine r = rank(A).

if
r∑

i=1

(
b̃i

σi

)2

> α2

Find λ+ > 0 such that
r∑

i=1

(
σib̃i

σ2
i + λ+

)2

= α2.

x =
r∑

i=1

(
σib̃i

σ2
i + λ+

)
vi

else

x =
r∑

i=1

(
b̃i

σi

)
vi

end

The SVD is the dominant computation in this algorithm.

6.2.2 More General Quadratic Constraints

A more general version of (6.2.1) results if we minimize ‖ Ax − b ‖2 over an arbitrary
hyperellipsoid:

minimize ‖ Ax − b ‖2 subject to ‖ Bx − d ‖2 ≤ α. (6.2.5)

Here we are assuming that A ∈ IRm1×n1, b ∈ IRm1 , B ∈ IRm2×n1, d ∈ IRm2 , and α ≥ 0.
Just as the SVD turns (6.2.1) into an equivalent diagonal problem, we can use the
GSVD to transform (6.2.5) into a diagonal problem. In particular, if the GSVD of A
and B is given by (6.1.22) and (6.2.23), then (6.2.5) is equivalent to

minimize ‖ DAy − b̃ ‖2 subject to ‖ DBy − d̃ ‖2 ≤ α (6.2.6)

where
b̃ = UT

1 b, d̃ = UT
2 d, y = X−1x.
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The simple form of the objective function and the constraint equation facilitate the
analysis. For example, if rank(B) = m2 < n1, then

‖ DAy − b̃ ‖2
2 =

n1∑
i=1

(αiyi − b̃i)2 +
m1∑

i=n1+1

b̃2
i (6.2.7)

and

‖ DBy − d̃ ‖2
2 =

m2∑
i=1

(βiyi − d̃i) 2 +
n1∑

i=m2+1

d̃ 2
i ≤ α2. (6.2.8)

A Lagrange multiplier argument can be used to determine the solution to this trans-
formed problem (if it exists).

6.2.3 Least Squares With Equality Constraints

We consider next the constrained least squares problem

min
Bx=d

‖ Ax − b ‖2 (6.2.9)

where A ∈ IRm1×n1 with m1 ≥ n1, B ∈ IRm2×n1 with m2 < n1, b ∈ IRm1 , and d ∈ IRm2 .
We refer to this as the LSE problem (least squares with equality constraints). By
setting α = 0 in (6.2.5) we see that the LSE problem is a special case of the LSQI
problem. However, it is simpler to approach the LSE problem directly rather than
through Lagrange multipliers.

For clarity, we assume that both A and B have full rank. Let

QT BT =
[

R

0

]
n1

n1−m2

be the QR factorization of BT and set

AQ = [ A1 | A2 ]
m2 n1−m2

, QT x =
[

y

z

]
m2

n1−m2

.

It is clear that with these transformations (6.2.9) becomes

min
RT y=d

‖ A1y + A2z − b ‖2.

Thus, y is determined from the constraint equation RT y = d and the vector z is
obtained by solving the unconstrained LS problem

min
z∈IRn1−m2

‖ A2z − (b − A1y) ‖2.

Combining the above, we see that the following vector solves the LSE problem:

x = Q

[
y
z

]
.
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Algorithm 6.2.2 Suppose A ∈ IRm1×n1, B ∈ IRm2×n1, b ∈ IRm1 , and d ∈ IRm2 . If
rank(A) = n1 and rank(B) = m2 < n1, then the following algorithm minimizes
‖ Ax − b ‖2 subject to the constraint Bx = d .

Compute the QR factorization BT = QR.

Solve R(1:m2, 1:m2)T ·y = d for y.

A = AQ

Find z so ‖ A(:, m2 + 1:n1)z − (b − A(:, 1:m2)·y) ‖2 is minimized.

x = Q(:, 1:m2)·y + Q(:, m2 + 1:n1)·z .

Note that this approach to the LSE problem involves two QR factorizations and a
matrix multiplication. If A and/or B are rank deficient, then it is possible to devise a
similar solution procedure using the SVD instead of QR. Note that there may not be
a solution if rank(B) < m2. Also, if null(A) ∩ null(B) 
= {0} and d ∈ ran(B), then the
LSE solution is not unique.

6.2.4 LSE Solution Using the Augmented System

The LSE problem can also be approached through the method of Lagrange multipliers.
Define the augmented objective function

f(x, λ) =
1
2
‖ Ax − b ‖2

2 + λT (d − Bx), λ ∈ IRm2 ,

and set to zero its gradient with respect to x:

AT Ax − AT b − BT λ = 0.

Combining this with the equations r = b − Ax and Bx = d we obtain the symmetric
indefinite linear system ⎡⎢⎣ 0 AT BT

A I 0

B 0 0

⎤⎥⎦
⎡⎢⎣ x

r

λ

⎤⎥⎦ =

⎡⎢⎣ 0

b

d

⎤⎥⎦ . (6.2.10)

This system is nonsingular if both A and B have full rank. The augmented system
presents a solution framework for the sparse LSE problem.

6.2.5 LSE Solution Using the GSVD

Using the GSVD given by (6.1.22) and (6.1.23), we see that the LSE problem transforms
to

min
DBy=d̃

‖ DAy − b̃ ‖2 (6.2.11)

where b̃ = UT
1 b, d̃ = UT

2 d, and y = X−1x. It follows that if null(A) ∩ null(B) = {0}
and X = [ x1 | · · · | xn ] , then

x =
m2∑
i=1

(
d̃i

βi

)
xi +

n1∑
i=m2+1

(
b̃i

αi

)
xi (6.2.12)
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solves the LSE problem.

6.2.6 LSE Solution Using Weights

An interesting way to obtain an approximate LSE solution is to solve the unconstrained
LS problem

min
x

∥∥∥∥∥
[

A√
λB

]
x −

[
b√
λd

]∥∥∥∥∥
2

(6.2.13)

for large λ. (Compare with the Tychanov regularization problem (6.1.21).) Since∥∥∥∥∥
[

A√
λB

]
x −

[
b√
λd

]∥∥∥∥∥
2

2

= ‖ Ax − b ‖2
2 + λ‖ Bx − d ‖2

,

we see that there is a penalty for discrepancies among the constraint equations. To
quantify this, assume that both A and B have full rank and substitute the GSVD
defined by (6.1.22) and (6.1.23) into the normal equation system

(AT A + λBT B)x = AT b + λBT d.

This shows that the solution x(λ) is given by x(λ) = Xy(λ) where y(λ) solves

(DT
A DA + λDT

B DB)y = DT
A b̃ + λDT

B d̃

with b̃ = UT
1 b and d̃ = UT

2 d. It follows that

x(λ) =
m2∑
i=1

(
αib̃i + λβid̃i

α2
i + λβ2

i

)
xi +

n1∑
i=m2+1

(
b̃i

αi

)
xi

and so from (6.2.13) we have

x(λ) − x =
p∑

i=1

αi

βi

(
βiu

T
i b − αiv

T
i d

α2
i + λ2β2

i )

)
xi. (6.2.14)

This shows that x(λ) → x as λ → ∞. The appeal of this approach to the LSE problem
is that it can be implemented with unconstrained LS problem software. However, for
large values of λ numerical problems can arise and it is necessary to take precautions.
See Powell and Reid (1968) and Van Loan (1982).

Problems

P6.2.1 Is the solution to (6.2.1) always unique?

P6.2.2 Let p0(x), . . . , pn(x) be given polynomials and (x0, y0), . . . , (xm, ym) be a given set of coordi-
nate pairs with xi ∈ [a, b]. It is desired to find a polynomial p(x) =

∑n

k=0 αkpk(x) such that

φ(α) =
m∑

i=0

(p(xi)− yi)2
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is minimized subject to the constraint that∫ b

a

[p′′(x)]2dx ≈ h

N∑
i=0

(
p(zi−1)− 2p(zi) + p(zi+1)

h2

)2
≤ α2

where zi = a + ih and b = a + Nh. Show that this leads to an LSQI problem of the form (6.2.5) with
d = 0.

P6.2.3 Suppose Y = [ y1 | · · · | yk ] ∈ IRm×k has the property that

Y T Y = diag(d2
1, . . . , d2

k), d1 ≥ d2 ≥ · · · ≥ dk > 0.

Show that if Y = QR is the QR factorization of Y , then R is diagonal with |rii| = di.

P6.2.4 (a) Show that if (AT A + λI)x = AT b, λ > 0, and ‖ x ‖2 = α, then z = (Ax − b)/λ solves
the dual equations (AAT + λI)z = −b with ‖AT z ‖2 = α. (b) Show that if (AAT + λI)z = −b,
‖AT z ‖2 = α, then x = −AT z satisfies (AT A + λI)x = AT b, ‖ x ‖2 = α.

P6.2.5 Show how to compute y (if it exists) so that both (6.2.7) and (6.2.8) are satisfied.

P6.2.6 Develop an SVD version of Algorithm 6.2.2 that can handle the situation when A and/or B
are rank deficient.

P6.2.7 Suppose

A =
[

A1
A2

]
where A1 ∈ IRn×n is nonsingular and A2 ∈ IR(m−n)×n. Show that

σmin(A) ≥
√

1 + σmin(A2A−1
1 )2 σmin(A1) .

P6.2.8 Suppose p ≥ m ≥ n and that A ∈ IRm×n and B ∈ IRm×p Show how to compute orthogonal
Q ∈ IRm×m and orthogonal V ∈ IRn×n so that

QT A =
[

R
0

]
, QT BV = [ 0 |S ]

where R ∈ IRn×n and S ∈ IRm×m are upper triangular.

P6.2.9 Suppose r ∈ IRm, y ∈ IRn, and δ > 0. Show how to solve the problem

min
E∈IRm×n , ‖E‖F≤δ

‖Ey − r‖2

Repeat with “min” replaced by “max.”

P6.2.10 Show how the constrained least squares problem

min
Bx=d

‖Ax− b ‖2 A ∈ IRm×n, B ∈ IRp×n, rank(B) = p

can be reduced to an unconstrained least square problem by performing p steps of Gaussian elimination
on the matrix [

B
A

]
=

[
B1 B2
A1 A2

]
, B1 ∈ IRp×p, rank(B1) = p.

Explain. Hint: The Schur complement is of interest.
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6.3 Total Least Squares
The problem of minimizing ‖ Ax − b ‖2 where A ∈ IRm×n and b ∈ IRm can be recast as
follows:

min
b+r ∈ ran(A)

‖ r ‖2 . (6.3.1)

In this problem, there is a tacit assumption that the errors are confined to the vector
of observations b. If error is also present in the data matrix A, then it may be more
natural to consider the problem

min
b+r ∈ ran(A+E)

‖ [ E | r ] ‖
F

. (6.3.2)

This problem, discussed by Golub and Van Loan (1980), is referred to as the total least
squares (TLS) problem. If a minimizing [ E0 | r0 ] can be found for (6.3.2), then any x
satisfying (A + E0)x = b + r0 is called a TLS solution. However, it should be realized
that (6.3.2) may fail to have a solution altogether. For example, if

A =

⎡⎣ 1 0
0 0
0 0

⎤⎦ , b =

⎡⎣ 1
1
1

⎤⎦ , Eε =

⎡⎣ 0 0
0 ε
0 ε

⎤⎦ ,

then for all ε > 0, b ∈ ran(A + Eε). However, there is no smallest value of ‖ [ E , r ] ‖F

for which b + r ∈ ran(A + E).
A generalization of (6.3.2) results if we allow multiple right-hand sides and use a

weighted Frobenius norm. In particular, if B ∈ IRm×k and the matrices

D = diag(d1, . . . , dm),

T = diag(t1, . . . , tn+k)

are nonsingular, then we are led to an optimization problem of the form

min
B+R ∈ ran(A+E)

‖ D [ E | R ] T ‖
F (6.3.3)

where E ∈ IRm×n and R ∈ IRm×k. If [ E0 | R0 ] solves (6.3.3), then any X ∈ IRn×k that
satisfies

(A + E0)X = (B + R0)

is said to be a TLS solution to (6.3.3).
In this section we discuss some of the mathematical properties of the total least

squares problem and show how it can be solved using the SVD. For a more detailed
introduction, see Van Huffel and Vanderwalle (1991).
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6.3.1 Mathematical Background

The following theorem gives conditions for the uniqueness and existence of a TLS
solution to the multiple-right-hand-side problem.

Theorem 6.3.1. Suppose A ∈ IRm×n and B ∈ IRm×k and that D = diag(d1, . . . , dm)
and T = diag(t1, . . . , tn+k) are nonsingular. Assume m ≥ n + k and let the SVD of

C = D[ A | B ]T = [ C1 |C2 ]
n k

be specified by UT CV = diag(σ1, . . . , σn+k) = Σ where U , V , and Σ are partitioned as
follows:

U = [ U1 |U2 ]
n k

, V =
[

V11

V21

V12

V22

]
n

k

n k

, Σ =
[ Σ1

0

0

Σ2

]
n

k

n k

.

If σn(C1) > σn+1(C), then the matrix [ E0 | R0 ] defined by

D[ E0 | R0 ]T = −U2Σ2[ V T
12 | V T

22 ] (6.3.4)

solves (6.3.3). If T1 = diag(t1, . . . , tn) and T2 = diag(tn+1, . . . , tn+k), then the matrix

XT LS = −T1V12V
−1
22 T−1

2

exists and is the unique TLS solution to (A + E0)X = B + R0.

Proof. We first establish two results that follow from the assumption σn(C1) > σn+1(C).
From the equation CV = UΣ we have

C1V12 + C2V22 = U2Σ2.

We wish to show that V22 is nonsingular. Suppose V22x = 0 for some unit 2-norm x.
It follows from

V T
12V12 + V T

22V22 = I

that ‖ V12x ‖2 = 1. But then

σn+1(C) ≥ ‖ U2Σ2x ‖2 = ‖ C1V12x ‖2 ≥ σn(C1) ,

a contradiction. Thus, the submatrix V22 is nonsingular. The second fact concerns the
strict separation of σn(C) and σn+1(C). From Corollary 2.4.5, we have σn(C) ≥ σn(C1)
and so

σn(C) ≥ σn(C1) > σn+1(C).

We are now set to prove the theorem. If ran(B + R) ⊂ ran(A + E), then there is
an X (n-by-k) so (A + E)X = B + R, i.e.,

{ D[ A | B ]T + D[ E | R ]T }T−1
[

X
−Ik

]
= 0 . (6.3.5)
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Thus, the rank of the matrix in curly brackets is at most equal to n. By following the
argument in the proof of Theorem 2.4.8, it can be shown that

‖ D [ E | R ] T ‖2
F

≥
n+k∑

i=n+1

σi(C)2.

Moreover, the lower bound is realized by setting [ E | R ] = [ E0 | R0 ]. Using the
inequality σn(C) > σn+1(C), we may infer that [ E0 | R0 ] is the unique minimizer.

To identify the TLS solution XT LS, we observe that the nullspace of

{D [ A | B ] T + D [ E0 | R0 ] T} = U1 Σ1 [ V T
11 | V T

21 ]

is the range of
[

V12
V22

]
. Thus, from (6.3.5)

T−1

[
X

−Ik

]
=

[
V12

V22

]
S

for some k-by-k matrix S. From the equations T−1
1 X = V12S and −T−1

2 = V22S we
see that S = −V −1

22 T−1
2 and so

X = T1V12S = −T1V12V
−1
22 T−1

2 = XTLS.

Note from the thin CS decomposition (Theorem 2.5.2) that

‖ X ‖2
τ = ‖ V12V

−1
22 ‖2

2 =
1 − σk(V22)2

σk(V22)2

where we define the “τ -norm” on IRn×k by ‖ Z ‖τ = ‖ T−1
1 ZT2 ‖2.

If σn(C1) = σn+1(C), then the solution procedure implicit in the above proof is
problematic. The TLS problem may have no solution or an infinite number of solutions.
See §6.3.4 for suggestions as to how one might proceed.

6.3.2 Solving the Single Right Hand Side Case

We show how to maximize σk(V22) in the important k = 1 case. Suppose the singular
values of C satisfy σn−p > σn−p+1 = · · · = σn+1 and let V = [ v1 | · · · | vn+1 ] be a
column partitioning of V . If Q̃ is a Householder matrix such that

V (:, n + 1 − p:n + 1)Q̃ =
[

W

0

z

α

]
n

1

p 1

,

then the last column of this matrix has the largest (n + 1)st component of all the
vectors in span{vn+1−p, . . . , vn+1}. If α = 0, then the TLS problem has no solution.
Otherwise

xTLS = −T1z/(tn+1α).
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Moreover, [
In−1 0

0 Q̃

]
UT (D[ A | b ]T )V

[
In−p 0

0 Q̃

]
= Σ

and so

D [ E0 | r0 ] T = −D [ A | b ] T

[
z

α

]
[ zT | α ].

Overall, we have the following algorithm:

Algorithm 6.3.1 Given A ∈ IRm×n (m > n), b ∈ IRm, nonsingular D = diag(d1, . . . , dm),
and nonsingular T = diag(t1, . . . , tn+1), the following algorithm computes (if possible)
a vector xTLS ∈ IRn such that (A+E0)xTLS = (b+r0) and ‖ D[ E0 | r0 ]T ‖

F
is minimal.

Compute the SVD UT (D[ A | b ]T )V = diag(σ1, . . . , σn+1) and save V .

Determine p such that σ1 ≥ · · · ≥ σn−p > σn−p+1 = · · · = σn+1.

Compute a Householder P such that if Ṽ = V P , then Ṽ (n + 1, n − p + 1:n) = 0.

if ṽn+1,n+1 
= 0

for i = 1:n

xi = −tiṽi,n+1/(tn+1ṽn+1,n+1)
end
xTLS = x

end

This algorithm requires about 2mn2 +12n3 flops and most of these are associated with
the SVD computation.

6.3.3 A Geometric Interpretation

It can be shown that the TLS solution xT LS minimizes

ψ(x) =
m∑

i=1

d2
i

(
|aT

i x − bi|2
xT T−2

1 x + t−2
n+1

)
(6.3.6)

where aT
i is the ith row of A and bi is the ith component of b. A geometrical interpre-

tation of the TLS problem is made possible by this observation. Indeed,

δi =
|aT

i x − bi|2
xT T−2

1 x + t−2
n+1

is the square of the distance from [
ai

bi

]
∈ IRn+1

to the nearest point in the subspace

Px =
{[

a
b

]
: a ∈ IRn, b ∈ IR, b = xT a

}
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where the distance in IRn+1 is measured by the norm ‖ z ‖ = ‖ Tz ‖2. The TLS problem
is essentially the problem of orthogonal regression, a topic with a long history. See
Pearson (1901) and Madansky (1959).

6.3.4 Variations of the Basic TLS Problem

We briefly mention some modified TLS problems that address situations when addi-
tional constraints are imposed on the optimizing E and R and the associated TLS
solution.

In the restricted TLS problem, we are given A ∈ IRm×n, B ∈ IRm×k, P1 ∈ IRm×q,
and P2 ∈ IRn+k×r, and solve

min
B+R⊂ ran(A+E)

‖ PT
1 [ E | R ]P2 ‖F

.
(6.3.7)

We assume that q ≤ m and r ≤ n + k. An important application arises if some of the
columns of A are error-free. For example, if the first s columns of A are error-free, then
it makes sense to force the optimizing E to satisfy E(:, 1:s) = 0. This goal is achieved
by setting P1 = Im and P2 = Im+k(:, s + 1:n + k) in the restricted TLS problem.

If a particular TLS problem has no solution, then it is referred to as a nongeneric
TLS problem. By adding a constraint it is possible to produce a meaningful solution.
For example, let UT [ A | b ]V = Σ be the SVD and let p be the largest index so
V (n + 1, p) 
= 0. It can be shown that the problem

min
(A+E)x=b+r

[ E | r ]V (:,p+1:n+1)=0

‖ [ E | r ] ‖
F

(6.3.8)

has a solution [ E0 | r0 ] and the nongeneric TLS solution satisfies (A + E0)x + b + r0.
See Van Huffel (1992).

In the regularized TLS problem additional constraints are imposed to ensure that
the solution x is properly constrained/smoothed:

min
(A+E)x=b+r

‖Lx‖2≤δ

‖ [ E | r ] ‖
F .

(6.3.9)

The matrix L ∈ IRn×n could be the identity or a discretized second-derivative operator.
The regularized TLS problem leads to a Lagrange multiplier system of the form

(AT A + λ1I + λ2L
T L)x = AT b.

See Golub, Hansen, and O’Leary (1999) for more details. Another regularization ap-
proach involves setting the small singular values of [A | b] to zero. This is the truncated
TLS problem discussed in Fierro, Golub, Hansen, and O’Leary (1997).

Problems

P6.3.1 Consider the TLS problem (6.3.2) with nonsingular D and T . (a) Show that if rank(A) < n,
then (6.3.2) has a solution if and only if b ∈ ran(A). (b) Show that if rank(A) = n, then (6.3.2) has no
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solution if AT D2b = 0 and |tn+1|‖Db ‖2 ≥ σn(DAT1) where T1 = diag(t1, . . . , tn).

P6.3.2 Show that if C = D[ A | b ]T = [ A1 | d ] and σn(C) > σn+1(C), then xT LS satisfies

(AT
1 A1 − σn+1(C)2I)xTLS = AT

1 d.

Appreciate this as a “negatively shifted” system of normal equations.

P6.3.3 Show how to solve (6.3.2) with the added constraint that the first p columns of the minimizing
E are zero. Hint: Compute the QR factorization of A(:, 1:p).

P6.3.4 Show how to solve (6.3.3) given that D and T are general nonsingular matrices.

P6.3.5 Verify Equation (6.3.6).

P6.3.6 If A ∈ IRm×n has full column rank and B ∈ IRp×n has full row rank, show how to minimize

f(x) =
‖Ax− b ‖22

1 + xT x

subject to the constraint that Bx = 0.

P6.3.7 In the data least squares problem, we are given A ∈ IRm×n and b ∈ IRm and minimize ‖ E ‖F

subject to the constraint that b ∈ ran(A+E). Show how to solve this problem. See Paige and Strakoš
(2002b).
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I. Hnĕtynkovã, M. Ples̆inger, D.M. Sima, Z. Strakos̆, and S. Van Huffel (2011). “The Total Least
Squares Problem in AX ≈ B: A New Classification with the Relationship to the Classical Works,”
SIAM J. Matrix Anal. Applic. 32, 748–770.

If some of the columns of A are known exactly then it is sensible to force the TLS perturbation matrix
E to be zero in the same columns. Aspects of this constrained TLS problem are discussed in:

J.W. Demmel (1987). “The Smallest Perturbation of a Submatrix which Lowers the Rank and Con-
strained Total Least Squares Problems,” SIAM J. Numer. Anal. 24, 199–206.

S. Van Huffel and J. Vandewalle (1988). “The Partial Total Least Squares Algorithm,” J. Comput.
App. Math. 21, 333–342.

S. Van Huffel and J. Vandewalle (1989). “Analysis and Properties of the Generalized Total Least
Squares Problem AX ≈ B When Some or All Columns in A are Subject to Error,” SIAM J.
Matrix Anal. Applic. 10, 294–315.

S. Van Huffel and H. Zha (1991). “The Restricted Total Least Squares Problem: Formulation, Algo-
rithm, and Properties,” SIAM J. Matrix Anal. Applic. 12, 292–309.

C.C. Paige and M. Wei (1993). “Analysis of the Generalized Total Least Squares Problem AX = B
when Some of the Columns are Free of Error,” Numer. Math. 65, 177–202.

Another type of constraint that can be imposed in the TLS setting is to insist that the optimum
perturbation of A have the same structure as A. For examples and related strategies, see:

J. Kamm and J.G. Nagy (1998). “A Total Least Squares Method for Toeplitz Systems of Equations,”
BIT 38, 560–582.

P. Lemmerling, S. Van Huffel, and B. De Moor (2002). “The Structured Total Least Squares Approach
for Nonlinearly Structured Matrices,” Num. Lin. Alg. 9, 321–332.

P. Lemmerling, N. Mastronardi, and S. Van Huffel (2003). “Efficient Implementation of a Structured
Total Least Squares Based Speech Compression Method,” Lin. Alg. Applic. 366, 295–315.

N. Mastronardi, P. Lemmerling, and S. Van Huffel (2004). “Fast Regularized Structured Total Least
Squares Algorithm for Solving the Basic Deconvolution Problem,” Num. Lin. Alg. 12, 201–209.



6.4. Subspace Computations with the SVD 327

I. Markovsky, S. Van Huffel, and R. Pintelon (2005). “Block-Toeplitz/Hankel Structured Total Least
Squares,” SIAM J. Matrix Anal. Applic. 26, 1083–1099.

A. Beck and A. Ben-Tal (2005). “A Global Solution for the Structured Total Least Squares Problem
with Block Circulant Matrices,” SIAM J. Matrix Anal. Applic. 27, 238–255.

H. Fu, M.K. Ng, and J.L. Barlow (2006). “Structured Total Least Squares for Color Image Restora-
tion,” SIAM J. Sci. Comput. 28, 1100–1119.

As in the least squares problem, there are techniques that can be used to regularlize an otherwise
“wild” TLS solution:

R.D. Fierro and J.R. Bunch (1994). “Collinearity and Total Least Squares,” SIAM J. Matrix Anal.
Applic. 15, 1167–1181.

R.D. Fierro, G.H. Golub, P.C. Hansen and D.P. O’Leary (1997). “Regularization by Truncated Total
Least Squares,” SIAM J. Sci. Comput. 18, 1223–1241.

G.H. Golub, P.C. Hansen, and D.P. O’Leary (1999). “Tikhonov Regularization and Total Least
Squares,” SIAM J. Matrix Anal. Applic. 21, 185–194.

R.A. Renaut and H. Guo (2004). “Efficient Algorithms for Solution of Regularized Total Least
Squares,” SIAM J. Matrix Anal. Applic. 26, 457–476.

D.M. Sima, S. Van Huffel, and G.H. Golub (2004). “Regularized Total Least Squares Based on
Quadratic Eigenvalue Problem Solvers,” BIT 44, 793–812.

N. Mastronardi, P. Lemmerling, and S. Van Huffel (2005). “Fast Regularized Structured Total Least
Squares Algorithm for Solving the Basic Deconvolution Problem,” Num. Lin. Alg. Applic. 12,
201–209.

S. Lu, S.V. Pereverzev, and U. Tautenhahn (2009). “Regularized Total Least Squares: Computational
Aspects and Error Bounds,” SIAM J. Matrix Anal. Applic. 31, 918–941.

Finally, we mention an interesting TLS problem where the solution is subject to a unitary constraint:
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6.4 Subspace Computations with the SVD
It is sometimes necessary to investigate the relationship between two given subspaces.
How close are they? Do they intersect? Can one be “rotated” into the other? And so
on. In this section we show how questions like these can be answered using the singular
value decomposition.

6.4.1 Rotation of Subspaces

Suppose A ∈ IRm×p is a data matrix obtained by performing a certain set of experi-
ments. If the same set of experiments is performed again, then a different data matrix,
B ∈ IRm×p, is obtained. In the orthogonal Procrustes problem the possibility that B
can be rotated into A is explored by solving the following problem:

minimize ‖ A − BQ ‖
F

, subject to QT Q = Ip . (6.4.1)

We show that optimizing Q can be specified in terms of the SVD of BT A. The matrix
trace is critical to the derivation. The trace of a matrix is the sum of its diagonal
entries:

tr(C) =
n∑

i=1

cii , C ∈ IRn×n.

It is easy to show that if C1 and C2 have the same row and column dimension, then

tr(CT
1 C2) = tr(CT

2 C1) . (6.4.2)
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Returning to the Procrustes problem (6.4.1), if Q ∈ IRp×p is orthogonal, then

‖ A − BQ ‖2
F

=
p∑

k=1

‖ A(:, k) − B ·Q(:, k) ‖2
2

=
p∑

k=1

‖ A(:, k) ‖2
2 + ‖ BQ(:, k) ‖2

2 − 2Q(:, k)T BT A(:, k)

= ‖ A ‖2
F

+ ‖ BQ ‖2
F

− 2
p∑

k=1

[
QT (BT A)

]
kk

= ‖ A ‖2
F

+ ‖ B ‖2
F

− 2tr(QT (BT A)).

Thus, (6.4.1) is equivalent to the problem

max
QT Q=Ip

tr(QT BT A) .

If UT (BT A)V = Σ = diag(σ1, . . . , σp) is the SVD of BT A and we define the
orthogonal matrix Z by Z = V T QT U , then by using (6.4.2) we have

tr(QT BT A) = tr(QT UΣV T ) = tr(ZΣ) =
p∑

i=1

ziiσi ≤
p∑

i=1

σi .

The upper bound is clearly attained by setting Z = Ip, i.e., Q = UV T .

Algorithm 6.4.1 Given A and B in IRm×p, the following algorithm finds an orthogonal
Q ∈ IRp×p such that ‖ A − BQ ‖

F
is minimum.

C = BT A

Compute the SVD UT CV = Σ and save U and V .

Q = UV T

We mention that if B = Ip, then the problem (6.4.1) is related to the polar decom-
position. This decomposition states that any square matrix A has a factorization of
the form A = QP where Q is orthogonal and P is symmetric and positive semidefi-
nite. Note that if A = UΣV T is the SVD of A, then A = (UV T )(V ΣV T ) is its polar
decomposition. For further discussion, see §9.4.3.

6.4.2 Intersection of Nullspaces

Let A ∈ IRm×n and B ∈ IRp×n be given, and consider the problem of finding an or-
thonormal basis for null(A)∩ null(B). One approach is to compute the nullspace of the
matrix

C =
[

A
B

]
since this is just what we want: Cx = 0 ⇔ x ∈ null(A) ∩ null(B). However, a more
economical procedure results if we exploit the following theorem.



6.4. Subspace Computations with the SVD 329

Theorem 6.4.1. Suppose A ∈ IRm×n and let {z1, . . . , zt} be an orthonormal basis for
null(A). Define Z = [ z1 | · · · | zt ] and let {w1, . . . , wq} be an orthonormal basis for
null(BZ) where B ∈ IRp×n. If W = [ w1 | · · · | wq ] , then the columns of ZW form an
orthonormal basis for null(A) ∩ null(B).

Proof. Since AZ = 0 and (BZ)W = 0, we clearly have ran(ZW ) ⊂ null(A) ∩ null(B).
Now suppose x is in both null(A) and null(B). It follows that x = Za for some
0 
= a ∈ IRt. But since 0 = Bx = BZa, we must have a = Wb for some b ∈ IRq. Thus,
x = ZWb ∈ ran(ZW ).

If the SVD is used to compute the orthonormal bases in this theorem, then we obtain
the following procedure:

Algorithm 6.4.2 Given A ∈ IRm×n and B ∈ IRp×n, the following algorithm computes
and integer s and a matrix Y = [ y1 | · · · | ys ] having orthonormal columns which span
null(A) ∩ null(B). If the intersection is trivial, then s = 0.

Compute the SVD UT
A AVA = diag(σi), save VA, and set r = rank(A).

if r < n

C = BVA(:, r + 1:n)

Compute the SVD UT
C CVC = diag(γi), save VC , and set q = rank(C).

if q < n − r

s = n − r − q

Y = VA(:, r + 1:n)VC(:, q + 1:n − r)
else

s = 0

end
else

s = 0
end

The practical implementation of this algorithm requires an ability to reason about
numerical rank. See §5.4.1.

6.4.3 Angles Between Subspaces

Let F and G be subspaces in IRm whose dimensions satisfy

p = dim(F ) ≥ dim(G) = q ≥ 1.

The principal angles {θi}q
i=1 between these two subspaces and the associated principal

vectors {f1, gi}q
i=1 are defined recursively by

cos(θk) = fT
k gk = max

f∈F, ‖f‖2=1

fT [f1,...,fk−1]=0

max
g∈G, ‖g‖2=1

gT [g1,...,gk−1]=0

fT g .
(6.4.3)
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Note that the principal angles satisfy 0 ≤ θ1 ≤ · · · ≤ θq ≤ π/2.. The problem of com-
puting principal angles and vectors is oftentimes referred to as the canonical correlation
problem.

Typically, the subspaces F and G are matrix ranges, e.g.,

F = ran(A), A ∈ IRn×p,

G = ran(B), B ∈ IRn×q.

The principal vectors and angles can be computed using the QR factorization and the
SVD. Let A = QARA and B = QBRB be thin QR factorizations and assume that

QT
AQB = Y ΣZT =

q∑
i=1

σiyiz
T
i

is the SVD of QT
AQB ∈ IRp×q. Since ‖ QT

AQB ‖2 ≤ 1, all the singular values are between
0 and 1 and we may write σi = cos(θi), i = 1:q. Let

QAY = [ f1 | · · · | fp ] , (6.4.4)

QBZ = [ g1 | · · · | gq ] (6.4.5)

be column partitionings of the matrices QAY ∈ IRn×p and QBZ ∈ IRn×q. These matrices
have orthonormal columns. If f ∈ F and g ∈ G are unit vectors, then there exist unit
vectors u ∈ IRp and v ∈ IRq so that f = QAu and g = QBv. Thus,

fT g = (QAu)T (QBv) = uT (QT
AQB)v = uT (Y ΣZT )v

= (Y T u)T Σ(ZT v) =
q∑

i=1

σi(yT
i u)(zT

i v) . (6.4.6)

This expression attains its maximal value of σ1 = cos(θ1) by setting u = y1 and v = z1.
It follows that f = QAy1 = f1 and v = QBz1 = g1.

Now assume that k > 1 and that the first k−1 columns of the matrices in (6.4.4)
and (6.4.5) are known, i.e., f1, . . . , fk−1 and g1, . . . , gk−1. Consider the problem of
maximizing fT g given that f = QAu and g = QBv are unit vectors that satisfy

fT [ f1 | · · · | fk−1 ] = 0,

gT [ g1 | · · · | gk−1 ] = 0.

It follows from (6.4.6) that

fT g =
q∑

i=k

σi(yT
i u)(zT

i v) ≤ σk

q∑
i=k

|yT
i u| · |zT

i v|.

This expression attains its maximal value of σk = cos(θk) by setting u = yk and v = zk.
It follows from (6.4.4) and (6.4.5) that f = QAyk = fk and g = QBzk = gk. Combining
these observations we obtain
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Algorithm 6.4.3 (Principal Angles and Vectors) Given A ∈ IRm×p and B ∈ IRm×q

(p ≥ q) each with linearly independent columns, the following algorithm computes the
cosines of the principal angles θ1 ≥ · · · ≥ θq between ran(A) and ran(B). The vectors
f1, . . . , fq and g1, . . . , gq are the associated principal vectors.

Compute the thin QR factorizations A = QARA and B = QBRB.

C = QT
AQB

Compute the SVD Y T CZ = diag(cos(θk)) .

QAY ( : , 1:q) = [ f1 | · · · | fq ]

QBZ( : , 1:q) = [ g1 | · · · | gq ]

The idea of using the SVD to compute the principal angles and vectors is due to Björck
and Golub (1973). The problem of rank deficiency in A and B is also treated in this
paper. Principal angles and vectors arise in many important statistical applications.
The largest principal angle is related to the notion of distance between equidimensional
subspaces that we discussed in §2.5.3. If p = q, then

dist(F, G) =
√

1 − cos(θp)2 = sin(θp).

6.4.4 Intersection of Subspaces

In light of the following theorem, Algorithm 6.4.3 can also be used to compute an
orthonormal basis for ran(A) ∩ ran(B) where A ∈ IRm×p and B ∈ IRm×q

Theorem 6.4.2. Let {cos(θi)}q
i=1 and {fi, gi}q

i=1 be defined by Algorithm 6.4.3. If the
index s is defined by 1 = cos(θ1) = · · · = cos(θs) > cos(θs+1), then

ran(A) ∩ ran(B) = span{f1, . . . , fs} = span{g1, . . . , gs}.

Proof. The proof follows from the observation that if cos(θi) = 1, then fi = gi.

The practical determination of the intersection dimension s requires a definition of
what it means for a computed singular value to equal 1. For example, a computed
singular value σ̂i = cos(θ̂i) could be regarded as a unit singular value if σ̂i ≥ 1− δ for
some intelligently chosen small parameter δ.

Problems

P6.4.1 Show that if A and B are m-by-p matrices, with p ≤ m, then

min
QT Q=Ip

‖A−BQ ‖2
F

=

p∑
i=1

(σi(A)2 − 2σi(BT A) + σi(B)2).

P6.4.2 Extend Algorithm 6.4.2 so that it computes an orthonormal basis for null(A1)∩ · · · ∩ null(As)
where each matrix Ai has n columns.

P6.4.3 Extend Algorithm 6.4.3 so that it can handle the case when A and B are rank deficient.

P6.4.4 Verify Equation (6.4.2).
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P6.4.5 Suppose A, B ∈ IRm×n and that A has full column rank. Show how to compute a symmetric
matrix X ∈ IRn×n that minimizes ‖AX −B ‖

F
. Hint: Compute the SVD of A.

P6.4.6 This problem is an exercise in F-norm optimization. (a) Show that if C ∈ IRm×n and e ∈ IRm

is a vector of ones, then v = CT e/m minimizes ‖ C − evT ‖
F

. (b) Suppose A ∈ IRm×n and B ∈ IRm×n

and that we wish to solve
min

QT Q=In , v∈IRn

‖A− (B + evT )Q ‖
F

Show that vopt = (A−B)T e/m and Qopt = UΣV T solve this problem where BT (I−eeT /m)A = UV T

is the SVD.

P6.4.7 A 3-by-3 matrix H is ROPR matrix if H = Q + xyT where Q ∈ IR3×3 rotation and x, y ∈ IR3.
(A rotation matrix is an orthogonal matrix with unit determinant. “ROPR” stands for “rank-1
perturbation of a rotation.”) ROPR matrices arise in computational photography and this problem
highlights some of their properties. (a) If H is a ROPR matrix, then there exist rotations U, V ∈ IR3×3,
such that UT HV = diag(σ1, σ2, σ3) satisfies σ1 ≥ σ2 ≥ |σ3|. (b) Show that if Q ∈ IR3×3 is a rotation,
then there exist cosine-sine pairs (ci, si) = (cos(θi), sin(θi)), i = 1:3 such that Q = Q(θ1, θ2, θ3) where

Q(θ1, θ2, θ3) =

⎡⎢⎣ 1 0 0

0 c1 s1

0 −s1 c1

⎤⎥⎦
⎡⎢⎣ c2 s2 0

−s2 c2 0

0 0 1

⎤⎥⎦
⎡⎢⎣ 1 0 0

0 c3 s3

0 −s3 c3

⎤⎥⎦

=

⎡⎢⎣ c2 s2c3 s2s3

−c1s2 c1c2c3 − s1s3 c1c2s3 + s1c3

s1s2 −s1c2c3 − c1s3 −s1c2s3 + c1c3

⎤⎥⎦ .

Hint: The Givens QR factorization involves three rotations. (c) Show that if[
σ1 0 0
0 σ2 0
0 0 σ3

]
= Q(θ1, θ2, θ3) − xyT , x, y ∈ IR3

then xyT must have the form

xyT =

[
s2
µc1
−µs1

][
−s2/µ

c3
s3

]T

for some µ ≥ 0 and [
c2 − µ 1

1 c2 − µ

][
c1s3

s1c3

]
=

[
0

0

]
.

(d) Show that the second singular value of a ROPR matrix is 1.

P6.4.8 Let U∗ ∈ IRn×d be a matrix with orthonormal columns whose span is a subspace S that we
wish to estimate. Assume that Uc ∈ IRn×d is a given matrix with orthonormal columns and regard
ran(Uc) as the “current” estimate of S. This problem examines what is required to get an improved
estimate of S given the availability of a vector v ∈ S. (a) Define the vectors

w = UT
c v, v1 = UcUT

c v, v2 = (In − UcUT
c )v,

and assume that each is nonzero. (a) Show that if

zθ =
(

cos(θ)− 1
‖ v1 ‖‖ w ‖

)
v1 +

(
sin(θ)

‖ v2 ‖‖ w ‖

)
v2

and
Uθ = (In + zθvT )Uc,

then UT
θ Uθ = Id. Thus, UθUT

θ is an orthogonal projection. (b) Define the distance function

distF (ran(V ), ran(W )) = ‖ V V T −WW T ‖
F
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where V, W ∈ IRn×d have orthonormal columns and show

distF (ran(V ), ran(W ))2 = 2(d− ‖W T V ‖2F ) = 2
d∑

i=1

(1− σi(W T V )2).

Note that dist(ran(V ), ran(W ))2 = 1− σ1(W T V )2. (c) Show that

d2
θ = d2

c − 2 · tr(U∗UT
∗ (UθUT

θ − UcUT
c ))

where dθ = distF (ran(U∗), ran(Uθ)) and dc = distF (ran(U∗), ran(Uc)). (d) Show that if

yθ = cos(θ)
v1

‖ v1 ‖
+ sin(θ)

v2

‖ v2 ‖
,

then

UθUT
θ − UcUT

c = yθyT
θ −

v1vT
1

vT
1 v1

and

d2
θ = d2

c + 2

(
‖ UT∗ v1 ‖22
‖ v1 ‖22

− ‖ UT∗ yθ ‖22

)
.

(e) Show that if θ minimizes this quantity, then

sin(2θ)

(
‖ PSv2 ‖2

‖ v2 ‖22
− ‖ PSv1 ‖2

‖ v1 ‖22

)
+ cos(2θ)

vT
1 PSv2

‖ v1 ‖2‖ v2 ‖2
= 0, PS = U∗UT

∗ .
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Å. Björck and C. Bowie (1971). “An Iterative Algorithm for Computing the Best Estimate of an
Orthogonal Matrix,” SIAM J. Numer. Anal. 8, 358–64.

N.J. Higham (1986). “Computing the Polar Decomposition with Applications,” SIAM J. Sci. Stat.
Comput. 7, 1160–1174.

Using the SVD to solve the angles-between-subspaces problem is discussed in:
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In reduced-rank regression the object is to connect a matrix of signals to a matrix of noisey observations
through a matrix that has specified low rank. An svd-based computational procedure that involves
principal angles is discussed in:

L. Eldén and B. Savas (2005). “The Maximum Likelihood Estimate in Reduced-Rank Regression,”
Num. Lin. Alg. Applic. 12, 731–741,

The SVD has many roles to play in statistical computation, see:

S.J. Hammarling (1985). “The Singular Value Decomposition in Multivariate Statistics,” ACM
SIGNUM Newsletter 20, 2-25.

An algorithm for computing the rotation and rank-one matrix in P6.4.7 that define a given ROPR
matrix is discussed in:

R. Schreiber, Z. Li, and H. Baker (2009). “Robust Software for Computing Camera Motion Parame-
ters,” J. Math. Imaging Vision 33, 1–9.

For a more details about the estimation problem associated with P6.4.8, see:

L. Balzano, R. Nowak, and B. Recht (2010). “Online Identification and Tracking of Subspaces from
Highly Incomplete Information,” Proceedings of the Allerton Conference on Communication, Con-
trol, and Computing 2010.

6.5 Updating Matrix Factorizations
In many applications it is necessary to refactor a given matrix A ∈ IRm×n after it has
undergone a small modification. For example, given that we have the QR factorization
of a matrix A, we may require the QR factorization of the matrix Ã obtained from A
by appending a row or column or deleting a row or column. In this section we show
that in situations like these, it is much more efficient to “update” A’s QR factorization
than to generate the required QR factorization of Ã from scratch. Givens rotations
have a prominent role to play. In addition to discussing various update-QR strategies,
we show how to downdate a Cholesky factorization using hyperbolic rotations and how
to update a rank-revealing ULV decomposition.

6.5.1 Rank-1 Changes

Suppose we have the QR factorization QR = A ∈ IRn×n and that we need to compute
the QR factorization Ã = A + uvT = Q1R1 where u, v ∈ IRn are given. Observe that

Ã = A + uvT = Q(R + wvT ) (6.5.1)

where w = QT u. Suppose rotations Jn−1, . . . , J2, J1 are computed such that

JT
1 · · ·JT

n−1w = ±‖ w ‖2 e1.

where each Jk is a Givens rotation in planes k and k + 1. If these same rotations are
applied to R, then

H = JT
1 · · ·JT

n−1R (6.5.2)



6.5. Updating Matrix Factorizations 335

is upper Hessenberg. For example, in the n = 4 case we start with

w ←

⎡⎢⎢⎣
×
×
×
×

⎤⎥⎥⎦ , R ←

⎡⎢⎢⎣
× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

⎤⎥⎥⎦ ,

and then update as follows:

w ← JT
3 w =

⎡⎢⎢⎣
×
×
×
0

⎤⎥⎥⎦ , R ← JT
3 R =

⎡⎢⎢⎣
× × × ×
0 × × ×
0 0 × ×
0 0 × ×

⎤⎥⎥⎦ ,

w ← JT
2 w =

⎡⎢⎢⎣
×
×
0
0

⎤⎥⎥⎦ , R ← JT
2 R =

⎡⎢⎢⎣
× × × ×
0 × × ×
0 × × ×
0 0 × ×

⎤⎥⎥⎦ ,

w ← JT
1 w =

⎡⎢⎢⎣
×
0
0
0

⎤⎥⎥⎦ , H ← JT
1 R =

⎡⎢⎢⎣
× × × ×
× × × ×
0 × × ×
0 0 × ×

⎤⎥⎥⎦ .

Consequently,

(JT
1 · · ·JT

n−1)(R + wvT ) = H ± ‖ w ‖2e1v
T = H1 (6.5.3)

is also upper Hessenberg. Following Algorithm 5.2.4, we compute Givens rotations Gk,
k = 1:n−1 such that GT

n−1 · · ·GT
1 H1 = R1 is upper triangular. Combining everything

we obtain the QR factorization Ã = A + uvT = Q1R1 where

Q1 = QJn−1 · · ·J1G1 · · ·Gn−1.

A careful assessment of the work reveals that about 26n2 flops are required.
The technique readily extends to the case when A is rectangular. It can also

be generalized to compute the QR factorization of A + UV T where U ∈ IRm×p and
V ∈ IRn×p.

6.5.2 Appending or Deleting a Column

Assume that we have the QR factorization

QR = A = [ a1 | · · · | an ] , ai ∈ IRm, (6.5.4)

and for some k, 1 ≤ k ≤ n, partition the upper triangular matrix R ∈ IRm×n as follows:

R =

⎡⎢⎣ R11

0

0

v

rkk

0

R13

wT

R33

⎤⎥⎦ k−1

1

m−k

k−1 1 n−k

.
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Now suppose that we want to compute the QR factorization of

Ã = [ a1 | · · · | ak−1 | ak+1 | · · · | an ] ∈ IRm×(n−1) .

Note that Ã is just A with its kth column deleted and that

QT Ã =

⎡⎢⎣ R11 R13

0 wT

0 R33

⎤⎥⎦ = H

is upper Hessenberg, e.g.,

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, m = 7, n = 6, k = 3.

Clearly, the unwanted subdiagonal elements hk+1,k, . . . , hn,n−1 can be zeroed by a
sequence of Givens rotations: GT

n−1 · · ·GT
k H = R1. Here, Gi is a rotation in planes

i and i + 1 for i = k:n − 1. Thus, if Q1 = QGk · · ·Gn−1 then Ã = Q1R1 is the QR
factorization of Ã.

The above update procedure can be executed in O(n2) flops and is very useful
in certain least squares problems. For example, one may wish to examine the signif-
icance of the kth factor in the underlying model by deleting the kth column of the
corresponding data matrix and solving the resulting LS problem.

Analogously, it is possible to update efficiently the QR factorization of a matrix
after a column has been added. Assume that we have (6.5.4) but now want the QR
factorization of

Ã = [ a1 | . . . | ak | z | ak+1 | . . . | an ]

where z ∈ IRm is given. Note that if w = QT z then

QT Ã =
[
QT a1 | · · · | QT ak | w | QT ak+1 | · · · | QT an

]
is upper triangular except for the presence of a “spike” in its (k + 1)st column, e.g.,

Ã ← QT Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 × 0 ×
0 0 0 × 0 0
0 0 0 × 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, m = 7, n = 5, k = 3.

It is possible to determine a sequence of Givens rotations that restores the triangular
form:
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Ã ← JT
6 Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 × 0 ×
0 0 0 × 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ã ← JT

5 Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 × 0 ×
0 0 0 0 0 ×
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ã ← JT
4 Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×
0 0 0 0 0 ×
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This update requires O(mn) flops.

6.5.3 Appending or Deleting a Row

Suppose we have the QR factorization QR = A ∈ IRm×n and now wish to obtain the
QR factorization of

Ã =
[

wT

A

]
where w ∈ IRn. Note that

diag(1, QT )Ã =
[

wT

R

]
= H

is upper Hessenberg. Thus, rotations J1, . . . , Jn can be determined so JT
n · · ·JT

1 H =
R1 is upper triangular. It follows that Ã = Q1R1 is the desired QR factorization,
where Q1 = diag(1, Q)J1 · · ·Jn. See Algorithm 5.2.5.

No essential complications result if the new row is added between rows k and
k + 1 of A. Indeed, if[

A1
A2

]
= QR, A1 ∈ IRk×n, A2 ∈ IR(m−k)×n,

and

P =

⎡⎣ 0 1 0
Ik 0 0
0 0 Im−k

⎤⎦ ,

then

diag(1, QT )P

⎡⎢⎣ A1

wT

A2

⎤⎥⎦ =

[
wT

R

]
= H
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is upper Hessenberg and we proceed as before.
Lastly, we consider how to update the QR factorization QR = A ∈ IRm×n when

the first row of A is deleted. In particular, we wish to compute the QR factorization
of the submatrix A1 in

A =
[

zT

A1

]
1

m−1
.

(The procedure is similar when an arbitrary row is deleted.) Let qT be the first row of
Q and compute Givens rotations G1, . . . , Gm−1 such that GT

1 · · ·GT
m−1q = αe1 where

α = ±1. Note that

H = GT
1 · · ·GT

m−1R =
[

vT

R1

]
1

m−1

is upper Hessenberg and that

QGm−1 · · ·G1 =

[
α 0

0 Q1

]

where Q1 ∈ IR(m−1)×(m−1) is orthogonal. Thus,

A =

[
zT

A1

]
= (QGm−1 · · ·G1)(GT

1 · · ·GT
m−1R) =

[
α 0

0 Q1

][
vT

R1

]
from which we conclude that A1 = Q1R1 is the desired QR factorization.

6.5.4 Cholesky Updating and Downdating

Suppose we are given a symmtetric positive definite matrix A ∈ IRn×n and its Cholesky
factor G. In the Cholesky updating problem, the challenge is to compute the Cholesky
factorization Ã = G̃G̃T where

Ã = A + zzT , z ∈ IRn. (6.5.5)

Noting that

Ã =

[
GT

zT

]T [
GT

zT

]
, (6.5.6)

we can solve this problem by computing a product of Givens rotations Q = Q1 · · ·Qn

so that

QT

[
GT

zT

]
=

[
R

0

]
, R ∈ IRn×n (6.5.7)

is upper triangular. It follows that Ã = RRT and so the updated Cholesky factor is
given by G̃ = RT . The zeroing sequence that produces R is straight forward, e.g.,⎡⎢⎢⎢⎣

× × ×
0 × ×
0 0 ×
× × ×

⎤⎥⎥⎥⎦ Q1−→

⎡⎢⎢⎢⎣
× × ×
0 × ×
0 0 ×
0 × ×

⎤⎥⎥⎥⎦ Q2−→

⎡⎢⎢⎢⎣
× × ×
0 × ×
0 0 ×
0 0 ×

⎤⎥⎥⎥⎦ Q3−→

⎡⎢⎢⎢⎣
× × ×
0 × ×
0 0 ×
0 0 0

⎤⎥⎥⎥⎦ .
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The Qk update involves only rows k and n + 1. The overall process is essentially
the same as the strategy we outlined in the previous subsection for updating the QR
factorization of a matrix when a row is appended.

The Cholesky downdating problem involves a different set of tools and a new set
of numerical concerns. We are again given a Cholesky factorization A = GGT and a
vector z ∈ IRn. However, now the challenge is to compute the Cholesky factorization
Ã = G̃G̃T where

Ã = A − zzT (6.5.8)

is presumed to be positive definite. By introducing the notion of a hyperbolic rotation
we can develop a downdating framework that corresponds to the Givens-based updating
framework. Define the matrix S as follows

S =

[
In 0

0 −1

]
(6.5.9)

and note that

Ã = GGT − zzT =

[
GT

zT

]T

S

[
GT

zT

]
. (6.5.10)

This corresponds to (6.5.6), but instead of computing the QR factorization (6.5.7), we
seek a matrix H ∈ IR(n+1)×(n+1) that satisfies two properties:

HSHT = S, (6.5.11)

HT

[
GT

zT

]
=

[
R

0

]
, R ∈ IRn×n (upper triangular). (6.5.12)

If this can be accomplished, then it follows from

Ã =

(
HT

[
GT

zT

])T [
In 0

0 −1

](
HT

[
GT

zT

])
= RT R

that the Cholesky factor of Ã = A−zzT is given by G̃ = RT . A matrix H that satisfies
(6.5.11) is said to be S-orthogonal. Note that the product of S-orthogonal matrices is
also S-orthogonal.

An important subset of the S-orthogonal matrices are the hyperbolic rotations
and here is a 4-by-4 example:

H2(θ) =

⎡⎢⎢⎣
1 0 0 0
0 c 0 −s
0 0 1 0
0 −s 0 c

⎤⎥⎥⎦ , c = cosh(θ) , s = sinh(θ).

The S-orthogonality of this matrix follows from cosh(θ)2 − sinh(θ)2 = 1. In general,
Hk ∈ IR(n+1)×(n+1) is a hyperbolic rotation if it agrees with In+1 except in four loca-
tions: [

[Hk]k,k [Hk]k,n+1

[Hk]n+1,k [Hk]n+1,n+1

]
=

[
cosh(θ) − sinh(θ)

− sinh(θ) cosh(θ)

]
.
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Hyperbolic rotations look like Givens rotations and, not surprisingly, can be used to
introduce zeros into a vector or matrix. However, upon consideration of the equation[

c −s

−s c

][
x1

x2

]
=

[
r

0

]
, c2 − s2 = 1

we see that the required cosh-sinh pair may not exist. Since we always have | cosh(θ)| >
| sinh(θ)|, there is no real solution to −sx1 + cx2 = 0 if |x2| > |x1|. On the other hand,
if |x1| > |x2|, then {c, s} = {cosh(θ), sinh(θ)} can be computed as follows:

τ =
x2

x1
, c =

1√
1 − τ2

, s = c·τ. (6.5.13)

There are clearly numerical issues if |x1| is just slightly greater than |x2|. However,
it is possible to organize hyperbolic rotation computations successfully, see Alexander,
Pan, and Plemmons (1988).

Putting these concerns aside, we show how the matrix H in (6.5.12) can be
computed as a product of hyperbolic rotations H = H1 · · ·Hn just as the transforming
Q in the updating problem is a product of Givens rotations. Consider the role of H1
in the n = 3 case:⎡⎢⎢⎢⎣

c 0 0 −s

0 1 0 0

0 0 1 0

−s 0 0 c

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

g11 g21 g31

0 g22 g32

0 0 g33

z1 z2 z3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
g̃11 g̃21 g̃31

0 g22 g32

0 0 g33

0 z′2 z′3

⎤⎥⎥⎥⎦ .

Since Ã = GGT − zzT is positive definite, [Ã]11 = g2
11 − z2

1 > 0. It follows that
|g11| > |z1| which guarantees that the cosh-sinh computations (6.5.13) go through.
For the overall process to be defined, we have to guarantee that hyperbolic rotations
H2, . . . , Hn can be found to zero out the bottom row in the matrix [ GT z ]T . The
following theorem ensures that this is the case.

Theorem 6.5.1. If

A =

[
α vT

v B

]
=

[
g11 0

g1 G1

][
g11 gT

1

0 GT
1

]
and

Ã = A − zzT = A −
[

µ

w

][
µ

w

]T

are positive definite, then it is possible to determine c = cosh(θ) and s = sinh(θ) so⎡⎢⎣ c 0 −s

0 In−1 0

−s 0 c

⎤⎥⎦
⎡⎢⎣ g11 gT

1

0 GT
1

µ wT

⎤⎥⎦ =

⎡⎢⎣ g̃11 g̃T
1

0 GT
1

0 wT
1

⎤⎥⎦ .

Moreover, the matrix Ã1 = G1G
T
1 − w1w

T
1 is positive definite.
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Proof. The blocks in A’s Cholesky factor are given by

g11 =
√

α, g1 = v/g11, G1G
T
1 = B − 1

α
vvT . (6.5.14)

Since A − zzT is positive definite, a11 − z2
1 = g2

11 − µ2 > 0 and so from (6.5.13) with
τ = µ/g11 we see that

c =
√

α√
α − µ2

, s =
µ√

α − µ2
. (6.5.15)

Since w1 = −sg1 + c w it follows from (6.5.14) and (6.5.15) that

Ã1 = G1G
T
1 − w1w

T
1 = B − 1

α
vvT − (−sg1 + cw)(−sg1 + cw)T

= B − c2

α
vvT − c2wwT +

sc√
α

(vwT + wvT )

= B − 1
α − µ2 vvT − α

α − µ2 wwT +
µ

α − µ2 (vwT + wvT ).

It is easy to verify that this matrix is precisely the Schur complement of α in

Ã = A − zzT =

[
α − µ2 vT − µwT

v − µw B − wwT

]

and is therefore positive definite.

The theorem provides the key step in an induction proof that the factorization (6.5.12)
exists.

6.5.5 Updating a Rank-Revealing ULV Decomposition

We close with a discussion about updating a nullspace basis after one or more rows
have been appended to the underlying matrix. We work with the ULV decomposition
which is much more tractable than the SVD from the updating point of view. We
pattern our remarks after Stewart(1993).

A rank -revealing ULV decomposition of a matrix A ∈ IRm×n has the form

UT AV =

[
L

0

]
=

⎡⎢⎣ L11 0

L21 L22

0 0

⎤⎥⎦ , UT U = Im, V T V = In (6.5.16)

where L11 ∈ IRr×r and L22 ∈ IR(n−r)×(n−r) are lower triangular and ‖ L21 ‖2 and ‖ L22 ‖2
are small compared to σmin(L11). Such a decomposition can be obtained by applying
QR with column pivoting

UT AΠ =

[
R

0

]
, R ∈ IRn×n
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followed by a QR factorization V T
1 RT = LT . In this case the matrix V in (6.5.16) is

given by V = ΠV1. The parameter r is the estimated rank. Note that if

V = [ V1 | V2 ]
r n−r

, U = [ U1 | U2 ]
r m−r

,

then the columns of V2 define an approximate nullspace:

‖ AV2 ‖2 = ‖ U2L22 ‖2 = ‖ L22 ‖2.

Our goal is to produce cheaply a rank-revealing ULV decomposition for the row-
appended matrix

Ã =

[
A

zT

]
,

In particular, we show how to revise L, V , and possibly r in O(n2) flops. Note that

[
U 0

0 1

]T [
A

zT

]
V =

⎡⎢⎢⎢⎢⎣
L11 0

L21 L22

0 0

wT yT

⎤⎥⎥⎥⎥⎦ .

We illustrate the key ideas through an example. Suppose n = 7 and r = 4. By
permuting the rows so that the bottom row is just underneath L, we obtain

⎡⎢⎣ L11 0

L21 L22

wT yT

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� 0 0 0 0 0 0
� � 0 0 0 0 0
� � � 0 0 0 0
� � � � 0 0 0
ε ε ε ε ε 0 0
ε ε ε ε ε ε 0
ε ε ε ε ε ε ε
w w w w y y y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The ε entries are small while the �, w, and y entries are not. Next, a sequence of Givens
rotations G7, . . . , G1 are applied from the left to zero out the bottom row:

[
L̃

0

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× × × × × 0 0
× × × × × × 0
× × × × × × ×
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= G17 · · ·G57G67

⎡⎢⎣ L11 0

L21 L22

wT yT

⎤⎥⎦ .

Because this zeroing process intermingles the (presumably large) entries of the bottom
row with the entries from each of the other rows, the lower triangular form is typi-
cally not rank revealing. However, and this is key, we can restore the rank-revealing
structure with a combination of condition estimation and Givens zero chasing.
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Let us assume that with the added row, the new nullspace has dimension 2. With
a reliable condition estimator we produce a unit 2-norm vector p such that

‖ pT L̃ ‖2 ≈ σmin(L̃).

(See §3.5.4). Rotations {Ui,i+1}6
i=1 can be found such that

UT
67 UT

56 UT
45 UT

34 UT
23 UT

12 p = e7 = I7(:, 7).

Applying these rotations to L̃ produces a lower Hessenberg matrix

H = UT
67U

T
56U

T
45U

T
34U

T
23U

T
12L̃.

Applying more rotations from the right restores H to a lower triangular form:

L+ = HV12V23V34V45V56V67.

It follows that

eT
7 L+ =

(
eT
8 H

)
V12V23V34V45V56V67 =

(
pT L̃

)
V12V23V34V45V56V67

has approximate norm σmin(L̃). Thus, we obtain a lower triangular matrix of the form

L+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× × × × × 0 0
× × × × × × 0
ε ε ε ε ε ε ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
We can repeat the condition estimation and zero chasing on the leading 6-by-6 portion.
Assuming that the nullspace of the augmented matrix has dimension two, this produces
another row of small numbers:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× × × × × 0 0
ε ε ε ε ε ε 0
ε ε ε ε ε ε ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This illustrates how we can restore any lower triangular matrix to rank-revealing form.

Problems

P6.5.1 Suppose we have the QR factorization for A ∈ IRm×n and now wish to solve

min
x∈IRn

‖ (A + uvT )x− b ‖2
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where u, b ∈ IRm and v ∈ IRn are given. Give an algorithm for solving this problem that requires
O(mn) flops. Assume that Q must be updated.

P6.5.2 Suppose

A =
[

cT

B

]
, c ∈ IRn, B ∈ IR(m−1)×n

has full column rank and m > n. Using the Sherman-Morrison-Woodbury formula show that

1
σmin(B)

≤ 1
σmin(A)

+
‖ (AT A)−1c ‖22

1− cT (AT A)−1c
.

P6.5.3 As a function of x1 and x2, what is the 2-norm of the hyperbolic rotation produced by (6.5.13)?

P6.5.4 Assume that

A =

[
R H

0 E

]
, ρ =

‖ E ‖2
σmin(R)

< 1,

where R and E are square. Show that if

Q =

[
Q11 Q12

Q21 Q22

]
is orthogonal and [

R H

0 E

][
Q11 Q12

Q21 Q22

]
=

[
R1 0

H1 E1

]
,

then ‖H1 ‖2 ≤ ρ‖H ‖2.

P6.5.5 Suppose A ∈ IRm×n and b ∈ IRm with m ≥ n. In the indefinite least squares (ILS) problem,
the goal is to minimize

φ(x) = (b−Ax)T J(b−Ax),

where

S =

[
Ip 0

0 −Iq

]
, p + q = m.

It is assumed that p ≥ 1 and q ≥ 1. (a) By taking the gradient of φ, show that the ILS problem has
a unique solution if and only if AT SA is positive definite. (b) Assume that the ILS problem has a
unique solution. Show how it can be found by computing the Cholesky factorization of QT

1 Q1−QT
2 Q2

where

A =
[

Q1
Q2

]
, Q1 ∈ IRp×n, Q2 ∈ IRq×n

is the thin QR factorization. (c) A matrix Q ∈ IRm×m is S-orthogonal if QSQT = S If

Q =
[ Q11

Q21

Q12

Q22

]
p

q

p q

is S-orthogonal, then by comparing blocks in the equation QT SQ = S we have

QT
11Q11 = Ip + QT

21Q21, QT
11Q12 = QT

21Q22, QT
22Q22 = Iq + QT

12Q12.

Thus, the singular values of Q11 and Q22 are never smaller than 1. Assume that p ≥ q. By analogy
with how the CS decomposition is established in §2.5.4, show that there exist orthogonal matrices U1,
U2, V1 and V2 such that[

U1 0

0 U2

]T

Q

[
V1 0

0 V2

]
=

⎡⎣ D 0 (D2 − I)1/2

0 Ip−q 0

(D2 − Ip)1/2 0 D

⎤⎦
where D = diag(d1, . . . , dp) with di ≥ 1, i = 1:p. This is the hyperbolic CS decomposition and details
can be found in Stewart and Van Dooren (2006).
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Chapter 7

Unsymmetric Eigenvalue
Problems

7.1 Properties and Decompositions

7.2 Perturbation Theory

7.3 Power Iterations

7.4 The Hessenberg and Real Schur Forms

7.5 The Practical QR Algorithm

7.6 Invariant Subspace Computations

7.7 The Generalized Eigenvalue Problem

7.8 Hamiltonian and Product Eigenvalue Problems

7.9 Pseudospectra

Having discussed linear equations and least squares, we now direct our attention
to the third major problem area in matrix computations, the algebraic eigenvalue prob-
lem. The unsymmetric problem is considered in this chapter and the more agreeable
symmetric case in the next.

Our first task is to present the decompositions of Schur and Jordan along with
the basic properties of eigenvalues and invariant subspaces. The contrasting behavior
of these two decompositions sets the stage for §7.2 in which we investigate how the
eigenvalues and invariant subspaces of a matrix are affected by perturbation. Condition
numbers are developed that permit estimation of the errors induced by roundoff.

The key algorithm of the chapter is the justly famous QR algorithm. This proce-
dure is one of the most complex algorithms presented in the book and its development
is spread over three sections. We derive the basic QR iteration in §7.3 as a natural
generalization of the simple power method. The next two sections are devoted to mak-
ing this basic iteration computationally feasible. This involves the introduction of the
Hessenberg decomposition in §7.4 and the notion of origin shifts in §7.5.

The QR algorithm computes the real Schur form of a matrix, a canonical form
that displays eigenvalues but not eigenvectors. Consequently, additional computations

347
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usually must be performed if information regarding invariant subspaces is desired. In
§7.6, which could be subtitled, “What to Do after the Real Schur Form is Calculated,”
we discuss various invariant subspace calculations that can be performed after the QR
algorithm has done its job.

The next two sections are about Schur decomposition challenges. The generalized
eigenvalue problem Ax = λBx is the subject of §7.7. The challenge is to compute the
Schur decomposition of B−1A without actually forming the indicated inverse or the
product. The product eigenvalue problem is similar, only arbitrarily long sequences of
products are considered. This is treated in §7.8 along with the Hamiltonian eigenprob-
lem where the challenge is to compute a Schur form that has a special 2-by-2 block
structure.

In the last section the important notion of pseudospectra is introduced. It is
sometimes the case in unsymmetric matrix problems that traditional eigenvalue analysis
fails to tell the “whole story” because the eigenvector basis is ill-conditioned. The
pseudospectra framework effectively deals with this issue.

We mention that it is handy to work with complex matrices and vectors in the
more theoretical passages that follow. Complex versions of the QR factorization, the
singular value decomposition, and the CS decomposition surface in the discussion.

Reading Notes

Knowledge of Chapters 1–3 and §§5.1–§5.2 are assumed. Within this chapter
there are the following dependencies:

§7.1 → §7.2 → §7.3 → §7.4 → §7.5 → §7.6 → §7.9
↓ ↘

§7.7 §7.8

Excellent texts for the dense eigenproblem include Chatelin (EOM), Kressner (NMSE),
Stewart (MAE), Stewart and Sun (MPA), Watkins (MEP), and Wilkinson (AEP).

7.1 Properties and Decompositions
In this section the background necessary to develop and analyze the eigenvalue algo-
rithms that follow are surveyed. For further details, see Horn and Johnson (MA).

7.1.1 Eigenvalues and Invariant Subspaces

The eigenvalues of a matrix A ∈ Cn×n are the n roots of its characteristic polynomial
p(z) = det(zI − A). The set of these roots is called the spectrum of A and is denoted
by

λ(A) = { z : det(zI − A) = 0 }.

If λ(A) = {λ1, . . . , λn}, then

det(A) = λ1λ2 · · ·λn

and
tr(A) = λ1 + · · · + λn
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where the trace function, introduced in §6.4.1, is the sum of the diagonal entries, i.e.,

tr(A) =
n∑

i=1

aii.

These characterizations of the determinant and the trace follow by looking at the
constant term and the coefficient of zn−1 in the characteristic polynomial.

Four other attributes associated with the spectrum of A ∈ Cn×n include the

Spectral Radius : ρ(A) = max
λ∈λ(A)

|λ|, (7.1.1)

Spectral Abscissa : α(A) = max
λ∈λ(A)

Re(λ), (7.1.2)

Numerical Radius : r(A) = max
λ∈λ(A)

{|xHAx| : ‖ x ‖2 = 1 }, (7.1.3)

Numerical Range : W (A) = {xHAx : ‖ x ‖2 = 1 }. (7.1.4)

The numerical range, which is sometimes referred to as the field of values, obviously
includes λ(A). It can be shown that W (A) is convex.

If λ ∈ λ(A), then the nonzero vectors x ∈ Cn that satisfy Ax = λx are eigenvec-
tors. More precisely, x is a right eigenvector for λ if Ax = λx and a left eigenvector if
xHA = λxH . Unless otherwise stated, “eigenvector” means “right eigenvector.”

An eigenvector defines a 1-dimensional subspace that is invariant with respect to
premultiplication by A. A subspace S ⊆ Cn with the property that

x ∈ S =⇒ Ax ∈ S

is said to be invariant (for A). Note that if

AX = XB, B ∈ Ck×k, X ∈ Cn×k,

then ran(X) is invariant and By = λy ⇒ A(Xy) = λ(Xy). Thus, if X has full column
rank, then AX = XB implies that λ(B) ⊆ λ(A). If X is square and nonsingular, then
A and B = X−1AX are similar, X is a similarity transformation, and λ(A) = λ(B).

7.1.2 Decoupling

Many eigenvalue computations involve breaking the given problem down into a collec-
tion of smaller eigenproblems. The following result is the basis for these reductions.

Lemma 7.1.1. If T ∈ Cn×n is partitioned as follows,

T =
[

T11

0

T12

T22

]
p

q

p q

then λ(T ) = λ(T11) ∪ λ(T22).
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Proof. Suppose

Tx =

[
T11 T12

0 T22

][
x1

x2

]
= λ

[
x1

x2

]
where x1 ∈ Cp and x2 ∈ Cq. If x2 
= 0, then T22x2 = λx2 and so λ ∈ λ(T22). If x2 = 0,
then T11x1 = λx1 and so λ ∈ λ(T11). It follows that λ(T ) ⊂ λ(T11)∪ λ(T22). But since
both λ(T ) and λ(T11) ∪ λ(T22) have the same cardinality, the two sets are equal.

7.1.3 Basic Unitary Decompositions

By using similarity transformations, it is possible to reduce a given matrix to any one of
several canonical forms. The canonical forms differ in how they display the eigenvalues
and in the kind of invariant subspace information that they provide. Because of their
numerical stability we begin by discussing the reductions that can be achieved with
unitary similarity.

Lemma 7.1.2. If A ∈ Cn×n, B ∈ Cp×p, and X ∈ Cn×p satisfy

AX = XB, rank(X) = p, (7.1.5)

then there exists a unitary Q ∈ Cn×n such that

QHAQ = T =
[

T11

0

T12

T22

]
p

n−p

p n−p

(7.1.6)

and λ(T11) = λ(A) ∩ λ(B).

Proof. Let

X = Q

[
R1

0

]
, Q ∈ Cn×n, R1 ∈ Cp×p

be a QR factorization of X. By substituting this into (7.1.5) and rearranging we have[
T11 T12
T21 T22

][
R1

0

]
=

[
R1

0

]
B

where

QHAQ =
[

T11

T21

T12

T22

]
p

n−p

p n−p

.

By using the nonsingularity of R1 and the equations T21R1 = 0 and T11R1 = R1B,
we can conclude that T21 = 0 and λ(T11) = λ(B). The lemma follows because from
Lemma 7.1.1 we have λ(A) = λ(T ) = λ(T11) ∪ λ(T22).

Lemma 7.1.2 says that a matrix can be reduced to block triangular form us-
ing unitary similarity transformations if we know one of its invariant subspaces. By
induction we can readily establish the decomposition of Schur (1909).



7.1. Properties and Decompositions 351

Theorem 7.1.3 (Schur Decomposition). If A ∈ Cn×n, then there exists a unitary
Q ∈ Cn×n such that

QHAQ = T = D + N (7.1.7)

where D = diag(λ1, . . . , λn) and N ∈ Cn×n is strictly upper triangular. Furthermore,
Q can be chosen so that the eigenvalues λi appear in any order along the diagonal.

Proof. The theorem obviously holds if n = 1. Suppose it holds for all matrices of
order n − 1 or less. If Ax = λx and x 
= 0, then by Lemma 7.1.2 (with B = (λ)) there
exists a unitary U such that

UHAU =
[

λ

0

wH

C

]
1

n−1

1 n−1

.

By induction there is a unitary Ũ such that ŨHCŨ is upper triangular. Thus, if
Q = U ·diag(1, Ũ), then QHAQ is upper triangular.

If Q = [ q1 | · · · | qn ] is a column partitioning of the unitary matrix Q in (7.1.7),
then the qi are referred to as Schur vectors. By equating columns in the equations
AQ = QT , we see that the Schur vectors satisfy

Aqk = λkqk +
k−1∑
i=1

nikqi, k = 1:n. (7.1.8)

From this we conclude that the subspaces

Sk = span{q1, . . . , qk}, k = 1:n,

are invariant. Moreover, it is not hard to show that if Qk = [ q1 | · · · | qk ] , then
λ(QH

k AQk) = {λ1, . . . , λk}. Since the eigenvalues in (7.1.7) can be arbitrarily ordered,
it follows that there is at least one k-dimensional invariant subspace associated with
each subset of k eigenvalues. Another conclusion to be drawn from (7.1.8) is that the
Schur vector qk is an eigenvector if and only if the kth column of N is zero. This
turns out to be the case for k = 1:n whenever AHA = AAH . Matrices that satisfy this
property are called normal.

Corollary 7.1.4. A ∈ Cn×n is normal if and only if there exists a unitary Q ∈ Cn×n

such that QHAQ = diag(λ1, . . . , λn).

Proof. See P7.1.1.

Note that if QHAQ = T = diag(λi) + N is a Schur decomposition of a general n-by-n
matrix A, then ‖ N ‖F is independent of the choice of Q:

‖ N ‖2
F = ‖ A ‖2

F −
n∑

i=1

|λi|2 ≡ ∆2(A).

This quantity is referred to as A’s departure from normality. Thus, to make T “more
diagonal,” it is necessary to rely on nonunitary similarity transformations.
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7.1.4 Nonunitary Reductions

To see what is involved in nonunitary similarity reduction, we consider the block diag-
onalization of a 2-by-2 block triangular matrix.

Lemma 7.1.5. Let T ∈ Cn×n be partitioned as follows:

T =
[

T11

0

T12

T22

]
p

q

p q

.

Define the linear transformation φ:Cp×q → Cp×q by

φ(X) = T11X − XT22

where X ∈ Cp×q. Then φ is nonsingular if and only if λ(T11) ∩ λ(T22) = ∅. If φ is
nonsingular and Y is defined by

Y =

[
Ip Z

0 Iq

]

where φ(Z) = −T12, then Y −1TY = diag(T11, T22).

Proof. Suppose φ(X) = 0 for X 
= 0 and that

UHXV =
[

Σr

0

0

0

]
r

p−r

r q−r

is the SVD of X with Σr = diag(σi), r = rank(X). Substituting this into the equation
T11X = XT22 gives[

A11 A12

A21 A22

][
Σr 0

0 0

]
=

[
Σr 0

0 0

][
B11 B12

B21 B22

]

where UHT11U = (Aij) and V HT22V = (Bij). By comparing blocks in this equation
it is clear that A21 = 0, B12 = 0, and λ(A11) = λ(B11). Consequently, A11 and B11
have an eigenvalue in common and that eigenvalue is in λ(T11) ∩ λ(T22). Thus, if φ
is singular, then T11 and T22 have an eigenvalue in common. On the other hand, if
λ ∈ λ(T11)∩λ(T22), then we have eigenvector equations T11x = λx and yHT22 = λyH .
A calculation shows that φ(xyH) = 0 confirming that φ is singular.

Finally, if φ is nonsingular, then φ(Z) = −T12 has a solution and

Y −1TY =

[
Ip −Z

0 Iq

][
T11 T12

0 T22

][
Ip Z

0 Iq

]
=

[
T11 T11Z − ZT22 + T12

0 T22

]

has the required block diagonal form.

By repeatedly applying this lemma, we can establish the following more general result.
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Theorem 7.1.6 (Block Diagonal Decomposition). Suppose

QHAQ = T =

⎡⎢⎢⎢⎣
T11 T12 · · · T1q

0 T22 · · · T2q

...
...

. . .
...

0 0 · · · Tqq

⎤⎥⎥⎥⎦ (7.1.9)

is a Schur decomposition of A ∈ Cn×n and that the Tii are square. If λ(Tii)∩λ(Tjj) = ∅
whenever i 
= j, then there exists a nonsingular matrix Y ∈ Cn×n such that

(QY )−1A(QY ) = diag(T11, . . . , Tqq). (7.1.10)

Proof. See P7.1.2.

If each diagonal block Tii is associated with a distinct eigenvalue, then we obtain

Corollary 7.1.7. If A ∈ Cn×n, then there exists a nonsingular X such that

X−1AX = diag(λ1I + N1, . . . , λqI + Nq) Ni ∈ Cni×ni (7.1.11)

where λ1, . . . , λq are distinct, the integers n1, . . . , nq satisfy n1 + · · ·+nq = n, and each
Ni is strictly upper triangular.

A number of important terms are connected with decomposition (7.1.11). The
integer ni is referred to as the algebraic multiplicity of λi. If ni = 1, then λi is said
to be simple. The geometric multiplicity of λi equals the dimensions of null(Ni), i.e.,
the number of linearly independent eigenvectors associated with λi. If the algebraic
multiplicity of λi exceeds its geometric multiplicity, then λi is said to be a defective
eigenvalue. A matrix with a defective eigenvalue is referred to as a defective matrix.
Nondefective matrices are also said to be diagonalizable.

Corollary 7.1.8 (Diagonal Form). A ∈ Cn×n is nondefective if and only if there
exists a nonsingular X ∈ Cn×n such that

X−1AX = diag(λ1, . . . , λn). (7.1.12)

Proof. A is nondefective if and only if there exist independent vectors x1 . . . xn ∈ Cn

and scalars λ1, . . . , λn such that Axi = λixi for i = 1:n. This is equivalent to the
existence of a nonsingular X = [ x1 | · · · | xn ] ∈ Cn×n such that AX = XD where
D = diag(λ1, . . . , λn).

Note that if yH
i is the ith row of X−1, then yH

i A = λiy
H
i . Thus, the columns of X−H

are left eigenvectors and the columns of X are right eigenvectors.
If we partition the matrix X in (7.1.11),

X =
[

X1 |
n1

· · · | Xq
nq

]



354 Chapter 7. Unsymmetric Eigenvalue Problems

then Cn = ran(X1) ⊕ . . . ⊕ ran(Xq), a direct sum of invariant subspaces. If the bases
for these subspaces are chosen in a special way, then it is possible to introduce even
more zeroes into the upper triangular portion of X−1AX.

Theorem 7.1.9 (Jordan Decomposition). If A ∈ Cn×n, then there exists a non-
singular X ∈ Cn×n such that X−1AX = diag(J1, . . . , Jq) where

Ji =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λi 1 · · · 0

0 λi
. . .

...
. . . . . . . . .

...
. . . . . . 1

0 · · · 0 λi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Cni×ni

and n1 + · · · + nq = n.

Proof. See Horn and Johnson (MA, p. 330)

The Ji are referred to as Jordan blocks. The number and dimensions of the Jordan
blocks associated with each distinct eigenvalue are unique, although their ordering
along the diagonal is not.

7.1.5 Some Comments on Nonunitary Similarity

The Jordan block structure of a defective matrix is difficult to determine numerically.
The set of n-by-n diagonalizable matrices is dense in Cn×n, and thus, small changes in
a defective matrix can radically alter its Jordan form. We have more to say about this
in §7.6.5.

A related difficulty that arises in the eigenvalue problem is that a nearly defective
matrix can have a poorly conditioned matrix of eigenvectors. For example, any matrix
X that diagonalizes

A =

[
1 + ε 1

0 1 − ε

]
, 0 < ε � 1, (7.1.13)

has a 2-norm condition of order 1/ε.
These observations serve to highlight the difficulties associated with ill-conditioned

similarity transformations. Since

fl(X−1AX) = X−1AX + E, (7.1.14)

where
‖ E ‖2 ≈ u·κ2(X)‖ A ‖2, (7.1.15)

it is clear that large errors can be introduced into an eigenvalue calculation when we
depart from unitary similarity.
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7.1.6 Singular Values and Eigenvalues

Since the singular values of A and its Schur decomposition QHAQ = diag(λi) + N are
the same, it follows that

σmin(A) ≤ min
1≤i≤n

|λi| ≤ max
1≤i≤n

|λi| ≤ σmax(A).

From what we know about the condition of triangular matrices, it may be the case that

max
1≤i,j≤n

|λi|
|λj |

� κ2(A).

See §5.4.3. This is a reminder that for nonnormal matrices, eigenvalues do not have
the “predictive power” of singular values when it comes to Ax = b sensitivity matters.
Eigenvalues of nonnormal matrices have other shortcomings, a topic that is the focus
of §7.9.

Problems

P7.1.1 (a) Show that if T ∈ Cn×n is upper triangular and normal, then T is diagonal. (b) Show that
if A is normal and QHAQ = T is a Schur decomposition, then T is diagonal. (c) Use (a) and (b) to
complete the proof of Corollary 7.1.4.

P7.1.2 Prove Theorem 7.1.6 by using induction and Lemma 7.1.5.

P7.1.3 Suppose A ∈ Cn×n has distinct eigenvalues. Show that if QHAQ = T is its Schur decomposi-
tion and AB = BA, then QHBQ is upper triangular.

P7.1.4 Show that if A and BH are in Cm×n with m ≥ n, then

λ(AB) = λ(BA) ∪ { 0, . . . , 0︸ ︷︷ ︸
m−n

}.

P7.1.5 Given A ∈ Cn×n, use the Schur decomposition to show that for every ε > 0, there exists a
diagonalizable matrix B such that ‖A−B ‖2 ≤ ε. This shows that the set of diagonalizable matrices
is dense in Cn×n and that the Jordan decomposition is not a continuous matrix decomposition.

P7.1.6 Suppose Ak → A and that QH
k AkQk = Tk is a Schur decomposition of Ak. Show that {Qk}

has a converging subsequence {Qki
} with the property that

lim
i→∞

Qki
= Q

where QHAQ = T is upper triangular. This shows that the eigenvalues of a matrix are continuous
functions of its entries.

P7.1.7 Justify (7.1.14) and (7.1.15).

P7.1.8 Show how to compute the eigenvalues of

M =
[

A
B

C
D

]
k

j

k j

where A, B, C, and D are given real diagonal matrices.

P7.1.9 Use the Jordan decomposition to show that if all the eigenvalues of a matrix A are strictly
less than unity, then limk→∞ Ak = 0.

P7.1.10 The initial value problem

ẋ(t) = y(t), x(0) = 1,
ẏ(t) = −x(t), y(0) = 0,

has solution x(t) = cos(t) and y(t) = sin(t). Let h > 0. Here are three reasonable iterations that can
be used to compute approximations xk ≈ x(kh) and yk ≈ y(kh) assuming that x0 = 1 and yk = 0:
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Method 1: xk+1 = xk + hyk,
yk+1 = yk − hxk,

Method 2: xk+1 = xk + hyk,
yk+1 = yk − hxk+1,

Method 3: xk+1 = xk + hyk+1,
yk+1 = yk − hxk+1.

Express each method in the form [
xk+1
yk+1

]
= Ah

[
xk

yk

]
where Ah is a 2-by-2 matrix. For each case, compute λ(Ah) and use the previous problem to discuss
lim xk and lim yk as k →∞.

P7.1.11 If J ∈ IRd×d is a Jordan block, what is κ∞(J)?

P7.1.12 Suppose A, B ∈ Cn×n. Show that the 2n-by-2n matrices

M1 =
[

AB 0
B 0

]
and M2 =

[
0 0
B BA

]
are similar thereby showing that λ(AB) = λ(BA).

P7.1.13 Suppose A ∈ IRn×n. We say that B ∈ IRn×n is the Drazin inverse of A if (i) AB = BA, (ii)
BAB = B, and (iii) the spectral radius of A−ABA is zero. Give a formula for B in terms of the Jordan
decomposition of A paying particular attention to the blocks associated with A’s zero eigenvalues.

P7.1.14 Show that if A ∈ IRn×n, then ρ(A) ≥ (σ1 · · ·σn)1/n where σ1, . . . , σn are the singular values
of A.

P7.1.15 Consider the polynomial q(x) = det(In + xA) where A ∈ IRn×n. We wish to compute the
coefficient of x2. (a) Specify the coefficient in terms of the eigenvalues λ1, . . . , λn of A. (b) Give a
simple formula for the coefficient in terms of tr(A) and tr(A2).

P7.1.16 Given A ∈ IR2×2, show that there exists a nonsingular X ∈ IR2×2 so X−1AX = AT . See
Dubrulle and Parlett (2007).

Notes and References for §7.1

For additional discussion about the linear algebra behind the eigenvalue problem, see Horn and Johnson
(MA) and:

L. Mirsky (1963). An Introduction to Linear Algebra, Oxford University Press, Oxford, U.K.
M. Marcus and H. Minc (1964). A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon,

Boston.
R. Bellman (1970). Introduction to Matrix Analysis, second edition, McGraw-Hill, New York.
I. Gohberg, P. Lancaster, and L. Rodman (2006). Invariant Subspaces of Matrices with Applications,

SIAM Publications, Philadelphia, PA.

For a general discussion about the similarity connection between a matrix and its transpose, see:

A.A. Dubrulle and B.N. Parlett (2010). “Revelations of a Transposition Matrix,” J. Comp. and Appl.
Math. 233, 1217–1219.

The Schur decomposition originally appeared in:

I. Schur (1909). “On the Characteristic Roots of a Linear Substitution with an Application to the
Theory of Integral Equations.” Math. Ann. 66, 488-510 (German).

A proof very similar to ours is given in:

H.W. Turnbull and A.C. Aitken (1961). An Introduction to the Theory of Canonical Forms, Dover,
New York, 105.
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7.2 Perturbation Theory
The act of computing eigenvalues is the act of computing zeros of the characteristic
polynomial. Galois theory tells us that such a process has to be iterative if n > 4 and
so errors arise because of finite termination. In order to develop intelligent stopping
criteria we need an informative perturbation theory that tells us how to think about
approximate eigenvalues and invariant subspaces.

7.2.1 Eigenvalue Sensitivity

An important framework for eigenvalue computation is to produce a sequence of sim-
ilarity transformations {Xk} with the property that the matrices X−1

k AXk are pro-
gressively “more diagonal.” The question naturally arises, how well do the diagonal
elements of a matrix approximate its eigenvalues?

Theorem 7.2.1 (Gershgorin Circle Theorem). If X−1AX = D + F where D =
diag(d1, . . . , dn) and F has zero diagonal entries, then

λ(A) ⊆
n⋃

i=1

Di

where Di = {z ∈ C : |z − di| ≤
n∑

j=1

|fij |}.

Proof. Suppose λ ∈ λ(A) and assume without loss of generality that λ 
= di for
i = 1:n. Since (D − λI) + F is singular, it follows from Lemma 2.3.3 that

1 ≤ ‖ (D − λI)−1F ‖∞ =
n∑

j=1

|fkj |
|dk − λ|

for some k, 1 ≤ k ≤ n. But this implies that λ ∈ Dk.

It can also be shown that if the Gershgorin disk Di is isolated from the other disks,
then it contains precisely one eigenvalue of A. See Wilkinson (AEP, pp. 71ff.).

For some methods it is possible to show that the computed eigenvalues are the
exact eigenvalues of a matrix A+E where E is small in norm. Consequently, we should
understand how the eigenvalues of a matrix can be affected by small perturbations.

Theorem 7.2.2 (Bauer-Fike). If µ is an eigenvalue of A + E ∈ Cn×n and X−1AX =
D = diag(λ1, . . . , λn), then

min
λ∈λ(A)

|λ − µ| ≤ κp(X)‖ E ‖p

where ‖ · ‖p denotes any of the p-norms.

Proof. If µ ∈ λ(A), then the theorem is obviously true. Otherwise if the matrix
X−1(A + E − µI)X is singular, then so is I + (D − µI)−1(X−1EX). Thus, from
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Lemma 2.3.3 we obtain

1 ≤ ‖ (D − µI)−1(X−1EX) ‖p ≤ ‖ (D − µI)−1 ‖p‖ X ‖p‖ E ‖p‖ X−1 ‖p .

Since (D−µI)−1 is diagonal and the p-norm of a diagonal matrix is the absolute value
of the largest diagonal entry, it follows that

‖ (D − µI)−1 ‖p = max
λ∈λ(A)

1
|λ − µ| ,

completing the proof.

An analogous result can be obtained via the Schur decomposition:

Theorem 7.2.3. Let QHAQ = D + N be a Schur decomposition of A ∈ Cn×n as in
(7.1.7). If µ ∈ λ(A+E) and p is the smallest positive integer such that |N |p = 0, then

min
λ∈λ(A)

|λ − µ| ≤ max{θ, θ1/p}

where

θ = ‖ E ‖2

p−1∑
k=0

‖ N ‖k
2 .

Proof. Define

δ = min
λ∈λ(A)

|λ − µ| =
1

‖ (µI − D)−1 ‖2
.

The theorem is clearly true if δ = 0. If δ > 0, then I − (µI −A)−1E is singular and by
Lemma 2.3.3 we have

1 ≤ ‖ (µI − A)−1E ‖2 ≤ ‖ (µI − A)−1 ‖2‖ E ‖2 (7.2.1)

= ‖ ((µI − D) − N)−1 ‖2‖ E ‖2 .

Since (µI −D)−1 is diagonal and |N |p = 0, it follows that ((µI −D)−1N)p = 0. Thus,

((µI − D) − N)−1 =
p−1∑
k=0

(
(µI − D)−1N

)k
(µI − D)−1

and so

‖ ((µI − D) − N)−1 ‖2 ≤ 1
δ

p−1∑
k=0

(‖ N ‖2

δ

)k

.

If δ > 1, then

‖ (µI − D) − N)−1 ‖2 ≤ 1
δ

p−1∑
k=0

‖ N ‖k
2
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and so from (7.2.1), δ ≤ θ. If δ ≤ 1, then

‖ (µI − D) − N)−1 ‖2 ≤ 1
δp

p−1∑
k=0

‖ N ‖k
2 .

By using (7.2.1) again we have δp ≤ θ and so δ ≤ max{θ, θ1/p}.

Theorems 7.2.2 and 7.2.3 suggest that the eigenvalues of a nonnormal matrix may be
sensitive to perturbations. In particular, if κ2(X) or ‖ N ‖p−1

2 is large, then small
changes in A can induce large changes in the eigenvalues.

7.2.2 The Condition of a Simple Eigenvalue

Extreme eigenvalue sensitivity for a matrix A cannot occur if A is normal. On the
other hand, nonnormality does not necessarily imply eigenvalue sensitivity. Indeed, a
nonnormal matrix can have a mixture of well-conditioned and ill-conditioned eigen-
values. For this reason, it is beneficial to refine our perturbation theory so that it is
applicable to individual eigenvalues and not the spectrum as a whole.

To this end, suppose that λ is a simple eigenvalue of A ∈ Cn×n and that x and
y satisfy Ax = λx and yHA = λyH with ‖ x ‖2 = ‖ y ‖2 = 1. If Y HAX = J is the
Jordan decomposition with Y H = X−1, then y and x are nonzero multiples of X(:, i)
and Y (:, i) for some i. It follows from 1 = Y (:, i)HX(:, i) that yHx 
= 0, a fact that we
shall use shortly.

Using classical results from function theory, it can be shown that in a neighbor-
hood of the origin there exist differentiable x(ε) and λ(ε) such that

(A + εF )x(ε) = λ(ε)x(ε), ‖ F ‖2 = 1,

where λ(0) = λ and x(0) = x. By differentiating this equation with respect to ε and
setting ε = 0 in the result, we obtain

Aẋ(0) + Fx = λ̇(0)x + λẋ(0).

Applying yH to both sides of this equation, dividing by yHx, and taking absolute values
gives

|λ̇(0)| =
∣∣∣∣yHFx

yHx

∣∣∣∣ ≤ 1
|yHx| .

The upper bound is attained if F = yxH . For this reason we refer to the reciprocal of

s(λ) = |yHx| (7.2.2)

as the condition of the eigenvalue λ.
Roughly speaking, the above analysis shows that O(ε) perturbations in A can

induce ε/s(λ) changes in an eigenvalue. Thus, if s(λ) is small, then λ is appropriately
regarded as ill-conditioned. Note that s(λ) is the cosine of the angle between the left
and right eigenvectors associated with λ and is unique only if λ is simple.
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A small s(λ) implies that A is near a matrix having a multiple eigenvalue. In
particular, if λ is distinct and s(λ) < 1, then there exists an E such that λ is a repeated
eigenvalue of A + E and

‖ E ‖2

‖ A ‖2
≤ s(λ)√

1 − s(λ)2
.

This result is proved by Wilkinson (1972).

7.2.3 Sensitivity of Repeated Eigenvalues

If λ is a repeated eigenvalue, then the eigenvalue sensitivity question is more compli-
cated. For example, if

A =

[
1 a

0 1

]
and F =

[
0 0

1 0

]
,

then λ(A + εF ) = {1 ±√
εa}. Note that if a 
= 0, then it follows that the eigenvalues

of A + εF are not differentiable at zero; their rate of change at the origin is infinite. In
general, if λ is a defective eigenvalue of A, then O(ε) perturbations in A can result in
O(ε1/p) perturbations in λ if λ is associated with a p-dimensional Jordan block. See
Wilkinson (AEP, pp. 77ff.) for a more detailed discussion.

7.2.4 Invariant Subspace Sensitivity

A collection of sensitive eigenvectors can define an insensitive invariant subspace pro-
vided the corresponding cluster of eigenvalues is isolated. To be precise, suppose

QHAQ =
[

T11

0

T12

T22

]
r

n−r

r n−r

(7.2.3)

is a Schur decomposition of A with

Q = [ Q1 | Q2 ]
r n−r

. (7.2.4)

It is clear from our discussion of eigenvector perturbation that the sensitivity of the
invariant subspace ran(Q1) depends on the distance between λ(T11) and λ(T22). The
proper measure of this distance turns out to be the smallest singular value of the linear
transformation X → T11X −XT22. (Recall that this transformation figures in Lemma
7.1.5.) In particular, if we define the separation between the matrices T11 and T22 by

sep(T11, T22) = min
X �=0

‖ T11X − XT22 ‖F

‖ X ‖
F

, (7.2.5)

then we have the following general result:
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Theorem 7.2.4. Suppose that (7.2.3) and (7.2.4) hold and that for any matrix
E ∈ Cn×n we partition QHEQ as follows:

QHEQ =
[

E11

E21

E12

E22

]
r

n−r

r n−r

.

If sep(T11, T22) > 0 and

‖ E ‖
F

(
1 +

5‖ T12 ‖F

sep(T11, T22)

)
≤ sep(T11, T22)

5
,

then there exists a P ∈ C(n−r)×r with

‖ P ‖
F

≤ 4
‖ E21 ‖F

sep(T11, T22)

such that the columns of Q̃1 = (Q1 + Q2P )(I + PHP )−1/2 are an orthonormal basis
for a subspace invariant for A + E.

Proof. This result is a slight recasting of Theorem 4.11 in Stewart (1973) which should
be consulted for proof details. See also Stewart and Sun (MPA, p. 230). The matrix
(I + PHP )−1/2 is the inverse of the square root of the symmetric positive definite
matrix I + PHP . See §4.2.4.

Corollary 7.2.5. If the assumptions in Theorem 7.2.4 hold, then

dist(ran(Q1), ran(Q̃1)) ≤ 4
‖ E21 ‖F

sep(T11, T22)
.

Proof. Using the SVD of P , it can be shown that

‖ P (I + PHP )−1/2 ‖2 ≤ ‖ P ‖2 ≤ ‖ P ‖
F
. (7.2.6)

Since the required distance is the 2-norm of QH
2 Q̃1 = P (I + PHP )−1/2, the proof is

complete.

Thus, the reciprocal of sep(T11, T22) can be thought of as a condition number that
measures the sensitivity of ran(Q1) as an invariant subspace.

7.2.5 Eigenvector Sensitivity

If we set r = 1 in the preceding subsection, then the analysis addresses the issue of
eigenvector sensitivity.

Corollary 7.2.6. Suppose A, E ∈ Cn×n and that Q = [ q1 | Q2 ] ∈ Cn×n is unitary
with q1 ∈ Cn. Assume

QHAQ =
[

λ

0

vH

T22

]
1

n−1

1 n−1

, QHEQ =
[

ε

δ

γH

E22

]
1

n−1

1 n−1

.
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(Thus, q1 is an eigenvector.) If σ = σmin(T22 − λI) > 0 and

‖ E ‖
F

(
1 +

5‖ v ‖2

σ

)
≤ σ

5
,

then there exists p ∈ Cn−1 with

‖ p ‖2 ≤ 4
‖ δ ‖2

σ

such that q̃1 = (q1+Q2p)/
√

1 + pHp is a unit 2-norm eigenvector for A+E. Moreover,

dist(span{q1}, span{q̃1}) ≤ 4
‖ δ ‖2

σ
.

Proof. The result follows from Theorem 7.2.4, Corollary 7.2.5, and the observation
that if T11 = λ, then sep(T11, T22) = σmin(T22 − λI).

Note that σmin(T22 −λI) roughly measures the separation of λ from the eigenvalues of
T22. We have to say “roughly” because

sep(λ, T22) = σmin(T22 − λI) ≤ min
µ∈λ(T22)

|µ − λ|

and the upper bound can be a gross overestimate.
That the separation of the eigenvalues should have a bearing upon eigenvector

sensitivity should come as no surprise. Indeed, if λ is a nondefective, repeated eigen-
value, then there are an infinite number of possible eigenvector bases for the associated
invariant subspace. The preceding analysis merely indicates that this indeterminancy
begins to be felt as the eigenvalues coalesce. In other words, the eigenvectors associated
with nearby eigenvalues are “wobbly.”

Problems

P7.2.1 Suppose QHAQ = diag(λ1) + N is a Schur decomposition of A ∈ Cn×n and define ν(A) =
‖AHA−AAH ‖

F
. The upper and lower bounds in

ν(A)2

6‖A ‖2
F

≤ ‖N ‖2
F
≤

√
n3 − n

12
ν(A)

are established by Henrici (1962) and Eberlein (1965), respectively. Verify these results for the case
n = 2.

P7.2.2 Suppose A ∈ Cn×n and X−1AX = diag(λ1, . . . , λn) with distinct λi. Show that if the columns
of X have unit 2-norm, then κF (X)2 = n(1/s(λ1)2 + · · ·+ 1/s(λn)2).

P7.2.3 Suppose QHAQ = diag(λi) + N is a Schur decomposition of A and that X−1AX = diag (λi).
Show κ2(X)2 ≥ 1 + (‖N ‖F /‖A ‖F )2. See Loizou (1969).

P7.2.4 If X−1AX = diag (λi) and |λ1| ≥ · · · ≥ |λn|, then

σi(A)
κ2(X)

≤ |λi| ≤ κ2(X)σi(A) .

Prove this result for the n = 2 case. See Ruhe (1975).

P7.2.5 Show that if A =
[

a c
0 b

]
and a = b, then s(a) = s(b) = (1 + |c/(a− b)|2)−1/2.
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P7.2.6 Suppose

A =

[
λ vT

0 T22

]
and that λ ∈ λ(T22). Show that if σ = sep(λ, T22), then

s(λ) =
1√

1 + ‖ (T22 − λI)−1v ‖22
≤ σ√

σ2 + ‖ v ‖22
.

where s(λ) is defined in (7.2.2).

P7.2.7 Show that the condition of a simple eigenvalue is preserved under unitary similarity transfor-
mations.

P7.2.8 With the same hypothesis as in the Bauer-Fike theorem (Theorem 7.2.2), show that

min
λ∈λ(A)

|λ− µ| ≤ ‖ |X−1| |E| |X| ‖p.

P7.2.9 Verify (7.2.6).

P7.2.10 Show that if B ∈ Cm×m and C ∈ Cn×n, then sep(B, C) is less than or equal to |λ − µ| for
all λ ∈ λ(B) and µ ∈ λ(C).

Notes and References for §7.2

Many of the results presented in this section may be found in Wilkinson (AEP), Stewart and Sun
(MPA) as well as:

F.L. Bauer and C.T. Fike (1960). “Norms and Exclusion Theorems,” Numer. Math. 2, 123–44.
A.S. Householder (1964). The Theory of Matrices in Numerical Analysis. Blaisdell, New York.
R. Bhatia (2007). Perturbation Bounds for Matrix Eigenvalues, SIAM Publications, Philadelphia,

PA.

Early papers concerned with the effect of perturbations on the eigenvalues of a general matrix include:

A. Ruhe (1970). “Perturbation Bounds for Means of Eigenvalues and Invariant Subspaces,” BIT 10,
343–54.

A. Ruhe (1970). “Properties of a Matrix with a Very Ill-Conditioned Eigenproblem,” Numer. Math.
15, 57–60.

J.H. Wilkinson (1972). “Note on Matrices with a Very Ill-Conditioned Eigenproblem,” Numer. Math.
19, 176–78.

W. Kahan, B.N. Parlett, and E. Jiang (1982). “Residual Bounds on Approximate Eigensystems of
Nonnormal Matrices,” SIAM J. Numer. Anal. 19, 470–484.

J.H. Wilkinson (1984). “On Neighboring Matrices with Quadratic Elementary Divisors,” Numer.
Math. 44, 1-21.

Wilkinson’s work on nearest defective matrices is typical of a growing body of literature that is
concerned with “nearness” problems, see:

A. Ruhe (1987). “Closest Normal Matrix Found!,” BIT 27, 585-598.
J.W. Demmel (1987). “On the Distance to the Nearest Ill-Posed Problem,” Numer. Math. 51,

251–289.
J.W. Demmel (1988). “The Probability that a Numerical Analysis Problem is Difficult,” Math. Com-

put. 50, 449–480.
N.J. Higham (1989). “Matrix Nearness Problems and Applications,” in Applications of Matrix Theory,

M.J.C. Gover and S. Barnett (eds.), Oxford University Press, Oxford, 1–27.
A.N. Malyshev (1999). “A Formula for the 2-norm Distance from a Matrix to the Set of Matrices with

Multiple Eigenvalues,” Numer. Math. 83, 443–454.
J.-M. Gracia (2005). “Nearest Matrix with Two Prescribed Eigenvalues,” Lin. Alg. Applic. 401,

277–294.

An important subset of this literature is concerned with nearness to the set of unstable matrices. A
matrix is unstable if it has an eigenvalue with nonnegative real part. Controllability is a related notion,
see:



364 Chapter 7. Unsymmetric Eigenvalue Problems

C. Van Loan (1985). “How Near is a Stable Matrix to an Unstable Matrix?,” Contemp. Math. 47,
465–477.

J.W. Demmel (1987). “A Counterexample for two Conjectures About Stability,” IEEE Trans. Autom.
Contr. AC-32, 340–342.

R. Byers (1988). “A Bisection Method for Measuring the distance of a Stable Matrix to the Unstable
Matrices,” J. Sci. Stat. Comput. 9, 875–881.

J.V. Burke and M.L. Overton (1992). “Stable Perturbations of Nonsymmetric Matrices,” Lin. Alg.
Applic. 171, 249–273.

C. He and G.A. Watson (1998). “An Algorithm for Computing the Distance to Instability,” SIAM J.
Matrix Anal. Applic. 20, 101–116.

M. Gu, E. Mengi, M.L. Overton, J. Xia, and J. Zhu (2006). “Fast Methods for Estimating the Distance
to Uncontrollability,” SIAM J. Matrix Anal. Applic. 28, 477–502.

Aspects of eigenvalue condition are discussed in:

C. Van Loan (1987). “On Estimating the Condition of Eigenvalues and Eigenvectors,” Lin. Alg.
Applic. 88/89, 715–732.

C.D. Meyer and G.W. Stewart (1988). “Derivatives and Perturbations of Eigenvectors,” SIAM J.
Numer. Anal. 25, 679–691.

G.W. Stewart and G. Zhang (1991). “Eigenvalues of Graded Matrices and the Condition Numbers of
Multiple Eigenvalues,” Numer. Math. 58, 703–712.

J.-G. Sun (1992). “On Condition Numbers of a Nondefective Multiple Eigenvalue,” Numer. Math.
61, 265–276.

S.M. Rump (2001). “Computational Error Bounds for Multiple or Nearly Multiple Eigenvalues,” Lin.
Alg. Applic. 324, 209–226.

The relationship between the eigenvalue condition number, the departure from normality, and the
condition of the eigenvector matrix is discussed in:

P. Henrici (1962). “Bounds for Iterates, Inverses, Spectral Variation and Fields of Values of Non-
normal Matrices,” Numer. Math. 4, 24–40.

P. Eberlein (1965). “On Measures of Non-Normality for Matrices,” AMS Monthly 72, 995–996.
R.A. Smith (1967). “The Condition Numbers of the Matrix Eigenvalue Problem,” Numer. Math. 10

232–240.
G. Loizou (1969). “Nonnormality and Jordan Condition Numbers of Matrices,” J. ACM 16, 580–640.
A. van der Sluis (1975). “Perturbations of Eigenvalues of Non-normal Matrices,” Commun. ACM 18,

30–36.
S.L. Lee (1995). “A Practical Upper Bound for Departure from Normality,” SIAM J. Matrix Anal.

Applic. 16, 462–468.

Gershgorin’s theorem can be used to derive a comprehensive perturbation theory. The theorem itself
can be generalized and extended in various ways, see:

R.S. Varga (1970). “Minimal Gershgorin Sets for Partitioned Matrices,” SIAM J. Numer. Anal. 7,
493–507.

R.J. Johnston (1971). “Gershgorin Theorems for Partitioned Matrices,” Lin. Alg. Applic. 4, 205–20.
R.S. Varga and A. Krautstengl (1999). “On Gergorin-type Problems and Ovals of Cassini,” ETNA 8,

15–20.
R.S. Varga (2001). “Gergorin-type Eigenvalue Inclusion Theorems and Their Sharpness,” ETNA 12,

113–133.
C. Beattie and I.C.F. Ipsen (2003). “Inclusion Regions for Matrix Eigenvalues,” Lin. Alg. Applic.

358, 281–291.

In our discussion, the perturbations to the A-matrix are general. More can be said when the pertur-
bations are structured, see:

G.W. Stewart (2001). “On the Eigensystems of Graded Matrices,” Numer. Math. 90, 349–370.
J. Moro and F.M. Dopico (2003). “Low Rank Perturbation of Jordan Structure,” SIAM J. Matrix

Anal. Applic. 25, 495–506.
R. Byers and D. Kressner (2004). “On the Condition of a Complex Eigenvalue under Real Perturba-

tions,” BIT 44, 209–214.
R. Byers and D. Kressner (2006). “Structured Condition Numbers for Invariant Subspaces,” SIAM J.

Matrix Anal. Applic. 28, 326–347.



7.3. Power Iterations 365

An absolute perturbation bound comments on the difference between an eigenvalue λ and its pertur-
bation λ̃. A relative perturbation bound examines the quotient |λ − λ̃|/|λ|, something that can be
very important when there is a concern about a small eigenvalue. For results in this direction consult:

R.-C. Li (1997). “Relative Perturbation Theory. III. More Bounds on Eigenvalue Variation,” Lin.
Alg. Applic. 266, 337–345.

S.C. Eisenstat and I.C.F. Ipsen (1998). “Three Absolute Perturbation Bounds for Matrix Eigenvalues
Imply Relative Bounds,” SIAM J. Matrix Anal. Applic. 20, 149–158.

S.C. Eisenstat and I.C.F. Ipsen (1998). “Relative Perturbation Results for Eigenvalues and Eigenvec-
tors of Diagonalisable Matrices,” BIT 38, 502–509.

I.C.F. Ipsen (1998). “Relative Perturbation Results for Matrix Eigenvalues and Singular Values,” Acta
Numerica, 7, 151–201.

I.C.F. Ipsen (2000). “Absolute and Relative Perturbation Bounds for Invariant Subspaces of Matrices,”
Lin. Alg. Applic. 309, 45–56.

I.C.F. Ipsen (2003). “A Note on Unifying Absolute and Relative Perturbation Bounds,” Lin. Alg.
Applic. 358, 239–253.

Y. Wei, X. Li, F. Bu, and F. Zhang (2006). “Relative Perturbation Bounds for the Eigenvalues of
Diagonalizable and Singular Matrices–Application to Perturbation Theory for Simple Invariant
Subspaces,” Lin. Alg. Applic. 419, 765-771.

The eigenvectors and invariant subspaces of a matrix also “move” when there are perturbations.
Tracking these changes is typically more challenging than tracking changes in the eigenvalues, see:

T. Kato (1966). Perturbation Theory for Linear Operators, Springer-Verlag, New York.
C. Davis and W.M. Kahan (1970). “The Rotation of Eigenvectors by a Perturbation, III,” SIAM J.

Numer. Anal. 7, 1–46.
G.W. Stewart (1971). “Error Bounds for Approximate Invariant Subspaces of Closed Linear Opera-

tors,” SIAM. J. Numer. Anal. 8, 796–808.
G.W. Stewart (1973). “Error and Perturbation Bounds for Subspaces Associated with Certain Eigen-

value Problems,” SIAM Review 15, 727–764.
J. Xie (1997). “A Note on the Davis-Kahan sin(2θ) Theorem,” Lin. Alg. Applic. 258, 129–135.
S.M. Rump and J.-P.M. Zemke (2003). “On Eigenvector Bounds,” BIT 43, 823–837.

Detailed analyses of the function sep(.,.) and the map X → AX + XAT are given in:

J. Varah (1979). “On the Separation of Two Matrices,” SIAM J. Numer. Anal. 16, 216–22.
R. Byers and S.G. Nash (1987). “On the Singular Vectors of the Lyapunov Operator,” SIAM J. Alg.

Disc. Methods 8, 59–66.

7.3 Power Iterations
Suppose that we are given A ∈ Cn×n and a unitary U0 ∈ Cn×n. Recall from §5.2.10 that
the Householder QR factorization can be extended to complex matrices and consider
the following iteration:

T0 = UH
0 AU0

for k = 1, 2, . . .

Tk−1 = UkRk (QR factorization) (7.3.1)

Tk = RkUk

end

Since Tk = RkUk = UH
k (UkRk)Uk = UH

k Tk−1Uk it follows by induction that

Tk = (U0U1 · · ·Uk)HA(U0U1 · · ·Uk). (7.3.2)

Thus, each Tk is unitarily similar to A. Not so obvious, and what is a central theme
of this section, is that the Tk almost always converge to upper triangular form, i.e.,
(7.3.2) almost always “converges” to a Schur decomposition of A.
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Iteration (7.3.1) is called the QR iteration, and it forms the backbone of the most
effective algorithm for computing a complete Schur decomposition of a dense general
matrix. In order to motivate the method and to derive its convergence properties, two
other eigenvalue iterations that are important in their own right are presented first:
the power method and the method of orthogonal iteration.

7.3.1 The Power Method

Suppose A ∈ Cn×n and X−1AX = diag(λ1, . . . , λn) with X = [ x1 | · · · | xn ] . Assume
that

|λ1| > |λ2| ≥ · · · ≥ |λn|.

Given a unit 2-norm q(0) ∈ Cn, the power method produces a sequence of vectors q(k)

as follows:

for k = 1, 2, . . .

z(k) = Aq(k−1)

q(k) = z(k)/‖ z(k) ‖2 (7.3.3)

λ(k) = [q(k)]HAq(k)

end

There is nothing special about using the 2-norm for normalization except that it imparts
a greater unity on the overall discussion in this section.

Let us examine the convergence properties of the power iteration. If

q(0) = a1x1 + a2x2 + · · · + anxn (7.3.4)

and a1 
= 0, then

Akq(0) = a1λ
k
1

⎛⎝x1 +
n∑

j=2

aj

a1

(
λj

λ1

)k

xj

⎞⎠ .

Since q(k) ∈ span{Akq(0)} we conclude that

dist
(
span{q(k)}, span{x1}

)
= O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)

.

It is also easy to verify that

| λ1 − λ(k) | = O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)

. (7.3.5)

Since λ1 is larger than all the other eigenvalues in modulus, it is referred to as a
dominant eigenvalue. Thus, the power method converges if λ1 is dominant and if q(0)

has a component in the direction of the corresponding dominant eigenvector x1. The
behavior of the iteration without these assumptions is discussed in Wilkinson (AEP, p.
570) and Parlett and Poole (1973).
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In practice, the usefulness of the power method depends upon the ratio |λ2|/|λ1|,
since it dictates the rate of convergence. The danger that q(0) is deficient in x1 is less
worrisome because rounding errors sustained during the iteration typically ensure that
subsequent iterates have a component in this direction. Moreover, it is typically the
case in applications that one has a reasonably good guess as to the direction of x1.
This guards against having a pathologically small coefficient a1 in (7.3.4).

Note that the only thing required to implement the power method is a procedure
for matrix-vector products. It is not necessary to store A in an n-by-n array. For
this reason, the algorithm is of interest when the dominant eigenpair for a large sparse
matrix is required. We have much more to say about large sparse eigenvalue problems
in Chapter 10.

Estimates for the error |λ(k) − λ1| can be obtained by applying the perturbation
theory developed in §7.2.2. Define the vector

r(k) = Aq(k) − λ(k)q(k)

and observe that (A + E(k))q(k) = λ(k)q(k) where E(k) = −r(k)[q(k)]H . Thus λ(k) is
an eigenvalue of A + E(k) and

| λ(k) − λ1 | ≈ ‖ E(k) ‖2

s(λ1)
=

‖ r(k) ‖2

s(λ1)
.

If we use the power method to generate approximate right and left dominant eigen-
vectors, then it is possible to obtain an estimate of s(λ1). In particular, if w(k) is a
unit 2-norm vector in the direction of (AH)kw(0), then we can use the approximation
s(λ1) ≈ | w(k)H

q(k) |.

7.3.2 Orthogonal Iteration

A straightforward generalization of the power method can be used to compute higher-
dimensional invariant subspaces. Let r be a chosen integer satisfying 1 ≤ r ≤ n.
Given A ∈ Cn×n and an n-by-r matrix Q0 with orthonormal columns, the method of
orthogonal iteration generates a sequence of matrices {Qk} ⊆ Cn×r and a sequence of
eigenvalue estimates {λ(k)

1 , . . . , λ
(k)
r } as follows:

for k = 1, 2, . . .

Zk = AQk−1

QkRk = Zk (QR factorization) (7.3.6)

λ(QH
k AQk) = {λ(k)

1 , . . . , λ
(k)
r }

end

Note that if r = 1, then this is just the power method (7.3.3). Moreover, the se-
quence {Qke1} is precisely the sequence of vectors produced by the power iteration
with starting vector q(0) = Q0e1.

In order to analyze the behavior of this iteration, suppose that

QHAQ = T = diag(λi) + N, |λ1| ≥ |λ2| ≥ · · · ≥ |λn| (7.3.7)
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is a Schur decomposition of A ∈ Cn×n. Assume that 1 ≤ r < n and partition Q and T
as follows:

Q = [ Qα | Qβ ]
r n−r

, T =
[

T11

0

T12

T22

]
r

n−r

r n−r

. (7.3.8)

If |λr| > |λr+1|, then the subspace Dr(A) = ran(Qα) is referred to as a dominant
invariant subspace. It is the unique invariant subspace associated with the eigenval-
ues λ1, . . . , λr. The following theorem shows that with reasonable assumptions, the
subspaces ran(Qk) generated by (7.3.6) converge to Dr(A) at a rate proportional to
|λr+1/λr|k.

Theorem 7.3.1. Let the Schur decomposition of A ∈ Cn×n be given by (7.3.7) and
(7.3.8) with n ≥ 2. Assume that |λr| > |λr+1| and that µ ≥ 0 satisfies

(1 + µ)|λr| > ‖ N ‖
F
.

Suppose Q0 ∈ Cn×r has orthonormal columns and that dk is defined by

dk = dist(Dr(A), ran(Qk)), k ≥ 0.

If
d0 < 1, (7.3.9)

then the matrices Qk generated by (7.3.6) satisfy

dk ≤ (1 + µ)n−2 ·
(

1 +
‖ T12 ‖F

sep(T11, T22)

)
·

⎡⎢⎢⎣ |λr+1| +
‖ N ‖

F

1 + µ

|λr| −
‖ N ‖

F

1 + µ

⎤⎥⎥⎦
k

· d0√
1 − d2

0

. (7.3.10)

Proof. The proof is given in an appendix at the end of this section.

The condition (7.3.9) ensures that the initial matrix Q0 is not deficient in certain
eigendirections. In particular, no vector in the span of Q0’s columns is orthogonal to
Dr(AH). The theorem essentially says that if this condition holds and if µ is chosen
large enough, then

dist(Dr(A), ran(Qk)) ≈ c

∣∣∣∣λr+1

λr

∣∣∣∣k
where c depends on sep(T11, T22) and A’s departure from normality.

It is possible to accelerate the convergence in orthogonal iteration using a tech-
nique described in Stewart (1976). In the accelerated scheme, the approximate eigen-
value λ

(k)
i satisfies

|λ(k)
i − λi| ≈

∣∣∣∣λr+1

λi

∣∣∣∣k , i = 1:r.

(Without the acceleration, the right-hand side is |λi+1/λi|k.) Stewart’s algorithm in-
volves computing the Schur decomposition of the matrices QT

k AQk every so often. The
method can be very useful in situations where A is large and sparse and a few of its
largest eigenvalues are required.
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7.3.3 The QR Iteration

We now derive the QR iteration (7.3.1) and examine its convergence. Suppose r = n
in (7.3.6) and the eigenvalues of A satisfy

|λ1| > |λ2| > · · · > |λn|.

Partition the matrix Q in (7.3.7) and Qk in (7.3.6) as follows:

Q = [ q1 | · · · | qn ] , Qk = [ q
(k)
1 | · · · | q(k)

n ] .

If
dist(Di(AH), span{q(0)

1 , . . . , q
(0)
i }) < 1, i = 1:n, (7.3.11)

then it follows from Theorem 7.3.1 that

dist( span{q(k)
1 , . . . , q

(k)
i } , span{q1, . . . , qi} ) → 0

for i = 1:n. This implies that the matrices Tk defined by

Tk = QH
k AQk

are converging to upper triangular form. Thus, it can be said that the method of orthog-
onal iteration computes a Schur decomposition provided the original iterate Q0 ∈ Cn×n

is not deficient in the sense of (7.3.11).
The QR iteration arises naturally by considering how to compute the matrix Tk

directly from its predecessor Tk−1. On the one hand, we have from (7.3.6) and the
definition of Tk−1 that

Tk−1 = QH
k−1AQk−1 = QH

k−1(AQk−1) = (QH
k−1Qk)Rk.

On the other hand,

Tk = QH
k AQk = (QH

k AQk−1)(QH
k−1Qk) = Rk(QH

k−1Qk).

Thus, Tk is determined by computing the QR factorization of Tk−1 and then multiplying
the factors together in reverse order, precisely what is done in (7.3.1).

Note that a single QR iteration is an O(n3) calculation. Moreover, since con-
vergence is only linear (when it exists), it is clear that the method is a prohibitively
expensive way to compute Schur decompositions. Fortunately these practical difficul-
ties can be overcome as we show in §7.4 and §7.5.

7.3.4 LR Iterations

We conclude with some remarks about power iterations that rely on the LU factoriza-
tion rather than the QR factorizaton. Let G0 ∈ Cn×r have rank r. Corresponding to
(7.3.1) we have the following iteration:

for k = 1, 2, . . .

Zk = AGk−1 (7.3.12)

Zk = GkRk (LU factorization)
end
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Suppose r = n and that we define the matrices Tk by

Tk = G−1
k AGk. (7.3.13)

It can be shown that if we set L0 = G0, then the Tk can be generated as follows:

T0 = L−1
0 AL0

for k = 1, 2, . . .

Tk−1 = LkRk (LU factorization) (7.3.14)

Tk = RkLk

end

Iterations (7.3.12) and (7.3.14) are known as treppeniteration and the LR iteration,
respectively. Under reasonable assumptions, the Tk converge to upper triangular form.
To successfully implement either method, it is necessary to pivot. See Wilkinson (AEP,
p. 602).

Appendix

In order to establish Theorem 7.3.1 we need the following lemma that bounds powers
of a matrix and powers of its inverse.

Lemma 7.3.2. Let QHAQ = T = D + N be a Schur decomposition of A ∈ Cn×n

where D is diagonal and N strictly upper triangular. Let λmax and λmin denote the
largest and smallest eigenvalues of A in absolute value. If µ ≥ 0, then for all k ≥ 0 we
have

‖ Ak ‖2 ≤ (1 + µ)n−1
(
| λmax | +

‖ N ‖
F

1 + µ

)k

. (7.3.15)

If A is nonsingular and µ ≥ 0 satisfies (1 + µ)|λmin| > ‖ N ‖
F
, then for all k ≥ 0 we

also have

‖ A−k ‖2 ≤ (1 + µ)n−1
(

1
|λmin| − ‖ N ‖

F
/(1 + µ)

)k

. (7.3.16)

Proof. For µ ≥ 0, define the diagonal matrix ∆ by

∆ = diag (1, (1 + µ), (1 + µ)2, . . . , (1 + µ)n−1)

and note that κ2(∆) = (1 + µ)n−1. Since N is strictly upper triangular, it is easy to
verify that

‖ ∆N∆−1 ‖
F

≤ ‖ N ‖
F

1 + µ

and thus

‖ Ak ‖2 = ‖ T k ‖2 = ‖ ∆−1(D + ∆N∆−1)k∆ ‖2

≤ κ2(∆)
(
‖ D ‖2 + ‖ ∆N∆−1 ‖2

)k ≤ (1 + µ)n−1
(
|λmax| +

‖ N ‖
F

1 + µ

)k

.
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On the other hand, if A is nonsingular and (1 + µ)|λmin| > ‖ N ‖
F
, then

‖ ∆D−1N∆−1 ‖2 = ‖ D−1(∆N∆−1) ‖2 ≤ 1
|λmin|

‖ ∆N∆−1 ‖
F

< 1.

Using Lemma 2.3.3 we obtain

‖ A−k ‖2 = ‖ T−k ‖2 =
∥∥∆−1[(I + ∆D−1N∆−1)−1D−1]k∆

∥∥
2

≤ κ2(∆)
( ‖ D−1 ‖2

1 − ‖ ∆D−1N∆−1 ‖2

)k

≤ (1 + µ)n−1
(

1
|µ| − ‖ N ‖

F
/(1 + µ)

)k

completing the proof of the lemma.

Proof of Theorem 7.3.1. By induction it is easy to show that the matrix Qk in
(7.3.6) satisfies

AkQ0 = Qk(Rk · · ·R1),

a QR factorization of AkQ0. By substituting the Schur decomposition (7.3.7)-(7.3.8)
into this equation we obtain

T k

[
V0

W0

]
=

[
Vk

Wk

]
(Rk · · ·R1) (7.3.17)

where
Vk = QH

α Qk, Wk = QH
β Qk.

Our goal is to bound ‖ Wk ‖2 since by the definition of subspace distance given in §2.5.3
we have

‖ Wk ‖2 = dist(Dr(A), ran(Qk)). (7.3.18)

Note from the thin CS decomposition (Theorem 2.5.2) that

1 = d2
k + σmin(Vk)2. (7.3.19)

Since T11 and T22 have no eigenvalues in common, Lemma 7.1.5 tells us that the
Sylvester equation T11X − XT22 = −T12 has a solution X ∈ Cr×(n−r) and that

‖ X ‖
F

≤ ‖ T12 ‖F

sep(T11, T22)
. (7.3.20)

It follows that[
Ir X

0 In−r

]−1 [
T11 T12

0 T22

][
Ir X

0 In−r

]
=

[
T11 0

0 T22

]
.

By substituting this into (7.3.17) we obtain[
T k

11 0

0 T k
22

][
V0 − XW0

W0

]
=

[
Vk − XWk

Wk

]
(Rk · · ·R1),
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i.e.,

T k
11(V0 − XW0) = (Vk − XWk)(Rk · · ·R1), (7.3.21)

T k
22W0 = Wk(Rk · · ·R1). (7.3.22)

The matrix I +XXH is Hermitian positive definite and so it has a Cholesky factoriza-
tion

I + XXH = GGH . (7.3.23)

It is clear that
σmin(G) ≥ 1. (7.3.24)

If the matrix Z ∈ Cn×(n−r) is defined by

Z = Q

[
Ir

−XH

]
G−H = [ Qα Qβ ]

[
Ir

−XH

]
G−H = (Qα − QβXH)G−H ,

then it follows from the equation AHQ = QTH that

AH(Qα − QβXH) = (Qα − QβXH)TH
11 . (7.3.25)

Since ZHZ = Ir and ran(Z) = ran(Qα −QβXH), it follows that the columns of Z are
an orthonormal basis for Dr(AH). Using the CS decomposition, (7.3.19), and the fact
that ran(Qβ) = Dr(AH)⊥, we have

σmin(ZT Q0)2 = 1 − dist(Dr(AH), Q0)2 = 1 − ‖ QH
β Q0 ‖

= σmin(QT
αQ0)2 = σmin(V0)2 = 1 − d2

0 > 0.

This shows that

V0 − XW0 =
[

Ir −X
] [ QH

α Q0

QH
β Q0

]
= (ZGH)HQ0 = G(ZHQ0)

is nonsingular and together with (7.3.24) we obtain

‖ (V0 − XW0)−1 ‖2 ≤ ‖ G−1 ‖2‖ (ZHQ0)−1 ‖2 ≤ 1√
1 − d2

0

. (7.3.26)

Manipulation of (7.3.19) and (7.3.20) yields

Wk = T k
22W0(Rk · · ·R1)−1 = T k

22W0(V0 − XW0)−1T−k
11 (Vk − XWk).

The verification of (7.3.10) is completed by taking norms in this equation and using
(7.3.18), (7.3.19), (7.3.20), (7.3.26), and the following facts:

‖ T k
22 ‖2 ≤ (1 + µ)n−r−1 (|λr+1| + ‖ N ‖

F
/(1 + µ))k

,

‖ T−k
11 ‖2 ≤ (1 + µ)r−1/ (|λr| − ‖ N ‖

F
/(1 + µ))k

,

‖ Vk − XWk ‖2 ≤ ‖ Vk ‖2 + ‖ X ‖2‖ Wk ‖2 ≤ 1 + ‖ T12 ‖F
/sep(T11, T22).
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The bounds for ‖ T k
22 ‖2 and ‖ T−k

11 ‖2 follow from Lemma 7.3.2.

Problems

P7.3.1 Verify Equation (7.3.5).

P7.3.2 Suppose the eigenvalues of A ∈ IRn×n satisfy |λ1| = |λ2| > |λ3| ≥ · · · ≥ |λn| and that λ1 and
λ2 are complex conjugates of one another. Let S = span{y, z} where y, z ∈ IRn satisfy A(y + iz) =
λ1(y + iz). Show how the power method with a real starting vector can be used to compute an
approximate basis for S.

P7.3.3 Assume A ∈ IRn×n has eigenvalues λ1, . . . , λn that satisfy

λ = λ1 = λ2 = λ3 = λ4 > |λ5| ≥ · · · ≥ |λn|
where λ is positive. Assume that A has two Jordan blocks of the form.[

λ 1
0 λ

]
.

Discuss the convergence properties of the power method when applied to this matrix and how the
convergence might be accelerated.

P7.3.4 A matrix A is a positive matrix if aij > 0 for all i and j. A vector v ∈ IRn is a positive
vector if vi > 0 for all i. Perron’s theorem states that if A is a positive square matrix, then it has
a unique dominant eigenvalue equal to its spectral radius ρ(A) and there is a positive vector x so
that Ax = ρ(A)·x. In this context, x is called the Perron vector and ρ(A) is called the Perron root.
Assume that A ∈ IRn×n is positive and q ∈ IRn is positive with unit 2-norm. Consider the following
implementation of the power method (7.3.3):

z = Aq, λ = qT z

while ‖ z − λq ‖2 > δ

q = z, q = q/‖ q ‖2, z = Aq, λ = qT z
end

(a) Adjust the termination criteria to guarantee (in principle) that the final λ and q satisfy Ãq = λq,
where ‖ Ã−A ‖2 ≤ δ and Ã is positive. (b) Applied to a positive matrix A ∈ IRn×n, the Collatz-
Wielandt formula states that ρ(A) is the maximum value of the function f defined by

f(x) = min
1≤i≤n

yi

xi

where x ∈ IRn is positive and y = Ax. Does it follow that f(Aq) ≥ f(q)? In other words, do the
iterates {q(k)} in the power method have the property that f(q(k)) increases monotonically to the
Perron root, assuming that q(0) is positive?

P7.3.5 (Read the previous problem for background.) A matrix A is a nonnegative matrix if aij ≥ 0
for all i and j. A matrix A ∈ IRn×n is reducible if there is a permutation P so that P T AP is block
triangular with two or more square diagonal blocks. A matrix that is not reducible is irreducible.
The Perron-Frobenius theorem states that if A is a square, nonnegative, and irreducible, then ρ(A),
the Perron root, is an eigenvalue for A and there is a positive vector x, the Perron vector, so that
Ax = ρ(A)·x. Assume that A1, A2, A3 ∈ IRn×n are each positive and let the nonnegative matrix A be
defined by

A =

⎡⎣ 0 A1 0

0 0 A2

A3 0 0

⎤⎦ .

(a) Show that A is irreducible. (b) Let B = A1A2A3. Show how to compute the Perron root and
vector for A from the Perron root and vector for B. (c) Show that A has other eigenvalues with
absolute value equal to the Perron root. How could those eigenvalues and the associated eigenvectors
be computed?

P7.3.6 (Read the previous two problems for background.) A nonnegative matrix P ∈ IRn×n is stochas-
tic if the entries in each column sum to 1. A vector v ∈ IRn is a probability vector if its entries are
nonnegative and sum to 1. (a) Show that if P ∈ IRn×n is stochastic and v ∈ IRn is a probability vec-
tor, then w = Pv is also a probability vector. (b) The entries in a stochastic matrix P ∈ IRn×n can
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be regarded as the transition probabilities associated with an n-state Markov Chain. Let vj be the
probability of being in state j at time t = tcurrent. In the Markov model, the probability of being in
state i at time t = tnext is given by

wi =
n∑

j=1

pijvj i = 1:n,

i.e., w = Pv. With the help of a biased coin, a surfer on the World Wide Web randomly jumps from
page to page. Assume that the surfer is currently viewing web page j and that the coin comes up
heads with probability α. Here is how the surfer determines the next page to visit:

Step 1. A coin is tossed.

Step 2. If it comes up heads and web page j has at least one outlink, then the next page to visit is
randomly selected from the list of outlink pages.

Step 3. Otherwise, the next page to visit is randomly selected from the list of all possible pages.

Let P ∈ IRn×n be the matrix of transition probabilities that define this random process. Specify P in
terms of α, the vector of ones e, and the link matrix H ∈ IRn×n defined by

hij =

{
1 if there is a link on web page j to web page i

0 otherwise

Hints: The number of nonzero components in H(:, j) is the number of outlinks on web page j. P is a
convex combination of a very sparse sparse matrix and a very dense rank-1 matrix. (c) Detail how the
power method can be used to determine a probability vector x so that Px = x. Strive to get as much
computation “outside the loop” as possible. Note that in the limit we can expect to find the random
surfer viewing web page i with probability xi. Thus, a case can be made that more important pages
are associated with the larger components of x. This is the basis of Google PageRank. If

xi1 ≥ xi2 ≥ · · · ≥ xin

then web page ik has page rank k.

P7.3.7 (a) Show that if X ∈ Cn×n is nonsingular, then

‖A ‖X = ‖X−1AX ‖2
defines a matrix norm with the property that

‖AB ‖
X
≤ ‖A ‖

X
‖B ‖

X
.

(b) Show that for any ε > 0 there exists a nonsingular X ∈ Cn×n such that

‖A ‖
X

= ‖X−1AX ‖2 ≤ ρ(A) + ε

where ρ(A) is A’s spectral radius. Conclude that there is a constant M such that

‖Ak ‖2 ≤ M(ρ(A) + ε)k

for all non-negative integers k. (Hint: Set X = Q diag(1, a, . . . , an−1) where QHAQ = D + N is A’s
Schur decomposition.)

P7.3.8 Verify that (7.3.14) calculates the matrices Tk defined by (7.3.13).

P7.3.9 Suppose A ∈ Cn×n is nonsingular and that Q0 ∈ Cn×p has orthonormal columns. The fol-
lowing iteration is referred to as inverse orthogonal iteration.

for k = 1, 2, . . .

Solve AZk = Qk−1 for Zk ∈ Cn×p

Zk = QkRk (QR factorization)
end

Explain why this iteration can usually be used to compute the p smallest eigenvalues of A in absolute
value. Note that to implement this iteration it is necessary to be able to solve linear systems that
involve A. If p = 1, the method is referred to as the inverse power method.
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Notes and References for §7.3

For an excellent overview of the QR iteration and related procedures, see Watkins (MEP), Stewart
(MAE), and Kressner (NMSE). A detailed, practical discussion of the power method is given in
Wilkinson (AEP, Chap. 10). Methods are discussed for accelerating the basic iteration, for calculating
nondominant eigenvalues, and for handling complex conjugate eigenvalue pairs. The connections
among the various power iterations are discussed in:

B.N. Parlett and W.G. Poole (1973). “A Geometric Theory for the QR, LU, and Power Iterations,”
SIAM J. Numer. Anal. 10, 389–412.

The QR iteration was concurrently developed in:

J.G.F. Francis (1961). “The QR Transformation: A Unitary Analogue to the LR Transformation,”
Comput. J. 4, 265–71, 332–334.

V.N. Kublanovskaya (1961). “On Some Algorithms for the Solution of the Complete Eigenvalue
Problem,” USSR Comput. Math. Phys. 3, 637–657.

As can be deduced from the title of the first paper by Francis, the LR iteration predates the QR
iteration. The former very fundamental algorithm was proposed by:

H. Rutishauser (1958). “Solution of Eigenvalue Problems with the LR Transformation,” Nat. Bur.
Stand. Appl. Math. Ser. 49, 47–81.

More recent, related work includes:

B.N. Parlett (1995). “The New qd Algorithms,” Acta Numerica 5, 459–491.
C. Ferreira and B.N. Parlett (2009). “Convergence of the LR Algorithm for a One-Point Spectrum

Tridiagonal Matrix,” Numer. Math. 113, 417–431.

Numerous papers on the convergence and behavior of the QR iteration have appeared, see:

J.H. Wilkinson (1965). “Convergence of the LR, QR, and Related Algorithms,” Comput. J. 8, 77–84.
B.N. Parlett (1965). “Convergence of the Q-R Algorithm,” Numer. Math. 7, 187–93. (Correction in

Numer. Math. 10, 163–164.)
B.N. Parlett (1966). “Singular and Invariant Matrices Under the QR Algorithm,” Math. Comput.

20, 611–615.
B.N. Parlett (1968). “Global Convergence of the Basic QR Algorithm on Hessenberg Matrices,” Math.

Comput. 22, 803–817.
D.S. Watkins (1982). “Understanding the QR Algorithm,” SIAM Review 24, 427–440.
T. Nanda (1985). “Differential Equations and the QR Algorithm,” SIAM J. Numer. Anal. 22,

310–321.
D.S. Watkins (1993). “Some Perspectives on the Eigenvalue Problem,” SIAM Review 35, 430–471.
D.S. Watkins (2008). “The QR Algorithm Revisited,” SIAM Review 50, 133–145.
D.S. Watkins (2011). “Francis’s Algorithm,” AMS Monthly 118, 387–403.

A block analog of the QR iteration is discussed in:

M. Robbè and M. Sadkane (2005). “Convergence Analysis of the Block Householder Block Diagonal-
ization Algorithm,” BIT 45, 181–195.

The following references are concerned with various practical and theoretical aspects of simultaneous
iteration:

H. Rutishauser (1970). “Simultaneous Iteration Method for Symmetric Matrices,” Numer. Math. 16,
205–223.

M. Clint and A. Jennings (1971). “A Simultaneous Iteration Method for the Unsymmetric Eigenvalue
Problem,” J. Inst. Math. Applic. 8, 111-121.

G.W. Stewart (1976). “Simultaneous Iteration for Computing Invariant Subspaces of Non-Hermitian
Matrices,” Numer. Math. 25, 123–136.

A. Jennings (1977). Matrix Computation for Engineers and Scientists, John Wiley and Sons, New
York.

Z. Bai and G.W. Stewart (1997). “Algorithm 776: SRRIT: a Fortran Subroutine to Calculate the
Dominant Invariant Subspace of a Nonsymmetric Matrix,” ACM Trans. Math. Softw. 23, 494–
513.
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Problems P7.3.4–P7.3.6 explore the relevance of the power method to the problem of computing the
Perron root and vector of a nonnegative matrix. For further background and insight, see:

A. Berman and R.J. Plemmons (1994). Nonnegative Matrices in the Mathematical Sciences, SIAM
Publications,Philadelphia, PA.

A.N. Langville and C.D. Meyer (2006). Google’s PageRank and Beyond, Princeton University Press,
Princeton and Oxford. .

The latter volume is outstanding in how it connects the tools of numerical linear algebra to the design
and analysis of Web browsers. See also:

W.J. Stewart (1994). Introduction to the Numerical Solution of Markov Chains, Princeton University
Press, Princeton, NJ.

M.W. Berry, Z. Drmač, and E.R. Jessup (1999). “Matrices, Vector Spaces, and Information Retrieval,”
SIAM Review 41, 335–362.

A.N. Langville and C.D. Meyer (2005). “A Survey of Eigenvector Methods for Web Information
Retrieval,” SIAM Review 47, 135–161.

A.N. Langville and C.D. Meyer (2006). “A Reordering for the PageRank Problem”, SIAM J. Sci.
Comput. 27, 2112–2120.

A.N. Langville and C.D. Meyer (2006). “Updating Markov Chains with an Eye on Google’s PageR-
ank,” SIAM J. Matrix Anal. Applic. 27, 968–987.

7.4 The Hessenberg and Real Schur Forms
In this and the next section we show how to make the QR iteration (7.3.1) a fast,
effective method for computing Schur decompositions. Because the majority of eigen-
value/invariant subspace problems involve real data, we concentrate on developing the
real analogue of (7.3.1) which we write as follows:

H0 = UT
0 AU0

for k = 1, 2, . . .

Hk−1 = UkRk (QR factorization) (7.4.1)

Hk = RkUk

end

Here, A ∈ IRn×n, each Uk ∈ IRn×n is orthogonal, and each Rk ∈ IRn×n is upper trian-
gular. A difficulty associated with this real iteration is that the Hk can never converge
to triangular form in the event that A has complex eigenvalues. For this reason, we
must lower our expectations and be content with the calculation of an alternative
decomposition known as the real Schur decomposition.

In order to compute the real Schur decomposition efficiently we must carefully
choose the initial orthogonal similarity transformation U0 in (7.4.1). In particular, if
we choose U0 so that H0 is upper Hessenberg, then the amount of work per iteration
is reduced from O(n3) to O(n2). The initial reduction to Hessenberg form (the U0
computation) is a very important computation in its own right and can be realized by
a sequence of Householder matrix operations.

7.4.1 The Real Schur Decomposition

A block upper triangular matrix with either 1-by-1 or 2-by-2 diagonal blocks is upper
quasi-triangular. The real Schur decomposition amounts to a real reduction to upper
quasi-triangular form.
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Theorem 7.4.1 (Real Schur Decomposition). If A ∈ IRn×n, then there exists an
orthogonal Q ∈ IRn×n such that

QT AQ =

⎡⎢⎢⎢⎣
R11 R12 · · · R1m

0 R22 · · · R2m

...
...

. . .
...

0 0 · · · Rmm

⎤⎥⎥⎥⎦ (7.4.2)

where each Rii is either a 1-by-1 matrix or a 2-by-2 matrix having complex conjugate
eigenvalues.

Proof. The complex eigenvalues of A occur in conjugate pairs since the characteristic
polynomial det(zI − A) has real coefficients. Let k be the number of complex conjugate
pairs in λ(A). We prove the theorem by induction on k. Observe first that Lemma
7.1.2 and Theorem 7.1.3 have obvious real analogs. Thus, the theorem holds if k = 0.
Now suppose that k ≥ 1. If λ = γ + iµ ∈ λ(A) and µ 
= 0, then there exist vectors y
and z in IRn(z 
= 0) such that A(y + iz) = (γ + iµ)(y + iz), i.e.,

A
[

y z
]

=
[

y z
] [ γ µ

−µ γ

]
.

The assumption that µ 
= 0 implies that y and z span a 2-dimensional, real invariant
subspace for A. It then follows from Lemma 7.1.2 that an orthogonal U ∈ IRn×n exists
such that

UT AU =
[

T11

0

T12

T22

]
2

n−2

2 n−2

where λ(T11) = {λ, λ̄}. By induction, there exists an orthogonal Ũ so ŨT T22Ũ has the
required structure. The theorem follows by setting Q = U·diag(I2, Ũ).

The theorem shows that any real matrix is orthogonally similar to an upper quasi-
triangular matrix. It is clear that the real and imaginary parts of the complex eigen-
values can be easily obtained from the 2-by-2 diagonal blocks. Thus, it can be said
that the real Schur decomposition is an eigenvalue-revealing decomposition.

7.4.2 A Hessenberg QR Step

We now turn our attention to the efficient execution of a single QR step in (7.4.1).
In this regard, the most glaring shortcoming associated with (7.4.1) is that each step
requires a full QR factorization costing O(n3) flops. Fortunately, the amount of work
per iteration can be reduced by an order of magnitude if the orthogonal matrix U0 is
judiciously chosen. In particular, if UT

0 AU0 = H0 = (hij) is upper Hessenberg (hij = 0,
i > j + 1), then each subsequent Hk requires only O(n2) flops to calculate. To see this
we look at the computations H = QR and H+ = RQ when H is upper Hessenberg.
As described in §5.2.5, we can upper triangularize H with a sequence of n − 1 Givens
rotations: QT H ≡ GT

n−1 · · ·GT
1 H = R. Here, Gi = G(i, i + 1, θi). For the n = 4 case

there are three Givens premultiplications:
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⎡⎢⎣ × × × ×
× × × ×
0 × × ×
0 0 × ×

⎤⎥⎦ →

⎡⎢⎣ × × × ×
0 × × ×
0 × × ×
0 0 × ×

⎤⎥⎦ →

⎡⎢⎣ × × × ×
0 × × ×
0 0 × ×
0 0 × ×

⎤⎥⎦ →

⎡⎢⎣ × × × ×
0 × × ×
0 0 × ×
0 0 0 ×

⎤⎥⎦ .

See Algorithm 5.2.5. The computation RQ = R(G1 · · ·Gn−1) is equally easy to imple-
ment. In the n = 4 case there are three Givens post-multiplications:⎡⎢⎣ × × × ×

0 × × ×
0 0 × ×
0 0 0 ×

⎤⎥⎦ →

⎡⎢⎣ × × × ×
× × × ×
0 0 × ×
0 0 0 ×

⎤⎥⎦ →

⎡⎢⎣ × × × ×
× × × ×
0 × × ×
0 0 0 ×

⎤⎥⎦ →

⎡⎢⎣ × × × ×
× × × ×
0 × × ×
0 0 × ×

⎤⎥⎦ .

Overall we obtain the following algorithm:

Algorithm 7.4.1 If H is an n-by-n upper Hessenberg matrix, then this algorithm
overwrites H with H+ = RQ where H = QR is the QR factorization of H.

for k = 1:n − 1

[ ck , sk ] = givens(H(k, k), H(k + 1, k))

H(k:k + 1, k:n) =

[
ck sk

−sk ck

]T

H(k:k + 1, k:n)

end
for k = 1:n − 1

H(1:k + 1, k:k + 1) = H(1:k + 1, k:k + 1)

[
ck sk

−sk ck

]
end

Let Gk = G(k, k+1, θk) be the kth Givens rotation. It is easy to confirm that the matrix
Q = G1 · · ·Gn−1 is upper Hessenberg. Thus, RQ = H+ is also upper Hessenberg. The
algorithm requires about 6n2 flops, an order of magnitude more efficient than a full
matrix QR step (7.3.1).

7.4.3 The Hessenberg Reduction

It remains for us to show how the Hessenberg decomposition

UT
0 AU0 = H, UT

0 U0 = I (7.4.3)

can be computed. The transformation U0 can be computed as a product of Householder
matrices P1, . . . , Pn−2. The role of Pk is to zero the kth column below the subdiagonal.
In the n = 6 case, we have⎡⎢⎢⎢⎢⎢⎣

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

⎤⎥⎥⎥⎥⎥⎦
P1→

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×

⎤⎥⎥⎥⎥⎥⎦
P2→
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⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×

⎤⎥⎥⎥⎥⎥⎦
P3→

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 × × ×

⎤⎥⎥⎥⎥⎥⎦
P4→

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎦ .

In general, after k−1 steps we have computed k−1 Householder matrices P1, . . . , Pk−1
such that

(P1 · · ·Pk−1)T A(P1 · · ·Pk−1) =

⎡⎢⎣ B11

B21

0

B12

B22

B32

B13

B23

B33

⎤⎥⎦ k−1

1

n−k

k−1 1 n−k

is upper Hessenberg through its first k − 1 columns. Suppose P̃k is an order-(n−k)
Householder matrix such that P̃kB32 is a multiple of e

(n−k)
1 . If Pk = diag(Ik, P̃k), then

(P1 · · ·Pk)T A(P1 · · ·Pk) =

⎡⎢⎣ B11 B12 B13P̃k

B21 B22 B23P̃k

0 P̃kB32 P̃kB33P̃k

⎤⎥⎦
is upper Hessenberg through its first k columns. Repeating this for k = 1:n−2 we
obtain

Algorithm 7.4.2 (Householder Reduction to Hessenberg Form) Given A ∈ IRn×n,
the following algorithm overwrites A with H = UT

0 AU0 where H is upper Hessenberg
and U0 is a product of Householder matrices.

for k = 1:n − 2

[v, β] = house(A(k + 1:n, k))

A(k + 1:n, k:n) = (I − βvvT )A(k + 1:n, k:n)

A(1:n, k + 1:n) = A(1:n, k + 1:n)(I − βvvT )
end

This algorithm requires 10n3/3 flops. If U0 is explicitly formed, an additional 4n3/3
flops are required. The kth Householder matrix can be represented in A(k + 2:n, k).
See Martin and Wilkinson (1968) for a detailed description.

The roundoff properties of this method for reducing A to Hessenberg form are
very desirable. Wilkinson (AEP, p. 351) states that the computed Hessenberg matrix
Ĥ satisfies

Ĥ = QT (A + E)Q,

where Q is orthogonal and ‖ E ‖
F

≤ cn2u‖ A ‖
F

with c a small constant.
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7.4.4 Level-3 Aspects

The Hessenberg reduction (Algorithm 7.4.2) is rich in level-2 operations: half gaxpys
and half outer product updates. We briefly mention two ideas for introducing level-3
computations into the process.

The first involves a block reduction to block Hessenberg form and is quite straight-
forward. Suppose (for clarity) that n = rN and write

A =
[

A11

A21

A12

A22

]
r

n−r

r n−r

.

Suppose that we have computed the QR factorization A21 = Q̃1R1 and that Q̃1 is in
WY form. That is, we have W1, Y1 ∈ IR(n−r)×r such that Q̃1 = I + W1Y

T
1 . (See §5.2.2

for details.) If Q1 = diag(Ir, Q̃1) then

QT
1 AQ1 =

[
A11 A12Q̃1

R1 Q̃T
1 A22Q̃1

]
.

Notice that the updates of the (1,2) and (2,2) blocks are rich in level-3 operations given
that Q̃1 is in WY form. This fully illustrates the overall process as QT

1 AQ1 is block
upper Hessenberg through its first block column. We next repeat the computations on
the first r columns of Q̃T

1 A22Q̃1. After N − 1 such steps we obtain

H = UT
0 AU0 =

⎡⎢⎢⎢⎢⎢⎢⎣

H11 H12 · · · · · · H1N

H21 H22 · · · · · · H2N

0
. . . . . . · · ·

...
...

...
. . . . . .

...
0 0 · · · HN,N−1 HNN

⎤⎥⎥⎥⎥⎥⎥⎦
where each Hij is r-by-r and U0 = Q1 · · ·QN−2 with each Qi in WY form. The overall
algorithm has a level-3 fraction of the form 1 - O(1/N). Note that the subdiagonal
blocks in H are upper triangular and so the matrix has lower bandwidth r. It is possible
to reduce H to actual Hessenberg form by using Givens rotations to zero all but the
first subdiagonal.

Dongarra, Hammarling, and Sorensen (1987) have shown how to proceed directly
to Hessenberg form using a mixture of gaxpys and level-3 updates. Their idea involves
minimal updating after each Householder transformation is generated. For example,
suppose the first Householder P1 has been computed. To generate P2 we need just the
second column of P1AP1, not the full outer product update. To generate P3 we need
just the thirrd column of P2P1AP1P2, etc. In this way, the Householder matrices can
be determined using only gaxpy operations. No outer product updates are involved.
Once a suitable number of Householder matrices are known they can be aggregated
and applied in level-3 fashion.

For more about the challenges of organizing a high-performance Hessenberg re-
duction, see Karlsson (2011).
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7.4.5 Important Hessenberg Matrix Properties

The Hessenberg decomposition is not unique. If Z is any n-by-n orthogonal matrix
and we apply Algorithm 7.4.2 to ZT AZ, then QT AQ = H is upper Hessenberg where
Q = ZU0. However, Qe1 = Z(U0e1) = Ze1 suggesting that H is unique once the
first column of Q is specified. This is essentially the case provided H has no zero
subdiagonal entries. Hessenberg matrices with this property are said to be unreduced.
Here is important theorem that clarifies these issues.

Theorem 7.4.2 ( Implicit Q Theorem ). Suppose Q = [ q1 | · · · | qn ] and V =
[ v1 | · · · | vn ] are orthogonal matrices with the property that the matrices QT AQ = H
and V T AV = G are each upper Hessenberg where A ∈ IRn×n. Let k denote the smallest
positive integer for which hk+1,k = 0, with the convention that k = n if H is unreduced.
If q1 = v1, then qi = ±vi and |hi,i−1| = |gi,i−1| for i = 2:k. Moreover, if k < n, then
gk+1,k = 0.

Proof. Define the orthogonal matrix W = [ w1 | · · · | wn ] = V T Q and observe that
GW = WH. By comparing column i − 1 in this equation for i = 2:k we see that

hi,i−1wi = Gwi−1 −
i−1∑
j=1

hj,i−1wj .

Since w1 = e1, it follows that [ w1 | · · · | wk ] is upper triangular and so for i = 2:k we
have wi = ±In(:, i) = ±ei. Since wi = V T qi and hi,i−1 = wT

i Gwi−1 it follows that
vi = ±qi and

|hi,i−1| = |qT
i Aqi−1| = |vT

i Avi−1| = |gi,i−1|
for i = 2:k. If k < n, then

gk+1,k = eT
k+1Gek = ±eT

k+1GWek = ±eT
k+1WHek

= ±eT
k+1

k∑
i=1

hikWei = ±
k∑

i=1

hikeT
k+1ei = 0,

completing the proof of the theorem.

The gist of the implicit Q theorem is that if QT AQ = H and ZT AZ = G are each unre-
duced upper Hessenberg matrices and Q and Z have the same first column, then G and
H are “essentially equal” in the sense that G = D−1HD where D = diag(±1, . . . ,±1).

Our next theorem involves a new type of matrix called a Krylov matrix. If
A ∈ IRn×n and v ∈ IRn, then the Krylov matrix K(A, v, j) ∈ IRn×j is defined by

K(A, v, j) =
[
v | Av | . . . | Aj−1v

]
.

It turns out that there is a connection between the Hessenberg reduction QT AQ = H
and the QR factorization of the Krylov matrix K(A, Q(:, 1), n).

Theorem 7.4.3. Suppose Q ∈ IRn×n is an orthogonal matrix and A ∈ IRn×n. Then
QT AQ = H is an unreduced upper Hessenberg matrix if and only if QT K(A, Q(:, 1), n) =
R is nonsingular and upper triangular.
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Proof. Suppose Q ∈ IRn×n is orthogonal and set H = QT AQ. Consider the identity

QT K(A, Q(:, 1), n) =
[
e1 | He1 | . . . | Hn−1e1

]
≡ R.

If H is an unreduced upper Hessenberg matrix, then it is clear that R is upper triangular
with rii = h21h32 · · ·hi,i−1 for i = 2:n. Since r11 = 1 it follows that R is nonsingular.

To prove the converse, suppose R is upper triangular and nonsingular. Since
R(:, k + 1) = HR(:, k) it follows that H(:, k) ∈ span{ e1, . . . , ek+1 }. This implies that
H is upper Hessenberg. Since rnn = h21h32 · · ·hn,n−1 
= 0 it follows that H is also
unreduced.

Thus, there is more or less a correspondence between nonsingular Krylov matrices and
orthogonal similarity reductions to unreduced Hessenberg form.

Our last result is about the geometric multiplicity of an eigenvalue of an unreduced
upper Hessenberg matrix.

Theorem 7.4.4. If λ is an eigenvalue of an unreduced upper Hessenberg matrix
H ∈ IRn×n, then its geometric multiplicity is 1.

Proof. For any λ ∈ C we have rank(A − λI) ≥ n − 1 because the first n − 1 columns
of H − λI are independent.

7.4.6 Companion Matrix Form

Just as the Schur decomposition has a nonunitary analogue in the Jordan decomposi-
tion, so does the Hessenberg decomposition have a nonunitary analog in the companion
matrix decomposition. Let x ∈ IRn and suppose that the Krylov matrix K = K(A, x, n)
is nonsingular. If c = c(0:n − 1) solves the linear system Kc = −Anx, then it follows
that AK = KC where C has the form

C =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
...

...
...

0 0 · · · 1 −cn−1

⎤⎥⎥⎥⎥⎥⎦ . (7.4.4)

The matrix C is said to be a companion matrix. Since

det(zI − C) = c0 + c1z + · · · + cn−1z
n−1 + zn,

it follows that if K is nonsingular, then the decomposition K−1AK = C displays A’s
characteristic polynomial. This, coupled with the sparseness of C, leads to “companion
matrix methods” in various application areas. These techniques typically involve:

Step 1. Compute the Hessenberg decomposition UT
0 AU0 = H.

Step 2. Hope H is unreduced and set Y =
[
e1 | He1 | . . . | Hn−1e1

]
.

Step 3. Solve Y C = HY for C.
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Unfortunately, this calculation can be highly unstable. A is similar to an unreduced
Hessenberg matrix only if each eigenvalue has unit geometric multiplicity. Matrices
that have this property are called nonderogatory. It follows that the matrix Y above
can be very poorly conditioned if A is close to a derogatory matrix.

A full discussion of the dangers associated with companion matrix computation
can be found in Wilkinson (AEP, pp. 405ff.).

Problems

P7.4.1 Suppose A ∈ IRn×n and z ∈ IRn. Give a detailed algorithm for computing an orthogonal Q
such that QT AQ is upper Hessenberg and QT z is a multiple of e1. Hint: Reduce z first and then apply
Algorithm 7.4.2.

P7.4.2 Develop a similarity reduction to Hessenberg form using Gauss transforms with pivoting. How
many flops are required. See Businger (1969).

P7.4.3 In some situations, it is necessary to solve the linear system (A + zI)x = b for many different
values of z ∈ IR and b ∈ IRn. Show how this problem can be efficiently and stably solved using the
Hessenberg decomposition.

P7.4.4 Suppose H ∈ IRn×n is an unreduced upper Hessenberg matrix. Show that there exists a
diagonal matrix D such that each subdiagonal element of D−1HD is equal to 1. What is κ2(D)?

P7.4.5 Suppose W, Y ∈ IRn×n and define the matrices C and B by

C = W + iY, B =

[
W −Y

Y W

]
.

Show that if λ ∈ λ(C) is real, then λ ∈ λ(B). Relate the corresponding eigenvectors.

P7.4.6 Suppose

A =
[

w x
y z

]
is a real matrix having eigenvalues λ±iµ, where µ is nonzero. Give an algorithm that stably determines
c = cos(θ) and s = sin(θ) such that[

c s
−s c

]T [
w x
y z

][
c s

−s c

]
=

[
λ β
α λ

]
where αβ = −µ2.

P7.4.7 Suppose (λ, x) is a known eigenvalue-eigenvector pair for the upper Hessenberg matrix H ∈ IRn×n.
Give an algorithm for computing an orthogonal matrix P such that

P T HP =
[

λ wT

0 H1

]
where H1 ∈ IR(n−1)×(n−1) is upper Hessenberg. Compute P as a product of Givens rotations.

P7.4.8 Suppose H ∈ IRn×n has lower bandwidth p. Show how to compute Q ∈ IRn×n, a product of
Givens rotations, such that QT HQ is upper Hessenberg. How many flops are required?

P7.4.9 Show that if C is a companion matrix with distinct eigenvalues λ1, . . . , λn, then V CV −1 =
diag(λ1, . . . , λn) where

V =

⎡⎢⎢⎣
1 λ1 · · · λn−1

1
1 λ2 · · · λn−1

2
...

...
. . .

...
1 λn · · · λn−1

n

⎤⎥⎥⎦ .

Notes and References for §7.4
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7.5 The Practical QR Algorithm
We return to the Hessenberg QR iteration, which we write as follows:

H = UT
0 AU0 (Hessenberg reduction)

for k = 1, 2, . . .

H = UR (QR factorization) (7.5.1)

H = RU
end

Our aim in this section is to describe how the H’s converge to upper quasi-triangular
form and to show how the convergence rate can be accelerated by incorporating shifts.

7.5.1 Deflation

Without loss of generality we may assume that each Hessenberg matrix H in (7.5.1) is
unreduced. If not, then at some stage we have

H =
[

H11

0

H12

H22

]
p

n−p

p n−p

where 1 ≤ p < n and the problem decouples into two smaller problems involving H11
and H22. The term deflation is also used in this context, usually when p = n − 1 or
n − 2.

In practice, decoupling occurs whenever a subdiagonal entry in H is suitably
small. For example, if

|hp+1,p| ≤ cu(|hpp| + |hp+1,p+1|) (7.5.2)

for a small constant c, then hp+1,p can justifiably be set to zero because rounding errors
of order u‖ H ‖ are typically present throughout the matrix anyway.

7.5.2 The Shifted QR Iteration

Let µ ∈ IR and consider the iteration:

H = UT
0 AU0 (Hessenberg reduction)

for k = 1, 2, . . .

Determine a scalar µ.

H − µI = UR (QR factorization) (7.5.3)

H = RU + µI
end

The scalar µ is referred to as a shift . Each matrix H generated in (7.5.3) is similar to
A, since

RU + µI = UT (UR + µI)U = UT HU.
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If we order the eigenvalues λi of A so that

|λ1 − µ| ≥ · · · ≥ |λn − µ|,
and µ is fixed from iteration to iteration, then the theory of §7.3 says that the pth
subdiagonal entry in H converges to zero with rate∣∣∣∣λp+1 − µ

λp − µ

∣∣∣∣k .

Of course, if λp = λp+1, then there is no convergence at all. But if, for example, µ
is much closer to λn than to the other eigenvalues, then the zeroing of the (n, n − 1)
entry is rapid. In the extreme case we have the following:

Theorem 7.5.1. Let µ be an eigenvalue of an n-by-n unreduced Hessenberg matrix
H. If

H̃ = RU + µI,

where H −µI = UR is the QR factorization of H −µI, then h̃n,n−1 = 0 and h̃nn = µ.

Proof. Since H is an unreduced Hessenberg matrix the first n− 1 columns of H − µI
are independent, regardless of µ. Thus, if UR = (H −µI) is the QR factorization then
rii 
= 0 for i = 1:n − 1. But if H − µI is singular, then r11 · · · rnn = 0 . Thus, rnn = 0
and H̃(n, :) = [ 0, . . . , 0, µ ].

The theorem says that if we shift by an exact eigenvalue, then in exact arithmetic
deflation occurs in one step.

7.5.3 The Single-Shift Strategy

Now let us consider varying µ from iteration to iteration incorporating new information
about λ(A) as the subdiagonal entries converge to zero. A good heuristic is to regard
hnn as the best approximate eigenvalue along the diagonal. If we shift by this quantity
during each iteration, we obtain the single-shift QR iteration:

for k = 1, 2, . . .

µ = H(n, n)

H − µI = UR (QR factorization) (7.5.4)

H = RU + µI
end

If the (n, n− 1) entry converges to zero, it is likely to do so at a quadratic rate. To see
this, we borrow an example from Stewart (IMC, p. 366). Suppose H is an unreduced
upper Hessenberg matrix of the form

H =

⎡⎢⎢⎢⎢⎣
× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 ε hnn

⎤⎥⎥⎥⎥⎦
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and that we perform one step of the single-shift QR algorithm, i.e.,

UR = H − hnn

H̃ = RU + hnnI.

After n− 2 steps in the orthogonal reduction of H −hnnI to upper triangular form we
obtain a matrix with the following structure:

H =

⎡⎢⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 a b
0 0 0 ε 0

⎤⎥⎥⎥⎥⎦ .

It is not hard to show that

h̃n,n−1 = − ε2b

a2 + ε2
.

If we assume that ε � a, then it is clear that the new (n, n − 1) entry has order ε2,
precisely what we would expect of a quadratically converging algorithm.

7.5.4 The Double-Shift Strategy

Unfortunately, difficulties with (7.5.4) can be expected if at some stage the eigenvalues
a1 and a2 of

G =

[
hmm hmn

hnm hnn

]
, m = n−1, (7.5.5)

are complex for then hnn would tend to be a poor approximate eigenvalue.
A way around this difficulty is to perform two single-shift QR steps in succession

using a1 and a2 as shifts:

H − a1I = U1R1

H1 = R1U1 + a1I (7.5.6)
H1 − a2I = U2R2

H2 = R2U2 + a2I

These equations can be manipulated to show that

(U1U2)(R2R1) = M (7.5.7)

where M is defined by
M = (H − a1I)(H − a2I). (7.5.8)

Note that M is a real matrix even if G’s eigenvalues are complex since

M = H2 − sH + tI

where
s = a1 + a2 = hmm + hnn = tr(G) ∈ IR
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and
t = a1a2 = hmmhnn − hmnhnm = det(G) ∈ IR.

Thus, (7.5.7) is the QR factorization of a real matrix and we may choose U1 and U2 so
that Z = U1U2 is real orthogonal. It then follows that

H2 = UH
2 H1U2 = UH

2 (UH
1 HU1)U2 = (U1U2)HH(U1U2) = ZT HZ

is real.
Unfortunately, roundoff error almost always prevents an exact return to the real

field. A real H2 could be guaranteed if we

• explicitly form the real matrix M = H2 − sH + tI,

• compute the real QR factorization M = ZR, and

• set H2 = ZT HZ.

But since the first of these steps requires O(n3) flops, this is not a practical course of
action.

7.5.5 The Double-Implicit-Shift Strategy

Fortunately, it turns out that we can implement the double-shift step with O(n2) flops
by appealing to the implicit Q theorem of §7.4.5. In particular we can effect the
transition from H to H2 in O(n2) flops if we

• compute Me1, the first column of M ;

• determine a Householder matrix P0 such that P0(Me1) is a multiple of e1;

• compute Householder matrices P1, . . . , Pn−2 such that if

Z1 = P0P1 · · ·Pn−2,

then ZT
1 HZ1 is upper Hessenberg and the first columns of Z and Z1 are the same.

Under these circumstances, the implicit Q theorem permits us to conclude that, if
ZT HZ and ZT

1 HZ1 are both unreduced upper Hessenberg matrices, then they are
essentially equal. Note that if these Hessenberg matrices are not unreduced, then we
can effect a decoupling and proceed with smaller unreduced subproblems.

Let us work out the details. Observe first that P0 can be determined in O(1)
flops since Me1 = [x, y, z, 0, . . . , 0]T where

x = h2
11 + h12h21 − sh11 + t,

y = h21(h11 + h22 − s),

z = h21h32.

Since a similarity transformation with P0 only changes rows and columns 1, 2, and 3,
we see that
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P0HP0 =

⎡⎢⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
0 0 0 × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎥⎦ .

Now the mission of the Householder matrices P1, . . . , Pn−2 is to restore this matrix to
upper Hessenberg form. The calculation proceeds as follows:

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
0 0 0 × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎦
P1→

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎦
P2→

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×

⎤⎥⎥⎥⎥⎥⎦
P3→

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 × × ×

⎤⎥⎥⎥⎥⎥⎦
P4→

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎦ .

Each Pk is the identity with a 3-by-3 or 2-by-2 Householder somewhere along its diag-
onal, e.g.,

P1 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 × × × 0 0
0 × × × 0 0
0 × × × 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ , P2 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 × × × 0
0 0 × × × 0
0 0 × × × 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ ,

P3 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 × × ×
0 0 0 × × ×
0 0 0 × × ×

⎤⎥⎥⎥⎥⎥⎦ , P4 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 × 0 0
0 0 0 × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎦ .

The applicability of Theorem 7.4.3 (the implicit Q theorem) follows from the
observation that Pke1 = e1 for k = 1:n − 2 and that P0 and Z have the same first
column. Hence, Z1e1 = Ze1, and we can assert that Z1 essentially equals Z provided
that the upper Hessenberg matrices ZT HZ and ZT

1 HZ1 are each unreduced.
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The implicit determination of H2 from H outlined above was first described by
Francis (1961) and we refer to it as a Francis QR step. The complete Francis step is
summarized as follows:

Algorithm 7.5.1 (Francis QR step) Given the unreduced upper Hessenberg matrix
H ∈ IRn×n whose trailing 2-by-2 principal submatrix has eigenvalues a1 and a2, this
algorithm overwrites H with ZT HZ, where Z is a product of Householder matrices
and ZT (H − a1I)(H − a2I) is upper triangular.

m = n − 1

{Compute first column of (H − a1I)(H − a2I)}
s = H(m, m) + H(n, n)

t = H(m, m)·H(n, n) − H(m, n)·H(n, m)

x = H(1, 1)·H(1, 1) + H(1, 2)·H(2, 1) − s·H(1, 1) + t

y = H(2, 1)·(H(1, 1) + H(2, 2) − s)

z = H(2, 1)·H(3, 2)
for k = 0:n − 3

[v, β] = house([x y z]T )

q = max{1, k}.
H(k + 1:k + 3, q:n) = (I − βvvT )·H(k + 1:k + 3, q:n)

r = min{k + 4, n}
H(1:r, k + 1:k + 3) = H(1:r, k + 1:k + 3)·(I − βvvT )
x = H(k + 2, k + 1)

y = H(k + 3, k + 1)

if k < n − 3

z = H(k + 4, k + 1)
end

end

[v, β] = house([ x y ]T )

H(n − 1:n, n − 2:n) = (I − βvvT )·H(n − 1:n, n − 2:n)

H(1:n, n − 1:n) = H(1:n, n − 1:n)·(I − βvvT )

This algorithm requires 10n2 flops. If Z is accumulated into a given orthogonal matrix,
an additional 10n2 flops are necessary.

7.5.6 The Overall Process

Reduction of A to Hessenberg form using Algorithm 7.4.2 and then iteration with
Algorithm 7.5.1 to produce the real Schur form is the standard means by which the
dense unsymmetric eigenproblem is solved. During the iteration it is necessary to
monitor the subdiagonal elements in H in order to spot any possible decoupling. How
this is done is illustrated in the following algorithm:
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Algorithm 7.5.2 (QR Algorithm) Given A ∈ IRn×n and a tolerance tol greater than
the unit roundoff, this algorithm computes the real Schur canonical form QT AQ = T .
If Q and T are desired, then T is stored in H. If only the eigenvalues are desired, then
diagonal blocks in T are stored in the corresponding positions in H.

Use Algorithm 7.4.2 to compute the Hessenberg reduction

H = UT
0 AU0 where U0=P1 · · ·Pn−2.

If Q is desired form Q = P1 · · ·Pn−2. (See §5.1.6.)

until q = n
Set to zero all subdiagonal elements that satisfy:

|hi,i−1| ≤ tol·(|hii| + |hi−1,i−1|).
Find the largest nonnegative q and the smallest non-negative p such that

H =

⎡⎣ H11
0
0

H12
H22

0

H13
H23

H33

⎤⎦ p

n−p−q

q

p n−p−q q

where H33 is upper quasi-triangular and H22 is unreduced.

if q < n

Perform a Francis QR step on H22: H22 = ZT H22Z.

if Q is required
Q = Q · diag(Ip, Z, Iq)

H12 = H12Z

H23 = ZT H23
end

end
end

Upper triangularize all 2-by-2 diagonal blocks in H that have real
eigenvalues and accumulate the transformations (if necessary).

This algorithm requires 25n3 flops if Q and T are computed. If only the eigenvalues
are desired, then 10n3 flops are necessary. These flops counts are very approximate
and are based on the empirical observation that on average only two Francis iterations
are required before the lower 1-by-1 or 2-by-2 decouples.

The roundoff properties of the QR algorithm are what one would expect of any
orthogonal matrix technique. The computed real Schur form T̂ is orthogonally similar
to a matrix near to A, i.e.,

QT (A + E)Q = T̂

where QT Q = I and ‖ E ‖2 ≈ u‖ A ‖2. The computed Q̂ is almost orthogonal in the
sense that Q̂T Q̂ = I + F where ‖ F ‖2 ≈ u.

The order of the eigenvalues along T̂ is somewhat arbitrary. But as we discuss
in §7.6, any ordering can be achieved by using a simple procedure for swapping two
adjacent diagonal entries.
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7.5.7 Balancing

Finally, we mention that if the elements of A have widely varying magnitudes, then A
should be balanced before applying the QR algorithm. This is an O(n2) calculation in
which a diagonal matrix D is computed so that if

D−1AD = [ c1 | · · · | cn ] =

⎡⎢⎣ rT
1
...

rT
n

⎤⎥⎦
then ‖ ri ‖∞ ≈ ‖ ci ‖∞ for i = 1:n. The diagonal matrix D is chosen to have the form

D = diag(βi1 , . . . , βin)

where β is the floating point base. Note that D−1AD can be calculated without
roundoff. When A is balanced, the computed eigenvalues are usually more accurate
although there are exceptions. See Parlett and Reinsch (1969) and Watkins(2006).

Problems

P7.5.1 Show that if H̄ = QT HQ is obtained by performing a single-shift QR step with

H =
[

w x
y z

]
,

then |h̄21| ≤ |y2x|/[(w − z)2 + y2].

P7.5.2 Given A ∈ IR2×2, show how to compute a diagonal D ∈ IR2×2 so that ‖D−1AD ‖F is minimized.

P7.5.3 Explain how the single-shift QR step H−µI = UR, H̃ = RU +µI can be carried out implicitly.
That is, show how the transition from H to H̃ can be carried out without subtracting the shift µ from
the diagonal of H.

P7.5.4 Suppose H is upper Hessenberg and that we compute the factorization PH = LU via Gaussian
elimination with partial pivoting. (See Algorithm 4.3.4.) Show that H1 = U(P T L) is upper Hessenberg
and similar to H. (This is the basis of the modified LR algorithm.)

P7.5.5 Show that if H = H0 is given and we generate the matrices Hk via Hk − µkI = UkRk, Hk+1

= RkUk + µkI, then (U1 · · ·Uj)(Rj · · ·R1) = (H − µ1I) · · · (H − µjI).
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7.6 Invariant Subspace Computations
Several important invariant subspace problems can be solved once the real Schur de-
composition QT AQ = T has been computed. In this section we discuss how to

• compute the eigenvectors associated with some subset of λ(A),

• compute an orthonormal basis for a given invariant subspace,

• block-diagonalize A using well-conditioned similarity transformations,

• compute a basis of eigenvectors regardless of their condition, and

• compute an approximate Jordan canonical form of A.

Eigenvector/invariant subspace computation for sparse matrices is discussed in §7.3.1
and §7.3.2 as well as portions of Chapters 8 and 10.

7.6.1 Selected Eigenvectors via Inverse Iteration

Let q(0) ∈ IRn be a given unit 2-norm vector and assume that A − µI ∈ IRn×n is non-
singular. The following is referred to as inverse iteration:

for k = 1, 2, . . .

Solve (A − µI)z(k) = q(k−1).

q(k) = z(k)/‖ z(k) ‖2 (7.6.1)

λ(k) = q(k)T
Aq(k)

end

Inverse iteration is just the power method applied to (A − µI)−1.
To analyze the behavior of (7.6.1), assume that A has a basis of eigenvectors

{x1, . . . , xn} and that Axi = λixi for i = 1:n. If

q(0) =
n∑

i=1

βixi

then q(k) is a unit vector in the direction of

(A − µI)−kq(0) =
n∑

i=1

βi

(λi − µ)k
xi.

Clearly, if µ is much closer to an eigenvalue λj than to the other eigenvalues, then q(k)

is rich in the direction of xj provided βj 
= 0.
A sample stopping criterion for (7.6.1) might be to quit as soon as the residual

r(k) = (A − µI)q(k)

satisfies
‖ r(k) ‖∞ ≤ cu‖ A ‖∞ (7.6.2)
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where c is a constant of order unity. Since

(A + Ek)q(k) = µq(k)

with Ek = −r(k)q(k)T , it follows that (7.6.2) forces µ and q(k) to be an exact eigenpair
for a nearby matrix.

Inverse iteration can be used in conjunction with Hessenberg reduction and the
QR algorithm as follows:

Step 1. Compute the Hessenberg decomposition UT
0 AU0 = H.

Step 2. Apply the double-implicit-shift Francis iteration to H without accumulating
transformations.

Step 3. For each computed eigenvalue λ whose corresponding eigenvector x is sought,
apply (7.6.1) with A = H and µ = λ to produce a vector z such that Hz ≈ µz.

Step 4. Set x = U0z.

Inverse iteration with H is very economical because we do not have to accumulate
transformations during the double Francis iteration. Moreover, we can factor matrices
of the form H − λI in O(n2) flops, and (3) only one iteration is typically required to
produce an adequate approximate eigenvector.

This last point is perhaps the most interesting aspect of inverse iteration and re-
quires some justification since λ can be comparatively inaccurate if it is ill-conditioned.
Assume for simplicity that λ is real and let

H − λI =
n∑

i=1

σiuiv
T
i = UΣV T

be the SVD of H − λI. From what we said about the roundoff properties of the QR
algorithm in §7.5.6, there exists a matrix E ∈ IRn×n such that H + E − λI is singular
and ‖ E ‖2 ≈ u‖ H ‖2. It follows that σn ≈ uσ1 and

‖ (H − λ̂I)vn ‖2 ≈ uσ1,

i.e., vn is a good approximate eigenvector. Clearly if the starting vector q(0) has the
expansion

q(0) =
n∑

i=1

γiui

then

z(1) =
n∑

i=1

γi

σi
vi

is “rich” in the direction vn. Note that if s(λ) ≈ |uT
nvn| is small, then z(1) is rather

deficient in the direction un. This explains (heuristically) why another step of inverse
iteration is not likely to produce an improved eigenvector approximate, especially if λ
is ill-conditioned. For more details, see Peters and Wilkinson (1979).
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7.6.2 Ordering Eigenvalues in the Real Schur Form

Recall that the real Schur decomposition provides information about invariant sub-
spaces. If

QT AQ = T =
[

T11

0

T12

T22

]
p

q

p q

and

λ(T11) ∩ λ(T22) = ∅,

then the first p columns of Q span the unique invariant subspace associated with
λ(T11). (See §7.1.4.) Unfortunately, the Francis iteration supplies us with a real Schur
decomposition QT

F AQF = TF in which the eigenvalues appear somewhat randomly
along the diagonal of TF . This poses a problem if we want an orthonormal basis for
an invariant subspace whose associated eigenvalues are not at the top of TF ’s diagonal.
Clearly, we need a method for computing an orthogonal matrix QD such that QT

DTF QD

is upper quasi-triangular with appropriate eigenvalue ordering.
A look at the 2-by-2 case suggests how this can be accomplished. Suppose

QT
F AQF = TF =

[
λ1 t12

0 λ2

]
, λ1 
= λ2

and that we wish to reverse the order of the eigenvalues. Note that

TF x = λ2x

where

x =

[
t12

λ2 − λ1

]
.

Let QD be a Givens rotation such that the second component of QT
Dx is zero. If

Q = QF QD,

then
(QT AQ)e1 = QT

DTF (QDe1) = λ2Q
T
D(QDe1) = λ2e1.

The matrices A and QT AQ have the same Frobenius norm and so it follows that the
latter must have the following form:

QT AQ =

[
λ2 ±t12

0 λ1

]
.

The swapping gets a little more complicated if T has 2-by-2 blocks along its diagonal.
See Ruhe (1970) and Stewart (1976) for details.

By systematically interchanging adjacent pairs of eigenvalues (or 2-by-2 blocks),
we can move any subset of λ(A) to the top of T ’s diagonal. Here is the overall procedure
for the case when there are no 2-by-2 bumps:
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Algorithm 7.6.1 Given an orthogonal matrix Q ∈ IRn×n, an upper triangular matrix
T = QT AQ, and a subset ∆ = {λ1, . . . , λp} of λ(A), the following algorithm computes
an orthogonal matrix QD such that QT

DTQD = S is upper triangular and {s11, . . . , spp}
= ∆. The matrices Q and T are overwritten by QQD and S, respectively.

while {t11, . . . , tpp} 
= ∆

for k = 1:n − 1

if tkk 
∈ ∆ and tk+1,k+1 ∈ ∆

[ c, s ] = givens(T (k, k + 1), T (k + 1, k + 1) − T (k, k))

T (k:k + 1, k:n) =
[

c s
−s c

]T

T (k:k + 1, k:n)

T (1:k + 1, k:k + 1) = T (1:k + 1, k:k + 1)
[

c s
−s c

]
Q(1:n, k:k + 1) = Q(1:n, k:k + 1)

[
c s

−s c

]
end

end
end

This algorithm requires k(12n) flops, where k is the total number of required swaps.
The integer k is never greater than (n − p)p.

Computation of invariant subspaces by manipulating the real Schur decomposi-
tion is extremely stable. If Q̂ = [ q̂1 | · · · | q̂n ] denotes the computed orthogonal matrix
Q, then ‖ Q̂T Q̂ − I ‖2 ≈ u and there exists a matrix E satisfying ‖ E ‖2 ≈ u‖ A ‖2
such that (A + E)q̂i ∈ span{q̂1, . . . , q̂p} for i = 1:p.

7.6.3 Block Diagonalization

Let

T =

⎡⎢⎢⎢⎣
T11
0
...
0

T12
T22
...
0

· · ·
· · ·
. . .
· · ·

T1q

T2q

...
Tqq

⎤⎥⎥⎥⎦
n1

n2

nq

n1 n2 nq

(7.6.3)

be a partitioning of some real Schur canonical form QT AQ = T ∈ IRn×n such that
λ(T11), . . . , λ(Tqq) are disjoint. By Theorem 7.1.6 there exists a matrix Y such that

Y −1TY = diag(T11, . . . , Tqq).

A practical procedure for determining Y is now given together with an analysis of Y ’s
sensitivity as a function of the above partitioning.

Partition In = [E1| · · · |Eq ] conformably with T and define the matrix Yij ∈ IRn×n

as follows:
Yij = In + EiZijE

T
j , i < j, Zij ∈ IRni×nj .
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In other words, Yij looks just like the identity except that Zij occupies the (i, j) block
position. It follows that if Y −1

ij TYij = T̄ = (T̄ij), then T and T̄ are identical except
that

T̄ij = TiiZij − ZijTjj + Tij ,

T̄ik = Tik − ZijTjk, (k = j + 1:q),

T̄kj = TkiZij + Tkj , (k = 1:i − 1) .

Thus, Tij can be zeroed provided we have an algorithm for solving the Sylvester equa-
tion

FZ − ZG = C (7.6.4)

where F ∈ IRp×p and G ∈ IRr×r are given upper quasi-triangular matrices and C ∈ IRp×r.
Bartels and Stewart (1972) have devised a method for doing this. Let C =

[ c1 | · · · | cr ] and Z = [ z1 | · · · | zr ] be column partitionings. If gk+1,k = 0, then by
comparing columns in (7.6.4) we find

Fzk −
k∑

i=1

gikzi = ck.

Thus, once we know z1, . . . , zk−1, then we can solve the quasi-triangular system

(F − gkkI) zk = ck +
k−1∑
i=1

gikzi

for zk. If gk+1,k 
= 0, then zk and zk+1 can be simultaneously found by solving the
2p-by-2p system[

F − gkkI −gmkI

−gkmI F − gmmI

][
zk

zm

]
=

[
ck

cm

]
+

k−1∑
i=1

[
gikzi

gimzi

]
(7.6.5)

where m = k + 1. By reordering the equations according to the perfect shuffle per-
mutation (1, p + 1, 2, p + 2, . . . , p, 2p), a banded system is obtained that can be solved
in O(p2) flops. The details may be found in Bartels and Stewart (1972). Here is the
overall process for the case when F and G are each triangular.

Algorithm 7.6.2 (Bartels-Stewart Algorithm) Given C ∈ IRp×r and upper triangular
matrices F ∈ IRp×p and G ∈ IRr×r that satisfy λ(F )∩λ(G) = ∅, the following algorithm
overwrites C with the solution to the equation FZ − ZG = C.

for k = 1:r

C(1:p, k) = C(1:p, k) + C(1:p, 1:k − 1)·G(1:k − 1, k)

Solve (F − G(k, k)I)z = C(1:p, k) for z.

C(1:p, k) = z
end

This algorithm requires pr(p + r) flops. By zeroing the superdiagonal blocks in T in
the appropriate order, the entire matrix can be reduced to block diagonal form.
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Algorithm 7.6.3 Given an orthogonal matrix Q ∈ IRn×n, an upper quasi-triangular
matrix T = QT AQ, and the partitioning (7.6.3), the following algorithm overwrites Q
with QY where Y −1TY = diag(T11, . . . , Tqq).

for j = 2:q

for i = 1:j − 1

Solve TiiZ − ZTjj = −Tij for Z using the Bartels-Stewart algorithm.

for k = j + 1:q

Tik = Tik − ZTjk

end

for k = 1:q

Qkj = QkiZ + Qkj

end
end

end

The number of flops required by this algorithm is a complicated function of the block
sizes in (7.6.3).

The choice of the real Schur form T and its partitioning in (7.6.3) determines
the sensitivity of the Sylvester equations that must be solved in Algorithm 7.6.3. This
in turn affects the condition of the matrix Y and the overall usefulness of the block
diagonalization. The reason for these dependencies is that the relative error of the
computed solution Ẑ to

TiiZ − ZTjj = −Tij (7.6.6)

satisfies
‖ Ẑ − Z ‖

F

‖ Z ‖
F

≈ u
‖ T ‖

F

sep(Tii, Tjj)
.

For details, see Golub, Nash, and Van Loan (1979). Since

sep(Tii, Tjj) = min
X �=0

‖ TiiX − XTjj ‖F

‖ X ‖
F

≤ min
λ∈λ(Tii)
µ∈λ(Tjj)

|λ − µ|

there can be a substantial loss of accuracy whenever the subsets λ(Tii) are insufficiently
separated. Moreover, if Z satisfies (7.6.6) then

‖ Z ‖
F

≤ ‖ Tij ‖F

sep(Tii, Tjj)
.

Thus, large norm solutions can be expected if sep(Tii, Tjj) is small. This tends to make
the matrix Y in Algorithm 7.6.3 ill-conditioned since it is the product of the matrices

Yij =

[
Ini

Z

0 Inj

]
.

Note that κF (Yij) = n2
i + n2

j + ‖ Z ‖2
F
.
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Confronted with these difficulties, Bavely and Stewart (1979) develop an algo-
rithm for block diagonalizing that dynamically determines the eigenvalue ordering and
partitioning in (7.6.3) so that all the Z matrices in Algorithm 7.6.3 are bounded in
norm by some user-supplied tolerance. Their research suggests that the condition of Y
can be controlled by controlling the condition of the Yij .

7.6.4 Eigenvector Bases

If the blocks in the partitioning (7.6.3) are all 1-by-1, then Algorithm 7.6.3 produces a
basis of eigenvectors. As with the method of inverse iteration, the computed eigenvalue-
eigenvector pairs are exact for some “nearby” matrix. A widely followed rule of thumb
for deciding upon a suitable eigenvector method is to use inverse iteration whenever
fewer than 25% of the eigenvectors are desired.

We point out, however, that the real Schur form can be used to determine selected
eigenvectors. Suppose

QT AQ =

⎡⎣ T11

0

0

u

λ

0

T13

vT

T33

⎤⎦ k−1

1

n−k

k−1 1 n−k

is upper quasi-triangular and that λ 
∈ λ(T11) ∪ λ(T33). It follows that if we solve the
linear systems (T11 − λI)w = −u and (T33 − λI)T z = −v then

x = Q

⎡⎣ w
1
0

⎤⎦ and y = Q

⎡⎣ 0
1
z

⎤⎦
are the associated right and left eigenvectors, respectively. Note that the condition of
λ is prescribed by

1/s(λ) =
√

(1 + wT w)(1 + zT z).

7.6.5 Ascertaining Jordan Block Structures

Suppose that we have computed the real Schur decomposition A = QTQT , identified
clusters of “equal” eigenvalues, and calculated the corresponding block diagonalization
T = Y ·diag(T11, . . . , Tqq)Y −1. As we have seen, this can be a formidable task. However,
even greater numerical problems confront us if we attempt to ascertain the Jordan block
structure of each Tii. A brief examination of these difficulties will serve to highlight the
limitations of the Jordan decomposition.

Assume for clarity that λ(Tii) is real. The reduction of Tii to Jordan form begins
by replacing it with a matrix of the form C = λI + N , where N is the strictly upper
triangular portion of Tii and where λ, say, is the mean of its eigenvalues.

Recall that the dimension of a Jordan block J(λ) is the smallest nonnegative
integer k for which [J(λ) − λI]k = 0. Thus, if pi = dim[null(N i)], for i = 0:n, then
pi − pi−1 equals the number of blocks in C’s Jordan form that have dimension i or
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greater. A concrete example helps to make this assertion clear and to illustrate the
role of the SVD in Jordan form computations.

Assume that C is 7-by-7. Suppose we compute the SVD UT
1 NV1 = Σ1 and

“discover” that N has rank 3. If we order the singular values from small to large then
it follows that the matrix N1 = V T

1 NV1 has the form

N1 =
[

0

0

K

L

]
4

3

4 3

.

At this point, we know that the geometric multiplicity of λ is 4—i.e, C’s Jordan form
has four blocks (p1 − p0 = 4 − 0 = 4).

Now suppose ŨT
2 LṼ2 = Σ2 is the SVD of L and that we find that L has unit rank.

If we again order the singular values from small to large, then L2 = Ṽ T
2 LṼ2 clearly has

the following structure:

L2 =

⎡⎣ 0 0 a
0 0 b
0 0 c

⎤⎦ .

However, λ(L2) = λ(L) = {0, 0, 0} and so c = 0. Thus, if

V2 = diag(I4, Ṽ2)

then N2 = V T
2 N1V2 has the following form:

N2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 × × ×
0 0 0 0 × × ×
0 0 0 0 × × ×
0 0 0 0 × × ×
0 0 0 0 0 0 a
0 0 0 0 0 0 b
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Besides allowing us to introduce more zeros into the upper triangle, the SVD of L also
enables us to deduce the dimension of the nullspace of N2. Since

N2
1 =

[
0 KL

0 L2

]
=

[
0 K

0 L

][
0 K

0 L

]

and
[

K
L

]
has full column rank,

p2 = dim(null(N2)) = dim(null(N2
1 )) = 4 + dim(null(L)) = p1 + 2.

Hence, we can conclude at this stage that the Jordan form of C has at least two blocks
of dimension 2 or greater.

Finally, it is easy to see that N3
1 = 0, from which we conclude that there is p3−p2

= 7 − 6 = 1 block of dimension 3 or larger. If we define V = V1V2 then it follows that
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the decomposition

V T CV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0 0 × × ×
0 λ 0 0 × × ×
0 0 λ 0 × × ×
0 0 0 λ × × ×
0 0 0 0 λ × a
0 0 0 0 0 λ 0
0 0 0 0 0 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎬⎪⎭ four blocks of order 1 or larger

}
two blocks of order 2 or larger

} one block of order 3 or larger

displays C’s Jordan block structure: two blocks of order 1, one block of order 2, and
one block of order 3.

To compute the Jordan decomposition it is necessary to resort to nonorthogonal
transformations. We refer the reader to Golub and Wilkinson (1976), K̊agström and
Ruhe (1980a, 1980b), and Demmel (1983) for more details. The above calculations
with the SVD amply illustrate that difficult rank decisions must be made at each stage
and that the final computed block structure depends critically on those decisions.

Problems

P7.6.1 Give a complete algorithm for solving a real, n-by-n, upper quasi-triangular system Tx = b.

P7.6.2 Suppose U−1AU = diag(α1, . . . , αm) and V −1BV = diag(β1, . . . , βn). Show that if

φ(X) = AX −XB,

then
λ(φ) = { αi − βj : i = 1:m, j = 1:n }.

What are the corresponding eigenvectors? How can these facts be used to solve AX −XB = C?

P7.6.3 Show that if Z ∈ Cp×q and

Y =

[
Ip Z

0 Iq

]
,

then κ2(Y ) = [2 + σ2 +
√

4σ2 + σ4 ]/2 where σ = ‖ Z ‖2.

P7.6.4 Derive the system (7.6.5).

P7.6.5 Assume that T ∈ IRn×n is block upper triangular and partitioned as follows:

T =

[
T11 T12 T13

0 T22 T23
0 0 T33

]
, T ∈ IRn×n .

Suppose that the diagonal block T22 is 2-by-2 with complex eigenvalues that are disjoint from λ(T11)
and λ(T33). Give an algorithm for computing the 2-dimensional real invariant subspace associated
with T22’s eigenvalues.

P7.6.6 Suppose H ∈ IRn×n is upper Hessenberg with a complex eigenvalue λ+ i ·µ. How could inverse
iteration be used to compute x, y ∈ IRn so that H(x + iy) = (λ + iµ)(x + iy)? Hint: Compare real and
imaginary parts in this equation and obtain a 2n-by-2n real system.
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Much of the material discussed in this section may be found in the following survey paper:
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7.7 The Generalized Eigenvalue Problem
If A, B ∈ Cn×n, then the set of all matrices of the form A−λB with λ ∈ C is a pencil.
The generalized eigenvalues of A − λB are elements of the set λ(A, B) defined by

λ(A, B) = {z ∈ C : det(A − zB) = 0 }.

If λ ∈ λ(A, B) and 0 
= x ∈ Cn satisfies

Ax = λBx, (7.7.1)

then x is an eigenvector of A − λB. The problem of finding nontrivial solutions to
(7.7.1) is the generalized eigenvalue problem and in this section we survey some of its
mathematical properties and derive a stable method for its solution. We briefly discuss
how a polynomial eigenvalue problem can be converted into an equivalent generalized
eigenvalue problem through a linearization process.

7.7.1 Background

The first thing to observe about the generalized eigenvalue problem is that there are
n eigenvalues if and only if rank(B) = n. If B is rank deficient then λ(A, B) may be
finite, empty, or infinite:

A =

[
1 2

0 3

]
, B =

[
1 0

0 0

]
⇒ λ(A, B) = {1},

A =

[
1 2

0 3

]
, B =

[
0 1

0 0

]
⇒ λ(A, B) = ∅,

A =

[
1 2

0 0

]
, B =

[
1 0

0 0

]
⇒ λ(A, B) = C.

Note that if 0 
= λ ∈ λ(A, B), then (1/λ) ∈ λ(B, A). Moreover, if B is nonsingular,
then λ(A, B) = λ(B−1A, I) = λ(B−1A). This last observation suggests one method
for solving the A − λB problem if B is nonsingular:

Step 1. Solve BC = A for C using (say) Gaussian elimination with pivoting.

Step 2. Use the QR algorithm to compute the eigenvalues of C.

In this framework, C is affected by roundoff errors of order u‖ A ‖2‖ B−1 ‖2. If B is ill-
conditioned, then this precludes the possibility of computing any generalized eigenvalue
accurately—even those eigenvalues that may be regarded as well-conditioned. For
example, if

A =

[
1.746 .940

1.246 1.898

]
and B =

[
.780 .563

.913 .659

]
,



406 Chapter 7. Unsymmetric Eigenvalue Problems

then λ(A, B) = {2, 1.07 × 106}. With 7-digit floating point arithmetic, we find
λ(fl(AB−1)) = {1.562539, 1.01 × 106}. The poor quality of the small eigenvalue is
because κ2(B) ≈ 2 × 106. On the other hand, we find that

λ(I, fl(A−1B)) ≈ {2.000001, 1.06 × 106}.

The accuracy of the small eigenvalue is improved because κ2(A) ≈ 4.
The example suggests that we seek an alternative approach to the generalized

eigenvalue problem. One idea is to compute well-conditioned Q and Z such that the
matrices

A1 = Q−1AZ, B1 = Q−1BZ (7.7.2)

are each in canonical form. Note that λ(A, B)= λ(A1, B1) since

Ax = λBx ⇔ A1y = λB1y, x = Zy.

We say that the pencils A − λB and A1 − λB1 are equivalent if (7.7.2) holds with
nonsingular Q and Z.

As in the standard eigenproblem A − λI there is a choice between canonical
forms. Corresponding to the Jordan form is a decomposition of Kronecker in which
both A1 and B1 are block diagonal with blocks that are similar in structure to Jordan
blocks. The Kronecker canonical form poses the same numerical challenges as the
Jordan form, but it provides insight into the mathematical properties of the pencil
A − λB. See Wilkinson (1978) and Demmel and K̊agström (1987) for details.

7.7.2 The Generalized Schur Decomposition

From the numerical point of view, it makes to insist that the transformation matrices
Q and Z be unitary. This leads to the following decomposition described in Moler and
Stewart (1973).

Theorem 7.7.1 (Generalized Schur Decomposition). If A and B are in Cn×n,
then there exist unitary Q and Z such that QHAZ = T and QHBZ = S are upper
triangular. If for some k, tkk and skk are both zero, then λ(A, B) = C. Otherwise

λ(A, B) = {tii/sii : sii 
= 0}.

Proof. Let {Bk} be a sequence of nonsingular matrices that converge to B. For each
k, let

QH
k (AB−1

k )Qk = Rk

be a Schur decomposition of AB−1
k . Let Zk be unitary such that

ZH
k (B−1

k Qk) = S−1
k

is upper triangular. It follows that QH
k AZk = RkSk and QH

k BkZk = Sk are also
upper triangular. Using the Bolzano-Weierstrass theorem, we know that the bounded
sequence {(Qk, Zk)} has a converging subsequence,

lim
i→∞

(Qki
, Zki

) = (Q, Z).
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It is easy to show that Q and Z are unitary and that QHAZ and QHBZ are upper
triangular. The assertions about λ(A, B) follow from the identity

det(A − λB) = det(QZH)
n∏

i=1

(tii − λsii)

and that completes the proof of the theorem.

If A and B are real then the following decomposition, which corresponds to the
real Schur decomposition (Theorem 7.4.1), is of interest.

Theorem 7.7.2 (Generalized Real Schur Decomposition). If A and B are in
IRn×n then there exist orthogonal matrices Q and Z such that QT AZ is upper quasi-
triangular and QT BZ is upper triangular.

Proof. See Stewart (1972).

In the remainder of this section we are concerned with the computation of this decom-
position and the mathematical insight that it provides.

7.7.3 Sensitivity Issues

The generalized Schur decomposition sheds light on the issue of eigenvalue sensitivity
for the A − λB problem. Clearly, small changes in A and B can induce large changes
in the eigenvalue λi = tii/sii if sii is small. However, as Stewart (1978) argues, it
may not be appropriate to regard such an eigenvalue as “ill-conditioned.” The reason
is that the reciprocal µi = sii/tii might be a very well-behaved eigenvalue for the
pencil µA − B. In the Stewart analysis, A and B are treated symmetrically and the
eigenvalues are regarded more as ordered pairs (tii, sii) than as quotients. With this
point of view it becomes appropriate to measure eigenvalue perturbations in the chordal
metric chord(a, b) defined by

chord(a, b) =
|a − b|√

1 + a2
√

1 + b2
.

Stewart shows that if λ is a distinct eigenvalue of A− λB and λε is the corresponding
eigenvalue of the perturbed pencil Ã − λB̃ with ‖ A − Ã ‖2 ≈ ‖ B − B̃ ‖2 ≈ ε, then

chord(λ, λε) ≤ ε√
(yHAx)2 + (yHBx)2

+ O(ε2)

where x and y have unit 2-norm and satisfy Ax = λBx and yHA= λyHB. Note that the
denominator in the upper bound is symmetric in A and B. The “truly” ill-conditioned
eigenvalues are those for which this denominator is small.

The extreme case when both tkk and skk are zero for some k has been studied by
Wilkinson (1979). In this case, the remaining quotients tii/sii can take on arbitrary
values.
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7.7.4 Hessenberg-Triangular Form
The first step in computing the generalized real Schur decomposition of the pair (A, B)
is to reduce A to upper Hessenberg form and B to upper triangular form via orthog-
onal transformations. We first determine an orthogonal U such that UT B is upper
triangular. Of course, to preserve eigenvalues, we must also update A in exactly the
same way. Let us trace what happens in the n = 5 case.

A ← UT A =

⎡⎢⎢⎢⎣
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

⎤⎥⎥⎥⎦ , B ← UT B =

⎡⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

⎤⎥⎥⎥⎦ .

Next, we reduce A to upper Hessenberg form while preserving B’s upper triangular
form. First, a Givens rotation Q45 is determined to zero a51:

A ← QT
45A =

⎡⎢⎢⎢⎣
× × × × ×
× × × × ×
× × × × ×
× × × × ×
0 × × × ×

⎤⎥⎥⎥⎦ , B ← QT
45B =

⎡⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 × ×

⎤⎥⎥⎥⎦ .

The nonzero entry arising in the (5,4) position in B can be zeroed by postmultiplying
with an appropriate Givens rotation Z45:

A ← AZ45 =

⎡⎢⎢⎢⎣
× × × × ×
× × × × ×
× × × × ×
× × × × ×
0 × × × ×

⎤⎥⎥⎥⎦ , B ← BZ45 =

⎡⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

⎤⎥⎥⎥⎦ .

Zeros are similarly introduced into the (4, 1) and (3, 1) positions in A:

A ← QT
34A =

⎡⎢⎢⎢⎣
× × × × ×
× × × × ×
× × × × ×
0 × × × ×
0 × × × ×

⎤⎥⎥⎥⎦ , B ← QT
34B =

⎡⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 0 0 ×

⎤⎥⎥⎥⎦ ,

A ← AZ34 =

⎡⎢⎢⎢⎣
× × × × ×
× × × × ×
× × × × ×
0 × × × ×
0 × × × ×

⎤⎥⎥⎥⎦ , B ← BZ34 =

⎡⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

⎤⎥⎥⎥⎦ ,

A ← QT
23A =

⎡⎢⎢⎢⎣
× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×

⎤⎥⎥⎥⎦ , B ← QT
23B =

⎡⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 × × × ×
0 0 0 × ×
0 0 0 0 ×

⎤⎥⎥⎥⎦ ,
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A ← AZ23 =

⎡⎢⎢⎢⎣
× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×

⎤⎥⎥⎥⎦ , B ← BZ23 =

⎡⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

⎤⎥⎥⎥⎦ .

A is now upper Hessenberg through its first column. The reduction is completed by
zeroing a52, a42, and a53. Note that two orthogonal transformations are required for
each aij that is zeroed—one to do the zeroing and the other to restore B’s triangularity.
Either Givens rotations or 2-by-2 modified Householder transformations can be used.
Overall we have:

Algorithm 7.7.1 (Hessenberg-Triangular Reduction) Given A and B in IRn×n, the
following algorithm overwrites A with an upper Hessenberg matrix QT AZ and B with
an upper triangular matrix QT BZ where both Q and Z are orthogonal.

Compute the factorization B = QR using Algorithm 5.2.1 and overwrite
A with QT A and B with QT B.

for j = 1:n − 2

for i = n: − 1:j + 2

[c, s] = givens(A(i − 1, j), A(i, j))

A(i − 1:i, j:n) =
[

c s
−s c

]T

A(i − 1:i, j:n)

B(i − 1:i, i − 1:n) =
[

c s
−s c

]T

B(i − 1:i, i − 1:n)

[c, s] = givens(−B(i, i), B(i, i − 1))

B(1:i, i − 1:i) = B(1:i, i − 1:i)
[

c s
−s c

]
A(1:n, i − 1:i) = A(1:n, i − 1:i)

[
c s

−s c

]
end

end

This algorithm requires about 8n3 flops. The accumulation of Q and Z requires about
4n3 and 3n3 flops, respectively.

The reduction of A − λB to Hessenberg-triangular form serves as a “front end”
decomposition for a generalized QR iteration known as the QZ iteration which we
describe next.

7.7.5 Deflation

In describing the QZ iteration we may assume without loss of generality that A is
an unreduced upper Hessenberg matrix and that B is a nonsingular upper triangular
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matrix. The first of these assertions is obvious, for if ak+1,k = 0 then

A − λB =
[

A11 − λB11

0

A12 − λB12

A22 − λB22

]
k

n−k

k n−k

,

and we may proceed to solve the two smaller problems A11 − λB11 and A22 − λB22.
On the other hand, if bkk = 0 for some k, then it is possible to introduce a zero in A’s
(n, n − 1) position and thereby deflate. Illustrating by example, suppose n = 5 and
k = 3:

A =

⎡⎢⎢⎢⎣
× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 0 × ×
0 0 0 × ×
0 0 0 0 ×

⎤⎥⎥⎥⎦ .

The zero on B’s diagonal can be “pushed down” to the (5,5) position as follows using
Givens rotations:

A ← QT
34A =

⎡⎢⎢⎢⎣
× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 0 0 × ×

⎤⎥⎥⎥⎦ , B ← QT
34B =

⎡⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 0 × ×
0 0 0 0 ×
0 0 0 0 ×

⎤⎥⎥⎥⎦ ,

A ← AZ23 =

⎡⎢⎢⎢⎣
× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

⎤⎥⎥⎥⎦ , B ← BZ23 =

⎡⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 0 × ×
0 0 0 0 ×
0 0 0 0 ×

⎤⎥⎥⎥⎦ ,

A ← QT
45A =

⎡⎢⎢⎢⎣
× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×

⎤⎥⎥⎥⎦ , B ← QT
45B =

⎡⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 0 × ×
0 0 0 0 ×
0 0 0 0 0

⎤⎥⎥⎥⎦ ,

A ← AZ34 =

⎡⎢⎢⎢⎣
× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

⎤⎥⎥⎥⎦ , B ← BZT
34 =

⎡⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 0 ×
0 0 0 0 0

⎤⎥⎥⎥⎦ ,

A ← AZ45 =

⎡⎢⎢⎢⎣
× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 0 ×

⎤⎥⎥⎥⎦ , B ← BZ45 =

⎡⎢⎢⎢⎣
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 0

⎤⎥⎥⎥⎦ .

This zero-chasing technique is perfectly general and can be used to zero an,n−1 regard-
less of where the zero appears along B’s diagonal.
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7.7.6 The QZ Step

We are now in a position to describe a QZ step. The basic idea is to update A and B
as follows

(Ā − λB̄) = Q̄T (A − λB)Z̄,

where Ā is upper Hessenberg, B̄ is upper triangular, Q̄ and Z̄ are each orthogonal, and
ĀB̄−1 is essentially the same matrix that would result if a Francis QR step (Algorithm
7.5.1) were explicitly applied to AB−1. This can be done with some clever zero-chasing
and an appeal to the implicit Q theorem.

Let M = AB−1 (upper Hessenberg) and let v be the first column of the matrix
(M − aI)(M − bI), where a and b are the eigenvalues of M ’s lower 2-by-2 submatrix.
Note that v can be calculated in O(1) flops. If P0 is a Householder matrix such that
P0v is a multiple of e1, then

A ← P0A =

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
× × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎦ , B ← P0B =

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
× × × × × ×
0 0 0 × × ×
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎦ .

The idea now is to restore these matrices to Hessenberg-triangular form by chasing the
unwanted nonzero elements down the diagonal.

To this end, we first determine a pair of Householder matrices Z1 and Z2 to zero
b31, b32, and b21:

A ← AZ1Z2 =

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
0 0 0 × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎦ , B ← BZ1Z2 =

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎦ .

Then a Householder matrix P1 is used to zero a31 and a41:

A ← P1A =

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
× × × × × ×
0 × × × × ×
0 × × × × ×
0 0 0 × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎦ , B ← P1B =

⎡⎢⎢⎢⎢⎢⎣
× × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎦ .

Notice that with this step the unwanted nonzero elements have been shifted down
and to the right from their original position. This illustrates a typical step in the QZ
iteration. Notice that Q = Q0Q1 · · ·Qn−2 has the same first column as Q0. By the way
the initial Householder matrix was determined, we can apply the implicit Q theorem
and assert that AB−1 = QT (AB−1)Q is indeed essentially the same matrix that we
would obtain by applying the Francis iteration to M = AB−1 directly. Overall we have
the following algorithm.
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Algorithm 7.7.2 (The QZ Step) Given an unreduced upper Hessenberg matrix
A ∈ IRn×n and a nonsingular upper triangular matrix B ∈ IRn×n, the following algo-
rithm overwrites A with the upper Hessenberg matrix QT AZ and B with the upper
triangular matrix QT BZ where Q and Z are orthogonal and Q has the same first col-
umn as the orthogonal similarity transformation in Algorithm 7.5.1 when it is applied
to AB−1.

Let M = AB−1 and compute (M − aI)(M − bI)e1 = [x, y, z, 0, . . . , 0]T

where a and b are the eigenvalues of M ’s lower 2-by-2.

for k = 1:n − 2

Find Householder Qk so Qk

⎡⎣ x
y
z

⎤⎦ =

⎡⎣ ∗
0
0

⎤⎦.

A = diag(Ik−1, Qk, In−k−2) · A
B = diag(Ik−1, Qk, In−k−2) · B
Find Householder Zk1 so

[
bk+2,k bk+2,k+1 bk+2,k+2

]
Zk1 =

[
0 0 ∗

]
.

A = A·diag(Ik−1, Zk1, In−k−2)

B = B·diag(Ik−1, Zk1, In−k−2)

Find Householder Zk2 so
[

bk+1,k bk+1,k+1
]
Zk2 =

[
0 ∗

]
.

A = A·diag(Ik−1, Zk2, In−k−1)

B = B·diag(Ik−1, Zk2, In−k−1)

x = ak+1,k; y = ak+2,k

if k < n − 2

z = ak+3,k

end
end

Find Householder Qn−1 so Qn−1

[
x
y

]
=

[
∗
0

]
.

A = diag(In−2, Qn−1) · A
B = diag(In−2, Qn−1) · B.

Find Householder Zn−1 so
[

bn,n−1 bnn

]
Zn−1 =

[
0 ∗

]
.

A = A·diag(In−2, Zn−1)

B = B·diag(In−2, Zn−1)

This algorithm requires 22n2 flops. Q and Z can be accumulated for an additional 8n2

flops and 13n2 flops, respectively.

7.7.7 The Overall QZ Process

By applying a sequence of QZ steps to the Hessenberg-triangular pencil A − λB, it is
possible to reduce A to quasi-triangular form. In doing this it is necessary to monitor
A’s subdiagonal and B’s diagonal in order to bring about decoupling whenever possible.
The complete process, due to Moler and Stewart (1973), is as follows:
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Algorithm 7.7.3 Given A ∈ IRn×n and B ∈ IRn×n, the following algorithm computes
orthogonal Q and Z such that QT AZ = T is upper quasi-triangular and QT BZ = S
is upper triangular. A is overwritten by T and B by S.

Using Algorithm 7.7.1, overwrite A with QT AZ (upper Hessenberg) and
B with QT BZ (upper triangular).

until q = n

Set to zero subdiagonal entries that satisfy |ai,i−1| ≤ ε(|ai−1,i−1| + |aii|).
Find the largest nonnegative q and the smallest nonnegative p such that if

A =

⎡⎣ A11

0

0

A12

A22

0

A13

A23

A33

⎤⎦ p

n−p−q

q

p n−p−q q

then A33 is upper quasi-triangular and A22 is upper Hessenberg
and unreduced.

Partition B conformably:

B =

⎡⎣ B11

0

0

B12

B22

0

B13

B23

B33

⎤⎦ p

n−p−q

q

p n−p−q q

if q < n
if B22 is singular

Zero an−q,n−q−1
else

Apply Algorithm 7.7.2 to A22 and B22 and update:

A = diag(Ip, Q, Iq)T A·diag(Ip, Z, Iq)

B = diag(Ip, Q, Iq)T B·diag(Ip, Z, Iq)
end

end
end

This algorithm requires 30n3 flops. If Q is desired, an additional 16n3 are necessary.
If Z is required, an additional 20n3 are needed. These estimates of work are based on
the experience that about two QZ iterations per eigenvalue are necessary. Thus, the
convergence properties of QZ are the same as for QR. The speed of the QZ algorithm
is not affected by rank deficiency in B.

The computed S and T can be shown to satisfy

QT
0 (A + E)Z0 = T, QT

0 (B + F )Z0 = S,

where Q0 and Z0 are exactly orthogonal and ‖ E ‖2 ≈ u‖ A ‖2 and ‖ F ‖2 ≈ u‖ B ‖2.
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7.7.8 Generalized Invariant Subspace Computations

Many of the invariant subspace computations discussed in §7.6 carry over to the gen-
eralized eigenvalue problem. For example, approximate eigenvectors can be found via
inverse iteration:

q(0) ∈ Cn×n given.

for k = 1, 2, . . .

Solve (A − µB)z(k) = Bq(k−1).

Normalize: q(k) = z(k)/‖ z(k) ‖2.

λ(k) = [q(k)]HAq(k) / [q(k)]HAq(k)

end

If B is nonsingular, then this is equivalent to applying (7.6.1) with the matrix B−1A.
Typically, only a single iteration is required if µ is an approximate eigenvalue computed
by the QZ algorithm. By inverse iterating with the Hessenberg-triangular pencil, costly
accumulation of the Z-transformations during the QZ iteration can be avoided.

Corresponding to the notion of an invariant subspace for a single matrix, we have
the notion of a deflating subspace for the pencil A − λB. In particular, we say that
a k-dimensional subspace S ⊆ Cn is deflating for the pencil A − λB if the subspace
{ Ax + By : x, y ∈ S } has dimension k or less. Note that if

QHAZ = T, QHBZ = S

is a generalized Schur decomposition of A−λB, then the columns of Z in the generalized
Schur decomposition define a family of deflating subspaces. Indeed, if

Q = [ q1 | · · · | qn ] , Z = [ z1 | · · · | zn ]

are column partitionings, then

span{Az1, . . . , Azk} ⊆ span{q1, . . . , qk},
span{Bz1, . . . , Bzk} ⊆ span{q1, . . . , qk},

for k = 1:n. Properties of deflating subspaces and their behavior under perturbation
are described in Stewart (1972).

7.7.9 A Note on the Polynomial Eigenvalue Problem

More general than the generalized eigenvalue problem is the polynomial eigenvalue
problem. Here we are given matrices A0, . . . , Ad ∈ Cn×n and determine λ ∈ C and
0 
= x ∈ Cn so that

P (λ)x = 0 (7.7.3)

where the λ-matrix P (λ) is defined by

P (λ) = A0 + λA1 + · · · + λdAd. (7.7.4)

We assume Ad 
= 0 and regard d as the degree of P (λ). The theory behind the polyno-
mial eigenvalue problem is nicely developed in Lancaster (1966).
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It is possible to convert (7.7.3) into an equivalent linear eigenvalue problem with
larger dimension. For example, suppose d = 3 and

L(λ) =

⎡⎢⎣ 0 0 A0

−I 0 A1

0 −I A2

⎤⎥⎦ + λ

⎡⎢⎣ I 0 0

0 I 0

0 0 A3

⎤⎥⎦ . (7.7.5)

If

L(λ)

⎡⎢⎣ u1

u2

x

⎤⎥⎦ =

⎡⎢⎣ 0

0

0

⎤⎥⎦ ,

then

0 = A0x + λu1 = A0 + λ(A1x + λu2) = A0 + λ(A1x + λ(A2 + λA3))x = P (λ)x.

In general, we say that L(λ) is a linearization of P (λ) if there are dn-by-dn λ-matrices
S(λ) and T (λ), each with constant nonzero determinants, so that

S(λ)

[
P (λ) 0

0 I(d−1)n

]
T (λ) = L(λ) (7.7.6)

has unit degree. With this conversion, the A − λB methods just discussed can be
applied to find the required eigenvalues and eigenvectors.

Recent work has focused on how to choose the λ-transformations S(λ) and T (λ)
so that special structure in P (λ) is reflected in L(λ). See Mackey, Mackey, Mehl, and
Mehrmann (2006). The idea is to think of (7.7.6) as a factorization and to identify the
transformations that produce a properly structured L(λ). To appreciate this solution
framework it is necessary to have a facility with λ-matrix manipulation and to that
end we briefly examine the λ-matrix transformations behind the above linearization.
If

P1(λ) = A1 + λA2 + · · · + λd−1Ad

then
P (λ) = A0 + λP1(λ)

and it is easy to verify that

[
In −λIn

0 In

][
A0 + λP1(λ) 0

0 In

][
0 In

−In P1(λ)

]
=

[
λIn A0

−In P1(λ)

]
.

Notice that the transformation matrices have unit determinant and that the λ-matrix
on the right-hand side has degree d − 1. The process can be repeated. If

P2(λ) = A2 + λA3 + · · · + λd−2Ad

then
P1(λ) = A1 + λP2(λ)
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and⎡⎢⎣ In 0 0

0 In −λIn

0 0 In

⎤⎥⎦
⎡⎢⎣ λIn A0 0

−In P1(λ) 0

0 0 In

⎤⎥⎦
⎡⎢⎣ In 0 0

0 0 In

0 −In P2(λ)

⎤⎥⎦ =

⎡⎢⎣ λIn 0 A0

−In λIn A1

0 −In P2(λ)

⎤⎥⎦ .

Note that the matrix on the right has degree d − 2. A straightforward induction
argument can be assembled to establish that if the dn-by-dn matrices S(λ) and T (λ)
are defined by

S(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

In −λIn 0 · · · 0

0 In −λIn

...

0
. . . . . .

... In −λIn

0 0 · · · 0 In

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, T (λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · I

−In 0 P1(λ)

0 −In
. . .

...
...

. . . . . . Pd−2(λ)

0 0 · · · −In Pd−1(λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where

Pk(λ) = Ak + λAk+1 + · · · + λd−kAd,

then

S(λ)

[
P (λ) 0

0 I(d−1)n

]
T (λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λIn 0 0 · · · A0

−In λIn A1

0 −In
. . .

...
...

. . . λIn Ad−2

0 0 · · · −In Ad−1 + λAd

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that, if we solve the linearized problem using the QZ algorithm, then O((dn)3)
flops are required.

Problems

P7.7.1 Suppose A and B are in IRn×n and that

UT BV =
[

D

0

0

0

]
r

n−r

r n−r

, U = [ U1 | U2 ]
r n−r

, V = [ V1 | V2 ]
r n−r

,

is the SVD of B, where D is r-by-r and r = rank(B). Show that if λ(A, B) = C then UT
2 AV2 is

singular.

P7.7.2 Suppose A and B are in IRn×n. Give an algorithm for computing orthogonal Q and Z such
that QT AZ is upper Hessenberg and ZT BQ is upper triangular.
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P7.7.3 Suppose

A =

[
A11 A12

0 A22

]
and B =

[
B11 B12

0 B22

]
with A11, B11 ∈ IRk×k and A22, B22 ∈ IRj×j. Under what circumstances do there exist

X =

[
Ik X12

0 Ij

]
and Y =

[
Ik Y12

0 Ij

]
so that Y −1AX and Y −1BX are both block diagonal? This is the generalized Sylvester equation
problem. Specify an algorithm for the case when A11, A22, B11, and B22 are upper triangular. See
K̊agström (1994).

P7.7.4 Suppose µ ∈ λ(A, B). Relate the eigenvalues and eigenvectors of A1 = (A − µB)−1A and
B1 = (A− µB)−1B to the generalized eigenvalues and eigenvectors of A− λB.

P7.7.5 What does the generalized Schur decomposition say about the pencil A − λAT ? Hint: If
T ∈ IRn×n is upper triangular, then EnTEn is lower triangular where En is the exchange permutation
defined in §1.2.11.
P7.7.6 Prove that

L1(λ) =

⎡⎣ A3 + λA4 A2 A1 A0
−In 0 0 0
0 −In 0 0
0 0 −In 0

⎤⎦ , L2(λ) =

⎡⎣ A3 + λA4 −In 0 0
A2 0 −In 0
A1 0 0 −In

A0 0 0 0

⎤⎦
are linearizations of

P (λ) = A0 + λA1 + λ2A2 + λ3A3 + λ4A4.

Specify the λ-matrix transformations that relate diag(P (λ), I3n) to both L1(λ) and L2(λ).
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7.8 Hamiltonian and Product Eigenvalue Problems
Two structured unsymmetric eigenvalue problems are considered. The Hamiltonian
matrix eigenvalue problem comes with its own special Schur decomposition. Orthogonal
symplectic similarity transformations are used to bring about the required reduction.
The product eigenvalue problem involves computing the eigenvalues of a product like
A1A

−1
2 A3 without actually forming the product or the designated inverses. For detailed

background to these problems, see Kressner (NMGS) and Watkins (MEP).

7.8.1 Hamiltonian Matrix Eigenproblems

Hamiltonian and symplectic matrices are introduced in §1.3.10. Their 2-by-2 block
structure provide a nice framework for practicing block matrix manipulation, see P1.3.2
and P2.5.4. We now describe some interesting eigenvalue problems that involve these
matrices. For a given n, we define the matrix J ∈ IR2n×2n by

J =

[
0 In

−In 0

]

and proceed to work with the families of 2-by-2 block structured matrices that are
displayed in Figure 7.8.1. We mention four important facts concerning these matrices.

Family Definition What They Look Like

Hamiltonian JM = (JM)T M =

[
A G

F −AT

]
G symmetric

F symmetric

Skew
Hamiltonian JN = −(JN)T N =

[
A G

F AT

]
G skew-symmetric

F skew-symmetric

Symplectic JS = S−T J S =

[
S11 S12

S21 S22

] ST
11S21 symmetric

ST
22S12 symmetric

ST
11S22 = I + ST

21S12

Orthogonal
Symplectic JQ = QJ Q =

[
Q1 Q2

−Q2 Q1

]
QT

1 Q2 symmetric

I = QT
1 Q1 + QT

2 Q2

Figure 7.8.1. Hamiltonian and symplectic structures

(1) Symplectic similarity transformations preserve Hamiltonian structure:

J(S−1MS) = (JS−1JT )(JMJT )(JS) = −ST MT S−T J = (J(S−1MS))T .



7.8. Hamiltonian and Product Eigenvalue Problems 421

(2) The square of a Hamiltonian matrix is skew-Hamiltonian:

JM2 = (JMJT )(JM) = −MT (JM)T = −M2T JT = −(JM2)T .

(3) If M is a Hamiltonian matrix and λ ∈ λ(M), then −λ ∈ λ(M):

M

[
u
v

]
= λ

[
u
v

]
⇒ MT

[
v

−u

]
= −λ

[
v

−u

]
.

(4) If S is symplectic and λ ∈ λ(S), then 1/λ ∈ λ(S):

S

[
u
v

]
= λ

[
u
v

]
⇒ ST

[
v

−u

]
=

1
λ

[
v

−u

]
.

Symplectic versions of Householder and Givens transformations have a promi-
nanent role to play in Hamiltonian matrix computations. If P = In − 2vvT is a
Householder matrix, then diag(P, P ) is a symplectic orthogonal matrix. Likewise, if
G ∈ IR2n×2n is a Givens rotation that involves planes i and i+n, then G is a symplectic
orthogonal matrix. Combinations of these transformations can be used to introduce
zeros. For example, a Householder-Givens-Householder sequence can do this:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
×
×
×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
diag(P1,P1)

−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
×
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
G1,5

−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
×
×
×
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
diag(P2,P2)

−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This kind of vector reduction can be sequenced to produce a constructive proof
of a structured Schur decomposition for Hamiltonian matrices. Suppose λ is a real
eigenvalue of a Hamiltonian matrix M and that x ∈ IR2n is a unit 2-norm vector with
Mx = λx. If Q1 ∈ IR2n×2n is an orthogonal symplectic matrix and QT

1 x = e1, then it
follows from (QT

1 MQ1)(QT
1 x) = λ(QT

1 x) that

QT
1 MQ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ × × × × × × ×
0 × × × × × × ×
0 × × × × × × ×
0 × × × × × × ×
0 0 0 0 −λ 0 0 0

0 × × × × × × ×
0 × × × × × × ×
0 × × × × × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The “extra” zeros follow from the Hamiltonian structure of QT
1 MQ1. The process can

be repeated on the 6-by-6 Hamiltonian submatrix defined by rows and columns 2-3-4-
6-7-8. Together with the assumption that M has no purely imaginary eigenvalues, it
is possible to show that an orthogonal symplectic matrix Q exists so that
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QT MQ =

[
Q1 Q2

−Q2 Q1

]T [
A F

G −AT

][
Q1 Q2

−Q2 Q1

]
=

[
T R
0 −TT

]
(7.8.1)

where T ∈ IRn×n is upper quasi-triangular. This is the real Hamiltonian-Schur de-
composition. See Paige and Van Loan (1981) and, for a more general version, Lin,
Mehrmann, and Xu (1999).

One reason that the Hamiltonian eigenvalue problem is so important is its con-
nection to the algebraic Ricatti equation

G + XA + AT X − XFX = 0. (7.8.2)

This quadratic matrix problem arises in optimal control and a symmetric solution is
sought so that the eigenvalues of A − FX are in the open left half plane. Modest
assumptions typically ensure that M has no eigenvalues on the imaginary axis and
that the matrix Q1 in (7.8.1) is nonsingular. If we compare (2,1) blocks in (7.8.1), then

QT
2 AQ1 − QT

2 FQ2 + QT
1 GQ1 + QT

1 AT Q2 = 0.

It follows from In = QT
1 Q1 +QT

2 Q2 that X = Q2Q
−1
1 is symmetric and that it satisfies

(7.8.2). From (7.8.1) it is easy to show that A − FX = Q1TQ−1
1 and so the eigen-

values of A − FX are the eigenvalues of T . It follows that the desired solution to the
algebraic Ricatti equation can be obtained by computing the real Hamiltonian-Schur
decomposition and ordering the eigenvalues so that λ(T ) is in the left half plane.

How might the real Hamiltonian-Schur form be computed? One idea is to reduce
M to some condensed Hamiltonian form and then devise a structure-preserving QR-
iteration. Regarding the former task, it is easy to compute an orthogonal symplectic
U0 so that

UT
0 MU0 =

[
H R

D −HT

]
(7.8.3)

where H ∈ IRn×n is upper Hessenberg and D is diagonal. Unfortunately, a structure-
preserving QR iteration that maintains this condensed form has yet to be devised. This
impasse prompts consideration of methods that involve the skew-Hamiltonian matrix
N = M2. Because the (2,1) block of a skew-Hamiltonian matrix is skew-symmetric,
it has a zero diagonal. Symplectic similarity transforms preserve skew-Hamiltonian
structure, and it is straightforward to compute an orthogonal symplectic matrix V0
such that

V T
0 M2V0 =

[
H R

0 HT

]
, (7.8.4)

where H is upper Hessenberg. If UT HU = T is the real Schur form of H and and
Q = V0 · diag(U, U), then

QT M2Q =

[
T UT RU

0 TT

]
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is the real skew-Hamiltonian Schur form. See Van Loan (1984). It does not follow that
QT MQ is in Schur-Hamiltonian form. Moreover, the quality of the computed small
eigenvalues is not good because of the explicit squaring of M . However, these shortfalls
can be overcome in an efficient numerically sound way, see Chu, Lie, and Mehrmann
(2007) and the references therein. Kressner (NMSE, p. 175–208) and Watkins (MEP,
p. 319–341) have in-depth treatments of the Hamiltonian eigenvalue problem.

7.8.2 Product Eigenvalue Problems

Using SVD and QZ, we can compute the eigenvalues of AT A and B−1A without forming
products or inverses. The intelligent computation of the Hamiltonian-Schur decompo-
sition involves a correspondingly careful handling of the product M -times-M . In this
subsection we further develop this theme by discussing various product decompositions.
Here is an example that suggests how we might compute the Hessenberg decomposition
of

A = A3A2A1

where A1, A2, A3 ∈ IRn×n. Instead of forming this product explicitly, we compute or-
thogonal U1, U2, U3 ∈ IRn×n such that

UT
1 A3U3 = H3 (upper Hessenberg),

UT
3 A2U2 = T2 (upper triangular),

UT
2 A1U1 = T1 (upper triangular).

(7.8.5)

It follows that

UT
1 AU1 = (UT

1 A3U3)(UT
3 A2U2)(UT

2 A1U1) = H3T2T1

is upper Hessenberg. A procedure for doing this would start by computing the QR
factorizations

QT
2 A1 = R1, QT

3 (A2Q2) = R2.

If Ã3 = A3Q3, then A = Ã3R2R1. The next phase involves reducing Ã3 to Hessenberg
form with Givens transformations coupled with “bulge chasing” to preserve the trian-
gular structures already obtained. The process is similar to the reduction of A − λB
to Hessenberg-triangular form; see §7.7.4.

Now suppose we want to compute the real Schur form of A

QT
1 A3Q3 = T3 (upper quasi-triangular),

QT
3 A2Q2 = T2 (upper triangular),

QT
2 A1Q1 = T1 (upper triangular),

(7.8.6)

where Q1, Q2, Q3 ∈ IRn×n are orthogonal. Without loss of generality we may assume
that {A3, A2, A1} is in Hessenberg-triangular-triangular form. Analogous to the QZ
iteration, the next phase is to produce a sequence of converging triplets

{A(k)
3 , A

(k)
2 , A

(k)
1 } → {T3, T2, T1} (7.8.7)

with the property that all the iterates are in Hessenberg-triangular-triangular form.
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Product decompositions (7.8.5) and (7.8.6) can be framed as structured decom-
positions of block-cyclic 3-by-3 matrices. For example, if

U =

⎡⎢⎣ U1 0 0

0 U2 0

0 0 U3

⎤⎥⎦
then we have the following restatement of (7.8.5):

UT

⎡⎢⎣ 0 0 A3

A1 0 0

0 A2 0

⎤⎥⎦U =

⎡⎢⎣ 0 0 H3

T1 0 0

0 T2 0

⎤⎥⎦ = H̃.

Consider the zero-nonzero structure of this matrix for the case n = 4:

H̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 × × × ×
0 0 0 0 0 0 0 0 × × × ×
0 0 0 0 0 0 0 0 0 × × ×
0 0 0 0 0 0 0 0 0 0 × ×
× × × × 0 0 0 0 0 0 0 0

0 × × × 0 0 0 0 0 0 0 0

0 0 × × 0 0 0 0 0 0 0 0

0 0 0 × 0 0 0 0 0 0 0 0

0 0 0 0 × × × × 0 0 0 0

0 0 0 0 0 × × × 0 0 0 0

0 0 0 0 0 0 × × 0 0 0 0

0 0 0 0 0 0 0 × 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the perfect shuffle P34 (see §1.2.11) we also have

P34H̃P34 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 × 0 0 × 0 0 × 0 0 ×
× 0 0 × 0 0 × 0 0 × 0 0

0 × 0 0 × 0 0 × 0 0 × 0
0 0 × 0 0 × 0 0 × 0 0 ×
0 0 0 × 0 0 × 0 0 × 0 0

0 0 0 0 × 0 0 × 0 0 × 0
0 0 0 0 0 × 0 0 × 0 0 ×
0 0 0 0 0 0 × 0 0 × 0 0

0 0 0 0 0 0 0 × 0 0 × 0
0 0 0 0 0 0 0 0 × 0 0 ×
0 0 0 0 0 0 0 0 0 × 0 0

0 0 0 0 0 0 0 0 0 0 × 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that this is a highly structured 12-by-12 upper Hessenberg matrix. This con-
nection makes it possible to regard the product-QR iteration as a structure-preserving
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QR iteration. For a detailed discussion about this connection and its implications for
both analysis and computation, see Kressner (NMSE, pp. 146–174) and Watkins(MEP,
pp. 293–303). We mention that with the “technology” that has been developed, it is
possible to solve product eigenvalue problems where the factor matrices that define A
are rectangular. Square nonsingular factors can also participate through their inverses,
e.g., A = A3A

−1
2 A1.

Problems

P7.8.1 What can you say about the eigenvalues and eigenvectors of a symplectic matrix?
P7.8.2 Suppose S1, S2 ∈ IRn×n are both skew-symmetric and let A = S1S2. Show that the nonzero
eigenvalues of A are not simple. How would you compute these eigenvalues?
P7.8.3 Relate the eigenvalues and eigenvectors of

A =

⎡⎣ 0 A1 0 0
0 0 A2 0
0 0 0 A3

A4 0 0 0

⎤⎦ .

to the eigenvalues and eigenvectors of Ã = A1A2A3A4. Assume that the diagonal blocks are square.

Notes and References for §7.8

The books by Kressner(NMSE) and Watkins (MEP) have chapters on product eigenvalue problems
and Hamiltonian eigenvalue problems. The sometimes bewildering network of interconnections that
exist among various structured classes of matrices is clarified in:

A. Bunse-Gerstner, R. Byers, and V. Mehrmann (1992). “A Chart of Numerical Methods for Struc-
tured Eigenvalue Problems,” SIAM J. Matrix Anal. Applic. 13, 419–453.

Papers concerned with the Hamiltonian Schur decomposition include:

A.J. Laub and K. Meyer (1974). “Canonical Forms for Symplectic and Hamiltonian Matrices,” J.
Celestial Mechanics 9, 213–238.

C.C. Paige and C. Van Loan (1981). “A Schur Decomposition for Hamiltonian Matrices,” Lin. Alg.
Applic. 41, 11–32.

V. Mehrmann (1991). Autonomous Linear Quadratic Control Problems, Theory and Numerical So-
lution, Lecture Notes in Control and Information Sciences No. 163, Springer-Verlag, Heidelberg.

W.-W. Lin, V. Mehrmann, and H. Xu (1999). “Canonical Forms for Hamiltonian and Symplectic
Matrices and Pencils,” Lin. Alg. Applic. 302/303, 469–533.

Various methods for Hamiltonian eigenvalue problems have been devised that exploit the rich under-
lying structure, see:

C. Van Loan (1984). “A Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian
Matrix,” Lin. Alg. Applic. 61, 233–252.

R. Byers (1986) “A Hamiltonian QR Algorithm,” SIAM J. Sci. Stat. Comput. 7, 212–229.
P. Benner, R. Byers, and E. Barth (2000). “Algorithm 800: Fortran 77 Subroutines for Computing

the Eigenvalues of Hamiltonian Matrices. I: the Square-Reduced Method,” ACM Trans. Math.
Softw. 26, 49–77.

H. Fassbender, D.S. Mackey and N. Mackey (2001). “Hamilton and Jacobi Come Full Circle: Jacobi
Algorithms for Structured Hamiltonian Eigenproblems,” Lin. Alg. Applic. 332-4, 37–80.

D.S. Watkins (2006). “On the Reduction of a Hamiltonian Matrix to Hamiltonian Schur Form,”
ETNA 23, 141–157.

D.S. Watkins (2004). “On Hamiltonian and Symplectic Lanczos Processes,” Lin. Alg. Applic. 385,
23–45.

D. Chu, X. Liu, and V. Mehrmann (2007). “A Numerical Method for Computing the Hamiltonian
Schur Form,” Numer. Math. 105, 375–412.

Generalized eigenvalue problems that involve Hamiltonian matrices also arise:

P. Benner, V. Mehrmann, and H. Xu (1998). “A Numerically Stable, Structure Preserving Method
for Computing the Eigenvalues of Real Hamiltonian or Symplectic Pencils,” Numer. Math. 78,
329–358.
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C. Mehl (2000). “Condensed Forms for Skew-Hamiltonian/Hamiltonian Pencils,” SIAM J. Matrix
Anal. Applic. 21, 454–476.

V. Mehrmann and D.S. Watkins (2001). “Structure–Preserving Methods for Computing Eigenpairs
of Large Sparse Skew–Hamiltonian/Hamiltonian Pencils,” SIAM J. Sci. Comput. 22, 1905–1925.

P. Benner and R. Byers, V. Mehrmann, and H. Xu (2002). “Numerical Computation of Deflating
Subspaces of Skew-Hamiltonian/Hamiltonian Pencils,” SIAM J. Matrix Anal. Applic. 24, 165–
190.

Methods for symplectic eigenvalue problems are discussed in:

P. Benner, H. Fassbender and D.S. Watkins (1999). “SR and SZ Algorithms for the Symplectic
(Butterfly) Eigenproblem,” Lin. Alg. Applic. 287, 41–76.

The Golub-Kahan SVD algorithm that we discuss in the next chapter does not form AT A or AAT

despite the rich connection to the Schur decompositions of those matrices. From that point on there has
been an appreciation for the numerical dangers associated with explicit products. Here is a sampling
of the literature:

C. Van Loan (1975). “A General Matrix Eigenvalue Algorithm,” SIAM J. Numer. Anal. 12, 819–834.
M.T. Heath, A.J. Laub, C.C. Paige, and R.C. Ward (1986). “Computing the SVD of a Product of

Two Matrices,” SIAM J. Sci. Stat. Comput. 7, 1147–1159.
R. Mathias (1998). “Analysis of Algorithms for Orthogonalizing Products of Unitary Matrices,” Num.

Lin. Alg. 3, 125–145.
G. Golub, K. Solna, and P. Van Dooren (2000). “Computing the SVD of a General Matrix Prod-

uct/Quotient,” SIAM J. Matrix Anal. Applic. 22, 1–19.
D.S. Watkins (2005). “Product Eigenvalue Problems,” SIAM Review 47, 3–40.
R. Granat and B. Kgstrom (2006). “Direct Eigenvalue Reordering in a Product of Matrices in Periodic

Schur Form,” SIAM J. Matrix Anal. Applic. 28, 285–300.

Finally we mention that there is a substantial body of work concerned with structured error analysis
and structured perturbation theory for structured matrix problems, see:

F. Tisseur (2003). “A Chart of Backward Errors for Singly and Doubly Structured Eigenvalue Prob-
lems,” SIAM J. Matrix Anal. Applic. 24, 877–897.

R. Byers and D. Kressner (2006). “Structured Condition Numbers for Invariant Subspaces,” SIAM J.
Matrix Anal. Applic. 28, 326–347.

M. Karow, D. Kressner, and F. Tisseur (2006). “Structured Eigenvalue Condition Numbers,” SIAM
J. Matrix Anal. Applic. 28, 1052–1068.

7.9 Pseudospectra
If the purpose of computing is insight, then it is easy to see why the well-conditioned
eigenvector basis is such a valued commodity, for in many matrix problems, replace-
ment of A with its diagonalization X−1AX leads to powerful, analytic simplifications.
However, the insight-through-eigensystem paradigm has diminished impact in problems
where the matrix of eigenvectors is ill-conditioned or nonexistent. Intelligent invariant
subspace computation as discussed in §7.6 is one way to address the shortfall; pseu-
dospectra are another. In this brief section we discuss the essential ideas behind the
theory and computation of pseudospectra. The central message is simple: if you are
working with a nonnormal matrix, then a graphical pseudospectral analysis effectively
tells you just how much to trust the eigenvalue/eigenvector “story.”

A slightly awkward feature of our presentation has to do with the positioning
of this section in the text. As we will see, SVD calculations are an essential part of
the pseudospectra scene and we do not detail dense matrix algorithms for that im-
portant decomposition until the next chapter. However, it makes sense to introduce
the pseudospectra concept here at the end of Chapter 7 while the challenges of the
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unsymmetric eigenvalue problem are fresh in mind. Moreover, with this “early” foun-
dation we can subsequently present various pseudospectra insights that concern the
behavior of the matrix exponential (§9.3), the Arnoldi method for sparse unsymmetric
eigenvalue problems (§10.5), and the GMRES method for sparse unsymmetric linear
systems (§11.4).

For maximum generality, we investigate the pseudospectra of complex, non-
normal matrices. The definitive pseudospectra reference is Trefethen and Embree
(SAP). Virtually everything we discuss is presented in greater detail in that excellent
volume.

7.9.1 Motivation

In many settings, the eigenvalues of a matrix “say something” about an underlying
phenomenon. For example, if

A =

[
λ1 M

0 λ2

]
, M > 0,

then
lim

k→∞
‖ Ak ‖2 = 0

if and only if |λ1| < 1 and |λ2| < 1. This follows from Lemma 7.3.1, a result that
we needed to establish the convergence of the QR iteration. Applied to our 2-by-2
example, the lemma can be used to show that

‖ Ak ‖2 ≤ M

ε
(ρ(A) + ε)k

for any ε > 0 where ρ(A) = max{|λ1|, |λ2|} is the spectral radius. By making ε small
enough in this inequality, we can draw a conclusion about the asymptotic behavior of
Ak:

If ρ(A) < 1, then asymptotically Ak converges to zero as ρ(A)k. (7.9.1)

However, while the eigenvalues adequately predict the limiting behavior of ‖ Ak ‖2 ,
they do not (by themselves) tell us much about what is happening if k is small. Indeed,
if λ1 
= λ2, then using the diagonalization

A =

[
1 M/(λ2 − λ1)

0 1

][
λ1 0

0 λ2

][
1 M/(λ2 − λ1)

0 1

]−1

(7.9.2)

we can show that

Ak =

⎡⎢⎢⎣ λk
1 M

k−1∑
j=0

λk−1−j
1 λj

2

0 λk
2

⎤⎥⎥⎦ . (7.9.3)

Consideration of the (1,2) entry suggests that Ak may grow before decay sets in. This
is affirmed in Figure 7.9.1 where the size of ‖ Ak ‖2 is tracked for the example

A =

[
0.999 1000

0.0 0.998

]
.
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Figure 7.9.1. ‖ Ak ‖2 can grow even if ρ(A) < 1

Thus, it is perhaps better to augment (7.9.1) as follows:

If ρ(A) < 1, then aymptotically Ak converges to zero like ρ(A)k.
However, Ak may grow substantially before exponential decay sets in. (7.9.4)

This example with its ill-conditioned eigenvector matrix displayed in (7.9.2), points
to just why classical eigenvalue analysis is not so informative for nonnormal matrices.
Ill-conditioned eigenvector bases create a discrepancy between how A behaves and how
its diagonalization XAX−1 behaves. Pseudospectra analysis and computation narrow
this gap.

7.9.2 Definitions

The pseudospectra idea is a generalization of the eigenvalue idea. Whereas the spec-
trum Λ(A) is the set of all z ∈ C that make σmin(A − λI) zero, the ε-pseudospectrum
of a matrix A ∈ Cn×n is the subset of the complex plane defined by

Λε(A) = {z ∈ C : σmin(A − λI) ≤ ε } . (7.9.5)

If λ ∈ Λε(A), then λ is an ε-pseudoeigenvalue of A. A unit 2-norm vector v that satisfies
‖ (A − λI)v ‖2 = ε is a corresponding ε-pseudoeigenvector. Note that if ε is zero, then
Λε(A) is just the set of A’s eigenvalues, i.e., Λ0(A) = Λ(A).

We mention that because of their interest in what pseudospectra say about general
linear operators, Trefethen and Embree (2005) use a strict inequality in the definition
(7.9.5). The distinction has no impact in the matrix case.
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Equivalent definitions of Λε(·) include

Λε(A) =
{

z ∈ C : ‖ (zI − A)−1 ‖2 ≥ 1
ε

}
(7.9.6)

which highlights the resolvent (zI − A)−1 and

Λε(A) = { z ∈ C : z ∈ Λ(A + E), ‖ E ‖2 ≤ ε} (7.9.7)

which characterize pseudspectra as (traditional) eigenvalues of nearby matrices. The
equivalence of these three definitions is a straightforward verification that makes use
of Chapter 2 facts about singular values, 2-norms, and matrix inverses. We mention
that greater generality can be achieved in (7.9.6) and (7.9.7) by replacing the 2-norm
with an arbitrary matrix norm.

7.9.3 Display

The pseudospectrum of a matrix is a visible subset of the complex plane so graphical
display has a critical role to play in pseudospectra analysis. The Matlab-based Eigtool
system developed by Wright(2002) can be used to produce pseudospectra plots that
are as pleasing to the eye as they are informative. Eigtool’s pseudospectra plots are
contour plots where each contour displays the z-values associated with a specified value
of ε. Since

ε1 ≤ ε2 ⇒ Λε1 ⊆ Λε2

the typical pseudospectral plot is basically a topographical map that depicts the func-
tion f(z) = σmin(zI − A) in the vicinity of the eigenvalues.

We present three Eigtool-produced plots that serve as illuminating examples. The
first involves the n-by-n Kahan matrix Kahn(s), e.g.,

Kah5(s) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 −c −c −c −c

0 s −sc −sc −sc

0 0 s2 −s2c −s2c

0 0 0 s3 −s3c

0 0 0 0 s4

⎤⎥⎥⎥⎥⎥⎥⎦ , c2 + s2 = 1.

Recall that we used these matrices in §5.4.3 to show that QR with column pivoting
can fail to detect rank deficiency. The eigenvalues {1, s, s2, . . . , sn−1} of Kahn(s) are
extremely sensitive to perturbation. This is revealed by considering the ε = 10−6

contour that is displayed in Figure 7.9.2 together with Λ(Kahn(s)).
The second example is the Demmel matrix Demn(β), e.g.,

Dem5(β) = −

⎡⎢⎢⎢⎢⎢⎢⎣

1 β β2 β3 β4

0 1 β β2 β3

0 0 1 β β2

0 0 0 1 β

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Figure 7.9.2. Λε(Kah30(s)) with s29 = 0.1 and contours for ε = 10−2, . . . , 10−6

The matrix Demn(β) is defective and has the property that very small perturbations
can move an original eigenvalue to a position that are relatively far out on the imaginary
axis. See Figure 7.9.3. The example is used to illuminate the nearness-to-instability
problem presented in P7.9.13.
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Figure 7.9.3. Λε(Dem50(β)) with β49 = 108 and contours for ε = 10−2, . . . , 10−6
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The last example concerns the pseudospectra of the Matlab “Gallery(5)” matrix:

G5 =

⎡⎢⎢⎢⎢⎢⎢⎣

−9 11 −21 63 −252

70 −69 141 −421 1684

−575 575 −1149 3451 −13801

3891 −3891 7782 −23345 93365

1024 −1024 2048 −6144 24572

⎤⎥⎥⎥⎥⎥⎥⎦ .

Notice in Figure 7.9.4 that Λ10−13.5(G5) has five components. In general, it can be
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Figure 7.9.4. Λε(G5) with contours for ε = 10−11.5, 10−12, . . . , 10−13.5, 10−14

shown that each connected component of Λε(A) contains at least one eigenvalue of A.

7.9.4 Some Elementary Properties

Pseudospectra are subsets of the complex plane so we start with a quick summary of
notation. If S1 and S2 are subsets of the complex plane, then their sum S1 + S2 is
defined by

S1 + S2 = {s : s = s1 + s2, s1 ∈ S1, s2 ∈ S2 }.
If S1 consists of a single complex number α, then we write α + S2. If S is a subset of
the complex plane and β is a complex number, then β ·S is defined by

β ·S = { βz : z ∈ S }.
The disk of radius ε centered at the origin is denoted by

∆ε = {z : |z| ≤ ε }.
Finally, the distance from a complex number z0 to a set of complex numbers S is
defined by

dist(z0, S) = min{ |z0 − z | : z ∈ S }.
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Our first result is about the effect of translation and scaling. For eigenvalues we
have

Λ(αI + βA) = α + β ·Λ(A).

The following theorem establishes an analogous result for pseudospectra.

Theorem 7.9.1. If α, β ∈ C and A ∈ Cn×n, then Λε|β|(αI + βA) = α + β ·Λε(A).

Proof. Note that

Λε(αI + A) = { z : ‖ (zI − (αI + A))−1 ‖ ≥ 1/ε }
= { z : ‖ ((z − α)I − A)−1 ‖ ≥ 1/ε }
= α + { z − α : ‖ ((z − α)I − A)−1 ‖ ≥ 1/ε }
= α + { z : ‖ (zI − A)−1 ‖ ≥ 1/ε } = Λε(A)

and

Λε|β|(β · A) =
{

z : ‖ (zI − βA)−1 ‖ ≥ 1/|β|ε
}

=
{

z : ‖ (z/β)I − A)−1 ‖ ≥ 1/ε
}

= β ·
{

z/β : ‖ (z/β)I − A)−1 ‖ ≥ 1/ε
}

= β ·
{

z : ‖ zI − A)−1 ‖ ≥ 1/ε
}

= β ·Λε(A).

The theorem readily follows by composing these two results.

General similarity transforms preserve eigenvalues but not ε-pseudoeigenvalues. How-
ever, a simple inclusion property holds in the pseudospectra case.

Theorem 7.9.2. If B = X−1AX, then Λε(B) ⊆ Λεκ2(X)(A).

Proof. If z ∈ Λε(B), then

1
ε
≤ ‖ (zI − B)−1 ‖ = ‖ X−1(zI − A)−1X−1 ‖ ≤ κ2(X)‖ (zI − A)−1 ‖,

from which the theorem follows.

Corollary 7.9.3. If X ∈ Cn×n is unitary and A ∈ Cn×n, then Λε(X−1AX) = Λε(A).

Proof. The proof is left as an exercise.

The ε-pseudospectrum of a diagonal matrix is the union of ε-disks.

Theorem 7.9.4. If D = diag(λ1, . . . , λn), then Λε(D) = {λ1, . . . , λn} + ∆ε.

Proof. The proof is left as an exercise.
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Corollary 7.9.5. If A ∈ Cn×n is normal, then Λε(A) = Λ(A) + ∆ε.

Proof. Since A is normal, it has a diagonal Schur form QHAQ = diag(λ1, . . . , λn) = D
with unitary Q. The proof follows from Theorem 7.9.4.

If T = (Tij) is a 2-by-2 block triangular matrix, then Λ(T ) = Λ(T11) ∪ Λ(T22). Here is
the pseudospectral analog:

Theorem 7.9.6. If

T =

[
T11 T12

0 T22

]
with square diagonal blocks, then Λε(T11) ∪ Λε(T22) ⊆ Λε(T ).

Proof. The proof is left as an exercise.

Corollary 7.9.7. If

T =

[
T11 0

0 T22

]
with square diagonal blocks, then Λε(T ) = Λε(T11) ∪ Λε(T22).

Proof. The proof is left as an exercise.

The last property in our gallery of facts connects the resolvant (z0I − A)−1 to the
distance that separates z0 from Λε(A).

Theorem 7.9.8. If z0 ∈ C and A ∈ Cn×n, then

dist(z0, Λε(A)) ≥ 1
‖ (z0I − A)−1 ‖2

− ε.

Proof. For any z ∈ Λε(A) we have from Corollary 2.4.4 and (7.9.6) that

ε ≥ σmin(zI − A) = σmin((z0I − A) − (z − z0)I) ≥ σmin(z0I − A) − |z − z0|

and thus
|z − z0| ≥ 1

‖(z0I − A)−1‖ − ε.

The proof is completed by minimizing over all z ∈ Λε(A).

7.9.5 Computing Pseudospectra

The production of a pseudospectral contour plot such as those displayed above requires
sufficiently accurate approximations of σmin(zI−A) on a grid that consists of (perhaps)
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1000’s of z-values. As we will see in §8.6, the computation of the complete SVD of an
n-by-n dense matrix is an O(n3) endeavor. Fortunately, steps can be taken to reduce
each grid point calculation to O(n2) or less by exploiting the following ideas:

1. Avoid SVD-type computations in regions where σmin(zI − A) is slowly varying.
See Gallestey (1998).

2. Exploit Theorem 7.9.6 by ordering the eigenvalues so that the invariant subspace
associated with Λ(T11) captures the essential behavior of (zI −A)−1. See Reddy,
Schmid, and Henningson (1993).

3. Precompute the Schur decomposition QHAQ = T and apply a σmin algorithm
that is efficient for triangular matrices. See Lui (1997).

We offer a few comments on the last strategy since it has much in common with the
condition estimation problem that we discussed in §3.5.4. The starting point is to
recognize that since Q is unitary,

σmin(zI − A) = σmin(zI − T ).

The triangular structure of the transformed problem makes it possible to obtain a
satisfactory estimate of σmin(zI − A) in O(n2) flops. If d is a unit 2-norm vector and
(zI − T )y = d, then it follows from the SVD of zI − T that

σmin(zI − T ) ≤ 1
‖ y ‖2

.

Let umin be a left singular vector associated with σmin(zI − T ). If d is has a significant
component in the direction of umin, then

σmin(zI − T ) ≈ 1
‖ y ‖2

.

Recall that Algorithm 3.5.1 is a cheap heuristic procedure that dynamically determines
the right hand side vector d so that the solution to a given triangular system is large
in norm. This is tantamount to choosing d so that it is rich in the direction of umin. A
complex arithmetic, 2-norm variant of Algorithm 3.5.1 is outlined in P7.9.13. It can be
applied to zI − T . The resulting d-vector can be refined using inverse iteration ideas,
see Toh and Trefethen (1996) and §8.2.2. Other approaches are discussed by Wright
and Trefethen (2001).

7.9.6 Computing the ε-Pseudospectral Abscissa and Radius

The ε-pseudospectral abscissa of a matrix A ∈ Cn×n is the rightmost point on the
boundary of Λε:

αε(A) = max
z∈Λε(A)

Re(z). (7.9.8)

Likewise, the ε-pseudospectral radius is the point of largest magnitude on the boundary
of Λε:
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ρε(A) = max
z∈Λε(A)

|z|. (7.9.9)

These quantities arise in the analysis of dynamical systems and effective iterative algo-
rithms for their estimation have been proposed by Burke, Lewis, and Overton (2003)
and Mengi and Overton (2005). A complete presentation and analysis of their very
clever optimization procedures, which build on the work of Byers (1988), is beyond the
scope of the text. However, at their core they involve interesting intersection problems
that can be reformulated as structured eigenvalue problems. For example, if i·r is an
eigenvalue of the matrix

M =

[
ieiθAH −εI

εI ie−iθA

]
, (7.9.10)

then ε is a singular value of A − reiθI. To see this, observe that if[
ieiθAH −εI

εI ie−iθA

][
f

g

]
= i·r

[
f

g

]
,

then
(A − reiθI)H(A − reiθI)g = ε2g.

The complex version of the SVD (§2.4.4) says that ε is a singular value of A − reıθI.
It can be shown that if irmax is the largest pure imaginary eigenvalue of M , then

ε = σmin(A − rmaxe
ıθI).

This result can be used to compute the intersection of the ray { reiθ : R ≥ 0 } and the
boundary of Λε(A). This computation is at the heart of computing the ε-pseudospectral
radius. See Mengi and Overton (2005).

7.9.7 Matrix Powers and the ε-Pseudospectral Radius

At the start of this section we used the example

A =

[
0.999 1000

0.000 0.998

]

to show that ‖ Ak ‖2 can grow even though ρ(A) < 1. This kind of transient behavior
can be anticipated by the pseudospectral radius. Indeed, it can be shown that for any
ε > 0,

sup
k≥0

‖ Ak ‖2 ≥ ρε(A) − 1
ε

. (7.9.11)

See Trefethen and Embree (SAP, pp. 160–161). This says that transient growth will
occur if there is a contour {z:‖ ( ‖zI −A)−1 = 1/ε } that extends beyond the unit disk.
For the above 2-by-2 example, if ε = 10−8, then ρε(A) ≈ 1.0017 and the inequality
(7.9.11) says that for some k, ‖ Ak ‖2 ≥ 1.7 × 105. This is consistent with what is
displayed in Figure 7.9.1.
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Problems

P7.9.1 Show that the definitions (7.9.5), (7.9.6), and (7.9.7) are equivalent.
P7.9.2 Prove Corollary 7.9.3.
P7.9.3 Prove Theorem 7.9.4.
P7.9.4 Prove Theorem 7.9.6.
P7.9.5 Prove Corollary 7.9.7.

P7.9.6 Show that if A, E ∈ Cn×n, then Λε(A + E) ⊆ Λε+‖E‖2 (A).
P7.9.7 Suppose σmin(z1I −A) = ε1 and σmin(z2I −A) = ε2. Prove that there exists a real number µ
so that if z3 = (1− µ)z1 + µz2, then σmin(z3I −A) = (ε1 + ε2)/2?

P7.9.8 Suppose A ∈ Cn×n is normal and E ∈ Cn×n is nonnormal. State and prove a theorem about
Λε(A + E).
P7.9.9 Explain the connection between Theorem 7.9.2 and the Bauer-Fike Theorem (Theorem 7.2.2).

P7.9.10 Define the matrix J ∈ IR2n×2n by

J =
[

0 In

−In 0

]
.

(a) The matrix H ∈ IR2n×2n is a Hamiltonian matrix if JT HJ = −HT . It is easy to show that if H
is Hamiltonian and λ ∈ Λ(H), then −λ ∈ Λ(H). Does it follow that if λ ∈ Λε(H), then −λ ∈ Λε(H)?
(b) The matrix S ∈ IR2n×2n is a symplectic matrix if JT SJ = S−T . It is easy to show that if S is
symplectic and λ ∈ Λ(S), then 1/λ ∈ Λ(S). Does it follow that if λ ∈ Λε(S), then 1/λ ∈ Λε(S)?
P7.9.11 Unsymmetric Toeplitz matrices tend to have very ill-conditioned eigensystems and thus have
interesting pseudospectral properties. Suppose

A =

⎡⎢⎢⎢⎢⎣
0 1 · · · 0

α 0
. . .

...
...

. . .
. . . 1

0 · · · α 0

⎤⎥⎥⎥⎥⎦ .

(a) Construct a diagonal matrix S so that S−1AS = B is symmetric and tridiagonal with 1’s on its
subdiagonal and superdiagonal. (b) What can you say about the condition of A’s eigenvector matrix?

P7.9.12 A matrix A ∈ Cn×n is stable if all of its eigenvalues have negative real parts. Consider the
problem of minimizing ‖ E ‖2 subject to the constraint that A+E has an eigenvalue on the imaginary
axis. Explain why this optimization problem is equivalent to minimizing σmin(irI−A) over all r ∈ IR.
If E∗ is a minimizing E, then ‖ E ‖2 can be regarded as measure of A’s nearness to instability. What
is the connection between A’s nearness to instability and αε(A)?
P7.9.13 This problem is about the cheap estimation of the minimum singular value of a matrix, a
critical computation that is performed over an over again during the course of displaying the pseu-
dospectrum of a matrix. In light of the discussion in §7.9.5, the challenge is to estimate the smallest
singular value of an upper triangular matrix U = T − zI where T is the Schur form of A ∈ IRn×n. The
condition estimation ideas of §3.5.4 are relevant. We want to determine a unit 2-norm vector d ∈ Cn

such that the solution to Uy = d has a large 2-norm for then σmin(U) ≈ 1/‖ y ‖2. (a) Suppose

U =

[
u11 uH

0 U1

]
y =

[
τ

z

]
d =

[
c

sd1

]
where u11, τ ∈ C, u, z, d1 ∈ Cn−1, U1 ∈ C(n−1)×(n−1), ‖ d1 ‖2 = 1, U1y1 = d1, and c2 + s2 = 1.
Give an algorithm that determines c and s so that if Uy = d, then ‖ y ‖2 is as large as possible. Hint:
This is a 2-by-2 SVD problem. (b) Using part (a), develop a nonrecursive method for estimating
σmin(U(k:n, k:n)) for k = n:− 1:1.

Notes and References for §7.7

Besides Trefethen and Embree (SAP), the following papers provide a nice introduction to the pseu-
dospectra idea:
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M. Embree and L.N. Trefethen (2001). “Generalizing Eigenvalue Theorems to Pseudospectra Theo-
rems,” SIAM J. Sci. Comput. 23, 583–590.

L.N. Trefethen (1997). “Pseudospectra of Linear Operators,” SIAM Review 39, 383–406.

For more details concerning the computation and display of pseudoeigenvalues, see:

S.C. Reddy, P.J. Schmid, and D.S. Henningson (1993). “Pseudospectra of the Orr-Sommerfeld Oper-
ator,” SIAM J. Applic. Math. 53, 15–47.

S.-H. Lui (1997). “Computation of Pseudospectra by Continuation,” SIAM J. Sci. Comput. 18,
565–573.

E. Gallestey (1998). “Computing Spectral Value Sets Using the Subharmonicity of the Norm of
Rational Matrices,” BIT, 38, 22–33.

L.N. Trefethen (1999). “Computation of Pseudospectra,” Acta Numerica 8, 247–295.
T.G. Wright (2002). Eigtool, http://www.comlab.ox.ac.uk/pseudospectra/eigtool/.

Interesting extensions/generalizations/applications of the pseudospectra idea include:

L. Reichel and L.N. Trefethen (1992). “Eigenvalues and Pseudo-Eigenvalues of Toeplitz Matrices,”
Lin. Alg. Applic. 164–164, 153–185.

K-C. Toh and L.N. Trefethen (1994). “Pseudozeros of Polynomials and Pseudospectra of Companion
Matrices,” Numer. Math. 68, 403–425.

F. Kittaneh (1995). “Singular Values of Companion Matrices and Bounds on Zeros of Polynomials,”
SIAM J. Matrix Anal. Applic. 16, 333–340.

N.J. Higham and F. Tisseur (2000). “A Block Algorithm for Matrix 1-Norm Estimation, with an
Application to 1-Norm Pseudospectra,” SIAM J. Matrix Anal. Applic. 21, 1185–1201.

T.G. Wright and L.N. Trefethen (2002). “Pseudospectra of Rectangular matrices,” IMA J. Numer.
Anal. 22, 501–519.

R. Alam and S. Bora (2005). “On Stable Eigendecompositions of Matrices,” SIAM J. Matrix Anal.
Applic. 26, 830–848.

Pseudospectra papers that relate to the notions of controllability and stability of linear systems include:

J.V. Burke and A.S. Lewis. and M.L. Overton (2003). “Optimization and Pseudospectra, with
Applications to Robust Stability,” SIAM J. Matrix Anal. Applic. 25, 80–104.

J.V. Burke, A.S. Lewis, and M.L. Overton (2003). “Robust Stability and a Criss–Cross Algorithm for
Pseudospectra,” IMA J. Numer. Anal. 23, 359–375.

J.V. Burke, A.S. Lewis and M.L. Overton (2004). “Pseudospectral Components and the Distance to
Uncontrollability,” SIAM J. Matrix Anal. Applic. 26, 350–361.

The following papers are concerned with the computation of the numerical radius, spectral radius,
and field of values:

C. He and G.A. Watson (1997). “An Algorithm for Computing the Numerical Radius,” IMA J.
Numer. Anal. 17, 329–342.

G.A. Watson (1996). “Computing the Numerical Radius” Lin. Alg. Applic. 234, 163–172.
T. Braconnier and N.J. Higham (1996). “Computing the Field of Values and Pseudospectra Using the

Lanczos Method with Continuation,” BIT 36, 422–440.
E. Mengi and M.L. Overton (2005). “Algorithms for the Computation of the Pseudospectral Radius

and the Numerical Radius of a Matrix,” IMA J. Numer. Anal. 25, 648–669.
N. Guglielmi and M. Overton (2011). “Fast Algorithms for the Approximation of the Pseudospectral

Abscissa and Pseudospectral Radius of a Matrix,” SIAM J. Matrix Anal. Applic. 32, 1166–1192.

For more insight into the behavior of matrix powers, see:

P. Henrici (1962). “Bounds for Iterates, Inverses, Spectral Variation, and Fields of Values of Non-
normal Matrices,” Numer. Math.4, 24–40.

J. Descloux (1963). “Bounds for the Spectral Norm of Functions of Matrices,” Numer. Math. 5,
185–90.

T. Ransford (2007). “On Pseudospectra and Power Growth,” SIAM J. Matrix Anal. Applic. 29,
699–711.

As an example of what pseudospectra can tell us about highly structured matrices, see:

L. Reichel and L.N. Trefethen (1992). “Eigenvalues and Pseudo-eigenvalues of Toeplitz Matrices,”
Lin. Alg. Applic. 162/163/164, 153–186.

http://www.comlab.ox.ac.uk/pseudospectra/eigtool/
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Chapter 8

Symmetric Eigenvalue
Problems

8.1 Properties and Decompositions

8.2 Power Iterations

8.3 The Symmetric QR Algorithm

8.4 More Methods for Tridiagonal Problems

8.5 Jacobi Methods

8.6 Computing the SVD

8.7 Generalized Eigenvalue Problems with Symmetry

The symmetric eigenvalue problem with its rich mathematical structure is one of
the most aesthetically pleasing problems in numerical linear algebra. We begin with a
brief discussion of the mathematical properties that underlie the algorithms that follow.
In §8.2 and §8.3 we develop various power iterations and eventually focus on the sym-
metric QR algorithm. Methods for the important case when the matrix is tridiagonal
are covered in §8.4. These include the method of bisection and a divide and conquer
technique. In §8.5 we discuss Jacobi’s method, one of the earliest matrix algorithms to
appear in the literature. This technique is of interest because it is amenable to parallel
computation and because of its interesting high-accuracy properties. The computa-
tion of the singular value decomposition is detailed in §8.6. The central algorithm is a
variant of the symmetric QR iteration that works on bidiagonal matrices.

In §8.7 we discuss the generalized eigenvalue problem Ax = λBx for the impor-
tant case when A is symmetric and B is symmetric positive definite. The generalized
singular value decomposition AT Ax = µ2BT Bx is also covered. The section concludes
with a brief examination of the quadratic eigenvalue problem (λ2M + λC + K)x = 0
in the presence of symmetry, skew-symmetry, and definiteness.

Reading Notes

Knowledge of Chapters 1-3 and §5.1–§5.2 are assumed. Within this chapter there
are the following dependencies:

439
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§8.4
↑

§8.1 → §8.2 → §8.3 → §8.6 → §8.7
↓

§8.5

Many of the algorithms and theorems in this chapter have unsymmetric counterparts
in Chapter 7. However, except for a few concepts and definitions, our treatment of the
symmetric eigenproblem can be studied before reading Chapter 7.

Complementary references include Wilkinson (AEP), Stewart (MAE), Parlett
(SEP), and Stewart and Sun (MPA).

8.1 Properties and Decompositions
In this section we summarize the mathematics required to develop and analyze algo-
rithms for the symmetric eigenvalue problem.

8.1.1 Eigenvalues and Eigenvectors

Symmetry guarantees that all of A’s eigenvalues are real and that there is an orthonor-
mal basis of eigenvectors.

Theorem 8.1.1 (Symmetric Schur Decomposition). If A ∈ IRn×n is symmetric,
then there exists a real orthogonal Q such that

QT AQ = Λ = diag(λ1, . . . , λn).

Moreover, for k = 1:n, AQ(:, k) = λkQ(:, k). Compare with Theorem 7.1.3.

Proof. Suppose λ1 ∈ λ(A) and that x ∈ Cn is a unit 2-norm eigenvector with Ax =
λ1x. Since λ1 = xHAx = xHAHx = xHAx = λ1 it follows that λ1 ∈ IR. Thus,
we may assume that x ∈ IRn. Let P1 ∈ IRn×n be a Householder matrix such that
PT

1 x = e1 = In(:, 1). It follows from Ax = λ1x that (PT
1 AP1)e1 = λe1. This says that

the first column of PT
1 AP1 is a multiple of e1. But since PT

1 AP1 is symmetric, it must
have the form

PT
1 AP1 =

[
λ1 0

0 A1

]
where A1 ∈ IR(n−1)×(n−1) is symmetric. By induction we may assume that there is
an orthogonal Q1 ∈ IR(n−1)×(n−1) such that QT

1 A1Q1 = Λ1 is diagonal. The theorem
follows by setting

Q = P1

[
1 0

0 Q1

]
and Λ =

[
λ1 0

0 Λ1

]
and comparing columns in the matrix equation AQ = QΛ.

For a symmetric matrix A we shall use the notation λk(A) to designate the kth largest
eigenvalue, i.e.,

λn(A) ≤ · · · ≤ λ2(A) ≤ λ1(A).
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It follows from the orthogonal invariance of the 2-norm that A has singular values
{|λ1(A)|, . . . , |λn(A)|} and

‖ A ‖2 = max{ |λ1(A)| , |λn(A)| }.

The eigenvalues of a symmetric matrix have a minimax characterization that
revolves around the quadratic form xT Ax/xT x.

Theorem 8.1.2 (Courant-Fischer Minimax Theorem). If A ∈ IRn×n is symmet-
ric, then

λk(A) = max
dim(S)=k

min
0 �=y∈S

yT Ay

yT y

for k = 1:n.

Proof. Let QT AQ = diag(λi) be the Schur decomposition with λk = λk(A) and
Q = [ q1 | · · · | qn ] . Define

Sk = span{q1, . . . , qk},
the invariant subspace associated with λ1, . . . , λk. It is easy to show that

max
dim(S)=k

min
0 �=y∈S

yT Ay

yT y
≥ min

0 �=y∈Sk

yT Ay

yT y
= qT

k Aqk = λk(A).

To establish the reverse inequality, let S be any k-dimensional subspace and note
that it must intersect span{qk, . . . , qn}, a subspace that has dimension n − k + 1. If
y∗ = αkqk + · · · + αnqn is in this intersection, then

min
0 �=y∈S

yT Ay

yT y
≤ yT

∗ Ay∗
yT∗ y∗

≤ λk(A).

Since this inequality holds for all k-dimensional subspaces,

max
dim(S)=k

min
0 �=y∈S

yT Ay

yT y
≤ λk(A)

thereby completing the proof of the theorem.

Note that if A ∈ IRn×n is symmetric positive definite, then λn(A) > 0.

8.1.2 Eigenvalue Sensitivity

An important solution framework for the symmetric eigenproblem involves the pro-
duction of a sequence of orthogonal transformations {Qk} with the property that the
matrices QT

k AQk are progressively “more diagonal.” The question naturally arises,
how well do the diagonal elements of a matrix approximate its eigenvalues?
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Theorem 8.1.3 (Gershgorin). Suppose A ∈ IRn×n is symmetric and that Q ∈ IRn×n

is orthogonal. If QT AQ = D + F where D = diag(d1, . . . , dn) and F has zero diagonal
entries, then

λ(A) ⊆
n⋃

i=1

[di − ri, di + ri]

where ri =
n∑

j=1

|fij | for i = 1:n. Compare with Theorem 7.2.1.

Proof. Suppose λ ∈ λ(A) and assume without loss of generality that λ 
= di for
i = 1:n. Since (D − λI) + F is singular, it follows from Lemma 2.3.3 that

1 ≤ ‖ (D − λI)−1F ‖∞ =
n∑

j=1

|fkj |
|dk − λ| =

rk

|dk − λ|

for some k, 1 ≤ k ≤ n. But this implies that λ ∈ [dk − rk, dk + rk].

The next results show that if A is perturbed by a symmetric matrix E, then its
eigenvalues do not move by more than ‖ E ‖

F
.

Theorem 8.1.4 (Wielandt-Hoffman). If A and A + E are n-by-n symmetric ma-
trices, then

n∑
i=1

(λi(A + E) − λi(A))2 ≤ ‖ E ‖2
F

.

Proof. See Wilkinson (AEP, pp. 104–108), Stewart and Sun (MPT, pp. 189–191), or
Lax (1997, pp. 134–136).

Theorem 8.1.5. If A and A + E are n-by-n symmetric matrices, then

λk(A) + λn(E) ≤ λk(A + E) ≤ λk(A) + λ1(E), k = 1:n.

Proof. This follows from the minimax characterization. For details see Wilkinson
(AEP, pp. 101–102) or Stewart and Sun (MPT, p. 203).

Corollary 8.1.6. If A and A + E are n-by-n symmetric matrices, then

|λk(A + E) − λk(A)| ≤ ‖ E ‖2

for k = 1:n.

Proof. Observe that

|λk(A + E) − λk(A)| ≤ max{|λn(E)| , |λ1(E)‖} = ‖ E ‖2

for k = 1:n.
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A pair of additional perturbation results that are important follow from the minimax
property.

Theorem 8.1.7 (Interlacing Property). If A ∈ IRn×n is symmetric and Ar =
A(1:r, 1:r), then

λr+1(Ar+1) ≤ λr(Ar) ≤ λr(Ar+1) ≤ · · · ≤ λ2(Ar+1) ≤ λ1(Ar) ≤ λ1(Ar+1)

for r = 1:n − 1.

Proof. Wilkinson (AEP, pp. 103–104).

Theorem 8.1.8. Suppose B = A + τccT where A ∈ IRn×n is symmetric, c ∈ IRn has
unit 2-norm, and τ ∈ IR. If τ ≥ 0, then

λi(B) ∈ [λi(A), λi−1(A)], i = 2:n,

while if τ ≤ 0 then

λi(B) ∈ [ λi+1(A) , λi(A) ], i = 1:n−1 .

In either case, there exist nonnegative m1, . . . , mn such that

λi(B) = λi(A) + miτ, i = 1:n

with m1 + · · · + mn = 1.

Proof. Wilkinson (AEP, pp. 94–97). See also P8.1.8.

8.1.3 Invariant Subspaces

If S ⊆ IRn and x ∈ S ⇒ Ax ∈ S, then S is an invariant subspace for A ∈ IRn×n.
Note that if x ∈ IRis an eigenvector for A, then S = span{x} is 1-dimensional invariant
subspace. Invariant subspaces serve to “take apart” the eigenvalue problem and figure
heavily in many solution frameworks. The following theorem explains why.

Theorem 8.1.9. Suppose A ∈ IRn×n is symmetric and that

Q = [ Q1 | Q2 ]
r n−r

is orthogonal. If ran(Q1) is an invariant subspace, then

QT AQ = D =
[

D1

0

0

D2

]
r

n−r

r n−r

(8.1.1)

and λ(A) = λ(D1) ∪ λ(D2). Compare with Lemma 7.1.2.
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Proof. If

QT AQ =

[
D1 ET

21

E21 D2

]
,

then from AQ = QD we have AQ1 − Q1D1 = Q2E21. Since ran(Q1) is invariant, the
columns of Q2E21 are also in ran(Q1) and therefore perpendicular to the columns of
Q2. Thus,

0 = QT
2 (AQ1 − Q1D1) = QT

2 Q2E21 = E21.

and so (8.1.1) holds. It is easy to show

det(A − λIn) = det(QT AQ − λIn) = det(D1 − λIr)·det(D2 − λIn−r)

confirming that λ(A) = λ(D1) ∪ λ(D2).

The sensitivity to perturbation of an invariant subspace depends upon the sep-
aration of the associated eigenvalues from the rest of the spectrum. The appropriate
measure of separation between the eigenvalues of two symmetric matrices B and C is
given by

sep(B, C) = min
λ∈λ(B)
µ∈λ(C)

|λ − µ|. (8.1.2)

With this definition we have the following result.

Theorem 8.1.10. Suppose A and A + E are n-by-n symmetric matrices and that

Q = [ Q1 | Q2 ]
r n−r

is an orthogonal matrix such that ran(Q1) is an invariant subspace for A. Partition
the matrices QT AQ and QT EQ as follows:

QT AQ =
[

D1

0

0

D2

]
r

n−r

r n−r

, QT EQ =
[

E11

E21

ET
21

E22

]
r

n−r

r n−r

.

If sep(D1, D2) > 0 and

‖ E ‖
F

≤ sep(D1, D2)
5

,

then there exists a matrix P ∈ IR(n−r)×r with

‖ P ‖
F

≤ 4
sep(D1, D2)

‖ E21 ‖F

such that the columns of Q̂1 = (Q1 + Q2P )(I + PT P )−1/2 define an orthonormal basis
for a subspace that is invariant for A + E. Compare with Theorem 7.2.4.

Proof. This result is a slight adaptation of Theorem 4.11 in Stewart (1973). The
matrix (I + PT P )−1/2 is the inverse of the square root of I + PT P . See §4.2.4.
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Corollary 8.1.11. If the conditions of the theorem hold, then

dist( ran(Q1), ran(Q̂1)) ≤ 4
sep(D1, D2)

‖ E21 ‖F
.

Compare with Corollary 7.2.5.

Proof. It can be shown using the SVD that

‖ P (I + PT P )−1/2 ‖2 ≤ ‖ P ‖2 ≤ ‖ P ‖
F
. (8.1.3)

Since QT
2 Q̂1 = P (I + PT P )−1/2 it follows that

dist(ran(Q1), ran(Q̂1)) = ‖ QT
2 Q̂1 ‖2 = ‖ P (I + PHP )−1/2 ‖2

≤ ‖ P ‖2 ≤ 4‖ E21 ‖F
/sep(D1, D2)

completing the proof.

Thus, the reciprocal of sep(D1, D2) can be thought of as a condition number that
measures the sensitivity of ran(Q1) as an invariant subspace.

The effect of perturbations on a single eigenvector is sufficiently important that
we specialize the above results to this case.

Theorem 8.1.12. Suppose A and A + E are n-by-n symmetric matrices and that

Q = [ q1 | Q2 ]
1 n−1

is an orthogonal matrix such that q1 is an eigenvector for A. Partition the matrices
QT AQ and QT EQ as follows:

QT AQ =
[

λ

0

0

D2

]
1

n−1

1 n−1

, QT EQ =
[

ε

e

eT

E22

]
1

n−1

1 n−1

.

If
d = min

µ∈λ(D2)

|λ − µ| > 0

and
‖ E ‖

F
≤ d

5
,

then there exists p ∈ IRn−1 satisfying

‖ p ‖2 ≤ 4
d
‖ e ‖2

such that q̂1 = (q1+Q2p)/
√

1 + pT p is a unit 2-norm eigenvector for A+E. Moreover,

dist( span{ q1} , span{q̂1} ) =
√

1 − (qT
1 q̂1)2 ≤ 4

d
‖ e ‖2.
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Compare with Corollary 7.2.6.

Proof. Apply Theorem 8.1.10 and Corollary 8.1.11 with r = 1 and observe that if
D1 = (λ), then d = sep(D1, D2).

8.1.4 Approximate Invariant Subspaces

If the columns of Q1 ∈ IRn×r are independent and the residual matrix R = AQ1 −Q1S
is small for some S ∈ IRr×r, then the columns of Q1 define an approximate invariant
subspace. Let us discover what we can say about the eigensystem of A when in the
possession of such a matrix.

Theorem 8.1.13. Suppose A ∈ IRn×n and S ∈ IRr×r are symmetric and that

AQ1 − Q1S = E1

where Q1 ∈ IRn×r satisfies QT
1 Q1 = Ir. Then there exist µ1, . . . , µr ∈ λ(A) such that

|µk − λk(S)| ≤
√

2 ‖ E1 ‖2

for k = 1:r.

Proof. Let Q2 ∈ IRn×(n−r) be any matrix such that Q = [ Q1 | Q2 ] is orthogonal. It
follows that

QT AQ =

⎡⎣ S 0

0 QT
2 AQ2

⎤⎦ +

⎡⎣ QT
1 E1 ET

1 Q2

QT
2 E1 0

⎤⎦ ≡ B + E

and so by using Corollary 8.1.6 we have |λk(A) − λk(B)| ≤ ‖ E ‖2 for k = 1:n. Since
λ(S) ⊆ λ(B), there exist µ1, . . . , µr ∈ λ(A) such that |µk − λk(S)| ≤ ‖ E ‖2 for
k = 1:r. The theorem follows by noting that for any x ∈ IRr and y ∈ IRn−r we have∥∥∥∥E

[
x
y

]∥∥∥∥
2

≤ ‖ E1x ‖2 + ‖ ET
1 Q2y ‖2 ≤ ‖ E1 ‖2 ‖ x ‖2 + ‖ E1 ‖2 ‖ y ‖2

from which we readily conclude that ‖ E ‖2 ≤
√

2‖ E1 ‖2.

The eigenvalue bounds in Theorem 8.1.13 depend on ‖ AQ1 − Q1S ‖2. Given
A and Q1, the following theorem indicates how to choose S so that this quantity is
minimized in the Frobenius norm.

Theorem 8.1.14. If A ∈ IRn×n is symmetric and Q1 ∈ IRn×r has orthonormal columns,
then

min
S∈IRr×r

‖ AQ1 − Q1S ‖
F

= ‖ (I − Q1Q
T
1 )AQ1 ‖F

and S = QT
1 AQ1 is the minimizer.
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Proof. Let Q2 ∈ IRn×(n−r) be such that Q = [ Q1, Q2 ] is orthogonal. For any
S ∈ IRr×r we have

‖ AQ1 − Q1S ‖2
F

= ‖ QT AQ1 − QT Q1S ‖2
F

= ‖ QT
1 AQ1 − S ‖2

F
+ ‖ QT

2 AQ1 ‖2
F
.

Clearly, the minimizing S is given by S = QT
1 AQ1.

This result enables us to associate any r-dimensional subspace ran(Q1), with a set of r
“optimal” eigenvalue-eigenvector approximates.

Theorem 8.1.15. Suppose A ∈ IRn×n is symmetric and that Q1 ∈ IRn×r satisfies
QT

1 Q1 = Ir. If
ZT (QT

1 AQ1)Z = diag(θ1, . . . , θr) = D

is the Schur decomposition of QT
1 AQ1 and Q1Z = [ y1 | · · · | yr ] , then

‖ Ayk − θkyk ‖2 = ‖ (I − Q1Q
T
1 )AQ1Zek ‖2 ≤ ‖ (I − Q1Q

T
1 )AQ1 ‖2

for k = 1:r.

Proof. It is easy to show that

Ayk − θkyk = AQ1Zek − Q1ZDek = (AQ1 − Q1(QT
1 AQ1))Zek.

The theorem follows by taking norms.

In Theorem 8.1.15, the θk are called Ritz values, the yk are called Ritz vectors, and the
(θk, yk) are called Ritz pairs.

The usefulness of Theorem 8.1.13 is enhanced if we weaken the assumption that
the columns of Q1 are orthonormal. As can be expected, the bounds deteriorate with
the loss of orthogonality.

Theorem 8.1.16. Suppose A ∈ IRn×n is symmetric and that

AX1 − X1S = F1,

where X1 ∈ IRn×r and S = XT
1 AX1. If

‖ XT
1 X1 − Ir ‖2 = τ < 1, (8.1.4)

then there exist µ1, . . . , µr ∈ λ(A) such that

|µk − λk(S)| ≤
√

2 (‖ F1 ‖2 + τ(2 + τ)‖ A ‖2)

for k = 1:r.

Proof. For any Q ∈ IRn×r with orthonormal columns, define E1 ∈ IRn×r by

E1 = AQ − QS.

It follows that
E1 = A(Q − X1) − (Q − X1)S + F1
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and so
‖ E1 ‖2 ≤ ‖ F1 ‖2 + ‖ Q − X ‖2‖ A ‖2

(
1 + ‖ X1 ‖2

2

)
. (8.1.5)

Note that

‖ X1 ‖2
2 = ‖ XT

1 X1 ‖2 ≤ ‖ XT X1 − Ir ‖2 + ‖ Ir ‖2 = 1 + τ. (8.1.6)

Let UT X1V = Σ = diag(σ1, . . . , σr) be the thin SVD of X1. It follows from (8.1.4)
that

‖ Σ2 − Ir ‖2 = τ

and thus 1 − σ2
r = τ . This implies

‖ Q − X1 ‖2 = ‖ U(Ir − Σ)V T ‖2 = ‖ Ir − Σ ‖2 = 1 − σr ≤ 1 − σ2
r = τ. (8.1.7)

The theorem is established by substituting (8.1.6) and (8.1.7) into (8.1.5) and using
Theorem 8.1.13.

8.1.5 The Law of Inertia

The inertia of a symmetric matrix A is a triplet of nonnegative integers (m, z, p) where
m, z, and p are respectively the numbers of negative, zero, and positive eigenvalues.

Theorem 8.1.17 (Sylvester Law of Inertia). If A ∈ IRn×n is symmetric and
X ∈ IRn×n is nonsingular, then A and XT AX have the same inertia.

Proof. Suppose for some r that λr(A) > 0 and define the subspace S0 ⊆ IRn by

S0 = span{X−1q1, . . . , X
−1qr}, qi 
= 0,

where Aqi = λi(A)qi and i = 1:r. From the minimax characterization of λr(XT AX)
we have

λr(XT AX) = max
dim(S)=r

min
y∈S

yT (XT AX)y
yT y

≥ min
y∈S0

yT (XT AX)y
yT y

.

Since

y ∈ IRn ⇒ yT (XT X)y
yT y

≥ σn(X)2 y ∈ S0 ⇒ yT (XT AX)y
yT (XT X)y

≥ λr(A),

it follows that

λr(XT AX) ≥ min
y∈S0

{
yT (XT AX)y
yT (XT X)y

yT (XT X)y
yT y

}
≥ λr(A)σn(X)2.

An analogous argument with the roles of A and XT AX reversed shows that

λr(A) ≥ λr(XT AX)σn(X−1)2 =
λr(XT AX)

σ1(X)2
.
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Thus, λr(A) and λr(XT AX) have the same sign and so we have shown that A and
XT AX have the same number of positive eigenvalues. If we apply this result to −A, we
conclude that A and XT AX have the same number of negative eigenvalues. Obviously,
the number of zero eigenvalues possessed by each matrix is also the same.

A transformation of the form A → XT AX where X is nonsingular is called a conguence
transformation. Thus, a congruence transformation of a symmetric matrix preserves
inertia.

Problems

P8.1.1 Without using any of the results in this section, show that the eigenvalues of a 2-by-2 symmetric
matrix must be real.

P8.1.2 Compute the Schur decomposition of A =
[

1 2
2 3

]
.

P8.1.3 Show that the eigenvalues of a Hermitian matrix (AH = A) are real. For each theorem and
corollary in this section, state and prove the corresponding result for Hermitian matrices. Which
results have analogs when A is skew-symmetric? Hint: If AT = −A, then iA is Hermitian.

P8.1.4 Show that if X ∈ IRn×r, r ≤ n, and ‖XT X − I ‖2 = τ < 1, then σmin(X) ≥ 1− τ .

P8.1.5 Suppose A, E ∈ IRn×n are symmetric and consider the Schur decomposition A + tE = QDQT

where we assume that Q = Q(t) and D = D(t) are continuously differentiable functions of t ∈ IR. Show
that Ḋ(t) = diag(Q(t)T EQ(t)) where the matrix on the right is the diagonal part of Q(t)T EQ(t).
Establish the Wielandt-Hoffman theorem by integrating both sides of this equation from 0 to 1 and
taking Frobenius norms to show that

‖D(1)−D(0) ‖
F
≤

∫ 1

0

‖ diag(Q(t)T EQ(t) ‖
F

dt ≤ ‖ E ‖
F

.

P8.1.6 Prove Theorem 8.1.5.

P8.1.7 Prove Theorem 8.1.7.

P8.1.8 Prove Theorem 8.1.8 using the fact that the trace of a square matrix is the sum of its eigen-
values.

P8.1.9 Show that if B ∈ IRm×m and C ∈ IRn×n are symmetric, then sep(B, C) = min ‖BX −XC ‖
F

where the min is taken over all matrices X ∈ IRm×n.

P8.1.10 Prove the inequality (8.1.3).

P8.1.11 Suppose A ∈ IRn×n is symmetric and C ∈ IRn×r has full column rank and assume that r � n.
By using Theorem 8.1.8 relate the eigenvalues of A + CCT to the eigenvalues of A.

P8.1.12 Give an algorithm for computing the solution to

min
rank(S) = 1

S = ST

‖A− S ‖F .

Note that if S ∈ IRn×n is a symmetric rank-1 matrix then either S = vvT or S = −vvT for some
v ∈ IRn.

P8.1.13 Give an algorithm for computing the solution to

min
rank(S) = 2
S = −ST

‖A− S ‖F .

P8.1.14 Give an example of a real 3-by-3 normal matrix with integer entries that is neither orthogonal,
symmetric, nor skew-symmetric.
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Notes and References for §8.1
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C.-K. Li and R.-C. Li (2005). “A Note on Eigenvalues of Perturbed Hermitian Matrices,” Lin. Alg.
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An elementary proof of the Wielandt-Hoffman theorem is given in:

P. Lax (1997). Linear Algebra, Wiley-Interscience, New York.

For connections to optimization and differential equations, see:

P. Deift, T. Nanda, and C. Tomei (1983). “Ordinary Differential Equations and the Symmetric
Eigenvalue Problem,” SIAM J. Numer. Anal. 20, 1–22.

M.L. Overton (1988). “Minimizing the Maximum Eigenvalue of a Symmetric Matrix,” SIAM J. Matrix
Anal. Applic. 9, 256-268.

T. Kollo and H. Neudecker (1997). “The Derivative of an Orthogonal Matrix of Eigenvectors of a
Symmetric Matrix,” Lin. Alg. Applic. 264, 489–493.

8.2 Power Iterations
Assume that A ∈ IRn×n is symmetric and that U0 ∈ IRn×n is orthogonal. Consider the
following QR iteration:

T0 = UT
0 AU0

for k = 1, 2, . . .

Tk−1 = UkRk (QR factorization) (8.2.1)

Tk = RkUk

end
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Since Tk = RkUk = UT
k (UkRk)Uk = UT

k Tk−1Uk it follows by induction that

Tk = (U0U1 · · ·Uk)T A(U0U1 · · ·Uk). (8.2.2)

Thus, each Tk is orthogonally similar to A. Moreover, the Tk almost always converge
to diagonal form and so it can be said that (8.2.1) almost always converges to a Schur
decomposition of A. In order to establish this remarkable result we first consider the
power method and the method of orthogonal iteration.

8.2.1 The Power Method

Given a unit 2-norm q(0) ∈ IRn, the power method produces a sequence of vectors q(k)

as follows:

for k = 1, 2, . . .

z(k) = Aq(k−1)

q(k) = z(k)/‖ z(k) ‖2 (8.2.3)

λ(k) = [q(k)]T Aq(k)

end

If q(0) is not “deficient” and A’s eigenvalue of maximum modulus is unique, then the
q(k) converge to an eigenvector.

Theorem 8.2.1. Suppose A ∈ IRn×n is symmetric and that

QT AQ = diag(λ1, . . . , λn)

where Q = [ q1 | · · · | qn ] is orthogonal and |λ1| > |λ2| ≥ · · · ≥ |λn|. Let the vectors q(k)

be specified by (8.2.3) and define θk ∈ [0, π/2] by

cos(θk) =
∣∣∣qT

1 q(k)
∣∣∣ .

If cos(θ0) 
= 0, then for k = 0, 1, ... we have

|sin(θk)| ≤ tan(θ0)
∣∣∣∣λ2

λ1

∣∣∣∣k , (8.2.4)

|λ(k) − λ1| ≤ max
2≤i≤n

|λ1 − λi| tan(θ0)2
∣∣∣∣λ2

λ1

∣∣∣∣2k

. (8.2.5)

Proof. From the definition of the iteration, it follows that q(k) is a multiple of Akq(0)

and so

|sin(θk)|2 = 1 −
(
qT
1 q(k)

)2
= 1 −

(
qT
1 Akq(0)

‖ Akq(0) ‖2

)2

.

If q(0) has the eigenvector expansion q(0) = a1q1 + · · · + anqn, then

|a1| = |qT
1 q(0)| = cos(θ0) 
= 0,
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a2
1 + · · · + a2

n = 1,

and
Akq(0) = a1λ

k
1q1 + a2λ

k
2q2 + · · · + anλk

nqn.

Thus,

|sin(θk)|2 = 1 − a2
1λ

2k
1

n∑
i=1

a2
i λ

2k
i

=

n∑
i=2

a2
i λ

2k
i

n∑
i=1

a2
i λ

2k
i

≤

n∑
i=2

a2
i λ

2k
i

a2
1λ

2k
1

=
1
a2
1

n∑
i=2

a2
i

(
λi

λ1

)2k

≤ 1
a2
1

(
n∑

i=2

a2
i

)(
λ2

λ1

)2k

=
1 − a2

1

a2
1

(
λ2

λ1

)2k

= tan(θ0)2
(

λ2

λ1

)2k

.

This proves (8.2.4). Likewise,

λ(k) =
[
q(k)

]T

Aq(k) =

[
q(0)

]T
A2k+1q(0)[

q(0)
]T

A2kq(0)
=

n∑
i=1

a2
i λ

2k+1
i

n∑
i=1

a2
i λ

2k
i

and so

∣∣∣λ(k) − λ1

∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

n∑
i=2

a2
i λ

2k
i (λi − λ1)

n∑
i=1

a2
i λ

2k
i

∣∣∣∣∣∣∣∣∣∣
≤ max

2≤i≤n

|λ1 − λi| ·
1
a2
1
·

n∑
i=2

a2
i

(
λi

λ1

)2k

≤ max
2≤i≤n

|λ1 − λn| · tan(θ0)2 ·
(

λ2

λ1

)2k

,

completing the proof of the theorem.

Computable error bounds for the power method can be obtained by using Theorem
8.1.13. If

‖ Aq(k) − λ(k)q(k) ‖2 = δ,

then there exists λ ∈ λ(A) such that |λ(k) − λ| ≤
√

2 δ.
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8.2.2 Inverse Iteration

If the power method (8.2.3) is applied with A replaced by (A− λI)−1, then we obtain
the method of inverse iteration. If λ is very close to a distinct eigenvalue of A, then
q(k) will be much richer in the corresponding eigenvector direction than its predecessor
q(k−1):

x =
n∑

i=1

aiqi

Aqi = λiqi, i = 1:n

⎫⎪⎪⎬⎪⎪⎭ ⇒ (A − λI)−1x =
n∑

i=1

ai

λi − λ
qi.

Thus, if λ is reasonably close to a well-separated eigenvalue λj , then inverse iteration
will produce iterates that are increasingly in the direction of qj . Note that inverse
iteration requires at each step the solution of a linear system with matrix of coefficients
A − λI.

8.2.3 Rayleigh Quotient Iteration

Suppose A ∈ IRn×n is symmetric and that x is a given nonzero n-vector. A simple
differentiation reveals that

λ = r(x) ≡ xT Ax

xT x
minimizes ‖ (A − λI)x ‖2. (See also Theorem 8.1.14.) The scalar r(x) is called the
Rayleigh quotient of x. Clearly, if x is an approximate eigenvector, then r(x) is a
reasonable choice for the corresponding eigenvalue. Combining this idea with inverse
iteration gives rise to the Rayleigh quotient iteration where x0 
= 0 is given.

for k = 0, 1, . . .

µk = r(xk) (8.2.6)

Solve (A − µkI)zk+1 = xk for zk+1

xk+1 = zk+1/‖ zk+1 ‖2
end

The Rayleigh quotient iteration almost always converges and when it does, the
rate of convergence is cubic. We demonstrate this for the case n = 2. Without loss of
generality, we may assume that A = diag(λ1, λ2), with λ1 > λ2. Denoting xk by

xk =

[
ck

sk

]
, c2

k + s2
k = 1,

it follows that µk = λ1c
2
k + λ2s

2
k in (8.2.6) and

zk+1 =
1

λ1 − λ2

[
ck/s2

k

−sk/c2
k

]
.

A calculation shows that

ck+1 =
|ck|3√

c6
k + s6

k

, sk+1 =
|sk|3√

c6
k + s6

k

. (8.2.7)
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From these equations it is clear that the xk converge cubically to either span{e1} or
span{e2} provided |ck| 
= |sk|. Details associated with the practical implementation of
the Rayleigh quotient iteration may be found in Parlett (1974).

8.2.4 Orthogonal Iteration

A straightforward generalization of the power method can be used to compute higher-
dimensional invariant subspaces. Let r be a chosen integer that satisfies 1 ≤ r ≤
n. Given an n-by-r matrix Q0 with orthonormal columns, the method of orthogonal
iteration generates a sequence of matrices {Qk} ⊆ IRn×r as follows:

for k = 1, 2, . . .

Zk = AQk−1 (8.2.8)

QkRk = Zk (QR factorization)
end

Note that, if r = 1, then this is just the power method. Moreover, the sequence {Qke1}
is precisely the sequence of vectors produced by the power iteration with starting vector
q(0) = Q0e1.

In order to analyze the behavior of (8.2.8), assume that

QT AQ = D = diag(λi), |λ1| ≥ |λ2| ≥ · · · ≥ |λn| (8.2.9)

is a Schur decomposition of A ∈ IRn×n. Partition Q and D as follows:

Q = [ Qα | Qβ ]
r n−r

, D =
[

D1

0

0

D2

]
r

n−r

r n−r

. (8.2.10)

If |λr| > |λr+1|, then
Dr(A) = ran(Qα)

is the dominant invariant subspace of dimension r. It is the unique invariant subspace
associated with the eigenvalues λ1, . . . , λr.

The following theorem shows that with reasonable assumptions, the subspaces
ran(Qk) generated by (8.2.8) converge to Dr(A) at a rate proportional to |λr+1/λr|k.

Theorem 8.2.2. Let the Schur decomposition of A ∈ IRn×n be given by (8.2.9) and
(8.2.10) with n ≥ 2. Assume |λr| > |λr+1| and that dk is defined by

dk = dist(Dr(A), ran(Qk)), k ≥ 0.

If
d0 < 1, (8.2.11)

then the matrices Qk generated by (8.2.8) satisfy

dk ≤
∣∣∣∣λr+1

λr

∣∣∣∣k d0√
1 − d2

0

. (8.2.12)
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Compare with Theorem 7.3.1.

Proof. We mention at the start that the condition (8.2.11) means that no vector in
the span of Q0’s columns is perpendicular to Dr(A).

Using induction it can be shown that the matrix Qk in (8.2.8) satisfies

AkQ0 = Qk (Rk · · ·R1) .

This is a QR factorization of AkQ0 and upon substitution of the Schur decomposition
(8.2.9)-(8.2.10) we obtain[

Dk
1 0

0 Dk
2

][
QT

αQ0

QT
β Q0

]
=

[
QT

αQk

QT
β Qk

]
(Rk · · ·R1) .

If the matrices Vk and Wk are defined by

Vk = QT
αQ0,

Wk = QT
β Q0,

then

Dk
1V0 = Vk (Rk · · ·R1) , (8.2.13)

Dk
2W0 = Wk (Rk · · ·R1) . (8.2.14)

Since [
Vk

Wk

]
=

[
QT

αQk

QT
β Qk

]
= [Qα | Qβ ]T Qk = QT Qk,

it follows from the thin CS decomposition (Theorem 2.5.2) that

1 = σmin(Vk)2 + σmax(Wk)2 = σmin(Vk)2 + d2
k.

A consequence of this is that

σmin(V0)2 = 1 − σmax(W0)2 = 1 − d2
0 > 0.

It follows from (8.2.13) that the matrices Vk and (Rk · · ·R1) are nonsingular. Using
both that equation and (8.2.14) we obtain

Wk = Dk
2W0(Rk · · ·R1)−1 = Dk

2W0(Dk
1V0)−1Vk = Dk

2 (W0V
−1
0 )D−k

1 Vk

and so

dk = ‖ Wk ‖2 ≤ ‖ Dk
2 ‖2 · ‖ W0 ‖2 · ‖ V −1

0 ‖2 · ‖ D−k
1 ‖2 · ‖ Vk ‖2

≤ |λr+1|k · d0 ·
1

1 − d2
0
· 1
|λr|k

,

from which the theorem follows.
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8.2.5 The QR Iteration

Consider what happens if we apply the method of orthogonal iteration (8.2.8) with
r = n. Let QT AQ = diag(λ1, . . . , λn) be the Schur decomposition and assume

|λ1| > |λ2| > · · · > |λn|.

If Q = [ q1 | · · · | qn ] , Qk = [ q
(k)
1 | · · · | q(k)

n ] , and

dist(Di(A), span{q(0)
1 , . . . , q

(0)
i }) < 1 (8.2.15)

for i = 1:n − 1, then it follows from Theorem 8.2.2 that

dist(span{q(k)
1 , . . . , q

(k)
i }, span{q1, . . . , qi}) = O

(∣∣∣∣λi+1

λi

∣∣∣∣k
)

for i = 1:n − 1. This implies that the matrices Tk defined by

Tk = QT
k AQk

are converging to diagonal form. Thus, it can be said that the method of orthogonal
iteration computes a Schur decomposition if r = n and the original iterate Q0 ∈ IRn×n

is not deficient in the sense of (8.2.11).
The QR iteration arises by considering how to compute the matrix Tk directly

from its predecessor Tk−1. On the one hand, we have from (8.2.8) and the definition
of Tk−1 that

Tk−1 = QT
k−1AQk−1 = QT

k−1(AQk−1) = (QT
k−1Qk)Rk.

On the other hand,

Tk = QT
k AQk = (QT

k AQk−1)(QT
k−1Qk) = Rk(QT

k−1Qk).

Thus, Tk is determined by computing the QR factorization of Tk−1 and then multiplying
the factors together in reverse order. This is precisely what is done in (8.2.1).

Note that a single QR iteration involves O(n3) flops. Moreover, since convergence
is only linear (when it exists), it is clear that the method is a prohibitively expensive
way to compute Schur decompositions. Fortunately, these practical difficulties can be
overcome, as we show in the next section.

Problems

P8.2.1 Suppose A0 ∈ IRn×n is symmetric and positive definite and consider the following iteration:

for k = 1, 2, . . .
Ak−1 = GkGT

k (Cholesky factorization)
Ak = GT

k Gk

end

(a) Show that this iteration is defined. (b) Show that if

A0 =
[

a b
b c

]
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with a ≥ c has eigenvalues λ1 ≥ λ2 > 0, then the Ak converge to diag(λ1, λ2).

P8.2.2 Prove (8.2.7).

P8.2.3 Suppose A ∈ IRn×n is symmetric and define the function f :IRn+1 → IRn+1 by

f

([
x
λ

])
=
[

Ax− λx
(xT x− 1)/2

]
where x ∈ IRn and λ ∈ IR. Suppose x+ and λ+ are produced by applying Newton’s method to f at
the “current point” defined by xc and λc. Give expressions for x+ and λ+ assuming that ‖ xc ‖2 = 1
and λc = xT

c Axc.
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8.3 The Symmetric QR Algorithm
The symmetric QR iteration (8.2.1) can be made more efficient in two ways. First, we
show how to compute an orthogonal U0 such that UT

0 AU0 = T is tridiagonal. With
this reduction, the iterates produced by (8.2.1) are all tridiagonal and this reduces the
work per step to O(n2). Second, the idea of shifts are introduced and with this change
the convergence to diagonal form proceeds at a cubic rate. This is far better than
having the off-diagonal entries going to to zero as |λi+1/λi|k as discussed in §8.2.5.

8.3.1 Reduction to Tridiagonal Form

If A is symmetric, then it is possible to find an orthogonal Q such that

QT AQ = T (8.3.1)

is tridiagonal. We call this the tridiagonal decomposition and as a compression of data,
it represents a very big step toward diagonalization.

We show how to compute (8.3.1) with Householder matrices. Suppose that House-
holder matrices P1, . . . , Pk−1 have been determined such that if

Ak−1 = (P1 · · ·Pk−1)T A(P1 · · ·Pk−1),

then

Ak−1 =

⎡⎢⎣ B11

B21

0

B12

B22

B32

0

B23

B33

⎤⎥⎦ k−1

1

n−k

k−1 1 n−k

is tridiagonal through its first k − 1 columns. If P̃k is an order-(n−k) Householder
matrix such that P̃kB32 is a multiple of In−k(:, 1) and if Pk = diag(Ik, P̃k), then the
leading k-by-k principal submatrix of

Ak = PkAk−1Pk =

⎡⎢⎣ B11

B21

0

B12

B22

P̃kB32

0

B23P̃k

P̃kB33P̃k

⎤⎥⎦ k−1

1

n−k

k−1 1 n−k

is tridiagonal. Clearly, if U0 = P1 · · ·Pn−2, then UT
0 AU0 = T is tridiagonal.

In the calculation of Ak it is important to exploit symmetry during the formation
of the matrix P̃kB33P̃k. To be specific, suppose that P̃k has the form

P̃k = I − βvvT , β = 2/vT v, 0 
= v ∈ IRn−k.

Note that if p = βB33v and w = p − (βpT v/2)v, then

P̃kB33P̃k = B33 − vwT − wvT .

Since only the upper triangular portion of this matrix needs to be calculated, we see
that the transition from Ak−1 to Ak can be accomplished in only 4(n − k)2 flops.



8.3. The Symmetric QR Algorithm 459

Algorithm 8.3.1 (Householder Tridiagonalization) Given a symmetric A ∈ IRn×n, the
following algorithm overwrites A with T = QT AQ, where T is tridiagonal and Q =
H1 · · ·Hn−2 is the product of Householder transformations.

for k = 1:n − 2

[v, β] = house(A(k + 1:n, k))

p = βA(k + 1:n, k + 1:n)v

w = p − (βpT v/2)v

A(k + 1, k) = ‖ A(k + 1:n, k) ‖2; A(k, k + 1) = A(k + 1, k)

A(k + 1:n, k + 1:n) = A(k + 1:n, k + 1:n) − vwT − wvT

end

This algorithm requires 4n3/3 flops when symmetry is exploited in calculating the rank-
2 update. The matrix Q can be stored in factored form in the subdiagonal portion of
A. If Q is explicitly required, then it can be formed with an additional 4n3/3 flops.
Note that if T has a zero subdiagonal, then the eigenproblem splits into a pair of
smaller eigenproblems. In particular, if tk+1,k = 0, then

λ(T ) = λ(T (1:k, 1:k)) ∪ λ(T (k + 1:n, k + 1:n)).

If T has no zero subdiagonal entries, then it is said to be unreduced.
Let T̂ denote the computed version of T obtained by Algorithm 8.3.1. It can

be shown that T̂= Q̃T (A + E)Q̃ where Q̃ is exactly orthogonal and E is a symmetric
matrix satisfying ‖ E ‖

F
≤ cu‖ A ‖

F
where c is a small constant. See Wilkinson (AEP,

p. 297).

8.3.2 Properties of the Tridiagonal Decomposition

We prove two theorems about the tridiagonal decomposition both of which have key
roles to play in the following. The first connects (8.3.1) to the QR factorization of a
certain Krylov matrix. These matrices have the form

K(A, v, k) =
[
v | Av | · · · | Ak−1v

]
, A ∈ IRn×n, v ∈ IRn.

Theorem 8.3.1. If QT AQ = T is the tridiagonal decomposition of the symmetric ma-
trix A ∈ IRn×n, then QT K(A, Q(:, 1), n) = R is upper triangular. If R is nonsingular,
then T is unreduced. If R is singular and k is the smallest index so rkk = 0, then k is
also the smallest index so tk,k−1 is zero. Compare with Theorem 7.4.3.

Proof. It is clear that if q1 = Q(:, 1), then

QT K(A, Q(:, 1), n) =
[
QT q1 | (QT AQ)(QT q1) | · · · | (QT AQ)n−1(QT q1)

]
=

[
e1 | Te1 | · · · | Tn−1e1

]
= R

is upper triangular with the property that r11 = 1 and rii = t21t32 · · · ti,i−1 for i = 2:n.
Clearly, if R is nonsingular, then T is unreduced. If R is singular and rkk is its first
zero diagonal entry, then k ≥ 2 and tk,k−1 is the first zero subdiagonal entry.
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The next result shows that Q is essentially unique once Q(:, 1) is specified.

Theorem 8.3.2 (Implicit Q Theorem). Suppose Q = [ q1 | · · · | qn ] and V =
[ v1 | · · · | vn ] are orthogonal matrices with the property that both QT AQ = T and
V T AV = S are tridiagonal where A ∈ IRn×n is symmetric. Let k denote the smallest
positive integer for which tk+1,k = 0, with the convention that k = n if T is unreduced.
If v1 = q1, then vi = ±qi and |ti,i−1| = |si,i−1| for i = 2:k. Moreover, if k < n, then
sk+1,k = 0. Compare with Theorem 7.4.2.

Proof. Define the orthogonal matrix W = QT V and observe that W (:, 1) = In(:, 1) =
e1 and WT TW = S. By Theorem 8.3.1, WT ·K(T, e1, k) is upper triangular with full
column rank. But K(T, e1, k) is upper triangular and so by the essential uniqueness
of the thin QR factorization, W (:, 1:k) = In(:, 1:k) ·diag(±1, . . . ,±1). This says that
Q(:, i) = ±V (:, i) for i = 1:k. The comments about the subdiagonal entries follow since
ti+1,i = Q(:, i + 1)T AQ(:, i) and si+1,i = V (:, i + 1)T AV (:, i) for i = 1:n − 1.

8.3.3 The QR Iteration and Tridiagonal Matrices

We quickly state four facts that pertain to the QR iteration and tridiagonal matrices.
Complete verifications are straightforward.

• Preservation of Form. If T = QR is the QR factorization of a symmetric tridi-
agonal matrix T ∈ IRn×n, then Q has lower bandwidth 1 and R has upper band-
width 2 and it follows that T+ = RQ = QT (QR)Q = QT TQ is also symmetric
and tridiagonal.

• Shifts. If s ∈ IR and T − sI = QR is the QR factorization, then T+ = RQ + sI =
QT TQ is also tridiagonal. This is called a shifted QR step.

• Perfect Shifts. If T is unreduced, then the first n − 1 columns of T − sI are
independent regardless of s. Thus, if s ∈ λ(T ) and QR = T − sI is a QR
factorization, then rnn = 0 and the last column of T+ = RQ+sI equals sIn(:, n) =
sen.

• Cost. If T ∈ IRn×n is tridiagonal, then its QR factorization can be computed by
applying a sequence of n − 1 Givens rotations:

for k = 1:n − 1

[c, s] = givens(tkk, tk+1,k)

m = min{k + 2, n}

T (k:k + 1, k:m) =
[

c s
−s c

]T

T (k:k + 1, k:m)

end

This requires O(n) flops. If the rotations are accumulated, then O(n2) flops are
needed.
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8.3.4 Explicit Single-Shift QR Iteration

If s is a good approximate eigenvalue, then we suspect that the (n, n− 1) will be small
after a QR step with shift s. This is the philosophy behind the following iteration:

T = UT
0 AU0 (tridiagonal)

for k = 0, 1, . . .

Determine real shift µ. (8.3.2)

T − µI = UR (QR factorization)

T = RU + µI
end

If

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 · · · 0

b1 a2
. . .

...
. . . . . . . . .

...
. . . . . . bn−1

0 · · · bn−1 an

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

then one reasonable choice for the shift is µ = an. However, a more effective choice is
to shift by the eigenvalue of

T (n − 1:n, n − 1:n) =

[
an−1 bn−1

bn−1 an

]
that is closer to an. This is known as the Wilkinson shift and it is given by

µ = an + d − sign(d)
√

d2 + b2
n−1 (8.3.3)

where d = (an−1 − an)/2. Wilkinson (1968) has shown that (8.3.2) is cubically
convergent with either shift strategy, but gives heuristic reasons why (8.3.3) is preferred.

8.3.5 Implicit Shift Version

It is possible to execute the transition from T to T+ = RU + µI = UT TU without
explicitly forming the matrix T −µI. This has advantages when the shift is much larger
than some of the ai. Let c = cos(θ) and s = sin(θ) be computed such that[

c s

−s c

]T [
a1 − µ

b1

]
=

[
×
0

]
.

If we set G1 = G(1, 2, θ), then G1e1 = Ue1 and

T ← GT
1 TG1 =

⎡⎢⎢⎢⎢⎢⎣
× × + 0 0 0
× × × 0 0 0
+ × × × 0 0
0 0 × × × 0
0 0 0 × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎦ .
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We are thus in a position to apply the implicit Q theorem provided we can compute
rotations G2, . . . , Gn−1 with the property that if Z = G1G2 · · ·Gn−1, then Ze1 =
G1e1 = Ue1 and ZT TZ is tridiagonal. Note that the first column of Z and U are
identical provided we take each Gi to be of the form Gi = G(i, i + 1, θi), i = 2:n−1.
But Gi of this form can be used to chase the unwanted nonzero element “+” out of
the matrix GT

1 TG1 as follows:

G2−→

⎡⎢⎢⎢⎢⎢⎣
× × 0 0 0 0
× × × + 0 0
0 × × × 0 0
0 + × × × 0
0 0 0 × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎦
G3−→

⎡⎢⎢⎢⎢⎢⎣
× × 0 0 0 0
× × × 0 0 0
0 × × × + 0
0 0 × × × 0
0 0 + × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎦

G4−→

⎡⎢⎢⎢⎢⎢⎣
× × 0 0 0 0
× × × 0 0 0
0 × × × 0 0
0 0 × × × +
0 0 0 × × ×
0 0 0 + × ×

⎤⎥⎥⎥⎥⎥⎦
G5−→

⎡⎢⎢⎢⎢⎢⎣
× × 0 0 0 0
× × × 0 0 0
0 × × × 0 0
0 0 × × × 0
0 0 0 × × ×
0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎦ .

Thus, it follows from the implicit Q theorem that the tridiagonal matrix ZT TZ pro-
duced by this zero-chasing technique is essentially the same as the tridiagonal matrix
T obtained by the explicit method. (We may assume that all tridiagonal matrices in
question are unreduced for otherwise the problem decouples.)

Note that at any stage of the zero-chasing, there is only one nonzero entry outside
the tridiagonal band. How this nonzero entry moves down the matrix during the update
T ← GT

k TGk is illustrated in the following:⎡⎢⎢⎣
1 0 0 0
0 c s 0
0 −s c 0
0 0 0 1

⎤⎥⎥⎦
T⎡⎢⎢⎣

ak bk zk 0
bk ap bp 0
zk bp aq bq

0 0 bq ar

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 c s 0
0 −s c 0
0 0 0 1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ak bk 0 0
bk ap bp zp

0 bp aq bq

0 zp bq ar

⎤⎥⎥⎦ .

Here (p, q, r) = (k + 1, k + 2, k + 3). This update can be performed in about 26 flops
once c and s have been determined from the equation bks+zkc = 0. Overall, we obtain

Algorithm 8.3.2 (Implicit Symmetric QR Step with Wilkinson Shift) Given
an unreduced symmetric tridiagonal matrix T ∈ IRn×n, the following algorithm over-
writes T with ZT TZ, where Z = G1 · · ·Gn−1 is a product of Givens rotations with the
property that ZT (T − µI) is upper triangular and µ is that eigenvalue of T ’s trailing
2-by-2 principal submatrix closer to tnn.

d = (tn−1,n−1 − tnn)/2

µ = tnn − t2n,n−1
/(

d + sign(d)
√

d2 + t2n,n−1

)
x = t11 − µ

z = t21
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for k = 1:n − 1

[ c, s ] = givens(x, z)

T = GT
k TGk, where Gk = G(k, k + 1, θ)

if k < n − 1
x = tk+1,k

z = tk+2,k

end
end

This algorithm requires about 30n flops and n square roots. If a given orthogonal
matrix Q is overwritten with QG1 · · ·Gn−1, then an additional 6n2 flops are needed.
Of course, in any practical implementation the tridiagonal matrix T would be stored
in a pair of n-vectors and not in an n-by-n array.

Algorithm 8.3.2 is the basis of the symmetric QR algorithm—the standard means
for computing the Schur decomposition of a dense symmetric matrix.

Algorithm 8.3.3 (Symmetric QR Algorithm) Given A ∈ IRn×n (symmetric) and
a tolerance tol greater than the unit roundoff, this algorithm computes an approximate
symmetric Schur decomposition QT AQ = D. A is overwritten with the tridiagonal
decomposition.

Use Algorithm 8.3.1, compute the tridiagonalization

T = (P1 · · ·Pn−2)T A(P1 · · ·Pn−2)

Set D = T and if Q is desired, form Q = P1 · · ·Pn−2. (See §5.1.6.)

until q = n

For i = 1:n − 1, set di+1,i and di,i+1 to zero if

|di+1,i| = |di,i+1| ≤ tol (|dii| + |di+1,i+1|)
Find the largest q and the smallest p such that if

D =

⎡⎣ D11

0

0

0

D22

0

0

0

D33

⎤⎦ p

n−p−q

q

p n−p−q q

then D33 is diagonal and D22 is unreduced.
if q < n

Apply Algorithm 8.3.2 to D22:

D = diag(Ip, Z, Iq)T · D· diag(Ip, Z, Iq)

If Q is desired, then Q = Q· diag(Ip, Z, Iq).
end

end

This algorithm requires about 4n3/3 flops if Q is not accumulated and about 9n3 flops
if Q is accumulated.
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The computed eigenvalues λ̂i obtained via Algorithm 8.3.3 are the exact eigen-
values of a matrix that is near to A:

QT
0 (A + E)Q0 = diag(λ̂i), QT

0 Q0 = I, ‖ E ‖2 ≈ u‖ A ‖2.

Using Corollary 8.1.6 we know that the absolute error in each λ̂i is small in the sense
that

|λ̂i − λi| ≈ u‖ A ‖2.

If Q̂ = [ q̂1 | · · · | q̂n ] is the computed matrix of orthonormal eigenvectors, then the
accuracy of q̂i depends on the separation of λi from the remainder of the spectrum.
See Theorem 8.1.12.

If all of the eigenvalues and a few of the eigenvectors are desired, then it is cheaper
not to accumulate Q in Algorithm 8.3.3. Instead, the desired eigenvectors can be found
via inverse iteration with T . See §8.2.2. Usually just one step is sufficient to get a good
eigenvector, even with a random initial vector.

If just a few eigenvalues and eigenvectors are required, then the special techniques
in §8.4 are appropriate.

8.3.6 The Rayleigh Quotient Connection

It is interesting to identify a relationship between the Rayleigh quotient iteration and
the symmetric QR algorithm. Suppose we apply the latter to the tridiagonal matrix
T ∈ IRn×n with shift σ = eT

nTen = tnn. If T −σI= QR, then we obtain T+ = RQ+σI.
From the equation (T − σI)Q = RT it follows that

(T − σI)qn = rnnen,

where qn is the last column of the orthogonal matrix Q. Thus, if we apply (8.2.6) with
x0 = en, then x1 = qn.

8.3.7 Orthogonal Iteration with Ritz Acceleration

Recall from §8.2.4 that an orthogonal iteration step involves a matrix-matrix product
and a QR factorization:

Zk = AQ̃k−1,

Q̃kRk = Zk (QR factorization)

Theorem 8.1.14 says that we can minimize ‖ AQ̃k − Q̃kS ‖
F

by setting S equal to

Sk = Q̃T
k AQ̃k.

If UT
k SkUk = Dk is the Schur decomposition of Sk ∈ IRr×r and Qk = Q̃kUk, then

‖ AQk − QkDk ‖
F

= ‖ AQ̃k − Q̃kSk ‖
F

showing that the columns of Qk are the best possible basis to take after k steps from
the standpoint of minimizing the residual. This defines the Ritz acceleration idea:
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Q0 ∈ IRn×r given with QT
0 Q0 = Ir

for k = 1, 2, . . .

Zk = AQk−1

Q̃kRk = Zk (QR factorization)

Sk = Q̃T
k AQ̃k (8.3.6)

UT
k SkUk = Dk (Schur decomposition)

Qk = Q̃kUk

end

It can be shown that if

Dk = diag(θ(k)
1 , . . . , θ(k)

r )], |θ(k)
1 | ≥ · · · ≥ |θ(k)

r |,

then

|θ(k)
i − λi(A)| = O

(∣∣∣∣λr+1

λi

∣∣∣∣k
)

, i = 1:r.

Recall that Theorem 8.2.2 says the eigenvalues of Q̃T
k AQ̃k converge with rate |λr+1/λr|k.

Thus, the Ritz values converge at a more favorable rate. For details, see Stewart (1969).

Problems

P8.3.1 Suppose λ is an eigenvalue of a symmetric tridiagonal matrix T . Show that if λ has algebraic
multiplicity k, then at least k − 1 of T ’s subdiagonal elements are zero.

P8.3.2 Suppose A is symmetric and has bandwidth p. Show that if we perform the shifted QR step
A− µI = QR, A = RQ + µI, then A has bandwidth p.

P8.3.3 Let

A =

[
w x

x z

]
be real and suppose we perform the following shifted QR step: A − zI = UR, Ã = RU + zI. Show
that

Ã =

[
w̃ x̃

x̃ z̃

]
where

w̃ = w + x2(w − z)/[(w − z)2 + x2],

z̃ = z − x2(w − z)/[(w − z)2 + x2],

x̃ = −x3/[(w − z)2 + x2].

P8.3.4 Suppose A ∈ Cn×n is Hermitian. Show how to construct unitary Q such that QHAQ = T is
real, symmetric, and tridiagonal.

P8.3.5 Show that if A = B + iC is Hermitian, then

M =

[
B −C

C B

]
is symmetric. Relate the eigenvalues and eigenvectors of A and M .

P8.3.6 Rewrite Algorithm 8.3.2 for the case when A is stored in two n-vectors. Justify the given flop
count.

P8.3.7 Suppose A = S + σuuT where S ∈ IRn×n is skew-symmetric (ST = −S), u ∈ IRn has unit
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2-norm, and σ ∈ IR. Show how to compute an orthogonal Q such that QT AQ is tridiagonal and
QT u = e1.

P8.3.8 Suppose

C =

[
0 BT

B 0

]
where B ∈ IRn×n is upper bidiagonal. Determine a perfect shuffle permutation P ∈ IR2n×2n so that
T = PCP T is tridiagonal with a zero diagonal.
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8.4 More Methods for Tridiagonal Problems
In this section we develop special methods for the symmetric tridiagonal eigenproblem.
The tridiagonal form

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 · · · 0

β1 α2
. . .

...
. . . . . . . . .

...
. . . . . . βn−1

0 · · · βn−1 αn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(8.4.1)

can be obtained by Householder reduction (cf. §8.3.1). However, symmetric tridiagonal
eigenproblems arise naturally in many settings.

We first discuss bisection methods that are of interest when selected portions of
the eigensystem are required. This is followed by the presentation of a divide-and-
conquer algorithm that can be used to acquire the full symmetric Schur decomposition
in a way that is amenable to parallel processing.

8.4.1 Eigenvalues by Bisection

Let Tr denote the leading r-by-r principal submatrix of the matrix T in (8.4.1). Define
the polynomial pr(x) by

pr(x) = det(Tr − xI)

for r = 1:n. A simple determinantal expansion shows that

pr(x) = (αr − x)pr−1(x) − β2
r−1pr−2(x) (8.4.2)

for r = 2:n if we set p0(x) = 1. Because pn(x) can be evaluated in O(n) flops, it is
feasible to find its roots using the method of bisection. For example, if tol is a small
positive constant, pn(y)·pn(z) < 0, and y < z, then the iteration

while |y − z| > tol·(|y| + |z|)
x = (y + z)/2

if pn(x)·pn(y) < 0

z = x
else

y = x
end

end

is guaranteed to terminate with (y+z)/2 an approximate zero of pn(x), i.e., an approxi-
mate eigenvalue of T . The iteration converges linearly in that the error is approximately
halved at each step.
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8.4.2 Sturm Sequence Methods

Sometimes it is necessary to compute the kth largest eigenvalue of T for some prescribed
value of k. This can be done efficiently by using the bisection idea and the following
classical result:

Theorem 8.4.1 (Sturm Sequence Property). If the tridiagonal matrix in (8.4.1)
has no zero subdiagonal entries, then the eigenvalues of Tr−1 strictly separate the eigen-
values of Tr:

λr(Tr) < λr−1(Tr−1) < λr−1(Tr) < · · · < λ2(Tr) < λ1(Tr−1) < λ1(Tr).

Moreover, if a(λ) denotes the number of sign changes in the sequence

{ p0(λ), p1(λ), . . . , pn(λ) },

then a(λ) equals the number of T ’s eigenvalues that are less than λ. Here, the poly-
nomials pr(x) are defined by (8.4.2) and we have the convention that pr(λ) has the
opposite sign from pr−1(λ) if pr(λ) = 0.

Proof. It follows from Theorem 8.1.7 that the eigenvalues of Tr−1 weakly separate
those of Tr. To prove strict separation, suppose that pr(µ) = pr−1(µ) = 0 for some r
and µ. It follows from (8.4.2) and the assumption that the matrix T is unreduced that

p0(µ) = p1(µ) = · · · = pr(µ) = 0,

a contradiction. Thus, we must have strict separation. The assertion about a(λ) is
established in Wilkinson (AEP, pp. 300–301).

Suppose we wish to compute λk(T ). From the Gershgorin theorem (Theorem
8.1.3) it follows that λk(T ) ∈ [y, z] where

y = min
1≤i≤n

ai − |bi| − |bi−1| , z = max
1≤i≤n

ai + |bi| + |bi−1|

and we have set b0 = bn = 0. Using [ y, z ] as an initial bracketing interval, it is clear
from the Sturm sequence property that the iteration

while |z − y| > u(|y| + |z|)
x = (y + z)/2

if a(x) ≥ n − k (8.4.3)

z = x
else

y = x
end

end

produces a sequence of subintervals that are repeatedly halved in length but which
always contain λk(T ).
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During the execution of (8.4.3), information about the location of other eigen-
values is obtained. By systematically keeping track of this information it is pos-
sible to devise an efficient scheme for computing contiguous subsets of λ(T ), e.g.,
{λk(T ), λk+1(T ), . . . , λk+j(T )}. See Barth, Martin, and Wilkinson (1967).

If selected eigenvalues of a general symmetric matrix A are desired, then it is
necessary first to compute the tridiagonalization T = UT

0 AU0 before the above bisection
schemes can be applied. This can be done using Algorithm 8.3.1 or by the Lanczos
algorithm discussed in §10.2. In either case, the corresponding eigenvectors can be
readily found via inverse iteration since tridiagonal systems can be solved in O(n)
flops. See §4.3.6 and §8.2.2.

In those applications where the original matrix A already has tridiagonal form,
bisection computes eigenvalues with small relative error, regardless of their magnitude.
This is in contrast to the tridiagonal QR iteration, where the computed eigenvalues λ̃i

can be guaranteed only to have small absolute error: |λ̃i − λi(T )| ≈ u‖ T ‖2
Finally, it is possible to compute specific eigenvalues of a symmetric matrix by

using the LDLT factorization (§4.3.6) and exploiting the Sylvester inertia theorem
(Theorem 8.1.17). If

A − µI = LDLT , A = AT ∈ IRn×n,

is the LDLT factorization of A − µI with D = diag(d1, . . . , dn), then the number of
negative di equals the number of λi(A) that are less than µ. See Parlett (SEP, p. 46)
for details.

8.4.3 Eigensystems of Diagonal Plus Rank-1 Matrices

Our next method for the symmetric tridiagonal eigenproblem requires that we be able
to compute efficiently the eigenvalues and eigenvectors of a matrix of the form D+ρzzT

where D ∈ IRn×n is diagonal, z ∈ IRn, and ρ ∈ IR. This problem is important in its own
right and the key computations rest upon the following pair of results.

Lemma 8.4.2. Suppose D = diag(d1, . . . , dn) ∈ IRn×n with

d1 > · · · > dn.

Assume that ρ 
= 0 and that z ∈ IRn has no zero components. If

(D + ρzzT )v = λv , v 
= 0,

then zT v 
= 0 and D − λI is nonsingular.

Proof. If λ ∈ λ(D), then λ = di for some i and thus

0 = eT
i [(D − λI)v + ρ(zT v)z] = ρ(zT v)zi.

Since ρ and zi are nonzero, it follows that 0 = zT v and so Dv = λv. However, D
has distinct eigenvalues and therefore v ∈ span{ei}. This implies 0 = zT v = zi, a
contradiction. Thus, D and D + ρzzT have no common eigenvalues and zT v 
= 0.
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Theorem 8.4.3. Suppose D = diag(d1, . . . , dn) ∈ IRn×n and that the diagonal entries
satisfy d1 > · · · > dn. Assume that ρ 
= 0 and that z ∈ IRn has no zero components. If
V ∈ IRn×n is orthogonal such that

V T (D + ρzzT )V = diag(λ1, . . . , λn)

with λ1 ≥ · · · ≥ λn and V = [ v1 | · · · | vn ] , then

(a) The λi are the n zeros of f(λ) = 1 + ρzT (D − λI)−1z.

(b) If ρ > 0, then λ1 > d1 > λ2 > · · · > λn > dn.

If ρ < 0, then d1 > λ1 > d2 > · · · > dn > λn.

(c) The eigenvector vi is a multiple of (D − λiI)−1z.

Proof. If (D + ρzzT )v = λv, then

(D − λI)v + ρ(zT v)z = 0. (8.4.4)

We know from Lemma 8.4.2 that D − λI is nonsingular. Thus,

v ∈ span{(D − λI)−1z},

thereby establishing (c). Moreover, if we apply zT (D−λI)−1 to both sides of equation
(8.4.4) we obtain

(zT v)·
(
1 + ρzT (D − λI)−1z

)
= 0.

By Lemma 8.4.2, zT v 
= 0 and so this shows that if λ ∈ λ(D+ρzzT ), then f(λ) = 0. We
must show that all the zeros of f are eigenvalues of D + ρzzT and that the interlacing
relations (b) hold.

To do this we look more carefully at the equations

f(λ) = 1 + ρ

(
z2
1

d1 − λ
+ · · · + z2

n

dn − λ

)
,

f ′(λ) = ρ

(
z2
1

(d1 − λ)2
+ · · · + z2

n

(dn − λ)2

)
.

Note that f is monotone in between its poles. This allows us to conclude that, if ρ > 0,
then f has precisely n roots, one in each of the intervals

(dn, dn−1), . . . , (d2, d1), (d1,∞).

If ρ < 0, then f has exactly n roots, one in each of the intervals

(−∞, dn), (dn, dn−1), . . . , (d2, d1).

Thus, in either case the zeros of f are exactly the eigenvalues of D + ρvvT .

The theorem suggests that in order to compute V we must find the roots λ1, . . . , λn

of f using a Newton-like procedure and then compute the columns of V by normalizing
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the vectors (D − λiI)−1z for i = 1:n. The same plan of attack can be followed even if
there are repeated di and zero zi.

Theorem 8.4.4. If D = diag(d1, . . . , dn) and z ∈ IRn, then there exists an orthogonal
matrix V1 such that if V T

1 DV1 = diag(µ1, . . . , µn) and w = V T
1 z then

µ1 > µ2 > · · · > µr ≥ µr+1 ≥ · · · ≥ µn ,

wi 
= 0 for i = 1:r, and wi = 0 for i = r + 1:n.

Proof. We give a constructive proof based upon two elementary operations. The first
deals with repeated diagonal entries while the second handles the situation when the
z-vector has a zero component.

Suppose di = dj for some i < j . Let G(i, j, θ) be a Givens rotation in the (i, j)
plane with the property that the jth component of G(i, j, θ)T z is zero. It is not hard
to show that G(i, j, θ)T D G(i, j, θ) = D. Thus, we can zero a component of z if there
is a repeated di.

If zi = 0, zj 
= 0, and i < j, then let P be the identity with columns i and j
interchanged. It follows that PT DP is diagonal, (PT z)i 
= 0, and (PT z)j = 0. Thus,
we can permute all the zero zi to the “bottom.”

It is clear that the repetition of these two maneuvers will render the desired
canonical structure. The orthogonal matrix V1 is the product of the rotations that are
required by the process.

See Barlow (1993) and the references therein for a discussion of the solution procedures
that we have outlined above.

8.4.4 A Divide-and-Conquer Framework

We now present a divide-and-conquer method for computing the Schur decomposition

QT TQ = Λ = diag(λ1, . . . , λn), QT Q = I, (8.4.5)

for tridiagonal T that involves (a) “tearing” T in half, (b) computing the Schur decom-
positions of the two parts, and (c) combining the two half-sized Schur decompositions
into the required full-size Schur decomposition. The overall procedure, developed by
Dongarra and Sorensen (1987), is suitable for parallel computation.

We first show how T can be “torn” in half with a rank-1 modification. For
simplicity, assume n = 2m and that T ∈ IRn×n is given by (8.4.1). Define v ∈ IRn as
follows

v =

[
e
(m)
m

θ e
(m)
1

]
, θ ∈ {−1, +1}. (8.4.6)

Note that for all ρ ∈ IR the matrix T̃ = T −ρvvT is identical to T except in its “middle
four” entries:

T̃ (m:m + 1, m:m + 1) =

⎡⎢⎣ αm − ρ βm − ρ θ

βm − ρ θ αm+1 − ρ θ2

⎤⎥⎦ .
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If we set ρ θ = βm, then

T =

[
T1 0

0 T2

]
+ ρvvT ,

where

T1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 · · · 0

β1 α2
. . .

...
. . . . . . . . .

...
. . . . . . βm−1

0 · · · βm−1 α̃m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, T2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α̃m+1 βm+1 · · · 0

βm+1 αm+2
. . .

...
. . . . . . . . .

...
. . . . . . βn−1

0 · · · βn−1 αn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and ãm = am − ρ and ãm+1 = am+1 − ρθ2.
Now suppose that we have m-by-m orthogonal matrices Q1 and Q2 such that

QT
1 T1Q1 = D1 and QT

2 T2Q2 = D2 are each diagonal. If we set

U =

[
Q1 0

0 Q2

]
,

then

UT TU = UT

([
T1 0

0 T2

]
+ ρvvT

)
U = D + ρzzT

where

D =

[
D1 0

0 D2

]
is diagonal and

z = UT v =

[
QT

1 em

θ QT
2 e1

]
.

Comparing these equations we see that the effective synthesis of the two half-sized
Schur decompositions requires the quick and stable computation of an orthogonal V
such that

V T (D + ρzzT )V = Λ = diag(λ1, . . . , λn)

which we discussed in §8.4.3.

8.4.5 A Parallel Implementation

Having stepped through the tearing and synthesis operations, we can now illustrate how
the overall process can be implemented in parallel. For clarity, assume that n = 8N
for some positive integer N and that three levels of tearing are performed. See Figure
8.4.1. The indices are specified in binary and at each node the Schur decomposition of
a tridiagonal matrix T (b) is obtained from the eigensystems of the tridiagonals T (b0)
and T (b1). For example, the eigensystems for the N -by-N matrices T (110) and T (111)
are combined to produce the eigensystem for the 2N -by-2N tridiagonal matrix T (11).
What makes this framework amenable to parallel computation is the independence of
the tearing/synthesis problems that are associated with each level in the tree.
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T (000) T (001) T (010) T (011) T (100) T (101) T (110) T (111)

T (00) T (01) T (10) T (11)

T (0) T (1)

T

Figure 8.4.1. The divide-and-conquer framework

8.4.6 An Inverse Tridiagonal Eigenvalue Problem

For additional perspective on symmetric trididagonal matrices and their rich eigen-
structure we consider an inverse eigenvalue problem. Assume that λ1, . . . , λn and
λ̃1, . . . , λ̃n−1 are given real numbers that satisfy

λ1 > λ̃1 > λ2 > · · · > λ′n−1 > λ̃n−1 > λn . (8.4.7)

The goal is to compute a symmetric tridiagonal matrix T ∈ IRn×n such that

λ(T ) = {λ1, . . . , λn, } , (8.4.8)

λ(T (2:n, 2:n)) = {λ̃1, . . . , λ̃n−1}. (8.4.9)

Inverse eigenvalue problems arise in many applications and generally involve computing
a matrix that has specified spectral properties. For an overview, see Chu and Golub
(2005). Our example is taken from Golub (1973).

The problem we are considering can be framed as a Householder tridiagonalization
problem with a constraint on the orthogonal transformation. Define

Λ = diag(λ1, . . . , λn)

and let Q be orthogonal so that QT ΛQ = T is tridiagonal. There are an infinite number
of possible Q-matrices that do this and in each case the matrix T satisfies (8.4.8). The
challenge is to choose Q so that (8.4.9) holds as well. Recall that a tridiagonalizing Q is
essentially determined by its first column because of the implicit-Q- theorem (Theorem
8.3.2). Thus, the problem is solved if we can figure out a way to compute Q(:, 1) so
that (8.4.9) holds.

The starting point in the derivation of the method is to realize that the eigenvalues
of T (2:n, 2:n) are the stationary values of xT Tx subject to the constraints xT x = 1
and eT

1 x = 0. To characterize these stationary values we use the method of Lagrange
multipliers and set to zero the gradient of

φ(x, λ, µ) = xT Tx − λ(xT x − 1) + 2µxT e1



474 Chapter 8. Symmetric Eigenvalue Problems

which gives (T − λI)x = −µe1. Because λ is an eigenvalue of T (2:n, 2:n) it is not an
eigenvalue of T and so

x = −µ(T − λI)−1e1.

Since eT
1 x = 0, it follows that

0 = eT
1 (T − λI)−1e1 = eT

1 (QT ΛQ − λI)−1e1 =
n∑

i=1

d2
i

λi − λ
(8.4.10)

where

Q(:, 1) =

⎡⎢⎣ d1
...

dn

⎤⎥⎦ . (8.4.11)

By multiplying both sides of equation (8.4.10) by (λ1−λ) · · · (λn−λ), we can conclude
that λ̃1, . . . , λ̃n−1 are the zeros of the polynomial

p(λ) =
n∑

i=1

d2
i

n∏
j=1
j �=i

(λj − λ).

It follows that

p(λ) = α ·
n−1∏
j=1

(λ̃j − λ)

for some scalar α. By comparing the coefficient of λn−1 in each of these expressions
for p(λ) and noting from (8.4.11) that d2

1 + · · · + d2
n = 1, we see that α = 1. From the

equation
n∑

i=1

d2
i

n∏
j=1
j �=i

(λj − λ) =
n−1∏
j=1

(λ̃j − λ)

we immediately see that

d2
k =

n−1∏
j=1

(λ̃j − λk)

/
n−1∏
j=1
j �=k

(λj − λk), k = 1:n. (8.4.12)

It is easy to show using (8.4.7) that the quantity on the right is positive and thus
(8.4.11) can be used to determine the components of d = Q(:, 1) up to with a factor
of ±1. Once this vector is available, then we can determine the required tridiagonal
matrix T as follows:

Step 1. Let P be a Householder matrix so that Pd = ±1 and set A = PT ΛP .

Step 2. Compute the tridiagonalization QT
1 AQ1 = T via Algorithm 8.3.1 and ob-

serve from the implementation that Q1(:, 1) = e1.

Step 3. Set Q = PQ1.
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It follows that Q(:, 1) = P (Q1e1) = Pe1 = ±d. The sign does not matter.

Problems

P8.4.1 Suppose λ is an eigenvalue of a symmetric tridiagonal matrix T . Show that if λ has algebraic
multiplicity k, then T has at least k − 1 subdiagonal entries that are zero.

P8.4.2 Give an algorithm for determining ρ and θ in (8.4.6) with the property that θ ∈ {−1, 1} and
min{ |am − ρ|, |am+1 − ρ| } is maximized.

P8.4.3 Let pr(λ) = det(T (1:r, 1:r)−λIr) where T is given by (8.4.1). Derive a recursion for evaluating
p′n(λ) and use it to develop a Newton iteration that can compute eigenvalues of T .

P8.4.4 If T is positive definite, does it follow that the matrices T1 and T2 in §8.4.4 are positive
definite?

P8.4.5 Suppose A = S +σuuT where S ∈ IRn×n is skew-symmetric, u ∈ IRn, and σ ∈ IR. Show how to
compute an orthogonal Q such that QT AQ = T + σe1eT

1 where T is tridiagonal and skew-symmetric.
P8.4.6 Suppose λ is a known eigenvalue of a unreduced symmetric tridiagonal matrix T ∈ IRn×n.
Show how to compute x(1:n− 1) from the equation Tx = λx given that xn = 1.

P8.4.7 Verify that the quantity on the right-hand side of (8.4.12) is positive.

P8.4.8 Suppose that

A =

[
D v

vT dn

]
where D = diag(d1, . . . , dn−1) has distinct diagonal entries and v ∈ IRn−1 has no zero entries. (a)
Show that if λ ∈ λ(A), then D − λIn−1 is nonsingular. (b) Show that if λ ∈ λ(A), then λ is a zero of

f(λ) = λ +
n−1∑
k=1

v2
k

dk − λ
− dn.
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8.5 Jacobi Methods
Jacobi methods for the symmetric eigenvalue problem attract current attention be-
cause they are inherently parallel. They work by performing a sequence of orthogonal
similarity updates A ← QT AQ with the property that each new A, although full, is
“more diagonal” than its predecessor. Eventually, the off-diagonal entries are small
enough to be declared zero.

After surveying the basic ideas behind the Jacobi approach we develop a parallel
Jacobi procedure.
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8.5.1 The Jacobi Idea

The idea behind Jacobi’s method is to systematically reduce the quantity

off(A) =

√√√√√ n∑
i=1

n∑
j=1
j �=i

a2
ij ,

i.e., the Frobenius norm of the off-diagonal elements. The tools for doing this are
rotations of the form

J(p, q, θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
0
...
0
...
0

· · ·
. . .
· · ·

· · ·

· · ·

0
...
c
...

−s
...
0

· · ·

· · ·
. . .
· · ·

· · ·

0
...
s
...
c
...
0

· · ·

· · ·

· · ·
. . .
· · ·

0
...
0
...
0
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

q

p q

which we call Jacobi rotations. Jacobi rotations are no different from Givens rotations;
see §5.1.8. We submit to the name change in this section to honor the inventor.

The basic step in a Jacobi eigenvalue procedure involves (i) choosing an index
pair (p, q) that satisfies 1 ≤ p < q ≤ n, (ii) computing a cosine-sine pair (c, s) such that[

bpp bpq

bqp bqq

]
=

[
c s

−s c

]T [
app apq

aqp aqq

][
c s

−s c

]
(8.5.1)

is diagonal, and (iii) overwriting A with B = JT AJ where J = J(p, q, θ). Observe that
the matrix B agrees with A except in rows and columns p and q. Moreover, since the
Frobenius norm is preserved by orthogonal transformations, we find that

a2
pp + a2

qq + 2a2
pq = b2

pp + b2
qq + 2b2

pq = b2
pp + b2

qq.

It follows that

off(B)2 = ‖ B ‖2
F
−

n∑
i=1

b2
ii = ‖ A ‖2

F
−

n∑
i=1

a2
ii + (a2

pp + a2
qq − b2

pp − b2
qq) (8.5.2)

= off(A)2 − 2a2
pq .

It is in this sense that A moves closer to diagonal form with each Jacobi step.
Before we discuss how the index pair (p, q) can be chosen, let us look at the actual

computations associated with the (p, q) subproblem.
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8.5.2 The 2-by-2 Symmetric Schur Decomposition

To say that we diagonalize in (8.5.1) is to say that

0 = bpq = apq(c2 − s2) + (app − aqq)cs. (8.5.3)

If apq = 0, then we just set c = 1 and s = 0. Otherwise, define

τ =
aqq − app

2apq
and t = s/c

and conclude from (8.5.3) that t = tan(θ) solves the quadratic

t2 + 2τt − 1 = 0 .

It turns out to be important to select the smaller of the two roots:

tmin =

{
1/(τ +

√
1 + τ2) if τ ≥ 0,

1/(τ −
√

1 + τ2) if τ < 0.

This is implies that the rotation angle satisfies |θ| ≤ π/4 and has the effect of maxi-
mizing c:

c = 1/
√

1 + t2min, s = tmin c .

This in turn minimizes the difference between A and the update B:

‖ B − A ‖2
F

= 4(1 − c)
n∑

i=1
i �=p,q

(a2
ip + a2

iq) + 2a2
pq/c2.

We summarize the 2-by-2 computations as follows:

Algorithm 8.5.1 Given an n-by-n symmetric A and integers p and q that satisfy
1 ≤ p < q ≤ n, this algorithm computes a cosine-sine pair {c, s} such that if B =
J(p, q, θ)T AJ(p, q, θ), then bpq = bqp = 0.

function [c , s] = symSchur2(A, p, q)

if A(p, q) 
= 0

τ = (A(q, q) − A(p, p))/(2A(p, q))

if τ ≥ 0

t = 1/(τ +
√

1 + τ2)
else

t = 1/(τ −
√

1 + τ2)
end
c = 1/

√
1 + t2, s = tc

else
c = 1, s = 0

end
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8.5.3 The Classical Jacobi Algorithm

As we mentioned above, only rows and columns p and q are altered when the (p, q)
subproblem is solved. Once symSchur2 determines the 2-by-2 rotation, then the update
A ← J(p, q, θ)T AJ(p, q, θ) can be implemented in 6n flops if symmetry is exploited.

How do we choose the indices p and q? From the standpoint of maximizing the
reduction of off(A) in (8.5.2), it makes sense to choose (p, q) so that a2

pq is maximal.
This is the basis of the classical Jacobi algorithm.

Algorithm 8.5.2 (Classical Jacobi) Given a symmetric A ∈ IRn×n and a positive
tolerance tol, this algorithm overwrites A with V T AV where V is orthogonal and
off(V T AV ) ≤ tol·‖ A ‖

F
.

V = In, δ = tol · ‖ A ‖
F

while off(A) > δ

Choose (p, q) so |apq| = maxi �=j |aij |
[c , s] = symSchur2(A, p, q)

A = J(p, q, θ)T A J(p, q, θ)

V = V J(p, q, θ)
end

Since |apq| is the largest off-diagonal entry,

off(A)2 ≤ N(a2
pq + a2

qp)

where

N =
n(n − 1)

2
.

From (8.5.2) it follows that

off(B)2 ≤
(

1 − 1
N

)
off(A)2 .

By induction, if A(k) denotes the matrix A after k Jacobi updates, then

off(A(k))2 ≤
(

1 − 1
N

)k

off(A(0))2.

This implies that the classical Jacobi procedure converges at a linear rate.
However, the asymptotic convergence rate of the method is considerably better

than linear. Schonhage (1964) and van Kempen (1966) show that for k large enough,
there is a constant c such that

off(A(k+N)) ≤ c·off(A(k))2,

i.e., quadratic convergence. An earlier paper by Henrici (1958) established the same
result for the special case when A has distinct eigenvalues. In the convergence theory
for the Jacobi iteration, it is critical that |θ| ≤ π/4. Among other things this precludes
the possibility of interchanging nearly converged diagonal entries. This follows from
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the formulae bpp = app− tapq and bqq = aqq + tapq, which can be derived from Equation
(8.5.1) and the definition t = sin(θ)/ cos(θ).

It is customary to refer to N Jacobi updates as a sweep. Thus, after a sufficient
number of iterations, quadratic convergence is observed when examining off(A) after
every sweep.

There is no rigorous theory that enables one to predict the number of sweeps that
are required to achieve a specified reduction in off(A). However, Brent and Luk (1985)
have argued heuristically that the number of sweeps is proportional to log(n) and this
seems to be the case in practice.

8.5.4 The Cyclic-by-Row Algorithm

The trouble with the classical Jacobi method is that the updates involve O(n) flops
while the search for the optimal (p, q) is O(n2). One way to address this imbalance is
to fix the sequence of subproblems to be solved in advance. A reasonable possibility is
to step through all the subproblems in row-by-row fashion. For example, if n = 4 we
cycle as follows:

(p, q) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (1, 2), . . . .

This ordering scheme is referred to as cyclic by row and it results in the following
procedure:

Algorithm 8.5.3 (Cyclic Jacobi) Given a symmetric matrix A ∈ IRn×n and a positive
tolerance tol, this algorithm overwrites A with V T AV where V is orthogonal and
off(V T AV ) ≤ tol·‖ A ‖

F
.

V = In, δ = tol · ‖ A ‖
F

while off(A) > δ

for p = 1:n − 1

for q = p + 1:n

[c , s] = symSchur2(A, p, q)

A = J(p, q, θ)T AJ(p, q, θ)

V = V J(p, q, θ)
end

end
end

The cyclic Jacobi algorithm also converges quadratically. (See Wilkinson (1962) and
van Kempen (1966).) However, since it does not require off-diagonal search, it is
considerably faster than Jacobi’s original algorithm.

8.5.5 Error Analysis

Using Wilkinson’s error analysis it is possible to show that if r sweeps are required by
Algorithm 8.5.3 and d1, . . . , dn specify the diagonal entries of the final, computed A
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matrix, then
n∑

i=1

(di − λi)2 ≤ (tol + kru) ‖ A ‖
F

for some ordering of A’s eigenvalues λi. The parameter kr depends mildly on r.
Although the cyclic Jacobi method converges quadratically, it is not generally

competitive with the symmetric QR algorithm. For example, if we just count flops, then
two sweeps of Jacobi are roughly equivalent to a complete QR reduction to diagonal
form with accumulation of transformations. However, for small n this liability is not
very dramatic. Moreover, if an approximate eigenvector matrix V is known, then
V T AV is almost diagonal, a situation that Jacobi can exploit but not QR.

Another interesting feature of the Jacobi method is that it can compute the
eigenvalues with small relative error if A is positive definite. To appreciate this point,
note that the Wilkinson analysis cited above coupled with the §8.1 perturbation theory
ensures that the computed eigenvalues λ̂1 ≥ · · · ≥ λ̂n satisfy

|λ̂i − λi(A)|
λi(A)

≈ u
‖ A ‖2

λi(A)
≤ uκ2(A).

However, a refined, componentwise error analysis by Demmel and Veselić (1992) shows
that in the positive definite case

|λ̂i − λi(A)|
λi(A)

≈ uκ2(D−1AD−1) (8.5.4)

where D = diag(
√

a11, . . . ,
√

ann) and this is generally a much smaller approximating
bound. The key to establishing this result is some new perturbation theory and a
demonstration that if A+ is a computed Jacobi update obtained from the current
matrix Ac, then the eigenvalues of A+ are relatively close to the eigenvalues of Ac

in the sense of (8.5.4). To make the whole thing work in practice, the termination
criterion is not based upon the comparison of off(A) with u‖ A ‖

F
but rather on the

size of each |aij | compared to u√aiiajj .

8.5.6 Block Jacobi Procedures

It is usually the case when solving the symmetric eigenvalue problem on a p-processor
machine that n  p. In this case a block version of the Jacobi algorithm may be
appropriate. Block versions of the above procedures are straightforward. Suppose that
n = rN and that we partition the n-by-n matrix A as follows:

A =

⎡⎢⎣ A11 · · · A1N

...
...

AN1 · · · ANN

⎤⎥⎦ .

Here, each Aij is r-by-r. In a block Jacobi procedure the (p, q) subproblem involves
computing the 2r-by-2r Schur decomposition[

Vpp Vpq

Vqp Vqq

]T [
App Apq

Aqp Aqq

][
Vpp Vpq

Vqp Vqq

]
=

[
Dpp 0

0 Dqq

]
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and then applying to A the block Jacobi rotation made up of the Vij . If we call this
block rotation V , then it is easy to show that

off(V T AV )2 = off(A)2 −
(
2‖ Apq ‖2

F
+ off(App)2 + off(Aqq)2

)
.

Block Jacobi procedures have many interesting computational aspects. For example,
there are several ways to solve the subproblems, and the choice appears to be critical.
See Bischof (1987).

8.5.7 A Note on the Parallel Ordering

The Block Jacobi approach to the symmetric eigenvalue problem has an inherent par-
allelism that has attracted significant attention. The key observation is that the (i1, j1)
subproblem is independent of the (i2, j2) subproblem if the four indices i1, j1, i2, and
j2 are distinct. Moreover, if we regard the A as a 2m-by-2m block matrix, then it
is possible to partition the set of off-diagonal index pairs into a collection of 2m − 1
rotation sets, each of which identifies m, nonconflicting subproblems.

A good way to visualize this is to imagine a chess tournament with 2m players in
which everybody must play everybody else exactly once. Suppose m = 4. In “round
1” we have Player 1 versus Player 2, Player 3 versus Player 4, Player 5 versus Player
6, and Player 7 versus Player 8. Thus, there are four tables of action:

1 3 5 7
2 4 6 8

.

This corresponds to the first rotation set:

rot.set(1) = { (1, 2), (3, 4), (5, 6), (7, 8) }.

To set up rounds 2 through 7, Player 1 stays put and Players 2 through 8 move from
table to table in merry-go-round fashion:

1 2 3 5
4 6 8 7

rot.set(2) = {(1, 4), (2, 6), (3, 8), (5, 7)},

1 4 2 3
6 8 7 5

rot.set(3) = {(1, 6), (4, 8), (2, 7), (3, 5)},

1 6 4 2
8 7 5 3

rot.set(4) = {(1, 8), (6, 7), (4, 5), (2, 3)},

1 8 6 4
7 5 3 2

rot.set(5) = {(1, 7), (5, 8), (3, 6), (2, 4)},

1 7 8 6
5 3 2 4

rot.set(6) = {(1, 5), (3, 7), (2, 8), (4, 6)},

1 5 7 8
3 2 4 6

rot.set(7) = {(1, 3), (2, 5), (4, 7), (6, 8)}.



8.5. Jacobi Methods 483

Taken in order, the seven rotation sets define the parallel ordering of the 28 possible
off-diagonal index pairs.

For general m, a multiprocessor implementation would involve solving the sub-
problems within each rotation set in parallel. Although the generation of the subprob-
lem rotations is independent, some synchronization is required to carry out the block
similarity transform updates.

Problems

P8.5.1 Let the scalar γ be given along with the matrix

A =
[

w x
x z

]
.

It is desired to compute an orthogonal matrix

J =
[

c s
−s c

]
such that the (1, 1) entry of JT AJ equals γ. Show that this requirement leads to the equation

(w − γ)τ2 − 2xτ + (z − γ) = 0,

where τ = c/s. Verify that this quadratic has real roots if γ satisfies λ2 ≤ γ ≤ λ1, where λ1 and λ2
are the eigenvalues of A.

P8.5.2 Let A ∈ IRn×n be symmetric. Give an algorithm that computes the factorization

QT AQ = γI + F

where Q is a product of Jacobi rotations, γ = tr(A)/n, and F has zero diagonal entries. Discuss the
uniqueness of Q.

P8.5.3 Formulate Jacobi procedures for (a) skew-symmetric matrices and (b) complex Hermitian
matrices.

P8.5.4 Partition the n-by-n real symmetric matrix A as follows:

A =
[

a
v

vT

A1

]
1

n−1

1 n−1

.

Let Q be a Householder matrix such that if B = QT AQ, then B(3:n, 1) = 0. Let J = J(1, 2, θ) be
determined such that if C = JT BJ , then c12 = 0 and c11 ≥ c22. Show c11 ≥ a + ‖ v ‖2. La Budde
(1964) formulated an algorithm for the symmetric eigenvalue probem based upon repetition of this
Householder-Jacobi computation.

P8.5.5 When implementing the cyclic Jacobi algorithm, it is sensible to skip the annihilation of apq

if its modulus is less than some small, sweep-dependent parameter because the net reduction in off(A)
is not worth the cost. This leads to what is called the threshold Jacobi method. Details concerning
this variant of Jacobi’s algorithm may be found in Wilkinson (AEP, p. 277). Show that appropriate
thresholding can guarantee convergence.

P8.5.6 Given a positive integer m, let M = (2m− 1)m. Develop an algorithm for computing integer
vectors i, j ∈ IRM so that (i1, j1), . . . , (iM , jM ) defines the parallel ordering.
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8.6 Computing the SVD
If UT AV = B is the bidiagonal decomposition of A ∈ IRm×n, then V T (AT A)V = BT B
is the tridiagonal decomposition of the symmetric matrix AT A ∈ IRn×n. Thus, there is
an intimate connection between Algorithm 5.4.2 (Householder bidiagonalization) and
Algorithm 8.3.1 (Householder tridiagonalization). In this section we carry this a step
further and show that there is a bidiagonal SVD procedure that corresponds to the
symmetric tridiagonal QR iteration. Before we get into the details, we catalog some
important SVD properties that have algorithmic ramifications.

8.6.1 Connections to the Symmetric Eigenvalue Problem

There are important relationships between the singular value decomposition of a matrix
A and the Schur decompositions of the symmetric matrices

S1 = AT A, S2 = AAT S3 =

[
0 AT

A 0

]
.

Indeed, if
UT AV = diag(σ1, . . . , σn)

is the SVD of A ∈ IRm×n (m ≥ n), then

V T (AT A)V = diag(σ2
1 , . . . , σ2

n) ∈ IRn×n (8.6.1)

and
UT (AAT )U = diag(σ2

1 , . . . , σ2
n, 0, . . . , 0︸ ︷︷ ︸

m−n

) ∈ IRm×m (8.6.2)

Moreover, if
U = [ U1 | U2 ]

n m−n

and we define the orthogonal matrix Q ∈ IR(m+n)×(m+n) by

Q =
1√
2

⎡⎢⎣ V V 0

U1 −U1
√

2 U2

⎤⎥⎦ ,

then

QT

[
0 AT

A 0

]
Q = diag(σ1, . . . , σn,−σ1, . . . ,−σn, 0, . . . , 0︸ ︷︷ ︸

m−n

). (8.6.3)

These connections to the symmetric eigenproblem allow us to adapt the mathematical
and algorithmic developments of the previous sections to the singular value problem.
Good references for this section include Lawson and Hanson (SLS) and Stewart and
Sun (MPT).



8.6. Computing the SVD 487

8.6.2 Perturbation Theory and Properties

We first establish perturbation results for the SVD based on the theorems of §8.1.
Recall that σi(A) denotes the ith largest singular value of A.

Theorem 8.6.1. If A ∈ IRm×n, then for k = 1:min{m, n}

σk(A) = min
dim(S)=n−k+1

max
x∈S
y∈IRm

yT Ax

‖ x ‖2‖ y ‖2
= max

dim(S)=k
min
x∈S

‖ Ax ‖2

‖ x ‖2
.

In this expression, S is a subspace of IRn.

Proof. The rightmost characterization follows by applying Theorem 8.1.2 to AT A.
For the remainder of the proof see Xiang (2006).

Corollary 8.6.2. If A and A + E are in IRm×n with m ≥ n, then for k = 1:n

|σk(A + E) − σk(A)| ≤ σ1(E) = ‖ E ‖2.

Proof. Define Ã and Ẽ by

Ã =

[
0 AT

A 0

]
, Ã + Ẽ =

[
0 (A + E)T

A + E 0

]
. (8.6.4)

The corollary follows by applying Corollary 8.1.6 with A replaced by Ã and A + E
replaced by Ã + Ẽ.

Corollary 8.6.3. Let A = [ a1 | · · · | an ] ∈ IRm×n be a column partitioning with m ≥
n. If Ar = [ a1 | · · · | ar ] , then for r = 1:n − 1

σ1(Ar+1) ≥ σ1(Ar) ≥ σ2(Ar+1) ≥ · · · ≥ σr(Ar+1) ≥ σr(Ar) ≥ σr+1(Ar+1).

Proof. Apply Corollary 8.1.7 to AT A.

The next result is a Wielandt-Hoffman theorem for singular values:

Theorem 8.6.4. If A and A + E are in IRm×n with m ≥ n, then
n∑

k=1

(σk(A + E) − σk(A))2 ≤ ‖ E ‖2
F

.

Proof. Apply Theorem 8.1.4 with A and E replaced by the matrices Ã and Ẽ defined
by (8.6.4).
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For A ∈ IRm×n we say that the k-dimensional subspaces S ⊆ IRn and T ⊆ IRm

form a singular subspace pair if x ∈ S and y ∈ T imply Ax ∈ T and AT y ∈ S. The
following result is concerned with the perturbation of singular subspace pairs.

Theorem 8.6.5. Let A, E ∈ IRm×n with m ≥ n be given and suppose that V ∈ IRn×n

and U ∈ IRm×m are orthogonal. Assume that

V = [ V1 | V2 ]
r n−r

, U = [ U1 | U2 ]
r m−r

,

and that ran(V1) and ran(U1) form a singular subspace pair for A. Let

UT AV =
[

A11

0

0

A22

]
r

m−r

r n−r

, UT EV =
[

E11

E21

E12

E22

]
r

m−r

r n−r

,

and assume that

δ = min
σ∈σ(A11)
γ∈σ(A22)

|σ − γ| > 0.

If

‖ E ‖
F

≤ δ

5
,

then there exist matrices P ∈ IR(n−r)×r and Q ∈ IR(m−r)×r satisfying∥∥∥∥[ Q
P

]∥∥∥∥
F

≤ 4
‖ E ‖

F

δ

such that ran(V1 + V2Q) and ran(U1 + U2P ) is a singular subspace pair for A + E.

Proof. See Stewart (1973, Theorem 6.4).

Roughly speaking, the theorem says that O(ε) changes in A can alter a singular sub-
space by an amount ε/δ, where δ measures the separation of the associated singular
values.

8.6.3 The SVD Algorithm

We now show how a variant of the QR algorithm can be used to compute the SVD
of an A ∈ IRm×n with m ≥ n. At first glance, this appears straightforward. Equation
(8.6.1) suggests that we proceed as follows:

Step 1. Form C = AT A,

Step 2. Use the symmetric QR algorithm to compute V T
1 CV1 = diag(σ2

i ).

Step 3. Apply QR with column pivoting to AV1 obtaining UT (AV1)Π = R.
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Since R has orthogonal columns, it follows that UT A(V1Π) is diagonal. However, as
we saw in §5.3.2, the formation of AT A can lead to a loss of information. The situation
is not quite so bad here, since the original A is used to compute U .

A preferable method for computing the SVD is described by Golub and Kahan
(1965). Their technique finds U and V simultaneously by implicitly applying the
symmetric QR algorithm to AT A. The first step is to reduce A to upper bidiagonal
form using Algorithm 5.4.2:

UT
B AVB =

[
B
0

]
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d1 f1 · · · 0

0 d2
. . .

...
. . . . . . . . .

...
. . . . . . fn−1

0 · · · 0 dn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ IRn×n .

The remaining problem is thus to compute the SVD of B. To this end, consider applying
an implicit-shift QR step (Algorithm 8.3.2) to the tridiagonal matrix T = BT B:

Step 1. Compute the eigenvalue λ of

T (m:n, m:n) =

⎡⎢⎣ d2
m + f2

m−1 dmfm

dmfm d2
n + f2

m

⎤⎥⎦ , m = n−1,

that is closer to d2
n + f2

m.

Step 2. Compute c1 = cos(θ1) and s1 = sin(θ1) such that[
c1 s1

−s1 c1

]T [
d2
1 − λ
d1f1

]
=

[
×
0

]
and set G1 = G(1, 2, θ1).

Step 3. Compute Givens rotations G2, . . . , Gn−1 so that if Q = G1 · · ·Gn−1 then
QT TQ is tridiagonal and Qe1 = G1e1.

Note that these calculations require the explicit formation of BT B, which, as we have
seen, is unwise from the numerical standpoint.

Suppose instead that we apply the Givens rotation G1 above to B directly. Illus-
trating with the n = 6 case we have

B ← BG1 =

⎡⎢⎢⎢⎢⎢⎣
× × 0 0 0 0
+ × × 0 0 0
0 0 × × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎦ .

We then can determine Givens rotations U1, V2, U2,. . ., Vn−1, and Un−1 to chase the
unwanted nonzero element down the bidiagonal:
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B ← UT
1 B =

⎡⎢⎢⎢⎢⎢⎣
× × + 0 0 0
0 × × 0 0 0
0 0 × × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎦ , B ← BV2 =

⎡⎢⎢⎢⎢⎢⎣
× × 0 0 0 0
0 × × 0 0 0
0 + × × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎦ ,

B ← UT
2 B =

⎡⎢⎢⎢⎢⎢⎣
× × 0 0 0 0
0 × × + 0 0
0 0 × × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎦ , B ← BV3 =

⎡⎢⎢⎢⎢⎢⎣
× × 0 0 0 0
0 × × 0 0 0
0 0 × × 0 0
0 0 + × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎦ ,

and so on. The process terminates with a new bidiagonal B̃ that is related to B as
follows:

B̃ = (UT
n−1 · · ·UT

1 )B(G1V2 · · ·Vn−1) = ŨT BṼ .

Since each Vi has the form Vi = G(i, i + 1, θi) where i = 2:n − 1, it follows that
V̄ e1 = Qe1. By the Implicit Q theorem we can assert that V̄ and Q are essentially the
same. Thus, we can implicitly effect the transition from T to T̄ = B̄T B̄ by working
directly on the bidiagonal matrix B.

Of course, for these claims to hold it is necessary that the underlying tridiagonal
matrices be unreduced. Since the subdiagonal entries of BT B are of the form difi, it
is clear that we must search the bidiagonal band for zeros. If fk = 0 for some k, then

B =
[

B1

0

0

B2

]
k

n−k

k n−k

and the original SVD problem decouples into two smaller problems involving the ma-
trices B1and B2. If dk = 0 for some k < n, then premultiplication by a sequence of
Givens transformations can zero fk. For example, if n = 6 and k = 3, then by rotating
in row planes (3,4), (3,5), and (3,6) we can zero the entire third row:

B =

⎡⎢⎢⎢⎢⎢⎣
× × 0 0 0 0
0 × × 0 0 0
0 0 0 × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎦
(3,4)−→

⎡⎢⎢⎢⎢⎢⎣
× × 0 0 0 0
0 × × 0 0 0
0 0 0 0 + 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎦

(3,5)−→

⎡⎢⎢⎢⎢⎢⎣
× × 0 0 0 0
0 × × 0 0 0
0 0 0 0 0 +
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎦
(3,6)−→

⎡⎢⎢⎢⎢⎢⎣
× × 0 0 0 0
0 × × 0 0 0
0 0 0 0 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎦ .
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If dn = 0, then the last column can be zeroed with a series of column rotations in planes
(n− 1, n), (n− 2, n), . . . , (1, n). Thus, we can decouple if f1 · · · fn−1 = 0 or d1 · · · dn =
0. Putting it all together we obtain the following SVD analogue of Algorithm 8.3.2.

Algorithm 8.6.1 (Golub-Kahan SVD Step) Given a bidiagonal matrix B ∈ IRm×n

having no zeros on its diagonal or superdiagonal, the following algorithm overwrites
B with the bidiagonal matrix B̄ = ŪT BV̄ where Ū and V̄ are orthogonal and V̄ is
essentially the orthogonal matrix that would be obtained by applying Algorithm 8.3.2
to T = BT B.

Let µ be the eigenvalue of the trailing 2-by-2 submatrix of T = BT B
that is closer to tnn.

y = t11 − µ

z = t12

for k = 1:n − 1

Determine c = cos(θ) and s = sin(θ) such that[
y z

] [ c s
−s c

]
=

[
∗ 0

]
.

B = B ·G(k, k + 1, θ)

y = bkk

z = bk+1,k

Determine c = cos(θ) and s = sin(θ) such that[
c s

−s c

]T [
y
z

]
=

[
∗
0

]
.

B = G(k, k + 1, θ)T B

if k < n − 1

y = bk,k+1

z = bk,k+2
end

end

An efficient implementation of this algorithm would store B’s diagonal and superdiag-
onal in vectors d(1:n) and f(1:n− 1), respectively, and would require 30n flops and 2n
square roots. Accumulating U requires 6mn flops. Accumulating V requires 6n2 flops.

Typically, after a few of the above SVD iterations, the superdiagonal entry fn−1
becomes negligible. Criteria for smallness within B’s band are usually of the form

|fi| ≤ tol·( |di| + |di+1| ),
|di| ≤ tol· ‖ B ‖,

where tol is a small multiple of the unit roundoff and ‖ · ‖ is some computationally
convenient norm. Combining Algorithm 5.4.2 (bidiagonalization), Algorithm 8.6.1, and
the decoupling calculations mentioned earlier gives the following procedure.
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Algorithm 8.6.2 (The SVD Algorithm) Given A ∈ IRm×n (m ≥ n) and ε, a small
multiple of the unit roundoff, the following algorithm overwrites A with UT AV = D+E,
where U ∈ IRm×m is orthogonal, V ∈ IRn×n is orthogonal, D ∈ IRm×n is diagonal, and
E satisfies ‖ E ‖2 ≈ u‖ A ‖2.

Use Algorithm 5.4.2 to compute the bidiagonalization.[
B
0

]
← (U1 · · ·Un)T A(V1 · · ·Vn−2).

until q = n

For i = 1:n − 1, set bi,i+1 to zero if |bi,i+1| ≤ ε(|bii| + |bi+1,i+1|).
Find the largest q and the smallest p such that if

B =

⎡⎣ B11

0

0

0

B22

0

0

0

B33

⎤⎦ p

n−p−q

q

p n−p−q q

then B33 is diagonal and B22 has a nonzero superdiagonal.
if q < n

if any diagonal entry in B22 is zero, then zero the
superdiagonal entry in the same row.

else
Apply Algorithm 8.6.1 to B22.

B = diag(Ip, U, Iq+m−n)T B diag(Ip, V, Iq)
end

end
end

The amount of work required by this algorithm depends on how much of the SVD
is required. For example, when solving the LS problem, UT need never be explicitly
formed but merely applied to b as it is developed. In other applications, only the
matrix U1 = U(:, 1:n) is required. Another variable that affects the volume of work
in Algorithm 8.6.2 concerns the R-bidiagonalization idea that we discussed in §5.4.9.
Recall that unless A is “almost square,” it pays to reduce A to triangular form via QR
and before bidiagonalizing. If R-bidiagonalization is used in the SVD context, then we
refer to the overall process as the R-SVD. Figure 8.6.1 summarizes the work associated
with the various possibilities By comparing the entries in this table (which are meant
only as approximate estimates of work), we conclude that the R-SVD approach is more
efficient unless m ≈ n.

8.6.4 Jacobi SVD Procedures

It is straightforward to adapt the Jacobi procedures of §8.5 to the SVD problem.
Instead of solving a sequence of 2-by-2 symmetric eigenproblems, we solve a sequence
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Required Golub-Reinsch SVD R-SVD

Σ 4mn2 − 4n3/3 2mn2 + 2n3

Σ, V 4mn2 + 8n3 2mn2 + 11n3

Σ, U 4m2n − 8mn2 4m2n + 13n3

Σ, U1 14mn2 − 2n3 6mn2 + 11n3

Σ, U, V 4m2n + 8mn2 + 9n3 4m2n + 22n3

Σ, U1, V 14mn2 + 8n3 6mn2 + 20n3

Figure 8.6.1. Work associated with various SVD-related calculations

of 2-by-2 SVD problems. Thus, for a given index pair (p, q) we compute a pair of
rotations such that[

c1 s1

−s1 c1

]T [
app apq

aqp aqq

][
c2 s2

−s2 c2

]
=

[
dp 0

0 dq

]
.

See P8.6.5. The resulting algorithm is referred to as two-sided because each update
involves a pre- and a post-multiplication.

A one-sided Jacobi algorithm involves a sequence of pairwise column orthogo-
nalizations. For a given index pair (p, q) a Jacobi rotation J(p, q, θ) is determined so
that columns p and q of AJ(p, q, θ) are orthogonal to each other. See P8.6.8. Note
that this corresponds to zeroing the (p, q) and (q, p) entries in AT A. Once AV has
sufficiently orthogonal columns, the rest of the SVD (U and Σ) follows from column
scaling: AV = UΣ.

Problems

P8.6.1 Give formulae for the eigenvectors of

S =

[
0 AT

A 0

]
in terms of the singular vectors of A ∈ IRm×n where m ≥ n.
P8.6.2 Relate the singular values and vectors of A = B + iC (B, C ∈ IRm×n) to those of

Ã =

[
B −C

C B

]
.

P8.6.3 Suppose B ∈ IRn×n is upper bidiagonal with diagonal entries d(1:n) and superdiagonal entries
f(1:n− 1). State and prove a singular value version of Theorem 8.3.1.
P8.6.4 Assume that n = 2m and that S ∈ IRn×n is skew-symmetric and tridiagonal. Show that there
exists a permutation P ∈ IRn×n such that

P T SP =

[
0 −BT

B 0

]
where B ∈ IRm×m. Describe the structure of B and show how to compute the eigenvalues and eigen-
vectors of S via the SVD of B. Repeat for the case n = 2m + 1.
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P8.6.5 (a) Let

C =

[
w x

y z

]
be real. Give a stable algorithm for computing c and s with c2 + s2 = 1 such that

B =

[
c s

−s c

]
C

is symmetric. (b) Combine (a) with Algorithm 8.5.1 to obtain a stable algorithm for computing
the SVD of C. (c) Part (b) can be used to develop a Jacobi-like algorithm for computing the SVD
of A ∈ IRn×n. For a given (p, q) with p < q, Jacobi transformations J(p, q, θ1) and J(p, q, θ2) are
determined such that if

B = J(p, q, θ1)T AJ(p, q, θ2),
then bpq = bqp = 0. Show

off(B)2 = off(A)2 − a2
pq − a2

qp.

(d) Consider one sweep of a cyclic-by-row Jacobi SVD procedure applied to A ∈ IRn×n:

for p = 1:n− 1
for q = p + 1:n

A = J(p, q, θ1)T AJ(p, q, θ2)
end

end

Assume that the Jacobi rotation matrices are chosen so that apq = aqp = 0 after the (p, q) update.
Show that if A is upper (lower) triangular at the beginning of the sweep, then it is lower (upper)
triangular after the sweep is completed. See Kogbetliantz (1955). (e) How could these Jacobi ideas
be used to compute the SVD of a rectangular matrix?

P8.6.6 Let x and y be in IRm and define the orthogonal matrix Q by

Q =

[
c s

−s c

]
.

Give a stable algorithm for computing c and s such that the columns of [x | y] Q are orthogonal to
each other.
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8.7 Generalized Eigenvalue Problems with Symmetry
This section is mostly about a pair of symmetrically structured versions of the general-
ized eigenvalue problem that we considered in §7.7. In the symmetric-definite problem
we seek nontrivial solutions to the problem

Ax = λBx (8.7.1)

where A ∈ IRn×n is symmetric and B ∈ IRn×n is symmetric positive definite. The gen-
eralized singular value problem has the form

AT Ax = µ2BT Bx (8.7.2)

where A ∈ IRm1×n and B ∈ IRm2×n. By setting B = In we see that these problems are
(respectively) generalizations of the symmetric eigenvalue problem and the singular
value problem.

8.7.1 The Symmetric-Definite Generalized Eigenproblem

The generalized eigenvalues of the symmetric-definite pair {A, B} are denoted by
λ(A, B) where

λ(A, B) = { λ | det(A − λB) = 0 }.

If λ ∈ λ(A, B) and x is a nonzero vector that satisfies Ax = λBx, then x is a generalized
eigenvector.

A symmetric-definite problem can be transformed to an equivalent symmetric-
definite problem with a congruence transformation:

A − λB is singular ⇔ (XT AX) − λ(XT BX) is singular.

Thus, if X is nonsingular, then λ(A, B) = λ(XT AX, XT BX).
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For a symmetric-definite pair {A, B}, it is possible to choose a real nonsingular
X so that XT AX and XT BX are diagonal. This follows from the next result.

Theorem 8.7.1. Suppose A and B are n-by-n symmetric matrices, and define C(µ)
by

C(µ) = µA + (1 − µ)B µ ∈ IR. (8.7.3)

If there exists a µ ∈ [0, 1] such that C(µ) is nonnegative definite and

null(C(µ)) = null(A) ∩ null(B)

then there exists a nonsingular X such that both XT AX and XT BX are diagonal.

Proof. Let µ ∈ [0, 1] be chosen so that C(µ) is nonnegative definite with the property
that null(C(µ)) = null(A) ∩ null(B). Let

QT
1 C(µ)Q1 =

[
D 0

0 0

]
, D = diag(d1, . . . , dk), di > 0,

be the Schur decomposition of C(µ) and define X1= Q1 ·diag(D−1/2, In−k). If

A1 = XT
1 AX1, B1 = XT

1 BX1, C1 = XT
1 C(µ)X1,

then

C1 =

[
Ik 0

0 0

]
= µA1 + (1 − µ)B1.

Since
span{ek+1, . . . , en} = null(C1) = null(A1) ∩ null(B1)

it follows that A1 and B1 have the following block structure:

A1 =
[

A11

0

0

0

]
k

n−k

k n−k

, B1 =
[

B11

0

0

0

]
k

n−k

k n−k

.

Moreover Ik = µA11 + (1 − µ)B11.
Suppose µ 
= 0. It then follows that if ZT B11Z = diag(b1, . . . , bk) is the Schur

decomposition of B11 and we set

X = X1 ·diag(Z, In−k)

then
XT BX = diag(b1, . . . , bk, 0, . . . , 0) ≡ DB

and

XT AX =
1
µ

XT (C(µ) − (1 − µ)B) X =
1
µ

([
Ik 0

0 0

]
− (1 − µ)DB

)
≡ DA.
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On the other hand, if µ = 0, then let ZT A11Z = diag(a1, . . . , ak) be the Schur decom-
position of A11 and set X = X1diag(Z, In−k). It is easy to verify that in this case as
well, both XT AX and XT BX are diagonal.

Frequently, the conditions in Theorem 8.7.1 are satisfied because either A or B is
positive definite.

Corollary 8.7.2. If A − λB ∈ IRn×n is symmetric-definite, then there exists a non-
singular

X = [ x1 | · · · | xn ]

such that
XT AX = diag(a1, . . . , an)

and
XT BX = diag(b1, . . . , bn).

Moreover, Axi = λiBxi for i = 1:n where λi = ai/bi.

Proof. By setting µ = 0 in Theorem 8.7.1 we see that symmetric-definite pencils can
be simultaneously diagonalized. The rest of the corollary is easily verified.

Stewart (1979) has worked out a perturbation theory for symmetric pencils A−λB
that satisfy

c(A, B) = min
‖x‖2=1

(xT Ax)2 + (xT Bx)2 > 0. (8.7.4)

The scalar c(A, B) is called the Crawford number of the pencil A − λB.

Theorem 8.7.3. Suppose A − λB is an n-by-n symmetric-definite pencil with eigen-
values

λ1 ≥ λ2 ≥ · · · ≥ λn.

Suppose EA and EB are symmetric n-by-n matrices that satisfy

ε2 = ‖ EA ‖2
2 + ‖ EB ‖2

2 < c(A, B).

Then (A + EA) − λ(B + EB) is symmetric-definite with eigenvalues

µ1 ≥ · · · ≥ µn

that satisfy
|arctan(λi) − arctan(µi)| ≤ arctan(ε/c(A, B))

for i = 1:n.

Proof. See Stewart (1979).
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8.7.2 Simultaneous Reduction of A and B

Turning to algorithmic matters, we first present a method for solving the symmetric-
definite problem that utilizes both the Cholesky factorization and the symmetric QR
algorithm.

Algorithm 8.7.1 Given A = AT ∈ IRn×n and B = BT ∈ IRn×n with B positive definite,
the following algorithm computes a nonsingular X such that XT AX = diag(a1, . . . , an)
and XT BX = In.

Compute the Cholesky factorization B = GGT using Algorithm 4.2.2.

Compute C = G−1AG−T .

Use the symmetric QR algorithm to compute the Schur decomposition

QT CQ = diag(a1, . . . , an).

Set X = G−T Q.

This algorithm requires about 14n3 flops. In a practical implementation, A can be
overwritten by the matrix C. See Martin and Wilkinson (1968) for details. Note that

λ(A, B) = λ(A, GGT ) = λ(G−1AG−T , I) = λ(C) = {a1, . . . , an}.

If âi is a computed eigenvalue obtained by Algorithm 8.7.1, then it can be shown that

âi ∈ λ(G−1AG−T + Ei)

where
‖ Ei ‖2 ≈ u‖ A ‖2‖ B−1 ‖2.

Thus, if B is ill-conditioned, then âi may be severely contaminated with roundoff error
even if ai is a well-conditioned generalized eigenvalue. The problem, of course, is that
in this case, the matrix C = G−1AG−T can have some very large entries if B, and hence
G, is ill-conditioned. This difficulty can sometimes be overcome by replacing the matrix
G in Algorithm 8.7.1 with V D−1/2 where V T BV = D is the Schur decomposition of B.
If the diagonal entries of D are ordered from smallest to largest, then the large entries
in C are concentrated in the upper left-hand corner. The small eigenvalues of C can
then be computed without excessive roundoff error contamination (or so the heuristic
goes). For further discussion, consult Wilkinson (AEP, pp. 337–38).

The condition of the matrix X in Algorithm 8.7.1 can sometimes be improved by
replacing B with a suitable convex combination of A and B. The connection between
the eigenvalues of the modified pencil and those of the original are detailed in the proof
of Theorem 8.7.1.

Other difficulties concerning Algorithm 8.7.1 relate to the fact that G−1AG−T is
generally full even when A and B are sparse. This is a serious problem, since many
of the symmetric-definite problems arising in practice are large and sparse. Crawford
(1973) has shown how to implement Algorithm 8.7.1 effectively when A and B are
banded. Aside from this case, however, the simultaneous diagonalization approach is
impractical for the large, sparse symmetric-definite problem. Alternate strategies are
discussed in Chapter 10.
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8.7.3 Other Methods

Many of the symmetric eigenvalue methods presented in earlier sections have symmetric-
definite generalizations. For example, the Rayleigh quotient iteration (8.2.6) can be
extended as follows:

x0 given with ‖ x0 ‖2 = 1

for k = 0, 1, . . .

µk = xT
k Axk/xT

k Bxk (8.7.5)

Solve (A − µkB)zk+1 = Bxk for zk+1.

xk+1 = zk+1/‖ zk+1 ‖2
end

The main idea behind this iteration is that

λ =
xT Ax

xT Bx
(8.7.6)

minimizes
f(λ) = ‖ Ax − λBx ‖

B
(8.7.7)

where ‖ · ‖B is defined by ‖z‖2
B = zT B−1z. The mathematical properties of (8.7.5) are

similar to those of (8.2.6). Its applicability depends on whether or not systems of the
form (A − µB)z = x can be readily solved. Likewise, the same comment pertains to
the generalized orthogonal iteration:

Q0 ∈ IRn×p given with QT
0 Q0 = Ip

for k = 1, 2, . . . (8.7.8)

Solve BZk = AQk−1 for Zk

Zk = QkRk (QR factorization, Qk ∈ IRn×p, Rk ∈ IRp×p)
end

This is mathematically equivalent to (7.3.6) with A replaced by B−1A. Its practicality
strongly depends on how easy it is to solve linear systems of the form Bz = y.

8.7.4 The Generalized Singular Value Problem

We now turn our attention to the generalized singular value decomposition introduced
in §6.1.6. This decomposition is concerned with the simultaneous diagonalization of two
rectangular matrices A and B that are assumed to have the same number of columns.
We restate the decomposition here with a simplification that both A and B have at
least as many rows as columns. This assumption is not necessary, but it serves to
unclutter our presentation of the GSVD algorithm.

Theorem 8.7.4 (Tall Rectangular Version). If A ∈ IRm1×n and B ∈ IRm2×n have
at least as many rows as columns, then there exists an orthogonal matrix U1 ∈ IRm1×m1 ,
an orthogonal matrix U2 ∈ IRm2×m2 , and a nonsingular matrix X ∈ IRn×n such that

UT
1 AX = diag(α1, . . . , αn),

UT
2 BX = diag(β1, . . . , βn).
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Proof. See Theorem 6.1.1.

The generalized singular values of the matrix pair {A, B} are defined by

σ(A, B) = {α1/β1, . . . , αn/βn}.

We give names to the columns of X, U1, and U2. The columns of X are the right gen-
eralized singular vectors, the columns of U1 are the left-A generalized singular vectors,
and the columns of U2 are the left-B generalized singular vectors. Note that

AX(:, k) = αkU1(:, k),

BX(:, k) = βkU2(:, k),

for k = 1:n.
There is a connection between the GSVD of the matrix pair {A, B} and the

“symmetric-definite-definite” pencil AT A − λBT B. Since

XT (AT A − λBT B)X = DT
A DA − λDT

B DB = diag(α2
k − λβ2

k),

it follows that the right generalized singular vectors of {A, B} are the generalized
eigenvectors for AT A − λBT B and the eigenvalues of the pencil AT A − λBT B are
squares of the generalized singular values of {A, B}.

All these GSVD facts revert to familiar SVD facts by setting B = In. For example,
if B = In, then we can set X = U2 and UT

1 AX = DA is the SVD.
We mention that the generalized singular values of {A, B} are the stationary

values of

φA,B(x) =
‖ Ax ‖2

‖ Bx ‖2

and the right generalized singular vectors are the associated stationary vectors. The
left-A and left-B generalized singular vectors are stationary vectors associated with the
quotient ‖ y ‖2/‖ x ‖2 subject to the constraints

AT x = BT y, x ⊥ null(AT ), y ⊥ null(AT ).

See Chu, Funderlic, and Golub (1997).
A GSVD perturbation theory has been developed by Sun (1983, 1998, 2000),

Paige (1984), and Li (1990).

8.7.5 Computing the GSVD Using the CS Decomposition

Our proof of the GSVD in Theorem 6.1.1 is constructive and makes use of the CS
decomposition. In practice, computing the GSVD via the CS decomposition is a viable
strategy.

Algorithm 8.7.2 (GSVD (Tall, Full-Rank Version)) Assume that A ∈ IRm1×n and
B ∈ IRm2×n, with m1 ≥ n, m2 ≥ n, and null(A)∩null(B) = ∅. The following algorithm
computes an orthogonal matrix U1 ∈ IRm1×m1, an orthogonal matrix U2 ∈ IRm2×m2, a
nonsingular matrix X ∈ IRn×n, and diagonal matrices DA ∈ IRm1×n and DB ∈ IRm1×n

such that UT
1 AX = DA and UT

2 BX = DB.
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Compute the the QR factorization[
A
B

]
=

[
Q1
Q2

]
R.

Compute the CS decomposition

UT
1 Q1V = DA = diag(α1, . . . , αn),

UT
2 Q2V = DB = diag(β1, . . . , βn).

Solve RX = V for X.

The assumption that null(A) ∩ null(B) = ∅ is not essential. See Van Loan (1985).
Regardless, the condition of the matrix X is an issue that affects accuracy. However,
we point out that it is possible to compute designated right generalized singular vector
subspaces without having to compute explicitly selected columns of the matrix X =
V R−1. For example, suppose that we wish to compute an orthonormal basis for the
subspace S = span{x1, . . . xk} where xi = X(:, i). If we compute an orthogonal Z and
upper triangular T so TZT = V T R, then

ZT−1 = R−1V = X

and S = span{z1, . . . zk} where zi = Z(:, i). See P5.2.2 concerning the computation of
Z and T .

8.7.6 Computing the CS Decomposition

At first glance, the computation of the CS decomposition looks easy. After all, it is
just a collection of SVDs. However, there are some complicating numerical issues that
need to be addressed. To build an appreciation for this, we step through the “thin”
version of the algorithm developed by Van Loan (1985) for the case

Q =

[
Q1

Q2

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In exact arithmetic, the goal is to compute 5-by-5 orthogonal matrices U1, U2, and V
so that

UT
1 Q1V = C = diag(c1, c2, c3, c4, c5),

UT
2 Q2V = S = diag(s1, s2, s3, s4, s5).
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In floating point, we strive to compute matrices Û2, Û2 and V̂ that are orthogonal to
working precision and which transform Q1 and Q2 into nearly diagonal form:

fl(ÛT
1 Q1 V̂ ) = diag(ĉk) + E1, ‖ E1 ‖ ≈ u, (8.7.9)

fl(ÛT
2 Q2 V̂ ) = diag(ŝk) + E2, ‖ E2 ‖ ≈ u. (8.7.10)

In what follows, it will be obvious that the computed versions of U1, U2 and V are
orthogonal to working precision, as they will be “put together” from numerically sound
QR factorizations and SVDs. The challenge is to affirm (8.7.9) and (8.7.10).

We start by computing the SVD

UT
2 Q1V = S

followed by the QR factorization

U1R = Q1V.

Overwriting Q2 with S and Q1 with R gives

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13 r14 r15

ε21 r22 r23 r24 r25

ε31 ε32 r33 r34 r35

ε41 ε42 ε43 r44 r45

ε51 ε52 ε53 ε54 r55

s1 δ12 δ13 δ14 δ25

δ21 s2 δ23 δ24 δ25

δ31 δ32 s3 δ34 δ35

δ41 δ42 δ43 s4 δ45

δ51 δ52 δ53 δ54 s5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

εij = O(u),

δij = O(u),

Since the columns of this matrix are orthonormal to machine precision, it follows that

|r11r1j | ≈ u, j = 2:5.

Note that if |r11| = O(1), then we may conclude that |r1j | ≈ u for j = 2:5. This will
be the case if (for example) s1 ≤ 1/

√
2 for then

|r11| ≈
√

1 − s2
1 ≥ 1√

2
.

With this in mind, let us assume that the singular values s1, . . . , s5 are ordered from
little to big and that

0 ≤ s1 ≤ s2 ≤ 1√
2

< s3 ≤ s4 ≤ s5. (8.7.11)
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Working with the near-orthonormality of the columns of Q, we conclude that

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 ε12 ε13 ε14 ε15

ε21 c2 ε23 ε24 ε25

ε31 ε32 r33 r34 r35

ε41 ε42 ε43 r44 r45

ε51 ε52 ε53 ε54 r55

s1 δ12 δ13 δ14 δ25

δ21 s2 δ23 δ24 δ25

δ31 δ32 s3 δ34 δ35

δ41 δ42 δ43 s4 δ45

δ51 δ52 δ53 δ54 s5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

εij = O(u),

δij = O(u).

Note that

|r34| ≈ u
|r33|

≈ u√
1 − s2

3

.

Since s3 can be close to 1, we cannot guarantee that r34 is sufficiently small. Similar
comments apply to r35 and r45.

To rectify this we compute the SVD of Q(3:5, 3:5), taking care to apply the U -
matrix across rows 3 to 5 and the V matrix across columns 3:5. This gives

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 ε12 ε13 ε14 ε15

ε21 c2 ε23 ε24 ε25

ε31 ε32 c3 ε34 ε35

ε41 ε42 ε43 c4 ε45

ε51 ε52 ε53 ε54 c5

s1 δ12 δ13 δ14 δ25

δ21 s2 δ23 δ24 δ25

δ31 δ32 t33 t34 t35

δ41 δ42 t43 t44 t45

δ51 δ52 t53 t54 t55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

εij = O(u),

δij = O(u).

Thus, by diagonalizing the (2,2) block of Q1 we fill the (2,2) block of Q2. However, if
we compute the QR factorization of Q(8:10, 3:5) and apply the orthogonal factor across
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rows 8:10, then we obtain

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 ε12 ε13 ε14 ε15

ε21 c2 ε23 ε24 ε25

ε31 ε32 c3 ε34 ε35

ε41 ε42 ε43 c4 ε45

ε51 ε52 ε53 ε54 c5

s1 δ12 δ13 δ14 δ25

δ21 s2 δ23 δ24 δ25

δ31 δ32 t33 t34 t35

δ41 δ42 δ43 t44 t45

δ51 δ52 δ53 δ54 t55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

εij = O(u),

δij = O(u).

Using the near-orthonormality of the columns of Q and the fact that c3, c4, and c5 are
all less than 1/

√
2, we can conclude (for example) that

|t34| ≈ O

(
u

|t33|

)
≈ O

(
u√

1 − c2
3

)
= O (u) .

Using similar arguments we may conclude that both t35 and t45 are O(u). It follows
that the updated Q1 and Q2 are diagonal to within the required tolerance and that
(8.7.9) and (8.7.10) are achieved as a result.

8.7.7 The Kogbetliantz Approach

Paige (1986) developed a method for computing the GSVD based on the Kogbetliantz
Jacobi SVD procedure. At each step a 2-by-2 GSVD problem is solved, a calculation
that we briefly examine. Suppose F and G are 2-by-2 and that G is nonsingular. If

UT
1 (FG−1)U2 = Σ =

[
σ1 0

0 σ2

]

is the SVD of FG−1, then σ(F, G) = {σ1, σ2} and

UT
1 F = (UT

2 G)Σ.

This says that the rows of UT
1 F are parallel to the corresponding rows of UT

2 G. Thus, if
Z is orthogonal so that UT

2 GZ = G1 is upper triangular, then UT
1 FZ = F1 is also upper

triangular. In the Paige algorithm, these 2-by-2 calculations resonate with the preser-
vation of the triangular form that is key to the Kogbetliantz procedure. Moreover, the
A and B input matrices are separately updated and the updates only involve orthog-
onal transformations. Although some of the calculations are very delicate, the overall
procedure is tantamount to applying Kogbetliantz implicitly to the matrix AB−1.
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8.7.8 Other Generalizations of the SVD

What we have been calling the “generalized singular value decomposition” is sometimes
referred to as the quotient singular value decomposition or QSVD. A key feature of the
decomposition is that it separately transforms the input matrices A and B in such a
way that the generalized singular values and vectors are exposed, sometimes implicitly.

It turns out that there are other ways to generalize the SVD. In the product
singular value decomposition problem we are given A ∈ IRm×n1 and B ∈ IRm×n2 and
require the SVD of AT B. The challenge is to compute UT (AT B)V = Σ without
actually forming AT B as that operation can result in a significant loss of information.
See Drmac̆ (1998, 2000).

The restricted singular value decomposition involves three matrices and is best
motivated from a a variational point of view. If A ∈ IRm×n, B ∈ IRm×q, and C ∈ IRn×p,
then the restricted singular values of the triplet {A, B, C} are the stationary values of

ψA,B,C(x, y) =
yT Ax

‖ By ‖2‖ Cx ‖2
.

See Zha (1991), De Moor and Golub (1991), and Chu, De Lathauwer, and De Moor
(2000). As with the product SVD, the challenge is to compute the required quantities
without forming inverses and products.

All these ideas can be extended to chains of matrices, e.g., the computation of
the SVD of a matrix product A = A1A2 · · ·Ak without explicitly forming A. See De
Moor and Zha (1991) and De Moor and Van Dooren (1992).

8.7.9 A Note on the Quadratic Eigenvalue Problem

We build on our §7.7.9 discussion of the polynomial eigenvalue problem and briefly
consider some structured versions of the quadratic case,(

λ2M + λC + K
)
x = 0, M, C, K ∈ IRn×n. (8.7.12)

We recommend the excellent survey by Tisseur and Meerbergen (2001) for more detail.
Note that the eigenvalue in (8.7.12) solves the quadratic equation

(xHMx)λ2 + (xHCx)λ + (xHKx) = 0. (8.7.13)

and thus

λ =
−(xHCx) ±

√
(xHCx)2 − 4(xHMx)(xHKx)

2(xHMx)
, (8.7.14)

assuming that xHMx 
= 0. Linearized versions of (8.7.12) include[
0 N

K C

][
x

u

]
= λ

[
N 0

0 −M

][
x

u

]
(8.7.15)

and [
−K 0

0 N

][
x

u

]
= λ

[
C M

N 0

][
x

u

]
(8.7.16)
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where N ∈ IRn×n is nonsingular.
In many applications, the matrices M and C are symmetric and positive definite

and K is symmetric and positive semidefinite. It follows from (8.7.14) that in this case
the eigenvalues have nonpositive real part. If we set N = K in (8.7.15), then we obtain
the following generalized eigenvalue problem:[

0 K

K C

][
x

u

]
= λ

[
K 0

0 −M

][
x

u

]
.

This is not a symmetric-definite problem. However, if the overdamping condition

min
xT x=1

(xT Cx)2 − 4(xT Mx)(xT Kx) = γ2 > 0

holds, then it can be shown that there is a scalar µ > 0 so that

A(µ) =

[
µK K

K C − µM

]

is positive definite. It follows from Theorem 8.7.1 that (8.7.16) can be diagonalized by
congruence. See Vescelić (1993).

A quadratic eigenvalue problem that arises in the analysis of gyroscopic systems
has the property that M = MT (positive definite), K = KT , and C = −CT . It is easy
to see from (8.7.14) that the eigenvalues are all purely imaginary. For this problem we
have the structured linearization[

0 −K

M 0

][
u

x

]
= λ

[
M C

0 M

][
u

x

]
.

Notice that this is a Hamiltonian/skew-Hamiltonian generalized eigenvalue problem.
In the quadratic palindomic problem, K = MT and C = CT and the eigenvalues

come in reciprocal pairs, i.e., if Q(λ) is singular then so is Q(1/λ). In addition, we
have the linearization[

MT MT

C − M MT

][
y

z

]
= λ

[
−M MT − C

−M −M

][
y

z

]
. (8.7.17)

Note that if this equation holds, then

(λ2M + λC + MT )(y + z) = 0. (8.7.18)

For a systematic treatment of linearizations for structured polynomial eigenvalue prob-
lems, see Mackey, Mackey, Mehl, and Mehrmann (2006).

Problems

P8.7.1 Suppose A ∈ IRn×n is symmetric and G ∈ IRn×n is lower triangular and nonsingular. Give an
efficient algorithm for computing C = G−1AG−T .

P8.7.2 Suppose A ∈ IRn×n is symmetric and B ∈ IRn×n is symmetric positive definite. Give an algo-
rithm for computing the eigenvalues of AB that uses the Cholesky factorization and the symmetric
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QR algorithm.

P8.7.3 Relate the principal angles and vectors between ran(A) and ran(B) to the eigenvalues and
eigenvectors of the generalized eigenvalue problem[

0 AT B

BT A 0

][
y

z

]
= σ

[
AT A 0

0 BT B

][
y

z

]
.

P8.7.4 Show that if C is real and diagonalizable, then there exist symmetric matrices A and B, B
nonsingular, such that C = AB−1. This shows that symmetric pencils A−λB are essentially general.

P8.7.5 Show how to convert an Ax = λBx problem into a generalized singular value problem if A and
B are both symmetric and nonnegative definite.

P8.7.6 Given Y ∈ IRn×n show how to compute Householder matrices H2, . . . , Hn so that Y Hn · · ·H2
= T is upper triangular. Hint: Hk zeros out the kth row.

P8.7.7 Suppose [
0 A

AT 0

][
y
z

]
= λ

[
B1 0
0 B2

][
y
z

]
where A ∈ IRm×n, B1 ∈ IRm×m, and B2 ∈ IRn×n. Assume that B1 and B2 are positive definite with
Cholesky triangles G1 and G2 respectively. Relate the generalized eigenvalues of this problem to the
singular values of G−1

1 AG−T
2

P8.7.8 Suppose A and B are both symmetric positive definite. Show how to compute λ(A, B) and the
corresponding eigenvectors using the Cholesky factorization and CS decomposition.

P8.7.9 Consider the problem

min
xT Bx=β2

xT Cx=γ2

‖Ax− b ‖2 , A ∈ IRm×n, b ∈ IRm, B, C ∈ IRn×n.

Assume that B and C are positive definite and that Z ∈ IRn×n is a nonsingular matrix with the property
that ZT BZ = diag(λ1, . . . , λn) and ZT CZ = In. Assume that λ1 ≥ · · · ≥ λn. (a) Show that the the
set of feasible x is empty unless λn ≤ β2/γ2 ≤ λ1. (b) Using Z, show how the two-constraint problem
can be converted to a single-constraint problem of the form

min
yT Wy=β2−λnγ2

‖ Ãx− b ‖2

where W = diag(λ1, . . . , λn)− λnI.

P8.7.10 Show that (8.7.17) implies (8.7.18).
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Chapter 9

Functions of Matrices

9.1 Eigenvalue Methods

9.2 Approximation Methods

9.3 The Matrix Exponential

9.4 The Sign, Square Root, and Log of a Matrix

Computing a function f(A) of an n-by-n matrix A is a common problem in many
application areas. Roughly speaking, if the scalar function f(z) is defined on λ(A), then
f(A) is defined by substituting “A” for “z” in the “formula” for f(z). For example, if
f(z) = (1 + z)/(1 − z) and 1 
∈ λ(A), then f(A) = (I + A)(I − A)−1 .

The computations get particularly interesting when the function f is transcen-
dental. One approach in this more complicated situation is to compute an eigenvalue
decomposition A = Y BY −1 and use the formula f(A) = Y f(B)Y −1. If B is suffi-
ciently simple, then it is often possible to calculate f(B) directly. This is illustrated in
§9.1 for the Jordan and Schur decompositions.

Another class of methods involves the approximation of the desired function f(A)
with an easy-to-calculate function g(A). For example, g might be a truncated Taylor
series approximation to f . Error bounds associated with the approximation of matrix
functions are given in §9.2.

In §9.3 we discuss the special and very important problem of computing the
matrix exponential eA. The matrix sign, square root, and logarithm functions and
connections to the polar decomposition are treated in §9.4.

Reading Notes

Knowledge of Chapters 3 and 7 is assumed. Within this chapter there are the
following dependencies:

§9.1 → §9.2 → §9.3
↓

§9.4
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Complementary references include Horn and Johnson (TMA) and the definitive text
by Higham (FOM). We mention that aspects of the f(A)-times-a-vector problem are
treated in §10.2.

9.1 Eigenvalue Methods
Here are some examples of matrix functions:

p(A) = I + A,

r(A) =
(

I − A

2

)−1 (
I +

A

2

)
, 2 
∈ λ(A),

eA =
∞∑

k=0

Ak

k!
.

Obviously, these are the matrix versions of the scalar-valued functions

p(z) = 1 + z,

r(z) = (1 − (z/2))−1(1 + (z/2)), 2 
= z,

ez =
∞∑

k=0

zk

k!
.

Given an n-by-n matrix A, it appears that all we have to do to define f(A) is to substi-
tute A into the formula for f . However, to make subsequent algorithmic developments
precise, we need to be a little more formal. It turns out that there are several equiv-
alent ways to define a function of a matrix. See Higham (FOM, §1.2). Because of its
prominence in the literature and its simplicity, we take as our “base” definition one
that involves the Jordan canonical form (JCF).

9.1.1 A Jordan-Based Definition

Suppose A ∈ Cn×n and let

A = X ·diag(J1, . . . , Jq)·X−1 (9.1.1)

be its JCF with

Ji =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λi 1 · · · · · · 0

0 λi 1 · · ·
...

...
. . . . . . . . .

...
...

...
. . . . . . 1

0 · · · · · · 0 λi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Cni×ni, i = 1:q. (9.1.2)
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The matrix function f(A) is defined by

f(A) = X ·diag(F1, . . . , Fq)·X−1 (9.1.3)

where

Fi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(λi) f (1)(λi) · · · · · · f (ni−1)(λi)
(ni − 1)!

0 f(λi)
. . . · · ·

...
...

...
. . . . . .

...
...

...
...

. . . f (1)(λi)

0 · · · · · · · · · f(λi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i = 1:q, (9.1.4)

assuming that all the required derivative evaluations exist.

9.1.2 The Taylor Series Representation

If f can be represented by a Taylor series on A’s spectrum, then f(A) can be represented
by the same Taylor series in A. To fix ideas, assume that f is analytic in a neighborhood
of z0 ∈ C and that for some r > 0 we have

f(z) =
∞∑

k=0

f (k)(z0)
k!

(z − z0)k, |z − z0| < r. (9.1.5)

Our first result applies to a single Jordan block.

Lemma 9.1.1. Suppose B ∈ Cm×m is a Jordan block and write B = λIm + E where
E is its strictly upper bidiagonal part. Given (9.1.5), if |λ − z0| < r, then

f(B) =
∞∑

k=0

f (k)(z0)
k!

(B − z0Im)k.

Proof. Note that powers of E are highly structured, e.g.,

E =

⎡⎢⎢⎢⎣
0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎦ , E2 =

⎡⎢⎢⎢⎣
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦ , E3 =

⎡⎢⎢⎢⎣
0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦ .

In terms of the Kronecker delta, if 0 ≤ p ≤ m − 1, then [Ep]ij = (δi,j−p). It follows
from (9.1.4) that

f(B) =
m−1∑
p=0

f (p)(λ)
Ep

p!
. (9.1.6)
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On the other hand, if p > m, then Ep = 0. Thus, for any k ≥ 0 we have

(B − z0I)k = ((λ − z0)I + E)k =
k∑

p=0

k(k − 1) · · · (k − p + 1)
p!

· (λ − z0)k−p · Ep

=
min{k,m−1}∑

p=0

[
dp

dλp
(λ − z0)k

]
Ep

p!
.

If N is a nonnegative integer, then

N∑
k=0

f (k)(z0)
k!

(B − z0I)k =
min{k,m−1}∑

p=0

dp

dλp

(
N∑

k=0

f (k)(z0)
k!

(λ − z0)k

)
Ep

p!
.

The lemma follows by taking limits with respect to N and using both (9.1.6) and the
Taylor series representation of f(z).

A similar result holds for general matrices.

Theorem 9.1.2. If f has the Taylor series representation (9.1.5) and |λ− z0| < r for
all λ ∈ λ(A) where A ∈ Cn×n, then

f(A) =
∞∑

k=0

f (k)(z0)
k!

(A − z0I)k.

Proof. Let the JCF of A be given by (9.1.1) and (9.1.2). From Lemma 9.1.1 we have

f(Ji) =
∞∑

k=0

αk(Ji − z0I)k, αk =
f (k)(z0)

k!
,

for i = 1:q. Using the definition (9.1.3) and (9.1.4) we see that

f(A) = X · diag

( ∞∑
k=0

αk(J1 − z0In1)
k, . . . ,

∞∑
k=0

αk(Jq − z0Inq
)k

)
·X−1

= X ·
( ∞∑

k=0

αk(J − z0In)k

)
·X−1

=
∞∑

k=0

αk

(
X(J − z0In)X−1)k

=
∞∑

k=0

αk(A − z0In)k,

completing the proof of the theorem.

Important matrix functions that have simple Taylor series definitions include
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exp(A) =
∞∑

k=0

Ak

k!
,

log(I − A) =
∞∑

k=1

Ak

k
, |λ| < 1, λ ∈ λ(A),

sin(A) =
∞∑

k=0

(−1)k A2k+1

(2k + 1)!
,

cos(A) =
∞∑

k=0

(−1)k A2k

(2k)!
.

For clarity in this section and the next, we consider only matrix functions that have a
Taylor series representation. In that case it is easy to verify that

A · f(A) = f(A) · A (9.1.7)

and
f(X−1AX) = X · f(A) · X−1. (9.1.8)

9.1.3 An Eigenvector Approach

If A ∈ Cn×n is diagonalizable, then it is particularly easy to specify f(A) in terms of
A’s eigenvalues and eigenvectors.

Corollary 9.1.3. If A ∈ Cn×n, A = X ·diag(λ1, . . . , λn) ·X−1, and f(A) is defined,
then

f(A) = X ·diag(f(λ1), . . . , f(λn))·X−1. (9.1.9)

Proof. This result is an easy consequence of Theorem 9.1.2 since all the Jordan blocks
are 1-by-1.

Unfortunately, if the matrix of eigenvectors is ill-conditioned, then computing f(A) via
(9.1.8) is likely introduce errors of order uκ2(X) because of the required solution of a
linear system that involves the eigenvector matrix X. For example, if

A =

[
1 + 10−5 1

0 1 − 10−5

]
,

then any matrix of eigenvectors is a column-scaled version of

X =

[
1 −1

0 2(1 − 10−5)

]
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and has a 2-norm condition number of order 105. Using a computer with machine
precision u ≈ 10−7, we find

fl
(
X−1diag(exp(1 + 10−5), exp(1 − 10−5))X

)
=

[
2.718307 2.750000

0.000000 2.718254

]
while

eA =

[
2.718309 2.718282

0.000000 2.718255

]
.

The example suggests that ill-conditioned similarity transformations should be avoided
when computing a function of a matrix. On the other hand, if A is a normal matrix,
then it has a perfectly conditioned matrix of eigenvectors. In this situation, computa-
tion of f(A) via diagonalization is a recommended strategy.

9.1.4 A Schur Decomposition Approach

Some of the difficulties associated with the Jordan approach to the matrix function
problem can be circumvented by relying upon the Schur decomposition. If A = QTQH

is the Schur decomposition of A, then by (9.1.8),

f(A) = Qf(T )QH .

For this to be effective, we need an algorithm for computing functions of upper trian-
gular matrices. Unfortunately, an explicit expression for f(T ) is very complicated.

Theorem 9.1.4. Let T = (tij) be an n-by-n upper triangular matrix with λi = tii and
assume f(T ) is defined. If f(T ) = (fij), then fij = 0 if i > j, fij = f(λi) for i = j,
and for all i < j we have

fij =
∑

(s0,...,sk)∈Sij

ts0,s1ts1,s2 · · · tsk−1,sk
f [λs0 , . . . , λsk

] , (9.1.10)

where Sij is the set of all strictly increasing sequences of integers that start at i and
end at j, and f [λs0 , . . . , λsk

] is the kth order divided difference of f at {λs0 , . . . , λsk
}.

Proof. See Descloux (1963), Davis (1973), or Van Loan (1975).

To illustrate the theorem, if

T =

⎡⎢⎣ λ1 t12 t13

0 λ2 t23

0 0 λ3

⎤⎥⎦
then

f(T ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(λ1) t12 · f(λ2) − f(λ1)
λ2 − λ1

F13

0 f(λ2) t23 · f(λ3) − f(λ2)
λ3 − λ2

0 0 f(λ3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where

F13 = t13 ·
f(λ3) − f(λ1)

λ3 − λ1
+ t12t23 ·

f(λ3) − f(λ2)
λ3 − λ2

− f(λ2) − f(λ1)
λ2 − λ1

λ3 − λ1

.

The recipes for the upper triangular entries get increasing complicated as we move away
from the diagonal. Indeed, if we explicitly use (9.1.10) to evaluate f(T ), then O(2n)
flops are required. However, Parlett (1974) has derived an elegant recursive method for
determining the strictly upper triangular portion of the matrix F = f(T ). It requires
only 2n3/3 flops and can be derived from the commutivity equation FT = TF . Indeed,
by comparing (i, j) entries in this equation, we find

j∑
k=i

fiktkj =
j∑

k=i

tikfkj , j > i,

and thus, if tii and tjj are distinct,

fij = tij
fjj − fii

tjj − tii
+

j−1∑
k=i+1

tikfkj − fiktkj

tjj − tii
. (9.1.11)

From this we conclude that fij is a linear combination of its neighbors in the matrix
F that are to its left and below. For example, the entry f25 depends upon f22, f23,
f24, f55, f45, and f35. Because of this, the entire upper triangular portion of F can
be computed superdiagonal by superdiagonal beginning with diag(f(t11), . . . , f(tnn)).
The complete procedure is as follows:

Algorithm 9.1.1 (Schur-Parlett) This algorithm computes the matrix function F =
f(T ) where T is upper triangular with distinct eigenvalues and f is defined on λ(T ).

for i = 1:n

fii = f(tii)
end

for p = 1:n − 1

for i = 1:n − p

j = i + p

s = tij(fjj − fii)

for k = i + 1:j − 1

s = s + tikfkj − fiktkj

end

fij = s/(tjj − tii)
end

end

This algorithm requires 2n3/3 flops. Assuming that A = QTQH is the Schur decompo-
sition of A, f(A) = QFQH where F = f(T ). Clearly, most of the work in computing
f(A) by this approach is in the computation of the Schur decomposition, unless f is
extremely expensive to evaluate.
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9.1.5 A Block Schur-Parlett Approach

If A has multiple or nearly multiple eigenvalues, then the divided differences associated
with Algorithm 9.1.1 become problematic and it is advisable to use a block version of
the method. We outline such a procedure due to Parlett (1974). The first step is to
choose Q in the Schur decomposition so that we have a partitioning

T =

⎡⎢⎢⎢⎣
T11 T12 · · · T1p

0 T22 · · · T2p

...
...

. . .
...

0 0 · · · Tpp

⎤⎥⎥⎥⎦
where λ(Tii) ∩ λ(Tjj) = ∅ and each diagonal block is associated with an eigenvalue
cluster. The methods of §7.6 are applicable for this stage of the calculation.

Partition F = f(T ) conformably

F =

⎡⎢⎢⎢⎣
F11 F12 · · · F1p

0 F22 · · · F2p

...
...

. . .
...

0 0 · · · Fpp

⎤⎥⎥⎥⎦ ,

and notice that
Fii = f(Tii), i = 1:p.

Since the eigenvalues of Tii are clustered, these calculations require special methods.
Some possibilities are discussed in the next section.

Once the diagonal blocks of F are known, the blocks in the strict upper triangle
of F can be found recursively, as in the scalar case. To derive the governing equations,
we equate (i, j) blocks in FT = TF for i < j and obtain the following generalization
of (9.1.11):

FijTjj − TiiFij = TijFjj − FiiTij +
j−1∑

k=i+1

(TikFkj − FikTkj). (9.1.12)

This is a Sylvester system whose unknowns are the elements of the block Fij and whose
right-hand side is “known” if we compute the Fij one block superdiagonal at a time.
We can solve (9.1.12) using the Bartels-Stewart algorithm (Algorithm 7.6.2). For more
details see Higham (FOM, Chap. 9).

9.1.6 Sensitivity of Matrix Functions

Does the Schur-Parlett algorithm avoid the pitfalls associated with the diagonalization
approach when the matrix of eigenvectors is ill-conditioned? The proper comparison
of the two solution frameworks requires an appreciation for the notion of condition as
applied to the f(A) problem. Toward that end we define the relative condition of f at
matrix A ∈ Cn×n is given as

condrel(f, A) = lim
ε→0

sup
‖E‖ ≤ ε ‖A‖

‖ f(A + E) − f(A) ‖
ε‖ f(A) ‖

.
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This quantity is essentially a normalized Frechet derivative of the mapping A → f(A)
and various heuristic methods have been developed for estimating its value.

It turns out that the careful implementation of the block Schur-Parlett algorithm
is usually forward stable in the sense that

‖ F̂ − f(A) ‖
‖ f(A) ‖ ≈ u·condrel(f, A)

where F̂ is the computed version of f(A). The same cannot be said of the diagonal-
ization framework when the matrix of eigenvectors is ill-conditioned. For more details,
see Higham (FOM, Chap. 3).

Problems

P9.1.1 Suppose

A =

[
λ µ1

µ2 λ

]
, µ1µ2 < 0.

Use the power series definitions to develop closed form expressions for exp(A), sin(A), and cos(A).

P9.1.2 Rewrite Algorithm 9.1.1 so that f(T ) is computed column by column.

P9.1.3 Suppose A = Xdiag(λi)X−1 where X = [ x1 | · · · | xn ] and X−1 = [ y1 | · · · | yn ] H . Show
that if f(A) is defined, then

f(A) =
n∑

k=1

f(λi)xiy
H
i .

P9.1.4 Show that

T =
[

T11
0

T12
T22

]
p

q

p q

⇒ f(T ) =
[

F11
0

F12
F22

]
p

q

p q

where F11 = f(T11) and F22 = f(T22). Assume f(T ) is defined.

Notes and References for §9.1

As we discussed, other definitions of f(A) are possible. However, for the matrix functions typically
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Algorithm 9.1.1 and the various computational difficulties that arise when it is applied to a matrix
having close or repeated eigenvalues are discuss

B.N. Parlett (1976). “A Recurrence among the Elements of Functions of Triangular Matrices,” Lin.
Alg. Applic. 14, 117–121.

P.I. Davies and N.J. Higham (2003). “A Schur-Parlett Algorithm for Computing Matrix Functions,”
SIAM J. Matrix Anal. Applic. 25, 464–485.

http://eprints.ma.man.ac.uk/
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A compromise between the Jordan and Schur approaches to the f(A) problem results if A is reduced
to block diagonal form as described in §7.6.3, see:

B. K̊agström (1977). “Numerical Computation of Matrix Functions,” Department of Information
Processing Report UMINF-58.77, University of Üme̊a, Sweden.

E.B. Davies (2007). “Approximate Diagonalization,” SIAM J. Matrix Anal. Applic. 29, 1051–1064.

The sensitivity of matrix functions to perturbation is discussed in:

C.S. Kenney and A.J. Laub (1989). “Condition Estimates for Matrix Functions,” SIAM J. Matrix
Anal. Applic. 10, 191–209.

C.S. Kenney and A.J. Laub (1994). “Small-Sample Statistical Condition Estimates for General Matrix
Functions,” SIAM J. Sci. Comput. 15, 36–61.

R. Mathias (1995). “Condition Estimation for Matrix Functions via the Schur Decomposition,” SIAM
J. Matrix Anal. Applic. 16, 565–578.

9.2 Approximation Methods
We now consider a class of methods for computing matrix functions which at first
glance do not appear to involve eigenvalues. These techniques are based on the idea
that, if g(z) approximates f(z) on λ(A), then f(A) approximates g(A), e.g.,

eA ≈ I + A +
A2

2!
+ · · · + Aq

q!
.

We begin by bounding ‖ f(A) − g(A) ‖ using the Jordan and Schur matrix function
representations. We follow this discussion with some comments on the evaluation of
matrix polynomials.

9.2.1 A Jordan Analysis

The Jordan representation of matrix functions (Theorem 9.1.2) can be used to bound
the error in an approximant g(A) of f(A).

Theorem 9.2.1. Assume that

A = X · diag(J1, . . . , Jq) · X−1

is the JCF of A ∈ Cn×n with

Ji =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λi 1 · · · · · · 0

0 λi 1
...

...
...

...
. . . . . .

...
...

...
...

. . . 1
0 · · · · · · · · · λi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, ni-by-ni,

for i = 1:q. If f(z) and g(z) are analytic on an open set containing λ(A), then

‖ f(A) − g(A) ‖2 ≤ κ2(X) max
1≤i≤p

0≤r≤ni−1

ni

∣∣f (r)(λi) − g(r)(λi)
∣∣

r!
.
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Proof. Defining h(z) = f(z) − g(z) we have

‖ f(A) − g(A) ‖2 = ‖ Xdiag(h(J1), . . . , h(Jq))X−1 ‖2 ≤ κ2(X) max
1≤i≤q

‖ h(Ji) ‖2.

Using Theorem 9.1.2 and equation (2.3.8) we conclude that

‖ h(Ji) ‖2 ≤ ni max
0≤r≤ni−1

|h(r)(λi) |
r!

thereby proving the theorem.

9.2.2 A Schur Analysis

If we use the Schur decomposition A = QTQH instead of the Jordan decomposition,
then the norm of T ’s strictly upper triangular portion is involved in the discrepancy
between f(A) and g(A).

Theorem 9.2.2. Let QHAQ = T = diag(λi) + N be the Schur decomposition of
A ∈ Cn×n, with N being the strictly upper triangular portion of T . If f(z) and g(z)
are analytic on a closed convex set Ω whose interior contains λ(A), then

‖ f(A) − g(A) ‖
F

≤
n−1∑
r=0

δr
‖ |N |r ‖

F

r!

where

δr = sup
z∈Ω

∣∣∣f (r)(z) − g(r)(z)
∣∣∣ .

Proof. Let h(z) = f(z) − g(z) and set H = (hij) = h(A). Let S
(r)
ij denote the set

of strictly increasing integer sequences (s0, . . . , sr) with the property that s0 = i and
sr = j. Notice that

Sij =
j−i⋃
r=1

S
(r)
ij

and so from Theorem 9.1.3, we obtain the following for all i < j:

hij =
j−1∑
r=1

∑
s∈S

(r)
ij

ns0,s1ns1,s2 · · ·nsr−1,sr
h [λs0 , . . . , λsr ] .

Now since Ω is convex and h analytic, we have

|h [λs0 , . . . , λsr ]| ≤ sup
z∈Ω

∣∣h(r)(z)
∣∣

r!
=

δr

r!
. (9.2.1)



524 Chapter 9. Functions of Matrices

Furthermore if |N |r= (n(r)
ij ) for r ≥ 1, then it can be shown that

n
(r)
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, j < i + r,∑
s∈S

(r)
ij

∣∣ns0,s1ns1,s2 · · ·nsr−1,sr

∣∣, j ≥ i + r.
(9.2.2)

The theorem now follows by taking absolute values in the expression for hij and then
using (9.2.1) and (9.2.2).

There can be a pronounced discrepancy between the Jordan and Schur error bounds.
For example, if

A =

⎡⎣ −.01 1 1
0 0 1
0 0 .01

⎤⎦ .

If f(z) = ez and g(z) = 1 + z + z2/2, then ‖ f(A) − g(A) ‖ ≈ 10−5 in either the
Frobenius norm or the 2-norm. Since κ2(X) ≈ 107, the error predicted by Theorem
9.2.1 is O(1), rather pessimistic. On the other hand, the error predicted by the Schur
decomposition approach is O(10−2).

Theorems 9.2.1 and 9.2.2 remind us that approximating a function of a nonnormal
matrix is more complicated than approximating a function of a scalar. In particular, we
see that if the eigensystem of A is ill-conditioned and/or A’s departure from normality
is large, then the discrepancy between f(A) and g(A) may be considerably larger than
the maximum of |f(z) − g(z)| on λ(A). Thus, even though approximation methods
avoid eigenvalue computations, they evidently appear to be influenced by the structure
of A’s eigensystem. It is a perfect venue for pseudospectral analysis.

9.2.3 Taylor Approximants

A common way to approximate a matrix function such as eA is by truncating its Taylor
series. The following theorem bounds the errors that arise when matrix functions such
as these are approximated via truncated Taylor series.

Theorem 9.2.3. If f(z) has the Taylor series

f(z) =
∞∑

k=0

αkzk

on an open disk containing the eigenvalues of A ∈ Cn×n, then

∥∥∥f(A) −
q∑

k=0

αkAk
∥∥∥

2
≤ n

(q + 1)!
max

0≤s≤1
‖ Aq+1f (q+1)(As) ‖2 .

Proof. Define the matrix E(s) by

f(As) =
q∑

k=0

αk(As)k + E(s), 0 ≤ s ≤ 1. (9.2.3)



9.2. Approximation Methods 525

If fij(s) is the (i, j) entry of f(As), then it is necessarily analytic and so

fij(s) =

(
q∑

k=0

f
(k)
ij (0)
k!

sk

)
+

f
(q+1)
ij (εij)
(q + 1)!

sq+1 (9.2.4)

where εij satisfies 0 ≤ εij ≤ s ≤ 1.
By comparing powers of s in (9.2.3) and (9.2.4) we conclude that eij(s), the (i, j)

entry of E(s), has the form

eij(s) =
f

(q+1)
ij (εij)
(q + 1)!

sq+1.

Now f
(q−1)
ij (s) is the (i, j) entry of Aq+1f (q+1)(As) and therefore

|eij(s)| ≤ max
0≤s≤1

f
(q+1)
ij (s)
(q + 1)!

≤ max
0≤s≤1

‖ Aq+1f (q+1)(As) ‖2

(q + 1)!
.

The theorem now follows by applying (2.3.8).

We mention that the factor of n in the upper bound can be removed with more careful
analysis. See Mathias (1993).

In practice, it does not follow that greater accuracy results by taking a longer
Taylor approximation. For example, if

A =

[
−49 24

−64 31

]
,

then it can be shown that

eA =

[
−0.735759 .0551819

−1.471518 1.103638

]
.

For q = 59, Theorem 9.2.3 predicts that

∥∥∥ eA −
q∑

k=0

Ak

k!

∥∥∥
2

≤ n

(q + 1)!
max

0≤s≤1

∥∥∥ Aq+1eAs
∥∥∥

2
≤ 10−60.

However, if u ≈ 10−7, then we find

fl

(
59∑

k=0

Ak

k!

)
=

[
−22.25880 −1.4322766

−61.49931 −3.474280

]
.

The problem is that some of the partial sums have large elements. For example, the
matrix I + A + · · · + A17/17! has entries of order 107. Since the machine precision is
approximately 10−7, rounding errors larger than the norm of the solution are sustained.
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The example highlights the a well known shortcoming of truncated Taylor series
approximation–it tends to be effcetive only near the origin. The problem can sometimes
be circumvented through a change of scale. For example, by repeatedly using the double
angle formulae

cos(2A) = 2 cos(A)2 − I, sin(2A) = 2 sin(A) cos(A),

the cosine and sine of a matrix can be built up from Taylor approximations to cos(A/2k)
and sin(A/2k):

S0 = Taylor approximate to sin(A/2k)

C0 = Taylor approximate to cos(A/2k)

for j = 1:k

Sj = 2Sj−1Cj−1

Cj = 2C2
j−1 − I

end

Here k is a positive integer chosen so that, say, ‖ A ‖∞ ≈ 2k. See Serbin and Blalock
(1979), Higham and Smith (2003), and Hargreaves and Higham (2005).

9.2.4 Evaluating Matrix Polynomials

Since the approximation of transcendental matrix functions usually involves the eval-
uation of polynomials, it is worthwhile to look at the details of computing

p(A) = b0I + b1A + · · · + bqA
q

where the scalars b0, . . . , bq ∈ IR are given. The most obvious approach is to invoke
Horner’s scheme:

Algorithm 9.2.1 Given a matrix A and b(0:q), the following algorithm computes the
polynomial F = bqA

q + · · · + b1A + b0I.

F = bqA + bq−1I

for k = q − 2: − 1:0

F = AF + bkI
end

This requires q − 1 matrix multiplications. However, unlike the scalar case, this sum-
mation process is not optimal. To see why, suppose q = 9 and observe that

p(A) = A3(A3(b9A
3 + (b8A

2 + b7A + b6I)) + (b5A
2 + b4A + b3I)) + b2A

2 + b1A + b0I.

Thus, F = p(A) can be evaluated with only four matrix multiplications:

A2 = A2,

A3 = AA2,

F1 = b9A3 + b8A2 + b7A + b6I,

F2 = A3F1 + b5A2 + b4A + b3I,

F = A3F2 + b2A2 + b1A + b0I.
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In general, if s is any integer that satisfies 1 ≤ s ≤ √
q, then

p(A) =
r∑

k=0

Bk · (As)k, r = floor(q/s), (9.2.5)

where

Bk =

⎧⎨⎩
bsk+s−1A

s−1 + · · · + bsk+1A + bskI, k = 0:r − 1,

bqA
q−sr + · · · + bsr+1A + bsrI, k = r.

After A2, . . . , As are computed, then Horner’s rule can be applied to (9.2.5) and the net
result is that p(A) can be computed with s+ r−1 matrix multiplications. By choosing
s = floor(

√
q), the number of matrix multiplications is approximately minimized. This

technique is discussed by Paterson and Stockmeyer (1973). Van Loan (1978) shows
how the procedure can be implemented without storage arrays for A2, . . . , As.

9.2.5 Computing Powers of a Matrix

The problem of raising a matrix to a given power deserves special mention. Suppose it
is required to compute A13. Noting that A4 = (A2)2, A8 = (A4)2, and A13 = A8A4A,
we see that this can be accomplished with just five matrix multiplications. In general
we have

Algorithm 9.2.2 (Binary Powering) The following algorithm computes F = As where
s is a positive integer and A ∈ IRn×n.

Let s =
t∑

k=0

βk2k be the binary expansion of s with βt 
= 0

Z = A; q = 0

while βq = 0

Z = Z2; q = q + 1
end
F = Z

for k = q + 1:t

Z = Z2

if βk 
= 0

F = FZ
end

end

This algorithm requires at most 2 floor[log2(s)] matrix multiplications. If s is a power
of 2, then only log2(s) matrix multiplications are needed.

9.2.6 Integrating Matrix Functions

We conclude this section with some remarks about the integration of a parameterized
matrix function. Suppose A ∈ IRn×n and that f(At) is defined for all t ∈ [a, b]. We can
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approximate

F =
∫ b

a

f(At)dt ⇔ [F ]ij =
∫ b

a

[ f(At) ]ij dt

by applying any suitable quadrature rule. For example, with Simpson’s rule, we have

F ≈ F̃ =
h

3

m∑
k=0

wkf(A(a + kh)) (9.2.6)

where m is even, h = (b − a)/m, and

wk =

⎧⎪⎨⎪⎩
1 k = 0, m,

4 k odd,

2 k even, k 
= 0, m.

If (d4/dz4)f(zt) = f (4)(zt) is continuous for t ∈ [a, b] and if f (4)(At) is defined on this
same interval, then it can be shown that F̃ = F + E where

‖ E ‖2 ≤ nh4(b − a)
180

max
a≤t≤b

‖ f (4)(At) ‖2. (9.2.7)

Let fij and eij denote the (i, j) entries of F and E, respectively. Under the above
assumptions we can apply the standard error bounds for Simpson’s rule and obtain

|eij | ≤ h4(b − a)
180

max
a≤t≤b

|eT
i f (4)(At)ej |.

The inequality (9.2.7) now follows since ‖ E ‖2 ≤ n max |eij | and

max
a≤t≤b

|eT
i f (4)(At)ej | ≤ max

a≤t≤b

‖ f (4)(At) ‖2.

Of course, in a practical application of (9.2.6), the function evaluations f(A(a + kh))
normally have to be approximated. Thus, the overall error involves the error in ap-
proximating f(A(a + kh) as well as the Simpson rule error.

9.2.7 A Note on the Cauchy Integral Formulation

Yet another way to define a function of a matrix C ∈ Cn×n is through the Cauchy
integral theorem. Suppose f(z) is analytic inside and on a closed contour Γ which
encloses λ(A). We can define f(A) to be the matrix

f(A) =
1

2πi

∮
Γ

f(z)(zI − A)−1dz. (9.2.8)

The integral is defined on an element-by-element basis:

f(A) = (fkj) =⇒ fkj =
1

2πi

∮
Γ

f(z)eT
k (zI − A)−1ejdz.
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Notice that the entries of (zI−A)−1 are analytic on Γ and that f(A) is defined whenever
f(z) is analytic in a neighborhood of λ(A). Using quadrature and other tools, Hale,
Higham, and Trefethen (2007) have shown how this characterization can be used in
practice to compute certain types of matrix functions.

Problems

P9.2.1 Verify (9.2.2).
P9.2.2 Show that if ‖A ‖2 < 1, then log(I + A) exists and satisfies the bound

‖ log(I + A) ‖2 ≤ ‖A ‖2/(1− ‖A ‖2).

P9.2.3 Using Theorem 9.2.3, bound the error in the following approximations:

sin(A) ≈
q∑

k=0

(−1)k A2k+1

(2k + 1)!
, cos(A) ≈

q∑
k=0

(−1)k A2k

(2k)!
.

P9.2.4 Suppose A ∈ IRn×n is nonsingular and X0 ∈ IRn×n is given. The iteration defined by
Xk+1 = Xk(2I −AXk)

is the matrix analogue of Newton’s method applied to the function f(x) = a− (1/x). Use the SVD to
analyze this iteration. Do the iterates converge to A−1? Discuss the choice of X0.

P9.2.5 Assume A ∈ IR2×2. (a) Specify real scalars α and β so that A4 = αI + βA. (b) Develop
recursive recipes for αk and βk so that Ak = αkI + βkA for k ≥ 2.
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edition, Addison-Wesley, Reading, MA.

The Horner evaluation of matrix polynomials is analyzed in:
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9.3 The Matrix Exponential
One of the most frequently computed matrix functions is the exponential

eAt =
∞∑

k=0

(At)k

k!
.

Numerous algorithms for computing eAt have been proposed, but most of them are of
dubious numerical quality, as is pointed out in the survey articles by Moler and Van
Loan (1978) and its update Moler and Van Loan (2003). In order to illustrate what the
computational difficulties are, we present a “scaling and squaring” method based upon
Padé approximation. A brief analysis of the method follows that involves some eAt

perturbation theory and includes comments about the shortcomings of eigenanalysis
in settings where nonnormality prevails.

9.3.1 A Padé Approximation Method

Following the discussion in §9.2, if g(z) ≈ ez, then g(A) ≈ eA. A very useful class of
approximants for this purpose are the Padé functions defined by

Rpq(z) = Dpq(z)−1Npq(z),

where

Npq(z) =
p∑

k=0

(p + q − k)!p!
(p + q)!k!(p − k)!

zk

and

Dpq(z) =
q∑

k=0

(p + q − k)!q!
(p + q)!k!(q − k)!

(−z)k.

Notice that
Rpo(z) = 1 + z + · · · + zp/p!

is the order-p Taylor polynomial.
Unfortunately, the Padé approximants are good only near the origin, as the fol-

lowing identity reveals:

eA = Rpq(A) +
(−1)q

(p + q)!
Ap+q+1Dpq(A)−1

∫ 1

0
up(1 − u)qeA(1−u)du. (9.3.1)

However, this problem can be overcome by exploiting the fact that

eA = (eA/m)m.

In particular, we can scale A by m such that Fpq= Rpq(A/m) is a suitably accurate
approximation to eA/m. We then compute Fm

pq using Algorithm 9.2.2. If m is a power
of two, then this amounts to repeated squaring and so is very efficient. The success of
the overall procedure depends on the accuracy of the approximant

Fpq =
(

Rpq

(
A

2j

))2j

.
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In Moler and Van Loan (1978) it is shown that, if

‖ A ‖∞
2j

≤ 1
2
,

then there exists an E ∈ IRn×n such that Fpq = eA+E , AE = EA, and

‖ E ‖∞ ≤ ε(p, q)‖ A ‖∞,

where
ε(p, q) = 23−(p+q) p!q!

(p + q)!(p + q + 1)!
.

Using these results it is easy to establish the inequality

‖ eA − Fpq ‖∞
‖ eA ‖∞

≤ ε(p, q)‖ A ‖∞eε(p,q)‖A‖∞ .

The parameters p and q can be determined according to some relative error tolerance.
Since Fpq requires about j + max{p, q} matrix multiplications, it makes sense to set p
= q as this choice minimizes ε(p, q) for a given amount of work. Overall we obtain

Algorithm 9.3.1 (Scaling and Squaring) Given δ > 0 and A ∈ IRn×n, the following
algorithm computes F = eA+E where ‖ E ‖∞ ≤ δ‖ A ‖∞.

j = max{ 0 , 1 + floor(log2(‖ A ‖∞)) }
A = A/2j

Let q be the smallest nonnegative integer such that ε(q, q) ≤ δ

D = I, N = I, X = I, c = 1

for k = 1:q

c = c·(q − k + 1)/((2q − k + 1)k)

X = AX, N = N + c·X, D = D + (−1)kc·X
end

Solve DF = N for F using Gaussian elimination

for k = 1:j

F = F 2

end

This algorithm requires about 2(q+j+1/3)n3flops. Its roundoff error properties of have
been analyzed by Ward (1977). For further analysis and algorithmic improvements,
see Higham (2005) and Al-Mohy and Higham (2009).

The special Horner techniques of §9.2.4 can be applied to quicken the computation
of D = Dqq(A) and N = Nqq(A). For example, if q = 8 we have Nqq(A) = U + AV
and Dqq(A) = U − AV where

U = c0I + c2A
2 + (c4I + c6A

2 + c8A
4)A4

and
V = c1I + c3A

2 + (c5I + c7A
2)A4.

Clearly, N and D can be computed with five matrix multiplications instead of seven
as required by Algorithm 9.3.1.
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9.3.2 Perturbation Theory

Is Algorithm 9.3.1 stable in the presence of roundoff error? To answer this question
we need to understand the sensitivity of the matrix exponential to perturbations in A.
The rich structure of this particular matrix function enables us to say more about the
condition of the eA problem than is typically the case for a general matrix function.
(See §9.1.6.)

The starting point in the discussion is the initial value problem

Ẋ(t) = AX(t), X(0) = I,

where A, X(t) ∈ IRn×n. This has the unique solution X(t) = eAt, a characterization of
the matrix exponential that can be used to establish the identity

e(A+E)t − eAt =
∫ t

0
eA(t−s)Ee(A+E)sds.

From this it follows that

‖ e(A+E)t − eAt ‖2

‖ eAt ‖2
≤ ‖ E ‖2

‖ eAt ‖2

∫ t

0
‖ eA(t−s) ‖2 ‖ e(A+E)s ‖2ds.

Further simplifications result if we bound the norms of the exponentials that appear in
the integrand. One way of doing this is through the Schur decomposition. If QHAQ =
diag(λi) + N is the Schur decomposition of A ∈ Cn×n, then it can be shown that

‖ eAt ‖2 ≤ eα(A)tMS(t), (9.3.2)

where
α(A) = max {Re(λ) : λ ∈ λ(A) } (9.3.3)

is the spectral abscissa and

MS(t) =
n−1∑
k=0

‖ Nt ‖k
2

k!
.

With a little manipulation it can be shown that

‖ e(A+E)t − eAt ‖2

‖ eAt ‖2
≤ t‖ E ‖2MS(t)2 exp(tMS(t)‖ E ‖2).

Notice that MS(t) ≡ 1 if and only if A is normal, suggesting that the matrix exponential
problem is “well-behaved” if A is normal. This observation is confirmed by the behavior
of the matrix exponential condition number ν(A, t), defined by

ν(A, t) = max
‖E‖≤1

∥∥∥∥∫ t

0
eA(t−s)EeAsds

∥∥∥∥
2

‖ A ‖2

‖ eAt ‖2
.

This quantity, discussed by Van Loan (1977), measures the sensitivity of the map
A → eAt in that for a given t, there is a matrix E for which

‖ e(A+E)t − eAt ‖2

‖ eAt ‖2
≈ ν(A, t)

‖ E ‖2

‖ A ‖2
.
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Figure 9.3.1. ‖ eAt ‖2 can grow even if α(A) < 0

Thus, if ν(A, t) is large, small changes in A can induce relatively large changes in eAt.
Unfortunately, it is difficult to characterize precisely those A for which ν(A, t) is large.
(This is in contrast to the linear equation problem Ax = b, where the ill-conditioned
A are neatly described in terms of SVD.) One thing we can say, however, is that
ν(A, t) ≥ t‖ A ‖2, with equality holding for all nonnegative t if and only if the matrix
A is normal.

9.3.3 Pseudospectra

Dwelling a little more on the effect of nonnormality, we know from the analysis of §9.2
that approximating eAt involves more than just approximating ezt on λ(A). Another
clue that eigenvalues do not “tell the whole story” in the eAt problem has to do with
the inability of the spectral abscissa (9.3.3) to predict the size of ‖ eAt ‖2 as a function
of time. If A is normal, then

‖ eAt ‖2 = eα(A)t. (9.3.4)

Thus, there is uniform decay if the eigenvalues of A are in the open left half plane. But
if A is non-normal, then eAt can grow before decay sets in. The 2-by-2 example

A =

[
−1 1000

0 −1

]
⇔ eAt = e−t

[
1 1000 · t
0 1

]
(9.3.5)

plainly illustrates this point in Figure 9.3.1.
Pseudospectra can be used to shed light on the transient growth of ‖ eAt ‖. For

example, it can be shown that for every ε > 0,

sup
t>0

‖ eAt ‖2 ≥ αε(A)
ε

(9.3.6)
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where αε(A) is the ε-pseudospectral abscissa introduced in (7.8.8):

αε(A) = sup
z∈Λε(A)

Re(z).

For the 2-by-2 matrix in (9.3.5), it can be shown that α.01(A)/.01 ≈ 216, a value that
is consistent with the growth curve in Figure 9.3.1. See Trefethen and Embree (SAP,
Chap. 15) for more pseudospectral insights into the behavior of ‖ eAt ‖2.

9.3.4 Some Stability Issues

With this discussion we are ready to begin thinking about the stability of Algorithm
9.3.1. A potential difficulty arises during the squaring process if A is a matrix whose
exponential grows before it decays. If

G = Rqq

(
A

2 j

)
≈ eA/2j

,

then it can be shown that rounding errors of order

γ = u‖ G2 ‖2 ·‖ G4 ‖2 ·‖ G8 ‖2 · · · ‖ G2j−1 ‖2

can be expected to contaminate the computed G2j

. If ‖ eAt ‖2 has a substantial initial
growth, then it may be the case that

γ  u‖ G2j ‖2 ≈ u‖ eA ‖2,

thus ruling out the possibility of small relative errors.
If A is normal, then so is the matrix G and therefore ‖ Gm ‖2 = ‖ G ‖m

2 for all
positive integers m. Thus, γ ≈ u‖ G2j ‖2 ≈ u‖ eA ‖2 and so the initial growth problems
disappear. The algorithm can essentially be guaranteed to produce small relative error
when A is normal. On the other hand, it is more difficult to draw conclusions about the
method when A is nonnormal because the connection between ν(A, t) and the initial
growth phenomena is unclear. However, numerical experiments suggest that Algorithm
9.3.1 fails to produce a relatively accurate eA only when v(A, 1) is correspondingly large.

Problems

P9.3.1 Show that e(A+B)t = eAteBt for all t if and only if AB = BA. Hint: Express both sides as a
power series in t and compare the coefficient of t.

P9.3.2 Suppose that A is skew-symmetric. Show that both eA and the (1,1) Padé approximatant
R11(A) are orthogonal. Are there any other values of p and q for which Rpq(A) is orthogonal?

P9.3.3 Show that if A is nonsingular, then there exists a matrix X such that A = eX . Is X unique?

P9.3.4 Show that if

exp
([ −AT P

0 A

]
z

)
=

[
F11
0

F12
F22

]
n

n

n n

then

F T
11F12 =

∫ z

0

eAT tPeAtdt.

P9.3.5 Give an algorithm for computing eA when A = uvT , u, v ∈ IRn.
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P9.3.6 Suppose A ∈ IRn×n and that v ∈ IRn has unit 2-norm. Define the function φ(t) = ‖ eAtv ‖22/2
and show that

φ̇(t) ≤ µ(A)φ(t)

where µ(A) = λ1((A + AT )/2). Conclude that

‖ eAt ‖2 ≤ eµ(A)t

where t ≥ 0.

P9.3.7 Suppose A ∈ IRn×n has the property that its off-diagonal entries are negative and its column
sums are zero. Show that for all t, F = exp(At) has nonnegative entries and unit column sums.

Notes and References for §9.3

Much of what appears in this section and an extensive bibliography may be found in the following
survey articles:

C.B. Moler and C.F. Van Loan (1978). “Nineteen Dubious Ways to Compute the Exponential of a
Matrix,” SIAM Review 20, 801–836.

C.B. Moler and C.F.Van Loan (2003). “Nineteen Dubious Ways to Compute the Exponential of a
Matrix, Twenty-Five Years Later,” SIAM Review 45, 3–49.

Scaling and squaring with Padé approximants (Algorithm 9.3.1) and a careful implementation of the
Schur decomposition method (Algorithm 9.1.1) were found to be among the less dubious of the nineteen
methods scrutinized. Various aspects of Padé approximation of the matrix exponential are discussed
in:

W. Fair and Y. Luke (1970). “Padé Approximations to the Operator Exponential,” Numer. Math.
14, 379–382.

C.F. Van Loan (1977). “On the Limitation and Application of Padé Approximation to the Matrix
Exponential,” in Padé and Rational Approximation, E.B. Saff and R.S. Varga (eds.), Academic
Press, New York.

R.C. Ward (1977). “Numerical Computation of the Matrix Exponential with Accuracy Estimate,”
SIAM J. Numer. Anal. 14, 600–614.

A. Wragg (1973). “Computation of the Exponential of a Matrix I: Theoretical Considerations,” J.
Inst. Math. Applic. 11, 369–375.

A. Wragg (1975). “Computation of the Exponential of a Matrix II: Practical Considerations,” J.
Inst. Math. Applic. 15, 273–278.

L. Dieci and A. Papini (2000). “Padé Approximation for the Exponential of a Block Triangular
Matrix,” Lin. Alg. Applic. 308, 183–202.

M. Arioli, B. Codenotti and C. Fassino (1996). “The Padé Method for Computing the Matrix Expo-
nential,” Lin. Alg. Applic. 240, 111–130.

N.J. Higham (2005). “The Scaling and Squaring Method for the Matrix Exponential Revisited,” SIAM
J. Matrix Anal. Applic. 26, 1179–1193.

A.H. Al-Mohy and N.J. Higham (2009). “A New Scaling and Squaring Algorithm for the Matrix
Exponential,” SIAM J. Matrix Anal. Applic. 31, 970–989.

A proof of Equation (9.3.1) for the scalar case appears in:

R.S. Varga (1961). “On Higher-Order Stable Implicit Methods for Solving Parabolic Partial Differen-
tial Equations,” J. Math. Phys. 40, 220–231.

There are many applications in control theory calling for the computation of the matrix exponential.
In the linear optimal regular problem, for example, various integrals involving the matrix exponential
are required, see:

J. Johnson and C.L. Phillips (1971). “An Algorithm for the Computation of the Integral of the State
Transition Matrix,” IEEE Trans. Autom. Control AC-16, 204–205.

C.F. Van Loan (1978). “Computing Integrals Involving the Matrix Exponential,” IEEE Trans. Autom.
Control AC-23, 395–404.

An understanding of the map A → exp(At) and its sensitivity is helpful when assessing the performance
of algorithms for computing the matrix exponential. Work in this direction includes:
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B. K̊agström (1977). “Bounds and Perturbation Bounds for the Matrix Exponential,” BIT 17, 39–57.
C.F. Van Loan (1977). “The Sensitivity of the Matrix Exponential,” SIAM J. Numer. Anal. 14,

971–981.
R. Mathias (1992). “Evaluating the Fréchet Derivative of the Matrix Exponential,” Numer. Math.

63, 213–226.
I. Najfeld and T.F. Havel (1995). “Derivatives of the Matrix Exponential and Their Computation,”

Adv. Appl. Math. 16, 321–375.
A.H. Al-Mohy and N.J. Higham (2009). “Computing the Frèchet Derivative of the Matrix Exponential,

with an Application to Condition Number Estimation,” SIAM J. Matrix Anal. Applic. 30, 1639–
1657.

A software package for computing small dense and large sparse matrix exponentials in Fortran and
Matlab is presented in the following reference:

R.B. Sidje (1998) “Expokit: a Software Package for Computing Matrix Exponentials,” ACM Trans.
Math. Softw. 24, 130–156.

Consideration of P9.3.2 and P9.3.5 shows that the exponential of a structured matrix can have im-
portant properties, see:

J. Xue and Q. Ye (2008). “Entrywise Relative Perturbation Bounds for Exponentials of Essentially
Non-negative Matrices,” Numer. Math. 110, 393–403.

J. Cardoso and F.S. Leite (2010). “Exponentials of Skew-Symmetric Matrices and Logarithms of
Orthogonal Matrices,” J. Comput. Appl. Math. 233, 2867–2875.

9.4 The Sign, Square Root, and Log of a Matrix
The matrix logarithm problem is the inverse of the matrix exponential problem. Not
surprisingly, there is an inverse of the scaling and squaring procedure given in §9.3.1
that involves repeated matrix square roots. Thus, before we can discuss log(A) we
need to understand the

√
A problem. This in turn has connections to the matrix sign

function and the polar decomposition.

9.4.1 The Matrix Sign Function

For all z ∈ C that are not on the imaginary axis, we define the sign(·) function by

sign(z) =

⎧⎨⎩
−1 if Re(z) < 0,

+1 if Re(z) > 0.

The sign of a matrix has a particularly simple form Suppose A ∈ Cn×n has no pure
imaginary eigenvalues and that the blocks in its JCF A = XJX−1 are ordered so that

J =
[

J1

0

0

J2

]
m1

m2

m1 m2

where the eigenvalues of J1 ∈ Cm1×m1 lie in the open left half plane and the eigenvalues
of J2 ∈ Cm2×m2 lie in the open right half plane. Noting that all the derivatives of the
sign function are zero, it follows from Theorem 9.1.1 that

sign(A) = X

[
sign(J1) 0

0 sign(J2)

]
X−1 = X

[
−Im1 0

0 Im2

]
X−1.
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With the partitionings

X = [ X1 |X2 ]
m1 m2

X−H = [ Y1 | Y2 ]
m1 m2

,

we have

sign(A) = X2Y
H
2 − X1Y

H
1

In = X1Y
H
1 + X2Y

H
2

and so
X2Y

H
2 =

1
2

(In + sign(A)) .

Suppose apply QR-with-column pivoting to this rank-m2 matrix:

1
2

(In + sign(A)) Π = QR.

It follows that ran(Q(:, 1:m2)) = ran(X2), the invariant subspace associated with A’s
right half-plane eigenvalues. Thus, an approximation of sign(A) yields approximate
invariant subspace information.

A number of iterative methods for computing sign(A) have been proposed. The
fact that sign(z) is a zero of g(z) = z2 − 1 suggests a matrix analogue of the Newton
iteration

zk+1 = zk − g(zk)
g′(zk)

=
1
2

(
zk +

1
zk

)
,

i.e.,

S0 = A

for k = 0, 1, . . . (9.4.1)

Sk+1 =
(
Sk + S−1

k

)
/2

end

We proceed to show that this iteration is well-defined and converges to sign(A), as-
suming that A has no eigenvalues on the imaginary axis.

Note that if a + bi is an eigenvalue of Sk, then

1
2

(
a + bi +

1
a + bi

)
=

a

2

(
1 +

1
a2 + b2

)
+

b

2

(
1 − 1

a2 + b2

)
i

is an eigenvalue of Sk+1. Thus, if Sk is nonsingular, then Sk+1 is nonsingular. It
follows by induction that (9.4.1) is defined. Moreover, sign(Sk) = sign(A) because an
eigenvalue cannot “jump” across the imaginary axis during the iteration.

To prove that Sk converges to S = sign(A), we first observe that SSk = SkS
since both matrices are rational functions of A. Using this commutivity result and the
identity S2 = S, it is easy to show that

Sk+1 − S =
1
2
S−1

k (Sk − S)2 (9.4.2)

and
Sk+1 + S =

1
2
S−1

k (Sk + S)2 . (9.4.3)
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If M is a matrix and sign(M) is defined, then M + sign(M) is nonsingular because its
eigenvalues have the form λ + sign(λ) which are clearly nonzero. Thus, the matrix

Sk + S = Sk + sign(A) = Sk + sign(Sk)

is nonsingular. By manipulating equations (9.4.2) and (9.4.3) we conclude that if

Gk = (Sk − S)(Sk + S)−1, (9.4.4)

then Gk+1 = G2
k. It follows by induction that Gk = G2k

0 . If λ ∈ λ(A), then

µ =
λ − sign(λ)
λ + sign(λ)

is an eigenvalue of G0 = (A− S)(A + S)−1. Since |µ| < 1 it follows from Lemma 7.3.2
that Gk → 0 and so

Sk = S(I + Gk)(I − Gk)−1 → S.

Taking norms in (9.4.2) we conclude that the rate of convergence is quadratic:

‖ Sk+1 − S ‖ ≤ 1
2
‖ S−1

k ‖·‖ Sk − S ‖2
.

The overall efficiency of the method in practice is a concern since O(n3) flops per
iteration are required. To address this issue several enhancements of the basic iteration
(9.4.1) have been proposed. One idea is to incorporate the Newton approximation

S−1
k ≈ Sk(2I − S2

k).

(See P9.4.1.) Using this estimate instead of the actual inverse in (9.4.1) gives update
step

Sk+1 =
1
2
(Sk + Sk(2I − S2

k) =
1
2
Sk(3I − S2

k). (9.4.5)

This is referred to as the Newton-Schultz iteration. Another idea is to introduce a scale
factor:

Sk+1 =
1
2
(
(µkSk) + (µkSk)−1) . (9.4.6)

Interesting choices for µk include |det(Sk)|1/n,
√

ρ(S−1
k )/ρ(Sk), and

√
‖ S−1

k ‖‖ Sk ‖
where ρ(·) is the spectral radius. For insights into the effective computation of the
matrix sign function and related stability issues, see Kenney and Laub (1991, 1992),
Higham (2007), and Higham (FOM, Chap. 5).

9.4.2 The Matrix Square Root

Ambiguity arises in the f(A) problem if the underlying function has branches. For
example, if f(x) =

√
x and

A =

[
4 10

0 9

]
,
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then

A =

[
2 2

0 3

]2

=

[
−2 10

0 3

]2

=

[
−2 −2

0 −3

]2

=

[
2 −10

0 −3

]2

,

which shows that there are at least four legitimate choices for
√

A. To clarify the
situation we say F is the principal square root of A if (a) F 2 = A and (b) the eigenvalues
of F have positive real part. We designate this matrix by A1/2.

Analogous to the Newton iteration for scalar square roots, xk+1 = (xk +a/xk)/2,
we have

X0 = A

for k = 0, 1, . . . (9.4.7)

Xk+1 =
(
Xk + X−1

k A
)
/2

end

Notice the similarity between this iteration and the Newton sign iteration (9.4.1).
Indeed, by making the substitution Xk = A1/2Sk in (9.4.7) we obtain the Newton sign
iteration for A1/2. Global convergence and local quadratic convergence follow from
what we know about (9.4.1).

Another connection between the matrix sign problem and the matrix square root
problem is revealed by applying the Newton sign iteration to the matrix

Ã =

[
0 A

I 0

]
.

Designate the iterates by S̃k. We show by induction that S̃k has the form

S̃k =

[
0 Xk

Yk 0

]
.

This is true for k = 0 by setting X0 = A and Y0 = I. To see that the result holds for
k > 0, observe that

S̃k+1 =
1
2

(
S̃k + S̃−1

k

)
=

1
2

([
0 Xk

Yk 0

]
+

[
0 Y −1

k

X−1
k 0

])

and thus
Xk+1 =

(
Xk + Y −1

k

)
/2, Yk+1 =

(
Yk + X−1

k

)
/2. (9.4.8)

Another induction argument shows that

Xk = AYk, k = 0, 1, . . . , (9.4.9)

and so

Xk+1 =
(
Xk + AX−1

k

)
/2, Yk+1 =

(
Yk + A−1Y −1

k

)
/2. (9.4.10)
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It follows that Xk → A1/2 and Yk → A−1/2 and we have established the following
identity:

sign

([
0 A

I 0

])
=

[
0 A1/2

A−1/2 0

]
.

Equation (9.4.8) defines the Denman-Beavers iteration which turns out to have better
numerical properties than (9.4.7). See Meini (2004), Higham (FOM, Chap. 6), and
Higham (2008) for an analysis of these and other matrix square root algorithms.

9.4.3 The Polar Decomposition

If z = a + bi ∈ C is a nonzero complex number, then its polar representation is a
factorization of the form z = eiθr where r =

√
a2 + b2 and eiθ = cos(θ) + i sin(θ) is

defined by (cos(θ), sin(θ)) = (a/r, b/r). The polar decomposition of a matrix is similar.

Theorem 9.4.1 (Polar Decomposition). If A ∈ IRm×n and m ≥ n, then there exists
a matrix U ∈ IRm×n with orthonormal columns and a symmetric positive semidefinite
P ∈ IRn×n so that A = UP .

Proof. Suppose UT
A AVA = ΣA is the thin SVD of A. It is easy to show that if

U = UAV T
A and P = VAΣAV T

A , then A = UP and U and P have the required
properties.

We refer to U as the orthogonal polar factor and P as the symmetric polar factor.
Note that P = (AT A)1/2 and if rank(A) = n, then U = A(AT A)−1/2. An impor-
tant application of the polar decomposition is the orthogonal Procrustes problem (see
§6.4.1).

Various iterative methods for computing the orthogonal polar factor have been
proposed. A quadratically convergent Newton iteration for the square nonsingular case
proceeds by repeatedly averaging the current iterate with the inverse of its transpose:

X0 = A (Assume A ∈ IRn×n is nonsingular)

for k = 0, 1, . . . (9.4.11)

Xk+1 =
(
Xk + X−T

k

)
/2

end

To show that this iteration is well defined we assume that for some k the matrix Xk is
nonsingular and that Xk = UkPk is its polar decomposition. It follows that

Xk+1 =
1
2
(
Xk + X−T

k

)
=

1
2
(
UkPk + UkP−1

k

)
= Uk

(
Pk + P−1

k

2

)
. (9.4.12)

Since the average of a positive definite matrix and its inverse is also positive definite it
follows that Xk+1 is nonsingular. This shows by induction that (9.4.11) is well-defined
and that the Pk satisfy

Pk+1 = (Pk + P−1
k )/2, P0 = P.
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This is precisely the Newton sign iteration (9.4.1) with starting matrix P0 = P . Since

‖ Xk − U ‖2 = ‖ U(Pk − I) ‖2 = ‖ Pk − I ‖2

and Pk → sign(P ) = I quadratically, we conclude that Xk matrices in (9.4.11) converge
to U quadratically.

Extensions to the rectangular case and various ways to accelerate (9.4.11) are
discussed in Higham (1986), Higham and Schreiber (1990), Gander (1990), and Kenney
and Laub (1992). In this regard the matrix sign function is (once again) a handy tool
for deriving algorithms. Note that if A = UAΣAV T

A is the SVD of A ∈ IRn×n and

Q =
1√
2

[
UA 0

0 VA

][
In In

In −In

]

then Q is orthogonal and

QT

[
0 A

AT 0

]
Q =

[
ΣA 0

0 −ΣA

]
.

It follows that

sign

([
0 A

AT 0

])
= Q

[
In 0

0 −In

]
QT =

[
0 U

UT 0

]

where U = UAV T
A is the orthogonal polar factor of A.

There is a well-developed perturbation theory for the polar decomposition. A
sample result for square nonsingular matrices due to Li and Sun (2003) says that the
orthogonal polar factors U and Ũ for nonsingular A, Ã ∈ IRn×n satisfy the bound

‖ U − Ũ ‖
F
≤ 4‖ A − Ã ‖

F

σn−1(A) + σn(A) + σn−1(Ã) + σn(Ã)
.

9.4.4 The Matrix Logarithm

Given A ∈ IRn×n, a solution to the matrix equation eX = A is a logarithm of A. Note
that if X = log(A), then X + 2kπi is also a logarithm. To remove this ambiguity we
define the principal logarithm as follows. If the real eigenvalues of A ∈ IRn×n are all
positive then there is a unique real matrix X that satisfies eX = A with the property
that its eigenvalues satisfy λ(X) ⊂ { z ∈ C : − π < Im(z) < π }.

Of course, the eigenvalue-based methods of §9.2 are applicable for the log(A)
problem. We discuss an approximation method that is analogous to Algorithm 9.3.1,
the scaling and squaring method for the matrix exponential

As with the exponential, there are a number of different series expansions for
the log function that are of computational interest. The simplest is the Maclaurin
expansion:

log(A) ≈ Mq(A) =
q∑

k=1

(−1)k+1 (A − I)k

k
.
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To apply this formula we must have ρ(A − I) < 1 where ρ(·) is the spectral radius.
The Gregory series expansion for log(x) yields a rational approximation:

log(A) ≈ Gq(A) = −2
q∑

k=0

1
2k + 1

(
(I − A)(I + A)−1)2k+1

.

For this to converge, the real parts of A’s eigenvalues must be positive.
Diagonal Padé approximants are also of interest. For example, the (3,3) Padé

approximant is given by

log(A) ≈ r33(A) = D(A)−1N(A)

where

D(A) = 60I + 90(A − I) + 36(A − I)2 + 3(A − I)3,

N(A) = 60(A − I) + 60(A − I)2 + 11(A − I)3.

For an approximation of this type to be effective, the matrix A must be sufficiently
close to the identity matrix. Repeated square roots are one way to achieve this:

k = 0

A0 = A

while ‖ A − I ‖ > tol

k = k + 1

Ak = A
1/2
k−1

end

The Denman-Beavers iteration (9.4.8) can be invoked to compute the matrix square
roots. If we next compute F ≈ log(Ak) by using (say) an appropriately chosen Pade
approximant, then log(A) = 2k log(Ak) ≈ 2kF . This solution framework is referred
to as inverse scaling and squaring. There are many details associated with the proper
implementation of this procedure and we refer the reader to Cheng, Higham. Kenney,
and Laub (2001), Higham (2001), and Higham (FOM, Chap. 11).

Problems

P9.4.1 What does the Newton iteration look like when it is applied to find a root of the function
f(x) = 1/x− a? Develop an inverse-free Newton iteration for solving the matrix equation X−1 −A.

P9.4.2 Show that if µk > 0 in (9.4.6), then sign(Sk+1) = sign(Sk).

P9.4.3 Show that sign(A) = A(A2)−1/2.

P9.4.4 Verify Equation (9.4.9).

P9.4.5 In the Denman-Beavers iteration (9.4.8), define Mk = XkYk and develop a recipe for Mk+1.

P9.4.6 Show that if we apply the Newton square root iteration (9.4.9) to a symmetric positive definite
matrix A, then Ak −Ak+1 is positive definite for all k.

P9.4.7 Suppose A is normal. Relate the polar factors of eA to S = (A−AT )/2 and T = (A + AT )/2.

P9.4.8 Show that the polar decomposition of a nonsingular matrix is unique. Hint: If A = U1P1 and
A = U2P2 are two polar decompositions, then UT

2 U1 = P2P−1
1 and UT

1 U2 = P1P−1
2 have the same

eigenvalues.
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P9.4.9 Give a closed-form expression for the polar decomposition A = UP of a real 2-by-2 matrix.
Under what conditions is U a rotation?

P9.4.10 Give a closed-form expression for log(Q) where Q is a 2-by-2 rotation matrix.

P9.4.11 Formulate an m < n version of the polar decomposition for A ∈ IRm×n.

P9.4.12 Let A by an n-by-n symmetric positive definite matrix. (a) Show that there exists a unique
symmetric positive definite X such that A = X2. (b) Show that if X0 = I and

Xk+1 = (Xk + AX−1
k

)/2

then Xk →
√

A quadratically where
√

A denotes the matrix X in part (a).

P9.4.13 Show that
X(t) = C1 cos(t

√
A) + C2

√
A−1 sin(t

√
A)

solves the initial value problem Ẍ(t) = −AX(t), X(0) = C1, Ẋ(0) = C2. Assume that A is symmetric
positive definite.
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SIAM J. Matrix Anal. Applic. 21, 913–930.
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Chapter 10

Large Sparse Eigenvalue
Problems

10.1 The Symmetric Lanczos Process

10.2 Lanczos, Quadrature, and Approximation

10.3 Practical Lanczos Procedures

10.4 Large Sparse SVD Frameworks

10.5 Krylov Methods for Unsymmetric Problems

10.6 Jacobi-Davidson and Related Methods

The Lanczos process computes a sequence of partial tridiagonalizations that are
orthogonally related to a given symmetric matrix A. It is of particular interest if A is
large and sparse because, instead of updating A along the way as in the Householder
method of §8.2, it simply relies on matrix-vector products. Equally important, infor-
mation about A’s extremal eigenvalues tends to emerge fairly early during the iteration,
making the method very useful in situations where just a few of A’s largest or smallest
eigenvalues are desired, together with the corresponding eigenvectors.

The derivation and exact arithmetic attributes of the method are presented in
§10.1, including its extraordinary convergence properties. Central to the discussion
is the connection to an underlying Krylov subspace that is defined by the starting
vector. In §10.2 we point out connections between Gauss quadrature and the Lanczos
process that can be used to estimate expressions of the form uT f(A)u where f(A) is a
function of a large, sparse symmetric positive definite matrix A. Unfortunately, a “math
book” implementation of the Lanczos method is practically useless because of roundoff
error. This makes it necessary to enlist the help of various “workarounds,” which we
describe in §10.3. A sparse SVD framework based on Golub-Kahan bidiagonalization
is detailed in §10.4. We also introduce the idea of a randomized SVD. The last two
sections deal with the more difficult unsymmetric problem. The Arnoldi iteration is a
Krylov subspace iteration like Lanczos. To make it effective, it is necessary to extract
valuable “restart information” from the Hessenberg matrix sequence that it produces.
This is discussed in §10.5 together with a brief presentation of the unsymmetric Lanczos
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framework. In the last section we derive the Jacobi-Davidson method, which combines
Newton ideas with Rayleigh-Ritz refinement.

Reading Notes

Familiarity with Chapters 5, 7, and 8 is recommended. Within this chapter there
are the following dependencies:

§10.1 → §10.3 → §10.5 → §10.6
↓ ↓

§10.2 §10.4

General references for this chapter include Parlett (SEP), Stewart (MAE), Watkins
(MEP), Chatelin (EOM), Cullum and Willoughby (LALSE), Meurant (LCG), Saad
(NMLE), Kressner (NMSE), and EIG TEMPLATES.

10.1 The Symmetric Lanczos Process
Suppose A ∈ IRn×n is large, sparse, and symmetric and assume that a few of its largest
and/or smallest eigenvalues are desired. Eigenvalues at either end of the spectrum
are referred to as extremal eigenvalues. This problem can be addressed by a method
attributed to Lanczos (1950). The method generates a sequence of tridiagonal matrices
{Tk} with the property that the extremal eigenvalues of Tk ∈ IRk×k are progressively
better estimates of A’s extremal eigenvalues. In this section, we derive the technique
and investigate some of its exact arithmetic properties.

One way to motivate the Lanczos idea is to be reminded about the shortcomings
of the power method that we discussed in §8.2.1. Recall that the power method can be
used to find the dominant eigenvalue λ1 and an associated eigenvector x1. However,
the rate of convergence is dictated by |λ2/λ1|k where λ2 is the second largest eigen-
value in absolute value. Unless there is a sufficient magnitude gap between these two
eigenvalues, the power method is very slow. Moreover, it does not take advantage of
“prior experience.” After k steps with initial vector v(0), it has visited the directions
defined by the vectors Av(0), . . . , Akv(0). However, instead of searching the span of these
vectors for an optimal estimate of x1, it settles for Akv(0). The method of orthogonal
iteration with Ritz acceleration (§8.3.7) addresses some of these concerns, but it too
has a certain disregard for prior iterates. What we need is a method that “learns from
experience” and takes advantage of all previously computed matrix-vector products.
The Lanczos method fits the bill.

10.1.1 Krylov Subspaces

The derivation of the Lanczos process can proceed in several ways. So that its re-
markable convergence properties do not come as a complete surprise, we motivate the
method by considering the optimization of the Rayleigh quotient

r(x) =
xT Ax

xT x
, x 
= 0.

Recall from Theorem 8.1.2 that the maximum and minimum values of r(x) are λ1(A)
and λn(A), respectively. Suppose {qi} ⊆ IRn is a sequence of orthonormal vectors and
define the scalars Mk and mk by
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Mk = λ1(QT
k AQk) = max

y �=0

yT (QT
k AQk)y
yT y

= max
‖y‖2=1

r(Qky) ≤ λ1(A),

mk = λk(QT
k AQk) = min

y �=0

yT (QT
k AQk)y
yT y

= min
‖y‖2=1

r(Qky) ≥ λn(A),

where Qk = [ q1 | · · · | qk ] . Since

ran(Q1) ⊂ ran(Q2) ⊂ · · · ⊂ ran(Qn) = IRn

it follows that

M1 ≤ M2 ≤ · · · ≤ Mn = λ1(A),

m1 ≥ m2 ≥ · · · ≥ mn = λn(A).

Thus, the proposed optimization framework will ultimately converge. However, the
challenge is to choose the q-vectors in such a way that Mk and mk are high-quality
estimates well before k equals n.

Searching for a good qk prompts consideration of the gradient:

∇r(x) =
2

xT x
(Ax − r(x)x). (10.1.1)

Suppose uk ∈ span{q1, . . . , qk} satisfies Mk = r(uk). If ∇r(uk) = 0, then (r(uk), uk) is
an eigenpair of A. If not, then from the standpoint of making Mk+1 as large as possible
it makes sense to choose the next trial vector qk+1 so that

∇r(uk) ∈ span{q1, . . . , qk+1}. (10.1.2)

This is because r(x) increases most rapidly in the direction of the gradient ∇r(x).
The strategy will guarantee that Mk+1 is greater than Mk, hopefully by a significant
amount. Likewise, if vk ∈ span{q1, . . . , qk} satisfies r(vk) = mk, then it makes sense to
require

∇r(vk) ∈ span{q1, . . . , qk+1} (10.1.3)

since r(x) decreases most rapidly in the direction of −∇r(x).
Note that for any x ∈ IRn we have

∇r(x) ∈ span{x, Ax}.

Since the vectors uk and vk each belong to span{q1, . . . , qk}, it follows that the inclusions
(10.1.2) and (10.1.3) are satisfied if

span{q1, . . . , qk} = span{q1, Aq1, . . . , A
k−1q1}.

This suggests we choose qk+1 so that

span{q1, . . . , qk+1} = span{q1, Aq1, . . . , , Ak−1q1, Akq1}



548 Chapter 10. Large Sparse Eigenvalue Problems

and thus we are led to the problem of computing orthonormal bases for the Krylov
subspaces

K(A, q1, k) = span{q1, Aq1, . . . , A
k−1q1}.

These are just the range spaces of the Krylov matrices

K(A, q1, k) =
[
q1 |Aq1 |A2q1 | . . . |Ak−1q1

]
that we introduced in §8.3.2. Note that K(A, q1, k) is precisely the subspace that the
power method “overlooks” since it merely searches in the direction of Ak−1q1.

10.1.2 Tridiagonalization

In order to generate an orthonormal basis for a Krylov subspace we exploit the con-
nection between the tridiagonalization of A and the QR factorization of K(A, q1, n).
Recall from §8.3.2 that if QT AQ = T is tridiagonal and QQT = In, then

K(A, q1, n) = QQT K(A, q1, n) = Q
[
e1 | Te1 | T 2e1 | . . . | Tn−1e1

]
is the QR factorization of K(A, q1, n) where e1 and q1 are respectively the first columns
of In and Q. Thus, the columns of Q can effectively be generated by tridiagonalizing
A with an orthogonal matrix whose first column is q1.

Householder tridiagonalization, discussed in §8.3.1, can be adapted for this pur-
pose. However, this approach is impractical if A is large and sparse because House-
holder similarity updates almost always destroy sparsity. As a result, unacceptably
large, dense matrices arise during the reduction. This suggests that we try to compute
the elements of the tridiagonal matrix T = QT AQ directly. Toward that end, designate
the columns of Q by

Q = [ q1 | · · · | qn ]

and the components of T by

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 · · · 0

β1 α2
. . .

...
. . . . . . . . .

...
. . . . . . βn−1

0 · · · βn−1 αn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Equating columns in AQ = QT , we conclude that

Aqk = βk−1qk−1 + αkqk + βkqk+1, (β0q0 ≡ 0),

for k = 1:n − 1. The orthonormality of the q-vectors implies

αk = qT
k Aqk.

(Another way to see this is that Tij = qT
i Aqj .) Moreover, if we define the vector rk by

rk = (A − αkI)qk − βk−1qk−1
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and if it is nonzero, then

qk+1 = rk/βk

where

βk = ±‖ rk ‖2.

If rk = 0, then the iteration breaks down but (as we shall see) not without the acqui-
sition of valuable invariant subspace information.

By properly sequencing the above formulae and assuming that q1 ∈ IRn is a given
unit vector, we obtain what may be regarded as “Version 0” of the Lanczos iteration.

Algorithm 10.1.1 (Lanczos Tridiagonalization) Given a symmetric matrix A ∈ IRn×n

and a unit 2-norm vector q1 ∈ IRn, the following algorithm computes a matrix Qk =
[q1 | . . . | qk] with orthonormal columns and a tridiagonal matrix Tk ∈ IRk×k so that
AQk = QkTk. The diagonal and superdiagonal entries of Tk are α1, . . . , αk and
β1, . . . , βk−1 respectively. The integer k satisfies 1 ≤ k ≤ n.

k = 0, β0 = 1, q0 = 0, r0 = q1

while k = 0 or βk 
= 0

qk+1 = rk/βk

k = k + 1

αk = qT
k Aqk

rk = (A − αkI)qk − βk−1qk−1

βk = ‖ rk ‖2
end

There is no loss of generality in choosing βk to be positive. The qk vectors are called
Lanczos vectors. It is important to mention that there are better ways numerically to
organize the computation of the Lanczos vectors than Algorithm 10.1.1. See §10.3.1.

10.1.3 Termination and Error Bounds

The Lanczos iteration halts before complete tridiagonalization if q1 is contained in a
proper invariant subspace. This is one of several mathematical properties of the method
that we summarize in the following theorem.

Theorem 10.1.1. The Lanczos iteration (Algorithm 10.1.1) runs until k = m, where

m = rank(K(A, q1, n)).

Moreover, for k = 1:m we have

AQk = QkTk + rkeT
k (10.1.4)

where Qk = [ q1 | · · · | qk ] has orthonormal columns that span K(A, q1, k), ek = In(:, k),
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and

Tk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 · · · 0

β1 α2
. . .

...
. . . . . . . . .

...
. . . . . . βk−1

0 · · · βk−1 αk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (10.1.5)

Proof. The proof is by induction on k. It clearly holds if k = 1. Suppose for some
k > 1 that the iteration has produced Qk = [ q1 | · · · | qk ] with orthonormal columns
such that

ran(Qk) = K(A, q1, k).

It is easy to see from Algorithm 10.1.1 that equation (10.1.4) holds and so

QT
k AQk = Tk + QT

k rkeT
k . (10.1.6)

Suppose i and j are integers that satisfy 1 ≤ i ≤ j ≤ k. From the equation

qT
j Aqi = qT

j (βi−1qi−1 + αiqi + βiqi+1) = βi−1q
T
j qi−1 + αiq

T
j qi + βiq

T
j qi+1

and the induction assumption QT
k Qk = Ik, we see that

qT
i Aqj = qT

j Aqi =

⎧⎪⎨⎪⎩
0, if i < j − 1,

βj−1, if i = j − 1,

αj , if i = j.

It follows that QT
k AQk = Tk and so from (10.1.6) we have QT

k rk = 0.
If rk 
= 0, then qk+1 = rk/‖ rk ‖2 is orthogonal to q1, . . . , qk. It follows that

qk+1 /∈ K(A, q1, k) and

qk+1 ∈ span{Aqk, qk, qk−1} ⊆ K(A, q1, k + 1).

Thus, QT
k+1Qk+1 = Ik+1 and

ran(Qk+1) = K(A, q1, k + 1).

On the other hand, if rk = 0, then AQk = QkTk. This says that ran(Qk) = K(A, q1, k)
is invariant for A and so k = m = rank(K(A, q1, n)).

To encounter a zero βk in the Lanczos iteration is a welcome event in that it signals
the computation of an exact invariant subspace. However, valuable approximate in-
variant subspace information tends to emerge long before the occurrence of a small β.
Apparently, more information can be extracted from the tridiagonal matrix Tk and the
Krylov subspace spanned by the columns of Qk.
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10.1.4 Ritz Approximations

Recall from §8.1.4 that if S is a subspace of IRn, then with respect to S we say that (θ, y)
is a Ritz pair for A ∈ IRn×n if wT (Ay − θy) = 0 for all w ∈ S. If S = K(A, q1, k), then
the Lanczos process can be used to compute the associated Ritz values and vectors.
Suppose

ST
k TkSk = Θk = diag(θ1, . . . , θk) (10.1.7)

is a Schur decomposition of the tridiagonal matrix Tk. If

Yk = [ y1 | · · · | yk ] = QkSk ∈ IRn×k,

then for i = 1:k it follows that (θi, yi) is a Ritz pair because

QT
k (AYk − YkΘk) = (QT

k AQk)Sk − QT
k (QkSk)Θk = TkSk − SkΘk = 0.

Two theorems in §8.1 concern Ritz approximation and are of interest to us in the Lanc-
zos setting. Theorem 8.1.14 tells us that the problem of minimizing ‖ AQk − QkB ‖2
over all k-by-k matrices B is solved by setting B = Tk = QT

k AQk. Thus, the θi are
the eigenvalues of a “best possible matrix” that happens to be tridiagonal. Theorem
8.1.15 can be used to provide a bound for ‖ Ayi − θiyi ‖2. However, we can actually
do better. Using (10.1.6) we have

Ayi − θiyi = (AQk − QkTk)Skei = rk(eT
k Skei)

from which it follows that

‖ Ayi − θiyi ‖2 = |βk| |ski|. (10.1.8)

Note that since Sk is orthogonal, |ski| ≤ 1.
We can use (10.1.8) to obtain a computable error bound. If E is the rank-1 matrix

E = −ski ·rkyT
i ,

then
(A + E)yi = θiyi.

It follows from Corollary 8.1.6 that

min
µ∈λ(A)

|θi − µ| ≤ |βk| |ski|

for i = 1k.
Golub (1974) describes the construction of a more informative rank-1 perturba-

tion E. Use Lanczos tridiagonalization to compute AQk = QkTk + rkeT
k and then set

E = τwwT , where τ = ±1 and w = aqk + brk. It follows that

(A + E)Qk = Qk(Tk + τa2ekeT
k ) + (1 + τab)rkeT

k .

If 0 = 1 + τab, then
T̄k = Tk + τa2ekeT

k
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is a tridiagonal matrix whose eigenvalues are also eigenvalues for A+E. Using Theorem
8.1.8, it can be shown that the interval [λi(T̃k), λi−1(T̃k)] contains an eigenvalue of A
for i = 2:k. These bracketing intervals depend on the choice of τa2. Suppose we have
an approximate eigenvalue λ of A. One possibility is to choose τa2 so that

det(T̃k − λIk) = (αk + τa2 − λ)pk−1(λ) − β2
k−1pk−2(λ) = 0

where the polynomials pi(x) = det(Ti − xIi) can be evaluated at λ using the three-term
recurrence (8.4.2). (This assumes that pk−1(λ) 
= 0.) The idea of characterizing an
approximate eigenvalue λ as an exact eigenvalue of a nearby matrix A+E is discussed
in Lehmann (1963) and Householder (1968).

10.1.5 Convergence Theory

The preceding discussion indicates how eigenvalue estimates can be obtained via the
Lanczos process, but it reveals nothing about the approximation quality of Tk’s eigen-
values as a function of k. Results of this variety have been developed by Kaniel, Paige,
Saad, and others and the following theorem is a sample from this body of research.

Theorem 10.1.2. Let A be an n-by-n symmetric matrix with Schur decomposition

ZT AZ = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn, Z =
[

z1 · · · zn

]
. (10.1.9)

Suppose k steps of the Lanczos iteration (Algorithm 10.1.1) are performed and that Tk

is the tridiagonal matrix (10.1.5). If θ1 = λ1(Tk), then

λ1 ≥ θ1 ≥ λ1 − (λ1 − λn)
(

tan(φ1)
ck−1(1 + 2ρ1)

)2

where cos(φ1) = |qT
1 z1|,

ρ1 =
λ1 − λ2

λ2 − λn
, (10.1.10)

and ck−1(x) is the Chebyshev polynomial of degree k − 1.

Proof. From Theorem 8.1.2, we have

θ1 = max
y �=0

yT Tky

yT y
= max

y �=0

(Qky)T A(Qky)
(Qky)T (Qky)

= max
0 �=w∈K(A,q1,k)

wT Aw

wT w
.

Since λ1 is the maximum of wT Aw/wT w over all nonzero w, it follows that θ1 ≤ λ1.
To obtain the lower bound for θ1, note that

θ1 = max
p∈IPk−1

qT
1 p(A)Ap(A)q1

qT
1 p(A)2q1

,

where IPk−1 is the set of degree-(k−1) polynomials and p(x) is the amplifying polynomial.
Given the eigenvector expansion q1 = d1z1 + · · ·+dnzn where di = qT

1 zi, it follows that

qT
1 p(A)A p(A)q1

qT
1 p(A)2q1

=

n∑
i=1

d2
i p(λi)2λi

n∑
i=1

d2
i p(λi)2

≥ λ1d
2
1 p(λ1)2 + λnδ2

d2
1 p(λ1)2 + δ2

= λ1 −
(λ1 − λn)δ2

d2
1 p(λ1)2 + δ2
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where

δ2 =
n∑

i=2

d2
i p(λi)2.

If the polynomial p has the property that it is large at x = λ1 compared to its value
at λ2, . . . , λn, then we get a better lower bound for the Ritz value θ1. This is the act
of finding an amplifying polynomial and a good choice is to set

p(x) = ck−1

(
−1 + 2

x − λn

λ2 − λn

)
where ck−1(z) is the (k−1)st Chebyshev polynomial generated via the recursion

ck(z) = 2zck−1(z) − ck−2(z), c0 = 1, c1 = z.

These polynomials are bounded by unity on [−1, 1], but grow very rapidly outside this
interval. By defining p(x) this way, it follows that |p(λi)| ≤ 1 for i = 2:n and p(λ1) =
ck−1(1 + 2ρ1) where ρ1 is defined by (10.1.10). Thus,

δ2 ≤
n∑

i=2

d2
i = 1 − d2

1

and so

θ1 ≥ λ1 − (λ1 − λn)
1 − d2

1

d2
1

1

(ck−1(1 + 2ρ1))
2

.

The desired lower bound is obtained by noting that tan(φ1)2 = (1 − d2
1)/d2

1.

An analogous result pertaining to Tk’s smallest eigenvalue is an easy corollary.

Corollary 10.1.3. Using the same notation as in the theorem, if θk = λk(Tk), then

λn ≤ θk ≤ λn + (λ1 − λn)
(

tan(φn)
ck−1(1 + 2ρn)

)2

where
ρn =

λn−1 − λn

λ1 − λn−1

and cos(φn) = qT
1 zn.

Proof. Apply Theorem 10.1.2 with A replaced by −A.

The key idea in the proof of Theorem 10.1.2 is to take the amplifying polynomial p(x)
to be the translated Chebyshev polynomial, for then p(A)q1 amplifies the component
of q1 in the direction of the eigenvector z1. A similar idea can be used to obtain bounds
for an interior Ritz value θi. However, the results are not as satisfactory because the
new amplifying polynomial involves the product of the Chebyshev polynomial ck−i and
the polynomial (x− λ1) · · · (x− λi−1). For details, see Kaniel (1966) and Paige (1971)
and also Saad (1980), who improved the bounds. The main theorem is as follows.
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Theorem 10.1.4. Using the same notation as Theorem 10.1.2, if 1 ≤ i ≤ k and
θi = λi(Tk), then

λi ≥ θi ≥ λi − (λ1 − λn)
(

κi tan(φi)
ck−i(1 + 2ρi)

)2

where

ρi =
λi − λi+1

λi+1 − λn
, κi =

i−1∏
j=1

θj − λn

θj − λi
, cos(φi) = |qT

1 zi|.

Proof. See Saad (NMLE, p. 201).

Because of the κi factor and the reduced degree of the amplifying Chebyshev polyno-
mial, it is clear that the bounds deteriorate as i increases.

10.1.6 The Power Method versus the Lanczos Method

It is instructive to compare θ1 with the corresponding power method estimate of λ1.
(See §8.2.1.) For clarity, assume λ1 ≥ · · · ≥ λn ≥ 0 in the Schur decomposition (10.1.7).
After k − 1 power method steps applied to q1, a vector is obtained in the direction of

v = Ak−1q1 =
n∑

i=1

diλ
k−1
i zi

along with an eigenvalue estimate

γ1 =
vT Av

vT v
.

By setting p(x) = xk−1 in the proof of Theorem 10.1.2, it is easy to show that

λ1 ≥ γ1 ≥ λ1 − (λ1 − λn) tan(φ1)2
(

λ2

λ1

)2(k−1)

. (10.1.11)

Thus, we can compare the quality of the lower bounds for θ1 and γ1 by comparing

Lk−1 ≡ 1[
ck−1

(
2λ1
λ2

− 1
)]2 ≥ 1

[ck−1(1 + 2ρ1)]
2

and

Rk−1 =
(

λ2

λ1

)2(k−1)

.

Figure 10.1.1 compares these quantities for various values of k and λ2/λ1. The su-
periority of the Lanczos bound is self-evident. This is not a surprise since θ1 is the
maximum of r(x) = xT Ax/xT x over all of K(A, q1, k), while γ1 = r(v) for a particular
v in K(A, q1, k), namely, v = Ak−1q1.
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λ1/λ2 k = 5 k = 10 k = 15 k = 20 k = 25

1.50 1.1×10−4

3.9×10−2
2.0×10−10

6.8×10−4
3.9×10−16

1.2×10−5
7.4×10−22

2.0×10−7
1.4×10−27

3.5×10−9

1.10 2.7×10−2

4.7×10−1
5.5×10−5

1.8×10−1
1.1×10−7

6.9×10−2
2.1×10−10

2.7×10−2
4.2×10−13

1.0×10−2

1.01 5.6×10−1

9.2×10−1
1.0×10−1

8.4×10−1
1.5×10−2

7.6×10−1
2.0×10−3

6.9×10−1
2.8×10−4

6.2×10−1

Figure 10.1.1. Lk−1/Rk−1

Problems

P10.1.1 Suppose A ∈ IRn×n is skew-symmetric. Derive a Lanczos-like algorithm for computing a
skew-symmetric tridiagonal matrix Tm such that AQm = QmTm, where QT

mQm = Im.

P10.1.2 Let A ∈ IRn×n be symmetric and define r(x) = xT Ax/xT x. Suppose S ⊆ IRn is a subspace
with the property that x ∈ S implies ∇r(x) ∈ S. Show that S is invariant for A.

P10.1.3 Show that if a symmetric matrix A ∈ IRn×n has a multiple eigenvalue, then the Lanczos
process terminates prematurely.

P10.1.4 Show that the index m in Theorem 10.1.1 is the dimension of the smallest invariant subspace
for A that contains q1.

P10.1.5 Let A ∈ IRn×n be symmetric and consider the problem of determining an orthonormal se-
quence q1, q2, . . . with the property that once Qk = [ q1 | · · · | qk ] is known, qk+1 is chosen so as to
minimize µk = ‖ (I −Qk+1QT

k+1)AQk ‖
F

. Show that if span{q1, . . . , qk} = K(A, q1, k), then it is
possible to choose qk+1 so µk = 0. Explain how this optimization problem leads to the Lanczos
iteration.

P10.1.6 Suppose A ∈ IRn×n is symmetric and that we wish to compute its largest eigenvalue. Let
η be an approximate eigenvector and set α = ηT Aη/ηT η and z = Aη − αη. (a) Show that the
interval [α− δ, α + δ] must contain an eigenvalue of A where δ = ‖ z ‖2/‖ η ‖2. (b) Consider the new
approximation η̄ = aη + bz and determine the scalars a and b so that ᾱ = η̄T Aη̄/η̄T η̄ is maximized.
(c) Relate the above computations to the first two steps of the Lanczos process.

P10.1.7 Suppose T ∈ IRn×n is tridiagonal and symmetric and that v ∈ IRn. Show how the Lanc-
zos process can be used (in principle) to compute an orthogonal Q ∈ IRn×n in O(n2) flops such that
QT (T + vvT )Q = T̃ is also tridiagonal.

Notes and References for §10.1

Detailed treatments of the symmetric Lanczos algorithm may be found in Parlett (SEP) and Meurant
(LCG). The classic reference for the Lanczos method is:

C. Lanczos (1950). “An Iteration Method for the Solution of the Eigenvalue Problem of Linear
Differential and Integral Operators,” J. Res. Nat. Bur. Stand. 45, 255–282.

For details about the convergence of the Ritz values, see:

S. Kaniel (1966). “Estimates for Some Computational Techniques in Linear Algebra,” Math. Comput.
20, 369–378.

C.C. Paige (1971). “The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices,”
PhD thesis, University of London.
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Y. Saad (1980). “On the Rates of Convergence of the Lanczos and the Block Lanczos Methods,”
SIAM J. Numer. Anal. 17, 687–706.

The connections between Lanczos tridiagonalization, orthogonal polynomials, and the theory of mo-
ments are discussed in:

N.J. Lehmann (1963). “Optimale Eigenwerteinschliessungen,” Numer. Math. 5, 246–272.
A.S. Householder (1968). “Moments and Characteristic Roots II,” Numer. Math. 11, 126–128.
G.H. Golub (1974). “Some Uses of the Lanczos Algorithm in Numerical Linear Algebra,” in Topics

in Numerical Analysis, J.J.H. Miller (ed.), Academic Press, New York.
C.C. Paige, B.N. Parlett, and H.A. van der Vorst (1995). “Approximate Solutions and Eigenvalue

Bounds from Krylov Subspaces,” Numer. Lin. Alg. Applic. 2, 115–133.

10.2 Lanczos, Quadrature, and Approximation
To deepen our understanding of the Lanczos process and to build an appreciation
for its connections to other areas of applied mathematics, we consider an interesting
approximation problem that has broad practical implications. Assume that A ∈ IRn×n

is a large, sparse, symmetric positive definite matrix whose eigenvalues reside in an
interval [a, b]. Let f(λ) be a given smooth function that is defined on [a, b]. Given
u ∈ IRn, our goal is to produce suitably tight lower and upper bounds b and B so that

b ≤ uT ·f(A)·u ≤ B. (10.2.1)

In the approach we develop, the bounds are Gauss quadrature rule estimates of a certain
integral and the evaluation of the rules requires the eigenvalues and eigenvectors of a
Lanczos-produced tridiagonal matrix.

The uT f(A)u estimation problem has many applications throughout matrix com-
putations. For example, suppose x̂ is an approximate solution to the symmetric positive
definite system Ax = b and that we have computed the residual r = b−Ax̂. Note that
if x∗ = A−1b and f(λ) = 1/λ2, then

‖ x∗ − x̂ ‖2
2 = (x∗ − x̂)T (x∗ − x̂) = (A−1(b − Ax̂))T (A−1(b − Ax̂)) = rTf(A)r.

Thus, if we have a uTf(A)u estimation framework, then we can obtain Ax = b error
bounds from residual bounds.

For an in-depth treatment of the material in this section, we refer the reader to
the treatise by Golub and Meurant (2010). Our presentation is brief, informal, and
stresses the linear algebra highlights.

10.2.1 Reformulation of the Problem

Without an integral in sight, it is mystifying as to why (10.2.1) involves quadrature at
all. The key is to regard uTf(A)u as a Riemann-Stieltjes integral. In general, given a
suitably nice integrand f(x) and weight function w(x), the Riemann-Stieltjes integral

I(f) =
∫ b

a

f(x)dw(x)

is a limit of sums of the form

SN =
N∑

µ=1

f(cµ)(w(xµ) − w(xµ+1))
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where a = xN < · · · < x1 = b and xµ+1 ≤ cµ ≤ xµ. Note that if w is piecewise
constant on [a, b], then the only nonzero terms in SN arise from subintervals that house
a “w-jump.” For example, suppose a = λn < λ2 < · · · < λ1 = b and that

w(λ) =

⎧⎪⎨⎪⎩
wn+1 if λ < a,

wµ if λµ ≤ λ < λµ−1, µ = 2:n,

w1 if b ≤ λ,

(10.2.2)

where 0 ≤ wn+1 ≤ · · · ≤ w1. By considering the behavior of SN as N → ∞, we see
that ∫ b

a

f(λ)dw(λ) =
n∑

µ=1

(wµ − wµ+1)·f(λµ). (10.2.3)

We are now set to explain why uTf(A)u is “secretly” a Riemann-Stieltjes integral. Let

A = XΛXT , Λ = diag(λ1, . . . , λn), (10.2.4)

be a Schur decomposition of A with λn ≤ · · · ≤ λ1. It follows that

uT f(A)u = (XT u)T · f(Λ) · (XT u) =
n∑

µ=1

[XT u]2µ ·f(λµ).

If we set
wµ = [XT u]2µ + · · · + [XT u]2n, µ = 1:n + 1, (10.2.5)

in (10.2.2), then (10.2.3) becomes∫ b

a

f(λ)dw(λ) =
n∑

µ=1

[XT u]2µ · f(λµ) = uT f(A)u. (10.2.6)

Our plan is to approximate this integral using Gauss quadrature.

10.2.2 Some Gauss-Type Quadrature Rules and Bounds

Given an accuracy-related parameter k, an interval [a, b], and a weight function w(λ),
a Gauss-type quadrature rule for the integral

I(f) =
∫ b

a

f(λ) dw(λ)

involves a carefully constructed linear combination of f -evaluations across [a, b]. The
evaluation points (called nodes) and the coefficients (called weights) that define the
linear combination are determined to make the rule correct for polynomials up to a
certain degree that is related to k. Here are four examples:

1. Gauss. Compute weights w1, . . . , wk and nodes t1, . . . , tk so if

IG(f) =
k∑

i=1

wif(ti) (10.2.7)



558 Chapter 10. Large Sparse Eigenvalue Problems

then I(f) = IG(f) for all polynomials f that have degree 2k − 1 or less.

2. Gauss-Radau(a). Compute weights wa, w1, . . . , wk and nodes t1, . . . , tk so if

IGR(a)(f) = waf(a) +
k∑

i=1

wif(ti) (10.2.8)

then I(f) = IGR(a)(f) for all polynomials f that have degree 2k or less.

3. Gauss-Radau(b). Compute weights wb, w1, . . . , wk and nodes t1, . . . , tk so if

IGR(b)(f) = wbf(b) +
k∑

i=1

wif(ti) (10.2.9)

then I(f) = IGR(b)(f) for all polynomials f that have degree 2k or less.

4. Gauss-Lobatto. Compute weights wa, wb, w1, . . . , wk and nodes t1, . . . , tk so if

IGL(f) = waf(a) + wbf(b) +
k∑

i=1

wif(ti) (10.2.10)

then I(f) = IGL(f) for all polynomials f that have degree 2k + 1 or less.

Each of these rules has a neatly specified error. It can be shown that

∫ b

a

f(λ)dw(λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
IG(f) + RG(f),

IGR(a)(f) + RGR(a)(f),

IGR(b)(f) + RGR(b)(f),

IGL(f) + RGG(f),

where

RG(f) =
f (2k)(η)

(2n)!

∫ b

a

[
k∏

i=1

(λ − ti)

]2

dw(λ), a < η < b,

RGR(a)(f) =
f (2k+1)(η)

(2k + 1)!

∫ b

a

(λ − a)

[
k∏

i=1

(λ − ti)

]2

dw(λ), a < η < b,

RGR(b)(f) =
f (2k+1)(η)

(2k + 1)!

∫ b

a

(λ − b)

[
k∏

i=1

(λ − ti)

]2

dw(λ), a < η < b,

RGL(f) =
f (2k+2)(η)

(2k + 2)!

∫ b

a

(λ − a)(λ − b)

[
k∏

i=1

(λ − ti)

]2

dw(λ), a < η < b.

If the derivative in the remainder term does not change sign across [a, b], then the rule
can be used to produce a bound. For example, if f(λ) = 1/λ2 and 0 < a < b, then
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f (2k) is positive, f (2k+1) is negative, and we have

IG(f) ≤
∫ b

a

f(λ)dw(λ) ≤ IGR(a)(f).

With this strategy, we can produce lower and upper bounds by selecting and evaluating
the right rule. For this to be practical, the behavior of f ’s higher derivatives must be
known and the required rules must be computable.

10.2.3 The Tridiagonal Connection

It turns out that the evaluation of a given Gauss quadrature rule involves a tridiago-
nal matrix and its eigenvalues and eigenvectors. To develop a strategy that is based
upon this connection, we need three facts about orthogonal polynomials and Gauss
quadrature.

Fact 1. Given [a, b] and w(λ), there is a sequence of polynomials p0(λ), p1(λ), . . .
that satisfy ∫ b

a

pi(λ) · pj(λ) · dw(λ) =

{
1 if i = j,

0 if i 
= j,

with the property that the degree of pk( · ) is k for k ≥ 0. The polynomials are
unique up to a factor of ±1 and they satisfy a 3-term recurrence

γkpk(λ) = (λ − wk)pk−1(λ) − γk−1pk−2(λ)

where p−1(λ) ≡ 0 and p0(λ) ≡ 1.

Fact 2. The zeros of pk(λ) are the eigenvalues of the tridiagonal matrix

Tk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1 γ1 0 · · · 0

γ1 ω2
. . .

...

0
. . . . . . . . . 0

...
. . . ωk−1 γk−1

0 · · · 0 γk−1 ωk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since the γi are nonzero, it follows from Theorem 8.4.1 that the eigenvalues are
distinct.

Fact 3. If
ST TkS = diag(θ1, . . . , θk) (10.2.11)

is a Schur decomposition of Tk, then the nodes and weights for the Gauss rule
(10.2.7) are given by ti = θi and wi = s2

1i for i = 1:k. In other words,

IG(f) =
k∑

i=1

s2
1i · f(θi). (10.2.12)

Thus, the only remaining issue is how to construct Tk so that it defines a Gauss rule
for (10.2.6).
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10.2.4 Gauss Quadrature via Lanczos

We show that if we apply the symmetric Lanczos process (Algorithm 10.1.1) with
starting vector q1 = u/‖ u ‖2, then the tridiagonal matrices that the method generates
are exactly what we need to compute IG(f).

We first link the Lanczos process to a sequence of orthogonal polynomials. Recall
from §10.1.1 that the kth Lanczos vector qk is in the Krylov subspace K(A, q1, k). It
follows that qk = pk(A)q1 for some degree-k polynomial. From Algorithm 10.1.1 we
know that

βkqk+1 = (A − αkI)qk − βk−1qk−1

where β0q0 ≡ 0 and so

βkpk+1(A)q1 = (A − αkI)pk(A)q1 − βk−1pk−1(A)q1.

From this we conclude that the polynomials satisfy a 3-term recurrence:

βkpk+1(λ) = (λ − αk)pk(λ) − β2
k−1pk−1(λ). (10.2.13)

These polynomials are orthogonal with respect to the uT f(A)u weight function defined
in (10.2.5). To see this, note that∫ b

a

pi(λ)pj(λ)dw(λ) =
n∑

µ=1

[XT u]2µ · pi(λµ) · pj(λµ)

= (XT u)T (pi(Λ) · pj(Λ)) · (XT u)

= uT
(
X · pi(Λ) · XT

) (
X · pj(Λ) · XT

)
u

= uT (pi(A)pj(A))u

= (pi(A)u)T (pj(A)u) = ‖ u ‖2
2 qT

i qj = 0.

Coupled with (10.2.13) and Facts 1-3, this result tells us that we can generate an
approximation σ = IG(f) to uT f(A)u as follows:

Step 1: With starting vector q1 = u/‖ u ‖2, use the Lanczos process to compute

the partial tridiagonalization AQk = QkTk + rkeT
k . (See (10.1.4).)

Step 2: Compute the Schur decomposition ST TkS = diag(θ1, . . . , θk).

Step 3: Set σ = s2
11f(θ1) + · · · + s2

1kf(θk) .

See Golub and Welsch (1969) for a more rigorous derivation of this procedure.

10.2.5 Computing the Gauss-Radau Rule

Recall from (10.2.1) that we are interested in upper and lower bounds. In light of
our remarks at the end of §10.2.2, we need techniques for evaluating other Gauss
quadrature rules. By way of illustration, we show how to compute IGR(a) defined in
(10.2.8). Guided by Gauss quadrature theory, we run the Lanczos process for k steps
as if we were setting out to compute IG(f). We then must determine α̃k+1 so that if
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T̃k+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 0 · · · 0 0

β1 α2
. . .

...
...

0
. . . . . . . . .

...
...

. . . αk−1 βk−1 0

0 · · · βk−1 αk βk

0 · · · · · · 0 βk α̃k+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
then a ∈ λ(T̃k+1). By considering the top and bottom halves of the equation

T̃k+1

[
x

−1

]
= a

[
x

−1

]
, x ∈ IRk,

it is easy to verify that α̃k+1 = a + β2
k+1e

T
k (Tk − aIk)−1ek works.

10.2.6 The Overall Framework

All the necessary tools are now available to obtain sufficiently accurate upper and
bounds in (10.2.1). At the bottom of the loop in Algorithm 10.1.1, we use the current
tridiagonal (or an augmented version) to compute the nodes and weights for the lower
bound rule. The rule is evaluated to obtain b. Likewise, we use the current tridiagonal
(or an augmented version) to compute the nodes and weights for the upper bound rule.
The rule is evaluated to obtain B. The while loop in Algorithm 10.1.1 can obviously
be redesigned to terminate as soon as B − b is sufficiently small.

Problems

P10.2.1 The Chebyschev polynomials are generated by the recursion pk(x) = 2xpk−1(x) − pk−2(x)
and are orthonormal with respect to w(x) = (1−x2)−1/2 across [−1, 1]. What are the zeros of pk(x)?

P10.2.2 Following the strategy used in §10.2.5, show how to compute IGR(b) and IGL(f).

Notes and References for §10.2
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G.H. Golub and G. Meurant (2010). Matrices, Moments, and Quadrature with Applications, Princeton
University Press, Princeton, NJ.

Research in this area has a long history:

G.H. Golub (1962). “Bounds for Eigenvalues of Tridiagonal Symmetric Matrices Computed by the
LR Method,” Math. Comput. 16, 438–445.

G.H. Golub and J.H. Welsch (1969). “Calculation of Gauss Quadrature Rules,” Math. Comput. 23,
221–230.

G.H. Golub (1974). “Bounds for Matrix Moments,” Rocky Mountain J. Math. 4, 207–211.
C. de Boor and G.H. Golub (1978). “The Numerically Stable Reconstruction of a Jacobi Matrix from

Spectral Data,” Lin. Alg. Applic. 21, 245–260.
J. Kautsky and G.H. Golub (1983). “On the Calculation of Jacobi Matrices,” Lin. Alg. Applic.

52/53, 439–455.



562 Chapter 10. Large Sparse Eigenvalue Problems

M. Berry and G.H. Golub (1991). “Estimating the Largest Singular Values of Large Sparse Matrices
via Modified Moments,” Numer. Algs. 1, 353–374.

D.P. Laurie (1996). “Anti-Gaussian Quadrature Rules,” Math. Comput. 65, 739–747.
Z. Bai and G.H. Golub (1997). “Bounds for the Trace of the Inverse and the Determinant of Symmetric

Positive Definite Matrices,” Annals Numer. Math. 4, 29–38.
M. Benzi and G.H. Golub (1999). “Bounds for the Entries of Matrix Functions with Applications to

Preconditioning,” BIT 39, 417–438.
D. Calvetti, G. H. Golub, W. B. Gragg, and L. Reichel (2000). “Computation of Gauss–Kronrod
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10.3 Practical Lanczos Procedures
Rounding errors greatly affect the behavior of the Lanczos iteration. The basic dif-
ficulty is caused by loss of orthogonality among the Lanczos vectors, a phenomenon
that muddies the issue of termination and complicates the relationship between A’s
eigenvalues and those of the tridiagonal matrices Tk. This troublesome feature, cou-
pled with the advent of Householder’s perfectly stable method of tridiagonalization,
explains why the Lanczos algorithm was disregarded by numerical analysts during the
1950’s and 1960’s. However, the pressure to solve large, sparse eigenproblems coupled
with the computational insights set forth by Paige (1971) changed all that. With many
fewer than n iterations typically required to get good approximate extremal eigenval-
ues, the Lanczos method became attractive as a sparse matrix technique rather than
as a competitor of the Householder approach.

Successful implementation of the Lanczos iteration involves much more than a
simple encoding of Algorithm 10.1.1. In this section we present some of the ideas that
have been proposed to make the Lanczos procedure viable in practice.

10.3.1 Required Storage and Work

With careful overwriting in Algorithm 10.1.1 and exploitation of the formula

αk = qT
k (Aqk − βk−1qk−1),

the whole Lanczos process can be implemented with just a pair of n-vectors:

w = q1, v = Aw, α1 = wT v, v = v − α1w, β1 = ‖ v ‖2, k = 1

while βk 
= 0

for i = 1:n

t = wi, wi = vi/βk, vi = −βkt
end (10.3.1)

v = v + Aw

k = k + 1, αk = wT v, v = v − αkw, βk = ‖ v ‖2
end

At the end of the loop body, the array w houses qk and v houses the residual vector
rk = Aqk − αkqk − βk−1qk−1. See Paige (1972) for a discussion of various Lanczos
implementations and their numerical properties. Note that A is not modified during
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the entire process and that is what makes the procedure so useful for large sparse
matrices.

If A has an average of ν nonzeros per row, then approximately (2ν +8)n flops are
involved in a single Lanczos step. Upon termination the eigenvalues of Tk can be found
using the symmetric tridiagonal QR algorithm or any of the special methods of §8.5
such as bisection. The Lanczos vectors are generated in the n-vector w. If eigenvectors
are required, then the Lanczos vectors must be saved. Typically, they are stored in
secondary memory units.

10.3.2 Roundoff Properties

The development of a practical, easy-to-use Lanczos tridiagonalization process requires
an appreciation of the fundamental error analyses of Paige (1971, 1976, 1980). An
examination of his results is the best way to motivate the several modified Lanczos
procedures of this section.

After j steps of the iteration we obtain the matrix of computed Lanczos vectors
Q̂k =

[
q̂1 · · · q̂k

]
and the associated tridiagonal matrix

T̂k =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α̂1 β̂1 · · · 0

β̂1 α̂2
. . .

...
. . . . . . . . .

...
. . . . . . β̂k−1

0 · · · β̂k−1 α̂k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Paige (1971, 1976) shows that if r̂k is the computed analog of rk, then

AQ̂k = Q̂kT̂k + r̂keT
k + Ek (10.3.2)

where
‖ Ek ‖2 ≈ u‖ A ‖2. (10.3.3)

This shows that the equation AQk = QkTk + rkeT
k is satisfied to working precision.

Unfortunately, the picture is much less rosy with respect to the orthogonality
among the q̂i. (Normality is not an issue. The computed Lanczos vectors essentially
have unit length.) If β̂k = fl(‖ r̂k ‖2) and we compute q̂k+1 = fl(r̂k/β̂k), then a simple
analysis shows that

β̂k q̂k+1 ≈ r̂k + wk

where
‖ wk ‖2 ≈ u‖ r̂k ‖2 ≈ u‖ A ‖2.

Thus, we may conclude that

|q̂T
k+1q̂i| ≈ |r̂T

k q̂i| + u‖ A ‖2

|β̂k|

for i = 1:k. In other words, significant departures from orthogonality can be expected
when β̂k is small, even in the ideal situation where r̂T

k Q̂k is zero. A small β̂k implies
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cancellation in the computation of r̂k. We stress that loss of orthogonality is due to
one or several such cancellations and is not the result of the gradual accumulation of
roundoff error.

Further details of the Paige analysis are given shortly. Suffice it to say now that
loss of orthogonality always occurs in practice and with it, an apparent deterioration
in the quality of T̂k’s eigenvalues. This can be quantified by combining (10.3.2) with
Theorem 8.1.16. In particular, if we set

F1 = r̂keT
k + Ek, X1 = Q̂k, S = T̂k,

in that theorem and assume that

τ = ‖ Q̂T
k Q̂k − Ik ‖2

satisfies τ < 1, then there exist eigenvalues µ1, . . . , µk ∈ λ(A) such that

|µi − λi(Tk)| ≤
√

2 (‖ r̂k ‖2 + ‖ Ek ‖2 + τ(2 + τ)‖ A ‖2)

for i = 1:k. An obvious way to control the τ factor is to orthogonalize each newly
computed Lanczos vector against its predecessors. This leads directly to our first
“practical” Lanczos procedure.

10.3.3 Lanczos with Complete Reorthogonalization

Let r0, . . . , rk−1 ∈ IRn be given and suppose that Householder matrices H0, . . . , Hk−1
have been computed such that (H0 · · ·Hk−1)T

[
r0 · · · rk−1

]
is upper triangular.

Let
[

q1 · · · qk

]
denote the first k columns of the Householder product (H0 · · ·Hk−1).

Now suppose that we are given a vector rk ∈ IRn and wish to compute a unit vector
qk+1 in the direction of

w = rk −
k∑

i=1

(qT
i rk)qi ∈ span{q1, . . . , qk}⊥.

If a Householder matrix Hk is determined so (H0 · · ·Hk)T
[

r0 · · · rk

]
is upper

triangular, then it follows that column (k + 1) of H0 · · ·Hk is the desired unit vector.
If we incorporate these Householder computations into the Lanczos process, then

we can produce Lanczos vectors that are orthogonal to machine precision:

r0 = q1 (given unit vector)

Determine Householder H0 so H0r0 = e1.

for k = 1:n − 1

αk = qT
k Aqk

rk = (A − αkI)qk − βk−1qk−1, (β0q0 ≡ 0) (10.3.4)

w = (Hk−1 · · ·H0)rk

Determine Householder Hk so Hkw = [w1, . . . , wk, βk, 0, . . . , 0]T .

qk+1 = H0 · · ·Hkek+1
end
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This is an example of a complete reorthorgonalization Lanczos scheme. The idea of
using Householder matrices to enforce orthogonality appears in Golub, Underwood,
and Wilkinson (1972). That the computed q̂i in (10.3.4) are orthogonal to working
precision follows from the roundoff properties of Householder matrices. Note that by
virtue of the definition of qk+1, it makes no difference if βk = 0. For this reason, the
algorithm may safely run until k = n − 1. (However, in practice one would terminate
for a much smaller value of k.)

Of course, in any implementation of (10.3.4), one stores the Householder vec-
tors vk and never explicitly forms the corresponding matrix product. Since we have
Hk(1:k, 1:k) = Ik there is no need to compute the first k components of the vector w
in (10.3.4) since we do not use them. (Ideally they are zero.)

Unfortunately, these economies make but a small dent in the computational over-
head associated with complete reorthogonalization. The Householder calculations in-
crease the work in the kth Lanczos step by O(kn) flops. Moreover, to compute qk+1,
the Householder vectors associated with H0, . . . , Hk must be accessed. For large n and
k, this usually implies a prohibitive level of memory traffic.

Thus, there is a high price associated with complete reorthogonalization. Fortu-
nately, there are more effective courses of action to take, but these require a greater
understanding of just how orthogonality is lost.

10.3.4 Selective Reorthogonalization

A remarkable, ironic consequence of the Paige (1971) error analysis is that loss of
orthogonality goes hand in hand with convergence of a Ritz pair. To be precise, sup-
pose the symmetric QR algorithm is applied to T̂k and renders computed Ritz values
θ̂1, . . . , θ̂k and a nearly orthogonal matrix of eigenvectors Ŝk = (ŝpq). If

Ŷk =
[

ŷ1 · · · ŷk

]
= fl(Q̂kŜk),

then it can be shown that for i = 1:k we have

|q̂T
k+1ŷi| ≈ u‖ A ‖2

|β̂k| |ŝki|
(10.3.5)

and
‖ Aŷi − θ̂iŷi ‖2 ≈ |β̂k| |ŝki|. (10.3.6)

That is, the most recently computed Lanczos vector q̂k+1 tends to have a nontrivial
and unwanted component in the direction of any converged Ritz vector. Consequently,
instead of orthogonalizing q̂k+1 against all of the previously computed Lanczos vectors,
we can achieve the same effect by orthogonalizing it against the much smaller set of
converged Ritz vectors.

The practical aspects of enforcing orthogonality in this way are discussed in Par-
lett and Scott (1979). In their scheme, known as selective reorthogonalization, a com-
puted Ritz pair { θ̂ , ŷ } is called “good” if it satisfies

‖ Aŷ − θ̂ŷ ‖2 ≤
√

u‖ A ‖2 .

As soon as q̂k+1 is computed, it is orthogonalized against each good Ritz vector. This
is much less costly than complete reorthogonalization, since, at least at first, there are
many fewer good Ritz vectors than Lanczos vectors.
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One way to implement selective reorthogonalization is to diagonalize T̂k at each
step and then examine the ŝki in light of (10.3.5) and (10.3.6). A more efficient approach
for large k is to estimate the loss-of-orthogonality measure ‖ Ik − Q̂T

k Q̂k ‖2 using the
following result.

Lemma 10.3.1. Suppose S+ = [ S d ] where S ∈ IRn×k and d ∈ IRn. If

‖ Ik − ST S ‖2 ≤ µ |1 − dT d| ≤ δ,

then
‖ Ik+1 − ST

+S+ ‖2 ≤ µ+

where

µ+ =
1
2

(
µ + δ +

√
(µ − δ)2 + 4‖ ST d ‖2

2

)
.

Proof. See Kahan and Parlett (1974) or Parlett and Scott (1979).

Thus, if we have a bound for ‖ Ik − Q̂T
k Q̂k ‖2, then by applying the lemma with S = Q̂k

and d = q̂k+1 we can generate a bound for ‖ Ik+1 − Q̂T
k+1Q̂k+1 ‖2. (In this case δ ≈ u

and we assume that q̂k+1 has been orthogonalized against the set of currently good
Ritz vectors.) It is possible to estimate the norm of Q̂T

k q̂k+1 from a simple recurrence
that spares one the need to access q̂1, . . . , q̂k. The overhead is minimal, and when the
bounds signal loss of orthogonality, it is time to contemplate the enlargement of the
set of good Ritz vectors. Then and only then is T̂k diagonalized.

10.3.5 The Ghost Eigenvalue Problem

Considerable effort has been spent in trying to develop a workable Lanczos procedure
that does not involve any kind of orthogonality enforcement. Research in this direction
focuses on the problem of “ghost” eigenvalues. These are multiple eigenvalues of T̂k

that correspond to simple eigenvalues of A. They arise because the iteration essentially
restarts itself when orthogonality to a converged Ritz vector is lost. (By way of anal-
ogy, consider what would happen during orthogonal iteration (8.2.8) if we “forgot” to
orthogonalize.)

The problem of identifying ghost eigenvalues and coping with their presence is
discussed by Cullum and Willoughby (1979) and Parlett and Reid (1981). It is a
particularly pressing problem in those applications where all of A’s eigenvalues are
desired, for then the above orthogonalization procedures are expensive to implement.

Difficulties with the Lanczos iteration can be expected even if A has a genuinely
multiple eigenvalue. This follows because the T̂k are unreduced, and unreduced tridiag-
onal matrices cannot have multiple eigenvalues. The next practical Lanczos procedure
that we discuss attempts to circumvent this difficulty.

10.3.6 Block Lanczos Algorithm

Just as the simple power method has a block analogue in simultaneous iteration, so
does the Lanczos algorithm have a block version. Suppose n = rp and consider the
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decomposition

QT AQ = T̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M1 BT
1 · · · 0

B1 M2
. . .

...
. . . . . . . . .

...
. . . . . . BT

r−1
0 · · · Br−1 Mr

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(10.3.7)

where
Q = [ X1 | · · · | Xr ] , Xi ∈ IRn×p,

is orthogonal, each Mi ∈ IRp×p, and each Bi ∈ IRp×p is upper triangular. Comparison
of blocks in AQ = QT̄ shows that

AXk = Xk−1B
T
k−1 + XkMk + Xk+1Bk

for k = 1:r assuming X0B
T
0 ≡ 0 and Xr+1Br ≡ 0. From the orthogonality of Q we

have
Mk = XT

k AXk

for k = 1:r. Moreover, if we define

Rk = AXk − XkMk − Xk−1B
T
k−1 ∈ IRn×p,

then
Xk+1Bk = Rk

is a QR factorization of Rk. These observations suggest that the block tridiagonal
matrix T̄ in (10.3.7) can be generated as follows:

X1 ∈ IRn×p given with XT
1 X1 = Ip

M1 = XT
1 AX1

for k = 1:r − 1 (10.3.8)

Rk = AXk − XkMk − Xk−1B
T
k−1 (X0B

T
0 ≡ 0)

Xk+1Bk = Rk (QR factorization of Rk)

Mk+1 = XT
k+1AXk+1

end

At the beginning of the kth pass through the loop we have

A [ X1 | · · · | Xk ] = [ X1 | · · · | Xk ] T̄k + Rk

[
0 · · · 0 Ip

]
, (10.3.9)

where

T̄k =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M1 BT
1 · · · 0

B1 M2
. . .

...
. . . . . . . . .

...
. . . . . . BT

k−1
0 · · · Bk−1 Mk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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Using an argument similar to the one used in the proof of Theorem 10.1.1, we can
show that the Xk are mutually orthogonal provided none of the Rk is rank-deficient.
However if rank(Rk) < p for some k, then it is possible to choose the columns of Xk+1
such that XT

k+1Xi = 0, for i = 1:k. See Golub and Underwood (1977).
Because T̄k has bandwidth p, it can be efficiently reduced to tridiagonal form

using an algorithm of Schwartz (1968). Once tridiagonal form is achieved, the Ritz
values can be obtained via the symmetric QR algorithm or any of the special methods
of §8.4. In order to decide intelligently when to use block Lanczos, it is necessary
to understand how the block dimension affects convergence of the Ritz values. The
following generalization of Theorem 10.1.2 sheds light on this issue.

Theorem 10.3.2. Let A be an n-by-n symmetric matrix with Schur decomposition

ZT AZ = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn, Z =
[

z1 · · · zn

]
.

Let µ1 ≥ · · · ≥ µp be the p largest eigenvalues of the matrix T̄k obtained after k steps
of (10.3.8). Suppose Z1 =

[
z1 · · · zp

]
and

0 < cos(φp) = σp(ZT
1 X1),

the smallest singular value of ZT
1 X1. Then for i = 1:p,

λi ≥ µi ≥ λi − (λ1 − λn)
(

tan(θp)
ck−1 (1 + 2ρi)

)2

where

ρi =
λi − λp+1

λp+1 − λn

and ck−1(z) is the Chebyshev polynomial of degree k − 1.

Proof. See Underwood (1975). Compare with Theorem 10.1.2.

Analogous inequalities can be obtained for T̄k’s smallest eigenvalues by applying the
theorem with A replaced by −A. Based on the theorem and scrutiny of (10.3.8), we
conclude that

• the error bounds for the Ritz values improve with increased p ;

• the amount of work required to compute T̄k’s eigenvalues is proportional to kp2 ;

• the block dimension should be at least as large as the largest multiplicity of any
sought-after eigenvalue.

Determination of the block dimension in the face of these trade-offs is discussed in
detail by Scott (1979). We mention that loss of orthogonality also plagues the block
Lanczos algorithm. However, all of the orthogonality enforcement schemes described
above can be extended to the block setting.
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10.3.7 Block Lanczos Algorithm with Restarting

The block Lanczos algorithm (10.3.8) can be used in an iterative fashion to calculate
selected eigenvalues of A. To fix ideas, suppose we wish to calculate the p largest
eigenvalues. If X1 ∈ IRn×p is a given matrix having orthonormal columns, then it can
be refined as follows:

Step 1. Generate X2, . . . , Xs ∈ IRn×p via the block Lanczos algorithm.

Step 2. Form T̄s = [ X1 | · · · | Xs ] T A [ X1 | · · · | Xs ] , an sp-by-sp matrix that has
bandwidth p.

Step 3. Compute an orthogonal matrix U = [ u1 | · · · | usp ] such that UT T̄sU =
diag(θ1, . . . , θsp) with θ1 ≥ · · · ≥ θsp.

Step 4. Set X
(new)
1 = [ X1 | · · · | Xs ] [ u1 | · · · | up ] .

This is the block analog of the s-step Lanczos algorithm, which has been extensively
analyzed by Cullum and Donath (1974) and Underwood (1975). The same idea can
be used to compute several of A’s smallest eigenvalues or a mixture of both large and
small eigenvalues. See Cullum (1978). The choice of the parameters s and p depends
upon storage constraints as well as upon the block-size implications that we discussed
above. The value of p can be diminished as the good Ritz vectors emerge. However,
this demands that orthogonality to the converged vectors be enforced.

Problems

P10.3.1 Rearrange (10.3.4) and (10.3.8) so that they require one matrix-vector product per iteration.

P10.3.2 If rank(Rk) < p in (10.3.8), does it follow that ran( [ X1 | · · · |Xk ] ) contains an eigenvector of
A?
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A.K. Cline, G.H. Golub, and G.W. Platzman (1976). “Calculation of Normal Modes of Oceans Using
a Lanczos Method,” in Sparse Matrix Computations, J.R. Bunch and D.J. Rose (eds), Academic
Press, New York, pp. 409–426.

T. Ericsson and A. Ruhe (1980). “The Spectral Transformation Lanczos Method for the Numerical
Solution of Large Sparse Generalized Symmetric Eigenvalue Problems,” Math. Comput. 35, 1251–
1268.

R.B. Morgan (1991). “Computing Interior Eigenvalues of Large Matrices,” Lin. Alg. Applic. 154-156,
289–309.

R.G. Grimes, J.G. Lewis, and H.D. Simon (1994). “A Shifted Block Lanczos Algorithm for Solving
Sparse Symmetric Generalized Eigenproblems,” SIAM J. Matrix Anal. Applic. 15, 228–272.

10.4 Large Sparse SVD Frameworks
The connections between the SVD problem and the symmetric eigenvalue problem
are discussed in §8.6.1. In light of that discussion, it is not surprising that there
is a Lanczos process for computing selected singular values and vectors of a large,
sparse, rectangular matrix A. The basic idea is to generate a bidiagonal matrix B that
is orthogonally equivalent to A. We show how to do this in §5.4 using Householder
transformations. However, to avoid large dense submatrices along the way, the Lanczos
approach generates the bidiagonal entries entries directly.

10.4.1 Golub-Kahan Upper Bidiagonalization

Suppose A ∈ IRm×n with m ≥ n and recall from §5.4.8 that there exist orthogonal
U ∈ IRm×m and V ∈ IRn×n so that

UT AV = B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 · · · · · · 0

0 α2 β2 · · ·
...

...
. . . . . . . . .

...
... 0 αn−1 βn−1
0 · · · · · · 0 αn

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10.4.1)

Since A and B are orthogonally related, they have the same singular values.
Analogously to our derivation of the symmetric Lanczos procedure in §10.1.1, we

proceed to outline a sparse-matrix-friendly method for determining the diagonal and
superdiagonal of B. The challenge is to bypass the generally full intermediate matri-
ces associated with the Householder bidiagonalization process (Algorithm 5.4.2). We
expect to extract good singular value/vector information long before the full bidiago-
nalization is complete.

The key is to develop useful recipes for the α’s and β’s from the matrix equations
AV = UB and AT U = V BT . Given the column partitionings

U =
[

u1 · · · um

]
, V =

[
v1 · · · vn

]
,
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we have

Avk = αkuk + βk−1uk−1, (10.4.2)

AT uk = αkvk + βkvk+1 (10.4.3)

for k = 1:n with the convention that β0u0 ≡ 0 and βnvn+1 ≡ 0. Define the vectors

rk = Avk − βk−1uk−1, (10.4.4)

pk = AT uk − αkvk. (10.4.5)

Using (10.4.2), (10.4.4), and the orthonormality of the u-vectors, we have

αk = ±‖ rk ‖2,

uk = rk/αk, (αk 
= 0).

Note that if αk = 0, then from (10.4.1) it follows that A(:, 1:k) is rank deficient.
Similarly we may conclude from (10.4.3) and (10.4.5) that

βk = ±‖ pk ‖2,

vk+1 = pk/βk, (βk 
= 0).

If βk = 0, then it follows from the equations AV = UB and AT U = V BT that

AU(:, 1:k) = V (:, 1:k)B(1:k, 1:k), (10.4.6)

AT V (:, 1:k) = U(:, 1:k)B(1:k, 1:k)T , (10.4.7)

and thus
AT AV (:, 1:k) = V (:, 1:k) B(1:k, 1:k)T B(1:k, 1:k).

It follows that σ(B(1:k, 1:k)) ⊆ σ(A).
Properly sequenced, the above equations mathematically define the Golub-Kahan

process for bidiagonalizing a rectangular matrix.

Algorithm 10.4.1 (Golub-Kahan Bidiagonalization) Given a matrix A ∈ IRm×n with
full column rank and a unit 2-norm vector vc ∈ IRn, the following algorithm computes
the factorizations (10.4.6) and (10.4.7) for some k with 1 ≤ k ≤ n. The first column of
V is vc.

k = 0, p0 = vc, β0 = 1, u0 = 0

while βk 
= 0

vk+1 = pk/βk

k = k + 1

rk = Avk − βk−1uk−1

αk = ‖ rk ‖2

uk = rk/αk

pk = AT uk − αkvk

βk = ‖ pk ‖2
end
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This computation was first described by Golub and Kahan (1965). If Vk = [v1 | · · · |vk ] ,
Uk = [ u1 | · · · | uk ] , and

Bk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 · · · · · · 0

0 α2 β2 · · ·
...

...
. . . . . . . . . 0

... 0 αk−1 βk−1

0 · · · 0 0 αk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10.4.8)

then after the kth pass through the loop we have

AVk = UkBk, (10.4.9)

AT Uk = VkBT
k + pkeT

k , (10.4.10)

assuming that αk > 0. It can be shown that

span{v1, . . . , vk} = K(AT A, vc, k}, (10.4.11)

span{u1, . . . , uk} = K(AAT , Avc, k}. (10.4.12)

Thus, the symmetric Lanczos convergence theory presented in §10.1.5 can be applied.
Good approximations to A’s large singular values emerge early, while the small singular
values are typically more problematic, especially if there is a cluster near the origin. For
further insight, see Luk (1978), Golub, Luk, and Overton (1981), and Björck (NMLS,
§7.6).

10.4.2 Ritz Approximations

The Ritz idea can be applied to extract approximate singular values and vectors from
the matrices Uk, Vk, and Bk. We simply compute the SVD

FT
k BkGk = Γ = diag(γ1, . . . , γk) (10.4.13)

and form the matrices

Yk = VkGk = [ y1 | · · · | yk ] ,

Zk = UkFk = [ z1 | · · · | zk ] .

It follows from (10.4.9), (10.4.10), and (10.4.13) that

AYk = ZkΓ,

AT Zk = YkΓ + pkeT
k Fk,

and so for i = 1:k we have

Ayi = γizi, (10.4.14)

AT zi = γiyi + [Fk]ki · pk. (10.4.15)

It follows that AT Ayi = γ2
i zi +[Fk]ki · pk and thus, {γi, yi} is a Ritz pair for AT A with

respect to ran(Vk).
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10.4.3 The Tridiagonal-Bidiagonal Connection

In §8.6.1 we showed that there is a connection between the SVD of a matrix A ∈ IRm×n

and the Schur decomposition of the symmetric matrix

C =

[
0 A

AT 0

]
. (10.4.16)

In particular, if σ is a singular value of A, then both σ and −σ are eigenvalues of C
and the corresponding singular vectors “makeup” the corresponding eigenvectors.

Likewise, a given bidiagonalization of A can be related to a tridiagonalization of
C. Assume that m ≥ n and that

[U1 | U2]T AV =
[

B̃
0

]
, B̃ ∈ IRn×n,

is a bidiagonalization of A with U1 ∈ IRm×n, U2 ∈ IRm×(m−n), and V ∈ IRn×n. Note
that

Q =

[
U 0

0 V

]
is orthogonal and

T̃ = QT CQ =

[
0 B̃

B̃T 0

]
.

This matrix can be symmetrically permuted into tridiagonal form. For example, in the
4-by-3 case, if P = I7(:, [5 1 6 2 7 3 4]), then the reordering T̃ → PT̃PT has the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 α1 β1 0

0 0 0 0 0 α2 β2

0 0 0 0 0 0 α3

0 0 0 0 0 0 0

α1 0 0 0 0 0 0

β1 α2 0 0 0 0 0

0 β2 α3 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α1 0 0 0 0 0

α1 0 β1 0 0 0 0

0 β1 0 α2 0 0 0

0 0 α2 0 β2 0 0

0 0 0 β2 0 α3 0

0 0 0 0 α3 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This points to an interesting connection between Golub-Kahan bidiagonalization (Al-
gorithm 10.4.1) and Lanczos tridiagonalization (Algorithm 10.1.1). Suppose we apply
Algorithm 10.4.1 to A ∈ IRm×n with starting vector vc. Assume that the procedure
runs for k steps and produces the bidiagonal matrix Bk displayed in (10.4.8). If we
apply Algorithm 10.1.1 to the matrix C defined by (10.4.16) with a starting vector

q1 =

[
0

vc

]
∈ IRm+n (10.4.17)

then after 2k steps the resulting tridiagonal matrix T2k has a zero diagonal and a
subdiagonal specified by [ α1, β1, α2, β2, · · · αk−1, βk−1, αk ].
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10.4.4 Paige-Saunders Lower Bidiagonalization

In §11.4.2 we show how the Golub-Kahan bidiagonalization can be used to solve sparse
linear systems and least squares problems. It turns out that in this context, lower
bidiagonalization is more useful:

UT AV = B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 0 · · · · · · 0

β2 α2 0 · · ·
...

... β3
. . . . . .

...
...

. . . αn−1 0

0 · · · · · · βn−1 αn

0 · · · · · · 0 βn

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10.4.18)

Proceeding as in the derivation of the Golub-Kahan bidiagonalization, we compare
columns in the equations AT U = V BT and AV = UB. If U = [ u1 | · · · | um ] and
V = [ v1 | · · · | vn ] are column partitionings and we define β1v0 ≡ 0 and αn+1vn+1 ≡ 0,
then for k = 1:n we have AT uk = βkvk−1 +αkvk and Avk = αkuk +βk+1uk+1. Leaving
the rest of the derivation to the exercises, we obtain the following.

Algorithm 10.4.2 (Paige-Saunders Bidiagonalization) Given a matrix A ∈ IRm×n

with the property that A(1:n, 1:n) is nonsingular and a unit 2-norm vector uc ∈ IRn, the
following algorithm computes the factorization AV (:, 1:k) = U(:, 1:k+1)B(1:k+1, 1:k)
where U , V , and B are given by (10.4.18). The first column of U is uc and the integer
k satisfies 1 ≤ k ≤ n.

k = 1, p0 = uc, β1 = 1, v0 = 0

while βk > 0

uk = pk−1/βk

rk = AT uk − βkvk−1

αk = ‖ rk ‖2

vk = rk/αk

pk = Avk − αkuk

βk+1 = ‖ pk ‖2

k = k + 1
end

It can be shown that after k passes through the loop we have

AV (:, 1:k) = U(:, 1:k)B(1:k, 1:k) + pkeT
k (10.4.19)

where ek = Ik(:, k). See Paige and Saunders (1982) for more details. Their bidiagonal-
ization is equivalent to Golub-Kahan bidiagonalization applied to [ b | A ].
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10.4.5 A Note on Randomized Low-Rank Approximation

The need to extract information from unimaginably large datasets has prompted the
development of matrix methods that involve randomization. The idea is to develop
matrix approximations that are very fast to compute because they rely on limited,
random samplings of the given matrix. To give a snapshot of this increasingly important
paradigm for large-scale matrix computations, we consider the problem of computing
a rank-k approximation to a given matrix A ∈ IRm×n. For clarity we assume that
k ≤ rank(A). Recall that if A = Z̃Σ̃Ỹ T is the SVD of A, then

Ãk = Z̃1Σ̃1Ỹ
T
1 = Z̃1Z̃

T
1 A (10.4.20)

where Z̃1 = Z̃(:, 1:k), Σ̃1 = Σ̃(1:k, 1:k), and Ỹ1 = Ỹ (:, 1:k), is the closest rank-k matrix
to A as measured in either the 2-norm or Frobenius norm. We assume that A is so
large that the Krylov methods just discussed are impractical.

Drineas, Kannan, and Mahoney (2006c) propose a method that approximates the
intractable Ãk with a rank-k matrix of the form

Ak = CUR, C ∈ IRm×c, U ∈ IRc×r, R ∈ IRr×n, k ≤ c, k ≤ r (10.4.21)

where the matrices C and R are comprised of randomly chosen values taken from A.
The integers c and r are parameters of the method. Discussion of the CUR decompo-
sition (10.4.21) nicely illustrates the notion of random sampling in the matrix context
and the idea of a probabilistic error bound.

The first step in the CUR framework is to determine C. Each column of this
matrix is a scaled, randomly-selected column of A:

Determine column probabilities qj = ‖ A(:, j) ‖2/‖ A ‖2
F
, j = 1:n.

for t = 1:c

Randomly pick col(t) ∈ {1, 2, . . . , n} with qα the probability that col(t) = α.

C(:, t) = A(:, col(t))/
√

c qcol(t)
end

It follows that C = A(:, col)DC where DC ∈ IRc×c is a diagonal scaling matrix.
The matrix R is similarly constructed. Each row of this matrix is a scaled,

randomly-selected row of A:

Determine row probabilities pi = ‖ A(i, :) ‖2/‖ A ‖2
F
, i = 1:m.

for t = 1:r

Randomly pick row(t) ∈ {1, 2, . . . , m} with pα the probability that row(t) = α.

R(t, :) = A(row(t), :)/
√

r prow(t)
end

The matrix R has the form R = DRA(row, :) where DR ∈ IRr×r is a diagonal scaling
matrix.

The next step is to choose a rank-k matrix U so that Ak = CUR is close to the
best rank-k approximation Ãk. In the CUR framework, this requires the SVD

C = ZΣY T = Z1Σ1Y
T
1 + Z2Σ2Y2
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where Z1 = Z(:, 1:k), Σ1 = Σ(1:k, 1:k), and Y1 = Y (:, 1:k). The matrix U is then given
by

U = ΦΨT , Φ = Y1Σ−2
1 Y T

1 , Ψ = DRC(row, :).

With these definitions, simple manipulations confirm that

CΦ = Z1Σ−1
1 Y T

1 , (10.4.22)

ΨT R =
(
DR(Z1(row, :)Σ1Y

T
1 + Z2(row, :)Σ2Y

T
2 )

)T
DRA(row, :), (10.4.23)

and
CUR = (CΦ)(ΨR) = Z1 (DRZ1(row, :)) (DRA(row, :)) . (10.4.24)

An analysis that critically depends on the selection probabilities {qi} and {pi} shows
that ran(Z1) ≈ ran(Z̃1) and (DRZ1(row, :))T (DRA(row, :)) ≈ ZT

1 A. Upon comparison
with (10.4.20) we see that CUR ≈ Z1Z

T
1 A ≈ Z̃1Z̃

T
1 A = Ãk. Moreover, given ε > 0,

δ > 0, and k, it is possible to choose the parameters r and c so that the inequality

‖ A − CUR ‖
F

≤ ‖ A − Ãk ‖
F

+ ε‖ A ‖
F

holds with probability 1− δ. Lower bounds for r and c that depend inversely on ε and
δ are given by Drineas, Kannan, and Mahoney (2006c).

Problems

P10.4.1 Verify Equations (10.4.6), (10.4.7), (10.4.9), and (10.4.10).

P10.4.2 Corresponding to (10.3.1), develop an implementation of Algorithm 10.4.1 that involves a
minimum number of vector workspaces.

P10.4.3 Show that if rank(A) = n, then the bidiagonal matrix B in (10.4.18) cannot have a zero on
its diagonal.

P10.4.4 Prove (10.4.19). What can you say about U(:, 1:k) and V (:, 1:k) if βk+1 = 0 in Algorithm
10.4.2?

P10.4.5 Analogous to (10.4.11)-(10.4.12), show that for Algorithm 10.4.2 we have

span{v1, . . . , vk} = K(AT A, AT uc, k), span{u1, . . . , uk} = K(AAT , uc, k).

P10.4.6 Suppose C and q1 are defined by (10.4.16) and (10.4.17) respectively. (a) Show that

K(C, q1, 2k) = span
{[

0
vc

]
,

[
Avc

0

]
,

[
0

AT Avc

]
, . . . ,

[
0

(AT A)k−1vc

]
,

[
A(AT A)k−1vc

0

]}
.

(b) Rigorously prove the claim made in §10.4.3 about the subdiagonal of T2k. (c) State and prove
analogous results when the Paige-Saunders bidiagonalization is used.

P10.4.7 Verify Equations 10.4.22–10.4.24.

Notes and References for §10.4

For a more comprehensive treatment of Golub-Kahan bidiagonalization, see Björck (NMLS, §7.6). The
relevance of the Lanczos process to the bidiagonalization of a rectangular matrix was first presented
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G.H. Golub and W. Kahan (1965). “Calculating the Singular Values and Pseudo-Inverse of a Matrix,”
SIAM J. Numer. Anal. Ser. B, 2, 205–224.

The idea of using Golub-Kahan bidiagonalization to solve large sparse linear systems and least squares
problems started with the paper:
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10.5 Krylov Methods for Unsymmetric Problems
If A is not symmetric, then the orthogonal tridiagonalization QT AQ = T does not
exist in general. There are two ways to proceed. The Arnoldi approach involves the
column-by-column generation of an orthogonal Q such that QT AQ = H is the Hessen-
berg reduction of §7.4. The unsymmetric Lanczos approach computes the columns of
matrices Q and P so that PT AQ = T is tridiagonal and PT Q = I. Methods based
on these ideas that are suitable for large, sparse, unsymmetric eigenvalue problems are
discussed in this section.

10.5.1 The Basic Arnoldi Process

One way to extend the Lanczos process to unsymmetric matrices is due to Arnoldi
(1951) and revolves around the Hessenberg reduction QT AQ = H. In particular, if
Q = [ q1 | · · · | qn ] and we compare columns in AQ = QH, then

Aqk =
k+1∑
i=1

hikqi, 1 ≤ k ≤ n−1.

Isolating the last term in the summation gives

hk+1,kqk+1 = Aqk −
k∑

i=1

hikqi ≡ rk

where hik = qT
i Aqk for i = 1:k. It follows that if rk 
= 0, then qk+1 is specified by

qk+1 = rk/hk+1,k

where hk+1,k = ‖ rk ‖2. These equations define the Arnoldi process and in strict analogy
to the symmetric Lanczos process (Algorithm 10.1.1) we obtain the following.

Algorithm 10.5.1 (Arnoldi Process) If A ∈ IRn×n and q1 ∈ IRn has unit 2-norm, then
the following algorithm computes a matrix Qt = [q1, . . . , qt] ∈ IRn×t with orthonormal
columns and an upper Hessenberg matrix Ht = (hij) ∈ IRt×t with the property that
AQt = QtHt. The integer t satisfies 1 ≤ t ≤ n.

k = 0, r0 = q1, h10 = 1

while (hk+1,k 
= 0)

qk+1 = rk/hk+1,k

k = k + 1

rk = Aqk

for i = 1:k
hik = qT

i rk

rk = rk − hikqi

end

hk+1,k = ‖ rk ‖2
end
t = k
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The qk are called Arnoldi vectors and they define an orthonormal basis for the Krylov
subspace K(A, q1, k):

span{q1, . . . , qk} = span{q1, Aq1, . . . , A
k−1q1}. (10.5.1)

The situation after k steps is summarized by the equation

AQk = QkHk + rkeT
k (10.5.2)

where Qk = [ q1 | · · · | qk ] , ek = Ik(:, k), and

Hk =

⎡⎢⎢⎢⎢⎢⎢⎣

h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

0 h32
. . .

...
...

. . . . . .
...

0 · · · · · · hk,k−1 hkk

⎤⎥⎥⎥⎥⎥⎥⎦ .

Any decomposition of the form (10.5.2) is a k-step Arnoldi decomposition if Qk ∈ IRn×k

has orthonormal columns, Hk ∈ IRk×k is upper Hessenberg, and QT
k rk = 0.

If y ∈ IRk is a unit 2-norm eigenvector for Hk and Hky = λy, then from (10.5.2)

(A − λI)x = (eT
k y)rk

where x = Qky. Since rk ∈ K(A, q1, k)⊥, it follows that (λ, x) is a Ritz pair for A with
respect to K(A, q1, k). Note that if v = (eT

k y)rk, then

(A + E)x = λx

where E = −vxT with ‖ E ‖2 = |yk|‖ rk ‖2. Recall that in the unsymmetric case,
computing an eigenvalue of a nearby matrix does not mean that it is close to an exact
eigenvalue.

Some numerical properties of the Arnoldi iteration are discussed by Wilkinson
(AEP, p. 382). The history of practical Arnoldi-based eigensolvers begins with Saad
(1980). Two features of the method distinguish it from the symmetric Lanczos process:

• Arnoldi vectors q1, . . . , qk must all be referenced in step k and the computation of
qk+1 involves O(kn) flops excluding the matrix-vector product Aqk Thus, there
is a steep penalty associated with the generation of long Arnoldi sequences.

• Extremal eigenvalue information is not as forthcoming as in the symmetric case.
There is no unsymmetric Kaniel-Paige-Saad convergence theory.

These realities suggest a framework in which we use the Arnoldi iteration idea with
repeated, carefully chosen restarts and a controlled iteration maximum. We described
such a framework in conjunction with the block Lanczos procedure in §10.3.7.
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10.5.2 Arnoldi with Restarting

Consider running Arnoldi for m steps and then restarting the iteration with a new
initial vector q+ chosen from the span of the Arnoldi vectors q1, . . . , qm. Because of
the Krylov connection (10.5.1), q+ has the form

q+ = p(A)q1

for some polynomial of degree m − 1. It is instructive to examine the action of p(A)
in terms of A’s eigenvalues and eigenvectors. Assume for clarity that A ∈ IRn×n is
diagonalizable and that Azi = λizi for i = 1:n. If q1 has the eigenvector expansion

q1 = a1z1 + · · · + anzn,

then q+ is a scalar multiple of

z = a1p(λ1)z1 + · · · + anp(λn)zn.

Note that if p(λα)  p(λβ), then relatively speaking, q+ is much richer in the direction
of zα than in the direction of zβ . More generally, by carefully choosing p(λ) we can
design q+ so that its component in certain eigenvector directions is emphasized while
its component in other eigenvector directions is deemphasized. For example, if

p(λ) = c · (λ − µ1)(λ − µ2) · · · (λ − µp) (10.5.3)

where c is a constant, then q+ is a unit vector in the direction of

z = c ·
n∑

k=1

ak

(
p∏

i=1

(λk − µi)

)
zk.

It follows that zβ is deemphasized relative to zα if λβ is near to one of the “filter
values” µ1, . . . , µp and λα is not. Thus, the act of picking a good restart vector q+
from K(A, q1, m) is the act of picking a filter polynomial that tunes out unwanted
portions of the spectrum. Various heuristics for doing this have been developed based
on computed Ritz vectors. See Saad (1980, 1984, 1992).

10.5.3 Implicit Restarting

We describe an Arnoldi restarting procedure due to Sorensen (1992) that implicitly de-
termines the filter polynomial (10.5.3) using the QR iteration with shifts. (See §7.5.2.)
Suppose Hc ∈ IRm×m is upper Hessenberg, µ1, . . . , µp are scalars, and the matrix H+
is obtained via the shifted QR iteration:

H(0) = Hc

for i = 0:p

H(i−1) − µiI = ViRi (Givens QR) (10.5.4)

H(i) = RiVi + µiI
end
H+ = H(p)
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Recall from §7.4.2 that each H(i) is upper Hessenberg. Moreover, if

V = V1 · · ·Vp, (10.5.5)

then
H+ = V T HcV. (10.5.6)

The following result shows that the filter polynomial (10.5.3) has a relationship to
(10.5.4).

Theorem 10.5.1. If V = V1 · · ·Vp and R = Rp · · ·R1 are defined by (10.5.4), then

V R = (Hc − µ1I) · · · (Hc − µpI). (10.5.7)

Proof. We use induction, noting that the theorem is obviously true if p = 1. If
Ṽ = V1 · · ·Vp−1 and R̃ = Rp−1 · · ·R1, then

V R = Ṽ (VpRp)R̃ = Ṽ (H(p−1) − µpI)R̃ = Ṽ (Ṽ T HcṼ − µpI)R̃

= (Hc − µpI)Ṽ R̃ = (Hc − µpI)(Hc − µ1I) · · · (Hc − µp−1I),

where we used the fact that H(p−1) = Ṽ T HcṼ .

Note that the matrix R in (10.5.7) is upper triangular and so it follows that

V (:, 1) = p(Hc)e1

where p(λ) is the filter polynomial (10.5.3) with c = 1/R(1, 1).
Now suppose that we have performed m steps of the Arnoldi iteration with start-

ing vector q1. The Arnoldi factorization (10.5.2) says that we have an upper Hessenberg
matrix Hc ∈ IRm×m and a matrix Qc ∈ IRn×m with orthonormal columns such that

AQc = QcHc + rce
T
m. (10.5.8)

Note that Qc(:, 1) = q1 and rc ∈ IRn has the property that QT
c rc = 0. If we apply

(10.5.4) to Hc, then by using (10.5.5) and (10.5.6) the preceding Arnoldi factorization
transforms to

AQ+ = Q+H+ + rce
T
mV (10.5.9)

where
Q+ = QcV.

If q+ is the first column of this matrix, then

q+ = Q+(:, 1) = QcV (:, 1) = c · Qc(Hc − µ1I) · · · (Hc − µpI)e1.

Equation (10.5.8) implies that

(A − µI)Qce1 = Qc(Hc − µI)e1

for any µ ∈ IR and so

q+ = c(A − µ1I) · · · (A − µpI)Qce1 = p(A)q1.

This suggests the following framework for repeated restarting:
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Repeat:

With starting vector q1, perform m steps of the Arnoldi iteration

obtaining Qc ∈ IRn×m and Hc ∈ IRm×m.

Determine filter values µ1, . . . , µp . (10.5.10)

Perform p steps of the shifted QR iteration (10.5.4) obtaining

the Hessenberg matrix H+ and the orthogonal matrix V .

Replace q1 with the first column of QcV .

However, we can do better than this. The orthogonal matrices V1, . . . , Vp that arise
in (10.5.4) are each upper Hessenberg. (This is easily deduced from the structure of
the Givens rotations in Algorithm 5.2.5.) Thus, V has lower bandwidth p and so
V (m, 1:m − p − 1) = 0. It follows from (10.5.9) that if j = m − p, then

AQ+(:, 1:j) = Q+(:, 1:j)H+(1:j, 1:j) + vmjrcej

is a j-step Arnoldi decomposition. In other words, we are all set to perform step j + 1
of the Arnoldi iteration with starting vector q+. There is no need to launch the restart
from step 1. This leads us to the following modification of (10.5.10):

With starting vector q1, perform m steps of the Arnoldi iteration obtaining

Qc ∈ IRn×m, Hc ∈ IRm×m, and rc ∈ IRn so AQc = QcHc + rce
T
m.

Repeat:

Determine filter values µ1, . . . , µp .

Perform p steps of the shifted QR iteration (10.5.4) applied to Hc

obtaining H+ ∈ IRm×m and V = (vij) ∈ IRm×m .

Replace Qc with the first j columns of QcV .

Replace Hc with H+(1:j, 1:j). .

Replace rc with vmjrc .

Starting with AQc = QcHc + rce
T
j , perform steps j + 1, . . . , j + p = m of

the Arnoldi iteration obtaining AQm = QmHm + rmeT
m .

Set Qc = Qm, Hc = Hm, and rc = rm .

In light of our remarks in §10.5.2, the filter values µ1, . . . , µp should be chosen in the
vicinity of A’s “unwanted” eigenvalues. In this regard it is possible to formulate useful
heuristics that are based on the eigenvalues of the m-by-m Hessenberg matrix H+. For
example, suppose the goal is to find the three smallest eigenvalues of A in absolute
value. If p = m − 3 and λ(H+) = {λ̃1, . . . , λ̃m} with |λ̃1| ≥ · · · ≥ |λ̃m|, then it is
reasonable to set µi = λ̃i for i = 1:p.

The Arnoldi iteration with implicit restarts has many attractive attributes. For
implementation details and further analysis, see Lehoucq and Sorensen (1996), Morgan
(1996), and the ARPACK manual by Lehoucq, Sorensen, and Yang (1998).
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10.5.4 The Krylov-Schur Algorithm

An alternative restart procedure due to Stewart (2001) relies upon a carefully ordered
Schur decomposition of the Hessenberg matrix Hm that is produced after m steps of
the Arnoldi iteration. Suppose we have computed

AQm = QmHm + rmeT
m

and that m = j +p, where j is the number of A’s eigenvalues that we wish to compute.
Let

UT HmU =

[
T11 T12

0 T22

]
be the Schur decomposition of A and assume that the eigenvalues have been ordered
so that the eigenvalues of T11 ∈ IRj×j are of interest and the eigenvalues of T22 ∈ IRp×p

are not. (For clarity we ignore the possibility of complex eigenvalues.) The Arnoldi
decomposition above transforms to

AQ+ = Q+T + rce
T
mU

where Q+ = QmU . It follows that

AQ+(:, 1:j) = Q+(:, 1:j)T11 + rmuT

where uT = U(m, 1:j). It is possible to determine an orthogonal Z ∈ IRj×j so that
ZT T11Z is upper Hessenberg and ZT u = τej . (See P10.5.2.) It follows that

A (Q+Z) = (Q+Z)
(
ZT T11Z

)
+ rc

(
ZT u

)T

is a j-step Arnoldi factorization. We then set Qj , Hj and rj to be Q+Z, ZT T11Z, and
τrm respectively and perform Arnoldi steps j +1 through j +p = m. For more detailed
discussion, see Stewart (MAE, Chap. 5) and Watkins (FMC, Chap. 9).

10.5.5 Unsymmetric Lanczos Tridiagonalization

Another way to extend the symmetric Lanczos process is to reduce A to tridiagonal form
using a general similarity transformation. Suppose A ∈ IRn×n and that a nonsingular
matrix Q exists such that

Q−1AQ = T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1 γ1 · · · 0

β1 α2
. . .

...
. . . . . . . . .

...
. . . . . . γn−1

0 · · · βn−1 αn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

With the column partitionings

Q = [ q1 | · · · | qn ] ,

Q−T = Q̃ = [ q̃1 | · · · | q̃n ] ,
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we find upon comparing columns in AQ= QT and AT Q̃ = Q̃TT that

Aqk = γk−1qk−1 + αkqk + βkqk+1, γ0q0 ≡ 0,

AT q̃k = βk−1q̃k−1 + αk q̃k + γk q̃k+1, β0q̃0 ≡ 0,

for k = 1:n − 1. These equations together with the biorthogonality condition

Q̃T Q = In

imply
αk = q̃T

k Aqk

and

βkqk+1 ≡ rk = (A − αkI)qk − γk−1qk−1,

γk q̃k+1 ≡ r̃k = (A − αkI)T q̃k − βk−1q̃k−1.

There is some flexibility in choosing the scale factors βk and γk. Note that

1 = q̃T
k+1qk+1 = (r̃k/γk)T (rk/βk) .

It follows that once βk is specified, then γk is given by

γk = r̃T
k rk/βk.

With the “canonical” choice βk = ‖ rk ‖2 we obtain

q1, q̃1 given unit 2-norm vectors with q̃T
1 q1 
= 0

k = 0, q0 = 0, r0 = q1, q̃0 = 0, s0 = q̃1

while (rk 
= 0) and (r̃k 
= 0) and (r̃T
k rk 
= 0)

βk = ‖ rk ‖2

γk = r̃T
k rk/βk

qk+1 = rk/βk

q̃k+1 = r̃k/γk

k = k + 1 (10.5.11)

αk = q̃T
k Aqk

rk = (A − αkI)qk − γk−1qk−1

r̃k = (A − αkI)T q̃k − βk−1q̃k−1
end

If

Tk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1 γ1 · · · 0

β1 α2
. . .

...
. . . . . . . . .

...
. . . . . . γk−1

0 · · · βk−1 αk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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then the situation at the bottom of the loop is summarized by the equations

A [ q1 | · · · | qk ] = [ q1 | · · · | qk ] Tk + rkeT
k , (10.5.12)

AT [ q̃1 | · · · | q̃k ] = [ q̃1 | · · · | q̃k ] TT
k + r̃keT

k . (10.5.13)

If rk = 0, then the iteration terminates and span{q1, . . . , qk} is an invariant subspace
for A. If r̃k = 0, then the iteration also terminates and span{q̃1, . . . , q̃k} is an invariant
subspace for AT . However, if neither of these conditions is true and r̃T

k rk = 0, then
the tridiagonalization process ends without any invariant subspace information. This
is called serious breakdown. See Wilkinson (AEP, p. 389) for an early discussion of the
matter.

10.5.6 The Look-Ahead Idea

It is interesting to examine the serious breakdown issue in the block version of (10.5.11).
For clarity assume that A ∈ IRn×n with n = rp. Consider the factorization in which we
want Q̃T Q = In:

Q̃T AQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M1 CT
1 · · · 0

B1 M2
. . .

...
. . . . . . . . .

...
. . . . . . CT

r−1
0 · · · Br−1 Mr

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(10.5.14)

where all the blocks are p-by-p. Let Q = [ Q1 | · · · | Qr ] and Q̃ = [ Q̃1 | · · · | Q̃r ]
be conformable partitionings of Q and Q̃. Comparing block columns in the equations
AQ = QT and AT Q̃ = Q̃TT , we obtain

Qk+1Bk = AQk − QkMk − Qk−1C
T
k−1 ≡ Rk,

Q̃k+1Ck = AT Q̃k − Q̃kMT
k − Q̃k−1B

T
k−1 ≡ Sk.

Note that
Mk = Q̃T

k AQk.

If ST
k Rk = CT

k Q̃T
k+1Qk+1Bk ∈ IRp×p is nonsingular and we compute Bk, Ck ∈ IRp×p so

that
CT

k Bk = ST
k Rk,

then

Qk+1 = RkB−1
k , (10.5.15)

Q̃k+1 = SkC−1
k (10.5.16)

satisfy Q̃T
k+1Qk+1 = Ip. Serious breakdown in this setting is associated with having a

singular ST
k Rk.

One way of solving the serious breakdown problem in (10.5.11) is to go after a
factorization of the form (10.5.14) in which the block sizes are dynamically determined.
Roughly speaking, in this approach matrices Qk+1 and Q̃k+1 are built up column
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by column with special recursions that culminate in the production of a nonsingular
Q̃T

k+1Qk+1. The computations are arranged so that the biorthogonality conditions
Q̃T

i Qk+1 = 0 and QT
i Q̃k+1 = 0 hold for i = 1:k.

A method of this form belongs to the family of look-ahead Lanczos methods. The
length of a look-ahead step is the width of the Qk+1 and Q̃k+1 that it produces. If
that width is one, a conventional block Lanczos step may be taken. Length-2 look-
ahead steps are discussed in Parlett, Taylor, and Liu (1985). The notion of incurable
breakdown is also presented by these authors. Freund, Gutknecht, and Nachtigal (1993)
cover the general case along with a host of implementation details. Floating point
considerations require the handling of “near” serious breakdown. In practice, each Mk

that is 2-by-2 or larger corresponds to an instance of near serious breakdown.

Problems

P10.5.1 Recalling how Theorem 10.1.1 establishes the orthogonality of the Lanczos vectors in Algo-
rithm 10.1.1, state and prove an analogous theorem that does the same thing for the Arnoldi vectors
in Algorithm 10.5.1.

P10.5.2 Show that if C ∈ IRj×j and u ∈ IRj , then there exists an orthogonal Z ∈ IRn×n so that
ZT AZ = H is upper Hessenberg and the last column of Z is a multiple of u. Hint: Compute a
Householder matrix P so that Pu is a multiple of ej . Then reduce C = P T CP to upper Hessenberg
form by producing a sequence of Householder updates C = P T

i CP where C(n− i + 1, 1:n− i− 1) is
zeroed, i = 1:n− 2.

P10.5.3 Give an example of a starting vector for which the unsymmetric Lanczos iteration (10.5.11)
breaks down without rendering any invariant subspace information. Use

A =

[
1 6 2
3 0 2
1 3 5

]
.

P10.5.4 Suppose H ∈ IRn×n is upper Hessenberg. Discuss the computation of a unit upper triangular
matrix U such that HU = UT where T is tridiagonal.

P10.5.5 Show that the QR algorithm for eigenvalues does not preserve tridiagonal structure in the
unsymmetric case.
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10.6 Jacobi-Davidson and Related Methods
We close the chapter with a brief discussion of the Jacobi-Davidson method, a solution
framework that involves a mix of several important ideas. The starting point is a refor-
mulation of the eigenvalue problem as a nonlinear systems problem, a maneuver that
enables us to apply Newton-like methods. This leads in a natural way to a method of
Jacobi that can be used to compute eigenvalue-eigenvector pairs of symmetric matrices
that have a strong diagonal dominance. Eigenproblems of this variety arise in quantum
chemistry and it is in that venue where Davidson (1975) developed a very successful
generalization of the Jacobi procedure. It builds a (non-Krylov) nested sequence of sub-
spaces and incorporates Ritz approximation. By restricting the Davidson corrections to
the orthogonal complement of the current subspace, we arrive at the Jacobi-Davidson
method developed by Sleijpen and van der Vorst (1996). Their technique does not
require symmetry or diagonal dominance. Thus, in terms of abstraction, exposition in
this section starts from the general, descends to the specific, and then climbs back out
to the general. All along the way we are driven by practical, algorithmic concerns. Our
presentation draws upon the insightful treatments of the Jacobi-Davidson method in
Sorensen (2002) and Stewart (MAE, pp. 404–420).

We mention that full appreciation of the Jacobi-Davidson method and its ver-
satility requires an understanding of the next chapter. This is because a critical step
in the method requires the approximate solution of a large sparse linear system and
preconditioned iterative solvers are typically brought into play. See §11.5.
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10.6.1 The Approximate Newton Framework

Consider the n-by-n eigenvalue problem Ax = λx and how we might improve an approx-
imate eigenpair {xc, λc}. Note that if

A(xc + δxc) = (λc + δλc)(xc + δxc),

then
(A − λcI) δxc − δλcxc = −rc + δλc ·δxc, (10.6.1)

where
rc = Axc − λcxc

is the current residual. By ignoring the second-order term δλc ·δxc we arrive at the
following specification for the corrections δxc and δλc:

(A − λcI) δxc − δλcxc = −rc. (10.6.2)

This is an underdetermined system of nonlinear equations that has a very uninteresting
solution obtained by setting δxc = −xc and δλc = 0. To keep away from this situation
we add a constraint so that if[

x+

λ+

]
=

[
xc

λc

]
+

[
δxc

δλc

]
, (10.6.3)

then the new eigenvector approximation x+ is nonzero. One way to do this is to require

wT x+ = 1,

where w ∈ IRn is an appropriately chosen nonzero vector. Possibilities include w = x,
which forces x+ to have unit 2-norm, and w = e1, which forces its first component to
be one. Regardless, if xc is also normalized with respect to w, then

wT δxc = wT (x+ − xc) = 0. (10.6.4)

By assembling (10.6.2) and (10.6.4) into a single matrix-vector equation we obtain[
A − λcI −xc

wT 0

][
δxc

δλc

]
= −

[
rc

0

]
. (10.6.5)

This is precisely the Jacobian system that arises if Newton’s method is used to find a
zero of the function

F

([
x

λ

])
=

[
Ax − λx

wT x − 1

]
.

Its solution is easy to specify:

δλc =
wT (A − λcI)−1rc

wT (A − λcI)−1xc
, (10.6.6)

δxc = −(A − λcI)−1 (rc − δλcxc) . (10.6.7)
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Unfortunately, the required linear equation solving is problematic if A is large and
sparse and this prompts us to consider the approximate Newton framework.

The idea behind approximate Newton methods is to replace the Jacobian system
with a nearby, look-alike system that is easier to solve. One way to do this in our
problem is to approximate A with a matrix M with the proviso that systems of the
form (M − λcI)z = r are “easy” to solve. If N = M − A, then (10.6.5) transforms to[

M − λcI −xc

wT 0

][
δxc

δλc

]
= −

[
rc − N ·δxc

0

]
.

Continuing with the approximate-Newton mentality, let us throw away the inconvenient
N ·δxc term that is part of the right-hand side. This leaves us with the system[

M − λcI −xc

wT 0

][
δxc

δλc

]
= −

[
rc

0

]
, (10.6.8)

and the following compute-friendly recipes for the corrections:

δλc =
wT (M − λcI)−1rc

wT (M − λcI)−1xc
, (10.6.9)

δxc = −(M − λcI)−1 (rc − δλcxc) . (10.6.10)

Of course, by cutting corners in Newton’s method we risk losing quadratic convergence.
Thus, the design of an approximate Newton strategy must balance the efficiency of the
approximate Jacobian solution procedure with a possibly degraded rate of convergence.
For an excellent discussion of this tension in the context of the eigenvalue problem, see
Stewart (MAE, pp. 396–404).

10.6.2 The Jacobi Orthogonal Component Correction Method

Now suppose

A =

[
α cT

c A1

]
, α ∈ IR, c ∈ IRn−1, A1 ∈ IR(n−1)×(n−1) (10.6.11)

is symmetric and strongly diagonally dominant. Assume that α is the largest element
on the diagonal in absolute value. Our ambition is to compute λ (close to α) and
z ∈ IRn−1 so that [

α cT

c A1

][
1

z

]
= λ

[
1

z

]
. (10.6.12)

Because of the dominance assumption, there is no danger in assuming that the sought-
after eigenvector is nicely normalized by setting its first component to 1. Partition δxc,
xc, and x+ as follows:

δxc =

[
δµc

δzc

]
, xc =

[
1

zc

]
, x+ =

[
1

z+

]
.
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By substituting (10.6.11) and w = e1 into the Jacobian system (10.6.5), we get⎡⎢⎣ α − λc cT −1

c A1 − λcI −zc

1 0 0

⎤⎥⎦
⎡⎢⎣ δµc

δzc

δλc

⎤⎥⎦ = −

⎡⎢⎣ α + +cT zc − λc

(A1 − λcI)zc + c

0

⎤⎥⎦ ,

i.e., [
A1 − λcI −zc

cT −1

][
δzc

δλc

]
= −

[
(A1 − λcI)zc + c

α + cT zc − λc

]
. (10.6.13)

It is easy to verify that this is the Jacobian system that arises if Newton’s method is
used to compute a zero of

f

([
z

λ

])
=

[
α cT

c A1

][
1

z

]
− λ

[
1

z

]
.

If A1 = M1 − N1, then (10.6.13) can be rearranged as follows:

(M1 − λcI)z+ = −c + N1zc + {δλc ·zc + N1 ·δzc},
λ+ = α + cT z+.

The Jacobi orthogonal component correction (JOCC) method is defined by ignoring the
terms enclosed by the curly brackets and taking M1 to be the diagonal part of A1:

λ1 = α, z1 = 0n−1, ρ1 = ‖ c ‖2, k = 1

while ρk > tol

(M1 − λkI)zk+1 = −c + N1zk

λk+1 = α + cT zk+1 (10.6.14)

k = k + 1

ρk = ‖ A1zk − λkzk + c ‖2
end

The name of the method stems from the fact that the corrections to the approximate
eigenvectors

xk =

[
1

zk

]
,

are all orthogonal to e1. Indeed, it is clear from (10.6.14) that each residual

rk = (A − λkI)xk

has a zero first component:

rk =

[
α cT

c A1

][
1

zk

]
− λk

[
1

zk

]
=

[
0

(A1 − λkI)zk + c

]
. (10.6.15)
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Hence, the termination criterion in (10.6.14) is based on the size of the residual.
Jacobi intended this method to be use in conjunction with his diagonalization

procedure for the symmetric eigenvalue problem. As discussed in §8.5, after a sufficient
number of sweeps the matrix A is very close to being diagonal. At that point, the JOCC
iteration (10.6.14) can be invoked after a possible PAPT update to maximize the (1,1)
entry.

10.6.3 The Davidson Method

As with the JOCC iteration, Davidson’s method is applicable to the symmetric diago-
nally dominant eigenvalue problem (10.6.12). However, it involves a more sophisticated
placement of the residual vectors. To motivate the main idea, let M be the diagonal
part of A and use (10.6.15) to rewrite the JOCC iteration as follows:

x1 = e1, λ1 = xT
1 Ax1, r1 = Ax1 − λ1x1, V1 = [ e1 ], k = 1

while ‖ rk ‖ > tol

Solve the residual correction equation:

(M − λkI)δvk = −rk.

Compute an improved eigenpair {λk+1, xk+1} so rk+1 ∈ ran(V1)⊥:

δxk = δvk, xk+1 = xk + δxk, λk+1 = λk + cT δxk

k = k + 1

rk = Axk − λkxk

end

Davidson’s method uses Ritz approximation to ensure that rk is orthogonal to e1 and
δv1, . . . , δvk−1. To acomplish this, the boxed fragment is replaced with the following:

Expand the current subspace ran(Vk):

sk+1 = (I − VkV T
k )δvk

vk+1 = sk+1/‖ sk+1 ‖2, Vk+1 = [Vk | vk+1 ]

Compute an improved eigenpair {λk+1, xk+1} so rk+1 ∈ ran(Vk+1)⊥:

(V T
k+1AVk+1)tk+1 = θk+1tk+1 (a suitably chosen Ritz pair)

λk+1 = θk+1, xk+1 = Vk+1tk+1

(10.6.16)

There are a number of important issues associated with this method. To begin with,
Vk is an n-by-k matrix with orthonormal columns. The transition from Vk to Vk+1 can
be effectively carried out by a modified Gram-Schmidt process. Of course, if k gets too
big, then it may be necessary to restart the process using vk as the initial vector.

Because rk = Axk − λkxk = A(Vktk) − θk(Vktk), it follows that

V T
k rk = (V T

k AVk)tk − θktk = 0,

i.e., rk is orthogonal to the range of Vk as required.
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We mention that the Davidson algorithm can be generalized by allowing M to
be a more involved approximation to A than just its diagonal part. See Crouzeix,
Philippe, and Sadkane (1994) for details.

10.6.4 The Jacobi-Davidson Framework

Instead of forcing the correction δxc to be orthogonal to e1 as in the Davidson setting,
the Jacobi-Davidson method insists that δxc be orthogonal to the current eigenvector
approximation xc. The idea is to expand the current search space in a profitable,
unexplored direction.

To see what is involved computationally and to connect with Newton’s method,
we consider the following modification of (10.6.5):[

A − λcI −xc

xT
c 0

][
δxc

δλc

]
= −

[
rc

0

]
. (10.6.17)

Note that this is the Jacobian system associated with the function

F

([
x

λ

])
=

[
Ax − λx

(xT x − 1)/2

]

given that xT
c xc = 1. If xc is so normalized and λc = xT

c Axc, then from (10.6.17) we
have

(I − xcx
T
c )(A − λcI)(I − xcx

T
c )δxc = −(I − xcx

T
c )(rc − δλcxc)

= −(I − xcx
T
c )rc

= −(I − xcx
T
c )(Axc − λcxc)

= −(I − xcx
T
c )Axc

= −(Axc − λcxc) = −rc.

Thus, the correction δxc is obtained by solving the projected system

(I − xcx
T
c )(A − λcI)(I − xcx

T
c )δxc = −rc (10.6.18)

subject to the constraint that xT
c δxc = 0.

In Jacobi-Davidson, approximate projected systems are used to expand the cur-
rent subspace. Compared to the Davidson algorithm, everything remains the same in
(10.6.16) except that instead of solving (M −λcI)δvk = −rk to determine δvk, we solve

(I − xkxT
k )(M − λkI)(I − xkxT

k )δvk = −rk, (10.6.19)

subject to the constraint that xT
k δvk = 0. The resulting framework permits greater

flexibility. The initial unit vector x1 can be arbitrary and various Chapter 11 iterative
solvers can be applied to (10.6.19). See Sleijpen and van der Vorst (1996) and Sorensen
(2002) for details.

The Jacobi-Davidson framework can be used to solve both symmetric and non-
symmetric eigenvalue problems and is important for the way it channels sparse Ax = b
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technology to the sparse Ax = λx problem. It can be regarded as an approximate
Newton iteration that is “steered” to the eigenpair of interest by Ritz calculations.
Because an ever-expanding orthonormal basis is maintained, restarting has a key role
to play as in the Arnoldi setting (§10.5).

10.6.5 The Trace-Min Algorithm

We briefly discuss the trace-min algorithm that can be used to compute the k small-
est eigenvalues and associated eigenvectors for the n-by-n symmetric-definite problem
Ax = λBx. It has similarities to the Jacobi-Davidson procedure. The starting point is
to realize that if Vopt ∈ IRn×k solves

min
V T BV =Ik

tr(V T AV ),

then the required eigenvalues/eigenvectors are exposed by V T
optAVopt = diag(µ1, . . . , µk)

and AVopt(:, j) = µjBVopt(:, j), for j = 1:k. The method produces a sequence of V -
matrices, each of which satisfies V T BV = Ik. The transition from Vc to V+ requires
the solution of a projected system

(I − QcQ
T
c )A(I − QcQ

T
c )Zc = AVc

where Zc ∈ IRn×k and QR = BVc is the thin QR factorization. This system, analogous
to the central Jacobi-Davidson update system (10.6.19), can be solved using a suitably
preconditioned conjugate gradient iteration. For details, see Sameh and Wisniewski
(1982) and Sameh and Tong (2000).

Problems

P10.6.1 How would you solve (10.6.1) assuming that A is upper Hessenberg?

P10.6.2 Assume that

A =

[
α b

b D + E

]
is an n-by-n symmetric matrix. Assume that D is the diagonal of A(2:n, 2:n) and that the eigenvalue
gap δ = λ1(A)− λ2(A) is positive. How small must b and E be in order to ensure that (D + E)− αI

is diagonally dominant? Use Theorem 8.1.4.
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Chapter 11

Large Sparse Linear
System Problems

11.1 Direct Methods
11.2 The Classical Iterations
11.3 The Conjugate Gradient Method
11.4 Other Krylov Methods
11.5 Preconditioning
11.6 The Multigrid Framework

This chapter is about solving linear systems and least squares problems when
the matrix in question is so large and sparse that we have to rethink our powerful
dense factorization strategies. The basic challenge is to live without the standard 2-
dimensional array representation where there is a 1:1 correspondence between matrix
entries and storage cells.

There is sometimes sufficient structure to actually compute an LU, Cholesky, or
QR factorization by using a sparse matrix data structure and by carefully reordering
equations and unknowns to control the fill-in of nonzero entries during the factor-
ization process. Methods of this variety are called direct methods and they are the
subject of §11.1. Our treatment is brief, touching only some of the high points of
this well-developed area. A deeper presentation requires much more graph theory and
implementation-based insight than we can provide in these few pages.

The rest of the chapter is concerned with the iterative method framework. These
methods produce a sequence of vectors that typically converge to the solution at a
reasonable rate. The matrix A “shows up” only in the context of matrix/vector mul-
tiplication. We introduce the strategy in §11.2 through discussion of the “classical”
methods of Jacobi, Gauss-Seidel, successive over-relaxation, and Chebyshev. The dis-
crete Poisson problem from §4.8.3 is used to reinforce the major ideas.

Krylov subspace methods are treated in the next two sections. In §11.3 we derive
the method of conjugate gradients that is suitable for symmetric positive definite linear
systems. The derivation involves the Lanczos process, the method of steepest descent,
and the idea of optimizing over a nested sequence of subspaces. Related methods for

597
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symmetric indefinite systems, general systems, and least squares problems are covered
in §11.4.

It is generally the case that Krylov subspace methods are successful only if there
is an effective preconditioner. For a given Ax = b problem this essentially requires the
design of a matrix M that has two properties. It must capture key features of A and it
must be relatively easy to solve systems of the form Mz = r. There are several major
families of preconditioners and these are surveyed in §11.5 and §11.6, the latter being
dedicated to the mesh-coarsening/multigrid framework.

Reading Path

An understanding of the basics about LU, Cholesky, and QR factorizations is
essential. Eigenvalue theory and functions of matrices have a prominent role to play in
the analysis of iterative Ax = b solvers. The Krylov methods make use of the Lanczos
and Arnoldi iterations that we developed in Chapter 10.

Within this chapter, there are the following dependencies:

§11.2 → §11.3 → §11.4 → §11.5
↓

§11.6

§11.1 is independent of the others. The books by Axelsson (ISM), Greenbaum (IMSL),
Saad (ISPLA), and van der Vorst (IMK) provide excellent background. The software
“templates” volume LIN TEMPLATES (1993) is very useful for its concise presentation of
all the major iterative strategies and for the guidance it provides in choosing a suitable
method.

11.1 Direct Methods
In this section we examine the direct method framework where the goal is to formulate
solution procedures that revolve around careful implementation of the Cholesky, QR,
and LU factorizations. Central themes, all of which are detailed more fully by Davis
(2006), include the importance of ordering to control fill-in, connections to graph theory,
and how to reason about performance in the sparse matrix setting.

It should be noted that the band matrix methods discussed in §4.3 and §4.5 are
examples of sparse direct methods.

11.1.1 Representation

Data structures play an important role in sparse matrix computations. Typically, a
real vector is used to house the nonzero entries of the matrix and one or two integer
vectors are used to specify their “location.” The compressed-column representation
serves as a good illustration. Using a dot-on-grid notation to display sparsity patterns,
suppose

A = .
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The compressed-column representation stores the nonzero entries column by column
in a real vector. If A is the matrix, then we denote this vector by A.val, e.g.,

A.val = a11 a41 a52 a23 a33 a63 a14 a44 a25 a55 a65 .

An integer vector A.c is used to indicate where each column “begins” in A.val:

A.c = 1 3 4 7 9 12 .

Thus, if k = A.c(j):A.c(j+1)−1, then v = A.val(k) is the vector of nonzero components
of A(:, j). By convention, the last component of A.c houses nnz(A) + 1 where

nnz(A) = the number of nonzeros in A.

The row indices for the nonzero components in A(:, 1), . . . , A(:, n) are encoded in an
integer vector A.r, e.g.,

A.r = 1 4 5 2 3 6 1 4 2 5 6 .

In general, if k = A.c(j):A.c(j + 1) − 1, then A.val(k) = A(A.r(k), j).
Note that the amount of storage required for A.r is comparable to the amount of

storage required for the floating-point vector A.val. Index vectors represent one of the
overheads that distinguish sparse from conventional dense matrix computations.

11.1.2 Operations and Allocations

Consider the gaxpy operation y = y + Ax with A in compressed-column format. If
A ∈ IRm×n and the dense vectors y ∈ IRm and x ∈ IRn are conventionally stored, then

for j = 1:n
k = A.c(j):A.c(j + 1) − 1 (11.1.1)
y(A.r(k)) = y(A.r(k)) + A.val(k) · x(j)

end

overwrites y with y + Ax. It is easy to show that 2 ·nnz(A) flops are required. Re-
garding memory access, x is referenced sequentially, y is referenced randomly, and A
is referenced through A.r and A.c.

A second example highlights the issue of memory allocation. Consider the outer-
product update A = A + uvT where A ∈ IRm×n, u ∈ IRm, and v ∈ IRn are each stored
in compressed-column format. In general, the updated A will have more nonzeros than
the original A, e.g.,

⊗ ⊗

⊗
= +

Thus, unlike dense matrix computations where we simply overwrite A with A + uvT

without concern for additional storage, now we must increase the memory allocation
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for A in order to house the result. Moreover, the expansion of the vectors A.val and
A.r to accommodate the new nonzero entries is a nontrivial overhead. On the other
hand, if we can predict the sparsity structure of A+uvT in advance and allocate space
accordingly, then the update can be carried out more efficiently. This amounts to
storing zeros in locations that are destined to become nonzero, e.g.,

A.val = a11 a41 0 a52 a23 a33 a63 a14 0 a44 0 a25 a55 a65 ,

A.c = 1 3 5 8 12 15 ,

A.r = 1 4 3 5 2 3 6 1 3 4 5 2 5 6 .

With this assumption, the outer product update can proceed as follows:

for β = 1:nnz(v)
j = v.r(β)
α = 1
for � = A.c(j) : A.c(j + 1) − 1

if α ≤ nnz(u) && A.r(�) = u.r(α) (11.1.2)
A.val(�) = A.val(�) + u.val(α) · v.val(β)
α = α + 1

end
end

end

Note that A.val(�) houses aij and is updated only if uivj is nonzero. The index α is
used to reference the nonzero entries of u and is incremented after every access.

The overall success of a sparse matrix procedure typically depends strongly upon
how efficiently it predicts and manages the fill-in phenomenon.

11.1.3 Ordering, Fill-In, and the Cholesky Factorization

The first step in the outer-product Cholesky process involves computation of the fac-
torization

A =

[
α vT

v B

]
=

[ √
α 0

v/
√

α I

][
1 0

0 A(1)

][ √
α vT /

√
α

0 I

]
(11.1.3)

where

A(1) = B − vvT

α
. (11.1.4)

Recall from §4.2 that this reduction is repeated on the matrix A(1).
Now suppose A is a sparse matrix. From the standpoint of both arithmetic and

memory requirements, we have a vested interest in the sparsity of A(1). Since B is
sparse, everything hinges on the sparsity of the vector v. Here are two examples that
dramatize what is at stake:
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Example 1: =

Example 2: =

In Example 1, the vector v associated with the first step is dense and that results
in a full A(1). All sparsity is lost and the remaining steps essentially carry out a
dense Cholesky factorization. Example 2 tells a happier story. The first v-vector is
sparse and the update matrix A(1) has the same “arrow” structure as A. Note that
Example 2 can be obtained from Example 1 by a reordering of the form PAPT where
P = In(:, n: − 1:1)). This motivates the Sparse Cholesky challenge:

The Sparse Cholesky Challenge

Given a symmetric positive definite matrix A ∈ IRn×n, efficiently determine
a permutation p of 1:n so that if P = In(:, p), then the Cholesky factor in
A(p, p) = PAPT = GGT is close to being optimally sparse.

Choosing P to actually minimize nnz(G) is a formidable combinatorial problem and is
therefore not a viable option. Fortunately, there are several practical procedures based
on heuristics that can be used to determine a good reordering permutation P . These
include (1) the Cuthill-McKee ordering, (2) the minimum degree ordering, and (3) the
nested dissection ordering. However, before we discuss these strategies, we need to
present a few concepts from graph theory.

11.1.4 Graphs and Sparsity

Here is a sparse symmetric matrix A and its adjacency graph GA :

A = (11.1.5)

7 8 2

9 4 1 5

6 3

In an adjacency graph for a symmetric matrix, there is a node for each row, numbered
by the row number, and there is an edge between node i and node j if the off-diagonal
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entry aij is nonzero. In general, a graph G(V, E) is a set of labeled nodes V together
with a set of edges E, e.g.,

V = {1, 2, 3, 4, 5, 6, 7, 8, 9},
E = {(1, 4), (1, 6), (1, 7), (2, 5), (2, 8), (3, 4), (3, 5), (4, 6), (4, 7), (4, 9), (5, 8), (7, 8)}.

Adjacency graphs for symmetric matrices are undirected. This means there is no dif-
ference between edge (i, j) and edge (j, i). If P is a permutation matrix, then, except
for vertex labeling, the adjacency graphs for A and PAPT “look the same.”

Node i and node j are neighbors if there is an edge between them. The adjacency
set for a node is the set of its neighbors and the cardinality of that set is the degree of
the node. For the above example we have

Node 1 2 3 4 5 6 7 8 9
Degree 3 2 2 5 3 2 3 3 1

.

Graph theory is a very powerful language that facilitates reasoning about sparse matrix
factorizations. Of particular importance is the use of graphs to predict structure,
something that is critical to the design of efficient implementations. For a much deeper
appreciation of these issues than what we offer below, see George and Liu (1981), Duff,
Erisman, and Reid (1986), and Davis (2006).

11.1.5 The Cuthill-McKee Ordering

Because bandedness is such a tractable form of sparsity, it is natural to approach the
Sparse Cholesky challenge by making Ã = PAPT as “banded as possible” subject to
cost constraints. However, this is too restrictive as Example 2 in §11.1.3 shows. Profile
minimization is a better way to induce good sparsity in G. The profile of a symmetric
A ∈ IRn×n is defined by

profile(A) = n +
n∑

i=1

(i − fi(A))

where the profile indices f1(A), . . . , fn(A) are given by

fi(A) = min{ j : 1 ≤ j ≤ i, aij 
= 0 }. (11.1.6)

For the 9-by-9 example in (11.1.5), profile(A) = 37. We use that matrix to illustrate
a heuristic method for approximate profile minimization. The first step is to choose a
“starting node” and to relabel it as node 1. For reasons that are given later, we choose
node 2 and set S0 = {2}:

7 8 2

9 4 1 5

6 3

Original GA

1

Labeled: S0

We then proceed to label the remaining nodes as follows:
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Label the neighbors of S0. Those neighbors make up S1.
Label the unlabeled neighbors of nodes in S1. Those neighbors make up S2.
Label the unlabeled neighbors of nodes in S2. Those neighbors make up S3.
etc.

If we follow this plan for the example, then S1 = {8, 5}, S2 = {7, 3}, S3 = {1, 4}, and
S4 = {6, 9}. These are the level sets of node 2 and here is how they are determined
one after the other:

2 1

3

Labeled: S0, S1

4 2 1

3

5

Labeled: S0, S1, S2

4 2 1

7 6 3

5

Labeled: S0, S1, S2, S3

4 2 1

9 7 6 3

8 5

Labeled: S0, S1, S2, S3, S4

By “concatenating” the level sets we obtain the Cuthill-McKee reordering :

p : 2 8 5 7 3 1 4 6 9 .

︸︷︷︸
S0

︸ ︷︷ ︸
S1

︸ ︷︷ ︸
S2

︸ ︷︷ ︸
S3

︸ ︷︷ ︸
S4

Observe the band structure that is induced by this ordering:

A(p, p) = (11.1.7)

4 2 1

9 7 6 3

8 5

Note that profile(A(p, p)) = 25. Moreover, A(p, p) is a 5-by-5 block tridiagonal matrix
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with square diagonal blocks that have dimension equal to the cardinality of the level
sets S0, . . . , S4. This suggests why a good choice for S0 is a node that has “far away”
neighbors. Such a node will have a relatively large number of level sets and that
means the resulting block tridiagonal matrix A(p, p) will have more diagonal blocks.
Heuristically, these blocks will be smaller and that implies a tighter profile. See George
and Liu (1981, Chap. 4) for a discussion of this topic and why the reverse Cuthill-
McKee ordering p(n:−1:1) typically results in less fill-in during the Cholesky process.

11.1.6 The Minimum Degree Ordering

Another effective reordering scheme that is easy to motivate starts with the update
recipe (11.1.4) and the observation that the vector v at each step should be as sparse
as possible. This version of Cholesky with pivoting for A = GGT realizes this ambition:

Step 0. P = In

for k = 1:n − 2
Step 1. Choose a permutation Pk ∈ IR(n−k+1)×(n−k+1) so that if

Pk A(k:n, k:n) PT
k =

[
α vT

v B

]
then v is as sparse as possible

Step 2. P = diag(Ik−1, Pk) · P (11.1.8)

Step 3. Reorder A(k:n, k:n) and each previously computed G-column:

A(k:n, k:n) = Pk A(k:n, k:n) PT
k

A(k:n, 1:k − 1) = Pk A(k:n, 1:k − 1)

Step 4. Compute G(k:n, k): A(k:n, k) = A(k:n, k)/
√

A(k, k)

Step 5. Compute A(k)

A(k+1:n, k+1:n) = A(k+1:n, k+1:n) − A(k+1:n, k)A(k+1:n, k)T

end

The ordering that results from this process is the minimum degree ordering. The
terminology makes sense because the pivot row in step k is associated with a node in
the adjacency graph GA(k:n,k:n) whose degree is minimal. Note that this is a greedy
heuristic approach to the Sparse Cholesky challenge.

A serious overhead associated with the implementation of (11.1.8) concerns the
outer-product update in Step 5. The memory allocation discussion in §11.1.2 suggests
that we could make a more efficient procedure if we knew in advance the sparsity
structure of the minimum degree Cholesky factor. We could replace Step 0 with

Step 0 ′. Determine the minimum degree permutation pMD and represent
A(pMD, pMD) with “placeholder” zeros in those locations that fill in.

This would make Steps 1–3 unnecessary and obviate memory requests in Step 5. More-
over, it can happen that a collection of problems need to be solved each with the same
sparsity structure. In this case, a single Step 0 ′ works for the entire collection thereby
amortizing the overhead. It turns out that very efficient 0 ′ procedures have been de-
veloped. The basic idea revolves around the intelligent exploitation of two facts that
completely characterize the sparsity of the Cholesky factor in A = GGT :
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Fact 1: If j ≤ i and aij is nonzero, then gij is nonzero assuming no numerical
cancellation.

Fact 2: If gik and gjk are nonzero and k < j < i, then gij is nonzero assuming
no numerical cancellation. See Parter (1961).

The caveats about no numerical cancellation are required because it is possible for an
entry in G to be “luckily zero.” For example, Fact 1 follows from the formula

gij =

(
aij −

j−1∑
k=1

gikgjk

)/
gjj ,

with the assumption that the summation does not equal aij .
The systematic use of Facts 1 and 2 to determine G’s sparsity structure is compli-

cated and involves the construction of an elimination tree (e-tree). Here is an example
taken from the detailed presentation by Davis (2006, Chap. 4):

The matrix A A’s Cholesky factor A’s elimination tree

⊗
⊗

⊗
⊗ ⊗

⊗ 2 5 1 4

3

7

9

6

8

10

11

The “⊗” entries are nonzero because of Fact 2. For example, g76 is nonzero because
g61 and g71 are nonzero. The e-tree captures critical location information. In general,
the parent of node i identifies the row of the first subdiagonal nonzero in column i. By
encoding this kind of information, the e-tree can be used to answer various path-in-
graph questions that relate to fill-in. In addition, the leaf nodes correspond to those
columns that can be eliminated independently in a parallel implementation.

11.1.7 Nested Dissection Orderings

Suppose we have a method to determine a permutation P0 so that P0APT
0 has the

following block structure:

P0APT
0 =

⎡⎢⎣ A1 0 C1

0 A2 C2

CT
1 CT

2 S

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Through the schematic we are stating “A1 and A2 are square and roughly the same
size and C1 and C2 are relatively thin.” Let us refer to this maneuver as a “successful
dissection.” Suppose P11A1P

T
11 and P22A2P

T
22 are also successful dissections. If P =

diag(P11, P22, I) · P0, then

PAPT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The process can obviously be repeated on each of the four big diagonal blocks. Note
that the Cholesky factor inherits the recursive block structure

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the end, the ordering produced is an example of a nested dissection ordering. These
orderings are fill-reducing and work very well on grid-related, elliptic partial differential
equation problems; see George and Liu (1981, Chap. 8). In graph terms, the act of
finding a successful permutation for a given dissection is equivalent to the problem of
finding a good vertex cut of G(A). Davis (2006, pp. 128–130) describes several ways
in which this can be done. The payoff is considerable. With standard discretizations,
many 2-dimensional problems can be solved with O(n3/2) work and O(n log n) fill-in.
For 3-dimensional problems, the typical costs are O(n2) work and O(n4/3) fill-in.

11.1.8 Sparse QR and the Sparse Least Squares Problem

Suppose we want to minimize ‖ Ax − b ‖2 where A ∈ IRm×n has full column rank and
is sparse. If we are willing and able to form AT A, then we can apply sparse Cholesky
technology to the normal equations AT Ax = AT b. In particular, we would compute a
permutation P so that P (AT A)PT has a sufficiently sparse Cholesky factor. However,
aside from the pitfalls of normal equations, the matrix AT A can be dense even though
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A is sparse. (Consider the case when A has a dense row.)
If we prefer to take the QR approach, then it still makes sense to reorder the

columns of A, for if APT = QR is the thin QR factorization of APT , then

P (AT A)PT = RT R,

i.e., RT is the Cholesky factor of P (AT A)PT . However, this poses serious issues that
revolve around fill-in and the Q matrix. Suppose Q is determined via Householder
QR. Even though P is chosen so that the final matrix R is reasonably sparse, the
intermediate Householder updates A = HkA tend to have high levels of fill-in. A
corollary of this is that Q is almost always dense. This can be a show-stopper especially
if m  n and motivates the Sparse QR challenge:

The Sparse QR Challenge

Given a sparse matrix A ∈ IRm×n, efficiently determine a permutation
p of 1:n so that if P = In(:, p), then the R-factor in the thin QR factor-
ization A(:, p) = APT = QR is close to being optimally sparse. Use
orthogonal transformations to determine R from A(:, p).

Before we show how to address the challenge we establish its relevance to the
sparse least squares problem. If APT = QR is the thin QR factorization of A(:, p),
then the normal equation system AT b = AT AxLS transforms to

P (AT b) = (P (AT A)PT )PxLS = RT RPxLS.

Solving the normal equations with a QR-produced Cholesky factor constitutes the
seminormal equations approach to least squares. Observe that it is not necessary to
compute Q. If followed by a single step of iterative improvement, then it is possible to
show that the computed xLS is just as good as the least squares solution obtained via
the QR factorization. Here is the overall solution framework:

Step 1. Determine P so that the Cholesky factor for P (AT A)PT is sparse.

Step 2. Carefully compute the matrix R in the thin QR factorization APT = QR.

Step 3. Solve: RT y0 = P (AT b), Rz0 = y0, x0 = PT z0.

Step 4. Improve: r = b − Ax0, RT y1 = P (AT r), Rz1 = y1, e = PT z1, xLS = x0 + e.

To appreciate Steps 3 and 4, think of x0 as being contaminated by unacceptable levels
of error due to the pitfalls of normal equations. Noting that AT Ax0 = AT b−AT r and
AT Ae = AT r, we have

AT A(x0 + e) = AT b − AT r + AT r = AT b.

For a detailed analysis of the seminormal equation approach, see Björck (1987).
Let us return to the Sparse QR challenge and the efficient computaton of R

using orthogonal transformations. Recall from §5.2.5 that with the Givens rotation
approach there is considerable flexibility with respect to the zeroing order. A strategy
for introducing zeros into A ∈ IRm×n one row at a time can be organized as follows:
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for i = 2:m

for j = 1:min{i − 1, n}
if aij 
= 0

Compute a Givens rotation G such that G

[
ajj

aij

]
=

[
×
0

]
Update:

[
ajj · · · ajn

aij · · · ain

]
= G

[
ajj · · · ajn

aij · · · ain

]
(11.1.9)

end
end

end

The index i names the row that is being “rotated into” the current R matrix. Here is
an example that shows how the j-loop oversees that process if i > n:

i :

(1, i)
−→

i :

(4, i)
−→

i :

(5, i)
−→

i :

Notice that the rotations can induce fill-in both in R and in the row that is currently
being zeroed. Various row-ordering strategies have been proposed to minimize fill-in
“along the way” to the final matrix R. See George and Heath (1980) and Björck
(NMLS, p. 244). For example, before (11.1.9) is executed, the rows can be arranged so
that the first nonzero in each row is never to the left of the first nonzero in the previous
row. Rows where the first nonzero element occurs in the same column can be sorted
according to the location of the last nonzero element.

11.1.9 Sparse LU

The first step in a pivoted LU procedure applied to A ∈ IRn×n computes the factoriza-
tion

PAQT =

[
α wT

v B

]
=

[
1 0

v/α In−1

][
α wT

0 A(1)

]
(11.1.10)

where P and Q are permutation matrices and

A(1) = B − 1
α

vwT . (11.1.11)

In §3.4 we discussed various choices for P and Q. Stability was the primary issue
and everything revolved around making the pivot element α sufficiently large. If A is
sparse, then in addition to stability we have to be concerned about the sparsity of A(1).
Balancing the tension between stability and sparsity defines the Sparse LU challenge:



11.1. Direct Methods 609

The Sparse LU Challenge

Given a matrix A ∈ IRn×n, efficiently determine permutations p and q
of 1:n so that if P = In(:, p) and Q = In(:, q), then the factorization
A(p, q) = PAQT = LU is reasonably stable and the triangular factors
L and U are close to being optimally sparse.

To meet the challenge we must interpolate between a pair of extreme strategies:
• Maximize stability by choosing P and Q so that |α| = max |aij |.
• Maximize sparsity by choosing P and Q so that nnz(A(1)) is minimized.

Markowitz pivoting provides a framework for doing this. Given a threshold parameter
τ that satisfies 0 ≤ τ ≤ 1, choose P and Q in each step of the form (11.1.10) so that
nnz(A(1)) is minimized subject to the constraint that |α| ≥ τ |vi| for i = 1:n − 1.
Small values of τ jeopardize stability but create more opportunities to control fill-in.
A typical compromise value is τ = 1/10.

Sometimes there is an advantage to choosing the pivot from the diagonal, i.e.,
setting P = Q. This is the case when the matrix A is structurally symmetric. A matrix
A is structurally symmetric if aij and aji are either both zero or both nonzero. Sym-
metric matrices whose rows and/or columns are scaled have this property. It is easy so
show from (11.1.10) and (11.1.11) that if A is structurally symmetric and P = Q, then
A(1) is structurally symmetric. The Markowitz strategy can be generalized to express
a preference for diagonal pivoting if it is “safe”. If a diagonal element is sufficiently
large compared to other entries in its column, then P is chosen so that (PAPT )11
is that element and structural symmetry is preserved. Otherwise, a sufficiently large
off-diagonal element is brought to the (1,1) position using a PAQT update.

Problems

P11.1.1 Give an algorithm that solves an upper triangular system Tx = b given that T is stored in
the compressed-column format.
P11.1.2 If both indexing and flops are taken into consideration, is the sparse outer-product update
(11.1.2) an O(nnz(u) · nnz(v)) computation?
P11.1.3 For example (11.1.5), what is the resulting profile if S0 = {9}? What if S0 = {4}?
P11.1.4 Prove that the Cuthill-McKee ordering permutes A into a block tridiagonal form where the
kth diagonal block is r-by-r where r is the cardinality of Sk−1.
P11.1.5 (a) What is the resulting profile if the reverse Cuthill-McKee ordering is applied to the
example in §11.1.5? (b) What is the elimination tree for the matrix in (11.1.5)?
P11.1.6 Show that if G is the Cholesky factor of A and an element gij = 0, then j ≥ fi where fi is
defined by (11.1.6). Conclude that nnz(G) ≤ profile(A).
P11.1.7 Show how the method of seminormal equations can be used efficiently to minimize ‖Mx− d ‖2
where

M =

[
A1 0 0 C1
0 A2 0 C2
0 0 A3 C3

]
, d =

[
b1
b2
b3

]
,

and Ai ∈ IRm×n, Ci ∈ IRm×p, and bi ∈ IRm for i = 1:3. Assume that M has full column rank and that
m > n + p. Hint: Compute the Q-less QR factorizations of [Ai Ci] for i = 1:3.

Notes and References for §11.1

Early references for direct sparse matrix computations include the following textbooks:

A. George and J.W.-H. Liu (1981). Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, NJ.
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O. Osterby and Z. Zlatev (1983). Direct Methods for Sparse Matrices, Springer-Verlag, New York.
S. Pissanetzky (1984). Sparse Matrix Technology, Academic Press, New York.
I.S. Duff, A.M. Erisman, and J.K. Reid (1986). Direct Methods for Sparse Matrices, Oxford University

Press, London.

A more recent treatment that targets practitioners, provides insight into a range of implementation
issues, and has an excellent annotated bibliography is the following:

T.A. Davis (2006). Direct Methods for Sparse Linear Systems, SIAM Publications, Philadelphia, PA.

The interplay between graph theory and sparse matrix computations with emphasis on symbolic
factorizations that predict fill is nicely set forth in:

J.W.H. Liu (1990). “The Role of Elimination Trees in Sparse Factorizations,” SIAM J. Matrix Anal.
Applic. 11, 134–172.

J.R. Gilbert (1994). “Predicting Structure in Sparse Matrix Computations,” SIAM J. Matrix Anal.
Applic. 15, 62–79.

S.C. Eisenstat and J.W.H. Liu (2008). “Algorithmic Aspects of Elimination Trees for Sparse Unsym-
metric Matrices,” SIAM J. Matrix Anal. Applic. 29, 1363–1381.

Relatively recent papers on profile reduction include:

W.W. Hager (2002). “Minimizing the Profile of a Symmetric Matrix,” SIAM J. Sci. Comput. 23,
1799–1816.

J.K. Reid and J.A. Scott (2006). “Reducing the Total Bandwidth of a Sparse Unsymmetric Matrix,”
SIAM J. Matrix Anal. Applic. 28, 805–821.

Efficient implementations of the minimum degree idea are discussed in:

P.R. Amestoy, T.A. Davis, and I.S. Duff (1996). “An Approximate Minimum Degree Ordering Algo-
rithm,” SIAM J. Matrix Anal. Applic. 17, 886–905.

T.A. Davis, J.R. Gilbert, S.I. Larimore, and E.G. Ng (2004). “A Column Approximate Minimum
Degree Ordering Algorithm,” ACM Trans. Math. Softw. 30, 353–376.

For an overview of sparse least squares, see Björck (NMLS, Chap. 6)) and also:

J.A. George and M.T. Heath (1980). “Solution of Sparse Linear Least Squares Problems Using Givens
Rotations,” Lin. Alg. Applic. 34, 69–83.

Å. Björck and I.S. Duff (1980). “A Direct Method for the Solution of Sparse Linear Least Squares
Problems,” Lin. Alg. Applic. 34, 43–67.

A. George and E. Ng (1983). “On Row and Column Orderings for Sparse Least Squares Problems,”
SIAM J. Numer. Anal. 20, 326–344.

M.T. Heath (1984). “Numerical Methods for Large Sparse Linear Least Squares Problems,” SIAM J.
Sci. Stat. Comput. 5, 497–513.

Å. Björck (1987). “Stability Analysis of the Method of Seminormal Equations for Least Squares
Problems,” Lin. Alg. Applic. 88/89, 31–48.

The design of a sparse LU procedure that is also stable is discussed in:

J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li, and J.W.H. Liu (1999). “A Supernodal Approach
to Sparse Partial Pivoting,” SIAM J. Matrix Anal. Applic. 20, 720–755.

L. Grigori, J.W. Demmel, and X.S. Li (2007). “Parallel Symbolic Factorization for Sparse LU with
Static Pivoting,” SIAM J. Sci. Comput. 3, 1289–1314.

L. Grigori, J.R. Gilbert, and M. Cosnard (2008). “Symbolic and Exact Structure Prediction for Sparse
Gaussian Elimination with Partial Pivoting,” SIAM J. Matrix Anal. Applic. 30, 1520–1545.

Frontal methods are a way of organizing outer-product updates so that the resulting implementation
is rich in dense matrix operations, a maneuver that is critical from the standpoint of performance, see:

J.W.H. Liu (1992). “The Multifrontal Method for Sparse Matrix Solution: Theory and Practice,”
SIAM Review 34, 82–109.

D.J. Pierce and J.G. Lewis (1997). “Sparse Multifrontal Rank Revealing QR Factorization,” SIAM J.
Matrix Anal. Applic. 18, 159–180.

T.A. Davis and I.S. Duff (1999). “A Combined Unifrontal/Multifrontal Method for Unsymmetric
Sparse Matrices,” ACM Trans. Math. Softw. 25, 1–20.
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Another important reordering challenge involves permuting to block triangular form, see:

A. Pothen and C.-J. Fan (1990). “Computing the Block Triangular Form of a Sparse Matrix,” ACM
Trans. Math. Softw. 16, 303–324.

I.S. Duff and B. Uçar (2010). “On the Block Triangular Form of Symmetric Matrices,” SIAM Review
52, 455–470.

Early papers on parallel sparse matrix computations that are filled with interesting ideas include:

M.T. Heath, E. Ng, and B.W. Peyton (1991). “Parallel Algorithms for Sparse Linear Systems,” SIAM
Review 33, 420–460.

J.R. Gilbert and R. Schreiber (1992). “Highly Parallel Sparse Cholesky Factorization,” SIAM J. Sci.
Stat. Comput. 13, 1151–1172.

For a sparse-matrix discussion of condition estimation, error analysis, and related problems, see:

R.G. Grimes and J.G. Lewis (1981). “Condition Number Estimation for Sparse Matrices,” SIAM J.
Sci. Stat. Comput. 2, 384–388.

M. Arioli, J.W. Demmel, and I.S. Duff (1989). “Solving Sparse Linear Systems with Sparse Backward
error,” SIAM J. Matrix Anal. Applic. 10, 165–190.

C.H. Bischof (1990). “Incremental Condition Estimation for Sparse Matrices,” SIAM J. Matrix Anal.
Applic. 11, 312–322.

M.W. Berry, S.A. Pulatova, and G.W. Stewart (2005). “Algorithm 844: Computing Sparse Reduced-
Rank Approximations to Sparse Matrices,” ACM Trans. Math. Softw. 31, 252–269.

11.2 The Classical Iterations
An iterative method for the Ax = b problem generates a sequence of approximate
solutions {x(k)} that converges to x = A−1b. Typically, the matrix A is involved only
in the context of matrix-vector multiplication and that is what makes this framework
attractive when A is large and sparse. The critical attributes of an iterative method
include the rate of convergence, the amount of computation per step, the volume of
required storage, and the pattern of memory access. In this section, we present a
collection of classical iterative methods, discuss their practical implementation, and
prove a few representative theorems that illuminate their behavior.

11.2.1 The Jacobi and Gauss-Seidel Iterations

The simplest iterative method for the Ax = b problem is the Jacobi iteration. The
3-by-3 instance of the method can be motivated by rewriting the equations as follows:

x1 = (b1 − a12x2 − a13x3)/a11,

x2 = (b2 − a21x1 − a23x3)/a22,

x3 = (b3 − a31x1 − a32x2)/a33.

Suppose x(k−1) is a “current” approximation to x = A−1b. A natural way to generate
a new approximation x(k) is to compute

x
(k)
1 = (b1 − a12x

(k−1)
2 − a13x

(k−1)
3 )/a11,

x
(k)
2 = (b2 − a21x

(k−1)
1 − a23x

(k−1)
3 )/a22, (11.2.1)

x
(k)
3 = (b3 − a31x

(k−1)
1 − a32x

(k−1)
2 )/a33 .

Clearly, A must have nonzeros along its diagonal for the method to be defined. For
general n we have
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for i = 1:n

x
(k)
i =

⎛⎝bi −
i−1∑
j=1

aijx
(k−1)
j −

n∑
j=i+1

aijx
(k−1)
j

⎞⎠/
aii (11.2.2)

end

Note that the most recent solution estimate is not fully exploited in the updating of
a particular component. For example, x

(k−1)
1 is used in the calculation of x

(k)
2 even

though x
(k)
1 is available. If we revise the process so that the most current estimates of

the solution components are always used, then we obtain the Gauss-Seidel iteration:

for i = 1:n

x
(k)
i =

⎛⎝bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

⎞⎠/
aii (11.2.3)

end

As with Jacobi, a11, . . . , ann must be nonzero for the iteration to be defined.
For both of these methods, the transition from x(k−1) to x(k) can be succinctly

described in terms of the strictly lower triangular, diagonal, and strictly upper triangu-
lar parts of the matrix A. Denote these three matrices by LA, DA, and UA respectively,
e.g.,

LA =

⎡⎢⎣ 0 0 0

a21 0 0

a31 a32 0

⎤⎥⎦ , DA =

⎡⎢⎣ a11 0 0

0 a22 0

0 0 a33

⎤⎥⎦ , UA =

⎡⎢⎣ 0 a12 a13

0 0 a23

0 0 0

⎤⎥⎦ .

It is easy to show that the Jacobi step (11.2.2) has the form

MJ x(k) = NJ x(k−1) + b (11.2.4)

where MJ = DA and NJ = −(LA + UA). On the other hand, the Gauss-Seidel step
(11.2.3) is defined by

MGS x(k) = NGS x(k−1) + b (11.2.5)

with MGS = (DA + LA) and NGS = −UA.

11.2.2 Block Versions

The Jacobi and Gauss-Seidel methods have obvious block analogs. For example, if A
is a 3-by-3 block matrix with square, nonsingular diagonal blocks, then the system⎡⎢⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎥⎦
⎡⎢⎣ x1

x2

x3

⎤⎥⎦ =

⎡⎢⎣ b1

b2

b3

⎤⎥⎦
can be rewritten as follows:

A11x1 = b1 − A12 x2 − A13 x3,

A22x2 = b2 − A21 x1 − A23 x3,

A33x3 = b3 − A31 x1 − A32 x2.
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From this we obtain the block Jacobi iteration

A11x
(k)
1 = b1 − A12 x

(k−1)
2 − A13 x

(k−1)
3 ,

A22x
(k)
2 = b2 − A21 x

(k−1)
1 − A23 x

(k−1)
3 ,

A33x
(k)
3 = b3 − A31 x

(k−1)
1 − A32 x

(k−1)
2 ,

and the block Gauss-Seidel iteration

A11x
(k)
1 = b1 − A12 x

(k−1)
2 − A13 x

(k−1)
3 ,

A22x
(k)
2 = b2 − A21 x

(k)
1 − A23 x

(k−1)
3 ,

A33x
(k)
3 = b3 − A31 x

(k)
1 − A32 x

(k)
2 .

In contrast to the point versions of these iterations, a genuine linear system must be
solved for x

(k)
i . These can be solved directly using LU or Cholesky factorizations or

approximately solved via some iterative method. Of course, for this framework to make
sense, the diagonal blocks must be nonsingular.

11.2.3 Splittings and Convergence

Many iterative methods for the Ax = b problem can be written in the form

Mx(k) = Nx(k−1) + b (11.2.6)

where A = M − N is a splitting and x(0) is a starting vector. For the iteration to be
practical, it must be easy to solve linear systems that involve M . This is certainly the
case for the Jacobi method where M is diagonal and the Gauss-Seidel method where
M is lower triangular.

It turns out that the rate of convergence associated with (11.2.6) depends on the
eigenvalues of the iteration matrix

G = M−1N.

By subtracting the equation Mx = Nx + b from (11.2.6) we obtain

M(x(k) − x) = N(x(k−1) − x).

Thus, there is a simple connection between the error at a given step and the error at
the previous step. Indeed, if

e(k) = x(k) − x,

then
e(k) = M−1Ne(k−1) = Ge(k−1) = Gke(0). (11.2.7)

Everything hinges on the behavior of Gk as k → ∞. If ‖ G ‖ < 1 for some choice of
norm, then convergence is assured because

‖ e(k) ‖ = ‖ Gke(0) ‖ ≤ ‖ Gk ‖ ‖ e(0) ‖ ≤ ‖ G ‖k ‖ e(0) ‖ .
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However, it is the largest eigenvalue of G that determines the asymptotic behavior of
Gk. For example, if

G =
[

λ α
0 λ

]
,

then

Gk =
[

λk αλk−1

0 λk

]
. (11.2.8)

We conclude that for this problem Gk → 0 if and only if the eigenvalue λ satisfies
|λ| < 1. Recall from (7.1.1) the definition of spectral radius:

ρ(C) = max{ |λ| : λ ∈ λ(C) }.

The following theorem links the size of ρ(M−1N) to the convergence of (11.2.6).

Theorem 11.2.1. Suppose A = M − N is a splitting of a nonsingular matrix
A ∈ IRn×n. Assuming that M is nonsingular, the iteration (11.2.6) converges to x =
A−1b for all starting n-vectors x(0) if and only if ρ(G) < 1 where G = M−1N .

Proof. In light of (11.2.7), it suffices to show that Gk → 0 if and only if ρ(G) < 1.
If Gx = λx, then Gkx = λkx. Thus, if Gk → 0, then we must have |λ| < 1, i.e., the
spectral radius of G must be less than 1.

Now assume ρ(G) < 1 and let G = QTQH be its Schur decomposition. If
D = diag(t11, . . . , tnn) and E = A − D, then it follows from (7.3.15) that

‖ Gk ‖2 ≤ (1 + µ)n−1
(

ρ(G) +
‖ E ‖F

1 + µ

)k

where µ is any nonnegative real number. It is clear that we can choose this parameter
so that the upper bound converges to zero. For example, if G is normal, then E = 0
and we can set µ = 0. Otherwise, if

µ =
2‖ E ‖2

1 − ρ(G)
,

then it is easy to verify that

‖ Gk ‖2 ≤
(

1 +
2‖ E ‖F

1 − ρ(G)

)n−1 (1 + ρ(G)
2

)k

(11.2.9)

and this guarantees convergence because 1 + ρ(G) < 2.

The 2-by-2 example (11.2.8) and the inequality (11.2.9) serve as a reminder that the
spectral radius does not tell us everything about the powers of a nonnormal matrix.
Indeed, if G is nonnormal, then is possible for Gk (and the error ‖ x(k) − x ‖) to grow
considerably before decay sets in. The ε-pseudospectral radius introduced in §7.9.6
provides greater insight into this situation.

To summarize what we have learned so far, two attributes are critical if a method
of the form (11.2.6) is to be of interest:
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• The underlying splitting A = M −N must have the property that linear systems
of the form Mz = d are relatively easy to solve.

• A way must be found to guarantee that ρ(M−1N) < 1.

To give a flavor for the kind of analysis that attends the second requirement, we state
and prove a pair of convergence results that apply to the Jacobi and Gauss-Seidel
iterations.

11.2.4 Diagonal Dominance and Jacobi Iteration

One way to establish that the spectral radius of the iteration matrix G is less than
one is to show that ‖ G ‖ < 1 for some choice of norm. This inequality ensures that
all of G’s eigenvalues are inside the unit circle. As an example of this type of analysis,
consider the situation where the Jacobi iteration is applied to a strictly diagonally
dominant linear system. Recall from §4.1.1 that A ∈ IRn×n has this property if

n∑
j=1
j �=i

|aij | < |aii|, i = 1:n.

Theorem 11.2.2. If A ∈ IRn×n is strictly diagonally dominant, then the Jacobi
itreation (11.2.4) converges to x = A−1b.

Proof. Since GJ = −D−1
A (LA + UA) it follows that

‖ GJ ‖∞ = ‖ D−1
A (LA + UA) ‖∞ = max

1≤i≤n

n∑
j=1
j �=i

∣∣∣∣aij

aii

∣∣∣∣ < 1.

The theorem follows because no eigenvalue of A can be bigger that ‖ A ‖∞.

Usually, the “more dominant” the diagonal the more rapid the convergence, but there
are counterexamples. See P11.2.3.

11.2.5 Positive Definiteness and Gauss-Seidel Iteration

A more complicated spectral radius argument is needed to show that Gauss-Seidel
converges for matrices that are symmetric positive definite.

Theorem 11.2.3. If A ∈ IRn×n is symmetric and positive definite, then the Gauss-
Seidel iteration (11.2.5) converges for any x(0).

Proof. We must verify that the eigenvalues of GGS = −(DA + LA)−1LT
A are inside the

unit circle. This matrix has the same eigenvalues as the matrix

G = D
1/2
A GGS D

−1/2
A = −(I + L)−1LT
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where L = D
−1/2
A LAD

−1/2
A . If

−(I + L)−1LT v = λv vHv = 1

then −vHLHv = λ(1 + vHLv). If vHLv = a + bi, then

|λ|2 =
∣∣∣∣ −a + bi

1 + a + bi

∣∣∣∣2 =
a2 + b2

1 + 2a + a2 + b2 .

However, since D
−1/2
A AD

−1/2
A = I + L + LT is positive definite, it is not hard to show

that 0 < 1 + vHLv + vHLT v = 1 + 2a and hence that |λ| < 1.

We mention that to bound ρ(M−1
GS NGS) away from 1 requires additional information

about A. The required analysis can be quite involved.

11.2.6 Discussion of a Model Problem

It is instructive to consider application of the Jacobi and Gauss-Seidel methods to the
symmetric positive definite linear system

(In1
⊗ Tn2 + Tn1

⊗ In2) u = b (11.2.10)

where

Tm =

⎡⎢⎢⎢⎢⎣
2 −1 · · · 0

−1 2
. . .

...
...

. . . . . . −1

0 · · · −1 2

⎤⎥⎥⎥⎥⎦ ∈ IRm×m. (11.2.11)

Systems with this structure arise from discretization of the Poisson equation on a
rectangular grid; see §4.8.3. Recall that it is convenient to think of the solution vector
as doubly subscripted. Associated with grid point (i, j) is the unknown U(i, j). When
the system is solved, the value of U(i, j) is the average of the values associated with
its north, east, south, and west “grid neighbors.” Boundary values are known and
fixed and this permits us to reformulate (11.2.10) as a 2-dimensional array averaging
problem:

Given U(0:n1 + 1, 0:n2 + 1) with fixed values in its top and bottom row and
fixed values in its leftmost and rightmost columns, determine U(1:n1, 1:n2)
such that

U(i, j) =
U(i, j − 1) + U(i, j + 1) + U(i − 1, j) + U(i + 1, j)

4

for i = 1:n1 and j = 1:n2.

It is much easier to reason about Jacobi and Gauss-Seidel from this point of view. For
example, the update
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V = U

for i = 1:n1

for j = 1:n2

U(i, j) = (V (i − 1, j) + V (i, j + 1) + V (i + 1, j) + V (i, j − 1))/4
end

end

corresponds to one step of Jacobi while

for i = 1:n1

for j = 1:n2

U(i, j) = (U(i − 1, j) + U(i, j + 1) + U(i + 1, j) + U(i, j − 1))/4
end

end

is the corresponding update associated with Gauss-Seidel. The organization of both
methods reflects the ultimate exploitation of matrix structure: The matrix A is nowhere
in sight! We simply take advantage of the Kronecker structure at the block level and
the 1-2-1 structure of the underlying tridiagonal matrices.

The array-update point of view for the model problem that we are considering
makes it easy to appreciate why the Jacobi process is typically easier to vectorize
and/or parallelize than Gauss-Seidel. The Jacobi update of U(1:n1, 1:n2) is a matrix
averaging:

U(1:n1, 0:n2 − 1) + U(2:n1 + 1, 1:n2) + U(1:n1, 2:n2 + 1) + U(0:n1 − 1, 1:n2)
4

.

The use-the-most-recent-estimate attribute of the Gauss-Seidel method makes it harder
to describe the update at such a high level.

Now let us analyze the spectral radius ρ(M−1
J NJ). Closed-form expressions for

Tm’s eigenvalues permit us to determine this important quantity. Note that

Tm = 2I − Em

where

Em =

⎡⎢⎢⎢⎢⎣
0 1 · · · 0

1 0
. . .

...
...

. . . . . . 1

0 · · · 1 0

⎤⎥⎥⎥⎥⎦ .

Since

A = In1
⊗ Tn2 + Tn1

⊗ In2 = 4In1n2 − (In1
⊗ En2) − (En1

⊗ In2), (11.2.12)

the Jacobi splitting A = MJ − NJ is given by

MJ = 4In1n2 ,

NJ = (In1
⊗ En2) + (En1

⊗ In2).
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Using results from our fast eigensystem discussion in §4.8.6, it can be shown that

S−1
m EmSm = Dm = diag(µ(m)

1 , . . . , µ(m)
m ) (11.2.13)

where Sm is the sine transform matrix [Sm]kj = sin(kjπ/(m + 1)) and

µ
(m)
k = 2 cos

(
kπ

m + 1

)
, k = 1:m. (11.2.14)

It follows that

(Sn1
⊗ Sn2)

−1 (M−1
J NJ

)
(Sn1

⊗ Sn2) = (In1
⊗ Dn2 + Dn1

⊗ In2) /4.

By using the Kronecker structure of this diagonal matrix and (11.2.14), it is easy to
verify that

ρ(M−1
J NJ) =

2 cos(π/(n1 + 1)) + 2 cos(π/(n2 + 1))
4

. (11.2.15)

Note that this quantity approaches unity as n1 and n2 increase.
As a final exercise concerning the model problem, we use its special structure to

develop an interesting alternative iteration. From (11.2.12) we can write A = Mx −Nx

where
Mx = 4In1n2 − (In1

⊗ En2), Nx = (En1
⊗ In2).

Likewise, A = My − Ny where

My = 4In1n2 − (En1
⊗ In2), Ny = (In1

⊗ En2).

These two splittings can be paired to produce the following transition from u(k−1) to
u(k):

Mxv(k) = Nxu(k−1) + b,

Myu(k) = Nyv(k) + b.
(11.2.16)

Each step has a natural interpretation based on the underlying partial differential
equation; see §4.8.4. The first step corresponds to treating the north and south values
at each grid point as fixed, while the second step corresponds to treating the east and
west values at each grid point as fixed. The resulting iteration is an example of an
alternating direction iteration. See Varga (1962, Chap. 7). Since

u(k) − x = (M−1
y Ny)(v(k) − x) = (M−1

y Ny)(M−1
x Nx)(u(k−1) − x)

it follows that e(k) = Gke(0) where

G = (M−1
y Ny)(M−1

x Nx)

= (4In1n2 − En1
⊗ In2)

−1(In1
⊗ En2)(4In1n2 − In1

⊗ En2)
−1(En1

⊗ In2).

Using (11.2.13) and (11.2.14) it is easy to show that

(Sn1
⊗ Sn2)

−1G(Sn1
⊗ Sn2) =

(4In1n2 − Dn1
⊗ In2)

−1(In1
⊗ Dn2)(4In1n2 − In1

⊗ Dn2)
−1(Dn1

⊗ In2)

is diagonal and that

ρ(G) = =
cos(π/(n1 + 1)) cos(π/(n2 + 1))

(2 − cos(π/(n1 + 1))(2 − cos(π/(n2 + 1))
< 1. (11.2.17)
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11.2.7 SOR and Symmetric SOR

The Gauss-Seidel iteration is very attractive because of its simplicity. Unfortunately,
if the spectral radius of M−1

GS NGS is close to unity, then it may be prohibitively slow.
To address this concern, we consider the parameterized splitting A = Mω − Nω where

Mω =
1
ω

DA + LA Nω =
(

1
ω

− 1
)

DA + UA. (11.2.18)

This defines the method of successive over-relaxation (SOR):(
1
ω

DA + LA

)
x(k) =

((
1
ω

− 1
)

DA + UA

)
x(k−1) + b. (11.2.19)

At the component level we have

for i = 1:n

x
(k)
i = ω

⎛⎝bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

⎞⎠/
aii + (1 − ω)x(k−1)

i

end

Note that if ω = 1, then this is just the Gauss-Seidel method. The idea is to choose
ω so that ρ(M−1

ω Nω) is minimized. A detailed theory on how to do this is developed
by Young (1971). For an excellent synopsis of that theory, see Greenbaum (IMSL, p.
149).

Observe that x is updated top to bottom in the SOR step. We can just as easily
update from bottom to top:

for i = n: − 1:1

x
(k)
i = ω

⎛⎝bi −
i−1∑
j=1

aijx
(k−1)
j −

n∑
j=i+1

aijx
(k)
j

⎞⎠/
aii + (1 − ω) · x(k−1)

i

end

This defines the backward SOR iteration:(
1
ω

DA + UA

)
x(k) =

((
1
ω

− 1
)

DA + LA

)
x(k−1) + b. (11.2.21)

Note that this update can be obtained from (11.2.19) simply by interchanging the roles
of L and U .

If A is symmetric (UA = LT
A), then the symmetric SOR (SSOR) method is ob-

tained by combining the forward and backward implementations of the update as fol-
lows: (

1
ω

DA + LA

)
y(k) =

((
1
ω

− 1
)

DA − LT
A

)
x(k−1) + b, (11.2.22)

(
1
ω

DA + LT
A

)
x(k) =

((
1
ω

− 1
)

DA − LA

)
y(k) + b. (11.2.23)
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It can be shown that if

MSSOR =
ω

2 − ω

(
1
ω

DA + LA

)
D−1

A

(
1
ω

DA + LT
A

)
(11.2.24)

then the transition from x(k−1) to x(k) is given by

x(k) = x(k−1) + M−1
SSOR(b − Ax(k−1)). (11.2.25)

Note that MSSOR is defined if 0 < ω < 2 and that it is symmetric. It is also positive
definite if A has positive diagonal entries. Here is a result that shows SSOR converges
if A is symmetric and positive definite.

Theorem 11.2.4. Suppose the SSOR method (11.2.22) and (11.2.23) is applied to a
symmetric positive definite Ax = b problem and that 0 < ω < 2. If

Mω =
1
ω

DA + LA, Nω =
(

1
ω

− 1
)

DA − LT
A , G = M−T

ω NT
ω M−1

ω Nω,

then G has real eigenvalues, ρ(G) < 1, and

(x(k) − x) = Gk(x(0) − x). (11.2.26)

Proof. From (11.2.22) and (11.2.23) it follows that

y(k) − x = M−1
ω Nω(x(k−1) − x),

x(k) − x = M−T
ω NT

ω (y(k) − x),

from which it is easy to verify (11.2.26). Since D is a diagonal matrix with positive
diagonal entries, there is a diagonal matrix D1 so D = D2

1. If L1 = D−1
1 LD−1

1 and
G1 = D1GD−1

1 , then with a little manipulation we have

G1 = (I + ωLT
1 )−1(I + ωL1)−1((1 − ω)I − ωL1)((1 − ω)I − ωLT

1 ).

We show that if λ ∈ λ(G1), then 0 ≤ λ < 1. If G1v = λv, then

((1 − ω)I − ωL1)((1 − ω)I − ωLT
1 )v = λ(I + ωL1)(I + ωLT

1 )v.

This is a generalized singular value problem; see §8.7.4. It follows that λ is real and
nonnegative. Assuming that v ∈ IRn has unit 2-norm, it is easy to show that

λ =
‖ (1 − ω)v − ωLT

1 v ‖2
2

‖ v + ωLT
1 v ‖2

2

= 1 − ω(2 − ω)
1 + 2vT LT

1 v

‖ v + ωLT
1 v ‖2

2

. (11.2.27)

To complete the proof, note that 1 + 2vT LT
1 v = (D−1

1 v)T A(D−1
1 v) and that this quan-

tity is positive. By hypothesis, ω(2 − ω) > 0 and so we have λ < 1.

The original analysis of the symmetric SOR method is in Young (1970).
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11.2.8 The Chebyshev Semi-Iterative Method

Another way to accelerate the convergence of certain iterative methods makes use of
Chebyshev polynomials. Suppose the iteration Mx(j+1) = Nx(j) + b has been used to
generate x(1), . . . , x(k) and that we wish to determine coefficients νj(k), j = 0:k such
that

y(k) =
k∑

j=0

νj(k)x(j) (11.2.28)

represents an improvement over x(k). If x(0) = · · · = x(k) = x, then it is reasonable to
insist that y(k) = x. If the polynomial

pk(z) =
k∑

j=0

νj(k)zj

satisfies pk(1) = 1, then this criterion is satisfied and

y(k) − x =
k∑

j=0

νj(k)(x(j) − x) =
k∑

j=0

νj(k)(M−1N)je(0) = pk(G)e(0)

where G = M−1N . By taking norms in this equation we obtain

‖ y(k) − x ‖2 ≤ ‖ pk(G) ‖2 ‖ e(0) ‖2. (11.2.29)

This suggests that we can produce an improved approximate solution if we can find a
polynomial pk( · ) that (a) has degree k, (b) satisfies pk(1) = 1, and (c) does a good job
of minimizing the upper bound.

To implement this idea, we assume for simplicity that G is symmetric. (There
are ways to proceed if this is not the case; see Manteuffel (1977). Let

ST GS = diag(λ1, . . . , λn) = Λ

be a Schur decomposition of G and assume that

−1 < α ≤ λn ≤ · · · ≤ λ1 ≤ β < 1 (11.2.30)

where α and β are known estimates. It follows that

‖ pk(G) ‖2 = ‖ pk(Λ) ‖2 = max
λi∈λ(A)

|pk(λi)| ≤ max
α≤λ≤β

|pk(λ)|.

The degree-k Chebyshev polynomial ck(·) can be used to design a good choice for
pk( · ). We want a polynomial whose value on [α, β] is small subject to the constraint
that pk(1) = 1. Recall from the discussion in §10.1.5 that the Chebyshev polynomials
are bounded by unity on [−1, +1], but that their value is very large outside this range.
As a consequence, if

µ = −1 + 2
1 − α

β − α
= 1 + 2

1 − β

β − α
,
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then the polynomial

pk(z) = ck

(
− 1 + 2

z − α

β − α

)/
ck(µ)

satisfies pk(1) = 1 and is bounded by 1/|ck(µ)| on [α, β]. From the definition of pk(z)
and inequality (11.2.29) we see

‖ y(k) − x ‖2 ≤ ‖ x − x(0) ‖2

|ck(µ)| .

The larger the value of µ the greater the acceleration of convergence.
In order for the whole process to be effective, we need a more efficient method for

calculating y(k) than (11.2.28). The retrieval of the vectors x(0), . . . , x(k) becomes an
unacceptable overhead as k increases. Fortunately, it is possible to derive a three-term
recurrence among the y(k) by exploiting the three-term recurrence that exists among
the Chebyshev polynomials. Assume (for simplicity) that α = −β in (11.2.30) and that
we are given x(0) ∈ IRn. Here is how the process plays out when it is used to accelerate
the iteration Mx(j+1) = Nx(j) + b:

c0 = 1; c1 = 1/β

y(0) = x(0), My(1) = Ny(0) + b, r(1) = b − Ay(1), k = 1

while ‖ r(k) ‖ > tol

ck+1 = (2/β)ck − ck−1

ωk+1 = 1 + ck−1/ck+1

Mz(k) = r(k)

y(k+1) = y(k−1) + ωk+1
(
y(k) + z(k) − y(k−1)

)
k = k + 1

r(k) = b − Ay(k)

end

Note that y(0) = x(0) and y(1) = x(1), but that thereafter the x(k) are not involved.
For the acceleration to be effective we need good lower and upper bounds in (11.2.30)
and that is sometimes difficult to accomplish. The method is extensively analyzed in
Golub and Varga (1961) and Varga (1962, Chap. 5).

Problems

P11.2.1 Show that the Jacobi iteration converges for 2-by-2 symmetric positive definite systems.

P11.2.2 Show that if A = M − N is singular, then we can never have ρ(M−1N) < 1 even if M is
nonsingular.

P11.2.3 (Supplied by R.S. Varga) Suppose that

A1 =
[

1 −1/2
−1/2 1

]
, A2 =

[
1 −3/4

−1/12 1

]
.

Let J1 and J2 be the associated Jacobi iteration matrices. Show that ρ(J1) > ρ(J2), thereby refuting
the claim that greater diagonal dominance implies more rapid Jacobi convergence.

P11.2.4 Suppose A = Tn1
⊗ In2

⊗ In3 + In1
⊗ Tn2

⊗ In3 + In1
⊗ In2

⊗ Tn3 . If Jacobi’s method is
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applied to the problem Au = b, then what is the spectral radius of the associated iteration matrix?

P11.2.5 A 5-point “stencil” is associated with the matrix A = In1
⊗ Tn2 +Tn1

⊗ In2 and leads to the
requirement that U(i, j) be the average of U(i−1, j), U(i, j +1), U(i+1, j), and U(i, j−1). Formulate
a 9-point stencil procedure in which U(i, j) is a suitable average of its eight neighbors. (a) Describe
the resulting matrix using Kronecker products. (b) If Jacobi’s method is used to solve Au = b, then
what is the spectral radius of the associated iteration matrix?

P11.2.6 Consider the linear system (In1
⊗ Tn2 + Tn1

⊗ In2 )x = b. What is the spectral radius of the
iteration matrix for the block Jacobi iteration if the diagonal blocks are n2-by-n2?

P11.2.7 Prove (11.2.13) and (11.2.14).

P11.2.8 Prove (11.2.15).

P11.2.9 Prove (11.2.17).

P11.2.10 Prove (11.2.24) and (11.2.25).

P11.2.11 Consider the 2-by-2 matrix

A =
[

1 ρ
−ρ 1

]
.

(a) Under what conditions do we have ρ(M−1
GS NGS) < 1? (b) For what range of ω do we have

ρ(M−1
ω Nω) < 1? What value of ω minimizes ρ(M−1

ω Nω)? (c) Repeat (a) and (b) for the matrix

A =
[

In S
−ST In

]
where S ∈ IRn×n. Hint: Use the SVD of S.

P11.2.12 We want to investigate the solution of Au = f where A = AT . For a model problem,
consider the finite difference approximation to

−u′′ + σu′ = 0, 0 < x < 1,

where u(0) = 10 and u(1) = 10 expσ . This leads to the difference equation

−ui−1 + 2ui − ui+1 + R(ui+1 − ui−1) = 0, i = 1:n,

where R = σh/2, u0 = 10, and un+1 = 10eσ . The number R should be less than 1. What is the
spectral radius of M−1N where M = (A + AT )/2 and N = (AT −A)/2?

P11.2.13 Consider the iteration

y(k+1) = ω(By(k) + d− y(k−1)) + y(k−1)

where B has Schur decomposition QT BQ = diag(λ1, . . . , λn) with λ1 ≥ · · · ≥ λn. Assume that
x = Bx + d. (a) Derive an equation for e(k) = y(k) − x. (b) Assume y(1) = By(0) + d. Show that
e(k) = pk(B)e(0) where pk is an even polynomial if k is even and an odd polynomial if k is odd. (c)
Write f (k) = QT e(k). Derive a difference equation for f

(k)
j for j = 1:n. Try to specify the exact

solution for general f
(0)
j and f

(1)
j . (d) Show how to determine an optimal ω.

P11.2.14 Suppose we want to solve the linear least squares problem min‖Ax− b ‖2 where A ∈ IRm×n,
rank(A) = r ≤ n, and b ∈ IRm. Consider the iterative scheme

Mxi+1 = Nxi + AT b

where M = (AT A + λW ), N = λW , λ > 0 and W ∈ IRn×n is symmetric positive definite. (a) Show
that M−1N is diagonalizable and that ρ(M−1N) < 1 if rank(A) = n. (b) Suppose x0 = 0 and that

‖ v ‖W =
(
vT Wv

)−1/2
, the “W -norm.” Show that regardless of A’s rank, the iterates xi converge

to the minimum W -norm solution to the least squares problem. (c) Show that if rank(A) = n then
‖ xLS − xi+1 ‖W

≤ ‖ xLS − xi ‖W
. (d) Show how to implement the iteration give the QR factorization

of

M =
[

A√
λF

]
where W = FF T is the Cholesky factorization of W .

P11.2.15 (a) Suppose T ∈ IRn×n is tridiagonal with the property that ti,i+1ti+1,i > 0 for i = 1:n− 1.
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Show that there is a diagonal matrix D ∈ IRn×n so that S = DTD−1 is symmetric. (b) Consider the
following linear system for unknowns u1, . . . , un:

−ui−1 + 2ui − ui+1 +
σh

2
(ui+1 − ui) = fi, i = 1:n.

Assume u0 ≡ α, un+1 ≡ β, σ > 0, and h > 0. Under what conditions can this tridiagonal system be
symmetrized using (a)? (c) Give formulae for the eigenvalues of the Jacobi iteration matrix.
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We have seen that the condition κ(A) is an important issue when direct methods are applied to Ax = b.
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Jacobi Method for Real Positive Definite Matrices,” Numer. Math. 46, 31–42.
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11.3 The Conjugate Gradient Method
A difficulty associated with the SOR, Chebyshev semi-iterative, and related methods
is that they depend upon parameters that are sometimes hard to choose properly. For
example, the Chebyshev acceleration scheme requires good estimates of the largest
and smallest eigenvalues of the underlying iteration matrix M−1N . This can be a very
challenging problem unless this matrix is sufficiently structured. In this section and
the next we present various Krylov subspace methods that avoid this difficulty.

We start with the well-known conjugate gradient (CG) method due to Hestenes
and Stieffel (1952) and which is applicable to symmetric positive definite systems.
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There are several ways to motivate and derive the technique. Our approach involves
the method of steepest descent, Krylov subspaces, the Lanczos process, and tridiagonal
system solving. After developing the Lanczos implementation of the CG process, we
proceed to establish its equivalence with the Hestenes-Stieffel formulation.

A brief comment about notation is in order. Most of the methods in the previous
section are developed at the (i, j) level and this necessitated the use of superscripts to
designate vector iterates. From now on, the derivations in this chapter can proceed
at the vector level. Subscripts will be used to designate vector iterates, so instead of
{x(k)} we now have {xk}.

11.3.1 An Optimization Problem

Suppose A ∈ IRn×n is symmetric positive definite, b ∈ IRn, and that we want to compute
the solution x∗ to

Ax = b. (11.3.1)

Note that this problem is equivalent to solving the optimization problem

min
x ∈ IRn

φ(x) (11.3.2)

where

φ(x) =
1
2
xT Ax − xT b. (11.3.3)

This is because φ is convex and its gradient is given by

∇φ(x) = Ax − b.

Thus, if xc is an approximate minimizer of φ, then xc can be regarded as an approximate
solution to Ax = b. To make this precise, we define the A-norm by

‖ v ‖
A

=
√

vT Av . (11.3.4)

Since

φ(xc) =
1
2
xT

c Axc − xT
c b =

1
2
(xc − x∗)A(xc − x∗) − 1

2
bT A−1b

and φ(x∗) = −bT A−1b/2, it follows that

φ(xc) =
1
2
‖ xc − x∗ ‖2

A
+ φ(x∗). (11.3.5)

Thus, an iteration that produces a sequence of ever-better approximate minimizers
for φ is an iteration that produces ever-better approximate solutions to Ax = b as
measured in the A-norm.

11.3.2 The Method of Steepest Descent

Let us consider the minimization of φ using the method of steepest descent with exact
line searches. In this method the current approximate minimizer xc is improved by
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searching in the direction of the negative gradient, i.e., the direction of most rapid
decrease. In particular, the improved approximate minimizer x+ is given by

x+ = xc − µcgc,

where gc = Axc − b is the current gradient and µc solves

min
µ ∈ IR

φ(xc − µgc). (11.3.6)

This is an exact line search framework. It is easy to show that

µc =
gT

c gc

gT
c Agc

and

φ(x+) = φ(xc) − 1
2
· (gT

c gc)2

rT
c Arc

. (11.3.7)

Thus, the objective function is decreased if rc 
= 0. To establish global convergence of
the method, define

κc =
gT

c Agc

gT
c gc

· gT
c A−1gc

gT
c gc

and observe that gT
c A−1gc = 2φ(xc) + bT A−1b and

φ(x+) = φ(xc) − 1
2

1
κc

gT
c A−1gc = φ(xc) − 1

κc

(
φ(xc) +

1
2
bT A−1b

)
. (11.3.8)

If λmax(A) and λmin(A) are the largest and smallest eigenvalues of A, then we have

κc =
gT

c Agc

gT
c gc

· gT
c A−1gc

gT
c gc

≤ λmax(A)
λmin(A)

= κ2(A).

If we subtract φ(x∗) = −(bT A−1b)/2 from both sides of (11.3.8) and use (11.3.5), then
we obtain

‖ x+ − x∗ ‖2
A

≤
(

1 − 1
κ2(A)

)
‖ xc − x∗ ‖2

A
. (11.3.9)

It follows by induction that the method of steepest descent with exact line search is
globally convergent.

Algorithm 11.3.1 (Steepest Descent with Exact Line Search) Given a symmet-
ric positive definite A ∈ IRn×n, b ∈ IRn, Ax0 ≈ b, and a termination tolerance τ , the
following algorithm produces x ∈ IRn so that ‖ Ax − b ‖2 ≤ τ .

x = x0, g = Ax − b

while ‖ g ‖2 > τ

µ = (gT g)/(gT Ag), x = x − µg, g = Ax − b
end

Unfortunately, a convergence rate characterized by (1 − 1/κ2(A))k/2 is typically not
good enough unless A is extremely well-conditioned.
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11.3.3 A Subspace Strategy

We can improve upon the steepest descent idea by expanding the dimension of the
search space each step. To pursue this idea we introduce the notion of an affine space.
Formally, if v ∈ IRn and S ⊆ IRn is a subspace, then

v + S = { x | x = v + s, s ∈ S }.
is an affine space. Note that in Algorithm 11.3.1, the step-k optimization is over the
affine space xk + span{∇φ(xk)}.

Given Ax0 ≈ b, our plan is to produce a nested sequence of subspaces

S1 ⊂ S2 ⊂ S3 ⊂ · · ·
that satisfy dim(Sk) = k and to solve the problem

min
x ∈ x0+Sk

φ(x) (11.3.10)

each step along the way. If xk is the step-k minimizer, then because of the nesting
we have φ(x1) ≥ φ(x2) ≥ · · · ≥ φ(xn) = φ(x∗). Since Sn = IRn, we ultimately obtain
x∗ = A−1b. Even though this is a finite-step solution framework, it may not be
attractive if n is extremely large. The challenge is to find a subspace sequence that
promotes rapid decrease in the value of φ, for then we may be able to terminate the
iteration long before k equals n.

With this goal in mind we note that at xk the function φ decreases most rapidly
in the direction of the negative gradient. Thus, it makes sense to choose Sk+1 so that
it includes xk and the gradient gk = ∇φ(xk) = Axk − b. This strategy guarantees
that xk+1 is at least as good as a steepest descent update:

min
x∈x0+Sk+1

φ(x) = φ(xk+1) ≤ min
µ ∈ IR

φ(xk − µgk) (11.3.11)

If x0 is an initial guess and we define g0 = Ax0− b, then since ∇φ(xk) ∈ span{xk, Axk}
it follows that the only way to satisfy this requirement is to set

Sk = K(A, g0, k) = span{g0, Ag0, A2g0, . . . , A
k−1g0 }.

We can use the Lanczos process (§10.1) to generate these Krylov subspaces.

11.3.4 The Method of Conjugate Gradients: First Version

Recall that after k steps of the Lanczos iteration (Algorithm 10.1.1) we have generated
a matrix

Qk = [ q1 | · · · | qk ] ∈ IRn×k

with orthonormal columns, a tridiagonal matrix

Tk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 · · · 0

β1 α2
. . .

...
. . . . . . . . .

...
. . . . . . βk−1

0 · · · βk−1 αk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (11.3.12)
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and a vector rk ∈ ran(Qk)⊥ so that

AQk = QkTk + rkeT
k . (11.3.13)

Note that the tridiagonal matrix

QT
k AQk = Tk

is positive definite. The solution to the optimization problem (11.3.10) via Lanczos is
particularly simple if we set q1 = r0/β0 where r0 = b − Ax0 = −g0, and β0 = ‖ r0 ‖2.
Since the columns of Qk span Sk = K(A, g0, k), it follows that the act of minimizing φ
over x0 + Sk is equivalent to minimizing φ(x0 + Qky) over all vectors y ∈ IRk. Since

φ(x0 + Qky) =
1
2
(x0 + Qky)T A(x0 + Qky) − (x0 + Qky)T b

=
1
2
yT (QT

k AQk)y − yT (QT
k r0) + φ(x0)

and β0Qk(:, 1) = r0, it follows that the minimizer yk satisfies

Tkyk = QT
k r0 = β0e1

and so xk = x0 + Qkyk. Building on Algorithm 10.1.1, this leads to a preliminary
version of the conjugate gradient (CG) method:

k = 0, r0 = b − Ax0, β0 = ‖ r0 ‖2, q0 = 0

while βk 
= 0

qk+1 = rk/βk

k = k + 1

αk = qT
k Aqk (11.3.14)

Tkyk = β0e1

xk = Qkyk

rk = (A − αkI)qk − βk−1qk−1

βk = ‖ rk ‖2
end
x∗ = xk

As it stands, this formulation is not suitable for large problems because xk is computed
as an explicit n-by-k matrix-vector product and this requires access to all previously
computed Lanczos vectors. However, before we develop a slick recursion for xk that
circumvents this problem, we establish some important properties that are associated
with the iteration.

Theorem 11.3.1. If k∗ is the dimension of the smallest invariant subspace that
contains r0, then the conjugate gradient iteration (11.3.14) terminates with xk∗ = x∗.

Proof. From Theorem 10.1.1 we know that the Lanczos iteration terminates after
generating qk if K(A, q1, k) is an invariant subspace. If q1 = r0/‖ r0 ‖2, then qk∗
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must be generated for otherwise r0 would be contained in an invariant subspace with
dimension less than k∗. Since we can write r0 as a linear combination of k∗ eigenvectors,
it follows that the Krylov matrix [r0 |Ar0 |A2r0 | · · · |Ak∗r0 ] has rank k∗. This implies
βk∗ = 0 in (11.3.14) and so the iteration terminates with x∗ = xk∗ .

An important ramification is that early termination can be expected if the matrix A is
a low-rank perturbation of the identity matrix.

Corollary 11.3.2. Assume that U ∈ IRn×r, D ∈ IRr×r is symmetric, and r < n. If
A = In + UDUT is positive definite and the conjugate gradient iteration (11.3.14) is
applied to the problem Ax = b, then at most r + 1 iterations are required to compute
x∗.

Proof. If v ∈ IRn is in the nullspace of UT , then Av = v and λ = 1 is an eigenvalue
of A with multiplicity at least n − r. It follows that A cannot have more than r + 1
distinct eigenvalues. Thus, r0 is contained in an invariant subspace with dimension
r + 1.

Recall that our derivation of (11.3.14) begins with a plan to improve upon the method
of steepest descent. Instead of determining xk from a 1-dimensional search in the
direction of the ∇φ(xk−1), the CG method determines xk by searching over a Krylov
subspace that includes ∇φ(xk−1). It follows that a CG step is at least as good as a
steepest descent step, as the following theorem shows.

Theorem 11.3.3. If x∗ is the solution to the symmetric positive definite system
Ax = b and xk and xk+1 are produced by the CG method (11.3.14), then

‖ xk+1 − x∗ ‖A
≤

(
1 − 1

κ2(A)

)1/2

· ‖ xk − x∗ ‖A
.

Proof. Setting xc = xk in (11.3.9) gives

‖ x+ − x∗ ‖A
≤

(
1 − 1

κ2(A)

)1/2

‖ xk − x∗ ‖A
,

where x+ is the steepest descent successor to xc. By using inequality (11.3.11) we have
‖ xk+1 − x∗ ‖A

≤ ‖ x+ − x∗ ‖A
.

Just how these mathematical results color practical matters is detailed in §11.5. For
now, we continue with our exact arithmetic derivation of the method.

11.3.5 The Method of Conjugate Gradients: Second Version

Returning to the initial version of the CG method in (11.3.14), we work out the details
associated with the tridiagonal solve Tkyk = β0e1 and the matrix-vector product xk =
Qkyk. For the overall implementation to be attractive for large sparse A, we need
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a way to compute xk without having to access Lanczos vectors q1, . . . , qk. Since the
tridiagonal matrix Tk = QT

k AQk is positive definite, it has an LDLT factorization. By
comparing coefficients in Tk = LkDkLT

k where

Lk =

⎡⎢⎢⎢⎣
1 0 0 0
�1 1 0 0
...

. . . . . .
...

0 · · · �k−1 1

⎤⎥⎥⎥⎦ , Dk =

⎡⎢⎢⎢⎢⎣
d1 0 · · · 0

0 d2
...

...
. . . 0

0 · · · 0 dk

⎤⎥⎥⎥⎥⎦ ,

we find

d1 = α1

for i = 2:k

�i−1 = βi−1/di−1 (11.3.15)

di = αi − �i−1βi−1
end

Given this factorization, we see that if vk ∈ IRk solves

LkDkvk = β0e1 (11.3.16)

then LT
k yk = vk. If Ck ∈ IRn×k satisfies

CkLT
k = Qk, (11.3.17)

then
xk = x0 + Qkyk = x0 + CkLT

k yk = x0 + Ckvk. (11.3.18)

This is an impractical recipe because the matrix Ck is full and involves all the Lanczos
vectors. However, there are simple connections between Ck−1 and Ck and between
vk−1 and vk that can be used to transform (11.3.18) into a very handy update recipe
for xk. Consider the lower bidiagonal system (11.3.16), e.g.,⎡⎢⎢⎢⎢⎣

d1 0 0 0

d1�1 d2 0 0

0 d2�2 d3 0

0 0 d3�3 d4

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ν1

ν2

ν3

ν4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
β0

0

0

0

⎤⎥⎥⎥⎥⎦ .

We conclude that

vk =

⎡⎢⎢⎢⎣
ν1
...

νk−1

νk

⎤⎥⎥⎥⎦ =

[
vk−1

νk

]
(11.3.19)

where

νk =

{
β0/d1 if k = 1

−dk−1�k−1νk−1/dk if k > 1
. (11.3.20)
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Next, we consider a column partitioning of equation (11.3.17), e.g.,

[
c1 c2 c3 c4

]
⎡⎢⎢⎢⎣

1 �1 0 0

0 1 �2 0

0 0 1 �3

0 0 0 1

⎤⎥⎥⎥⎦ =
[

q1 q2 q3 q4
]
.

From this we conclude that
Ck =

[
Ck−1 ck

]
(11.3.21)

where

ck =

{
q1 if k = 1

qk − �k−1ck−1 if k > 1
. (11.3.22)

It follows from (11.3.19) and (11.3.21) that

xk = x0 + Ckvk = x0 + Ck−1vk−1 + νkck = xk−1 + νkck.

This is precisely the kind of recursive formula for xk that we need to make the recipe
(11.3.18) attractive for large sparse problems. Combining this expression with (11.3.20)
and (11.3.22), we obtain the following implementation of (11.3.14).

Algorithm 11.3.2 (Conjugate Gradients: Lanczos Version) If A ∈ IRn×n is symmetric
positive definite, b ∈ IRn, and Ax0 ≈ b, then this algorithm computes x∗ ∈ IRn so that
Ax∗ = b.

k = 0, r0 = b − Ax0, β0 = ‖ r0 ‖2, q0 = 0, c0 = 0

while βk 
= 0

qk+1 = rk/βk

k = k + 1

αk = qT
k Aqk

if k = 1

d1 = α1, ν1 = β0/d1

ck = q1
else

�k−1 = βk−1/dk−1, dk = αk − βk−1�k−1, νk = −βk−1νk−1/dk

ck = qk − �k−1ck−1
end

xk = xk−1 + νkck

rk = Aqk − αkqk − βk−1qk−1

βk = ‖ rk ‖2
end
x∗ = xk

Each iteration involves a single matrix-vector product and about 13n flops. It can be
implemented with just a handful of length-n storage arrays as we discuss in §11.3.8.
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11.3.6 The Gradients Are Conjugate

We make some observations about the gradients and search directions that arise during
the CG iteration. First, we show that the gradients

gk = Axk − b = ∇φ(xk)

are mutually orthogonal, a fact that explains the name of the algorithm.

Theorem 11.3.4. If x1, . . . , xk are generated by Algorithm 11.3.2, then gT
i gj = 0 for

all i and j that satisfy 1 ≤ i < j ≤ k. Moreover, gk = νkrk where νk and rk are defined
by the algorithm.

Proof. The partial tridiagonalization (11.3.13) permits us to write

gk = Axk − b = A(x0 + Qkyk) − b = −r0 + (QkTk + rkeT
k )yk.

Since QkTkyk = β0Qke1 = r0, it follows that

gk = (eT
k yk)rk.

Since each ri is a multiple of qi+1, it follows that the gi are mutually orthogonal. To
show that gk = νkrk, we must verify that eT

k yk = νk. From the equation

Tkyk = (LkDk)(LT
k yk) = β0e1

we know that LT
k yk = vk where (LkDk)vk = β0e1. To complete the proof, recall from

(11.3.19) that νk is the bottom component of vk and exploit the fact that LT
k is unit

upper bidiagonal.

The search directions c1, . . . , ck satisfy a different kind of orthogonality property.

Theorem 11.3.5. If c1, . . . , ck are generated by Algorithm 11.3.2, then

cT
i Acj =

{
0 if i 
= j,

dj if i = j,

for all i and j that satisfy 1 ≤ i < j ≤ k.

Proof. Since Qk = CkLT
k and Tk = QT

k AQk, we have

Tk = Lk(CT
k ACk)LT

k .

But Tk = LkDkLT
k and so from the uniqueness of the LDLT factorization, we have

Dk = CT
k ACk.

The column partitioning Ck = [c1 | . . . | ck] implies that cT
i Acj = [Dk]ij .

The theorem tells us that the search directions c1, . . . , ck are A-conjugate.
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11.3.7 The Hestenes-Stiefel Formulation

The preceding results permit us to rewrite Algorithm 11.3.2 in a way that avoids explicit
reference to the Lanczos vectors and the entries in the ongoing LDLT factorization.
In addition, we will be able to formulate the termination criterion in terms of the
linear system residual b − Axk instead of the more obscure “Lanczos residual vector”
(A−αkI)qk − βk−1qk−1. The key idea is to think of ck as a search direction and ρk as
a step length and to recognize that these quantities can be scaled. Consider the search
direction update recipe

ck = qk − �k−1ck−1

from Algorithm 11.3.2. Since qk is a multiple of gk−1 we see that

(search direction k) = gk−1 + scalar × (search direction k − 1)

If we write this as
pk = gk−1 + τk−1pk−1, (11.3.23)

then it follows from
Apk = Agk−1 + τk−1Apk−1

and Theorem 11.3.5 that

τk−1 = −pk−1Agk−1

pT
k−1Apk−1

(11.3.24)

and

pT
k Agk−1 = pT

k Apk. (11.3.25)

Since pk is a multiple of ck, the update formula xk = xk−1 + ρkck in Algorithm 11.3.2
has the form

xk = xk−1 − µkpk

for some scalar µk. By applying A to both sides of this equation and subtracting b we
get

gk = gk−1 − µkApk.

Using Theorem 11.3.4 and equation (11.3.25) we see that

µk =
gT

k−1gk−1

gT
k−1Apk

=
gT

k−1gk−1

pT
k Apk

.

From the equations gk−1 = gk−2 − µk−1Apk−1 and gT
k−1gk−2 = 0, it follows that

gT
k−1gk−1 = −µk−1g

T
k−1Apk−1,

gT
k−2gk−2 = µk−1g

T
k−2Apk−1 = µk−1p

T
k−1Apk−1.

Substituting these equations into (11.3.24) gives

τk−1 =
gT

k−1gk−1

gT
k−2gk−2

.
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By exploiting these recipes for pk, xk, gk, µk, and τk−1, and redefining rk to be the
residual b − Axk = −gk, we can rewrite Algorithm 11.3.2 as follows.

Algorithm 11.3.3 (Conjugate Gradients: Hestenes-Stiefel Version) If A ∈ IRn×n

is symmetric positive definite, b ∈ IRn, and Ax0 ≈ b, then this algorithm computes
x∗ ∈ IRn so that Ax∗ = b.

k = 0, r0 = b − Ax0

while ‖ rk ‖2 > 0

k = k + 1

if k = 1

pk = r0
else

τk−1 = (rT
k−1rk−1) / (rT

k−2rk−2)

pk = rk−1 + τk−1pk−1
end

µk = (rT
k−1rk−1)/(pT

k Apk)

xk = xk−1 + µkpk

rk = rk−1 − µkApk

end

x∗ = xk

This procedure is essentially the form delineated in Hestenes and Stieffel (1952).

11.3.8 A Few Practical Details

Rounding errors lead to a loss of orthogonality among the residuals and finite termi-
nation is not guaranteed in floating point. For an extensive analysis of this fact, see
Meurant (LCG). Thus, it makes sense to have a termination criterion based on (say)
the size of ‖ rk ‖ = ‖ b − Axk ‖. With that in mind and being careful about required
vector workspaces, we obtain the following more practical version of Algorithm 11.3.3.

k = 0, x = x0, r = b − Ax, ρc = rT r, δ = tol · ‖ b ‖2

while
√

ρc > δ

k = k + 1

if k = 1

p = r

else (11.3.26)

τ = ρc/ρ−, p = r + τp

end
w = Ap

µ = ρc/pT w, x = x + µp, r = r − µw, ρ− = ρc, ρc = rT r

end



636 Chapter 11. Large Sparse Linear System Problems

Thus, a CG step requires one matrix-vector product, three saxpys, and two inner
products. Four length-n arrays are required. Note that if xc is the final iterate and x∗
is the exact solution, then

‖ xc − x∗ ‖ = ‖ A−1(b − Axc) ‖2 ≤ tol · ‖ A−1 ‖2‖ b ‖2 ≤ tol · κ2(A)‖ x∗ ‖.

Thus, a stopping criterion ensures a relative error that is bounded by the product of
tol and the condition number.

In practice, it is desirable to terminate the iteration long before k approaches n.
Trefethen and Bau (NLA, p. 299) show that

‖ x − xk ‖
A

≤ 2‖ x − x0 ‖A

(√
κ2(A) − 1√
κ2(A) + 1

)k

. (11.3.27)

Of course, it does not take much of a condition number for the upper bound to be
hopelessly close to 1, so, by itself, this result does not provide hope for an early exit.
However, as we will see in §11.5, there is a way to induce speedy convergence by
applying the method to an equivalent “preconditioned” system that is designed in such
a way that (11.3.27) and/or Corollary 11.3.2 predict good things.

11.3.9 Conjugate Gradients Applied to AT A and AAT

There are two obvious ways to convert an unsymmetric Ax = b problem into an equiv-
alent symmetric positive definite problem:

Ax = b ≡

⎧⎨⎩
AT Ax = AT b,

AAT y = b, x = AT y.

Each of these conversions creates an opportunity to apply the method of conjugate
gradients.

If we apply CG to the AT Ax = AT b problem, then at the kth step a vector xk is
produced that minimizes

φAT A(x) =
1
2
xT (AT A)x − xT (AT b) =

1
2
‖ Ax − b ‖2

2 −
1
2
bT b

over the affine space
Sk = x0 + K(AT A, AT r0, k) (11.3.28)

where r0 = b−Ax0. The resulting algorithm is the conjugate gradient normal equation
residual (CGNR) method.

If we apply the CG method to the “y-problem” AAT y = b, then at the kth step
a vector yk is produced that minimizes

φAAT (y) =
1
2
yT AAT y − yT b =

1
2
‖ AT y − A−1b ‖2

2 − 1
2
bT (AAT )−1b

over the affine space y0 + K(AAT , r0, k) where r0 = b − Ax0. Setting xk = AT yk,
this says that x = xk minimizes ‖ x − x∗ ‖2 over the affine space defined in (11.3.28).
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CG CGNR CGNE

rc = b − Ax0 rc = b − Ax0, zc = AT rc rc = b − Axc

pc = rc pc = zc pc = AT rc

µ =
rT
c rc

pT
c Apc

µ =
zT

c zc

(Apc)T (Apc)
µ =

rT
c rc

pT
c pc

x+ = xc + µ pc x+ = xc + µ pc x+ = xc + µ pc

r+ = rc − µ Apc r+ = rc − µ Apc, z+ = AT r+ r+ = rc − µ Apc

τ =
rT
+ r+

rT
c rc

τ =
zT
+ z+

zT
c zc

τ =
rT
+ r+

rT
c rc

p+ = r+ + τ pc p+ = z+ + τ pc p+ = AT r+ + τ pc

Figure 11.3.1. The initializations and update formulae for the conjugate gradient (CG)
method, the conjugate gradient normal equation residual (CGNR) method, and the con-
jugate gradient normal equation error (CGNE) method. The subscript “c” designates
“current” while the subscript “+” designates “next”.

The resulting method is called the conjugate gradient normal equation error (CGNE)
method. It is also known as Craig’s method.

Simple modifications of the CG update formulae in Algorithm 11.3.3 are required
to implement CGNR and CGNE. We tabulate the initializations and updates of the
three methods in Figure 11.3.1. Notice that CGNR and CGNE require procedures for
A-times-vector and AT -times-vector. See Saad (IMSLS, pp. 251–254) and Greenbaum
(IMSL, Chap. 7) for details and perspective on the squaring of the condition number
that is associated with these methods. The CGNR method can be applied if A is rect-
angular. Thus, it provides a normal equation framework for solving sparse, full rank,
least squares problems. See Björck (SLE, pp. 288–293) for discussion and analysis.
The CGNE method can also be applied to rectangular problems, but the underlying
system must be consistent.

Problems

P11.3.1 How many n-vectors are required to implement each of the algorithms in this section?
P11.3.2 Let αi and βi be defined by Algorithm 11.3.2. How could those tridiagonal entries be
generated as the iteration in Algorithm 11.3.3 proceeds?
P11.3.3 Derive the update formulae for the CGNR and CGNE methods displayed in Figure 11.3.1.
P11.3.4 Show that if the while-loop condition in Algorithm 11.3.3 is changed to

‖ rk ‖ > tol (‖A ‖‖ xk ‖+ ‖ b ‖),

then the algorithm produces the exact solution to a nearby Ax = b problem relative to tol.

Notes and References for §11.3

Background texts for the material in this section include Greenbaum (IMSL), Meurant (LCG), and
Saad (ISPLA). The original reference for the conjugate gradient method is:
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M.R. Hestenes and E. Stiefel (1952). “Methods of Conjugate Gradients for Solving Linear Systems,”
J. Res. Nat. Bur. Stand. 49, 409–436.

The idea of regarding conjugate gradients as an iterative method began with the following paper:

J.K. Reid (1971). “ On the Method of Conjugate Gradients for the Solution of Large Sparse Systems
of Linear Equations,” in Large Sparse Sets of Linear Equations, J.K. Reid (ed.), Academic Press,
New York, 231–254.

Some historical and unifying perspectives are offered in:

G.H. Golub and D.P. O’Leary (1989). “Some History of the Conjugate Gradient and Lanczos Meth-
ods,” SIAM Review 31, 50–102.

M.R. Hestenes (1990). “Conjugacy and Gradients,” in A History of Scientific Computing, Addison-
Wesley, Reading, MA.

S. Ashby, T.A. Manteuffel, and P.E. Saylor (1992). “A Taxonomy for Conjugate Gradient Methods,”
SIAM J. Numer. Anal. 27, 1542–1568.

Over the years, many authors have analyzed the method:

G.W. Stewart (1975). “The Convergence of the Method of Conjugate Gradients at Isolated Extreme
Points in the Spectrum,” Numer. Math. 24, 85–93.

A. Jennings (1977). “Influence of the Eigenvalue Spectrum on the Convergence Rate of the Conjugate
Gradient Method,” J. Inst. Math. Applic. 20, 61–72.

O. Axelsson (1977). “Solution of Linear Systems of Equations: Iterative Methods,” in Sparse Matrix
Techniques: Copenhagen, 1976, V.A. Barker (ed.), Springer-Verlag, Berlin.

M.R. Hestenes (1980). Conjugate Direction Methods in Optimization, Springer-Verlag, Berlin.
J. Cullum and R. Willoughby (1980). “The Lanczos Phenomena: An Interpretation Based on Conju-

gate Gradient Optimization,” Lin. Alg. Applic. 29, 63–90.
A. van der Sluis and H.A. van der Vorst (1986). “The Rate of Convergence of Conjugate Gradients,”

Numer. Math. 48, 543–560.
A.E. Naiman, I.M. Babuka, and H.C. Elman (1997). “A Note on Conjugate Gradient Convergence,”

Numer. Math. 76, 209–230.
A.E. Naiman and S. Engelberg (2000). “A Note on Conjugate Gradient Convergence - Part II,”

Numer. Math. 85, 665–683.
S. Engelberg and A.E. Naiman (2000). “A Note on Conjugate Gradient Convergence - Part III,”

Numer. Math. 85, 685–696.

For a floating-point discussion of CG, see Meurant (LCG) as well as:

H. Wozniakowski (1980). “Roundoff Error Analysis of a New Class of Conjugate Gradient Algorithms,”
Lin. Alg. Applic. 29, 509–529.

A. Greenbaum and Z. Strakos (1992). “Predicting the Behavior of Finite Precision Lanczos and
Conjugate Gradient Computations,” SIAM J. Matrix Anal. Applic. 13, 121–137.

Z. Strakoš and P. Tichý (2002). “On Error Estimation in the Conjugate Gradient Method and Why
it Works in Finite Precision Computations,” ETNA 13, 56–80.

G. Meurant and Z. Strakoš (2006). “The Lanczos and Conjugate Gradient Algorithms in Finite
Precision Arithmetic,” Acta Numerica 15, 471–542.

The family of CG-related methods is very large and the following is a small subset of the literature:

G.W. Stewart (1973). “Conjugate Direction Methods for Solving Systems of Linear Equations,”
Numer. Math. 21, 284–297.

D.P. O’Leary (1980). “The Block Conjugate Gradient Algorithm and Related Methods,” Lin. Alg.
Applic. 29, 293–322.

J.E. Dennis Jr. and K. Turner (1987). “Generalized Conjugate Directions,” Lin. Alg. Applic. 88/89,
187–209.

A. Bunse-Gerstner and R. Stover (1999). “On a Conjugate Gradient-Type Method for Solving Complex
Symmetric Linear Systems,” Lin. Alg. Applic. 287, 105–123.

T. Barth and T. Manteuffel (2000). “Multiple Recursion Conjugate Gradient Algorithms Part I:
Sufficient Conditions,” SIAM J. Matrix Anal. Applic. 21, 768–796.

C. Li (2001). “CGNR Is an Error Reducing Algorithm,” SIAM J. Sci. Comput. 22, 2109–2112.
A.A. Dubrulle (2001). “Retooling the Method of Block Conjugate Gradients,” ETNA 12, 216–233.
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W.W. Hager and H. Zhang (2006). “Algorithm 851: CG DESCENT, a Conjugate Gradient Method
with Guaranteed Descent,” ACM Trans. Math. Softw. 32, 113–137.

Y. Saad (2006). “Filtered Conjugate Residual-type Algorithms with Applications,” SIAM J. Matrix
Anal. Applic. 28, 845–870.

The use of the method to solve certain eigenvalue problems is detailed in:

A. Ruhe and T. Wiberg (1972). “The Method of Conjugate Gradients Used in Inverse Iteration,” BIT
12, 543–554.

A. Edelman and S.T. Smith (1996). “On Conjugate Gradient-Like Methods for Eigen-Like Problems,”
BIT 36, 494–508.

The design of sensible stopping criteria has many subtleties, see:

S.F. Ashby, M.J. Holst, A. Manteuffel, and P.E. Saylor (2001). “The Role of the Inner Product in
Stopping Criteria for Conjugate Gradient Iterations,” BIT 41, 26–52.

M. Arioli (2004). “A Stopping Criterion for the Conjugate Gradient Algorithm in a Finite Element
Method Framework,” Numer. Math. 97, 1–24.

11.4 Other Krylov Methods
The conjugate gradient method can be regarded as a clever pairing of the symmetric
Lanczos process and the LDLT factorization. The “cleverness” is associated with the
recursions that support an economical transition from xk−1 to xk. In this section we
move beyond symmetric positive definite systems and present instances of the same
paradigm for more general problems:(

Krylov
process

)
+

(
Matrix

factorization

)
+

(
Clever

recursions

)
=

⎛⎝ Sparse
matrix
method

⎞⎠ .

Methods for the symmetric indefinite problem (MINRES, SYMMLQ), the least squares
problem (LSQR, LSMR), and the square Ax = b problem (GMRES, QMR, BiCG, CGS,
BiCGStab) are briefly discussed. The Lanczos, Arnoldi, and unsymmetric Lanczos
iterations are in the mix. Our goal is to communicate the main idea behind these
methods. For deeper insight, practical intuition, and analysis, see Saad (ISPLA),
Greenbaum (IMSL), van der Vorst (IMK), Freund, Golub, and Nachtigal (1992), and
LIN TEMPLATES.

11.4.1 MINRES and SYMMLQ for Symmetric Systems

Assume that A ∈ IRn×n is symmetric indefinite, i.e., λmin(A) < 0 < λmax(A). A
consequence of this is that we cannot recast the Ax = b problem as a minimization
problem associated with φ(x) = xT Ax/2 − xT b. Indeed, this function has no lower
bound. If Ax = λminx, then φ(αx) = α2λmin − αxT b approaches −∞ as α gets big.

This suggests that we switch to a more workable objective function. Instead of
adopting the CG strategy of minimizing φ over the affine space x0 + K(A, r0, k), we
propose to solve

min
x∈x0+K(A,r0,k)

‖ b − Ax ‖2. (11.4.1)

at each step. As in CG, we use the Lanczos process to generate the Krylov subspaces,
setting q1 = r0/β0 where r0 = b − Ax0 and β0 = ‖ g0 ‖2. After k steps we have

AQk = QkTk + βkqk+1e
T
k .
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That is,
AQk = Qk+1Hk, (11.4.2)

where Hk ∈ IRk+1×k is the Hessenberg matrix

Hk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β2 · · · · · · 0

β1 α2
. . . 0

...
. . . . . .

...
...

. . . βk−1

0 · · · · · · βk−1 αk

0 · · · · · · 0 βk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11.4.3)

Writing x = x0 + Qky and recalling that ran(Qk) = K(A, r0, k), we see that the
optimization (11.4.1) involves minimizing

‖ A(x0 + Qky) − b ‖2 = ‖ Qk+1Hky − (b − Ax0) ‖2 = ‖ Hky − β0e1 ‖2

over all y ∈ IRk. To solve this problem we take a hint from §5.2.6 and use the Givens
QR factorization procedure. Suppose G1, . . . , Gk are Givens rotations such that

GT
k · · ·GT

1 Hk =
[

Rk

0

]
, Rk ∈ IRk×k,

is upper triangular. If

GT
k · · ·GT

1 (β0e1) =
[

pk

ρk

]
, pk ∈ IRk,

and yk ∈ IRk solves Rkyk = pk, then xk = x0 + Qkyk solves (11.4.1) and the norm of
the residual is given by ‖ b − Axk ‖2 = |ρk|. The transition

{Hk−1, Rk−1, pk−1, ρk−1} → {Hk, Rk, pk, ρk}

can be realized with O(1) flops after the kth Lanczos step is performed. The Givens
rotation Gk can be determined from βk and [Rk−1]k−1,k−1. Note that after step k−1 we
already have the first k−2 rows of Rk and the first k−2 components of pk. The matrix
Rk has upper bandwidth 2 and so the triangular system that determines yk can be
solved with O(k) flops. Thus, in computing xk = x0 + Qkyk each step is not essential.
On the other hand, it is possible to work out an O(n) transition from xk−1 to xk

through recursions that involve Qk and the QR factorization of Hk. (This corresponds
to the LDLT -plus- Qk recursions associated with CG developed in §11.3.5.) Either way,
there is no need to access all the Lanczos vectors each step. Properly implemented, we
have the MINRES method of Paige and Saunders (1975).

An alternative approach developed by the same authors works with the LQ fac-
torization of the tridiagonal matrix Tk. We mimic the §11.3.4 in the CG derivation
leading to (11.3.14). However, the solution of the tridiagonal system

Tkyk = β0e1 (11.4.4)
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is problematic because Tk is no longer positive definite. This means that the LDLT

factorization, together with the associated recursions, is no longer safe to use.
A way around this difficulty is to work with the transpose of the matrix equation

AQk−1 = QkHk−1. Suppose xk = x0 + Qkyk where yk is the minimum-norm solution
to the (k − 1)-by-k underdetermined system

HT
k−1yk = β0e1. (11.4.5)

It follows from r0 = β0Qk−1e1, rk = r0 − AQk−1yk, and QT
k−1A = HT

k−1Q
T
k that

QT
k−1rk = β0e1 − HT

k−1yk = 0.

Thus, the residual rk = b − Axk is orthogonal to q1, . . . , qk−1. Note that the underde-
termined system (11.4.5) has full row rank and that yk can be determined via a Givens
rotation lower triangularization, e.g.,⎡⎢⎢⎢⎣

α1 β1 0 0 0

β1 α2 β2 0 0

0 β2 α3 β3 0

0 0 β3 α4 β4

⎤⎥⎥⎥⎦G1G2G3G4 =

⎡⎢⎢⎢⎣
× 0 0 0 0

× × 0 0 0

× × × 0 0

0 × × × 0

⎤⎥⎥⎥⎦ =
[

L4 0
]
.

This is an LQ factorization and in general we have

HT
k−1G1 · · ·Gk−1 =

[
Lk−1 0

]
where Lk−1 is lower triangular. (This is just the transpose of the Givens QR factoriza-
tion of Hk−1.) If wk−1 ∈ IRk−1 solves the necessarily nonsingular system Lk−1wk−1 =
β0e1, then

yk = G1 · · ·Gk−1

[
wk−1

0

]
.

The special structure of Lk−1 (it has lower bandwidth equal to 2) and the Givens
rotation sequence make it possible to realize the transition from xk to xk+1 with O(n)
work in a way that does not require access to all the Lanczos vectors. Collectively,
these ideas define the SYMMLQ method of Paige and Saunders (1975).

11.4.2 LSQR and LSMR for Least Squares Problems

We show how the sparse least squares problem min‖ Ax − b ‖2 can be solved using
the Paige-Saunders lower bidiagonalization process described in §10.4.4. Indeed, if we
apply Algorithm 10.4.2 with u1 = r0/β0 where r0 = b − Ax0 and β0 = ‖ r0 ‖2, then
after k steps we have a partial factorization of the form

AVk = UkBk + pkeT
k

where V = [ v1 | · · · | vk ] ∈ IRn×k has orthonormal columns, U = [ u1 | · · · | uk ] ∈ IRm×k

has orthonormal columns, and Bk ∈ IRk×k is lower bidiagonal. If pk ∈ IRm is nonzero,
then we can write

AVk = Uk+1B̃k
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where B̃k ∈ IRk+1×k is given by

B̃k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 0 · · · · · · 0

β1 α2
. . . 0

...
. . .

...
...

. . . 0
0 · · · · · · βk−1 αk

0 · · · · · · 0 βk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11.4.6)

It can be shown that span{v1, . . . , vk} = K(AT A, AT r0, k). In the LSQR method of
Paige and Saunders (1982), the kth approximate minimizer xk solves the problem

min
x∈x0+K(AT A,AT r0,k)

‖ Ax − b ‖2. (11.4.7)

Thus, xk = x0 + Vkyk where yk ∈ IRk is the minimizer of

‖ A(x0 + Vky) − b ‖2 = ‖ Uk+1B̃ky − (b − Ax0) ‖2 = ‖ B̃ky − β0e1 ‖2.

Givens QR can be used to solve this problem just as it is used in the MINRES context
above. Suppose

GT
k · · ·GT

1 B̃k =
[

Rk

0

]
, GT

k · · ·GT
1 (β1e1) =

[
pk

ρk

]
,

where G1, . . . , Gk are Givens rotations, Rk ∈ IRk×k is upper triangular, pk ∈ IRk, and
ρk ∈ IR. Then, yk solves Rky = pk and

xk = x0 + Vkyk = x0 + Wkpk

where Wk = VkR−1
k . It is possible to compute xk from xk−1 via a simple recursion

that involves the last column of Wk. Overall, we obtain the LSQR method of Paige
and Saunders (1982). It requires only a few vectors of storage to implement.

The LSMR method provides an alternative to the LSQR method and is mathe-
matically equivalent to MINRES applied to the normal equations AT Ax = AT b. Like
LSQR, the technique can be used to solve least squares problems, regularized least
squares problems, undetermined systems, and square unsymmetric systems. The 2-
norms of the vectors rk = b − Axk and AT rk decrease monotonically, which allows for
tractable early-termination. See Fong and Saunders (2011) for more details.

11.4.3 GMRES for General Ax = b

The Paige-Saunders MINRES method (§11.4.1) is a Lanczos-based technique that can
be used to solve symmetric Ax = b problems. The kth iterate xk minimizes ‖ Ax − b ‖2
over x0 + K(A, b, k). We now present an Arnoldi-based iteration that does the same
thing and is applicable to general linear systems. The method is referred to as the
generalized minimum residual (GMRES) method and is due to Saad and Shultz (1986).
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After k steps of the Arnoldi iteration (Algorithm 10.5.1) it is easy to confirm
using (10.5.2) that

AQk = Qk+1H̃k (11.4.8)

where the columns of
Qk+1 = [ Qk | qk+1 ]

are the orthonormal Arnoldi vectors and the upper Hessenberg matrix H̃k is given by

H̃k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

0
. . . . . .

...
...

. . . . . .
...

0 · · · · · · hk,k−1 hkk

0 · · · · · · 0 hk+1,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ IRk+1×k.

Moreover, if q1 = r0/β0 where r0 = b − Ax0 and β0 = ‖ r0 ‖2, then

span{q1, . . . , qk} = K(A, r0, k).

In step k, the GMRES method requires minimization of ‖ Ax − b ‖2 over the affine
space x0 + K(A, r0, k). As with MINRES, we must find a vector y ∈ IRk so that

‖ A(x0 + Qky) − b ‖2 = ‖ Qk+1H̃ky − (b − Ax0) ‖2 = ‖ H̃ky − β0e1 ‖2

is minimized. If yk is the solution to this (k + 1)-by-k least squares problem, then
the k-th GMRES iterate is given by xk = x0 + Qkyk. Note that if Givens rotations
G1, . . . , Gk have been determined so that

GT
k · · ·GT

1 H̃k =
[

Rk

0

]
, Rk ∈ IRk×k, (11.4.9)

is upper triangular and we set

GT
k · · ·GT

1 (β0e1) =
[

pk

ρk

]
, (11.4.10)

where pk ∈ IRk and ρk ∈ IR, then Rkyk = pk and

|ρk| = ‖ Axk − b ‖2.

The transition
{Rk−1, pk−1, ρk−1} → {Rk, pk, ρk}

is a particularly simple update that involves the generation of a single rotation Gk and
exploitation of the identities Rk−1 = Rk(1:k − 1, 1:k − 1) and pk(1:k − 1) = pk−1.

As a procedure for large sparse problems, the GMRES method inherits the usual
Arnoldi concern: the computation of H(1:k + 1, k) requires O(kn) flops and access to
all previously computed Arnoldi vectors. For this reason it is necesssary to build a
restart strategy around the following, m-step GMRES building block:
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Algorithm 11.4.2 (m-step GMRES) If A ∈ IRn×n is nonsingular, b ∈ IRn, Ax0 ≈ b,
and m is a positive iteration limit, then this algorithm computes x̃ ∈ IRn where either
x̃ solves Ax = b or minimizes ‖ Ax − b ‖2 over the affine space x0 + K(A, r0, m) where
r0 = b − Ax0.

k = 0, r0 = b − Ax0, β0 = ‖ r0 ‖2

while (βk > 0) and k < m

qk+1 = rk/βk

k = k + 1

rk = Aqk

for i = 1:k

hik = qT
i rk (11.4.11)

rk = rk − hikqi

end

βk = ‖ rk ‖2

hk+1,k = βk

Apply G1, . . . , Gk−1 to H(1:k, k) and determine Gk, Rk, pk, and ρk

end

Solve Rkyk = pk and set x̃ = x0 + Qkyk

If x̃ is not good enough, then the process can be repeated with the new x0 set to x̃.
There are many important implementation details associated with this framework, see
Saad (IMSLA, pp. 164–184) and van der Vorst (IMK, pp. 65–84).

11.4.4 Optimizing from the Polynomial Point of View

Before we present the next group of methods, it is instructive to connect the Krylov
framework with polynomial approximation. Suppose the columns of Qk ∈ IRn×k span
K(A, q1, k). It follows that if y ∈ IRk, then Qky = ϕ(A)q1 for some polynomial ϕ that
has degree k−1 or less. This is because

Qk = [ q1 |Aq1 | · · · |Ak−1q1 ] B

for some nonsingular B ∈ IRk×k and so if α = By, then

Qky = [q1 | Aq1 | · · · | Ak−1q1]α = (α1I + α2A + · · · + αkAk−1)q1.

Thus, the GMRES (and MINRES) optimization can be rephrased as a polynomial
optimization problem. If IPk denotes the set of all degree-k polynomials, then we have

min
x∈x0+K(A,r0,k)

‖ b − Ax ‖2 = min
ϕ∈IPk−1

‖ b − A(x0 + ϕ(A))r0 ‖2

= min
ϕ∈IPk−1

‖ (I − A·ϕ(A))r0 ‖2

= min
ψ∈IPk,ψ(0)=1

‖ ψ(A)r0 ‖2 .
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This point of view figures heavily in the analysis of various Krylov subspace methods
and can also be used to suggest alternative strategies.

11.4.5 BiCG, CGS, BiCGstab, and QMR for General Ax = b

Just as the Arnoldi iteration underwrites GMRES, the unsymmetric Lanczos process
(10.5.11) underwrites the next cohort of methods that we present. Suppose we complete
k steps of (10.5.11) with q1 = r0/β0, r0 = b − Ax0, β0 = ‖ r0 ‖2, and rT

0 r̃0 
= 0. This
means we have the partial factorizations

AQk = QkTk + rkeT
k , Q̃T

k rk = 0, (11.4.12)

AT Q̃k = Q̃kTT
k + r̃keT

k , QT
k r̃k = 0, (11.4.13)

where
Qk = [ q1 | · · · | qk ] , ran(Qk) = K(A, r0, k),

Q̃k = [ q̃1 | · · · | q̃k ] , ran(Q̃k) = K(AT , r̃0, k).

In addition, Q̃T
k Qk = Ik and Q̃T

k AQk = Tk ∈ IRk×k is tridiagonal. Vectors qk+1 and
q̃k+1 and scalars βk and τk satisfy

βkqk+1 = rk, τk q̃k+1 = r̃k

and can be generated with access to just the last two columns of Qk and Q̃k.
In step k of the biconjugate gradient (BiCG) method, an iterate xk = x0 + Qkyk

is produced where yk ∈ IRk solves the k-by-k tridiagonal system

Tkyk = Q̃T
k r0.

It follows that

Q̃T
k (b − Axk) = Q̃T

k (b − A(x0 + Qkyk)) = Q̃T
k r0 − Tkyk = 0.

Thus, the residual associated with xk is orthogonal to the range of Q̃k.
Assume that Tk has an LU factorization Tk = LkUk and note that Lk is unit

lower bidiagonal and Uk is upper bidiagonal. It follows that

xk = x0 + QkT−1
k Q̃T

k r0 = (QkU−1
k )(L−1

k (Q̃T
k r0)).

Analogously to how we derived the CG algorithm, it is possible to develop simple
connections between the matrix (QkU−1

k ) and its predecessor and between the vector
(L−1

k (Q̃T
k r0)) and its predecessor. The end result is a procedure that can generate

xk through simple recursions, which we report in Figure 11.4.1. We mention that
the BiCG method is subject to serious breakdown because of its dependence on the
unsymmetric Lanczos process. However, with the look-ahead idea discussed in §10.5.6,
it is possible to overcome some of these difficulties. Notice that BiCG collapses to CG
if A is symmetric positive definite and r̃0 = r0. Also observe the similarity between
the r and r̃ updates and the p and p̃ updates.

A negative aspect of the BiCG method is that it requires procedures for both
A-times-vector and AT -times-vector. (In some applications the latter is a challenge.)
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BiCG CGS BiCGstab

r0 = b − Ax0 r0 = b − Ax0 r0 = b − Ax0

r̃T
0 r0 
= 0 r̃T

0 r̃0 
= 0 r̃T
0 r̃0 
= 0

xc = x0 xc = x0 xc = x0

pc = rc = r0 pc = rc = r0 pc = rc = r0

p̃c = r̃c = r̃0 uc = rc

µ =
r̃T
c rc

p̃T
c Apc

µ =
r̃T
0 rc

r̃T
0 Apc

µ =
r̃T
0 rc

r̃T
0 Apc

x+ = xc + µ pc qc = uc − µ Apc sc = rc − µ Apc

r+ = rc − µ Apc x+ = xc + µ (uc + qc) ω =
sT

c Asc

(Asc)T (Asc)

r̃+ = r̃c − µ AT p̃c r+ = rc − µ A(uc + qc) x+ = xc + µ pc + ωsc

τ =
r̃T
+ r+

r̃T
c rc

τ =
r̃T
0 r+

r̃T
0 rc

r+ = sc − ωAsc

p+ = r+ + τ pc u+ = r+ + τ qc τ =
(r̃T

0 r+) µ

(r̃T
0 rc) ω

p̃+ = r̃+ + τ p̃c p+ = u+ + τ(qc + τpc) p+ = r+ + τ(pc − ωApc)

Figure 11.4.1. The initializations and update formulae for the biconjugate gradient
(BiCG) method, the conjugate gradient squared (CGS) method, and the biconjugate
gradient stablilized (BiCGstab) method. The subscript “c” designates “current” while
the subscript “+” designates “next”.

The conjugate gradient squared (CGS) method circumvents this problem and has some
interesting convergence properties as well. The derivation of the method uses the
polynomial point of view that we outlined in the previous section. It is easy to conclude
from Figure 11.4.1 that after k steps of the procedure we have degree-k polynomials
ψk and ϕk so that

rk = ψk(A)r0, pk = ϕk(A)r0,

r̃k = ψk(AT )r̃0, p̃k = ϕk(AT )r̃0,
(11.4.14)

and ψk(0) = ϕk(0) = 1. This enables us to characterize expressions like r̃T
k rk and

p̃T
k Apk in a way that involves only A-times-vector:

r̃T
k rk =

(
ψk(AT )r̃0

)T
(ψk(A)r0) = r̃T

0
(
ψ2

k(A)r0
)
,

p̃T
k Apk =

(
ϕk(AT )r̃0

)T
A (ϕk(A)r0) = r̃T

0
(
Aϕ2

k(A)r0
)
.
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It is possible to develop simple recursions among the polynomials {ψk} and {ϕk} that
facilitate the transitions

rk−1 = ψ2
k−1(A)r0 → ψ2

k(A)r0 = rk,

pk−1 = ϕ2
k−1(A)r0 → ϕ2

k(A)r0 = pk.

This leads to the conjugate gradient squared (CGS) method of Sonneveld (1989). It
produces iterates xk whose residuals rk satisfy rk = ψk(A)2r0. Note from Figure 11.4.1
that the updates rely on only matrix-vector products that involve only A. Because of
the squaring of the BiCG residual polynomial ψk, the method typically outperforms
BiCG when it works, i.e., (‖ ψk(A)2r0 ‖2 � ‖ ψk(A)r0 ‖2). By the same token, it
typically underperforms when BiCG struggles.

A third member in this family of Ax = b solvers is the BiCGstab method of van
der Vorst (1992). It addresses the sometimes erratic behavior of BiCG by producing
iterates xk whose residuals satisfy

rk = (1 − ωkA) · · · (1 − ω1A)ψk(A)r0

where ψk is the BiCG residual polynomial defined in (11.4.14). The parameter ωk is
chosen in step k to minimize ‖ rk ‖2 given ω1, . . . , ωk−1 and the vector ψk(A)r0. The
computations associated with this transpose-free method are given in Figure 11.4.1.

Yet another iteration that is built upon the unsymmetric Lanczos process is the
quasi-minimum residual (QMR) method of Freund and Nachtigal (1991). As in BiCG,
the kth iterate has the form xk = x0 + Qkyk where Qk is specified by (11.4.12). This
equation can be rewritten as AQk = Qk+1T̃k where T̃k ∈ IRk+1×k is tridiagonal. It
follows that if q1 = r0/β0 where r0 = b − Ax0 and β0 = ‖ r0 ‖2, then

b − A(x0 + Qky) = r0 − AQky = r0 − Qk+1T̃ky = Qk+1(β0e1 − T̃ky).

In QMR, y is chosen to minimize ‖ β0e1 − T̃ky ‖2. Note that GMRES minimizes the
same quantity because Qk+1 has orthonormal columns in Arnoldi.

Problems

P11.4.1 Assume that the cost of a length-n inner product or saxpy is one unit. Assume that A ∈ IRn×n

and that the matrix-vector products involving A and AT cost α and β units, respectively. Compare
the per iteration cost associated with the BiCG, CGS, and BiCGstab methods.

P11.4.2 Suppose A ∈ IRn×n and v ∈ IRn are given. How can we choose ω to minimize ‖ (I − ωA)v ‖2?

P11.4.3 Give an algorithm that computes ψk(a) where a ∈ IR and ψk is defined by (11.4.14).

Notes and References for §11.4

For general systems, we have avoided the when-to-use-what-method question because there are no
clear-cut answers. For guidance we recommend LIN TEMPLATES, Greenbaum (IMSL), Saad (ISPLA),
and van der Vorst (IKM), each of which provides a great deal of insight. See also:

R.W. Freund, G.H. Golub, and N.M. Nachtigal (1992). “Iterative Solution of Linear Systems,” Acta
Numerica 1, 57–100.

The MINRES, SYMMLQ, and LSQR frameworks due to Paige and Saunders initiated one of the most
important threads of Krylov method research:
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C.C. Paige and M.A. Saunders (1975). “Solution of Sparse Indefinite Systems of Linear Equations,”
SIAM J. Numer. Anal. 12, 617–629.

C.C. Paige and M.A. Saunders (1982). “LSQR: An Algorithm for Sparse Linear Equations and Sparse
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The original GMRES paper is set forth in:
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and there is a great deal of follow-up analysis:
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C.C. Paige, M. Rozloznik, and Z. Strakoš (2006). “Modified Gram-Schmidt (MGS), Least Squares,

and Backward Stability of MGS-GMRES,” SIAM J. Matrix Anal. Applic 28, 264–284.

For pseudosprectral analysis of the method, see Trefethen and Embree (SAP, Chap. 26) as well as

M. Embree (1999). “Convergence of Krylov Subspace Methods for Non-Normal Matrices,” PhD Thesis,
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11.5 Preconditioning
In general, a Krylov method for Ax = b converges more rapidly if A ∈ IRn×n “looks
like the identity” and preconditioning can be thought of as a way to bring this about.
A matrix can look like the identity in several ways. For example, if A is symmetric
positive definite such that A ≈ I +∆A, and rank(∆A) = k∗ � n, then Theorem 11.3.1
plus intuition says that the CG method should produce a good approximate solution
after about k∗ steps. In this section we identify several major preconditioning strategies
and briefly discuss some of their key attributes. Our goal is to impart a sense of what it
takes to design or invoke a good preconditioner—an absolutely essential skill to have in
many problem settings. For a more in-depth treatment, see Saad (IMSLS), Greenbaum
(IMSL), van der Vorst (IMK) and LIN TEMPLATES.

11.5.1 The Basic Idea

Suppose M = M1M2 is nonsingular and consider the linear system Ãx̃ = b̃ where

Ã = M−1
1 AM−1

2 , b̃ = M−1
1 b.

Note that if M looks like A, then Ã looks like I. The proposal is to solve the “tilde
problem” with a suitably chosen Krylov procedure and then determine x by solving
M2x = x̃. The matrix M is called a preconditioner and it must have two attributes
for this solution framework to be of interest:

Criterion 1. M must capture the essence of A, for if M ≈ A, then we have I ≈
M−1

1 AM−1
2 = Ã. (In settings where M is specified through its inverse, it is more

appropriate to say that M−1 captures the essence of A−1.)

Criterion 2. It must be easy to solve linear systems that involve the matrices M1 and
M2 because the Krylov process involves the operation (M−1

1 AM−1
2 )-times-vector.

Having a good preconditioner means fewer iterations. However, the cost of an iteration
is an issue, as is the overhead associated with the construction of M1 and M2. Thus,
the enthusiasm for a preconditioner depends upon the strength of the inequality

⎛⎝ Set up
M
cost

⎞⎠+

⎛⎝ Single
Ã-iteration

cost

⎞⎠·

⎛⎝ Number
of Ã

iterations

⎞⎠ <

⎛⎝ Single
A-iteration

cost

⎞⎠·

⎛⎝ Number
of A

iterations

⎞⎠ .
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There are several ways in which a preconditioner M can capture the essence of
A. The difference A − M could be small in norm or low in rank. More generally, if

A = [ friendly/important part ] + [ troublesome/lesser part ] ,

then the important part is an obvious candidate for a preconditioner subject to the
constraint imposed by Criterion 2. For example, if A is symmetric positive definite,
then its diagonal qualifies as an important part that is computationally friendly.

11.5.2 The Preconditioned CG and GMRES Methods

Before we step through the various ways that a linear system can be preconditioned, we
show how the CG and GMRES iterations transform in the presence of a preconditioner.
For details related to other preconditioned Krylov methods, see LIN TEMPLATES.

Suppose M ∈ IRn×n is a symmetric positive definite matrix that we choose to
regard as a preconditioner for the symmetric positive definite linear systems Ax = b.
Recall that there is a unique symmetric positive definite matrix C such that M = C2.
See §4.2.4. If

Ã = C−1AC−1, b̃ = C−1b,

then we can solve Ax = b by applying CG to the symmetric positive definite system
Ãx̃ = b̃ and then solving Cx = x̃. For this to be a practical strategy, we must be able
execute CG efficiently when it is applied to this “tilde” problem. Referring to Figure
11.3.1, here are the CG update formulae in this case:

µ = (r̃T
c r̃c) / (p̃T

c Ãp̃c),

x̃+ = x̃c − µ p̃c,

r̃+ = r̃c + µÃp̃c, (11.5.1)

τ = (r̃T
+ r̃+) / (r̃T

c r̃c),

p̃+ = r̃c + τ p̃c.

Typically Ã is dense and so we must clearly reformulate these five steps if a suitable
level of efficiency is to be reached. Note that if xc = C−1x̃c and rc = b − Axc, then

r̃c = b̃ − Ãx̃c = C−1(b − Axc) = C−1rc.

By substituting this formula together with r̃+ = C−1r+ and the definition of Ã into
(11.5.1) we obtain

µ = (rT
c M−1rc) / (C−1p̃c)T A(C−1p̃c),

Cx+ = Cxc − µp̃c,

C−1r+ = C−1rc + µC−1AC−1p̃c,

τ = (rT
+ M−1r+) / (rT

c M−1rc),

p̃+ = C−1rc + τ p̃c.

If we define pc = C−1p̃c and set zc = M−1rc, then this transforms to
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Solve Mzc = rc,

µ = (rT
c zc) / (pT

c Apc),

x+ = xc − µ pc,

r+ = rc + µApc ,

τ = (rT
+ z+) / (rT

c zc),

p+ = zc + τ pc,

and we arrive at the method of preconditioned conjugate gradients (PCG). Note that
although the square root matrix C = M1/2 figured heavily in the derivation of PCG,
in the end its action is felt only through the preconditioner M = C2.

Algorithm 11.5.1 (Preconditioned Conjugate Gradients) If A ∈ IRn×n and M ∈ IRn×n

are symmetric positive definite, b ∈ IRn, and Ax0 ≈ b, then this algorithm computes
x∗ ∈ IRn so that Ax∗ = b.

k = 0, r0 = b − Ax0, Solve Mz0 = r0

while ‖ rk ‖2 > 0

k = k + 1

if k = 1

pk = z0
else

τ = (rT
k−1zk−1) / (rT

k−2zk−2)

pk = zk−1 + τ pk−1
end

µ = (rT
k−1zk−1)/(pT

k Apk)

xk = xk−1 − µ pk

rk = rk−1 − µ Apk

Solve Mzk = rk

end

x∗ = xk

To highlight the difference between PCG and CG (Algorithm 11.3.2) we have boxed
the preconditioner system Mz = r. It follows that the volume of work associated with
a PCG iteration is essentially the volume of work associated with an ordinary CG
iteration plus the cost of solving the preconditioner system. It can be shown that the
residuals and search directions satisfy

rT
j M−1ri = 0, pT

j (C−1AC−1)pi = 0, (11.5.2)

for all i 
= j.
We now turn our attention to the preconditioned GMRES method. The idea is

to apply the method to the system (M−1A)x = (M−1b). Modifying Algorithm 11.4.2
in this way yields the following procedure:
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Algorithm 11.5.2 (Preconditioned m-step GMRES) If A ∈ IRn×n and M ∈ IRn×n are
nonsingular, b ∈ IRn, Ax0 ≈ b, and m is a positive iteration limit, then this algorithm
computes x̃ ∈ IRn where either x̃ solves Ax = b or minimizes ‖ M−1(Ax − b) ‖2 over
the affine space x0 + K(M−1A, M−1r0, m) where r0 = b − Ax0.

k = 0, r0 = b − Ax0, Solve Mz0 = r0 , β0 = ‖ z0 ‖2

while (βk > 0) and k < m)

qk+1 = zk/βk

k = k + 1

Solve Mzk = Aqk

for i = 1:k

hik = qT
i zk

zk = zk − hikqi

end

βk = ‖ zk ‖2, hk+1,k = βk

Apply G1, . . . , Gk−1 to H(1:k, k) and determine Gk, Rk, pk, and ρk.
end

Solve Rkyk = pk and set x̃ = x0 + Qkyk.

Note that ρk = ‖ M−1(b − Axk) ‖2 in this formulation.

11.5.3 Jacobi and SSOR Preconditioners

We now begin a tour of the major preconditioning strategies. Since some strategies
help motivate others, the order of presentation is pedagogical. It does not indicate
relative importance, nor does it reflect how the research on preconditioning evolved.

Suppose A ∈ IRn×n is diagonally dominant or positive definite. For such a matrix,
the diagonal tells much of the story and so it makes a certain amount of sense to consider
perhaps the simplest preconditioner of all:

M = diag(a11, . . . , ann).

Diagonal preconditioners are called Jacobi preconditioners. Recall from §11.2.2 that
Jacobi’s method is based on the splitting A = M − N where M is the diagonal of
A. Indeed, for any iteration of the form Mx+ = Nxc + b, we can regard M as a
preconditioner. The requirement that

ρ(M−1N) = ρ(M−1(M − A)) = ρ(I − M−1A) < 1

is a way of saying that M−1 must “look like” A−1. In this context, the SSOR precon-
ditioner

M = (D − ωL)D−1(D − ωL)T

is attractive for certain symmetric positive definite systems. Note that in this case M
is also symmetric positive definite and so it can be used with PCG.

If A = (Aij) is a p-by-p block matrix that is (block) diagonally dominant or posi-
tive definite, then the block Jacobi preconditioner M = diag(A11, . . . , App) is sometimes
a natural choice.
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11.5.4 Normwise-Near Preconditioners

Sometimes A is near a data-sparse matrix for which there is a fast solution procedure.
Circulant preconditioners for symmetric Toeplitz systems are a nice example. For
a ∈ IRn define the Toeplitz matrix T (a) ∈ IRn×n and the circulant matrix C(a) ∈ IRn×n

by

T (a) =

⎡⎢⎢⎣
a0 a1 a2 a3
a1 a0 a1 a2
a2 a1 a0 a1
a3 a2 a1 a0

⎤⎥⎥⎦ , C(a) =

⎡⎢⎢⎣
a0 a1 a2 a3
a3 a0 a1 a2
a2 a3 a0 a1
a1 a2 a3 a0

⎤⎥⎥⎦ , (n = 4).

Suppose we determine ã so that ‖ T (a) − C(ã) ‖
F

is minimized. A case can be made
that M = C(ã) captures the essence of T (a) and thus has potential as a preconditioner
for the Toeplitz system T (a)x = b. Recall from §4.8.2 that circulant linear systems
can be solved in n log n time using the fast Fourier transform. This style of Toeplitz
system preconditioning was proposed by Chan (1988).

Because of their importance, there is a large body of work concerned with pre-
conditioners for Toeplitz systems. An idea due to Chan and Strang (1989) is to set
M = C(ã) where

ã =

[
a(0:m)

a(m−1:− 1:0)

]
assuming that n = 2m and A = T (a) is positive definite. Intuition tells us that A’s
central diagonals carry most of the information and so it makes sense that they define
the preconditioner C(ã).

11.5.5 Sparse Approximate Inverse Preconditioners

Instead of determining M so ‖ A − M ‖
F

is small, we can address Criterion 1 above by
choosing M−1 so that ‖ AM−1 − I ‖

F
is small. This is the idea behind sparse approx-

imate inverse preconditioners. To be precise about the nature of the approximation,
we define the sp(·) operator. For any T ∈ IRn×n define sp(T ) ∈ IRn×n by

[ sp(T ) ]ij =

{
1 if tij 
= 0

0 otherwise
.

Suppose Z ∈ IRn×n is a given n-by-n matrix of zeros and ones with a manageable
sparsity pattern and that we solve the constrained least squares problem

min
sp(T ) = Z

‖ AT − I ‖
F
.

The constraint says that T is to have the same zero-nonzero structure as Z. Thus, the
preconditioner M is specified through its inverse: M−1 = T . A fringe benefit of this
type of preconditioner design is that the Mz = r system is solved via matrix-vector
multiplication: z = Tr. This is what makes this preconditioning approach attractive
from the parallel computing point of view. Moreover, the actual columns of T can be
computed in parallel because they are independent of each other.
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It is important to appreciate that T (:, k) is a constrained minimizer of ‖ A τ − ek ‖2.
Let cols be the subvector of 1:n that identifies the nonzero components of T (:, k).
(These indices are determined by Z(:, k).) Let rows be a subset of 1:n that identifies
the nonzero rows in A(:, cols). If τ solves the (generally very small) LS problem

min ‖ A(rows, cols)τ − ek(rows) ‖2

then T (:, k) is zero except T (rows, k) = τ . We mention that the sparsity pattern Z
can be determined dynamically. For example, after completing the above column-k
calculation, it is possible to expand col cheaply to include more nonzeros in T (:, k).
See Grote and Huckle (1997). Updating QR factorizations is part of their method.

11.5.6 Polynomial Preconditioners

Suppose A = M1 − N1 is a splitting and that ρ(G) < 1 where G = M−1
1 N1. Since

A = M1(I − G), it follows that

A−1 = (I − G)−1M−1
1 =

( ∞∑
k=0

Gk

)
M−1

1 .

This suggests another way to generate a preconditioner whose inverse resembles the
inverse of A. We simply truncate the infinite series:

M−1 =

(
m∑

k=0

Gk

)
M−1

1 .

It follows that
z =

(
I + G + G2 + · · ·Gm

)
M−1

1 r

solves Mz = r. Moreover, there is a very simple way to compute this vector:

zc = 0

for k = 1:m

M1z+ = N1zc + r

zc = z+

end

z = zc

To see why this works, we note that z+ = Gzc +d where M1d = r, and apply induction:

z+ = Gzc + d = G
(
I + G + · · · + Gk−1) d + d =

(
I + G + · · ·Gk

)
d.

Thus, the Mz = r calculation requires m steps of the iteration M1z+ = N1zc + r.
In the polynomial preconditioner paradigm, the given system Ax = b is replaced

by M−1Ax = M−1b where the preconditioner M is defined by

M−1 = p(M−1
1 A)M−1

1 . (11.5.3)
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Here, p is a polynomial and M1 is itself a preconditioner, e.g., the diagonal of A. In
the above example, p was determined by the parameter m and the chosen M1.

We mention that there are more sophisticated ways to design a good polynomial
preconditioner. With M1 = I for clarity in (11.5.3), the goal is for p(A) to look like
A−1, i.e., we want I ≈ p(A)A. Note that I − p(A)A = q(A) where q(z) = 1− zp(z), so
the challenge is to find q ∈ IPm+1 with the property that q(0) = 1 and q(A) is small.
There are several ways to address this optimization problem in practice, see Ashby,
Manteuffel, and Otto (1992) and Saad(1985).

11.5.7 PCG—Again

The polynomial preconditioner discussion points to an important connection between
the classical iterations and the preconditioned conjugate gradient algorithm. Many
iterative methods have as their basic step

xk = xk−2 + ωk(γk−1zk−1 + xk−1 − xk−2) (11.5.4)

where Mzk−1 = rk−1 = b − Axk−1. For example, if we set ωk = 1 and γk = 1, then

xk = M−1(b − Axk−1) + xk−1,

i.e., Mxk = Nxk−1 + b, where A = M −N . Following Concus, Golub, and O’Leary
(1976), it is also possible to organize the preconditioned CG method with a central
step of the form (11.5.4):

x−1 = 0; k = 0; r0 = b − Ax0

while rk 
= 0

k = k + 1

Solve Mzk−1 = rk−1 for zk−1

γk−1 = zT
k−1Mzk−1/zT

k−1Azk−1

if k = 1
ω1 = 1

else

ωk =

(
1 − γk−1

γk−2

zT
k−1Mzk−1

zT
k−2Mzk−2

1
ωk−1

)−1

end
xk = xk−2 + ωk(γk−1zk−1 + xk−1 − xk−2)

rk = b − Axk

end
x = xk

Thus, we can think of the scalars ωk and γk in this iteration as acceleration parameters
that can be chosen to speed the convergence of the iteration Mxk = Nxk−1 + b.
Hence, any iterative method based on the splitting A = M − N can be accelerated by
the conjugate gradient algorithm as long as M (the preconditioner) is symmetric and
positive definite.
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11.5.8 Incomplete Cholesky Preconditioners

Assume that A ∈ IRn×n is symmetric positive definite and that we are driven to consider
the PCG method because A’s Cholesky factor G has many more nonzero entries than
the lower triangular portion of A. A natural idea for a preconditioner is to set M =
HHT where H is a sufficiently sparse lower triangular matrix so that if

R = HHT − A (11.5.6)

then
aij 
= 0 ⇒ rij = 0. (11.5.7)

This means that [HHT ]ij = aij for all nonzero aij . In this sense, M = HHT captures
the essence of A. To articulate what we mean by a “sufficiently sparse” H matrix, we
specify a set P of subdiagonal index pairs and insist that

(i, j) ∈ P ⇒ hij = 0. (11.5.8)

Given P , any matrix H that satisfies (11.5.6)–(11.5.8) is an incomplete Cholesky factor
of A.

It turns out that it is not always possible to compute H given P . To see what
the issues are consider the outer-product implementation of the Cholesky factorization.
Recall from §4.2 that it involves repeated application of the factorization[

α vT

v B

]
=

[ √
α 0

w In−1

][
1 0

0 A1

][ √
α wT

0 In−1

]
(11.5.9)

where w = v/
√

α and A1 = B−wwT . Indeed, if G1 is the Cholesky factor of A1, then

G =

[ √
α 0

w G1

]

is the Cholesky factor of A. Now suppose Z ∈ IRn×n is a matrix of zeros and ones
with zij = zji = 0 if and only if (i, j) ∈ P . To ensure the existence of an incomplete
Cholesky factor with respect to P , we need to guarantee that the following recursive
function works:

function H = incChol(A, Z, n)

if n = 1

H =
√

A
else

α = A(1, 1), v = A(2:n, 1), B = A(2:n, 2:n)

w = (v/
√

α) .∗ Z(2:n, 1)

A1 = (B − wwT ) .∗ Z(2:n, 2:n), H1 = incChol(A1, Z(2:n, 2:n), n − 1)

H =

[ √
α 0

w H1

]
end
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If Z is the matrix of all 1’s, then this is just a recursive form of Cholesky factorization.
(Set r = 1 in Algorithm 4.2.4). As it stands, it is Cholesky with forced zeros in both
the w and A1 calculations. It is easy to show that if the algorithm runs to completion,
then Equations (11.5.6), (11.5.7), and (11.5.8) are satisfied. One way to guarantee that
this happens is to show that A1 is positive definite. This turns out to be the case
if A is a Stieltjes matrix. A matrix A ∈ IRn×n is a Stieltjes matrix if it is symmetric
positive definite and has nonpositive off-diagonal entries. This property holds in many
applications. For example, the model problem matrices in §4.8.3 are Stieltjes matrices.
Using the notation C ≥ 0 to mean that matrix C has nonnegative entries, we show
that if A is a Stieltjes, then A−1 ≥ 0.

Lemma 11.5.1. If A ∈ IRn×n is a Stieltjes matrix, then A−1 ≥ 0.

Proof. Write A = D − E where D and −E are the diagonal and off-diagonal parts.
Since A = D1/2(I − F )D1/2 it follows that the spectral radius of F = D−1/2ED−1/2

satisfies ρ(F ) < 1. Thus, the entries of

A−1 = D−1/2

( ∞∑
k=0

F k

)
D−1/2

are clearly nonnegative.

The following result is what we need to guarantee that the function incChol does not
break down.

Theorem 11.5.2. If

A =
[

α vT

v B

]
, α ∈ IR, v ∈ IRn−1, B ∈ IR(n−1)×(n−1),

is a Stieltjes matrix and ṽ ∈ IRn−1 is obtained from v by setting any subset of its
components to zero, then

B̃ = B − ṽṽT

α
is a Stieltjes matrix.

Proof. It is clear that B̃ =
(
b̃ij

)
has nonpositive off-diagonal entries since ṽ ≤ 0 and

b̃ij = bij −
ṽiṽj

α
.

Our task is to show that B̃ is positive definite.
Since A is positive definite it follows that if

x =
1√
α

[
1

−B−1v

]
then

0 < xT Ax = 1 − vT B−1v

α
.
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Since B−1 ≥ 0 and v ≤ 0, we have ṽT B−1ṽ ≤ vT B−1v and so

γ ≡ 1 − ṽT B−1ṽ

α
≥ 1 − vT B−1v

α
> 0.

Using the Sherman-Morrison formula

B̃−1 =
(

B − ṽṽT

α

)−1

= B−1 +
1
γ

B−1 ṽṽT

α
B−1

we see that B̃ is positive definite.

A theorem of this variety can be found in the landmark paper by Meijerink and van
der Vorst (1977).

So far we have just discussed incomplete Cholesky by position. The sparsity
pattern for the incomplete factor is determined in advance through the set P and does
not depend on the values in A. An alternative approach makes use of a drop tolerance
τ > 0, which is used to determine whether or not a “potential” hij is set to zero. As
an example of this strategy, suppose we compute the matrix A1 in incChol as follows:

[A1]ij =

{
0 if |bij − wiwj | < τ

√
biibjj ,

bij − wiwj if |bij − wiwj | ≥ τ
√

biibjj .

The idea is to drop unimportant entries in the update if they are small in a relative
sense. Care has to be exercised in the selection of τ so as not to induce an unacceptable
level of fill-in. (Larger values of τ reduce fill-in.) The drop tolerance approach is an
example of incomplete Cholesky by value.

Lin and Moré (1999) describe a strategy that combines the best features of in-
complete Cholesky by position and incomplete Cholesky by value. Recall in gaxpy
Cholesky (§4.2.5) that the triangular factor G is computed column by column. The
idea is to adapt that procedure so that H(j:n, j) has at most Nj + p nonzeros, where
Nj is the number of nonzeros in A(j:n, j) and p is a nonnegative integer:

for j = 1:n

v(j:n) = A(j:n, j) − H(j:n, 1:j−1)H(j, 1:j−1)T

H(j, j) =
√

v(j)

Nj = number of nonzeros in A(j:n, j)

Set to zero each component of v(j + 1:n) that is not one of the Nj + p

largest entries in |v(j:n)|.
H(j + 1:n, j) = v(j + 1:n)/H(j, j)

end

It follows that the number of nonzeros in H is bounded by pn + N1 + · · ·+ Nn. Thus,
the value of p can be set in accordance with available memory. Note that H(j:n, j)
is defined by the “most important” entries in v(j:n). The gaxpy computation of this
vector is a sparse gaxpy, and it is critical that this structure be exploited.
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The incomplete factorization idea has been highly studied. Research themes
include extension to LU, stability, and ways to increase the “mass” of the diagonal
to guarantee existence. Particularly important has been the development of ILU(�)
preconditioners, which control fill-in by bounding the number of times that an aij is
allowed to be updated. See Benzi (2002).

11.5.9 Incomplete Block Preconditioners

The incomplete factorization idea can be applied at the block level. For example, an
incomplete block Cholesky factor H = (Hij) of a block symmetric positive definite
matrix A = (Aij) could be obtained by forcing Hij to be zero if Aij is zero. However,
there is another level of opportunity if the individual Aij are themselves sparse, for
then it may be necessary to impose constraints on the sparsity structure of the Hij .

To illustrate this in a simple familiar setting, let us build an incomplete Cholesky
factorization for a block tridiagonal matrix whose diagonal blocks are tridiagonal and
whose subdiagonal and superdiagonal blocks are diagonal. (The §4.8.3 model problem
matrices have this structure.) With

A =

⎡⎢⎣ A1 ET
1 0

E1 A2 ET
2

0 E2 A3

⎤⎥⎦ =

⎡⎢⎣ G1 0 0

F1 G2 0

0 F2 G3

⎤⎥⎦
⎡⎢⎣ GT

1 FT
1 0

0 GT
2 FT

2

0 0 GT
3

⎤⎥⎦ ,

here are the recipes for the Gk and Fk if A is p-by-p as a block matrix:

G1G
T
1 = A1

for k = 1:p − 1

Fk = EkG−T
k

Gk+1G
T
k+1 = Ak+1 − Ek(GkGT

k )−1ET
k

end

Except for G1, all the Cholesky factor blocks are dense. A way around this difficulty
is to replace (GkGT

k )−1 with a suitably chosen tridiagonal approximation Λk:

G̃1G̃
T
1 = A1

for k = 1:p − 1

F̃k = EkG̃−T
k (11.5.10)

G̃k+1G̃
T
k+1 = Ak+1 − EkΛkET

k

end

Note that with this strategy, each G̃k is lower bidiagonal. The F̃k are full, but they do
not have to actually be formed in order to solve systems that involve the incomplete
factors. For example,⎡⎣ G̃1 0 0

F̃1 G̃2 0
0 F̃2 G̃3

⎤⎦
⎡⎢⎣ w1

w2

w3

⎤⎥⎦ =

⎡⎢⎣ r1

r2

r3

⎤⎥⎦ ,

G̃1w1 = r1,

G̃2w2 = r2 − E1G̃
−T
1 w1,

G̃3w3 = r3 − E2G̃
−T
2 w2.
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Each wk requires a G̃k-system solution and a G̃T
k -system solution.

There remains the issue of choosing Λ1, . . . ,Λp−1. The central problem is how
to determine a symmetric tridiagonal Λ so that if T ∈ IRm×m is symmetric positive
definite and tridiagonal itself, then Λ ≈ T−1. Possibilities include:

• Let Λ = diag(1/t11, . . . , 1/tmm).

• Let Λ be the tridiagonal part of T−1, an O(m) computation. See P11.5.5.

• Let Λ = UT U where U is the lower bidiagonal portion of K−1 where T = KKT

is the Cholesky factorization. This is an O(m) computation. See P11.5.6.

For a discussion of these approximations and what they imply about the associated
preconditioners, see Concus, Golub, and Meurant (1985).

11.5.10 Saddle Point System Preconditioners

A nonsingular 2-by-2 block system of the form

K =

[
A BT

1

B2 −C

][
x

y

]
=

[
f

g

]
,

where A ∈ IRn×n is positive semidefinite and C ∈ IRm×m is symmetric and positive
semidefinite is an example of a saddle point problem. Equilibrium systems (§4.4.6) are
a special case.

Problems with saddle point structure arise in many applications and there is a
host of solution frameworks. Various special cases create multiple possibilities for a
preconditioner. For example, if A is nonsingular and C = 0, then[

A B1

BT
2 0

]
=

[
I 0

BT
2 A−1 I

][
A 0

0 S

][
I A−1B1

0 I

]
, S = −BT

2 A−1B1.

Possible preconditioners include

M =

[
Ã 0

0 S̃

]
or

[
Ã B1

0 S

]
or

[
Ã 0

BT
2 S̃

][
I Ã−1B1

0 I

]

where Ã ≈ A and S̃ ≈ S.
If A and C are positive definite, H1 = (A + AT )/2, H2 = (A − AT )/2, and

B = B1 = B2, then[
A B

−BT C

]
=

[
H1 0

0 C

]
+

[
H2 B

−BT 0

]
≡ K1 + K2

is a symmetric positive definite/skew-symmetric splitting. Preconditioners based on

M = (αI + K2)−1(αI − K1)(αI + K1)−1(αI − K2)

where α > 0 have been shown to be effective. See the saddle point problem survey by
Benzi, Golub, and Liesen (2005) for more details. Note that the above strategies are
specialized ILU strategies.
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11.5.11 Domain Decomposition Preconditioners

Domain decomposition is a framework that can be used to design a preconditioner for
an Ax = b problem that arises from a discretized boundary value problem (BVP). Here
are the main ideas behind the strategy:

Step 1. Express the given “complicated” BVP domain Ω as a union of smaller,
“simpler” subdomains Ω1, . . . ,Ωs.

Step 2. Consider what the discretized BVP “looks like” on each subdomain.
Presumably, these subproblems are easier to solve because they are smaller and
have a computationally friendly geometry.

Step 3. Build the preconditioner M out of the subdomain matrix problems,
paying attention to the ordering of the unknowns and how the subdomain
solutions relate to one another and the overall solution.

We illustrate this strategy by considering the Poisson problem ∆u = f on an L-
shaped domain Ω with Dirichlet boundary conditions. (For discretization strategies
and solution procedures that are applicable to rectangular domains, see §4.8.4.)

Refer to Figure 11.5.1 where we have subdivided Ω into three non-overlapping
rectangular subdomains Ω1, Ω2, and Ω3. As a result of this subdivision, there are five

◦1 interior Ω1 grid points

◦2 interior Ω2 grid points

◦3 interior Ω3 grid points

•12 ∂ Ω1 ∩ ∂ Ω2 grid points

•13 ∂ Ω1 ∩ ∂ Ω3 grid points
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Figure 11.5.1. The Nonoverlapping subdomain framework

“types” of gridpoints (and unknowns). With proper ordering, this leads to a block
linear system of the form

Au =

⎡⎢⎢⎢⎢⎢⎢⎣

A1 0 0 B C

0 A2 0 D 0

0 0 A3 0 E

F H 0 Q4 0

G 0 K 0 Q5

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

u◦1

u◦2

u◦3

u•12

u•13

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

f◦1

f◦2

f◦3

f•12

f•13

⎤⎥⎥⎥⎥⎥⎥⎦ = f (11.5.11)



11.5. Preconditioning 663

where A1, A2, and A3 have the discrete Laplacian structure encountered in §4.8.4. Our
notation is intuitive: u•12 is the vector of unknowns associated with the •12 grid points.
Note that A can be factored as

A =

⎡⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

FA−1
1 HA−1

2 0 I 0

GA−1
1 0 KA−1

3 0 I

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

A1 0 0 B C

0 A2 0 D 0

0 0 A3 0 E

0 0 0 S4 0

0 0 0 0 S5

⎤⎥⎥⎥⎥⎥⎥⎦ = LU,

where S4 and S5 are the Schur complements

S4 = Q4 − FA−1
1 B − HA−1

2 D,

S5 = Q5 − GA−1
1 C − KA−1

3 E.

If it were not for these typically expensive, dense blocks, the system Au = f could
be solved very efficiently via this LU factorization. Fortunately, there are many ways
to manage problematic Schur complements. See Saad (IMSLE, pp. 456–465). With
appropriate approximations

S̃4 ≈ S4, S̃5 ≈ S5,

we are led to a block ILU preconditioner of the form M = LUM where

UM =

⎡⎢⎢⎢⎢⎢⎢⎣

A1 0 0 B C

0 A2 0 D 0

0 0 A3 0 E

0 0 0 S̃4 0

0 0 0 0 S̃5

⎤⎥⎥⎥⎥⎥⎥⎦ .

With sufficient structure, fast Poisson solvers can be used during the L-solves while
the efficiency of the UM solver would depend upon the nature of the Schur complement
approximations.

Although the example is simple, it highlights one of the essential ideas behind
nonoverlapping domain decomposition preconditioners like M . Bordered block diagonal
systems must be solved where (a) each diagonal block is associated with a subdomain
and (b) the border is relatively “thin” because in the partitioning of the overall domain,
the number of domain-coupling unknowns is typically an order of magnitude less than
the total number of unknowns. A consequence of (b) is that A − M has low rank and
this translates into rapid convergence in a Krylov setting. There are also significant
opportunities for parallel computation because of the nearly decoupled subdomain
computations. See Bjorstad, Gropp, and Smith (1996).

A similar strategy involves overlapping subdomains and we continue with the same
example to illustrate the main ideas. Figure 11.5.2 displays a partitioning of the same
L-shaped domain into three overlapping subdomains. With proper ordering we obtain
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Figure 11.5.2. The overlapping Schwarz framework

a block linear system of the form

Au =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 0 B1 0 C1 0

0 A2 0 0 B2 0 0

0 0 A3 0 0 0 C2

F1 0 0 Q4 D 0 0

0 F2 0 H Q̃4 0 0

G1 0 0 0 0 Q5 E

0 0 G2 0 0 K Q̃5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u◦1

u◦2

u◦3

u•12

u•21

u•13

u•31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f◦1

f◦2

f◦3

f•12

f•21

f•13

f•31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= f.

In the multiplicative Schwarz approach we cycle through the subdomains improving the
interior unknowns along the way. For example, fixing all but the interior Ω1 unknowns,
we solve ⎡⎢⎣ A1 B1 C1

F1 Q4 0

G1 0 Q5

⎤⎥⎦
⎡⎢⎣ u◦1

u•12

u•13

⎤⎥⎦ =

⎡⎢⎣ f◦1

f•12

f•13

⎤⎥⎦ −

⎡⎢⎣ 0

Du•21

Eu•31

⎤⎥⎦ .

After updating u◦1 , u•12 , and u•13 we proceed to fix all but the interior Ω2 unknowns
and solve [

A2 B2

F2 Q̃4

][
u◦2

u•21

]
=

[
f◦2

f•21

]
−

[
0

Hu•12

]
,

and update u◦2 and u•21 . Finally, we fix all but the interior Ω3 unknowns and obtain
improved versions by solving
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[
A3 C2

G2 Q̃5

][
u◦3

u•31

]
=

[
f◦3

f•31

]
−

[
0

Ku•13

]
.

This completes one cycle of multiplicative Schwarz. It is Gauss-Seidel-like in that the
most recent values of the current solution are used in each of the three subdomain
solves. In the additive Schwarz approach, no part if the solution vector u is updated
until after the last subdomain solve. This Jacobi-like approach has certain advantages
from the standpoint of parallel computing.

For either the multiplicative or additive approach, it is possible to relate u(new)

to u(old) via an expression of the form

u(new) = u(old) + M−1(f − Au(old)),

which opens the door to a new family of preconditioning techniques. The geometry
of the subdomains and the extent of their overlap critically affects efficiency. Simple
geometries can clear a path to fast subdomain solving. Overlap promotes the flow of
information between the subdomains but leads to more complicated preconditioners.
For an in-depth review of domain decomposition ideas, see Saad (IMSLE, pp. 451–493).

Problems

P11.5.1 Verify (11.5.2).

P11.5.2 Suppose H ∈ IRn×n is large sparse upper Hessenberg matrix and that we want to solve
Hx = b. Note that H([2:n1], :) has the form R+ envT where R is upper triangular and v ∈ IRn. Show
how GMRES with preconditioner R can (in principle) be used to solve the system in two iterations.

P11.5.3 Show that

A =

⎡⎣ 1 1 3 0
1 2 0 3
3 0 19 −8
0 3 −8 11

⎤⎦ =

⎡⎣ 1 0 0 0
1 1 0 0
3 −3 1 0
0 3 1 1

⎤⎦⎡⎣ 1 1 3 0
0 1 −3 3
0 0 1 1
0 0 0 1

⎤⎦
does not have an incomplete Cholesky factorization if P = {(4, 1), (3, 2)}.
P11.5.4 Prove that Equations (11.5.6)–(11.5.8) hold if incChol executes without breakdown.

P11.5.5 Suppose T ∈ IRm×m is symmetric, tridiagonal, and positive definite. There exist u, v ∈ IRm

so that
[T−1]ij = uivj

for all i and j that satisfy 1 ≤ j < i < m. Give an O(m) algorithm for computing u and v.

P11.5.6 Suppose B ∈ IRm×m is a nonsingular, lower bidiagonal matrix. Give an O(m) algorithm for
computing the lower bidiagonal portion of B−1.

P11.5.7 Consider the computation (11.5.10). Suppose A1, . . . , Ap are symmetric with bandwidth q
and that E1, . . . , Ep−1 have upper bandwidth 0 and lower bandwidth r. What bandwidth constraints
on Λ1, . . . , Λp are necessary if G1, . . . , Gp are to have lower bandwidth q?

P11.5.8 This problem provides further insight into both the multiplicative Schwarz and additive
Schwarz frameworks. Consider the block tridiagonal system

Au =

[
A11 A12 0
A21 A22 A23
0 A31 A33

][
u1
u2
u3

]
=

[
f1
f2
f3

]
= f
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where we assume that A22 is much smaller than either A11 and A33. Assume that an approximate
solution u(k) is improved to u(k+1) via the following multiplicative Schwarz update procedure:[

A11 A12

A21 A22

][
∆(k)

1

∆̃(k)
2

]
=

[
f1

f2

]
−

[
A11 A12 0

A21 A22 A23

]⎡⎣ u
(k)
1

u
(k)
2

u
(k)
3

⎤⎦ ,

[
A22 A23

A32 A33

][
∆(k)

2

∆(k)
3

]
=

[
f2

f3

]
−

[
A21 A22 A23

0 A32 A33

]⎡⎣ u
(k)
1 + ∆(k)

1

u
(k)
2 + ∆̃(k)

2

u
(k)
3

⎤⎦ ,

⎡⎣ u
(k+1)
1

u
(k+1)
2

u
(k+1)
3

⎤⎦ =

⎡⎣ u
(k)
1

u
(k)
2

u
(k)
3

⎤⎦ +

⎡⎣ ∆(k)
1

∆(k)
2

∆(k)
3

⎤⎦ .

(a) Determine a matrix M so that u(k+1) = u(k) + M−1(f − Au(k)). (b) Repeat for the additive
Schwarz update:[

A11 A12

A21 A22

][
∆(k)

1

∆̃(k)
2

]
=

[
f1

f2

]
−

[
A11 A12 0

A21 A22 A23

]⎡⎣ u
(k)
1

u
(k)
2

u
(k)
3

⎤⎦ ,

[
A22 A23

A32 A33

][
∆(k)

2

∆(k)
3

]
=

[
f2

f3

]
−

[
A21 A22 A23

0 A32 A33

]⎡⎣ u
(k)
1

u
(k)
2

u
(k)
3

⎤⎦ ,

⎡⎣ u
(k+1)
1

u
(k+1)
2

u
(k+1)
3

⎤⎦ =

⎡⎣ u
(k)
1

u
(k)
2

u
(k)
3

⎤⎦ +

⎡⎣ ∆(k)
1

∆̃2 + ∆(k)
2

∆(k)
3

⎤⎦ .

For further discussion, see Greenbaum (IMSL, pp. 198–201).
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11.6 The Multigrid Framework
Let Ahuh = bh be a linear system that arises when an elliptic boundary value problem
is discretized on a structured grid. The discrete Poisson problems that we discussed in
§4.8.3 and §4.8.4 are examples. The superscript “h” is a reminder that the size of the
system depends on the fineness of the grid, i.e., the spacing between gridpoints.

The multigrid idea exploits relationships between the “fine grid” solution uh and
its smaller, “coarse grid” analog u2h. Given a current approximate solution uh

c , the
overall framework involves recursive application of the following strategy:

Pre-smooth. With uh
0 = uh

c , perform p1 steps of a suitable iterative method uh
k =

Guh
k−1 + c to produce uh

p , an error-smoothed version of uh
c .

Step 1. Compute the current fine-grid residual rh = bh −Ahuh
p1

. This vector will be
rich in certain eigenvector directions and nearly orthogonal to others.

Step 2. Map rh ∈ IRn to r2h ∈ IRm, a vector that defines what the fine-grid residual
looks like on the coarse grid corresponding to 2h. This will involve an averaging
process.

Step 3. Solve the much smaller coarse-grid correction system A2hz2h = r2h.

Step 4. Map z2h ∈ IRm to zh ∈ IRn, a vector that defines what the correction looks
like on the fine grid. This will involve interpolation.

Step 5. Update uh
c to uh

+ = uh
c + zh.

Post-smooth. With uh
0 = uh

+, perform p2 steps of a suitable iterative method uh
k =

Guh
k−1 + c to produce uh

++ = uh
r , an error-smoothed version of uh

+.

Our plan is to discuss the key issues associated with this paradigm using the 1-
dimensional model problem introduced in §4.8.3. The weighted Jacobi method is devel-
oped for the pre-smooth and post-smooth steps. Its properties clarify the eigenvector
comment in Step 1. After defining the mappings rh → r2h and z2h → zh associated
with Steps 2 and 4, we explain why the Step 5 update results in an improved solution.

Recursion enters the picture through Step 3 as we can apply the same solution
strategy to the similar, smaller system A2hz2h = r2h. It is through this recursion
that we arrive at the overall multigrid framework: the 4h-grid problem helps solve the
2h-grid problem, the 8h-grid problem helps solve the 4h-grid problem, etc. Depending
upon its implementation, the process can be used to either precondition or completely
solve the top-level Ahuh = bh problem.

The tutorial by Briggs, Henson, and McCormick (2000) provides an excellent
introduction to the multigrid framework that was originally proposed in Brandt (1977).
For shorter introductions, see Strang (2007, pp. 571–585), Greenbaum (IMSL, pp. 183–
197)), Saad (IMSLA, pp. 407–450), and Demmel (ANLA, pp. 331–347).

11.6.1 A Model Problem and the Matrices Ah and Qh

Consider the problem of finding a function u(x) of [0, 1] that satisfies

d2u(x)
dx2 = F (x), u(0) = u(1) = 0. (11.6.1)
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Our goal is to approximate the solution to (11.6.1) at x = h, 2h, . . . , nh using the
discretization strategy set forth in §4.8.3. Here and throughout this section,

n = 2k − 1, m = 2k−1 − 1, h = 1/2k.

This leads to a linear system
Ahuh = bh (11.6.2)

where bh ∈ IRn and Ah ∈ IRn×n is defined by

Ah =
1
h2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 · · · · · · 0

−1 2
. . .

...
...

. . . . . . . . .
...

...
. . . . . . −1

0 0 · · · −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11.6.3)

Note that Ah is a multiple of T DD
n , a matrix that we defined in (4.8.7). It has a

completely known Schur decomposition

(Qh)T AhQh = Λh = diag(λh), (11.6.4)

where the vector of eigenvalues λh ∈ IRn is given by

λh
j =

4
h2 · sin2

(
jπ

2(n + 1)

)
, j = 1:n, (11.6.5)

and the orthogonal eigenvector matrix Qh =
[

q1 · · · qn

]
is prescribed by

qj =

√
2

n + 1

⎡⎢⎣ sin(θj)
...

sin(nθj)

⎤⎥⎦ , θj =
jπ

n + 1
. (11.6.6)

The components of this vector involve samplings of the function sin(jπx). As j in-
creases, this function is increasingly oscillatory, prompting us to split the eigenmodes
in half. We regard qj as a low-frequency eigenvector if 1 ≤ j ≤ m and as a high-frequency
eigenvector if j > m.

To facilitate the divide-and-conquer derivations that follow, we identify some
critical patterns associated with Qh and Λh. If

Sh = diag(s2
1, . . . , s

2
m), sj = sin

(
jπ

2(n + 1)

)
, (11.6.7)

Ch = diag(c2
1, . . . , c

2
m), cj = cos

(
jπ

2(n + 1)

)
, (11.6.8)

then

Λh =
4
h2

⎡⎢⎣ Sh 0 0

0 1/2 0

0 0 EmChEm

⎤⎥⎦ (11.6.9)
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where Em is the m-by-m exchange permutation. Regarding Qh, it houses scaled copies
of its m-by-m analog Q2h:

Qh(2:2:2m, :) =
[

Q2h 0 −Q2hEm

]
/
√

2. (11.6.10)

These results follow from the definitions (11.6.5)–(11.6.8) and trigonometric identities.

11.6.2 Damping Error with the Weighted Jacobi Method

Critical to the multigrid framework is the role of the smoothing iteration. The term
“smoother” is applied to an iterative method that is particularly successful at damping
out the high-frequency eigenvector components of the error. To illustrate this part of
the process, we introduce the weighted Jacobi method. If L = tril(A,−1), D = diag(aii),
and U = triu(A, 1), then the iterates for this method are defined by

u(k) = Gu(k−1) + c,

where c = ωD−1b, G = (1 − ω)I − ωD−1(L + U), and ω is a free parameter that
we assume satisfies 0 < ω ≤ 1. Note that if ω = 1, then the method reverts to the
simple Jacobi iteration (11.2.2). Other iterations can be used, but the weighted Jacobi
method is simple and adequately communicates the role of the smoother in multigrid.

If we apply the weighted Jacobi method to (11.6.2), then it is easy to verify that
the iteration matrix is given by

Gh,ω = In − ωh2

2
Ah. (11.6.11)

By using (11.6.4) and (11.6.5) we see that its Schur decomposition is given by

(Qh)T Gh,ωQh = diag(τh,ω), τh,ω
j = 1 − 2ω sin2

(
jπ

2(n + 1)

)
. (11.6.12)

It follows that ρ(Gh,ω) < 1 because we assume 0 < ω ≤ 1 to guarantee convergence.
The explicit Schur decomposition enables us to track the error in each eigenvector
direction given a starting vector uh

0 :

uh
0 − uh =

n∑
j=1

αj ·qj ⇒ (uh
p − uh) = (Gh,ω)p (uh

0 − uh) =
n∑

j=1

αj ·(τh,ω
j )p ·qj .

Thus, the component of the error in the direction of the eigenvector qj tends to zero
like |τh,ω

j |p. These rates depend on ω and vary with j. We now ask, is there a smart
way to choose the value of ω so that the error is rapidly diminished in each eigenvector
direction?

Assume that n  1 and consider (11.6.12). For small j we see that τh,ω
j is close

to unity regardless of the value of ω. On the other hand, we can move the “large
j” eigenvalues toward the origin by choosing a smaller value of ω. These qualitative
observations suggest that we choose ω to minimize

µ(ω) = max{ |τh,ω
m+1|, . . . , |τh,ω

n | }.
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In other words, ω should be chosen to promote rapid damping in the direction of
the high-frequency eigenvectors. Because the damping rates associated with the low-
frequency eigenvectors are much less affected by the choice of ω, they are left out of
the optimization. Since

−1 < τh,ω
n < · · · < τh,ω

m+1 < · · · < τh,ω
1 < 1,

it is easy to see that the optimum ω should make τh,ω
m+1 and τh,ω

n equal in magnitude
but opposite in sign, i.e.,

−1 + 2ω sin2
(

nπ

2(n + 1)

)
= −

(
−1 + 2ω sin2

(
(m + 1)π
2(n + 1)

))
.

This is essentially solved by setting ωopt = 2/3. With this choice, µ(2/3) = 1/3 and so(
p-th iterate error in

high-frequency directions

)
≤

(
1
3

)p (
Starting vector error in

high-frequency directions

)
.

11.6.3 Interactions Between the Fine and Coarse Grids

Suppose for some modest value of p we use the weighted Jacobi iteration to obtain an
approximate solution uh

p to Ahuh = bh. We can estimate its error by approximately
solving Ahz = rh = bh − Ahuh

p . From the discussion in the previous section we know
that the residual rh = Ah(uh − uh

p) resides mostly in the span of the low-frequency
eigenvectors. Because rh is smooth, there is not much happening from one gridpoint
to the next and it is well-approximated on the coarse grid. This suggests that we
might get a good approximation to the error in uh

p by solving the coarse-grid version of
Ahz = rh. To that end, we need to detail how vectors are transformed when we switch
grids. Note that on the fine grid, gridpoint 2j is coarse gridpoint j:

0=uh
0

0 = u2h
0

uh
1 uh

2

u2h
1

uh
3 uh

4

u2h
2

uh
5 uh

6

u2h
3

uh
7 uh

8 =0

u2h
4 =0

To map values from the fine grid (with n = 2k − 1 gridpoints) to the coarse-grid
(with m = 2k−1−1 gridpoints), we use an m-by-n restriction matrix R2h

h . Similarly, to
generate fine-grid values from coarse-grid values, we use an n-by-m prolongation matrix
Ph

2h. Before these matrices are formally defined, we display the case when n = 7 and
m = 3:

R2h
h =

1
4

⎡⎣ 1 2 1 0 0 0 0
0 0 1 2 1 0 0
0 0 0 0 1 2 1

⎤⎦ , Ph
2h =

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
2 0 0
1 1 0
0 2 0
0 1 1
0 0 2
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11.6.13)
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The intuition behind these choices is easy to see. The operation u2h = R2h
h uh takes a

fine-grid vector of values and produces a coarse-grid vector of values using a weighted
average around each even-indexed component:

⎡⎢⎣ u2h
1

u2h
2

u2h
3

⎤⎥⎦ = R2h
h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uh
1

uh
2

uh
3

uh
4

uh
5

uh
6

uh
7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎣ (uh
1 + 2uh

2 + uh
3 )/4

(uh
3 + 2uh

4 + uh
5 )/4

(uh
5 + 2uh

6 + uh
7 )/4

⎤⎥⎦ .

The prolongation matrix generates “missing” fine-grid values by averaging adjacent
coarse grid values:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uh
1

uh
2

uh
3

uh
4

uh
5

uh
6

uh
7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Ph

2h

⎡⎢⎣ u2h
1

u2h
2

u2h
3

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(u2h
0 + u2h

1 )/2

u2h
1

(u2h
1 + u2h

2 )/2

u2h
2

(u2h
2 + u2h

3 )/2

u2h
3

(u2h
3 + u2h

4 )/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The special end-conditions make sense because we are assuming that the solution to
the model problem is zero at the endpoints.

For general n = 2k − 1 and m = 2k−1 − 1, we define the matrices R2h
h ∈ IRm×n

and Ph
2h ∈ IRn×m by

R2h
h =

1
4
Bh(2:2:2m, :), Ph

2h =
1
2
Bh(:, 2:2:2m), (11.6.14)

where
Bh = 4In − h2Ah. (11.6.15)

The connection between the even-indexed columns of this matrix and Ph
2h and R2h

h is
clear from the example

Bh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 0 0 0

1 2 1 0 0 0 0

0 1 2 1 0 0 0

0 0 1 2 1 0 0

0 0 0 1 2 1 0

0 0 0 0 1 2 1

0 0 0 0 0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (n = 7).
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With the restriction and prolongation operators defined and letting WJ(k, u0)
denote the kth iterate of the weighted Jacobi iteration applied to Ahu = bh with
starting vector u0, we can make precise the 2-grid multigrid framework:

Pre-smooth: uh
p1

= WJ(p1, u
h
c ),

Fine-grid residual: rh = bh − Ahuh
p1

,

Restriction: r2h = R2h
h rh,

Coarse-grid correction: A2hz2h = r2h,

Prolongation: zh = Ph
2hz2h,

Update: uh
+ = uh

c + zh,

Post-smooth: uh
++ = WJ(p2, u

h
+).

(11.6.16)

By assembling the middle five equations, we see that

uh
+ = uh

p + Ph
2h(A2h)−1R2h

h Ah(uh − uh
p1

)

and so (
uh

+ − uh
)

= Eh(uh
p1

− uh) (11.6.17)

where
Eh = In − Ph

2h(A2h)−1R2h
h Ah (11.6.18)

can be thought of as a 2-grid error operator. Accounting for the damping in the
weighted Jacobi smoothing steps, we have

( uh
p − uh ) = (Gh)p (uh

c − uh), p ∈ {p1, p2},

where Gh = Gh,2/3, the optimal-ω iteration matrix. From this we conclude that

(uh
++ − uh) = (Gh)p2 Eh (Gh)p1 (uh

c − uh). (11.6.19)

To appreciate how the components of the error diminish, we need to understand what
Eh does to the eigenvectors q1, . . . , qn. The following lemma is critical to the analysis.

Lemma 11.6.1. If n = 2k − 1 and m = 2k−1 − 1, then

(Qh)T Ph
2hQ2h =

√
2

⎡⎣ Ch

0
−EmSh

⎤⎦ , (Q2h)T R2h
h Qh =

√
1
2

⎡⎣ Ch

0
−EmSh

⎤⎦T

(11.6.20)

where the diagonal matrices Sh and Ch are defined by (11.6.7) and (11.6.8).

Proof. From (11.6.4), (11.6.9), and (11.6.15) we have

(Qh)T BhQh = 4In − h2Λh = 4

⎡⎢⎣ Ch 0 0

0 1/2 0

0 0 EmShEm

⎤⎥⎦ ≡ Dh.
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Define the index vector idx = 2:2:2m. Since (Qh)T Bh = Dh(Qh)T , it follows from
(11.6.10) that

(Qh)T Bh(:, idx) = DhQh(idx, :)T =

√
1
2
Dh

⎡⎢⎣ Im

0

−Em

⎤⎥⎦ (Q2h)T .

Thus,

(Qh)T Bh(:, idx)Q2h =
4√
2

⎡⎢⎣ Ch 0 0

0 1/2 0

0 0 EmShEm

⎤⎥⎦
⎡⎢⎣ Im

0

−Em

⎤⎥⎦ =
4√
2

⎡⎢⎣ Ch

0

−EmSh

⎤⎥⎦ .

The lemma follows since Ph
2h = Bh(:, idx)/2 and R2h

h = Bh(:, idx)T /4.

With these diagonal-like decompositions we can expose the structure of Eh.

Theorem 11.6.2. If n = 2k − 1 and m = 2k−1 − 1, then

EhQh = Qh

⎡⎢⎢⎣
Sh 0 ChEm

0 1 0

EmSh 0 EmChEm

⎤⎥⎥⎦ . (11.6.21)

Proof. From (11.6.18) it follows that

(Qh)T EhQh = In − ((Qh)T Ph
2hQ2h)((Q2h)T A2hQ2h)−1((Q2h)T R2h

h Qh)((Qh)T AhQh).

The proof follows by substituting (11.6.4), (11.6.9), (11.6.20), and

(Q2h)T A2hQ2h =
1

2h2 ( Im −
√

Ch )

into this equation and using trigonometric identities.

The block matrix (11.6.21) has the form

⎡⎢⎢⎣
Sh 0 ChEm

0 1 0

EmSh 0 EmChEm

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s2
1 0 0 0 0 0 c2

1

0 s2
2 0 0 0 c2

2 0

0 0 s2
3 0 c2

3 0 0

0 0 0 1 0 0 0

0 0 s2
3 0 c2

3 0 0

0 s2
2 0 0 0 c2

2 0

s2
1 0 0 0 0 0 c2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (n = 7),

from which it is easy to see that

Ehqj = s2
j (qj + qn−j+1), j = 1:m,

Ehqm+1 = qm+1,

Ehqn−j+1 = c2
j (qj + qn−j+1), j = 1:m.

(11.6.22)
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This enables us to examine the eigenvector components in the error equation (11.6.19)
because we also know from §11.6.2 that Gh qj = τjqj where τj = τ

h,2/3
j . Thus, if the

initial error has the eigenvector expansion

uh
c − uh =

m∑
j=1

αj qj︸ ︷︷ ︸
low frequency

+ αm+1 qm+1 +
m∑

j=1

αn−j+1 qn−j+1︸ ︷︷ ︸
high frequency

and we execute (11.6.16), then the error in uh
++ is given by

uh
++ − uh =

m∑
j=1

α̃j qj + α̃m+1 qm+1 +
m∑

j=1

α̃n−j+1 qn−j+1,

where

α̃j =
(

αj τp1
j s2

j + αn−j+1 τp1
n−j+1 c2

j

)
τp2
j , j = 1:m,

α̃m+1 = αm+1 τp1+p2
m+1 ,

α̃n−j+1 =
(

αj τp1
j s2

j + αn−j+1 τp1
n−j+1 c2

j

)
τp2
n−j+1, j = 1:m.

It is important to appreciate the damping factors in these expressions. By virtue
of the weighted Jacobi iteration design, |τn−j+1| ≤ 1/3 for j = 1:m. From the definition
of sj in (11.6.7), we also have s2

j ≤ 1/2. It follows from the α̃ recipes that high-
frequency error is nicely damped by fine-grid smoothing and that low-frequency error
is attenuated by the coarse-grid operations. This interplay together with the fact that
the sj and τn−j+1 bounds are independent of n are what make the multigrid framework
so powerful.

11.6.4 V-Cycles and Other Recursive Strategies

If the coarse-grid system in (11.6.16) is solved recursively, then we can encapsulate the
overall process as follows given that Ahuh

c ≈ bh:

function uh
++ = mgV(uh

c , bh, h)

if h ≥ hmax

uh
++ = WJ(uh

c , p0) (for example)

else

uh
p1

= WJ(uh
c , p1)

rh = bh − Ahuh
p1

r2h = R2h
h rh

z2h = mgV(0, r2h, 2h)

uh
+ = uh

p + Ph
2hz2h

uh
++ = WJ(uc

+, p2)

end
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Note that the base case (h ≥ hmax) is defined by a “coarse-enough,” gridpoint-spacing
parameter hmax and that the solution of the (possibly small) linear system at that
level can be obtained in various ways. Figure 11.6.1 depicts the flow of events called
a V-cycle, if hmax = 16h. Five grids are used and the process starts by recurring four

16h 16h

8h 8h

4h 4h

2h 2h

h h

Figure 11.6.1. A V-cycle

times before the correction equation is solved. This is done on the 16h-grid. After
that, the corrections are mapped upwards through four levels, eventually generating a
solution to the top-level h-grid problem.

Examination of mgV reveals that a V-cycle involves O(n) flops, a hint that the
multigrid framework is incredibly efficient. The coefficient of n in the complexity
assessment depends on the iteration parameters p0, p1 and p2. However, the rate of
error damping is independent of n, which means that these error-control parameters
are not affected by the size of the problem.

The V-cycle that we illustrated is but one of several strategies for moving in
between grids during the course of a multigrid solve. The pattern for full multigrid is
depicted in Figure 11.6.2. Here, the coarse-grid system is used to obtain a starting value

16h 16h

8h 8h

4h 4h

2h 2h

h h

Figure 11.6.2. Full multigrid

for its fine-grid neighbor and then a V-cycle is performed to obtain an improvement.
The process is repeated.

11.6.5 A Rich Design Space

The multigrid framework is rich with options, some of which are not obvious from our
simple, model-problem treatment. For general elliptic boundary value problems on
complicated domains, there are several critical decisions that need to be made if the
overall procedure is to be effective:

• Determine how to extract the coarse grid from the fine grid, e.g., every other grid-
point in each coordinate direction or every other gridpoint in just one coordinate
direction.
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• Determine the right restriction and prolongation operators.

• Determine the right smoother, e.g., (blocked) weighted Jacobi or Gauss-Seidel.

• Determine the number of pre-smoothing steps and post-smoothing steps.

• Determine the depth and “shape” of the recursion, i.e., the number of participat-
ing grids and the order in which they are visited.

• Determine a base-case strategy, i.e., should bottom-level linear systems be solved
exactly or approximately?

With so many implementation parameters, it is not surprising that the multigrid frame-
work can be tuned to address a very broad range of problems.

Problems

P11.6.1 Prove (11.6.9) and (11.6.10).

P11.6.2 Fill in the details that are left out of the proof of Theorem 11.6.2.

P11.6.3 Using (11.6.21), determine the SVD of the matrix Eh.

P11.6.4 What are the analogues of P h
2h and R2h

h for the 2-dimensional Poisson problem on a rectangle
with Dirichlet boundary conditions? What does the matrix Eh look like in this case? State and prove
analogues of Lemma 11.6.1 and Theorem 11.6.2.
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W. Hackbusch (1985). Multi-Grid Methods and Applications, Springer-Verlag, Berlin.
S.F. McCormick (1987). Multigrid Methods, SIAM Publications, Philadelphia, PA.
J.H. Bramble (1993). Multigrid Methods, Longman Scientific and Technical, Harlow, U.K.
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Publications, Philadelphia, PA.
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J. Xu (1992). “Iterative Methods by Space Decomposition and Subspace Correction,” SIAM Review
34, 581–613.

T.F. Chan and B.F. Smith (1994). “Domain Decomposition and Multigrid Algorithms for Elliptic
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Chapter 12

Special Topics

12.1 Linear Systems with Displacement Structure
12.2 Structured-Rank Problems
12.3 Kronecker Product Computations
12.4 Tensor Unfoldings and Contractions
12.5 Tensor Decompositions and Iterations

Prominent themes in this final chapter include data sparsity, low-rank approx-
imation, exploitation of structure, the importance of representation, and large-scale
problems. We revisit (unsymmetric) Toeplitz systems in §12.1 and show how fast sta-
ble methods can be developed through a clever data-sparse representation. The ideas
extend to other types of structured matrices. Representation is also central to the O(n)
methods developed in §12.2 for matrices that have low-rank off-diagonal blocks.

The next three sections form a sequence. The Kronecker product section has
general utility, but it is used very heavily in both §12.4 and §12.5 which together
provide a brief introduction to the rapidly developing field of tensor computations.

Reading Path

Within this chapter, there are the following dependencies

§3.1-§3.4, §4.7 → §12.1 §5.1-§5.3

§3.1-§3.4, §5.1-§5.3 → §12.2 ↓
§1.4 → §12.3 → §12.4 → §12.5

The schematic also hints at the minimum “prerequisites” for each topic.

12.1 Linear Systems with Displacement Structure
If A ∈ IRn×n has rank r, then it has a (non-unique) product representation of the form
UV T where U, V ∈ IRn×r. Note that if r � n, then the product representation is much

681
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more compact than the explicit representation that encodes each aij . In addition to
the obvious storage economies, the product representation supports fast computation.
If the product representation is fully utilized, then the n-by-n matrix-matrix product
AB = U(V T B) is O(n2r) instead of O(n3). Likewise, by applying the Sherman-
Morrison-Woodbury formula, the solution to a linear system of the form (I+UV T )x = b
is O(nr + r3) instead of O(n3). The message is simple in both cases: work with U and
V and not their explicit product UV T .

In this section we continue in this direction by discussing “low-rank” way to repre-
sent Cauchy, Toeplitz, and Hankel matrices together with some of their generalizations.
The data-sparse representation supports fast stable linear equation solving. The key
idea is to turn explicit rank-1 updates that are at the heart of Gaussian elimination
into equivalent, inexpensive updates of their representation. Our presentation is based
on Gohberg, Kailath, and Olshevsky (1995) and Gu (1998).

12.1.1 Displacement Rank

If F, G ∈ IRn×n and the Sylvester map

X → FX − XG (12.1.1)

is nonsingular, then the {F, G}-displacement rank of A ∈ IRn×n is defined by

rank{F,G}(A) = rank(FA − AG). (12.1.2)

Recall from §7.6.3 that the Sylvester map is nonsingular provided λ(F ) ∪ λ(G) = ∅.
Note that if rank{F,G}(A) = r, then we can write

FA − AG = RST , R, S ∈ IRn×r. (12.1.3)

The matrices R and S are generators for A with respect to F and G, a term that
makes sense since we can generate A (or part of A) by working with this equation.
If r � n, then R and S define a data-sparse representation for A. Of course, for
this representation to be of interest F and G must be sufficiently simple so that the
reconstruction of A via (12.1.3) is cheap.

12.1.2 Cauchy-Like Matrices

If ω ∈ IRn and λ ∈ IRn and ωk 
= λj for all k and j, then the n-by-n matrix A = (akj)
defined by

akj =
1

ωk − λj

is a Cauchy matrix. Note that if

Ω = diag(ω1, . . . , ωn), Λ = diag(λ1, . . . , λn),

then

[ΩA − AΛ]kj =
ωk

ωk − λj
− λj

ωk − λj
= 1.
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If e ∈ IRn is the vector of all 1’s, then

ΩA − AΛ = eeT

and thus rank{Ω,Λ}(A) = 1.
More generally, if R ∈ IRn×r and S ∈ IRn×r have rank r, then any matrix A that

satisfies
ΩA − AΛ = RST (12.1.4)

is a Cauchy-like matrix. This just means that

akj =
rT
k sj

ωk − λj

where
RT =

[
r1 · · · rn

]
, ST =

[
s1 · · · sn

]
are column partitionings. Note that R and S are generators with respect to Ω and Λ
and that O(r) flops are required to reconstruct a matrix entry akj from (12.1.4).

12.1.3 The Apparent Loss of Structure

Suppose

A =

[
α gT

f B

]
, α ∈ IR, f, g ∈ IRn−1, B ∈ IR(n−1)×(n−1),

and assume α 
= 0. The first step in Gaussian elimination produces

A1 = B − 1
α

fgT

and the factorization

A =

[
1 0

f/α In−1

][
α gT

0 A1

]
.

Let us examine the structure of A1 given that A is a Cauchy matrix. If n = 4 and
akj = 1/(ωk − λj), then

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ω2 − λ2

1
ω2 − λ3

1
ω2 − λ4

1
ω3 − λ2

1
ω3 − λ3

1
ω3 − λ4

1
ω4 − λ2

1
ω4 − λ3

1
ω4 − λ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1 − λ1

ω2 − λ1

ω1 − λ1

ω3 − λ1

ω1 − λ1

ω4 − λ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ω1 − λ2

1
ω1 − λ3

1
ω1 − λ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

If we choose to work with the explicit representation of A, then for general n this update
requires O(n2) work even though it is highly structured and involves O(n) data. And
worse, all subsequent steps in the factorization process essentially deal with general
matrices rendering an LU computation that is O(n3).



684 Chapter 12. Special Topics

12.1.4 Displacement Rank and Rank-1 Updates

The situation is much happier if we replace the explicit transition from A to A1 with
a transition that involves updating data sparse representations. The key to developing
a fast LU factorization for a Cauchy-like matrix is to recognize that rank-1 updates
preserve displacement rank. Here is the result that makes it all possible.

Theorem 12.1.1. Suppose A ∈ IRn×n satisfies

ΩA − AΛ = RST (12.1.5)

where R, S ∈ IRn×r and

Ω = diag(ω1, . . . , ωn), Λ = diag(λ1, . . . , λn)

have no common diagonal entries. If

A =

[
α gT

f B

]
, R =

[
rT
1

R1

]
, S =

[
sT
1

S1

]

are conformably partitioned, α 
= 0, and

Ω1 = diag(ω2, . . . , ωn), Λ1 = diag(λ2, . . . , λn),

then
Ω1A1 − A1Λ1 = R̃1S̃

T
1 (12.1.6)

where

A1 = B − fgT

α
, R̃1 = R1 − 1

α
frT

1 , S̃1 = S1 − 1
α

gsT
1 .

Proof. By comparing blocks in (12.1.5) we see that

(1, 1) : (ω1 − λ1)α = rT
1 s1, (1, 2) : gT Λ1 = ω1g

T − rT
1 ST

1 ,

(2, 1) : Ω1f = R1s1 + λ1f, (2, 2) : Ω1B − BΛ1 = R1S
T
1 ,

and so

Ω1A1 − A1Λ1 = Ω1

(
B − 1

α
fgT

)
−

(
B − 1

α
fgT

)
Λ1

= (Ω1B − BΛ1) − 1
α

(
(Ω1f)gT − f(gT Λ1)

)
= R1S

T
1 − 1

α

(
(R1s1 + λ1f)gT − f(ω1g

T − rT
1 ST

1 )
)

= R1S
T
1 − 1

α

(
(R1s1)gT + f(rT

1 ST
1 ) − rT

1 s1

α
fgT

)
=

(
R1 −

1
α

frT
1

)(
S1 −

1
α

gsT
1

)T

= R̃1S̃
T
1 .
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This confirms (12.1.6) and completes the proof of the theorem.

The theorem says that

rank{Ω,Λ}(A) ≤ r ⇒ rank{Ω1,Λ1}(A1) ≤ r.

This suggests that instead of updating A explicitly to get A1 at a cost of O(n2) flops,
we should update A’s representation {Ω, Λ, R, S} at a cost of O(nr) flops to get A1’s
representation {Ω1, Λ1, R̃1, S̃1}.

12.1.5 Fast LU for Cauchy-Like Matrices

Based on Theorem 12.1.1 we can specify a fast LU procedure for Cauchy-like matrices.
If A satisfies (12.1.5) and has an LU factorization, then it can be computed using the
function LUdisp defined as follows:

Algorithm 12.1.1 If ω ∈ IRn and λ ∈ IRn have no common components, R, S ∈ IRn×r,
and ΩA − AΛ = RST where Ω = diag(ω1, . . . , ωn) and Λ = diag(λ1, . . . , λn), then the
following function computes the LU factorization A = LU .

function [L, U ] = LUdisp(ω, λ, R, S, n)

rT
1 = R(1, :), R1 = R(2:n, :)

sT
1 = S(1, :), S1 = S(2:n, :)

if n = 1
L = 1

U = rT
1 s1/(ω1 − λ1)

else

a = (Rs1) ./ (ω − λ1)

α = a11

f = a(2:n)

g = (S1r1) ./ (ω1 − λ(2:n))

R̃1 = R1 − frT
1 /α

S̃1 = S1 − gsT
1 /α

[L1, U1] = LUdisp(ω(2:n), λ(2:n), R̃1, S̃1, n − 1)

L =

[
1 0

f/α L1

]

U =

[
α gT

0 U1

]
end
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The nonrecursive version would have the following structure:

Let R(1) and S(1) be the generators of A = A(1) with respect to diag(ω)
and diag(λ).

for k = 1:n − 1
Use ω(k:n), λ(k:n), R(k) and S(k) to compute the first row and column of

A(k) =

[
α gT

f B

]
.

L(k + 1:n, k) = f/α, U(k, k) = α, U(k, k + 1:n) = gT

Determine the generators R(k+1) and S(k+1) of A(k+1) = B − fgT /α

with respect to diag(ω(k:n)) and diag(λ(k:n)).
end

U(n, n) = R(n) ·S(n)/(ωn − λn)

A careful accounting reveals that 2n2r flops are required.

12.1.6 Pivoting

The procedure just developed has numerical difficulties if a small α shows up during
the recursion. To guard against this we show how to incorporate a pivoting strategy.
Suppose A ∈ IRn×n is a Cauchy-like matrix that satisfies the displacement equation

ΩA − AΛ = RST

for diagonal matrices Ω and Λ and n-by-r matrices R and S. If P and Q are n-by-n
permutations, then

(PΩPT (PAQT ) − (PAQT )(QΛQT ) = (PR)(QS)T .

This shows that
Ã = PAQT

is a Cauchy-like matrix having generators

R̃ = PR, S̃ = QS

with respect to the diagonal matrices

Ω̃ = PΩPT , Λ̃ = QΛQT .

Thus, it is easy to track row and column permutations in the the displacement repre-
sentation:

A → PAQT , ≡ {Ω, Λ, R, S} → {PΩPT , QΛQT , PR, QS}.

By taking advantage of this, it is a simple matter to incorporate partial pivoting in
LUdisp and to emerge with the factorization PA = LU :

Algorithm 12.1.2 If ω ∈ IRn and λ ∈ IRn have no common components, R, S ∈ IRn×r,
and ΩA − AΛ = RST , then the following function computes the LU-with-pivoting
factorization PA = LU , where Ω = diag(ω1, . . . , ωn) and Λ = diag(λ1, . . . , λn).
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function [L, U, P ] = LUdispPiv(ω, λ, R, S, n)

Define r1, R1, s1 and S1 by R =

[
rT
1

R1

]
and S =

[
sT
1

S1

]
.

if n = 1

L = 1

U = rT
1 s1/(ω1 − λ1)

else

a = (Rs1) ./ (ω − λ1)

Determine permutation P ∈ IRn×n so that [Pa]1 is maximal and

update: a = Pa, R = PR, ω = Pω.
α = a1

f = a(2:n)

g = (S1r1) ./ (ω1 − λ(2:n))

R̃1 = R1 − frT
1 /α

S̃1 = S1 − gsT
1 /α

[L1, U1, P1] = LUdispPiv(ω(2:n), λ(2:n), R̃1, S̃1, n − 1)

L =

[
1 0

P1f/α L1

]

U =

[
α gT

0 U1

]

P =

[
1 0

0 P1

]
P

end

The processing of the recursive call is based on the fact that if

PA =

[
α gT

f B

]
=

[
1 0

f/α In−1

][
α gT

0 A1

]
, A1 = B − 1

α
fgT ,

and P1A1 = L1U1, then[
1 0

0 P1

]
PA =

[
1 0

P1f/α L1

][
α gT

0 U1

]
.

For LUdispPiv implementation details and a proof of its stability, see Gu (1998).
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12.1.7 Toeplitz-Like Matrices and Hankel-Like Matrices

Recall from §4.7 that a Toeplitz matrix is constant along each of its diagonals. For
example, if c ∈ IRn−1, τ ∈ IR, and r ∈ IRn−1 are given, then the matrix T ∈ IRn×n

defined by

tij =

⎧⎪⎨⎪⎩
ci−j if i > j,

τ if i = j,

rj−i if j > i,

is Toeplitz, e.g.,

T =

⎡⎢⎢⎢⎢⎣
τ r1 r2 r3 r4
c1 τ r1 r2 r3
c2 c1 τ r1 r2
c3 c2 c1 τ r1
c4 c3 c2 c1 τ

⎤⎥⎥⎥⎥⎦ .

To expose the low-displacement-rank structure of a Toeplitz matrix, we define matrices
Zφ and Yγ,δ analogously to their n = 5 instances:

Zφ =

⎡⎢⎢⎢⎢⎣
0 0 0 0 φ
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎦ , Yγ,δ =

⎡⎢⎢⎢⎢⎣
γ 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 δ

⎤⎥⎥⎥⎥⎦ . (12.1.7)

It can be shown that

Z1T − TZ−1 =

⎡⎢⎢⎢⎢⎣
× × × × ×
0 0 0 0 ×
0 0 0 0 ×
0 0 0 0 ×
0 0 0 0 ×

⎤⎥⎥⎥⎥⎦ , rank{Z1,Z−1}(T ) ≤ 2, (12.1.8)

Y00T − TY11 =

⎡⎢⎢⎢⎢⎣
× × × × ×
× 0 0 0 ×
× 0 0 0 ×
× 0 0 0 ×
× × × × ×

⎤⎥⎥⎥⎥⎦ , rank{Y00,Y11}(T ) ≤ 4. (12.1.9)

Furthermore, λ(Z−1) ∪ λ(Z1) = ∅ and λ(Y00) ∪ λ(Y11) = ∅.
A Hankel matrix is constant along its antidiagonals, e.g.,

H =

⎡⎢⎢⎢⎢⎣
c4 c3 c2 c1 τ
c3 c2 c1 τ r1
c2 c1 τ r1 r2
c1 τ r1 r2 r3
τ r1 r2 r3 r4

⎤⎥⎥⎥⎥⎦ .

Note that if H ∈ IRn×n is Hankel, then EnH is Toeplitz, and so it is not surprising that
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Hankel and Toeplitz matrices have similar displacement rank properties:

ZT
1 H − HZ−1 =

⎡⎢⎢⎢⎢⎣
0 0 0 0 ×
0 0 0 0 ×
0 0 0 0 ×
0 0 0 0 ×
× × × × ×

⎤⎥⎥⎥⎥⎦ , rank{ZT
1 ,Z−1}(H) ≤ 2, (12.1.10)

Y00H − HY11 =

⎡⎢⎢⎢⎢⎣
× × × × ×
× 0 0 0 ×
× 0 0 0 ×
× 0 0 0 ×
× × × × ×

⎤⎥⎥⎥⎥⎦ , rank{Y00,Y11}(H) ≤ 4. (12.1.11)

It follows from (12.1.9) and (12.1.11) that if A = T +H is the sum of a Toeplitz matrix
and a Hankel matrix, then rank{Y00,Y11}(A) ≤ 4.

The classes of Toeplitz, Hankel, and Toeplitz-plus-Hankel matrices can be ex-
panded through the notion of low displacement rank. Analogous to how we de-
fined Cauchy-like matrices in (12.1.4) we have the following, assuming that R ∈ IRn×r,
S ∈ IRn×r, and r � n:⎧⎪⎨⎪⎩

Z1A − AZ−1 = RST

ZT
1 A − AZ−1 = RST

Y00A − AY11 = RST

⎫⎪⎬⎪⎭ means that A is

⎧⎪⎨⎪⎩
Toeplitz-like

Hankel-like

Toeplitz-plus-Hankel-like

⎫⎪⎬⎪⎭ .

Our next task is to show that a linear system with any of these properties can be
efficiently converted to a Cauchy-like system and solved with O(n2r) work.

12.1.8 Fast Solvers via Conversion to Cauchy-Like Form

Suppose

FA − AG = RST , A, F, G ∈ IRn×n, R, S ∈ IRn×r, r � n,

and that F and G are diagonalizable:

X−1
F FXF = diag(ω1, . . . , ωn) = Ω,

X−1
G GXG = diag(λ1, . . . , λn) = Λ.

For clarity we assume that F and G have real eigenvalues. It follows from

(X−1
F FXF )(X−1

F AXG) − (X−1
F AXG)(X−1

G GXF ) = (X−1
F R)(XT

G S)T

that
ΩÃ − ÃΛ = R̃S̃T

where Ã = X−1
F AXG, R̃ = X−1

F R, and S̃ = XT
G S Thus, Ã is Cauchy-like and we can

go about solving the given linear system Ax = b as follows:
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Step 1. Compute R̃ = X−1
F R, S̃ = XT

G S, b̃ = X−1
F b, and Ã = X−1

F AXG..

Step 2. Use Algorithm 12.1.2 to compute PÃ = LU .

Step 3. Use PÃ = LU to solve Ãx̃ = b̃.

Step 4. Compute x = XGx̃ .

This will not be an attractive framework unless the matrices F and G have fast eigen-
systems, a concept introduced in §4.8. Fortunately, this is the case for the matrices Z1,
Z−1, Y00 and Y11. For example,

ST
n Y00 Sn = 2 · diag

(
cos

(
π

n + 1

)
, . . . , cos

(
nπ

n + 1

))
, (12.1.12)

CT
n Y11 Cn = 2 · diag

(
1, cos

(π

n

)
, . . . , cos

(
(n − 1)π

n

))
, (12.1.13)

where Sn is the sine transform (DST-I) matrix

[ Sn ]kj =

√
2

n + 1
· sin

(
kjπ

n + 1

)
,

and Cn is the cosine transform (DCT-II) matrix

[ Cn ]kj =

√
2
n
· cos

(
(2k − 1)(j − 1)π

2n

)
qj , qj =

{
1/

√
2 if j = 1,

1 if j > 1.

This allows products like SnR and CT
n S to be computed with O(rn log n) flops. In

short, Step 3 in the above framework is the most expensive step in the process and it
involves O(n2r) work. See Gohberg, Kailath, and Olshevsky (1995) and Gu (1998) for
details and related references.

Problems

P12.1.1 Refer to (12.1.8) and (12.1.9). (a) Show that if Z1X − XZ−1 = 0, then X = 0. (b) Show
that if Y00X −XY11 = 0, then X = 0.

P12.1.2 Develop a nonrecursive version of Algorithm 12.1.2.

P12.1.3 (a) If T ∈ IRn×n is Toeplitz, show how to compute R, S ∈ IRn×2 so that Z1T −TZ−1 = RST .
(b) Suppose R, S ∈ IRn×r and T ∈ IRn×n satisfy Z1T−TZ−1 = RST . Give an algorithm that computes
u = T (:, 1) and v = T (1, :)T .

P12.1.4 (a) If T ∈ IRn×n is Toeplitz, show how to compute R, S ∈ IRn×4 so that Y00T −TY11 = RST .
(b) Suppose R, S ∈ IRn×r and T ∈ IRn×n satisfy Y00T−TY11 = RST . Give an algorithm that computes
u = T (:, 1) and v = T (1, :)T .

P12.1.5 Verify(12.1.13).

P12.1.6 Show that if A ∈ IRn×n is defined by

aij =

∫ b

a

cos(kθ) cos(jθ)dθ

then A is the sum of a Hankel matrix and Toeplitz matrix. Hint: Make use of the identity cos(u+v) =
cos(u) cos(v)− sin(u) sin(v).
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Notes and References for §12.1

For a general introduction to the area of fast algorithms for structured matrices we recommend:

T. Kailath and A. H. Sayed (eds) (1999). Fast Reliable Algorithms for Matrices with Structure, SIAM
Publications, Philadelphia, PA.

V. Olshevsky (ed.) (2000). Structured Matrices in Mathematics, Computer Science, and Engineering
I and II, AMS Contemporary Mathematics Vol. 280/281, AMS, Providence, RI.

D.A. Bini, V. Mehrmann, V. Olshevsky, E.E. Tyrtyshnikov, and M. Van Barel (eds.) (2010). Struc-
tured Matrices and Applications–The Georg Heinig Memorial Volume, Birkhauser-Springer, Basel,
Switzerland.

Papers concerned with the development of fast stable solvers for structured matrices include:

T. Kailath, S. Kung, and M. Morf (1979). “Displacement Ranks of Matrices and Linear Equations,”
J. Math. Anal. Applic. 68, 395–407.

J. Chun and T. Kailath (1991). “Displacement Structure for Hankel, Vandermonde, and Related
Matrices,” Lin. Alg. Applic. 151, 199–227.

T. Kailath and A.H. Sayed (1995). “Displacement Structure: Theory and Applications,” SIAM Review
37, 297–386.

I. Gohberg, T. Kailath, and V. Olshevsky (1995). “Fast Gaussian Elimination with Partial Pivoting
for Matrices with Displacement Structure,” Math. Comput. 212, 1557–1576.

T. Kailath and V. Olshevsky (1997). “Displacement-Structure Approach to Polynomial Vandermonde
and Related Matrices,” Lin. Alg. Applic. 261, 49–90.

G. Heinig (1997). “Matrices with Higher-Order Displacement Structure,” Lin. Alg. Applic. 278,
295–301.

M. Gu (1998). “Stable and Efficient Algorithms for Structured Systems of Linear Systems,” SIAM J.
Matrix Anal. Applic. 19, 279–306.

S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu (2007). “A Superfast Algorithm for Toeplitz
Systems of Linear Equations,” SIAM J. Matrix Anal. Applic. 29, 1247–1266.

Displacement rank ideas can be extended to least squares problems:

R.H. Chan, J.G. Nagy, and R.J. Plemmons (1994). “Displacement Preconditioner for Toeplitz Least
Squares Iterations,” ETNA 2, 44–56.

M. Gu (1998). “New Fast Algorithms for Structured Linear Least Squares Problems,” SIAM J. Matrix
Anal. Applic. 20, 244–269.

G. Rodriguez (2006). “Fast Solution of Toeplitz- and Cauchy-Like Least-Squares Problems,” SIAM
J. Matrix Anal. Applic. 28, 724–748.

For insight into the application low-displacement-rank preconditioners, see:

I. Gohberg and V. Olshevsky (1994). “Complexity of Multiplication with Vectors for Structured
Matrices,” Linear Alg. Applic. 202, 163–192.

M.E. Kilmer and D.P. O’Leary (1999). “Pivoted Cauchy-like Preconditioners for Regularized Solution
of Ill-Posed Problems,” SIAM J. Sci. Comput. 21, 88–110.

T. Kailath and V. Olshevsky (2005). “Displacement Structure Approach to Discrete-Trigonometric-
Transform Based Preconditioners of G. Strang Type and of T. Chan Type,” SIAM J. Matrix Anal.
Applic. 26, 706–734.

12.2 Structured-Rank Problems
Just as a sparse matrix has lots of zero entries, a structured rank matrix has lots of
low-rank submatrices. For example, it could be that all off-diagonal blocks have unit
rank. In this section we identify some important structured rank matrix problems and
point to how they can be solved very quickly with data-sparse representations. To
avoid complicated notation, we adopt a small-n, proof-by-example style of exposition.
Readers who prefer for more detail and rigor should consult the definitive, two-volume
treatise by Vandebril, Van Barel, and Mastronardi (2008).
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12.2.1 Semiseparable Matrices

A matrix A ∈ IRn×n is semiseparable if every block that does not “cross” the diagonal
has unit rank or less. This means

j2 ≤ i1 or i2 ≤ j1 ⇒ rank(A(i1:i2, j1:j2)) ≤ 1. (12.2.1)

The rank-1 blocks of interest in a semiseparable matrix are wholly contained in either
its upper triangular part or its lower triangular part, e.g.,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × a13 a14 × ×
× × a23 a24 × ×
× × a33 a34 × ×
× × × × × ×
a51 a52 × × × ×
a61 a62 × × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

rank(A(1:3, 3:4)) ≤ 1,

rank(A(5:6, 1:2)) ≤ 1.

Semiseparable matrices are data-sparse and enormous savings can be realized when
their structure is exploited. For example, we will show that the factorizations A = LU
and A = QR for semiseparable A require just O(n) flops to compute and O(n) flops to
represent.

An important example of a semiseparable matrix is the inverse of a unit bidiagonal
matrix. Given r ∈ IRn−1 we define B(r) ∈ IRn×n by

B(r) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 −r1 0 0 0

0 1 −r2 0 0

0 0 1 −r3 0

0 0 0 1 −r4

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (12.2.2)

Observe that any submatrix extracted from the upper triangular portion of

B(r)−1 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 r1 r1r2 r1r2r3 r1r2r3r4

0 1 r2 r2r3 r2r3r4

0 0 1 r3 r3r4

0 0 0 1 r4

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (12.2.3)

has unit rank. If x ∈ IRn and r = x(2:n) ./ x(1:n − 1) is defined, then

B(r)T x = x1e1.

Thus, the matrix B(r) can (in principle) be used to introduce zeros into a vector.
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12.2.2 Quasiseparable Matrices

Certain products of Givens rotations exhibit rank structure, but we frame the key fact
in more general terms. If α, β, γ, δ ∈ IRn−1 and

Mk = diag(Ik−1, M̃k, In−k−1), M̃k =

[
αk βk

γk δk

]
,

for k = 1:n − 1, then the matrix M = M1 · · ·Mn−1 is fully illustrated by

M = M1M2M3M4 =

⎡⎢⎢⎢⎢⎢⎢⎣

α1 β1α2 β1β2α3 β1β2β3α4 β1β2β3β4

γ1 δ1α2 δ1β2α3 δ1β2β3α4 δ1β2β3β4

0 γ2 δ2α3 δ2β3α4 δ2β3β4

0 0 γ3 δ3α4 δ3β4

0 0 0 γ4 δ4

⎤⎥⎥⎥⎥⎥⎥⎦ . (12.2.4)

It has the property that off-diagonal blocks have unit rank or less provided they do not
“intersect” the diagonal. Quasiseparable matrices have this property and if A is such
a matrix, then

j2 < i1 or i2 < j1 ⇒ rank(A(i1:i2, j1:j2)) ≤ 1. (12.2.5)

By comparing this with (12.2.1), it is clear that the class of semiseparable matrices is
a subset of the class of quasiseparable matrices.

12.2.3 Two Representations

The Matlab tril and triu notation is very handy when formulating a quasiseparable
matrix computation. If A ∈ IRm×n, then aij is on its kth diagonal if j = i + k. The
matrix B = tril(A, k) is obtained from A by setting to zero all its entries above the kth
diagonal while B = triu(A, k) is obtained from A by setting to zero all its entries below
the kth diagonal. If k = 0, then we simply write tril(A) and triu(A). We also use the
notation diag(d) to designate the diagonal matrix diag(d1, . . . , dn) where d ∈ IRn. Note
that if u, v, d, p, q ∈ IRn, then the matrix

A = tril(uvT ,−1) + diag(d) + triu(pqT , 1) (12.2.6)

is quasiseparable, e.g.,

A =

⎡⎢⎢⎢⎢⎢⎢⎣

d1 p1q2 p1q3 p1q4 p1q5

u2v1 d2 p2q3 p2q4 p2q5

u3v1 u3v2 d3 p3q4 p3q5

u4v1 u4v2 u4v3 d4 p4q5

u5v1 u5v2 u5v3 u5v4 d5

⎤⎥⎥⎥⎥⎥⎥⎦ .

Should it be the case that d = u .∗ v = p .∗ q, then this matrix is semiseparable. The
representation (12.2.6) is referred to as the generator representation.
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Not every quasiseparable matrix has a generator representation. For example, if
A = B(r) and r has nonzero entries, then it is impossible to find u, v, d, p, q ∈ IRn so
that (12.2.6) holds. To address this shortcoming, we use the fact that(

Quasiseparable
Matrix

)
.∗

(
Quasiseparable

Matrix

)
=

(
Quasiseparable

Matrix

)
, (12.2.7)

and embellish (12.2.6) with a pair of inverse bidiagonal factors. It can be shown that
if A ∈ IRn×n is quasiseparable, then there exist u, v, d, p, q ∈ IRn and t, r ∈ IRn−1 such
that

A = tril(uvT ,−1) .∗ B(t)−T + diag(d) + triu(pqT , 1) .∗ B(r)−1 (12.2.8)

≡ S(u, v, t, d, p, q, r),

e.g.,

A =

⎡⎢⎢⎢⎢⎢⎢⎣

d1 p1r1q2 p1r1r2q3 p1r1r2r3q4 p1r1r2r3r4q5

u2t1v1 d2 p2r2q3 p2r2r3q4 p2r2r3r4q5

u3t2t1v1 u3t2v2 d3 p3r3q4 p3r3r4q5

u4t3t2t1v1 u4t3t2v2 u4t3v3 d4 p4r4q5

u5t4t3t2t1v1 u5t4t3t2v2 u5t4t3v3 u5t4v4 d5

⎤⎥⎥⎥⎥⎥⎥⎦ .

We refer to (12.2.8) as a quasiseparable representation and it has a number of important
specializations. If d = u .∗ v = p .∗ q, then A is semiseparable. If t = r = 1n−1, then
A is generator representable. If u = q, v = p, and t = r, then A is symmetric.
The representation also supports the semiseparable-plus-diagonal structure. A matrix
S(u, v, t, d, p, q, r) has this form if d is arbitrary and u .∗ v = p .∗ q. Here are some
inverse-related facts that pertain to semiseparable, quasiseparable, and diagonal-plus-
semiseparable matrices:

Fact 1. If A is nonsingular and tridiagonal, then A−1 is semiseparable. In ad-
dition, if the subdiagonal and superdiagonal entries are nonzero, then A−1 is
generator-representable.

Fact 2. If A is nonsingular and quasiseparable, then so is A−1.

Fact 3. If A = D + S is nonsingular where D is diagonal and nonsingular and S
is semiseparable, then A−1 = D−1 + S1 where S1 is semiseparable.

Aspects of the first fact were encountered in §4.3.8.

12.2.4 Computations with Triangular Semiseparable Matrices

Lower and upper triangular matrices that are also semiseparable can be written as
follows:

L lower semiseparable ⇒ L = S(u, v, t, u .∗ v, 0, 0, 0) = tril(uvT ) .∗ B(t)−T ,

U upper semiseparable ⇒ U = S( 0, 0, 0, p .∗ q, p, q, r) = triu(pqT ) .∗ B(r)−1.
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Operations with matrices that have this structure can be organized very efficiently.
Consider the matrix-vector product

y =
(
triu(pqT ) .∗ B(r)−1)x (12.2.9)

where x, y, p, q ∈ IRn and r ∈ IRn−1. This calculation has the form

⎡⎢⎢⎢⎣
p1q1 p1r1q2 p1r1r2q3 p1r1r2r3q4

0 p2q2 p2r2q3 p2r2r3q4

0 0 p3q3 p3r3q4

0 0 0 p4q4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
y1

y2

y3

y4

⎤⎥⎥⎥⎦ .

By grouping the q’s with the x’s and extracting the p’s, we see that

diag(p1, p2, p3, p4)

⎡⎢⎢⎢⎣
1 r1 r1r2 r1r2r3

0 1 r2 r2r3

0 0 1 r3

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

q1x1

q2x2

q3x3

q4x4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
y1

y2

y3

y4

⎤⎥⎥⎥⎦ .

In other words, (12.2.9) is equivalent to

y = p .∗
(
B(r)−1 (q .∗ x)

)
.

Given x, this is clearly an O(n) computation since bidiagonal system solving is O(n).
Indeed, y can be computed with just 4n flops.

Note that if y is given in (12.2.9) and p and q have nonzero components, then we
can solve for x equally fast: x = (B(r) (y./p)) ./q.

12.2.5 The LU Factorization of a Semiseparable Matrix

Suppose A = S(u, v, t, u .∗v, p, q, r) is an n-by-n semiseparable matrix that has an LU
factorization. It turns out that both L and U are semiseparable and their respective
representations can be computed with O(n) work:

for k = n−1: −1:1
Using A’s representation, determine τk so that if Ã = MkA, where

Mk = diag(Ik−1, M̃k, In−k−1), M̃k =

[
1 0

−τk 1

]
,

then Ã(k + 1, 1:k) is zero (12.2.10)

Compute the update A = MkA by updating A’s representation
end
U = A
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Note that if M = M1 · · ·Mn−1, then MA = U and M = B(τ) with τ = [τ1, . . . , τn−1]T .
It follows that if L = M−1, then L is semiseparable from (12.2.4) and A = LU . The
challenge is to show that the updates A = MkA preserve semiseparability.

To see what is involved, suppose n = 6 and that we have computed M5 and M4
so that

M4M5A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × ×
× × × × × ×
λ λ λ µ µ µ

λ λ λ µ µ µ

0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= S(u, v, t, u .∗ v, p, q, r)

is semiseparable. Note that the λ-block and the µ-block are given by[
λ λ λ

λ λ λ

]
=

[
u3t2t1v1 u3t2v2 u3v3

u4t3t2t1v1 u4t3t2v2 u4t3v3

]
,

[
µ µ µ

µ µ µ

]
=

[
p3r3q4 p3r3r4q5 p3r3r4r5q6

p4q4 p4r4q5 p4r4r5q6

]
.

Thus, if

M̃3 =

[
1 0

−τ3 1

]
,

then

M̃3

[
λ λ λ

λ λ λ

]
=

[
u3t2t1v1 u3t2v2 u3v3

(u4t3 − τ3u3)t2t1v1 (u4t3 − τ3u3)t2v2 (u4t3 − τ3u3)v3

]
,

M̃3

[
µ µ µ

µ µ µ

]
=

[
p3r3q4 p3r3r4q5 p3r3r4r5q6

(p4 − τ3p3r3)q4 (p4 − τ3p3r3)r4q5 (p4 − τ3p3r3)r4r5q6

]
.

If u3 
= 0, τ3 = u4t3/u3, and we perform the updates

u4 = 0, p4 = p4 − τ3p3r3,

then

M3M4M5A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × ×
× × × × × ×
λ λ λ µ µ µ

0 0 0 µ̃ µ̃ µ̃

0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= S(u, v, t, u .∗ v, p, q, r)
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is still semiseparable. (The tildes designate updated entries.) Picking up the pat-
tern from this example, we obtain the following O(n) method for computing the LU
factorization of a semiseparable matrix.

Algorithm 12.2.1 Assume that u, v, p, q ∈ IRn with u .∗v = p .∗ q and that t, r ∈ IRn−1.
If A = S(u, t, v, u .∗ v, p, r, q) has an LU factorization, then the following algorithm
computes p̃ ∈ IRn and τ ∈ IRn−1 so that if L = B(τ)−T and U = triu(p̃qT ) .∗ B(r)−1,
then A = LU .

for k = n−1: −1:1

τk = tkuk+1/uk

p̃k+1 = pk+1 − pkτkrk

end

p̃1 = p1

This algorithm requires about 5n flops. Given our remarks in the previous section
about triangular semiseparable matrices, we see that a semiseparable system Ax = b
can be solved with O(n) work: A = LU , Ly = b, Ux = y. Note that the vectors τ and
p̃ in algorithm 12.2.1 are given by

τ = (u(2:n) .∗ t)./u(1:n − 1)

and

p̃ =

[
p1

p(2:n) − p(1:n − 1) .∗ τ .∗ r

]
.

Pivoting can be incorporated in Algorithm 12.2.1 to ensure that |τk| ≤ 1 for
k = n−1: −1:1. At the beginning of step k, if |uk| < |uk+1|, then rows k and k +
1 are interchanged. The swapping is orchestrated by updating the quasiseparable
respresentation of the current A. The end result is an O(n) reduction of the form
M1 · · ·Mn−1A = U where U is upper triangular and quasiseparable and Mk =
diag(Ik−1, M̃kP̃k, In−k−1) with

P̃k =

[
1 0

0 1

]
or

[
0 1

1 0

]
.

See Vandebril, Van Barel, and Mastronardi (2008, pp. 165–170) for further details and
also how to perform the same tasks when A is quasiseparable.

12.2.6 The Givens-Vector Representation

The QR factorization of a semiseparable matrix is also an O(n) computation. To
motivate the algorithm we step through a simple special case that showcases the idea
of a structured rank Givens update. Along the way we will discover yet another strategy
that can be used to represent a semiseparable matrix.

Assume AL ∈ IRn×n is a lower triangular semiseparable matrix and that a ∈ IRn

is its first column. We can reduce this column to a multiple of e1 with a sequence of
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n − 1 Givens rotations, e.g.,⎡⎢⎢⎢⎣
c1 s1 0 0

−s1 c1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 0 0
0 c2 s2 0

0 −s2 c2 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0
0 0 c3 s3

0 0 −s3 c3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a1

a2

a3

a4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
v1

0

0

0

⎤⎥⎥⎥⎦ .

By moving the rotations to the right-hand side we see that

AL(:, 1) =

⎡⎢⎢⎢⎣
a1

a2

a3

a4

⎤⎥⎥⎥⎦ = v1

⎡⎢⎢⎢⎣
c1

c2s1

c3s2s1

s3s2s1

⎤⎥⎥⎥⎦ .

Because this is the first column of a semiseparable matrix, it is not hard to show that
there exist “weights” v2, . . . , vn so that

AL =

⎡⎢⎢⎢⎣
c1v1 0 0 0

c2s1v1 c2v2 0 0

c3s2s1v1 c3s2v2 c3v3 0

s3s2s1v1 s3s2v2 s3v3 v4

⎤⎥⎥⎥⎦ = B(s)−T .∗ tril(cvT ) (12.2.11)

where

v =

⎡⎢⎢⎢⎣
v1

v2

v3

v4

⎤⎥⎥⎥⎦ , c =

⎡⎢⎢⎢⎣
c1

c2

c3

1

⎤⎥⎥⎥⎦ , s =

⎡⎢⎣ s1

s2

s3

⎤⎥⎦ .

The encoding (12.2.11) is an example of the Givens-vector representation for a trian-
gular semiseparable matrix. It consists of a vector of cosines, a vector of sines, and
a vector of weights. By “transposing” this idea, we can similarly represent an upper
triangular semiseparable matrix. Thus, for a general semiseparable matrix A we may
write

A = AL + AU ,

where
AL = tril(A) = B(sL)−T .∗ tril(cLvT

L ),

AU = triu(A, 1) = B(sU)−1 .∗ triu(vUcT
U , 1),

where cL, sL, and vL (resp. cU , sU , and vU) are the cosine, sine, and weight vectors
associated with the lower (resp. upper) triangular part. For more details on the
properties and utility of this representation, see Vandebril and Van Barel (2005).

12.2.7 The QR Factorization of a Semiseparable Matrix

The matrix Q in the QR factorization of a semiseparable matrix A ∈ IRn×n has a very
simple form. Indeed, it is a product of Givens rotations QT = G1 · · ·Gn−1 where the



12.2. Structured-Rank Problems 699

underlying cosine-sine pairs are precisely those that define Givens representation of AL.
To see this, consider how easy it is to compute the QR factorization of AL:⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 c3 s3

0 0 −s3 c3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

c1v1 0 0 0

c2s1v1 c2v2 0 0

c3s2s1v1 c3s2v2 c3v3 0

s3s2s1v1 s3s2v2 s3v3 v4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
c1v1 0 0 0

c2s1v1 c2v2 0 0

s2s1v1 s2v2 v3 s3v4

0 0 0 c3v4

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
1 0 0 0

0 c2 s2 0

0 −s2 c2 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

c1v1 0 0 0

c2s1v1 c2v2 0 0

s2s1v1 s2v2 v3 s3v4

0 0 0 c3v4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
c1v1 0 0 0

s1v1 v2 s2v3 s2s3v4

0 0 c2v3 c2s3v4

0 0 0 c3v4

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
c1 s1 0 0

−s1 c1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

c1v1 0 0 0

s1v1 v2 s2v3 s2s3v4

0 0 c2v3 c2s3v4

0 0 0 c3v4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
v1 s1v2 s1s2v3 s1s2s3v4

0 c1v2 c1s2v3 c1s2s3v4

0 0 c2v3 c2s3v4

0 0 0 c3v4

⎤⎥⎥⎥⎦ .

In general, if tril(A) = B(s)−T .∗ tril(cvT ) is a Givens vector representation and

QT = G1 · · ·Gn−1 (12.2.12)

where

Gk = diag(Ik−1, G̃k, In−k−1), G̃k =

[
ck sk

−sk ck

]
, (12.2.13)

for k = 1:n − 1, then

QT tril(A) = RL = triu((Dnc)vT ) .∗ B(s)−1. (12.2.14)

(Recall that Dn is the downshift permutation, see §1.3.x.) Since QT is upper Hessen-
berg, it follows that

QT triu(A, 1) = RU

is also upper triangular. Thus,

QT A = QT (AL + AU) = RL + RU = R

is the QR factorization of A. Unfortunately, this is not a useful O(n) representation of
R from the standpoint of solving Ax = b because the summation gets in the way when
we try to solve (RL + RU)x = QT b.

Fortunately, there is a handier way to encode R. Assume for clarity that A has
a generator representation

A = tril(uvT ) + triu(pqT ), (12.2.15)
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where u, v, p, q ∈ IRn and u .∗v = p .∗q. We show that R is the upper triangular portion
of a rank-2 matrix, i.e.,

R = triu(fgT + hqT ) , f, g, h ∈ IRn. (12.2.16)

This means that any submatrix extracted from the upper triangular part of R has rank
two or less.

From (12.2.15) we see that the first column of A is a multiple of u. It follows that
the Givens rotations that define Q in (12.2.12) can be determined from this vector:

G1 · · ·Gn−1u =

⎡⎢⎢⎢⎣
ũ1
0
...
0

⎤⎥⎥⎥⎦ .

Suppose n = 6 and that we have computed G5, G4 and G3 so that A(3) = G3G4G5A
has the form

A(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1v1 p1q2 p1q3 p1q4 p1q5 p1q6

u2v1 u2v2 p2q3 p2q4 p2q5 p2q6

ũ3v1 ũ3v2 f̃3g3 + h̃3q3 f̃3g4 + h̃3q4 f̃3g5 + h̃3q5 f̃3g6 + h̃3q6

0 0 0 f4g4 + h4q4 f4g5 + h4q5 f4g6 + h4q6

0 0 0 0 f5g5 + h5q5 f5g6 + h5q6

0 0 0 0 0 f6g6 + h6q6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Next, we compute the cosine-sine pair {c2, s2} so that

G̃2

[
u2

ũ3

]
=

[
c2 s2

−s2 c2

][
u2

ũ3

]
=

[
ũ2

0

]
.

Since [
c2 s2

−s2 c2

][
p2qj

f̃3gj + h̃3qj

]
=

[
c2p2 + s2h̃3

−s2p2 + c2h̃3

]
qj +

[
s2f̃3

c2f̃3

]
gj ,

for j = 3:6, it follows that A(2) = G2A
(3) = diag(1, G̃2, I3)A(3) has the form

A(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1v1 p1q2 p1q3 p1q4 p1q5 p1q6

ũ2v1 f̃2g2 + h̃2q2 f̃2g3 + h̃2q3 f̃2g4 + h̃2q4 f̃2g5 + h̃2q5 f̃2g6 + h̃2q6

0 0 f3g3 + h3q3 f3g4 + h3q4 f3g5 + h3q5 f3g6 + h3q6

0 0 0 f4g4 + h4q4 f4g5 + h4q5 f4g6 + h4q6

0 0 0 0 f5g5 + h5q5 f5g6 + h5q6

0 0 0 0 0 f6g6 + h6q6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where

f̃2 = s2f̃3, f3 = c2f̃3, h̃2 = c2p2 + s2h̃3, h3 = −s2p2 + c2h̃3.

By considering the transition from A(3) to A(2) via the Givens rotation G2, we conclude
that

[
A(2)

]
22 = ũ2v2. Since this must equal f̃2g2 + h̃2q2 we have

g2 =
ũ2v2 − h̃2q2

f̃2
.

By extrapolating from this example and making certain assumptions to guard against
divison by zero, we obtain the following QR factorization procedure.

Algorithm 12.2.2 Suppose u, v, p, and q are n-vectors that satisfy u .∗ v = p .∗ q and
un 
= 0. If A = tril(uvT ) + triu(pqT , 1), then this algorithm computes cosine-sine pairs
{c1, s1}, . . . , {cn−1, sn−1} and vectors f, g, h ∈ IRn so that if Q is defined by (12.2.12)
and (12.2.13), then QT A = R = triu(fgT + hqT ).

ũn = un, f̃n = un, gn = vn, hn = 0

for k = n−1:−1:1

Determine ck and sk so that

[
ck sk

−sk ck

][
uk

ũk+1

]
=

[
ũk

0

]
.

f̃k = skf̃k+1, fk+1 = ckf̃k+1[
hk

hk+1

]
=

[
ck sk

−sk ck

][
pk

hk+1

]
gk = (ukvk − hkqk)/f̃k

end

f1 = f̃1

Regarding the condition that un 
= 0, it is easy to show by induction that

f̃k = sk · · · sn−1un.

The sk are nonzero because |ũk| = ‖ u(k:n) ‖2 
= 0. This algorithm requires O(n) flops
and O(n) storage. We stress that there are better ways to implement the QR factor-
ization of a semiseparable matrix than Algorithm 12.2.2. See Van Camp, Mastronardi,
and Van Barel (2004). Our goal, as stated above, is to suggest how a structured
rank matrix factorization can be organized around Givens rotations. Equally efficient
QR factorizations for quasiseparable and semiseparable-plus-diagonal matrices are also
possible.

We mention that an n-by-n system of the form triu(fgT + hqT )x = y can be
solved in O(n) flops. An induction argument based on the partitioning[

fkgk + hkqk fkg̃T + h1q̃
T

0 f̃ g̃T + h̃q̃T

][
xk

x̃

]
=

[
yk

ỹ

]

where all the “tilde” vectors belong to IRn−k shows why. If x̃, α = g̃T x̃, and q̃T x̃ are
available, then xk and the updates α = α + gkxk and β = β + qkxk require O(1) flops.
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12.2.8 Other Rank-Structured Classes

We briefly mention several other rank structures that arise in applications. Fast LU
and QR procedures exist in each case.

If p and q are nonnegative integers, then a matrix A is {p, q}-semiseparable if

j2 < i1 + p ⇒ rank(A(i1:i2, j1:j2)) ≤ p,

i2 > j1 + q ⇒ rank(A(i1:i2, j1:j2)) ≤ q.

For example, if A is {2, 3}-semiseparable, then

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × ×
a21 a22 a23 × × × ×
a31 a32 a33 a34 a35 a36 a37

a41 a42 a43 a44 a45 a46 a47

× × × a54 a55 a56 a57

× × × a64 a65 a66 a67

× × × a74 a75 a76 a77

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒

rank(A(2:4, 1:3)) ≤ 2,

rank(A(3:7, 4:7)) ≤ 3.

In general, A is {p, q}-generator representable if we have U, V ∈ IRn×p and P, Q ∈ IRn×q

such that

tril(A, p − 1) = tril(UV T , p − 1),

triu(A,−q + 1) = triu(PQT ,−q + 1).

If such a matrix is nonsingular, then A−1 has lower bandwidth p and upper bandwidth
q. If the {p, q}-semiseparable definition is modified so that the rank-p blocks come
from tril(A) and the rank-q blocks come from triu(A), then A belongs to the class of
extended {p, q}-separable matrices. If the {p, q}-semiseparable definition is modified
so that the rank-p blocks come from tril(A,−1) and the rank-q come from triu(A, 1),
then A belongs to the class of extended {p, q}-quasiseparable matrices. A sequentially
semiseparable matrix is a block matrix that has the following form:

A =

⎡⎢⎢⎢⎢⎣
D1 P1Q

T
2 P1R2Q

T
3 P1R2R3Q

T
4

U2V
T
1 D2 P2Q

T
3 P2R3Q

T
4

U3T2V
T
1 U3V

T
2 D3 P3Q

T
4

U4T3T2V
T
1 U4T3V

T
2 U4V

T
3 D4

⎤⎥⎥⎥⎥⎦ . (12.2.17)

See Dewilde and van der Veen (1997) and Chandrasekaran et al. (2005). The blocks
can be rectangular so least squares problems with this structure can be handled.

Matrices with hierarchical rank structure are based on low-rank patterns that
emerge through recursive 2-by-2 blockings. (With one level of recursion we would
have 2-by-2 block matrix whose diagonal blocks are 2-by-2 block matrices.) Various
connections may exist between the low-rank representations of the off-diagonal blocks.
The important class of hierarchically semiseparable matrices has a particularly rich
and exploitable structure; see Xia (2012).
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12.2.9 Semiseparable Eigenvalue Problems and Techniques

Fast versions of various two-sided, eigenvalue-related decompositions also exist. For
example, if A ∈ IRn×n is symmetric and diagonal-plus-semiseparable, then it is possible
to compute the tridiagonalization QT AQ = T in O(n2) flops. The orthogonal matrix
Q is a product of Givens rotations each of which participate in a highly-structured
update. See Mastronardi, Chandrasekaran, and Van Huffel (2001).

There are also interesting methods for general matrix problems that involve the
introduction of semiseparable structures during the solution process. Van Barel, Van-
berghen, and van Dooren (2010) approach the product SVD problem through conver-
sion to a semiseparable structure. For example, to compute the SVD of A = A1A2 or-
thogonal matrices U1, U2, and U3 are first computed so that (UT

1 A1U2)(UT
2 A2U3) = T

is upper triangular and semiseparable. Vanberghen, Vandebril, and Van Barel (2008)
have shown how to compute orthogonal Q, Z ∈ IRn×n so that QT BZ = R is upper
triangular and QT AZ = L has the property that tril(L) is semiseparable. A procedure
for reducing the equivalent pencil L− λR to generalized Schur form is also developed.

12.2.10 Eigenvalues of an Orthogonal Upper Hessenberg Matrix

We close with an eigenvalue problem that has quasiseparable structure. Suppose
H ∈ IRn×n is an upper Hessenberg matrix that is also orthogonal. Our goal is to com-
pute λ(H). Note that each eigenvalue is on the unit circle. Without loss of generality
we may assume that the subdiagonal entries are nonzero.

If n is odd, then it must have a real eigenvalue because the eigenvalues of a
real matrix come in complex conjugate pairs. In this case it is possible to deflate the
problem by carefully working with the eigenvector equation Hx = x (or Hx = −x).
Thus, we may assume that n is even.

For 1 ≤ k ≤ n − 1, define the reflection Gk ∈ IRn×n by

Gk = G(φk) = diag (Ik−1, R(φk), In−k−1)

where

R(φk) =

[
− cos(φk) sin(φk)

sin(φk) cos(φk)

]
, 0 < φk < π.

These transformations can be used to represent the QR factorization of H. Indeed, as
for the Givens process described in §5.2.6, we can compute G1, . . . , Gn−1 so that

Gn−1 · · ·G1H = Gn ≡ diag(1, . . . , 1,−cn).

The matrix Gn is the “R” matrix. It is diagonal because an orthogonal upper triangular
matrix must be diagonal. Since the determinant of a matrix is the product of its
eigenvalues, the value of cn is either +1 or −1. If cn = −1, then det(H) = −1, which
in turn implies that H has a real eigenvalue and we can deflate the problem. Thus, we
may assume that

H = G1 · · ·Gn, Gn = diag(1, . . . , 1,−1), n = 2m (12.2.18)

and that our goal is to compute

λ(H) = { cos(θ1) ± i · sin(θ1), . . . , cos(θm) ± i · sin(θm) }. (12.2.19)



704 Chapter 12. Special Topics

Note that (12.2.4) and (12.2.18) tell us that H is quasiseparable.
Ammar, Gragg, and Reichel (1986) propose an interesting O(n2) method that

computes the required eigenvalues by setting up a pair of m-by-m bidiagonal SVD
problems. Three facts are required:

Fact 1. H is similar to H̃ = HoHe where

Ho = G1G3 · · ·Gn−1 = diag(R(φ1), R(φ3), . . . , R(φn−1)),

He = G2G4 · · ·Gn = diag(1, R(φ2), R(φ4), . . . , R(φn−2),−1).

Fact 2. The matrices
C =

Ho + He

2
, S =

Ho − He

2
are symmetric and tridiagonal. Moreover, their eigenvalues are given by

λ(C) = { ± cos(θ1/2), . . . ,± cos(θm/2) },
λ(S) = { ± sin(θ1/2), . . . ,± sin(θm/2) }.

Fact 3. If

Qo = diag(R(φ1/2), R(φ3/2), . . . , R(φn−1/2)),

Qe = diag(1, R(φ2/2), R(φ4/2), . . . , R(φn−2/2),−1),

then perfect shuffle permutations of the matrices

C(1) = QoCQe, S(1) = QoSQe

expose a pair of m-by-m bidiagonal matrices BC and BS with the property that

σ(BC) = {cos(θ1/2), . . . , cos(θm/2)} ,

σ(BS) = {sin(θ1/2), . . . , sin(θm/2)} .

Once the bidiagonal matrices BC and BS are set up (which involves O(n) work), then
their singular values can be computed via Golub-Kahan SVD algorithm. The angle
θk can be accurately determined from sin(θk/2) if 0 < θk < π/2 and from cos(θk/2)
otherwise. See Ammar, Gragg, and Reichel (1986) for more details.

Problems

P12.2.1 Rigorously prove that the matrix B(r)−1 is semiseparable.

P12.2.2 Prove that A is quasiseparable if and only if A = S(u, t, v, d, p, r, q) for appropriately chosen
vectors u, v, t, d, p, r, and q.

P12.2.3 How many flops are required to execute the n-by-n matrix vector product y = Ax where
A = S(u, v, t, d, p, q, r).

P12.2.4 Refer to (12.2.4). Determine u, v, t, d, p, q, and r so that M = S(u, v, t, d, p, q, r).

P12.2.5 Suppose S(u, v, t, d, v, u, t) is symmetric positive definite and semiseparable. Show that its
Cholesky factor is semiseparable and give an algorithm for computing its quasiseparable representation.
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P12.2.6 Verify the three facts in §12.2.3.
P12.2.7 Develop a fast method for solving the upper triangular system Tx = y where T is the matrix
T = diag(d) + triu(pqT , 1) .∗B(r)−1 with p, q, d, y ∈ IRn and r ∈ IRn−1.

P12.2.8 Verify (12.2.7).

P12.2.9 Prove (12.2.14).

P12.2.10 Assume that A is an N -by-N block matrix that has the sequentially separable structure
illustrated in (12.2.17). Assume that the blocks are each m-by-m. Give a fast algorithm for computing
y = Ax where x ∈ IRNm.

P12.2.11 It can be shown that

A =

⎡⎢⎢⎢⎣
A1 BT

1 0 0

B1 A2 BT
2 0

0 B2 A3 BT
3

0 0 B3 A4

⎤⎥⎥⎥⎦ ⇒ A−1 =

⎡⎢⎢⎢⎣
U1V T

1 V1UT
2 V1UT

3 V1UT
4

U2V T
1 U2V T

2 V2UT
3 V2UT

4

U3V T
1 U3V T

2 U3V T
3 V3UT

4

U4V T
1 U4V T

2 U4V T
3 U4V T

4

⎤⎥⎥⎥⎦ ,

assuming that A is symmetric positive definite and that the Bi are nonsingular. Give an algorithm
that computes U1, . . . , U4 and V1, . . . , V4.

P12.2.12 Suppose a, b, f, g ∈ IRn and that A = triu(abT + fgT ) is nonsingular. (a) Given x ∈ IRn,
show how to compute efficiently y = Ax. (b) Given y ∈ IRn, show how to compute x ∈ IRn so that
Ax = y. (c) Given y, d ∈ IRn, show how to compute x so that y = (A + D)x where it is assumed that
D = diag(d) and A + D are nonsingular.

P12.2.13 Verify the three facts in §12.2.10 for the case n = 8.

P12.2.14 Show how to compute the eigenvalues of an orthogonal matrix A ∈ IRn×n by computing the
Schur decompositions of (A + AT )/2 and (A−AT )/2.
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12.3 Kronecker Product Computations
The Kronecker product (KP) has a rich algebra that supports a wide range of fast,
practical algorithms. It also provides a bridge between matrix computations and tensor
computations. This section is a compendium of its most important properties from
that point of view. Recall that we introduced the KP in §1.3.6 and identified a few of
its properties in §1.3.7 and §1.3.8. Our discussion of fast transforms in §1.4 and the
2-dimensional Poisson problem in §4.8.4 made heavy use of the operation.

12.3.1 Basic Properties

Kronecker product computations are structured block matrix computations. Basic
properties are given in §1.3.6–§1.3.8, including

Transpose: (B ⊗ C)T = BT ⊗ CT ,

Inverse: (B ⊗ C)−1 = B−1 ⊗ C−1,

Product: (B ⊗ C)(D ⊗ F ) = BD ⊗ CF ,

Associativity: B ⊗ (C ⊗ D) = (B ⊗ C) ⊗ D.

Recall that B ⊗ C 
= C ⊗ B, but if B ∈ IRm1×n1 and C ∈ IRm2×n2, then

P (B ⊗ C)QT = C ⊗ B (12.3.1)

where P = Pm1,m2 and Q = Pn1,n2 are perfect shuffle permutations, see §1.2.11.
Regarding the Kronecker product of structured matrices, if B is sparse, then

B ⊗ C has the same sparsity pattern at the block level. If B and C are permutation
matrices, then B ⊗ C is also a permutation matrix. Indeed, if p and q are permutations
of 1:m and 1:n, then

Im(p, :) ⊗ In(q, :) = Imn(w, :), w = (1m ⊗ q) + n·(p − 1m) ⊗ 1n. (12.3.2)
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We also have

(orthogonal) ⊗ (orthogonal) = (orthogonal),

(stochastic) ⊗ (stochastic) = (stochastic),

(sym pos def) ⊗ (sym pos def) = (sym pos def).

The inheritance of positive definiteness follows from

B = GBGT
B

C = GCGT
C

⇒ B ⊗ C = GBGT
B
⊗ GCGT

C = (GB
⊗ GC)(GB

⊗ GC)T .

In other words, the Cholesky factor of B ⊗ C is the Kronecker product of the B and
C Cholesky factors. Similar results apply to square LU and QR factorizations:

PBB = LBUB

PCC = LCUC

}
⇒ (PB ⊗ PC)(B ⊗ C) = (LB

⊗ LC)(UB
⊗ UC),

B = QBRB

C = QCRC

}
⇒ B ⊗ C = (QB ⊗ QC)(RB ⊗ RC).

It should be noted that if B and/or C have more rows than columns, then the same can
be said about the upper triangular matrices RB and RC . In this case, row permutations
of RB ⊗ RC are required to achieve triangular form. On the other hand,

(B ⊗ C)(PB ⊗ PC) = (QB ⊗ QC)(RB ⊗ RC)

is a thin QR factorization of B ⊗ C if BPB = QBRB and CPC = QCRC are thin QR
factorizations.

The eigenvalues and singular values of B ⊗ C have a product connection to the
eigenvalues and singular values of B and C:

λ(B ⊗ C) = { βi γj : βi ∈ λ(B), γj ∈ λ(C) },

σ(B ⊗ C) = { βi γj : βi ∈ σ(B), γj ∈ σ(C) }.

These results are a consequence of the following decompositions:

QH
B BQB = TB

QH
C CQC = TC

⎫⎬⎭ ⇒ (QB ⊗ QC)H(B ⊗ C)(QB ⊗ QC) = TB ⊗ TC , (12.3.3)

UH
B BVB = ΣB

UH
C CVC = ΣC

}
⇒ (UB

⊗ UC)H (B ⊗ C) (VB
⊗ VC) = ΣB

⊗ ΣC . (12.3.4)

Note that if By = βy and Cz = γz, then (B ⊗ C)(y ⊗ z) = βγ (y ⊗ z). Other proper-
ties that follow from (12.3.3) and (12.3.4) include

rank(B ⊗ C) = rank(B) · rank(C),
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det(B ⊗ C) = det(B)n · det(C)m, B ∈ IRm×m, C ∈ IRn×n,

tr(B ⊗ C) = tr(B) · tr(C),

‖ B ⊗ C ‖
F

= ‖ B ‖
F
· ‖ C ‖

F
,

‖ B ⊗ C ‖2 = ‖ B ‖2 · ‖ C ‖2.

See Horn and Johnson (TMA) for additional KP facts.

12.3.2 The Tracy-Singh Product

We can think of the Kronecker product of two matrices B = (bij) and C = (cij) as the
systematic layout of all possible products bijck�, e.g.,

[
b11 b12

b21 b22

]
⊗

[
c11 c12

c21 c22

]
=

⎡⎢⎢⎢⎢⎣
b11c11 b11c12 b12c11 b12c12

b11c21 b11c22 b12c21 b12c22

b21c11 b21c12 b22c11 b22c12

b21c21 b21c22 b22c21 b22c22

⎤⎥⎥⎥⎥⎦ .

However, the Kronecker product of two block matrices B = (Bij) and Cij) is not the
corresponding layout of all possible block-level Kronecker products Bij ⊗ Bk�:

[
B11 B12

B21 B22

]
⊗

[
C11 C12

C21 C22

]

=

⎡⎢⎢⎢⎢⎣
B11C11 B11C12 B12C11 B12C12

B11C21 B11C22 B12C21 B12C22

B21C11 B21C12 B22C11 B22C12

B21C21 B21C22 B22C21 B22C22

⎤⎥⎥⎥⎥⎦ .

The matrix on the right is an example of the Tracy-Singh product. Formally, if we are
given the blockings

B =

⎡⎢⎣ B11 · · · B1,N1

...
. . .

...

BM1,1 · · · BM1,N1

⎤⎥⎦ C =

⎡⎢⎣ C11 · · · C1,N2

...
. . .

...

CM2,1 · · · CM2,N2

⎤⎥⎦ , (12.3.5)

with Bij ∈ IRm1×n1 and Cij ∈ IRm2×n2, then the Tracy-Singh product is an M1-by-N1
block matrix B ⊗

TS
C whose (i, j) block is given by

[ B ⊗
TS

C ]ij =

⎡⎢⎣ Bij ⊗ C11 · · · Bij ⊗ C1,N2

...
. . .

...

Bij ⊗ CM2,1 · · · Bij ⊗ CM2,N2

⎤⎥⎦ .

See Tracy and Singh (1972). Given (12.3.5), it can be shown using (12.3.1) that

B ⊗
TS

C = P (B ⊗ C) QT (12.3.6)
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where

P = (IM1M2
⊗ Pm2,m1) (IM1

⊗ Pm1,M2m2) , (12.3.7)

Q = (IN1N2
⊗ Pn2,n1 ) (IN1

⊗ Pn1,N2n2 ) . (12.3.8)

12.3.3 The Hadamard and Khatri-Rao Products

There are two submatrices of B ⊗ C that are particularly important. The Hadamard
Product is a pointwise product:

B ⊗
HAD

C = B .∗ C.

Thus, if B ∈ IRm×n and C ∈ IRm×n, then⎡⎢⎣ b11 b12

b21 b22

b31 b32

⎤⎥⎦ ⊗
HAD

⎡⎢⎣ c11 c12

c21 c22

c31 c32

⎤⎥⎦ =

⎡⎢⎣ b11c11 b12c12

b21c21 b22c22

b31c31 b32c32

⎤⎥⎦ .

The block analog of this is the Khatri-Rao Product. If B = (Bij) and C = (Cij) are
each m-by-n block matrices, then

B ⊗
KR

C = (Aij) , Aij = Bij ⊗ Cij ,

e.g., ⎡⎢⎣ B11 B12

B21 B22

B31 B32

⎤⎥⎦ ⊗
KR

⎡⎢⎣ C11 C12

C21 C22

C31 C32

⎤⎥⎦ =

⎡⎢⎢⎣ B11 ⊗ C11 B12 ⊗ C12

B21 ⊗ C21 B22 ⊗ C22

B31 ⊗ C31 B32 ⊗ C32

⎤⎥⎥⎦ .

A particularly important instance of the Khatri-Rao product is based on column par-
titionings:[

b1 · · · bn

] ⊗
KR

[
c1 · · · cn

]
=

[
b1 ⊗ c1 · · · bn ⊗ cn

]
.

For more details on the Khatri-Rao product, see Smilde, Bro, and Geladi (2004).

12.3.4 The Vec and Reshape Operations

In Kronecker product work, matrices are sometimes regarded as vectors and vectors
are sometimes turned into matrices. To be precise about these reshapings, we remind
the reader about the vec and reshape operations defined in §1.3.7. If X ∈ IRm×n, then
vec(X) is an nm-by-1 vector obtained by “stacking” X’s columns:

vec(X) =

⎡⎢⎣ X(:, 1)
...

X(:, n)

⎤⎥⎦ .
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If B ∈ IRm1×n1, C ∈ IRm2×n2, and X ∈ IRn1×m2, then

Y = CXBT ⇔ vec(Y ) = (B ⊗ C) · vec(X). (12.3.9)

Note that the matrix equation

F1XGT
1 + · · · + FpXGT

p = C (12.3.10)

is equivalent to
(G1 ⊗ F1 + · · · + Gp ⊗ Fp) vec(X) = vec(C). (12.3.11)

See Lancaster (1970), Vetter (1975), and also our discussion about block diagonalization
in §7.6.3.

The reshape operation takes a vector and turns it into a matrix. If a ∈ IRmn then

A = reshape(a, m, n) ∈ IRm×n ⇔ vec(A) = a.

Thus, if u ∈ IRm and v ∈ IRn, then reshape(v ⊗ u, m, n) = uvT .

12.3.5 Vec, Perfect Shuffles, and Transposition

There is an important connection between matrix transposition and perfect shuffle
permutations. In particular, if A ∈ IRq×r, then

vec(AT ) = Pr,qvec(A). (12.3.12)

This formulation of matrix transposition provides a handy way to reason about large
scale, multipass transposition algorithms that are required when A ∈ IRq×r is too large
to fit in fast memory. In this situation the transposition must proceed in stages and
the overall process corresponds to a factorization of Pr,q. For example, if

Pr,q = Γt · · ·Γ1 (12.3.13)

where each Γk is a “data-motion-friendly” permutation, then B = AT can be computed
with t passes through the data:

a = vec(A)

for k = 1:t

a = Γka

end

B = reshape(a, q, r)

The idea is to choose a factorization (12.3.13) so that the data motion behind the
operation kth pass, i.e., a ← Γka, is in harmony with the architecture of the underlying
memory hierarchy, i.e., blocks that can fit in cache, etc.

As an illustration, suppose we want to assign AT to B where

A =

⎡⎢⎣ A1
...

Ar

⎤⎥⎦ , Ak ∈ IRq×q.
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We assume that A is stored by column which means that the Ai are not contiguous in
memory. To complete the story, suppose each block comfortably fits in cache but that
A cannot. Here is a 2-pass factorization of Prq,q:

Pq,rq = Γ2Γ1 = (Ir ⊗ Pq,q) (Pr,q ⊗ Iq) .

If ã = Γ1 · vec(A), then

reshape(ã, q, rq) =
[

A1 · · · Ar

]
.

In other words, after the first pass through the data we have computed the block
transpose of A. (The Ai are now contiguous in memory.) To complete the overall task,
we must transpose each of these blocks. If b = Γ2ã, then

B = reshape(b, q, rq) =
[

AT
1 · · · AT

r

]
.

See Van Loan (FFT) for more details about perfect shuffle factorizations and multipass
matrix transposition algorithms.

12.3.6 The Kronecker Product SVD

Suppose A ∈ IRm×n is given with m = m1m2 and n = n1n2. For these integer factor-
izations the nearest Kronecker product (NKP) problem involves minimizing

φ(B, C) = ‖ A − B ⊗ C ‖
F

(12.3.14)

where B ∈ IRm1×n1 and C ∈ IRm2×n2. Van Loan and Pitsianis (1992) show how to solve
the NKP problem using the singular value decomposition of a permuted version of A. A
small example communicates the main idea. Suppose m1 = 3 and n1 = m2 = n2 = 2.
By carefully thinking about the sum of squares that define φ, we see that

φ(B, C) =

∥∥∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24

a31 a32 a33 a34
a41 a42 a43 a44

a51 a52 a53 a54
a61 a62 a63 a64

⎤⎥⎥⎥⎥⎥⎥⎦ −

⎡⎣ b11 b12
b21 b22
b31 b32

⎤⎦ ⊗
[

c11 c12
c21 c22

]
∥∥∥∥∥∥∥∥∥∥∥∥

F

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a21 a12 a22

a31 a41 a32 a42

a51 a61 a52 a62

a13 a23 a14 a24

a33 a43 a34 a44

a53 a63 a54 a64

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎣
b11
b21
b31
b12
b22
b32

⎤⎥⎥⎥⎥⎥⎥⎦
[

c11 c21 c12 c22
]

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
F

.
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Denote the preceding 6-by-4 matrix by R(A) and observe that

R(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(A11)T

vec(A21)T

vec(A31)T

vec(A12)T

vec(A22)T

vec(A32)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It follows that
φ(B, C) =

∥∥ R(A) − vec(B)vec(C)T
∥∥

F

and so the act of minimizing φ is equivalent to finding a nearest rank-1 matrix to R(A).
This problem has a simple SVD solution. Referring to Theorem 2.4.8, if

UTR(A)V = Σ (12.3.15)

is the SVD of R(A), then the optimizing B and C are defined by

vec(Bopt) =
√

σ1 U(:, 1), vec(Copt) =
√

σ1 V (:, 1).

The scalings are arbitrary. Indeed, if Bopt and Copt solve the NKP problem and α 
= 0,
then α · Bopt and (1/α) · Copt are also optimal.

In general, if

A =

⎡⎢⎣ A11 · · · A1,n1

...
. . .

...
Am1,1 · · · Am1,n1

⎤⎥⎦ (12.3.16)

where each Aij ∈ IRm2×n2, then R(A) ∈ IRm1n1×m2n2 is defined by

R(A) =

⎡⎢⎣ Ã1
...

Ãn1

⎤⎥⎦ , Ãj =

⎡⎢⎣ vec(A1j)T

...
vec(Am1,j)T

⎤⎥⎦ .

The SVD of R(A) can be “reshaped” into a special SVD-like expansion for A.

Theorem 12.3.1 (Kronecker Product SVD). If A ∈ IRm1m2×n1n2 is blocked ac-
cording to (12.3.16) and

R(A) = UΣV T =
r∑

k=1

σk · ukvT
k (12.3.17)

is the SVD of R(A) with uk = U(:, k), vk = V (:, k), and σk = Σ(k, k), then

A =
r∑

k=1

σk · Uk ⊗ Vk (12.3.18)

where Uk = reshape(uk, m1, n1) and Vk = reshape(vk, m2, n2).
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Proof. In light of (12.3.18), we must show that

Aij =
r∑

k=1

σk · Uk(i, j) · Vk.

But this follows immediately from (12.3.17) which says that

vec(Aij)T =
r∑

k=1

σk · Uk(i, j)vT
k

for all i and j.

The integer r in the theorem is the Kronecker product rank of A given the blocking
(12.3.16). Note that if r̃ ≤ r, then

Ar̃ =
r̃∑

k=1

σk Uk ⊗ Vk (12.3.19)

is the closest matrix to A (in the Frobenius norm) that is the sum of r̃ Kronecker
products. If A is large and sparse and r̃ is small, then the Lanzcos SVD iteration can
effectively be used to compute the required singular values and vectors of R(A). See
§10.4.

12.3.7 Constrained NKP Problems

If A is structured, then it is sometimes the case that the B and C matrices that solve
the NKP problem are similarly structured. For example, if A is symmetric and positive
definite, then the same can be said of Bopt and Copt (if properly normalized). Likewise,
if A is nonnegative, then the optimal B and C can be chosen to be nonnegative. These
and other structured NKP problems are discussed in Van Loan and Pitsianis (1992).

We mention that a problem like

min
B, C Toeplitz

‖ A − B ⊗ C ‖
F
, B ∈ IRm×m, C ∈ IRn×n,

turns into a constrained nearest rank-1 problem of the form

min
F T vec(B) = 0

GT vec(C) = 0

‖ A − bcT ‖
F

where the nullspaces of FT and GT define the vector space of m-by-m and n-by-n
Toeplitz matrices respectively. This problem can be solved by computing QR factor-
izations of F and G followed by a reduced-dimension SVD.
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12.3.8 Computing the Nearest X ⊗ X

Suppose A ∈ IRm2×m2
and that we want to find X ∈ IRm×m so that

φsym(X) = ‖ A − X ⊗ X ‖
F

is minimized. Proceeding as we did with the NKP problem, we can reshape this into a
nearest symmetric rank-1 problem:

φsym(X) = ‖ R(A) − vec(X)·vec(X)T ‖F . (12.3.20)

It turns out that the solution Xopt is a reshaping of an eigenvector associated with the
symmetric part of R(A).

Lemma 12.3.2. Suppose M ∈ IRn×n and that QT TQ = diag(α1, . . . , αn) is a Schur
decomposition of T = (M + MT )/2. If

|αk| = max{|α1|, . . . , |αn|}

then the solution to the problem
min

Z = ZT

rank(Z) = 1

‖ M − Z ‖
F

is given by Zopt = αkqkqT
k where qk = Q(:, k).

Proof. See P12.3.11.

12.3.9 Computing the Nearest X ⊗ Y − Y ⊗ X

Suppose A ∈ IRn×n, n = m2 and that we wish to find X, Y ∈ IRm×m so that

φskew(X, Y ) = ‖ A − (X ⊗ Y − Y ⊗ X) ‖
F

is minimized. It can be shown that

φskew(X) = ‖ R(A) − (vec(X)·vec(Y )T − vec(Y )·vec(X)T ‖
F

. (12.3.21)

The optimizing X and Y can be determined by exploiting the following lemma.

Lemma 12.3.3. Suppose M ∈ IRn×n with skew-symmetric part S = (M − MT )/2. If

S[ u v ] = [ u v ]
[

0 µ
−µ 0

]
, u, v ∈ IRn,

with µ = ρ(S), ‖ u ‖2 = ‖ v ‖2 = 1, and uT v = 0, then Zopt = µ
(
uvT − vuT

)
minimizes

‖ M − Z ‖
F

over all rank-2 skew-symmetric matrices Z ∈ IRn×n.

Proof. See P12.3.12.
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12.3.10 Some Comments About Multiple Kronecker Products

The Kronecker product of three or more matrices results in a matrix that has a recursive
block structure. For example,

B ⊗ C ⊗ D =
[

b11 b12
b21 b22

]
⊗

⎡⎢⎢⎣
c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

⎤⎥⎥⎦ ⊗

⎡⎣ d11 d12 d13
d21 d22 d23
d31 d32 d33

⎤⎦
is a 2-by-2 block matrix whose entries are 4-by-4 block matrices whose entries are 3-by-3
matrices.

A Kronecker product can be regarded as a data-sparse representation. If A =
B1 ⊗ B2 and each B-matrix is m-by-m, then 2m2 numbers are used to encode a ma-
trix that has m4 entries. The data sparsity is more dramatic for multiple Kronecker
products. If A = B1 ⊗ · · · ⊗ Bp and Bi ∈ IRm×m, then pm2 numbers fully describe A,
a matrix with m2p entries.

Order of operation can be important when a multiple Kronecker product is in-
volved and the participating matrices vary in dimension. Suppose Bi ∈ IRmi×ni for
i = 1:p and that Mi = m1 · · ·mi and Ni = n1 · · ·ni for i = 1:p. The matrix-vector
product

y = (B1 ⊗ · · ·Bp)x x ∈ IRNp

can be evaluated in many different orders and the associated flop counts can vary
tremendously. The search for an optimal ordering is a dynamic programming problem
that involves the recursive analysis of calculations like

reshape(y, Mp/Mi, Mi) = (Bi+1 ⊗ · · · ⊗ Bp) · reshape(x, Np/Ni, Ni) · (B1 ⊗ · · ·Bi)T .

Problems

P12.3.1 Prove (12.3.1) and (12.3.2).

P12.3.2 Assume that the matrices A1, . . . , AN ∈ IRm×n. Express the summation

f(x, y) =
N∑

k=1

(yT Akx− bk)2

in matrix-vector terms given that y ∈ IRm, x ∈ IRm, and b ∈ IRN .

P12.3.3 A total least squares solution to (B ⊗ C)x ≈ b requires the computation of the smallest
singular value and the associated right singular vector of the augmented matrix M = [B ⊗ C | b ].
Outline an efficient procedure for doing this that exploits the Kronecker structure of the data matrix.

P12.3.4 Show how to minimize ‖ (A1 ⊗A2)x− f ‖ subject to the constraint that (B1 ⊗B2)x = g.
Assume that A1 and A2 have more rows than columns and that B1 and B2 have more columns than
rows. Also assume that each of these four matrices has full rank. See Barrlund (1998).

P12.3.5 Suppose B ∈ IRn×n and C ∈ IRm×m are unsymmetric and positive definite. Does it follow
that B ⊗ C is positive definite?

P12.3.6 Show how to construct the normalized SVD of B ⊗ C from the normalized SVDs of B and
C. Assume that B ∈ IRmB×nB and C ∈ IRmC×nC with mB ≥ nB and mC ≥ nC .

P12.3.7 Show how to solve the linear system (A ⊗ B ⊗ C)x = d assuming that A, B, C ∈ IRn×n are
symmetric positive definite.
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P12.3.8 (a) Given A ∈ IRmn×mn and B ∈ IRm×m, how would you compute X ∈ IRn×n so that

φB(X) = ‖A−B ⊗X ‖F

is minimized? (b) Given A ∈ IRmn×mn and C ∈ IRn×n, how would you compute X ∈ IRm×m so that

φC(X) = ‖A−X ⊗ C ‖
F

is minimized?

P12.3.9 What is the nearest Kronecker product to the matrix A = In ⊗ T DD
m + T DD

n
⊗ In where

T DD
k is defined in (4.8.7).

P12.3.10 If A ∈ IRmn×mn is symmetric and tridiagonal, show how to minimize ‖A−B ⊗ C ‖
F

subject
to the constraint that B ∈ IRm×m and C ∈ IRn×n are symmetric and tridiagonal.

P12.3.11 Prove Lemma 12.3.2. Hint: Show

‖M − αxxT ‖2
F

= ‖M ‖2
F
− 2αxT Tx + α2

where T = (M + MT )/2.

P12.3.12 Prove Lemma 12.3.3. Hint: Show

‖M − (xyT − yxT ) ‖2
F

= ‖M ‖2F + 2‖ x ‖22‖ y ‖22 − 2(xT y)2 − 4xT Sy

where S = (M −MT )/2 and use the real Schur form of S.

P12.3.13 For a symmetric matrix S ∈ IRn×n, the symmetric vec operation is fully defined by

S =

[
s11 s12 s13
s21 s22 s23
s31 s32 s33

]
⇒ svec(S) =

[
s11

√
2 s21

√
2 s31 s22

√
2 s32 s33

]T
.

For symmetric X ∈ IRn×n and arbitrary B, C ∈ IRn×n, the symmetric Kronecker product is defined by

(B ⊗
SYM

C) · svec(X) = svec
(

1
2

(
CXBT + BXCT

))
.

For the case n = 3, show that there is a matrix P ∈ IR9×6 with orthonormal columns so that
P T (B ⊗ C)P = B ⊗

SYM
C. See Vandenberge and Boyd (1996).

P12.3.14 The bi-alternate product is defined by

B ⊗
BI

C =
1
2

(B ⊗ C + C ⊗B) .

If B = I, C = A, then solutions to AX + XAT = H where H is symmetric or skew-symmetric shed
light on A’s eigenvalue placement. See Govaerts (2000). Given a matrix M , show how to compute the
nearest bi-alternate product to M .

P12.3.15 Given f ∈ IRq and gi ∈ IRρi for i = 1:m, determine a permutation P so that

P

⎛⎝f ⊗

⎡⎣ g1
...

gm

⎤⎦⎞⎠ =

⎡⎣ f ⊗ g1
...

f ⊗ gm

⎤⎦ .

Hint: What does (12.3.1) say when B and C are vectors?
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12.4 Tensor Unfoldings and Contractions
An order-d tensor A ∈ IRn1×···×nd is a real d-dimensional array A(1:n1, . . . , 1:nd) where
the index range in the kth mode is from 1 to nk. Low-order examples include scalars
(order-0), vectors (order-1), and matrices (order-2). Order-3 tensors can be visualized
as “Rubik cubes of data,” although the dimensions do not have to be equal along each
mode. For example, A ∈ IRm×n×3 might house the red, green, and blue pixel data
for an m-by-n image, a “stacking” of three matrices. In many applications, a tensor
is used to capture what a multivariate function looks like on a lattice of points, e.g.,
A(i, j, k, �) ≈ f(wi, xj , yk, z�). The function f could be the solution to a complicated
partial differential equation or a general mapping from some high-dimensional space of
input values to a measurement that is acquired experimentally.
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Because of their higher dimension, tensors are harder to reason about than matri-
ces. Notation, which is always important, is critically important in tensor computations
where vectors of subscripts and deeply nested summations are the rule. In this section
we examine some basic tensor operations and develop a handy, matrix type of notation
that can be used to describe them. Kronecker products are central.

Excellent background references include De Lathauwer (1997), Smilde, Bro, and
Geladi (2004), and Kolda and Bader (2009).

12.4.1 Unfoldings and Contractions: A Preliminary Look

To unfold a tensor is to systematically arrange its entries into a matrix.3 Here is one
possible unfolding of a 2-by-2-by-3-by-4 tensor:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1111 a1211 a1112 a1212 a1113 a1213 a1114 a1214

a2111 a2211 a2112 a2212 a2113 a2213 a2114 a2214

a1121 a1221 a1122 a1222 a1123 a1223 a1124 a1224

a2121 a2221 a2122 a2222 a2123 a2223 a2124 a2224

a1131 a1231 a1132 a1232 a1133 a1233 a1134 a1234

a2131 a2231 a2132 a2232 a2133 a2233 a2134 a2234

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Order-4 tensors are interesting because of their connection to block matrices. Indeed, a
block matrix A = (Ak�) with equally sized blocks can be regarded as an order-4 tensor
A = (aijk�) where [Ak�]ij = aijk�.

Unfoldings have an important role to play in tensor computations for three rea-
sons. (1) Operations between tensors can often be reformulated as a matrix compu-
tation between unfoldings. (2) Iterative multilinear optimization strategies for tensor
problems typically involve one or more unfoldings per step. (3) Hidden structures
within a tensor dataset can sometimes be revealed by discovering patterns within its
unfoldings. For these reasons, it is important to develop a facility with tensor unfoldings
because they serve as a bridge between matrix computations and tensor computations

Operations between tensors typically involve vectors of indices and deeply nested
loops. For example, here is a matrix-multiplication-like computation that combines
two order-4 tensors to produce a third order-4 tensor:

for i1 = 1:n
for i2 = 1:n

for i3 = 1:n
for i4 = 1:n

C(i1, i2, i3, i4) =
n∑

p=1

n∑
q=1

A(i1, p, i3, q)B(p, i2, q, i4) (12.4.1)

end
end

end
end

3The process is sometimes referred to as a tensor flattening or a tensor matricization.



12.4. Tensor Unfoldings and Contractions 721

This is an example of a tensor contraction. Tensor contractions are essentially re-
shaped, multi-indexed matrix multiplications and can be very expensive to compute.
(The above example involves O(n6) flops.) It is increasingly common to have O(nd)
contraction bottlenecks in a simulation. In order to successfully tap into the “culture”
of of high-performance matrix computations, it is important to have an intuition about
tensor contractions and how they can be organized.

12.4.2 Notation and Definitions

If A ∈ IRn1×···×nd and i = (i1, . . . , id) with 1 ≤ ik ≤ nk for k = 1:d, then

A(i) ≡ A(i1, . . . , ik).

The vector i is a subscript vector. Bold font is used designate subscript vectors while
calligraphic font is used for tensors. For low-order tensors we sometimes use matrix-
style subscripting, e.g., A = (aijk�). It is sometimes instructive to write A(i, j) for
A([ i j ]). Thus,

A([ 2 5 3 4 7 ]) = A(2, 5, 3, 4, 7) = a25347 = a253,47 = A([2, 5, 3], [4, 7])

shows the several ways that we can refer to a tensor entry.
We extend the Matlab colon notation in order to identify subtensors. If L and

R are subscript vectors with the same dimension, then L ≤ R means that Lk ≤ Rk for
all k. The length-d subscript vector of all 1’s is denoted by 1d. If the dimension is clear
from the context, then we just write 1. Suppose A ∈ IRn1×···×nd with n = [n1, . . . , nd ].
If 1 ≤ L ≤ R ≤ n, then A(L:R) denotes the subtensor

B = A(L1:R1, . . . , Ld :Rd).

Just as we can extract an order-1 tensor from an order-2 tensor, e.g., A(:, k), so can
we extract a lower-order tensor from a given tensor. Thus, if A ∈ IR2×3×4×5, then

(i) B = A(1 , : , 2 , 4) ∈ IR3 ⇒ B(i2) = A(1, i2, 2, 4),

(ii) B = A(1 , : , 2 , :) ∈ IR3×5 ⇒ B(i2, i4) = A(1, i2, 2, i4),

(iii) B = A( : , : , 2 , :) ∈ IR2×3×5 ⇒ B(i1, i2, i4) = A(i1, i2, 2, i4).

Order-1 extractions like (i) are called fibers. Order-2 extractions like (ii) are called
slices. More general extractions like (iii) are called subtensors.

It is handy to have a multi-index summation notation. If n is a length-d index
vector, then

n∑
i=1

≡
n1∑

i1=1

· · ·
nd∑

id=1

.

Thus, if A ∈ IRn1×···×nd, then its Frobenius norm is given by

‖ A ‖
F

=

√√√√ n∑
i=1

A(i)2 .
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12.4.3 The Vec Operation for Tensors

As with matrices, the vec(·) operator turns tensors into column vectors, e.g.,

A ∈ IR2×3×2 =⇒ vec(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(:, 1, 1)

A(:, 2, 1)

A(:, 3, 1)

A(:, 1, 2)

A(:, 2, 2)

A(:, 3, 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a111
a211

a121
a221

a131
a231

a112
a212

a122
a222

a132
a232

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Formally, if A ∈ IRn1×···×nd, then

vec(A) =

⎡⎢⎢⎣
vec(A(1))

...

vec(A(nd))

⎤⎥⎥⎦ (12.4.2)

where A(k) ∈ IRn1×···×nd−1 is defined by

A(k)(i1, . . . , id−1) = A(i1, . . . , id−1, k) (12.4.3)

for k = 1:nd. Alternatively, if we define the integer-valued function col by

col(i,n) = i1 + (i2 − 1)n1 + (i3 − 1)n1n2 + · · · + (id − 1)n1 · · ·nd−1, (12.4.4)

then a = vec(A) is specified by

a(col(i,n)) = A(i), 1 ≤ i ≤ n. (12.4.5)

12.4.4 Tensor Transposition

If A ∈ IRn1×n2×n3 , then there are 6 = 3! possible transpositions identified by the nota-
tion A< [i j k] > where [i j k] is a permutation of [1 2 3]:

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A< [1 2 3] >

A< [1 3 2] >

A< [2 1 3] >

A< [2 3 1] >

A< [3 1 2] >

A< [3 2 1] >

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bijk

bikj

bjik

bjki

bkij

bkji

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= aijk.
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These transpositions can be defined using the perfect shuffle and the vec operator. For
example, if B = A< [3 2 1] >, then vec(B) = (Pn1,n2

⊗ In3)Pn1n2,n3 ·vec(A).
In general, if A ∈ IRn1×···×nd and p = [p1, . . . , pd] is a permutation of the index

vector 1:d, then A<p> ∈ IRnp1×···×npd is the p-transpose of A defined by

A<p>(jp1 , . . . , jpd
) = A(j1, . . . , jd), 1 ≤ jk ≤ nk, k = 1:d,

i.e.,
A<p>(j(p)) = A(j), 1 ≤ j ≤ n.

For additional tensor transposition discussion, see Ragnarsson and Van Loan (2012).

12.4.5 The Modal Unfoldings

Recall that a tensor unfolding is a matrix whose entries come from the tensor. Partic-
ularly important are the modal unfoldings. If A ∈ IRn1×···×nd and N = n1 · · ·nd, then
its mode-k unfolding is an nk-by-(N/nk) matrix whose columns are the mode-k fibers.
To illustrate, here are the three modal unfoldings for A ∈ IR4×3×2:

A(1) =

⎡⎢⎢⎣
a111 a121 a131 a112 a122 a132
a211 a221 a231 a212 a222 a232
a311 a321 a331 a312 a322 a332
a411 a421 a431 a412 a422 a432

⎤⎥⎥⎦ ,

A(2) =

⎡⎣ a111 a211 a311 a411 a112 a212 a312 a412
a121 a221 a321 a421 a122 a222 a322 a422
a131 a231 a331 a431 a132 a232 a332 a432

⎤⎦ ,

A(3) =
[

a111 a211 a311 a411 a121 a221 a321 a421 a131 a231 a331 a431
a112 a212 a312 a412 a122 a222 a322 a422 a132 a232 a332 a432

]
.

We choose to order the fibers left to right according to the “vec” ordering. To be
precise, if A ∈ IRn1×···×nd, then its mode-k unfolding A(k) is completely defined by

A(k)(ik, col(̃ik, ñ)) = A(i) (12.4.6)

where ĩk = [i1, . . . , ik−1, ik+1, . . . , id] and ñk = [n1, . . . , nk−1, nk+1, . . . , nd]. The rows
of A(k) are associated with subtensors of A. In particular, we can identify A(k)(q, :)
with the order-(d − 1) tensor A(q) defined by A(q)(̃ik) = A(k)(q, col(̃ik), ñk).

12.4.6 More General Unfoldings

In general, an unfolding for A ∈ IRn1×···×nd is defined by choosing a set of row modes
and a set of column modes. For example, if A ∈ IR2×3×2×2×3, r = 1:3 and c = 4:5,
then
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Ar×c =

(1,1) (2,1) (1,2) (2,2) (1,3) (2,3)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a111,11 a111,21 a111,12 a111,22 a111,13 a111,23

a211,11 a211,21 a211,12 a211,22 a211,13 a211,23

a121,11 a121,21 a121,12 a121,22 a121,13 a121,23

a221,11 a221,21 a221,12 a221,22 a221,13 a221,23

a131,11 a131,21 a131,12 a131,22 a131,13 a131,23

a231,11 a231,21 a231,12 a231,22 a231,13 a231,23

a112,11 a112,21 a112,12 a112,22 a112,13 a112,23

a212,11 a212,21 a212,12 a212,22 a212,13 a212,23

a122,11 a122,21 a122,12 a122,22 a122,13 a122,23

a222,11 a222,21 a222,12 a222,22 a222,13 a222,23

a132,11 a132,21 a132,12 a132,22 a132,13 a132,23

a232,11 a232,21 a232,12 a232,22 a232,13 a232,23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1,1,1)

(2,1,1)

(1,2,1)

(2,2,1)

(1,3,1)

(2,3,1)

(1,1,2)

(2,1,2)

(1,2,2)

(2,2,2)

(1,3,2)

(2,3,2)

. (12.4.7)

In general, let p be a permutation of 1:d and define the row and column modes by

r = p(1:e), c = p(e + 1:d),

where 0 ≤ e ≤ d. This partitioning defines a matrix Ar×c that has np1 · · ·npe
rows and

npe+1 · · ·npd
columns and whose entries are defined by

Ar×c( col(i,n(r) ) , col(j,n(c))) = A(i, j). (12.4.8)

Important special cases include the modal unfoldings

r = [ k ] , c = [1, . . . , k − 1, k + 1, . . . , d] =⇒ Ar×c = A(k)

and the vec operation

r = 1:d , c = [ ∅ ] =⇒ Ar×c = vec(A).

12.4.7 Outer Products

The outer product of tensor B ∈ IRm1×···×mf with tensor C ∈ IRn1×···×ng is the order-
(f + g) tensor A defined by

A(i, j) = B(i) ◦ C(j), 1 ≤ i ≤ m , 1 ≤ j ≤ n.

Multiple outer products are similarly defined, e.g.,

A = B ◦ C ◦ D =⇒ A(i, j,k) = B(i) · C(j) · D(k).

Note that if B and C are order-2 tensors (matrices), then

A = B ◦ C ⇒ A(i1, i2, j1, j2) = B(i1, i2) · C(j1, j2)

and
A[ 3 1 ]×[ 4 2 ] = B ⊗ C.

Thus, the Kronecker product of two matrices corresponds to their outer product as
tensors.
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12.4.8 Rank-1 Tensors

Outer products between order-1 tensors (vectors) are particularly important. We say
that A ∈ IRn1×···×nd is a rank-1 tensor if there exist vectors z(1), . . . , z(d) ∈ IRnk such
that

A(i) = z(1)(i1) · · · z(d)(id), 1 ≤ i ≤ n.

A small example clarifies the definition and reveals a Kronecker product connection:

A =
[

u1
u2

]
◦

⎡⎣ v1
v2
v3

⎤⎦◦[ w1
w2

]
⇔

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a111

a211

a121

a221

a131

a231

a112

a212

a122

a222

a132

a232

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1v1w1

u2v1w1

u1v2w1

u2v2w1

u1v3w1

u2v3w1

u1v1w2

u2v1w2

u1v2w2

u2v2w2

u1v3w2

u2v3w2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= w ⊗ v ⊗ u.

The modal unfoldings of a rank-1 tensor are highly structured. For the above example
we have

A(1) =

[
u1v1w1 u1v2w1 u1v3w1 u1v1w2 u1v2w2 u1v3w2

u2v1w1 u2v2w1 u2v3w1 u2v1w2 u2v2w2 u2v3w2

]
= u ⊗ (w ⊗ v)T ,

A(2) =

⎡⎢⎢⎣
u1v1w1 u2v1w1 u1v1w2 u2v1w2

u1v2w1 u2v2w1 u1v2w2 u2v2w2

u1v3w1 u2v3w1 u1v3w2 u2v3w2

⎤⎥⎥⎦ = v ⊗ (w ⊗ u)T ,

A(3) =

[
u1v1w1 u2v1w1 u1v2w1 u2v2w1 u1v3w1 u2v3w1

u1v1w2 u2v1w2 u1v2w2 u2v2w2 u1v3w2 u2v3w2

]
= w ⊗ (v ⊗ u)T .

In general, if z(k) ∈ IRnk for k = 1:d and

A = z(1) ◦ · · · ◦ z(d) ∈ IRn1×···×nd ,

then its modal unfoldings are rank-1 matrices:

A(k) = z(k) ·
(
z(d) ⊗ · · · z(k+1) ⊗ z(k−1) ⊗ · · · z(1)

)T

. (12.4.9)
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For general unfoldings of a rank-1 tensor, if p is a permutation of 1:d, r = p(1:e), and
c = p(e + 1:d), then

Ar×c =
(
z(pe) ◦ · · · ◦ z(p1)

)(
z(pd) ◦ · · · ◦ z(pe+1)

)T

. (12.4.10)

Finally, we mention that any tensor can be expressed as a sum of rank-1 tensors

A ∈ IRn1×···×nd =⇒ A =
n∑

i=1

A(i) In1(:, i1) ◦ · · · ◦ Ind
(:, id).

An important §12.5 theme is to find more informative rank-1 summations than this!

12.4.9 Tensor Contractions and Matrix Multiplication

Let us return to the notion of a tensor contraction introduced in §12.4.1. The first
order of business is to show that a contraction between two tensors is essentially a
matrix multiplication between a pair of suitably chosen unfoldings. This is a useful
connection because it facilitates reasoning about high-performance implementation.

Consider the problem of computing

A(i, j, α3, α4, β3, β4, β5) =
n2∑

k=1

B(i, k, α3, α4) · C(k, j, β3, β4, β5) (12.4.11)

where
A = A(1:n1, 1:m2, 1:n3, 1:n4, 1:m3, 1:m4, 1:m5),

B = B(1:n1, 1:n2, 1:n3, 1:n4),

C = C(1:m1, 1:m2, 1:m3, 1:m4, 1:m5),

and n2 = m1. The index k is a contraction index. The example shows that in a
contraction, the order of the output tensor can be (much) larger than the order of
either input tensor, a fact that can prompt storage concerns. For example, if n1 =
· · · = n4 = r and m1 = · · · = m5 = r in (12.4.11), then B and C are O(r5) while the
output tensor A is O(r7).

The contraction (12.4.11) is a collection of related matrix-matrix multiplications.
Indeed, at the slice level we have

A( : , : , α3, α4, β3, β4, β5) = B( : , : , α3, α4) · C( : , : , β3, β4, β5).

Each A-slice is an n1-by-m2 matrix obtained as a product of an n1-by-n2 B-slice and
an m1-by-m2 C-slice.

The summation in a contraction can be over more than just a single mode. To
illustrate, assume that

B = B(1:m1, 1:m2, 1:t1, 1:t2),

C = C(1:t1, 1:t2, 1:n1, 1:n2, 1:n3),
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and define A = A(1:m1, 1:m2, 1:n1, 1:n2, 1:n3) by

A(i1, i2, j1, j2, j3) =
t1∑

k1=1

t2∑
k2=1

B(i1, i2, k1, k2) · C(k1, k2, j1, j2, j3). (12.4.12)

Note how “matrix like” this computation becomes with multiindex notation:

A(i, j) =
t∑

k=1

B(i,k) · C(k, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n. (12.4.13)

A fringe benefit of this formulation is how nicely it connects to the following matrix-
multiplication specification of A:

A[ 1 2 ]×[ 3 4 5 ] = B[ 1 2 ]×[ 3 4 ] · C[ 1 2 ]×[ 3 4 5 ].

The position of the contraction indices in the example (12.4.12) is convenient
from the standpoint of framing the overall operation as a product of two unfoldings.
However, it is not necessary to have the contraction indices “on the right” in B and
“on the left” in C to formulate the operation as a matrix multiplication. For example,
suppose

B = B(1:t2, 1:m1, 1:t1, 1:m2),

C = C(1:n2, 1:t2, 1:n3, 1:t1, 1:n1),

and that we want to compute the tensor A = A(1:m1, 1:m2, 1:n1, 1:n2, 1:n3) defined
by

A(i2, j3, j1, i1, j2) =
t1∑

k1=1

t2∑
k2=1

B(k2, i1, k1, i2) · C(j2, k2, j3, k1, j1).

It can be shown that this calculation is equivalent to

A[ 4 1]×[ 3 5 2 ] = B[ 2 4 ]×[ 3 1 ] · C[ 4 2 ]×[ 5 1 3 ].

Hidden behind these formulations are important implementation choices that define the
overheads associated with memory access. Are the unfoldings explicitly set up? Are
there any particularly good data structures that moderate the cost of data transfer?
Etc. Because of their higher dimension, there are typically many more ways to organize
a tensor contraction than there are to organize a matrix multiplication.

12.4.10 The Modal Product

A very simple but important family of contractions are the modal products. These
contractions involve a tensor, a matrix, and a mode. In particular, if S ∈ IRn1×···×nd,
M ∈ IRmk×nk, and 1 ≤ k ≤ d, then A is the mode-k product of S and M if

A(k) = M · S(k). (12.4.14)

We denote this operation by
A = S ×k M
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and remark that

A(α1, . . . , αk−1, i, αk+1, . . . , αd) =
nk∑
j=1

M(i, j) · S(α1, . . . , αk−1, j, αk+1, . . . , αd)

and
vec(A) =

(
Ink+1···nd

⊗ M ⊗ In1···nk−1

)
· vec(S) (12.4.15)

are equivalent formulations. Every mode-k fiber in S is multiplied by the matrix M .
Using (12.4.15) and elementary facts about the Kronecker product, it is easy to

show that

(S ×k F ) ×j G = (S ×j G) ×k F, (12.4.16)

(S ×k F ) ×k G = S ×k (FG), (12.4.17)

assuming that all the dimensions match up.

12.4.11 The Multilinear Product

Suppose we are given an order-4 tensor S ∈ IRn1×n2×n3×n4 and four matrices

M1 ∈ IRm1×n1, M2 ∈ IRm2×n2, M3 ∈ IRm3×n3, M4 ∈ IRm4×n4.

The computation

A(i) =
n∑

j=1

S(j) · M1(i1, j1) · M2(i2, j2) · M3(i3, j3) · M4(i4, j4) (12.4.18)

is equivalent to
vec(A) = (M4 ⊗ M3 ⊗ M2 ⊗ M1) vec(S) (12.4.19)

and is an order-4 example of a multilinear product. As can be seen in the following
table, a multilinear product is a sequence of contractions, each being a modal product:

a(0) = vec(S) A(0) = S

a(1) = (In4
⊗ In3

⊗ In2
⊗ M1) a(0) A(1)

(1) = M1 A(0)
(1) (Mode-1 product)

a(2) = (In4
⊗ In3

⊗ M2 ⊗ In1) a(1) A(2)
(2) = M2 A(1)

(2) (Mode-2 product)

a(3) = (In4
⊗ M3 ⊗ In2

⊗ In1) a(2) A(3)
(3) = M3 A(2)

(3) (Mode-3 product)

a(4) = (M4 ⊗ In3
⊗ In2

⊗ In1) a(3) A(4)
(4) = M4 A(3)

(4) (Mode-4 product)

vec(A) = a(4) A = A(4)
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The left column specifies what is going on in Kronecker product terms while the right
column displays the four required modal products. The example shows that mode-k
operations can be sequenced,

A = S ×1 M1 ×2 M2 ×3 M3 ×4 M4,

and that their order is immaterial, e.g.,

A = S ×4 M4 ×1 M1 ×2 M2 ×3 M3.

This follows from (12.4.16).
Because they are used in §12.5, we summarize two key properties of the multilinear

product in the following theorem.

Theorem 12.4.1. Suppose S ∈ IRn1×···×nd and Mk ∈ IRmk×nk for k = 1:d. If the
tensor A ∈ IRm1×···×md is the multilinear product

A = S ×1 M1 ×2 M2 · · · ×d Md,

then
A(k) = Mk · S(k) · (Md ⊗ · · · ⊗ Mk+1 ⊗ Mk−1 ⊗ · · · ⊗ M1)

T
.

If M1, . . . , Md are all nonsingular, then S = A ×1 M−1
1 ×2 M−1

2 · · · ×d M−1
d .

Proof. The proof involves equations (12.4.16) and (12.4.17) and the vec ordering of
the mode-k fibers in A(k).

12.4.12 Space versus Time

We close with an example from Baumgartner et al. (2005) that highlights the impor-
tance of order of operations and what the space-time trade-off can look like when a
sequence of contractions is involved. Suppose that A, B, C and D are N -by-N -by-N -
by-N tensors and that S is defined as follows:

for i = 14:N

s = 0

for k = 16:N

s = s + A(i1, k1, i2, k2) · B(i2, k3, k4, k5) · C(k6, k4, i4, k2) · D(k1, k6, k3, k5)

end

S(i) = s
end

Performed “as is,” this is an O(N10) calculation. On the other hand, if we can afford an
additional pair of N -by-N -by-N -by-N arrays then work is reduced to O(N6). To see
this, assume (for clarity) that we have a function F = Contract1(G,H) that computes
the contraction

F(α1, α2, α3, α4) =
N∑

β1=1

N∑
β2=1

G(α1, β1, α2, β2) · H(α3, α4, β1, β2),
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a function F = Contract2(G,H) that computes the contraction

F(α1, α2, α3, α4) =
N∑

β1=1

N∑
β2=1

G(α1, β1, α2, β2) · H(β2, β1, α3, α4),

and a function F = Contract3(G,H) that computes the contraction

F(α1, α2, α3, α4) =
N∑

β1=1

N∑
β2=1

G(α2, β1, α4, β2) · H(α1β1, α3, β2).

Each of these order-4 contractions requires O(N6) flops. By exploiting common subex-
pressions suggested by the parentheses in

((B(i2, k3, k4, k5) · D(k1, k6, k3, k5)) · C(k6, k4, i4, k2)) · A(i1, k1, i2, k2),

we arrive at the following O(N6) specification of the tensor S:

T1 = Contract1(B,D)

T2 = Contract2(T1, C)

S = Contract3(T2,A)

Of course, space-time trade-offs frequently arise in matrix computations. However, at
the tensor level the stakes are typically higher and the number of options exponen-
tial. Systems that are able to chart automatically an optimal course of action subject
to constraints that are imposed by the underlying computer system are therefore of
interest. See Baumgartner et al. (2005).

Problems

P12.4.1 Explain why (12.4.1) oversees a block matrix multiplication. Hint. Consider each of the three
matrices as n-by-n block matrices with n-by-n blocks.

P12.4.2 Prove that the vec definition (12.4.2) and (12.4.3) is equivalent to the vec definition (12.4.4)
and (12.4.5).

P12.4.3 How many fibers are there in the tensor A ∈ IRn1×···×nd? How many slices?

P12.4.5 Prove Theorem 12.4.1.

P12.4.6 Suppose A ∈ IRn1×···×nd and that B = A< p > where p is a permutation of 1:d. Specify a
permutation matrix P so that B(k) = A(p(k))P .

P12.4.7 Suppose A ∈ IRn1×···×nd, N = n1 · · ·nd, and that p is a permutation of 1:d that involves
swapping a single pair of indices, e.g., [1 4 3 2 5]. Determine a permutation matrix P ∈ IRN×N so that
if B = A< p >, then vec(B) = P · vec(A).

P12.4.8 Suppose A ∈ IRn1×···×nd and that A(k) has unit rank for some k. Does it follow that A is a
rank-1 tensor?

P12.4.9 Refer to (12.4.18). Specify an unfolding S of S and an unfolding A of A so that A =
(M1 ⊗M3)S(M2 ⊗M4).

P12.4.10 Suppose A ∈ IRn1×···×nd and that both p and q are permutations of 1:d. Give a formula
for r so that (A< p >) < q > = A<r >.
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Notes and References for §12.4
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A. Smilde, R. Bro, and P. Geladi (2004). Multiway Analysis, John Wiley, Chichester, England.
T.G. Kolda and B.W. Bader (2009). “Tensor Decompositions and Applications,” SIAM Review 51,

455–500.

For results that connect unfoldings, the vec operation, Kronecker products, contractions, and trans-
position, see:

S. Ragnarsson and C. Van Loan (2012). “Block Tensor Unfoldings,” SIAM J. Matrix Anal. Applic.
33, 149–169.

Matlab software that supports tensor computations as described in this section includes the Tensor
Toolbox:

B.W. Bader and T.G. Kolda (2006). “Algorithm 862: MATLAB Tensor Classes for Fast Algorithm
Prototyping,” ACM Trans. Math. Softw., 32, 635–653.

B.W. Bader and T.G. Kolda (2007). “Efficient MATLAB Computations with Sparse and Factored
Tensors,” SIAM J. Sci. Comput. 30, 205–231.

The challenges associated with high-performance, large-scale tensor computations are discussed in:

W. Landry (2003). “Implementing a High Performance Tensor Library,” Scientific Programming 11,
273–290.

C. Lechner, D. Alic, and S. Husa (2004). “From Tensor Equations to Numerical Code,” Computer
Algebra Tools for Numerical Relativity, Vol. 0411063.

G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao, R. Harrison,
S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam, Q. Lu, M. Nooijen, R. Pitzer, J. Ramanujam,
P. Sadayappan, and A. Sibiryakov (2005). “Synthesis of High-Performance Parallel Programs for
a Class of Ab Initio Quantum Chemistry Models,” Proc. IEEE, 93, 276–292.

The multiway analysis community and the quantum chemistry/electronic structure community each
have their own favored style of tensor notation and it is very different! See:

J.L. Synge and A. Schild (1978). Tensor Calculus, Dover Publications, New York.
H.A.L. Kiers (2000). “Towards a Standardized Notation and Terminology in Multiway Analysis,”

J. Chemometr. 14, 105–122.

12.5 Tensor Decompositions and Iterations
Decompositions have three roles to play in matrix computations. They can be used
to convert a given problem into an equivalent easy-to-solve problem, they can expose
hidden relationships among the aij , and they can open the door to data-sparse approx-
imation. The role of tensor decompositions is similar and in this section we showcase
a few important examples. The matrix SVD has a prominent role to play throughout.
The goal is to approximate or represent a given tensor with an illuminating (hope-
fully short) sum of rank-1 tensors. Optimization problems arise that are multilinear in
nature and lend themselves to the alternating least squares framework. These meth-
ods work by freezing all but one of the unknowns and improving the free-to-range
variable with some tractable linear optimization strategy. Interesting matrix computa-
tions arise during this process and that is the focus of our discussion. For a much more
complete survey of tensor decompositions, properties, and algorithms, see Kolda and
Bader (2009). Our aim in these few pages is simply to give a snapshot of the “inner
loop” linear algebra that is associated with a few of these methods and to build intuition
for this increasingly important area of high-dimensional scientific computing.
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Heavy use is made of the Kronecker product and tensor unfoldings. Thus, this
section builds upon §12.3 and §12.4. We use order-3 tensors to drive the discussion, but
periodically summarize what the theorems and algorithms look like for general-order
tensors.

12.5.1 The Higher-Order SVD

Let us think about the SVD of A ∈ IRm×n, not as

A = UΣV T =
n∑

i=1

σiuiviT, (12.5.1)

but as UT A = ΣV T . The matrix U structures the rows of UT A so that they are
orthogonal to each other and monotone decreasing in norm:

UT A =

⎡⎢⎣ σ1v
T
1

...

σnvT
n

⎤⎥⎦ . (12.5.2)

The optimality of this structure can be seen by considering the following problem:

max
QT Q=Ir

‖ QT A ‖
F
, Q ∈ IRm×r. (12.5.3)

It is easy to verify that the maximum value is σ2
1 + · · ·+σ2

r and that it can be attained
by setting Q = U(:, 1:r). The left singular vector matrix does the best job from the
standpoint of getting as much “mass” as possible to the top of the transformed A.
And that is what SVD does—it concentrates mass and supports an illuminating rank-
1 expansion.

Now suppose A ∈ IRn1×n2×n3 and consider the following triplet of SVD’s, one for
each modal unfolding:

UT
1 A(1) = Σ1V

T
1 , UT

2 A(2) = Σ2V
T
2 , UT

3 A(3) Σ3V
T
3 . (12.5.4)

These define three independent modal products:

B(1) = A ×1 U1, B(2) = A ×2 U2, B(3) = A ×3 U3. (12.5.5)

Using Theorem 12.4.1, we have the following unfoldings:

B(1)
(1) = Σ1V

T
1 (U3 ⊗ U2)T , B(2)

(2) = Σ2V
T
2 (U3 ⊗ U1)T , B(3)

(3) = Σ1V
T
1 (U2 ⊗ U1)T .

Note that each of these matrices has the same kind singular value “grading” that
is displayed in (12.5.1). Recalling from §12.4.5 that the rows of an unfolding are
subtensors, it is easy to show that

‖ B(1)( i , : , : ) ‖
F

= σi(A(1)), i = 1:n1,

‖ B(2)( : , i , : ) ‖
F

= σi(A(2)), i = 1:n2,

‖ B(3)( : , : , i ) ‖
F

= σi(A(3)), i = 1:n3.
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If we assemble these three modal products into a single multilinear product, then we
get

S = A ×1 UT
1 ×2 UT

2 ×3 UT
3 .

Because the Ui are orthogonal, we can apply Theorem 12.4.1 and get

A = S ×1 U1 ×2 U2 ×3 U3.

This is the higher-order SVD (HOSVD) developed by De Lathauwer, De Moor, and
Vandewalle (2000). We summarize some of its important properties in the following
theorem.

Theorem 12.5.1 (HOSVD). If A ∈ IRn1×···×nd and

A(k) = UkΣkV T
k , k = 1:d,

are the SVDs of its modal unfoldings, then its HOSVD is given by

A = S ×1 U1 ×2 U2 · · · ×d Ud (12.5.6)

where S = A ×1 UT
1 ×2 UT

2 · · · ×d UT
d . The formulation (12.5.6) is equivalent to

A =
n∑

j=1

S(j) · U1(:, j1) ◦ · · · ◦ Ud(:, jd), (12.5.7)

A(i) =
n∑

j=1

S(j) · U1(i1, j1) · · ·Ud(id, jd), (12.5.8)

vec(A) = (Ud ⊗ · · · ⊗ U1) · vec(S). (12.5.9)

Moreover,
‖ S(k)(i, :) ‖F

= σi(A(k)), i = 1:rank(A(k)) (12.5.10)

for k = 1:d.

Proof. We leave the verification of (12.5.7)–(12.5.9) to the reader. To establish
(12.5.10), note that

S(k) = UT
k A(k) (Ud ⊗ · · · ⊗ Uk+1 ⊗ Uk−1 ⊗ · · · ⊗ U1)

= ΣkV T
k (Ud ⊗ · · · ⊗ Uk+1 ⊗ Uk−1 ⊗ · · · ⊗ U1) .

It follows that the rows of S(k) are mutually orthogonal and that the singular values
of A(k) are the 2-norms of these rows.

In the HOSVD, the tensor S is called the core tensor. Note that it is not diagonal.
However, the inequalities (12.5.10) tell us that, the values in S tend to be smaller as
“distance” from the (1, 1, . . . , 1) entry increases.
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12.5.2 The Truncated HOSVD and Multilinear Rank

If A ∈ IRn1×···×nd, then its multilinear rank is a the vector of modal unfolding ranks:

rank∗(A) =
[
rank(A(1)), . . . , rank(A(d))

]
.

Note that the summation upper bounds in the HOSVD can be replaced by rank∗(A).
For example, (12.5.7) becomes

A =
rank∗(A)∑

j=1

S(j)U1(:, j1) ◦ · · · ◦ Ud(:, jd).

This suggests a path to low-rank approximation. If r ≤ rank∗(A) with inquality in at
least one component, then we can regard

A(r) =
r∑

j=1

S(j)U1(:, j1) ◦ · · · ◦ Ud(:, jd)

as a truncated HOSVD approximation to A. It can be shown that

‖ A − A(r) ‖2
F

≤ min
1≤k≤d

rank(A(k))∑
i=rk+1

σi(A(k))2. (12.5.11)

12.5.3 The Tucker Approximation Problem

Suppose A ∈ IRn1×n2×n3 and assume that r ≤ rank∗(A) with inequality in at least one
component. Prompted by the optimality properties of the matrix SVD, let us consider
the following optimization problem:

min
X

‖ A − X ‖
F

(12.5.12)
such that

X =
r∑

j=1

S(j) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3). (12.5.13)

We refer to this as the Tucker approximation problem. Unfortunately, the truncated
HOSVD tensor A(r) does not solve the Tucker approximation problem, prompting us
to develop an appropriate optimization strategy.

To be clear, we are given A and r and seek a core tensor S that is r1-by-r2-by-r3
and matrices U1 ∈ IRn1×r1, U2 ∈ IRn2×r2, and U3 ∈ IRn3×r3 with orthonormal columns
so that the tensor X defined by (12.5.13) solves (12.5.12). Using Theorem 12.4.1 we
know that

‖ A − X ‖
F

= ‖ vec(A) − (U3 ⊗ U2 ⊗ U1) · vec(S) ‖2.

Since U3 ⊗ U2 ⊗ U1 has orthonormal columns, it follows that the “best” S given any
triplet {U1, U2, U3} is

S =
(
UT

3 ⊗ UT
2 ⊗ UT

1
)
· vec(A).
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Thus, we can remove S from the search space and simply look for U = U3 ⊗ U2 ⊗ U1
so that

‖
(
I − UUT

)
· vec(A) ‖2

F
= ‖ vec(A) ‖2

F
− ‖ UT · vec(A) ‖2

F

is minimized. In other words, determine U1, U2, and U3 so that

‖
(
UT

3 ⊗ UT
2 ⊗ UT

1
)
· vec(A) ‖

F
=

⎧⎪⎪⎨⎪⎪⎩
‖ UT

1 · A(1) · (U3 ⊗ U2) ‖
F

‖ UT
2 · A(2) · (U3 ⊗ U1) ‖

F

‖ UT
3 · A(3) · (U2 ⊗ U1) ‖

F

is maximized. By freezing any two of the three matrices {U1, U2, U3} we can improve
the third by solving an optimization problem of the form (12.5.3). This suggests the
following strategy:

Repeat:

Maximize ‖ UT
1 · A(1) · (U3 ⊗ U2) ‖

F
with respect to U1 by computing the

SVD A(1) · (U3 ⊗ U2) = Ũ1Σ1V
T
1 . Set U1 = Ũ1(:, 1:r1).

Maximize ‖ UT
2 · A(2) · (U3 ⊗ U1) ‖

F
with respect to U2 by computing the

SVD A(2) · (U3 ⊗ U1) = Ũ2Σ2V
T
2 . Set U2 = Ũ2(:, 1:r2).

Maximize ‖ UT
3 · A(3) · (U2 ⊗ U1) ‖

F
with respect to U3: by computing the

SVD A(3) · (U2 ⊗ U1) = Ũ3Σ3V
T
3 . Set U3 = Ũ3(:, 1:r3).

This is an example of the alternating least squares framework. For order-d tensors,
there are d optimizations to perform each step:

Repeat:

for k = 1:d

Compute the SVD:

A(k) (Ud ⊗ · · · ⊗ Uk+1 ⊗ Uk−1 ⊗ · · · ⊗ U1) = ŨkΣkV T
k .

Uk = Ũk(:, 1:rk)
end

This is essentially the Tucker framework. For implementation details concerning this
nonlinear iteration, see De Lathauwer, De Moor, and Vandewalle (2000b), Smilde, Bro,
and Geladi (2004, pp. 119–123), and Kolda and Bader (2009).

12.5.4 The CP Approximation Problem

A nice attribute of the matrix SVD that is that the “core matrix” in the rank-1 ex-
pansion is diagonal. This is not true when we graduate to tensors and work with the
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Tucker representation. However, there is an alternate way to extrapolate from the
matrix SVD if we prefer “diagonalness” to orthogonality. Given X ∈ IRn1×n2×n3 and
an integer r, we consider the problem

min
X

‖ A − X ‖
F

(12.5.14)

such that

X =
r∑

j=1

λj · F (:, j) ◦ G(:, j) ◦ H(:, j) (12.5.15)

where F ∈ IRn1×r, G ∈ IRn2×r, and H ∈ IRn3×r. This is an example of the CP approx-
imation problem. We assume that the columns of F , G, and H have unit 2-norm.

The modal unfoldings of the tensor (12.5.15) are neatly characterized through the
Khatri-Rao product that we defined in §12.3.3. If

F = [ f1 | · · · | fr ] , G = [ g1 | · · · | gr ] , H = [ h1 | · · · | hr ] ,

then

X(1) =
r∑

j=1

λj · fj ⊗ (hj ⊗ gj)T = F · diag(λj) · (H " G)T ,

X(2) =
r∑

j=1

λj · gj ⊗ (hj ⊗ fj)T = G · diag(λj) · (H " F )T ,

X(3) =
r∑

j=1

λj · hj ⊗ (gj ⊗ fj)T = H · diag(λj) · (G " F )T .

These results follow from the previous section. For example,

X(1) =
r∑

j=1

λj (fj ◦ gj ◦ hj)(1) =
r∑

j=1

λjfj(hj ⊗ gj)T

=
[

λ1f1 · · · λrfr

] [
h1 ⊗ g1 · · · hr ⊗ gr

]T = F · diag(λj) · (H " G)T .

Noting that

‖ A − X ‖F = ‖ A(1) −X(1) ‖F
= ‖ A(2) −X(2) ‖F

= ‖ A(3) −X(3) ‖F
,

we see that the CP approximation problem can be solved by minimizing any one of the
following expressions:

‖ A(1) −X(1) ‖F
= ‖ A(1) − F · diag(λj) · (H " G)T ‖

F
, (12.5.16)

‖ A(2) −X(2) ‖F
= ‖ A(2) − G · diag(λj) · (H " F )T ‖

F
, (12.5.17)

‖ A(3) −X(3) ‖F
= ‖ A(3) − H · diag(λj) · (G " F )T ‖

F
. (12.5.18)
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This is a multilinear least squares problem. However, observe that if we fix λ, H, and G
in (12.5.16), then ‖ A(1) −X(1) ‖F

is linear in F . Similar comments apply to (12.5.17)
and (12.5.18) and we are led to the following alternating least squares minimization
strategy:

Repeat:

Let F̃ minimize ‖ A(1) − F̃ · (H " G)T ‖
F

and for j = 1:r set

λj = ‖ F̃ (:, j) ‖2 and F (:, j) = F̃ (:, j)/λj .

Let G̃ minimize ‖ A(2) − G̃ · (H " F )T ‖
F

and for j = 1:r set

λj = ‖ G̃(:, j) ‖2 and G(:, j) = G̃(:, j)/λj .

Let H̃ minimize ‖ A(3) − H̃ · (G " F )T ‖
F

and for j = 1:r set

λj = ‖ H̃(:, j) ‖2 and H(:, j) = H̃(:, j)/λj .

The update calculations for F , G, and H are highly structured linear least squares
problems. The central calculations involve linear least square problems of the form

min ‖ (B " C)z − d ‖2 (12.5.19)

where B ∈ IRpB×q, C ∈ IRpC×q, and d ∈ IRpBpC . This is typically a “tall skinny” LS
problem. If we form the Khatri-Rao product and use the QR factorization in the usual
way, then O(pBpCq2) flops are required to compute z. On the other hand, the normal
equation system corresponding to (12.5.19) is(

(BT B) .∗ (CT C)
)
z = (B " C)T d (12.5.20)

which can be formed and solved via the Cholesky factorization in O((pB +pC)q2) flops.
For general tensors A ∈ IRn1×···×nd there are d least squares problems to solve

per pass. In particular, given A and r, the CP approximation problem involves finding
matrices

F (k) = [f (k)
1 | · · · | f (k)

r ] ∈ IRnk×r, k = 1:d,

with unit 2-norm columns and a vector λ ∈ IRr so that if

X =
r∑

j=1

λjf
(1)
j ◦ · · · ◦ f

(d)
j , (12.5.21)

then ‖ A − X ‖
F

is minimized. Noting that

X(k) = F (k)diag(λ)
(
F (d) " · · · " F (k+1) " F (k−1) " · · · " F (1)

)T

,

we obtain the following iteration.
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Repeat:

for k = 1:d

Minimize ‖ A(k) − F̃ (k)
(
F (d) " · · · " F (k+1) " F (k−1) " · · · " F (1)

)
‖

F

with respect to F̃ (k).

for j = 1:r

λj = ‖ F̃(k)(:, j) ‖2

F (k)(:, j) = F̃k(:, j)/λj

end

end

This is the CANDECOMP/PARAFAC framework. For implementation details about
this nonlinear iteration, see Smilde, Bro, and Geladi (2004, pp. 113–119) and Kolda
and Bader (2009).

12.5.5 Tensor Rank

The choice of r in the CP approximation problem brings us to the complicated issue
of tensor rank. If

A =
r∑

j=1

λjf
(1)
j ◦ · · · ◦ f

(d)
j

and no shorter sum-of-rank-1’s exists, then we say that A is a rank-r tensor. Thus,
we see that in the CP approximation problem is a problem of finding the best rank-r
approximation. Using the CP framework to discover the rank of a tensor is problematic
because of the following complications.

Complication 1. The tensor rank problem is NP-hard. See and Hillar and Lim
(2012).

Complication 2. The largest rank attainable for an n1-by-· · ·-nd tensor is called the
maximum rank. There is no simple formula like min{n1, . . . , nd}. Indeed, maxi-
mum rank is known for only a handful of special cases.

Complication 3. If the set of rank-k tensors in IRn1×···×nd has positive measure, then
k is a typical rank. The space of n1 × · · · × nd can have more than one typical
rank. For example, the probability that a random 2-by-2-by-2 tensor has rank 2
is .79, while the probability that it has rank 3 is .21, assuming that the aijk are
normally distributed with mean 0 and variance 1. See de Silva and Lim (2008)
and Martin (2011) for detailed analysis of the 2-by-2-by 2 case.

Complication 4. The rank of a particular tensor over the real field may be different
than its rank over the complex field.

Complication 5. There exist tensors that can be approximated with arbitrary pre-
cision by a tensor of lower rank. Such a tensor is said to be degenerate.
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Complication 6. If

Xr =
r+1∑
j=1

λjU1(:, j) ◦ · · · ◦ Ud(:, j)

is the best rank-(r + 1) approximation of A, then it does not follow that

Xr+1 =
r∑

j=1

λjÛ1(:, j) ◦ · · · ◦ Ûd(:, j)

is the best rank-r approximation of A. See Kolda (2003) for an example. Sub-
tracting the best rank-1 approximation can even increase the rank! See Stegeman
and Comon (2009).

See Kolda and Bader (2009) for references on tensor rank and its implications for
computation. Examples that illuminate the subtleties associated with tensor rank can
be found in the the paper by de Silva and Lim (2008).

12.5.6 Tensor Singular Values: A Variational Approach

The singular values of a matrix A ∈ IRn1×n2 are the stationary values of

ψA(u, v) =
uT Av

‖ u ‖2‖ v ‖2
=

n1∑
i1=1

n2∑
i2=1

A(i1, i2)u(i1)v(i2)

‖ u ‖2‖ v ‖2
(12.5.22)

and the associated stationary vectors are the corresponding singular vectors. This
follows by looking at the gradient equation ∇ψ(u, v) = 0. Indeed, if u and v are unit
vectors, then this equation has the form

∇ψA(u, v) =

[
Av − ψA(u, v)u

AT u − ψA(u, v)v

]
= 0.

This variational characterization of matrix singular values and vectors extends to
tensors; see Lim (2005). Suppose A ∈ IRn1×n2×n3 and define

ψA(u1, u2, u3) =

n∑
i=1

A(i) · u1(i1) u2(i2) u3(i3)

‖ u1 ‖2 ‖ u2 ‖2 ‖ u3 ‖2

where u1 ∈ IRn1 , u2 ∈ IRn2 , and u3 ∈ IRn3 . It is easy to show that

ψA(u1, u2, u3) =

⎧⎪⎪⎨⎪⎪⎩
uT

1 A(1)(u3 ⊗ u2) / (‖ u1 ‖2‖ u2 ‖2‖ u3 ‖2),

uT
2 A(2)(u3 ⊗ u1) / (‖ u1 ‖2‖ u2 ‖2‖ u3 ‖2),

uT
3 A(3)(u2 ⊗ u1) / (‖ u1 ‖2‖ u2 ‖2‖ u3 ‖2).



740 Chapter 12. Special Topics

If u1, u2, and u3 are unit vectors, then the equation ∇ψA = 0 is

∇ψA =

⎡⎢⎢⎣
A(1)(u3 ⊗ u2)

A(2)(u3 ⊗ u1)

A(3)(u2 ⊗ u1)

⎤⎥⎥⎦ − ψA(u1, u2, u3)

⎡⎢⎢⎣
u1

u2

u3

⎤⎥⎥⎦ = 0.

If we can satisfy this equation, then we will call ψA(u1, u2, u3) a singular value of the
tensor A. If we take a componentwise approach to this this nonlinear system we are
led to the following iteration

Repeat:

ũ1 = A(1)(u3 ⊗ u2), u1 = ũ1/‖ ũ1 ‖2

ũ2 = A(2)(u3 ⊗ u1), u2 = ũ2/‖ ũ2 ‖2

ũ3 = A(3)(u2 ⊗ u1), u3 = ũ3/‖ ũ3 ‖2

σ = ψ(u1, u2, u3)

This can be thought of as a higher-order power iteration. Upon comparison with the
Tucker approximation problem with r = [1, 1, . . . , 1], we see that it is a strategy for
computing a nearest rank-1 tensor.

12.5.7 Symmetric Tensor Eigenvalues: A Variational Approach

If C ∈ IRN×N is symmetric, then its eigenvalues are the stationary values of

φC(x) =
xT C x

xT x
=

N∑
i1=1

N∑
i2=1

C(i1, i2)x(i1)x(i2)

xT x
(12.5.23)

and the corresponding stationary vectors are eigenvectors. This follows by setting the
gradient of φC to zero.

If we are to generalize this notion to tensors, then we need to define what we
mean by a symmetric tensor. An order-d tensor C ∈ IRN×···×N is symmetric if for any
permutation p of 1:d we have

C(i) = C(i(p)), 1 ≤ i ≤ N.

For the case d = 3 this means cijk = cikj = cjik = cjki = ckij = ckji for all i, j,
and k that satisfy 1 ≤ i ≤ N , 1 ≤ j ≤ N , and 1 ≤ k ≤ N .

It is easy to generalize (12.5.23) to the case of symmetric tensors. If C ∈ IRN×N×N

is symmetric and x ∈ IRN then we define φC by

φC(x) =

N∑
i=1

C(i) · x(i1) x(i2) x(i3)

‖ x ‖3
2

=
xTC(1)(x ⊗ x)

‖ x ‖3
2

. (12.5.24)
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Note that if C is a symmetric tensor, then all its modal unfoldings are the same. The
equation ∇φC(x) = 0 with ‖ x ‖2 = 1 has the form

∇φC(x) = C(1)(x ⊗ x) − φC(x) · x = 0.

If this holds then we refer to φC(x) as an eigenvalue of the tensor C, a concept introduced
by Lim (2005) and Li (2005). An interesting framework for solving this nonlinear
equation has been proposed by Kolda and Mayo (2012). It involves repetition of the
operation sequence

x̃ = C(1)(x ⊗ x) + αx, λ = ‖ x̃ ‖2, x = x̃/λ

where the shift parameter α is determined to ensure convexity and eventual convergence
of the iteration. For further discussion of the symmetric tensor eigenvalue problem and
various power iterations that can be used to solve it, see Zhang and Golub (2001) and
Kofidis and Regalia (2002).

12.5.8 Tensor Networks, Tensor Trains, and the Curse

In many applications, tensor decompositions and their approximations are used to dis-
cover things about a high-dimensional data set. In other settings, they are used to
address the curse of dimensionality, i.e., the challenges associated with a computation
that requires O(nd) work or storage. Whereas “big n” is problematic in matrix compu-
tations, “big d” is typically the hallmark of a difficult large-scale tensor computation.
For example, it is (currently) impossible to store explicitly an n1 × · · · × n1000 ten-
sor if n1 = · · · = n1000 = 2. In general, a solution framework for an order-d tensor
problem suffers from the curse of dimensionality if the associated work and storage are
exponential in d.

It is in this context that data-sparse tensor approximation is increasingly im-
portant. One way to build a high-order, data-sparse tensor is by connecting a set of
low-order tensors with a relatively small set of contractions. This is the notion of a
tensor network. In a tensor network, the nodes are low-order tensors and the edges
are contractions. A special case that communicates the main idea is the tensor train
(TT) representation, which we proceed to illustrate with an order-5 example. Given
the low-order tensor “carriages”

G1: n1 × r1,

G2: r1 × n2 × r2,

G3: r2 × n3 × r3,

G4: r3 × n4 × r4,

G5: r4 × n5,

we define the order-5 tensor train T by

T (i) =
r∑

k=1

G1(i1, k1)G2(k1, i2, k2)G3(k2, i3, k3)G4(k3, i4, k4)G5(k4, i5). (12.5.25)

The pattern is obvious from the example. The first and last carriages are matrices and
all those in between are order-3 tensors. Adjacent carriages are connected by a single
contraction. See Figure 12.5.1.



742 Chapter 12. Special Topics

G1
k1 G2

k2 G3
k3 G4

k4 G5

Figure 12.5.1. The Order-5 tensor train (12.5.25)

To appreciate the data-sparsity of an order-d tensor train T ∈ IRn1×···×nd that is
represented through its carriages, assume that n1 = · · · = nd = n and r1 = · · · =
rd−1 = r � n. It follows that the TT -representation requires O(dr2n) memory loca-
tions, which is much less than the nd storage required by the explicit representation.

We present a framework for approximating a given tensor with a data-sparse
tensor train. The first order of business is to show that any tensor A as a TT repre-
sentation. This can be verified by induction. For insight into the proof we consider
an order-5 example. Suppose A ∈ IRn1×···×n5 is the result of a contraction between a
tensor

B(i1, i2, k2) =
r1∑

k1=1

G1(i1, k1)G2(k1, i2, k2)

and a tensor C as follows

A(i1, i2, i3, i4, i5) =
r2∑

k2=1

B(i1, i2, k2)C(k2, i3, i4, i5).

If we can express C as a contraction of the form

C(k2, i3, i4, i5) =
r3∑

k3=1

G3(k2, i3, k3)C̃(k3, i4, i5), (12.5.26)

then

A(i1, i2, i3, i4, i5) =
r2∑

k2=1

r3∑
k3=1

B(i1, i2, k2)G3(k2, i3, k3)C̃(k3, i4, i5)

=
r3∑

k3=1

(
r2∑

k2=1

B(i1, i2, k2)G3(k2, i3, k3)

)
C̃(k3, i4, i5)

=
r3∑

k3=1

B̃(i1, i2, i3, k3)C̃(k3, i4, i5)

where

B̃(i1, i2, i3, k3) =
r1∑

k1=1

r2∑
k2=1

G1(i1, k1)G2(k1, i2, k2)G3(k2, i3, k3).

The transition from writing A as a contraction of B and C to a contraction of B̃
and C̃ shows by example how to organize a formal proof that any tensor has a TT -
representation. The only remaining issue concerns the “factorization” (12.5.26). It
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turns out that the tensors G3 and C̃ can be determined by computing the SVD of the
unfolding

C = C[1 2]×[3 4].

Indeed, if rank(C) = r3 and C = U3Σ3V
T
3 is the SVD with Σ3 ∈ IRr3×r3, then it can

be shown that (12.5.26) holds if we define G3 ∈ IRr2×n3×r3 and C̃ ∈ IRr3×n4×n5 by

vec(G3) = vec(U3), (12.5.27)

vec(C̃) = vec(Σ3V
T
3 ). (12.5.28)

By extrapolating from this d = 5 discussion we obtain the following procedure due to
Oseledets and Tyrtyshnikov (2009) that computes the tensor train representation

A(i) =
r(1:d−1)∑
k(1:d−1)

G1(i1, k1)G2(k1, i2, k2) · · · Gd−1(kd−2, id−1, kd−1)Gd(kd−1, id)

for any given A ∈ IRn1×···×nd:

M1 = A(1)

SVD: M1 = U1Σ1V
T
1 where Σ1 ∈ IRr1×r1 and r1 = rank(M1)

for k = 2:d − 1
Mk = reshape(Σk−1V

T
k−1, rk−1nk, nk+1 · · ·nd) (12.5.29)

SVD: Mk = UkΣkV T
k where Σk ∈ IRrk×rk and rk = rank(Mk)

Define Gk ∈ IRrk−1×nk×rk by vec(Gk) = vec(Uk).
end

Gd = Σd−1V
T
d−1

Like the HOSVD, it involves a sequence of SVDs performed on unfoldings.
In its current form, (12.5.29) does not in general produce a data-sparse represen-

tation. For example, if d = 5, n1 = · · · = n5 = n, and M1, . . . , M4 have full rank, then
r1 = n, r2 = n2, r3 = n2, and r4 = n. In this case the TT -representation requires the
same O(n5) storage as the explicit representation.

To realize a data-sparse, tensor train approximation, the matrices Uk and ΣkV T
k

are replaced with “thinner” counterparts that are intelligently chosen and cheap to
compute. As a result, the rk’s are replaced by (significantly smaller) r̃k’s. The ap-
proximating tensor train involves fewer than d(n1 + · · ·+ nd) · (max r̃k) numbers. This
kind of approximation overcomes the curse of dimensionality assuming that max r̃k

does not depend on the modal dimensions. See Oseledets and Tyrtyshnikov (2009)
for computational details, successful applications, and discussion about the low-rank
approximations of M1, . . . , Md−1.

Problems

P12.5.1 Suppose a ∈ IRn1n2n3 . Show how to compute f ∈ IRn1 and g ∈ IRn2 so that ‖ a− h⊗ g ⊗ f ‖2
is minimized where h ∈ IRn3 is given. Hint: This is an SVD problem.
P12.5.2 GivenA ∈ IRn1×n2×n3 with positive entries, show how to determine B = f ◦ g ◦ h ∈ IRn1×n2×n3

so that the following function is minimized:

φ(f, g, h) =
n∑

i=1

|log(A(i)) − log(B(i))|2 .
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P12.5.3 Show that the rank of any unfolding of a tensor A is never larger than rank(A).

P12.5.4 Formulate an HOQRP factorization for a tensor A ∈ IRn1×···×nd that is based on the QR-
with-column-pivoting (QRP) factorizations A(k)Pk = QkRk for k = 1:d. Does the core tensor have
any special properties?

P12.5.5 Prove (12.5.11).

P12.5.6 Show that (12.5.14) and (12.5.15) are equivalent to minimizing ‖ vec(X ) = (H �G� F )λ ‖2.

P12.5.7 Justify the flop count that is given for the Cholesky solution of the linear system (12.5.20).

P12.5.8 How many distinct values can there be in a symmetric 3-by-3-by-3 tensor?

P12.5.9 Suppose A ∈ IRN×N×N×N has the property that

A(i1, i2, i3, i4) = A(i2, i1, i3, i4) = A(i1, i2, i4, i3) = A(i3, i4, i1, i2).

Note that A[1 3]×[2 4] = (Aij) is an N -by-N block matrix with N -by-N blocks. Show that Aij = Aji

and AT
ij = Aij .

P12.5.10 Develop an order-d version of the iterations presented in §12.5.6. How many flops per
iteration are required?

P12.5.11 Show that if G3 and C̃ are defined by (12.5.27) and (12.5.28), then (12.5.26) holds.
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Diagonal pivoting method, 191–2
Diagonal plus rank-1, 469–71
Diagonalizable, 67, 353
Differentiation of matrices, 67
Dimension, 64
Direct methods, 598ff
Dirichlet end condition, 222
Discrete cosine transform (DCT), 39
Discrete Fourier transform (DFT), 33-6

circulant matrices and, 221-2
factorizations and, 41
matrix, 34

Discrete Poisson problem
1-dimensional, 222-4
2-dimensional, 224-31

Discrete sine transform (DST), 39
Displacement rank, 682
Distance between subspaces, 82
Distributed memory model, 57
Divide-and-conquer algorithms

cyclic reduction, 197–8
Strassen, 30–1
tridiagonal eigenvalue, 471–3
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Domain decomposition, 662–5
Dominant

eigenvalue, 366
invariant subspace, 368

Dot product, 4, 10
Dot product roundoff, 98
Double implicit shift, 388
Doubling formulae, 526
Downdating Cholesky, 338–41
Drazin inverse, 356
Durbin’s algorithm, 210

Eckhart-Young theorem, 79
Eigenproblem

diagonal plus rank-1, 469–71
generalized, 405ff, 497ff
inverse, 473–4
orthogonal Hessenberg matrix, 703–4
symmetric, 439ff
Toeplitz, 214–6
unsymmetric, 347ff

Eigensystem
fast, 219

Eigenvalue decompositions
Jordan, 354
Schur, 351

Eigenvalues
algebraic multiplicity, 353
characteristic polynomial and, 348
computing selected, 453
defective, 66
determinant and, 348
dominant, 366
generalized, 405
geometric multiplicity, 353
ordering in Schur form, 351, 396–7
orthogonal Hessenberg, 703–4
relative perturbation, 365
repeated, 360
sensitivity (symmetric case), 441–3
sensitivity (unsymmetric case), 359–60
singular values and, 355
Sturm sequence and, 468
symmetric tridiagonal, 467ff
trace, 348
unstable, 363

Eigenvector, 67
basis, 400
dominant, 366
left, 349
matrix and condition, 354
perturbation, 361–2
right, 349

Elementary Hermitian matrices.
See Householder matrix

Elementary transformations. See
Gauss transformations

Equality constained least squares, 315–7
Equilibration, 139
Equilibrium systems, 192–3
Equivalence of vector norms, 69
Error

absolute, 69
damping in multigrid, 622-3
relative, 70
roundoff, 96–102

Error analysis
backward, 100
forward, 100

Euclidean matrix norm. See

Frobenius matrix norm
Exchange permutation matrix, 20
Explicit shift in QR algorithm

symmetric case, 461
unsymmetric case, 385–8

Exponential of matrix, 530–6

Factored form representation, 237–8
Factorization. See Decompositions and

factorizations
Fast methods

cosine transform, 36ff
eigensystem, 219, 228–31
Fourier transform, 33ff
Givens QR, 245
Poisson solver, 226–7
sine transform, 36

Field of values, 349
Fine grid role in multigrid, 673
Floating point

fl, 96
fundamental axiom, 96
maxims, 96–7
normalized, 94
numbers, 93
storage of matrix, 97–8

Flop, 12
Flopcounts, 12, 16

for square system methods, 298
F -norm, 71
Forward error analysis, 100
Forward substitution, 106
Francis QR step, 390
Frechet derivative, 521
Frobenius matrix norm, 71
Frontal methods, 610
Full multigrid, 678
Function of matrix, 513ff

eigenvectors and, 517–8
Schur decomposition and, 518–20
Taylor series and, 524–6

Gauss-Jordan transformations, 121
Gauss-Radau rule, 560–1
Gauss rules, 557–9
Gauss-Seidel iteration, 611-2

block, 613
Poisson equation and, 617
positive definite systems and, 615

Gauss transformations, 112-3
Gaussian elimination, 111ff

banded version, 176–9
block version, 144–5
complete pivoting and, 131–2
gaxpy version, 117
outer product version, 116
partial pivoting and, 127
rook pivoting and, 133
roundoff error and, 122–3
tournament pivoting and, 150

Gaxpy, 5
blocked, 25

Gaxpy-rich algorithms
Cholesky, 164
Gaussian elimination, 129–30
LDLT , 157–8

Gaxpy vs. outer product, 45
Generalized eigenproblem, 405ff
Generalized eigenvalues, 405

sensitivity, 407
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Generalized least squares, 305–6
Generalized Schur decomposition, 406–7

computation of, 502–3
Generalized singular vectors, 502
Generalized SVD, 309–10, 501–2

constrained least squares and, 316–7
Generalized Sylvester equation, 417
Generator representation, 693
Geometric multiplicity, 353
Gershgorin theorem, 357, 442
Ghost eigenvalues, 566
givens, 240
Givens QR, 252–3

parallel, 257
Givens rotations, 239–42

complex, 243–4
fast, 245
rank-revealing decompositions and, 280–2
square-root free, 246

Global memory, 55
GMRES, 642–4

m-step, 644
preconditioned, 652–3

Golub-Kahan
bidiagonalization, 571–3
SVD step, 491

Gram-Schmidt
classical, 254
modified, 254–5

Graph, 602
Graphs and sparsity, 601–2
Growth in Gaussian elimination, 130–2

Haar wavelet transform, 40ff
factorization, 41

Hadamard product, 710
Hamiltonian matrix, 29, 420

eigenvalue problem, 420–1
Hankel-like, 688–9
Hermitian matrix, 18
Hessenberg form, 15

Arnoldi process and, 579–80
Householder reduction to, 378–9
inverse iteration and, 395
properties, 381–2
QR factorization and, 253–4
QR iteration and, 385–6
unreduced, 381

Hessenberg QR step, 377-8
Hessenberg systems, 179

LU and, 179
Hessenberg-triangular form, 408–9
Hierarchical memory, 46
Hierarchical rank structure, 702
Higher-order SVD, 732–3

truncated, 734
Holder inequality, 69
Horner algorithm, 526–7
house, 236
Householder

bidiagonalization, 284–5
tridiagonalization, 458–9

Householder matrix, 234–8
complex, 243
operations with, 235–7

Hyperbolic
CS decomposition, 344
rotations, 339
transformations, 339

Identity matrix, 19
Ill-conditioned matrix, 88
IEEE arithmetic, 94
Im, 13
Implicit Q theorem

symmetric matrix version, 460
unsymmetric matrix version, 381

Implicit symmetric QR step with
Wilkinson Shift, 461–2

Implicitly restarted Arnoldi
method, 581–3

Incomplete block preconditioners, 657–60
Incomplete Cholesky, 357–60
Indefinite least squares, 344
Indefinite symmetric matrix, 159
Indefinite systems, 639–41
Independence, 64
Inertia of symmetric matrix, 448
inf, 95
Integrating f(A), 527–8
Interchange permutation, 126
Interlacing property

singular values, 487
symmetric eigenvalues, 443

Intersection
nullspaces, 328–9
subspaces, 331

Invariant subspace
approximate, 446–8
dominant, 378
perturbation of (symmetric case), 443-5
perturbation of (unsymmetric case), 361
Schur vectors and, 351

Inverse, 19
band matrices and, 182–3

Inverse eigenvalue problems, 473–4
Inverse error analysis. See

Backward error analysis
Inverse fast transforms

cosine, 227–8
Fourier, 220
sine, 227–8

Inverse iteration
generalized eigenproblem, 414
symmetric case, 453
unsymmetric case, 394–5

Inverse low-rank perturbation, 65
Inverse of matrix,

perturbation of, 74
Toeplitz case, 212–3

Inverse orthogonal iteration, 374
Inverse power method, 374
Inverse scaling and squaring, 542
Irreducible, 373
Iteration matrix, 613
Iterative improvement

fixed precision and, 140
least squares, 268–9, 272
linear systems, 139–40

Iterative methods, 611–50

Jacobi iteration for the SVD, 492–3
Jacobi iteration for symmetric

eigenproblem, 476ff
classical, 479–80
cyclic, 480
error, 480–1
parallel version, 482–3

Jacobi method for linear systems,
block version, 613
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diagonal dominance and, 615
preconditioning with, 653

Jacobi orthogonal correction method, 591–3
Jacobi rotations, 477
Jacobi-Davidson method, 594–5
Jordan blocks, 400-2
Jordan decomposition, 354

computation of, 400-2
matrix functions and, 514, 522-3

Kaniel-Paige-Saad theory, 552–4
Khatri-Rao product, 710
Kogbetiantz algorithm, 506
Kronecker product, 27

basic properties, 27, 707–8
multiple, 28, 716
SVD 712–4

Kronecker structure, 418
Krylov

matrix, 459
subspaces, 548

Krylov-Schur algorithm, 584
Krylov subspace methods

biconjugate gradients, 645
CG (conjugate gradients), 625ff
CGNE (conjugate gradient normal equation

error), 637–8
CGNR (conjugate gradient normal equation

residual), 637–8
CGS (conjugate gradient squared), 646
general linear systems and, 579ff
GMRES (general minimum residual), 642–5
MINRES (minimum residual), 639–40
QMR (quasi-minimum residual), 647
SYMMLQ, 640–1

Krylov subspace methods for
general linear systems, 636–7, 642–7
least squares, 641–2
singular values, 571–8
symmetric eigenproblem, 546–56, 562–71
symmetric indefinite systems, 639–41
symmetric positive definite systems, 625–39
unsymmetric eigenproblem, 579–89

Lagrange multipliers, 313
Lanczos tridiagonalization, 546ff

block version, 566-9
complete reorthogonalization and, 564–5
conjugate gradients and, 628–32
convergence of, 552–4
Gauss quadrature and, 560–1
interior eigenvalues and, 553-4
orthogonality loss, 564
power method and, 554–5
practical, 562ff
Ritz approximation and, 551–2
roundoff and, 563–4
selective orthogonalization and, 565–6
s-step, 569
termination of, 549
unsymmetric, 584–7

Lanczos vectors, 549
LDLT , 156–8

conjugate gradients and, 631
with pivoting, 165–6

Leading principal submatrix, 24
Least squares methods, flopcounts for, 293
Least squares problem

basic solution to, 292
cross-validation and, 308

equality constraints and, 315–7
full rank, 260ff
generalized, 305–6
indefinite, 344
iterative improvement, 268–9
Khatri-Rao product and, 737
minimum norm solution to, 288–9
quadratic inequality constraint, 313–5
rank deficient, 288ff
residual vs. column independence, 295–6
sensitivity of, 265–7
solution set of, 288
solution via Householder QR, 263–4
sparse, 607–8, 641–2
SVD and, 289

Least squares solution using
LSQR, 641–2
modified Gram-Schmidt, 264–5
normal equations, 262–3
QR factorization, 263–4
seminormal equations, 607
SVD, 289

Left eigenvector, 349
Left-looking, 117
Levels of linear algebra, 12
Level-3 fraction, 109

block Cholesky, 170
block LU, 120
Hessenberg reduction, 380

Levinson algorithm, 211
Linear equation sensitivity, 102, 137ff
Linear independence, 64
Linearization, 415–6
Load balancing, 50ff
Local memory, 50
Local program, 50
Log of a matrix, 541–2
Look-ahead, 217, 586–7
Loop reordering, 9
Loss of orthogonality

Gram-Schmidt, 254
Lanczos, 564

Low-rank approximation
randomized, 576–7
SVD, 79

LR iteration, 370
LSMR, 642
LSQR, 641–2
LU factorization, 111ff

band, 177
block, 196–7
Cauchy-like, 685–6
determinant and, 114
diagonal dominance and, 155
differentiation of, 120
existence of, 114
gaxpy version, 117
growth factor and, 130–1
Hessenberg, 179
mentality, 134
outer product version, 116
partial pivoting and, 128
rectangular matrices and, 118
roundoff and, 122-3
semiseparable, 695–7
sparse, 608–9

Machine precision, 95
Markov chain, 374
Markowitz pivoting, 609
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Matlab, xix
Matrix functions, 513ff

integrating, 527–8
Jordan decomposition and, 514–5
polynomial evaluation and, 526–7
sensitivity of, 520–1

Matrix multiplication, 2, 8ff
blocked, 26
Cannon’s algorithm, 60–1
distributed memory, 50ff
dot product version, 10
memory hierarchy and, 47
outer product version, 11
parallel, 49ff
saxpy version, 11
Strassen, 30–1
tensor contractions and, 726–7

Matrix norms, 71–3
consistency, 71
Frobenius, 71
relations between, 72–3
subordinate, 72

Matrix-vector products, 33ff
blocked, 25

Memory hierarchy, 46
Minimax theorem for

singular values, 487
symmetric eigenvalues, 441

Minimum degree ordering, 604–5
Minimum singular value, 78
MINRES, 639–41
Mixed packed format, 171
Mixed precision, 140
Modal product, 727–8
Modal unfoldings, 723
Modified Gram-Schmidt, 254–5

and least squares, 264–5
Modified LR algorithm, 392
Moore-Penrose conditions, 290
Multigrid, 670ff
Multilinear product, 728–9
Multiple eigenvalues,

matrix functions and, 520
unreduced Hessenberg matrices and, 382

Multiple-right-hand-side problem, 108
Multiplicative Schwarz, 664
Multipliers in Gauss transformations, 112

NaN, 95
Nearness to

Kronecker product, 714–5
singularity, 88
skew-hermitian, 449

Nested-dissection ordering, 605–6
Netlib, xix
Neumann end condition, 222
Newton method for Toeplitz eigenvalue, 215
Newton-Schultz iteration, 538
nnz, 599
Node degree, 602
Nonderogatory matrices, 383
Nongeneric total least squares, 324
Nonsingular matrix, 65
Norm

matrix, 71–3
vector, 68

Normal equations, 262–3, 268
Normal matrix, 351

departure from, 351
Normwise-near preconditioners, 654

null, 64
Nullity theorem, 185
Nullspace, 64

intersection of, 328–9
Numerical radius, 349
Numerical range, 349
Numerical rank

least squares and, 291
QR with column pivoting and, 278–9
SVD and, 275–6

off, 477
Ordering eigenvalues, 396–7
Ordering for sparse matrices

Cuthill-McKee, 602–4
minimum degree, 604–6
nested dissection, 605–7

Orthogonal
complement, 65
invariance, 75
matrix, 66, 234
Procrustes problem, 327–8
projection, 82
symplectic matrix, 420
vectors, 65

Orthogonal iteration
symmetric, 454–5, 464–5
unsymmetric, 367–8, 370–3

Orthogonal matrix representations
factored form, 237–8
Givens rotations, 242
WY block form, 238–9

Orthogonality between subspaces, 65
Orthonormal basis computation, 247
Outer product, 7

Gaussian elimination and, 115
LDLT and, 166
sparse, 599–600
between tensors, 724
versus gaxpy, 45

Overdetermined system, 260

Packed format, 171
Padé approximation, 530–1
PageRank, 374
Parallel computation

divide and conquer eigensolver, 472–3
Givens QR, 257
Jacobi’s eigenvalue method, 482–3
LU, 144ff
matrix multiplication, 49ff

Parlett-Reid method, 187–8
Parlett-Schur method, 519

block version, 520
Partitioning

conformable, 23
matrix, 5–6

Pencils, equivalence of, 406
Perfect shuffle permutation, 20, 460, 711–2
Periodic end conditions, 222
Permutation matrices, 19ff
Perron-Frobenius theorem, 373
Perron’s theorem, 373
Persymmetric matrix, 208
Perturbation results

eigenvalues (symmetric case), 441–3
eigenvalues (unsymmetric case), 357–60
eigenvectors (symmetric case), 445–6
eigenvectors (unsymmetric case), 361–2
generalized eigenvalue, 407
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invariant subspaces (symmetric case), 444–5
invariant subspaces (unsymmetric case), 361
least squares problem, 265–7
linear equation problem, 82–92
singular subspace pair, 488
singular values, 487
underdetermined systems, 301

Pipelining, 43
Pivoting

Aasen’s method and, 190
Bunch-Kaufman, 192
Bunch-Parlett, 191
Cauchy-like and, 686–7
column, 276–8
complete, 131–2
LU and, 125ff
Markowitz, 609
partial, 127
QR and, 279–80
rook, 133
symmetric matrices and, 165–6
tournament, 150

Plane rotations. See Givens rotations
p-norms, 71

minimization in, 260
Point, line, plane problems, 269–271
Pointwise operations, 3
Polar decomposition, 328, 540–1
Polynomial approximation and GMRES, 644
Polynomial eigenvalue problem, 414–7
Polynomial interpolation, Vandermonde

systems and, 203–4
Polynomial preconditioner, 655-6
Positive definite systems, 159ff

Gauss-Seidel and, 615–6
LDLT and, 165ff
properties of, 159–61
unsymmetric, 161–3

Positive matrix, 373
Positive semidefinite matrix, 159
Post-smoothing in multigrid, 675
Power method, 365ff

error estimation in, 367
symmetric case, 451–2

Power series of matrix, 524
Powers of a matrix, 527
Preconditioned

conjugate gradient method, 651–2, 656ff
GMRES, 652–3

Preconditioners, 598
approximate inverse, 654-5
domain decomposition, 662–5
incomplete block, 660-1
incomplete Cholesky, 657–60
Jacobi and SSOR, 653
normwise-near, 654
polynomial, 655
saddle point, 661

Pre-smoothing role in multigrid, 675
Principal angles and vectors, 329–31
Principal square root, 539
Principal submatrix, 24
Probability vector, 373
Procrustes problem, 327–8
Product eigenvalue problem, 423–5
Product SVD problem, 507
Profile, 602

Cholesky, 184
indices, 184, 602

Projections, 82

Prolongation matrix, 673
Pseudo-eigenvalue, 428
Pseudoinverse, 290, 296
Pseudospectra, 426ff

computing plots, 433–4
matrix exponential and, 533–4
properties, 431–3

Pseudospectral abscissa, 434–5
Pseudospectral radius, 434–5

QMR, 647
QR algorithm for eigenvalues

Hessenberg form and 377–8
shifts and, 385ff
symmetric version, 456ff
tridiagonal form and, 460
unsymmetric version, 391ff
Wilkinson shift, 462–3

QR factorization, 246ff
block Householder, 250–1
block recursive, 251
classical Gram-Schmidt and, 254
column pivoting and, 276–8
complex, 256
Givens computation of, 252–3
Hessenberg matrices and, 253–4
Householder computation of, 248–9
least square problem and, 263–4
modified Gram-Schmidt and, 254–5
properties of, 246–7
range space and, 247
rank of matrix and, 274
sparse, 606–8
square systems and, 298–9
thin version, 248
tridiagonal matrix and, 460
underdetermined systems and, 300
updating, 335–8

Quadratic eigenvalue problem, 507–8
Quadratically constrained least squares, 314–5
Quasidefinite matrix, 194
Quasiseparable matrix, 693
Quotient SVD, 507
QZ algorithm, 412–3

step, 411-2

ran, 64
Randomization, 576–7
Range of a matrix,

orthonormal basis for, 247
Rank of matrix, 64

QR factorization and, 278–9
SVD and, 275–6

Rank-deficient LS problem, 288ff
breakdown of QR method, 264

Rank-revealing decomposition, 280–3
Rank-structured matrices, 691ff
Rayleigh quotient iteration, 453–4

QR algorithm and, 464
symmetric-definite pencils and, 501

R-bidiagonalization, 285
Re, 13
Real Schur decomposition, 376–7

generalized, 407
ordering in, 396–7

Rectangular LU, 118
Recursive algorithms

block Cholesky, 169
Strassen, 30–1

Reducible, 373
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Regularized least squares, 307ff
Regularized total least squares, 324
Relative error, 69
Relaxation parameter, 619–20
Reorthogonalization

complete, 564
selective, 565

Representation, 681–2
generator, 693
Givens, 697–8
quasiseparable, 694

reshape, 28, 711
and Kronecker product, 28

Residuals vs. accuracy, 138
Restarting

Arnoldi method and, 581–2
block Lanczos and, 569
GMRES and, 644

Restricted generalized SVD, 507
Restricted total least squares, 324
Restriction matrix, 673
Ricatti equation, 422-3
Ridge regression, 307–8
Riemann-Stieltjes integral, 556–7
Right eigenvector, 349
Right-looking, 117
Ritz acceleration, orthogonal

iteration and, 464–5
Ritz approximation

eigenvalues, 551-2
singular values, 573

Rook pivoting, 133
Rotation of subspaces, 327–8
Rotation plus rank-1 (ROPR), 332
Rounding errors. See under particular

algorithm
Roundoff error analysis, 100

dot product, 98–9
Wilkinson quote, 99

Row orientation, 5
Row partition, 6
Row scaling, 139
Row weighting in LS problem, 304–5

Saddle point preconditioners, 661
Saxpy, 4, 11
Scaling, linear systems and, 138–9
Scaling and squaring for exp(A), 531
Schur complement, 118–9, 663
Schur decomposition, 67, 350–1

generalized, 406–7
matrix functions and, 523–4
normal matrices and, 351
real matrices and, 376–7
symmetric matrices and, 440
2-by-2 symmetric, 478

Schur vectors, 351
Secular equations, 313–4
Selective reorthogonalizaton, 565–6
Semidefinite systems, 167–8
Semiseparable

eigenvalue problem, 703–4
LU factorization, 695–8
matrix, 682
plus diagonal, 694
QR factorization, 698–701

Sensitivity. See Perturbation results
sep

symmetric matrices and, 444
unsymmetric matrices and, 360

Shared-memory systems, 54–6
Shared-memory traffic, 55–6
Sherman-Morrison formula, 65
Sherman-Morrison-Woodbury formula, 65
Shifts in

QZ algorithm, 411
SVD algorithm, 489
symmetric QR algorithm, 461–2
unsymmetric QR algorithm, 385–90

Sign function, 536–8
Similar matrices, 67, 349
Similarity transformation, 349

condition of, 354
nonunitary, 352–4

Simpson’s rule, 528
Simultaneous diagonalization, 499
Simultaneous iteration. See orthogonal iteration
Sine of matrix, 526
Singular matrix, 65
Singular subspace pair, 488
Singular value decomposition (SVD), 76–80

algorithm for, 488–92
constrained least squares and, 313–4
generalized, 309–10
geometry of, 77
higher-order, 732–3
Jacobi algorithm for, 492–3
Lanczos method for, 571ff
linear systems and, 87–8
minimum-norm least squares solution, 288–9
nullspace and, 78
numerical rank and, 275–6
perturbation of, 487–8
principal angles and, 329–31
projections and, 82
pseudo-inverse and, 290
rank of matrix and, 78
ridge regression and, 307–8
subset selection and, 293–6
subspace intersection and, 331
subspace rotation and, 327–8
symmetric eigenproblem and, 486
total least squares and, 321–2
truncated, 291

Singular values, 76
condition and, 88
eigenvalues and, 355
interlacing property, 48
minimax characterization, 487
perturbation of, 487–8
range and nullspace, 78
rank and, 78
smallest, 279–80

Singular vectors, 76
Skeel condition number, 91

and iterative improvement, 140
Skew-Hamiltonian matrix 420
Skew-Hermitian matrix, 18
Skew-symmetric matrix, 18
span, 64
Sparse factorization challenges

Cholesky, 601
LU, 609
QR, 607

Sparsity, 154
graphs and, 601–2

Spectral abscissa, 349
Spectral radius, 349, 427, 614
Spectrum of matrix, 348
Speed-up, 53–4
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SPIKE framework, 199–201
Splitting, 613
Square root of a matrix, 163
s-step Lanczos, 569
Stable algorithm, 136
Stable matrix, 436
Steepest descent method, 626–7
Stieltjes matrix, 658
Strassen method, 30–1

error analysis and, 101-2
Strictly diagonally dominant, 155
Stride, 45
Structured rank, 691ff

types of, 702
Sturm sequence property, 468–9
Submatrix, 24
Subnormal floating point number, 95
Subordinate norm, 72
Subset selection, 293–5

using QR with column pivoting, 293
Subspace, 64

angles between, 329–31
deflating, 414
distance between, 82–3, 331
dominant, 368
intersection, 331
invariant, 349
nullspace intersection, 328–9
orthogonal projections onto, 82
rotation of, 327–8

Successive over-relaxation (SOR), 619
Sweep, 480
Sylvester equation, 398

generalized, 417
Sylvester law of inertia, 448
Sylvester map, 682
Symmetric-definite eigenproblem, 497–501
Symmetric eigenproblem, 439ff

sparse methods, 546ff
Symmetric indefinite methods

Aasen, 188–90
Diagonal pivoting, 191–2
Parlett-Reid, 187–8

Symmetric matrix, 18
Symmetric pivoting, 165
Symmetric positive definite systems, 163ff
Symmetric semidefinite properties, 167–8
Symmetric successive over-relaxation,

(SSOR), 620
SYMMLQ, 641
Symplectic matrix, 29, 420
symSchur, 478

Taylor approximation of eA, 530
Taylor series, matrix functions and, 515–7
Tensor

contractions, 726ff
eigenvalues, 740–1
networks, 741
notation, 721
rank, 738–9
rank-1, 725
singular values, 739–40
train, 741–3
transpose, 722-3
unfoldings, 720

Thin CS decomposition, 84
Thin QR factorization, 248
Thin SVD, 80
Threshold Jacobi, 483

Tikhonov regularization, 309
Toeplitz-like matrix, 688
Toeplitz matrix methods, classical, 208ff
Toroidal network, 58
Total least squares, 320ff

geometry, 323–4
Tournament pivoting, 150
Trace, 348–9
tr, 348
Trace-min method, 595
Tracy-Singh product, 709
Transition probability matrix, 374
Transpose, 2, 711-2
Trench algorithm, 213
Treppeniteration, 369
Triangular matrices,

multiplication between, 15
unit, 110

Triangular systems, 106–11
band, 177-8
nonsquare, 109–10
roundoff and, 124–5
semiseparable, 694–5

Tridiagonalization,
connection to bidiagonalization, 574
Householder, 458–60
Krylov subspaces and, 459–60
Lanczos, 548–9

Tridiagonal matrices, 15, 223–4
QR algorithm and, 460–4

Tridiagonal systems, 180–1
Truncated

higher-order SVD, 734
SVD, 291
total least squares, 324

Tucker approximation problem, 734–5

ULV decomposition, 282–3
ULV updating, 341–3
Underdetermined systems, 134, 299-301
Undirected graph, 602
Unfolding, 723–4
Unit roundoff, 96
Unit stride, 45
Unit vector, 69
Unitary matrix, 80
Unreduced Hessenberg matrices, 381
Unreduced tridiagonal matrices, 459
Unstable eigenvalue, 363
Unsymmetric

eigenproblem, 347ff
Lanczos method, 584–7
positive definite systems, 161–3
Toeplitz systems, 216–7

Updating
Cholesky, 338–41
QR factorization, 334–8
ULV, 341–3

UTV, 282

Vandermonde systems, 203ff
confluent, 206

V-cycle, 677–8
vec, 28, 710–11

for tensors, 722
Vector

computing, 43ff
loads and stores, 43
norms, 68
operations, 3–4, 44
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processing, 43
Vectorization, tridiagonal system solving

and, 181

Weighted Jacobi iteration, 672–3
Weighting least squares problems

column, 306–7
row, 304–5
See also Scaling

Well-conditioned matrix, 88
Wielandt-Hoffman theorem

eigenvalues, 442
singular values, 487

Wilkinson shift, 462–3
Work

least squares methods and, 293
linear system methods and, 298
SVD and, 493

WY representation, 238–9
compact version, 244

Yule-Walker problem, 201–10
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