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Preface

This book is written for students and researchers in the field of indus-
trial engineering, computer science, operations research, management
science, electrical engineering, and applied mathematics. The aim is
to introduce the reader to a subset of topics on simulation-based op-
timization of large-scale and complex stochastic (random) systems.
Our goal is not to cover all the topics studied under this broad field.
Rather, it is to expose the reader to a selected set of topics that have
recently produced breakthroughs in this area. As such, much of the
material focusses on some of the key recent advances.

Those working on problems involving stochastic discrete-event
systems and optimization may find useful material here. Furthermore,
the book is self-contained, but only to an extent; a background in el-
ementary college calculus (basics of differential and integral calculus)
and linear algebra (matrices and vectors) is expected. Much of the
book attempts to cover the topics from an intuitive perspective that
appeals to the engineer.

In this book, we have referred to any stochastic optimization
problem related to a discrete-event system that can be solved with
computer simulation as a simulation-optimization problem. Our
focus is on those simulation-optimization techniques that do not re-
quire any a priori knowledge of the structure of the objective function
(loss function), i.e., closed form of the objective function or the un-
derlying probabilistic structure. In this sense, the techniques we cover
are model-free. The techniques we cover do, however, require all the
information typically required to construct a simulation model of the
discrete-event system.
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viii SIMULATION-BASED OPTIMIZATION

Although the science underlying simulation-based optimization has
a rigorous mathematical foundation, our development in the initial
chapters is based on intuitively appealing explanations of the major
concepts. It is only in Chaps. 9–11 that we adopt a somewhat more
rigorous approach, but even there our aim is to prove only those results
that provide intuitive insights for the reader.

Broadly speaking, the book has two parts: (1) parametric (static)
optimization and (2) control (dynamic) optimization. While the sec-
tions on control optimization are longer and a greater portion of the
book is devoted to control optimization, the intent is not in any way
to diminish the significance of parametric optimization. The field of
control optimization with simulation has benefited from work in nu-
merous communities, e.g., computer science and electrical engineering,
which perhaps explains the higher volume of work done in that field.
But the field of parametric optimization has also attracting significant
interest in recent times and it is likely that it will expand in the coming
years.

By parametric optimization, we refer to static optimization in which
the goal is to find the values of parameters that maximize or minimize
a function (the objective or loss function), usually a function of those
parameters. By control optimization, we refer to those dynamic op-
timization problems in which the goal is to find an optimal control
(action) in each state visited by a system. The book’s goal is to de-
scribe these models and the associated optimization techniques in the
context of stochastic (random) systems. While the book presents some
classical paradigms to develop the background, the focus is on recent
research in both parametric and control optimization. For example,
exciting, recently developed techniques such as simultaneous pertur-
bation (parametric optimization) and reinforcement learning (control
optimization) are two of the main topics covered. We also note that
in the context of control optimization, we focus only on those systems
which can be modeled by Markov or semi-Markov processes.

A common thread running through the book is naturally that of
simulation. Optimization techniques considered in this book require
simulation as opposed to explicit mathematical models. Some special
features of this book are:

1. An accessible introduction to reinforcement learning and para-
metric optimization techniques.

2. A step-by-step description of several algorithms of simulation-based
optimization.
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3. A clear and simple introduction to the methodology of neural net-
works.

4. A special account of semi-Markov control via simulation.

5. A gentle introduction to convergence analysis of some of tech-
niques.

6. Computer programs for many algorithms of simulation-based
optimization, which are online.

The background material in discrete-event simulation from Chap. 2
is at a very elementary level and can be skipped without loss of conti-
nuity by readers familiar with this topic; we provide it here for those
readers (possibly not from operations research) who may not have been
exposed to it. Links to computer programs have been provided in the
appendix for those who want to apply their own ideas or perhaps test
their own algorithms on some test-beds. Convergence-related mate-
rial in Chaps. 9–11 is for those interested in the mathematical roots
of this science; it is intended only as a form of an introduction to
mathematically sophisticated material found in other advanced texts.

Rolla, USA Abhijit Gosavi
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Chapter 1

BACKGROUND

1. Motivation
This book seeks to introduce the reader to the rapidly evolving

subject called simulation-based optimization. This is not a very young
topic, because from the time computers started making an impact
on scientific research and it became possible to analyze random sys-
tems with computer programs that generated random numbers, engi-
neers have always wanted to optimize systems using simulation models.
However, it is only recently that noteworthy success in realizing this
objective has been met in practice.

Path-breaking work in computational operations research in areas
such as non-linear programming (simultaneous perturbation) and dyn-
amic programming (reinforcement learning) has now made it possible
for us to use simulation in conjunction with optimization techniques.
This has given simulation the kind of power that it did not have in the
past, when simulation optimization was usually treated as a synonym
for the relatively sluggish (although robust) response surface method.

The power of computers has increased dramatically over the years,
of course, and it continues to increase. This has helped increase the
speed of running computer programs, and has provided an incentive
to study simulation-based optimization. But the over-riding factor
in favor of simulation optimization in recent times is the remarkable
research that has taken place in various areas of computational oper-
ations research. We mean research that has either given birth to new
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2 SIMULATION-BASED OPTIMIZATION

optimization techniques more compatible with simulation, or in many
cases research that has generated modified versions of old optimiza-
tion techniques that can be combined more elegantly with simulation.
It is important to point out that the success of these new techniques
has to be also attributed to their deep mathematical roots in opera-
tions research. These roots have helped lead simulation optimization
onto a new path, where it has attacked problems previously considered
intractable.

Surprisingly, the success stories have been reported in widely
different, albeit related, areas of operations research. Not surprisingly,
all of these success stories have a natural connection; the connecting
thread is an adroit integration of computer simulation with an opti-
mization technique. Hence, we believe that there is a need for a book
that presents some of the recent advances in this field. Simulation-
based optimization, it is expected, will achieve a prominent status
within the field of stochastic optimization in the coming years.

1.1. Main Branches
Optimization problems in large-scale and complex stochastic sce-

narios broadly speaking belong to two main branches of operations
research:

1. Parametric optimization (also called static optimization).

2. Control optimization (also called dynamic optimization).

In general, parametric optimization is performed to find values of a
set of parameters (or decision variables) that optimize some perfor-
mance measure (generally, minimize a cost or maximize a reward).
On the other hand, control optimization refers to finding a set of
actions to be taken in the different states that a system visits, such
that the actions selected optimize some performance measure of the
system (again, minimize a cost or maximize a reward). Classically, in
the field of operations research, parametric optimization is performed
using mathematical programming, e.g., linear, non-linear, and integer
programming. Control optimization on the other hand is generally
performed via dynamic programming, but sometimes via mathemati-
cal programming as well.

Parametric optimization is often called static optimization, because
the solution is a set of “static” parameters for all states. Control
optimization is often called dynamic optimization because the solution
depends on the state, which changes dynamically; for every state, we
may have a different solution.
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1.2. Difficulties with Classical Optimization
The focus of this book is on discrete-event stochastic systems,

where the size and complexity of the problem prevents a naive appli-
cation of classical optimization methods. This needs a more detailed
explanation.

Formulating an objective function can oftentimes prove to be diffi-
cult in parametric optimization problems encountered in the stochas-
tic setting. Usually, the objective function in this setting is non-linear,
with multiple integrals and probabilistic elements. It goes without
saying that the larger the number of random variables in a system the
more complex the system usually is for deriving closed-form expres-
sions for the objective function. In the control optimization scenario,
if one is to use classical dynamic programming, one needs the transi-
tion probability function, which is difficult to evaluate. The difficulties
with this function coupled with a possibly large number of states lead
to the well-known curses of dynamic programming: the curse of mod-
eling and the curse of dimensionality. The larger the number of states
and input random variables (and greater their inter-dependencies), the
more difficult it is to break these curses.

Short of a closed form for the objective function in the parametric
setting and the transition probability function in the control setting,
in a stochastic problem, one often turns to simulation for performance
evaluation. However, performance evaluation via simulation is time-
consuming, despite advances in computing power. Hence, the tradi-
tional approaches to capture the behavior of the objective function (via
response surface methods) or the transition probability function (maxi-
mum likelihood estimation) required an enormous amount of computer
time with the simulator, either due to long trajectories or multiple
replications or both. If the simulation time required is impractically
large, obviously, simulation-based methods for optimization are ruled
out. What is needed (or rather was needed and is becoming a reality
now) are optimization techniques that require a manageable amount
of simulation time and produce optimal or near-optimal solutions. We
now discuss some recent advances in this area.

1.3. Recent Advances in Simulation
Optimization

Our intent in this book is to focus on a subset of topics in simulation
optimization that revolve around the recent advances in this field. Here
we discuss one technique each from parametric optimization and from
control optimization.
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Parametric optimization. The fact that function evaluations via
simulation can take considerable amounts of time has stimulated int-
erest in non-linear programming techniques that can work without an
excessively large number of function evaluations. This is so because,
as stated above, even a one-time numerical evaluation of the objective
function of a complex stochastic system via simulation is computa-
tionally expensive. An example of a method that takes a long time
but works with simulation-based function evaluations is the age-old
gradient-descent (or ascent) algorithm with regular finite differences.
This technique requires a relatively large number of function evalua-
tions in each iteration and takes a long time to generate solutions.

A breakthrough in this field is Spall’s simultaneous perturbation
technique [280] (1992). In comparison to other non-linear program-
ming methods, it requires few function evaluations, and as such has a
relatively low computational burden. Several extensions of this tech-
nique are now being researched upon.

Control optimization. As stated above, stochastic dynamic pro-
gramming, the main tool of control optimization, suffers from the twin
curses of modeling and dimensionality. In complex large-scale systems,
the transition probabilities are hard to find for complex systems (curse
of modeling), and the number of states and the transition probability
matrices become too huge (curse of dimensionality). For example, a
problem with one thousand states, which is a very small problem in
the real-world context, has one million transition probabilities just for
one action. Since these probabilities are usually difficult to store, it is
difficult to process them for generating a solution.

This has inspired research in methods that work within simulators
but avoid the generation of transition probabilities. An example of
one such algorithm is the Q-Learning algorithm [312] (1989). This and
other related algorithms have given birth to a field called reinforcement
learning.

What is different about these methods? Much of the literature
in stochastic optimization from the 1960s and 1970s focused on dev-
eloping exact mathematical models for the problem at hand. This
oftentimes required making simplifying assumptions about the system.
A commonly made assumption in many models is the use of the exp-
onential distribution for random variables in the system. This ass-
umption leads to elegant closed-form mathematics but often ignores
real-life considerations. Without closed-forms for objective functions,
it has been difficult to optimize. Traditional simulation-optimization
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methods, e.g., response surfaces, were known to work with any given
distribution for the random variables. However, as mentioned above,
they required a large amount of computational time, and hence closed-
form methods were often preferred to them. Some of the recent adv-
ances in simulation-based optimization seek to change this perception
about simulation-based optimization.

2. Goals and Limitations
While writing the book, we have had to obviously make numerous

decisions related to what to include and what not to include. We first
describe what our main goals are and then discuss the topics that we
do not cover here.

2.1. Goals
The main goal of this book is to introduce the reader to a selection of

topics within simulation-based optimization of discrete-event systems,
concentrating on parametric optimization and control optimization.
We have elected to cover only a subset of topics in this vast field; some
of the key topics that we cover are: response surfaces with neural
networks, simultaneous perturbation, meta-heuristics (for simulation
optimization), reinforcement learning, and learning automata. The-
oretical presentation of some algorithms has been supplemented by
engineering case studies. The intent behind their presentation is to
demonstrate the use of simulation-based optimization on real-life prob-
lems. We also hope that from reading the chapters related to conver-
gence, the reader will gain an understanding of the theoretical methods
used to mathematically establish that a given algorithm works. Over-
whelming the reader with mathematical convergence arguments (e.g.,
theorems and proofs) was not our intention, and therefore material of
that nature is covered towards the end in separate chapters.

A central theme in this book is the development of optimization
models that can be combined easily with simulators, in order to opt-
imize complex systems for which analytical models are not easy to
construct. Consequently, the focus is on the optimization model: in
the context of parametric (static) optimization, the underlying system
is assumed to have no special structural properties, while in the context
of control (dynamic) optimization, the underlying system is assumed
to be driven by Markov chains.



6 SIMULATION-BASED OPTIMIZATION

2.2. Limitations
Firstly, we note that we have restricted our discussion to discrete-

event systems. Therefore, systems modeled by continuous-event
dynamics, e.g., Brownian motion or deterministic systems modeled
by differential equations, are outside the scope of this text. Secondly,
within control optimization, we concentrate only on systems governed
by Markov chains, in particular the Markov and semi-Markov decision
processes. Hence, systems modeled by partially observable Markov
processes and other kinds of jump processes are not studied here.
Finally, and very importantly, we have not covered any model-based
techniques, i.e., techniques that exploit the structure of the problem.
Usually, model-based techniques assume some prior knowledge of the
problem structure, which could either be the objective function’s
properties (in parametric optimization) or the transition probability
functions (in control optimization). Rather, our focus is on model-
free techniques that require no prior knowledge of the system (other
than, of course, what is needed to construct a simulation model).

It is also important to point out that the algorithms presented in
this book are restricted to systems for which (a) the distributions of
random variables are known (or can be determined with data collec-
tion) and (b) to systems that are known to reach steady state. Non-
stationary systems or unstable systems that never reach steady state,
perhaps due to the occurrence of rare events, are not considered in
this book. Finally, we note that any simulation model continues to
be accurate only if the underlying random variables continue to follow
the distributions assumed. If the distributions change, our simulation-
optimization model will break down and should not be used.

3. Notation
We now define much of the notation used in this book. The dis-

cussion is in general terms and refers to some conventions that we
have adopted. Vector notation has been avoided as much as possible;
although it is more compact and elegant in comparison to component
notation, we believe that component notation, in which all quantities
are scalar, is usually easier to understand.

3.1. Some Basic Conventions
The symbol ∀i will denote: for all possible values of i. The notation

∑

i

p(i)
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will denote a summation over all values of i, while
∏

i

p(i)

will denote a product over all values of i.
Also, E[.] will denote the expectation of the quantity in the square

brackets, while P[.] will denote probability of the event inside the
square brackets. {. . .} will denote a set of the elements inside the curly
braces.

3.2. Vector Notation
In this book, a vector quantity will always have an arrow (→) placed

above it. This convention should distinguish a scalar from a vector.
From our experience, not making this distinction can create a great
deal of confusion to the beginner. Hence, for example, �x will denote a
vector whereas x will denote a scalar.

For the most part, when we mean vector, we will mean column
vector in this book. The ith component of a vector �x will be denoted
by x(i). A column vector will also be denoted, at several places in the
book, with the following notation. For example,

(x(1), x(2), x(3)) or [x(1) x(2) x(3)]T

will denote a column vector with three elements, where T denotes a
transpose. Some other examples are:

(1, 4, 6) and (3, 7).

Note that (a, b) may also denote the open interval between scalars a
and b. Where we mean an interval and not a vector, we will spell out
the definition clearly. A closed interval will be denoted by:

[a, b].
The notation ||�x|| will denote a norm of the vector �x. We now

discuss a number of norms that will be needed in the book.

Max norm. The notation ||�x||∞ is often used to denote the max
norm of the vector �x and is defined as:

||�x||∞ = max
i

|x(i)|,

where |a| denotes the absolute value of a. The max norm will be
equivalent to the sup norm or the infinity norm (for the analysis
in this book). Whenever ||.|| is used without a subscript, it will be
assumed to equal the max norm.
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Euclidean norm. The notation ||�x||2 will denote the Euclidean
norm of the vector �x and is defined as:

||�x||2 =
√∑

i

[x(i)]2.

Manhattan norm. The notation ||�x||1 will denote the Manhattan

norm of the vector �x and is defined as:

||�x||1 =
∑

i

|x(i)|.

3.3. Notation for Matrices
A matrix will be printed in boldface. For example:

A =

[
2 3 7
4 2 1

]
. (1.1)

The transpose of a matrix A will be denoted by AT . Thus, using the
definition given in Eq. (1.1),

AT =

⎡

⎣
2 4
3 2
7 1

⎤

⎦ .

I will denote the identity matrix .

3.4. Notation for n-tuples
The notation that we have used for n-tuples is distinct from that

used for vectors. For instance x̂ will denote an n-tuple. An n-tuple
may or may not be a vector. An n-tuple may also be denoted with the
following notation:

(a1, a2, . . . , an).

The notation, nth, will denote nth. For instance, if n = 5 then nth
will denote 5th.

3.5. Notation for Sets
Calligraphic letters, such as A,B, C, . . . ,X , will invariably denote

sets in this book. The notation |A| will denote the cardinality of the
set A (that is the number of elements in the set), but |a| will denote the
absolute value of the scalar a. Sets may also be denoted with curly
braces in the following form:

{1, 2, 3, 4} and {1, 3, 5, 7, . . . , }.
In the above, both representations are sets.
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A special set is the real number line, which will be represented by �.
It denotes the set of all real numbers. � is also the specific case of a
Euclidean space in one dimension. In general, Euclidean space in the
nth dimension will be represented by �n.

The notation L2 may denote L raised to the second power if L is a
scalar quantity; it may denote something very different if L is a trans-
formation operator. The actual meaning will become clear from the
context. Also, the superscript has been used in a number of places to
denote the iteration in a given algorithm. In such cases, also, the sup-
erscript does not represent the power. Hence, the superscript should
not be assumed to be the power, unless it is explicitly defined to be a
power.

3.6. Notation for Sequences
The notation {an}∞n=1 will represent an infinite sequence whose nth

term is an. For instance, if a sequence is defined as follows:

{an}∞n=1 = {10, 20, 30, . . .},

then a3 = 30.

3.7. Notation for Transformations
A transformation is an operation carried out on a vector. The result

of a transformation is a vector or a scalar. An example of a transfor-
mation (or transform, as it is sometimes referred to) is:

xk+1 ← 3xk + 2yk, yk+1 ← 4xk + 6yk. (1.2)

Suppose a vector starts out at
(
x0, y0

)
= (5, 10). When the transfor-

mation defined in (1.2) is applied on this vector, we have:

x1 = 35, and y1 = 80.

Equation (1.2) is often abbreviated as:
(
xk+1, yk+1

)
= T

((
xk, yk

))
,

where T denotes the transform. T is understood as T 1. Two applica-
tions of T is written as T 2, and so on. For example:

(
x2, y2

)
= T 2

((
x0, y0

))
,

and (
x5, y5

)
= T

((
x4, y4

))
= T 2

((
x3, y3

))
.
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3.8. Max, Min, and Arg Max
The following notation will be encountered frequently.

x = max
i∈S

[a(i)].

This means that x equals the maximum of the values that a can as-
sume. So if set S is defined as below:

S = {1, 2, 3},

and
a(1) = 1, a(2) = 10, and a(3) = −2,

then x = 10. Similarly, min will be used in the context of the minimum
value. Now read the following notation carefully.

y = argmax
i∈S

[a(i)].

Here, y denotes the argument or the element index associated with the
maximum value. So, if set S and the values of a are defined as above,
then

y = 2.

so that a(y) is the maximum value for a. It is to be noted that argmin
has a similar meaning in the context of the minimum.

In Table 1.1, we present a list of acronyms and abbreviations that
we have used in this book.

4. Organization
The rest of this book is organized as follows. Chap. 2 covers ba-

sic concepts related to discrete-event simulation. Chap. 3 is meant to
present an overview of optimization with simulation. Chap. 4 deals
with the response surface methodology, which is used in conjunction
with simulation optimization. This chapter also presents the topic of
neural networks in some detail. Chap. 5 covers the main techniques
for parametric optimization with simulation. Chap. 6 discusses the
classical theory of stochastic dynamic programming. Chap. 7 focuses
on reinforcement learning. Chap. 8 covers automata theory in the con-
text of solving Markov and Semi-Markov decision problems. Chap. 9
deals with some fundamental concepts from mathematical analysis.
These concepts will be needed for understanding the subsequent chap-
ters on convergence. Convergence issues related to parametric opt-
imization methods are presented in Chap. 10, while Chap. 11 discusses
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Table 1.1. A list of acronyms and abbreviations used in the book

Acronym/abbreviation Full name
AGV Automated (Automatic) Guided

Vehicle
Backprop Backpropagation
BAS Backtracking Adaptive Search
cdf cumulative distribution function
CF Contracting Factor
CTMDP Continuous Time Markov Decision

Problem
DMP Decision-Making Process
DARE Displacement Adjusted REvenue
DAVN Displacement Adjusted Virtual

Revenue
DP Dynamic Programming
DeTSMDP Deterministic Time Semi-Markov

Decision Problem
EMSR Expected Marginal Seat Revenue
GLIE Greedy in the Limit with Infinite

Exploration
LAST Learning Automata Search

Technique
LP Linear Program
LSTD Least Squares Temporal Difference
MCAT Markov Chain Automata Theory
MDP Markov Decision Problem or

Process
NP Natural Process
ODE Ordinary Differential Equation
pdf probability density function
pmf probability mass function
Q-Learning Learning with Q factors

(approximate value iteration)
Q-P -Learning Learning with Q and P factors

(approximate policy iteration)
RL Reinforcement Learning
RSM Response Surface Method or

Methodology
(continued)
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Table 1.1. (continued)

Acronym/abbreviation Full name
RVI Relative Value Iteration
R-SMART Relaxed Semi-Markov Average

Reward Technique
RTDP Real Time Dynamic Programming
SAS Stochastic Adaptive Search
SMDP Semi-Markov Decision Problem or

Process
SSE Sum of Squared Errors
SSP Stochastic Shortest-Path Problem
TD Temporal Difference(s)
TPM Transition Probability Matrix
TRM Transition Reward Matrix
TTM Transition Time Matrix
URS UnRestricted in Sign
WH Widrow Hoff

the convergence theory of stochastic dynamic programming and rein-
forcement learning. The book concludes with Chap. 12 which presents
an overview of some case studies of simulation optimization from the
existing literature. Some additional material including basics on prob-
ability theory and links to computer programs can be found at the
following website [121]:

http://web.mst.edu/~gosavia/bookcodes.html



Chapter 2

SIMULATION BASICS

1. Chapter Overview
This chapter has been written to introduce the topic of discrete-

event simulation. To comprehend the material presented in this chap-
ter, some background in the theory of probability is needed, some of
which is in the Appendix. Two of the main topics covered in this
chapter are random number generation and simulation modeling of
random systems. Readers familiar with this material can skip this
chapter without loss of continuity.

2. Introduction
A system is usually defined as a collection of entities that interact

with each other. A simple example is the queue that forms in front
of a teller in a bank: see Fig. 2.1. The entities in this system are the
people (customers), who arrive to get served, and the teller (server),
who provides service.

The behavior of a system can be described in terms of the so-called
state of the system. In our queuing system, one possible definition for
the system state is the length of the queue, i.e., the number of people
waiting in the queue. Frequently, we are interested in how a system
changes over time, i.e., how the state changes as time passes. In a real
banking queue, the queue length fluctuates with time, and thus the
behavior of the system can also be said to change with time. Systems
which change their state with time are called dynamic systems. In this
book, we will restrict our attention to discrete-event systems. In a

© Springer Science+Business Media New York 2015
A. Gosavi, Simulation-Based Optimization, Operations
Research/Computer Science Interfaces Series 55,
DOI 10.1007/978-1-4899-7491-4 2
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Arrival

Departure

Server

Customers

Figure 2.1. A schematic of a queue in a bank

discrete-event system, the time interval between two successive state
changes, or alternatively two successive “events,” is of a finite dura-
tion. Hence, a system will be understood to be a discrete-event system
throughout this book.

The behavior of any dynamic system is usually governed by some
variables, often called the governing variables. The governing vari-
ables in our banking system are the time taken by the teller to provide
service to a customer and the time between successive arrivals of cus-
tomers to the bank. An appropriate question at this point is: Why
should these two quantities be considered to be the governing vari-
ables? The answer is that using laws from queuing theory, one can
show that the behavior of the system (e.g., the queue length) depends
on the values assumed by these variables.

When the governing variables are random variables, the system is
referred to as a random or stochastic system. Therefore, the reader
should always keep in mind that a random system’s behavior is gov-
erned by one or more random variables. Knowledge of the distributions
of these random variables is needed to analyze the system’s behavior.

3. Models
To understand, to analyze, and to predict the behavior of sys-

tems (both random and deterministic), operations researchers con-
struct models. These models are typically abstract models, unlike
physical models, e.g., a miniature airplane. Abstract models take
the form of equations, functions, inequations (inequalities), and com-
puter programs etc. To understand how useful abstract models can
be, consider the simple model from Newtonian physics: v = u + gt.
This equation predicts the speed of a freely-falling body that has been
in the air for t time units after starting its descent at a speed of u.
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The literature in stochastic operations research is full of mathematical
models similar to that above which help in analyzing and predicting
behavior of stochastic systems. Hence, stochastic operations research
is sometimes described as the physics of stochastic systems. Queu-
ing theory, renewal theory, and Brownian motion theory have been
exploited to construct powerful mathematical models.

Although these mathematical models enjoy an important place in
operations research, they are often tied to assumptions made about
the system—assumptions that are sometimes necessary to develop a
model. These assumptions may be related to the system’s structure or
to the distributions of the governing random variables. For instance,
many queuing-theory models are limited in use to exponentially dis-
tributed service and inter-arrival times. Some models related to Brow-
nian motion are restricted to the so-called heavy traffic conditions. Not
surprisingly, stochastic operations research has always found models
that generalize beyond such narrow assumptions to be very attractive.

One possible avenue for generating powerful models for large and
complex systems is via the use of a computer program that mimics
the system’s behavior. This computer program is called a simulation
model. The program usually achieves its goal of behavior prediction
by generating random numbers for the governing random variables.

For a long time, simulation models did not receive the respect that
they deserve. A primary reason was that although they could be used
for analyzing random systems, their use in optimizing systems was
not well understood or as well evolved as it is today. On the other
hand, mathematical models, among other things such as being ele-
gant, can usually optimize systems. Fortunately, things have changed,
and now simulation models too can be used for optimizing systems.
Furthermore, they can be used to optimize complex, large-scale, and
stochastic systems for which it may be difficult to construct mathe-
matical models.

We note that in this book, we are keenly interested in being able to
optimize or control the stochastic system, so that it operates efficiently
and/or the net costs (revenues) of running the system are reduced
(increased). And we will use simulation as a tool to measure the
system’s performance (efficiency, costs, or revenues). However, in order
to achieve this goal, it is important for the reader to gain a thorough
understanding of the fundamental principles underlying discrete-event
simulation. In what follows, we have made a serious attempt to explain
the inner workings of a simulation model.
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4. Simulation Modeling
Determining the distributions of the governing random variables

is the first step towards modeling a stochastic system, regardless of
whether mathematical or simulation models are used. In mathematical
models, the pdfs (or cdfs) of the governing random variables are used in
the closed forms obtained. In simulation models, the pdfs (or cdfs) are
used to generate random numbers for the variables concerned. These
random numbers are then used to imitate, within a computer, the
behavior of the system. Imitating the behavior of a system essentially
means re-creating the events that occur in the real-world system that
is being imitated.

How does one determine the distribution of a random variable? For
this, usually, one has to actually collect data on the values of the
random variables from the real-life system. Then, from this data, it
is usually possible to fit a distribution to that data, which is called
distribution fitting. For a good discussion on distribution fitting, see
e.g., [188].

An important issue in stochastic analysis is related to the number
of random variables in the system. Generally, the larger the number
of governing random variables in a system the more complicated is its
analysis. This is especially true of analysis with mathematical models.
On the other hand, simulating a system with several governing ran-
dom variables has become a trivial task with modern-day simulation
packages.

Our main strategy in simulation is to re-create, within a computer
program, the events that take place in the real-life system. The re-
creation of events is based on using suitable values for the governing
random variables. For this, one needs a mechanism for generating
values of the governing random variables. We will first discuss how to
create random values for these variables and then discuss how to use
the random values to re-create the events.

4.1. Random Number Generation
Here, we will discuss some popular random number generation

schemes. We begin with a scheme for the uniform distribution be-
tween 0 and 1.

4.1.1 Uniform Distribution in (0, 1)

We must make it clear at the outset that the random numbers that
we will discuss here are artificial. “True” random numbers cannot be
generated by a computer, but must be generated by a human brain
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or obtained from a real system. Having said that, for all practical
purposes, artificial (or pseudo) random numbers generated by com-
puters are usually sufficient in simulations. Artificial random number
generation schemes are required to satisfy some statistical tests in or-
der to be acceptable. Needless to add, the schemes that we have at our
disposal today do pass these tests. We will discuss one such scheme.

The so-called linear congruential generator of random numbers [221]
is given by the following equation:

Ij+1 ← (aIj mod m), j = 0, 1, 2, . . . (2.1)

where a and m are positive integers. Equation (2.1) should be read as
follows: the remainder obtained after aIj is divided by m is denoted
by (aIj mod m). The equation above provides an iterative scheme in
which if one sets a positive value less than or equal to m for I0, the
sequence of values I1, I2, I3, . . . will produce integers between 0 and m,
where both 0 and m excluded.

To illustrate this idea, consider the following example. Let a = 2,
m = 20 and I0 = 12. (Please note this set of values for a and m are
used only for illustration and are not recommended in practice.) The
sequence that will be generated is:

(12, 4, 8, 16, 12, 4, 8, 16, 12, 4, 8, 16, . . .) (2.2)

This sequence has integers between 1 and m − 1 = 19, both 1 and
19 included. It cannot include 20 or an any integer greater than 20,
because each integer is obtained after a division by 20. Then, we can
conclude that in the sequence defined in (2.2), the terms

12, 4, 8, 16

form a set that has integers ranging from 0 to 20 (both 0 and 20
excluded).

By a suitable choice of a and m, it is possible to generate a set that
contains all the different integers in the range from 0 to m and each
integer appears only once in the set. The number of elements in such
a set will be m− 1. If each integer in this set is divided by m, a set of
numbers in the interval (0, 1) will be obtained. In general, if the ith
integer is denoted by xi and the ith random number is denoted by yi,
then

yi = xi/m.

Now, each number (yi) in this set will be equally likely, because each
associated integer (xi), between 0 and m, occurs once at some point
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in the original set. Then, for large values of m, this set of random
numbers from 0 to 1 will approximate a set of natural random numbers
from the uniform distribution. Recall that the pdf of the random
variable has the same value at every point in the uniform distribution.

The maximum number of integers that may be generated in this
process before it starts repeating itself is m − 1. Also, if I0, which is
known as the seed, equals 0, the sequence will only contain zeroes.
A suitable choice of a and m yields a set of m− 1 numbers such that
each integer between 0 and m occurs once at some point.

An important question is: Is it acceptable to use a sequence of ran-
dom numbers with repeating subsets, e.g., (12, 4, 8, 16, 12, 4, 8, 16, . . .)?
The answer is no because the numbers (12, 4, 8, 16) repeat and are
therefore deterministic. This is a serious problem. Now, unfortunately,
random numbers from the linear congruential generator must repeat
after a finite period. Therefore, the only way out of this is to generate
a sequence that has a sufficiently long period, such that we are finished
with using the sequence before it gets to repeats itself. Fortunately,
if m = 231 − 1, then with a suitable choice of a, it is possible to gen-
erate a sequence that has a period of m − 1. Thus, if the number of
random numbers needed is less than m− 1 = 2,147,483,646 (for most
applications, this is sufficient), we have a set of random numbers with
no repetitions.

Schemes with small periods produce erroneous results. Further-
more, repeating numbers are also not independent. In fact, repetitions
imply that the numbers stray far away from the uniform distribution
that they seek to approximate.

If the largest number in a computer’s memory is 231 − 1, then a
legal value for a that goes with m = 231 − 1 is 16,807. These values
of m and a cannot be implemented naively in the computer program.
The reason is easy to see. In the multiplication of a by Ij , where the
latter can be of the order of m, one runs into trouble as the product is
often larger than m, the largest number that the computer can store.
A clever trick from Schrage [266] helps us circumvent this difficulty.
Let [x/y] denote the integer part of the quotient obtained after dividing
x by y. Using Schrage’s approximate factorization, if

Q = a(Ij mod q)− r[Ij/q],

the random number generation scheme is given by

Ij+1 ←
{

Q if Q ≥ 0
Q+m otherwise.
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In the above, q and r are positive numbers. As is clear from this
approximate factorization, multiplication of a and Ij , which is required
in Eq. (2.1), is avoided. For a = 75 = 16,807 and m = 231 − 1, values
suggested for q and r are: q = 127,773 and r = 2,836. Other values can
be found in e.g., [221]. The period of this scheme is m− 1 = 231 − 2.
When the number of calls to this scheme becomes of the order of the
period, it starts repeating numbers and is not recommended. Two
sequences of different periods can be combined to give a sequence of a
longer period [189]. The reader is referred to [189] for further reading.
See [239] for useful computer programs.

The above-described scheme for generating random numbers from
the uniform distribution (0, 1) forms the work horse for random num-
ber generation in many commercial packages. It can be used for gen-
erating random numbers from any other distribution.

4.1.2 Inverse Function Method

In this subsection, we will discuss how random numbers for some
distributions can be generated. In particular, we will discuss the in-
verse function method.

The inverse function method relies on manipulating the cdf of a
function. This often requires the cdf to be “nice.” In other words, the
cdf should be of a form that can be manipulated. We will show how
this method works on the unform distribution (a, b) and the exponen-
tial distribution.

For any given value of x, the cdf has to assume a value between 0
and 1. Conversely, it may be said that when F (x) assumes a value
between 0 and 1, that particular value corresponds to some value of x.
Hence, one way to find a random number from a given distribution is to
consider a random value for F (x), say y, and then determine the value
of x that corresponds to y. Since values of F (x) lie between 0 and 1,
we can assume that y must come from the uniform distribution (0, 1).
Hence, our strategy in the inverse function method is to generate a
random number y from the uniform distribution (0,1), equate it to the
cdf, and then solve for x, which will denote the random number we
desire.

The cdf of the uniform distribution (a, b) is given by

F (x) =
x− a

b− a
.

Hence, using our strategy and solving for x, we have:

y = F (x) =
x− a

b− a
, i.e., x = a+ y(b− a).
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The cdf of the exponential distribution is given by:

F (x) = 1− e−λx, where λ > 0.

Then using the same strategy, we obtain:

F (x) = y, i.e., 1− e−λx = y, i.e., e−λx = 1− y.

Taking the natural logarithm of both sides, after some simplification,
we have:

x = − ln(1− y)

λ
.

Replacing (1−y) by y leads to x = − ln(y)
λ , which is also an acceptable

rule because y is also a number between 0 and 1.
The method described above is called the inverse function method

essentially because the cdf is manipulable and it is possible to solve for
x for a given value of F (x). Sometimes the closed form for the cdf may
not be manipulable directly, but it may be possible to develop a closed-
form approximation of the inverse of the cdf. Such approximations are
often acceptable in computer simulation, because even computing the
logarithm in the scheme described above for the exponential distribu-
tion requires an approximation. A remarkable example of this is the
closed form approximation of the inverse of the normal distribution’s
cdf, due to Schmeiser [263], which leads to the following formula for
generating a random number from the standard normal distribution:

x =
y0.135 − (1− y)0.135

0.1975
.

This provides one decimal-place accuracy for 0.0013499 ≤ y ≤ 0.998
6501 at the very least. From this, one can determine a random num-
ber for the normal distribution having a mean of μ and a standard
deviation of σ using: μ+ xσ.

Clearly, the inverse function method breaks down in the absence
of a manipulable closed form for the cdf or an approximation for the
inverse cdf. Then, one must use other methods, e.g., the acceptance-
rejection method, which is discussed in numerous textbooks [188].

We will now turn to an important mechanism lying at the heart
of discrete-event computer simulation. A clear understanding of it is
vitally essential.

4.2. Event Generation
The best way to explain how values for random variables can be used

to re-create events within a simulator is to use an example. We will
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use the single-server queuing example that has been discussed above.
In the single-server queue, there are two governing variables, both of
which are random:

1. The time between successive arrivals to the system: ta

2. The time taken by the server to give service to one customer: ts.

We now generate values for the elements of the two sequences. Since
we know the distributions, it is possible to generate values for them.
E.g.,

let the first 7 values for ta be: 10.1, 2.3, 1, 0.9, 3.5, 1.2, 6.4

and those for ts be: 0.1, 3.2, 1.19, 4.9, 1.1, 1.7, 1.5.

Now {t(n)}∞n=1 will denote the following sequence: {t(1), t(2), . . . , }.
These values, we will show below, will lead to re-enacting the real-life
queue.

If one observes the queue from real life and collects data for any of
these sequences from there, the values obtained may not necessarily
be identical to those shown above. Then, how will the above lead to a
re-enactment of the real-life system within our simulation model? The
answer is that the elements of this sequence belong to the distribution
of the random variable in the real-life system. In other words, the
above sequence could very well be a sequence from the real-life system.
We will discuss later why this is sufficient for our goals in simulation
modeling.

Now, from the two sequences, one can construct a sequence of the
events that occur. The events here are of two types:

1. A customer enters the system (arrival).

2. A customer is serviced and leaves the system (departure).

Our task of re-creating events boils down to the task of finding
the time of occurrence of each event. In the single-server queuing
system (see Fig. 2.2), when a customer arrives to find that the server
is idle, he or she directly goes to the server without waiting. An
arriving customer who finds that the server is busy providing service
to someone becomes either the first person in the queue or joins the
queue’s end. The arrivals in this case, we will assume, occur regardless
of the number of people waiting in the queue.

To analyze the behavior of our system, the first task is to determine
the clock time of each event as it occurs. This task, as stated above,
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lies at the heart of stochastic simulation. If one can accomplish this
task, various aspects of the system can be analyzed.

Before delving into the details of how we can accomplish this task,
we need a clear understanding of what the elements of the sequences
{ta(n)}∞n=1 and {ts(n)}∞n=1 stand for. The first element in each se-
quence is associated with the first customer to arrive in the system,
the second is associated with the second customer, and so on. Keep-
ing this in mind, note that in the queuing example, there are two
types of events: arrivals and departures. Our task in each case can be
accomplished as described below:

1. For arrivals: The clock time of any arrival in the system will be
equal (in this case) to (1) the clock time of the previous arrival
plus (2) the inter-arrival time of the current arrival. (Remember
the second quantity is easy to find. The inter-arrival time of the
kth arrival is ta(k).)

2. For departures:

a. If an arriving customer finds that the server is idle, the next
departure will occur at a clock time equal to the arrival clock
time of the arriving customer plus the service time of the arriv-
ing customer. (Again, the second quantity is easy to find. The
service time of the kth arrival is ts(k).)

b. If an arriving customer finds that the server is busy, the next
departure will occur at a time equal to (1) the clock time of the
previous departure plus (2) the service time of the customer
currently being served.

We now illustrate these ideas with the values generated for the se-
quence. See Fig. 2.2. The first arrival takes place at clock time of 10.1,
the second at clock time of 10.1 + 2.3 = 12.4, the third at clock time
of 12.4 + 1 = 13.4, the fourth at clock time of 13.4 + 0.9 = 14.3, the
fifth at a clock time of 14.3 + 3.5 = 17.8, the sixth at a clock time of
17.8 + 1.2 = 19, and the seventh at a clock time of 19 + 6.4 = 25.4.

When the first arrival occurs, there is nobody in the queue and hence
the first departure occurs at a clock time of 10.1+ 0.1 (service time of
the first customer) = 10.2. Now, from the clock time of 10.2 till the
clock strikes 12.4, when the second arrival occurs, the server is idle.
So when the second arrival occurs, there is nobody in the queue and
hence the time of the second departure is 12.4+3.2 (the service time of
the second arrival)= 15.6. The third arrival takes place at a clock time
of 13.4, but the second customer departs much later at a clock time of
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Figure 2.2. The event clock showing arrivals and departures

15.6. Hence the second customer must wait in the queue till 15.6 when
he/she joins service. Hence the third departure will occur at a clock
time of 15.6 plus the service time of the third customer, which is 1.19.
Therefore, the departure of the third customer will occur at a clock
time of 15.6 + 1.19 = 16.79. The fourth customer arrives at a clock
time of 14.3 but the third departs only at 16.79. It is clear that the
fourth customer will depart at a clock time of 16.79 + 4.9 = 21.69. In
this way, we can find that the fifth departure will occur at a clock time
of 22.79 and the sixth at a clock time of 24.49. The seventh arrival
occurs at a clock time of 25.4, which is after the sixth customer has
departed. Hence when the seventh customer enters the system, there
is nobody in the queue, and the seventh customer departs some time
after the clock time of 25.4. We will analyze the system until the time
when the clock strikes 25.4.

Now, from the sequence of events constructed, we can collect data
related to system parameters of interest. First consider server utiliza-
tion. From the observations above, it is clear that the server was idle
from a clock time of 0 until the clock struck 10.1, i.e., for a time in-
terval of 10.1. Then again it was idle from the time 10.2 (the clock
time of the first departure) until the second arrival at a clock time of
12.4, i.e., for 2.2 time units. Finally, it was idle from the time 24.49
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(the clock time of the sixth departure) until the seventh arrival at a
clock time of 25.4, i.e., for 0.91 time units. Thus, based on our ob-
servations, we can state that the system was idle for a total time of
10.1 + 2.2 + 0.91 = 13.21 out of the total time of 25.4 time units for
which we observed the system. Then, the server utilization (fraction
of time for which the server was busy) is clearly: 1− 13.21

25.4 = 0.4799.
If one were to create very long sequences for the inter-arrival times

and the service times, one could then obtain estimates of the utilization
of the server over a long run. Of course, this kind of a task should
be left to the computer, but the point is that computer programs are
thus able to collect estimates of parameters measured over a long run.

It should now be clear to the reader that although the sequences
generated may not be identical to sequences obtained from actual ob-
servation of the original system, what we are really interested in are the
estimates of system parameters, e.g., long-run utilization. As long as
the sequence of values for the governing random variables are generated
from the correct distributions, reliable estimates of these parameters
can be obtained. For instance, an estimate like long-run utilization
will approach a constant as the simulation horizon (25.4 time units in
our example) approaches infinity.

Many other parameters for the queuing system can also be measured
similarly. Let E[W ] denote the average customer waiting time in the
queue. Intuitively, it follows that the average waiting time can be
found by summing the waiting times of a large number (read infinity)
of customers and dividing the sum by the number of customers. Thus
if wi denotes the queue waiting time of the ith customer, the long-run
average waiting time should be

E[W ] = lim
n→∞

∑n
i=1wi

n
. (2.3)

Similarly, the long-run average number in the queue can be defined as:

E[Q] = lim
T→∞

∫ T
0 Q(t)dt

T
, (2.4)

where Q(t) denotes the number in the queue at time t. Now, to use
these definitions, in practice, one must treat ∞ as a large number.

For estimating the long-run average waiting time, we can use the
following formula:

W̃ =

∑n
i=1wi

n
, (2.5)
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where W̃ is essentially the sample mean from n samples. In the exam-
ple of Fig. 2.2,

w1=w2=0, w3=15.6− 13.4, w4 = 16.79− 14.3, w5 = 21.69− 17.8, and

w6 = 22.79− 19.0, i.e., W̃ =
0 + 0 + 2.2 + 2.49 + 3.89 + 3.79

6
= 2.06

For estimating the average number in the queue, one uses a similar
mechanism. The formula for the estimate is:

Q̃ =

∑n
i=1 tiQi

T
, (2.6)

where ti is the time duration for which there were Qi customers in the
queue, and T =

∑n
i=1 ti is the amount of time for which simulation is

conducted. Again, Q̃ is a sample mean.

4.3. Independence of Samples Collected
Often, in simulation analysis, one runs the simulation a number

of times, using a different set of random numbers in each run. By
changing the seed, defined above, one can generate a new set of ran-
dom numbers. Each run of the simulation with a given set of random
numbers is called a replication. One replication yields only one in-
dependent sample for the quantity (or quantities) we are trying to
estimate. The reason for this independence is that each replication
runs with a unique set of random numbers, and hence, an estimate
from one replication is independent of that from another. On the
other hand, samples from within the same replication may depend on
each other, and thus they are not independent. Independent estimates
provide us with a mechanism to estimate the true mean (or variance)
of the parameter of interest. Independent estimates also allow us to
construct confidence intervals on the estimates of means obtained from
simulations. The need for independence follows from the strong law of
large numbers that we discuss below.

In practice, one estimates sample means from numerous replications,
and the means from all the replications are averaged to obtain a reliable
estimate of the true mean. This process of estimating the mean from
several replications is called the independent replications method. We
can generalize the concept as follows. Let W̃i denote the estimate of
the waiting time from n samples from the ith replication. Then, a
good estimate of the true mean of the waiting time from k replications
can be found from the following:
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E[W ] =

∑k
i=1 W̃i

k
,

provided k is large enough.
Averaging over many independent estimates (obtained from many

replications), therefore, provides a good estimate for the true mean of
the parameter we are interested in. However, doing multiple replica-
tions is not the only way to generate independent samples. There are
other methods, e.g., the batch means method, which uses one long
replication. The batch means method is a very intelligent method (see
Schmeiser [264]) that divides the output data from a long replication
into a small number of large batches, after deletion of some data. The
means of these batches, it can be shown, can be treated as independent
samples. These samples are then used to estimate the mean. We now
present the mathematical result that allows us to perform statistical
computations from means.

Theorem 2.1 (The Strong Law of Large Numbers) Let X1, X2, . . .
be a sequence (a set with infinitely many elements) of independent
random variables having a common distribution with mean E(X) = μ.
Then, with probability 1,

lim
k→∞

X1 +X2 +X3 + · · ·+Xk

k
= μ.

In the above theorem, X1, X2, X3, . . . can be viewed as values of the
same random variable from a given distribution. Essentially, what
the theorem implies is that if we draw k independent samples of the
random variable, then the sample mean, i.e., X1+X2+X3+···+Xk

k , will
tend to the actual mean of the random variable as k becomes very
large.

This is an important result used heavily in simulations and in many
other settings where samples are obtained from populations to make
predictions about the population. While what this law states may be
intuitively obvious, what one needs to remember is that the samples
drawn have to be independent. Its proof can be found in [252] under
some assumptions on the second moment of the random variable.

It should now be clear to the reader why the means obtained
from a replication or a batch must be used to estimate the mean in
simulations. The independence of the estimates obtained in simula-
tion (either from replications or batches) also allows us to determine
confidence intervals (of the mean) and prediction intervals of the
parameter of interest. Estimating means, variances, and confidence
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and prediction intervals is an important topic that the reader should
become familiar with.

5. Concluding Remarks
Simulation of dynamic systems using random numbers was the main

topic covered in this chapter. However, this book is not about the
methodology of simulation, and hence our discussion was not com-
prehensive. Nevertheless, it is an important topic in the context of
simulation-based optimization, and the reader is strongly urged to get
a clear understanding of it. A detailed discussion on writing simulation
programs in C can be found in [234, 188]. For an in-depth discussion
on tests for random numbers, see Knuth [177].

Historical Remarks: The earliest reference to generating random numbers can

be traced to George Louis Leclec (later called Buffon) in 1733. It was in the 1940s,

however, that “Monte Carlo simulation” first became known, and it was originally

used to describe random number generation from a distribution. However, the

name is now used loosely to refer to any simulation (including discrete-event) that

uses random numbers. The advent of computers during the 1960s led to the birth of

computer simulation. The power of computers has increased dramatically in the last

few decades, enabling it to play a major role in analyzing stochastic systems. The

fundamental contributions in simulation were made by pioneers in the industrial

engineering community, who worked tirelessly through the decades allowing it to

develop into a reliable and sophisticated science that it is today [14].



Chapter 3

SIMULATION-BASED

OPTIMIZATION: AN OVERVIEW

1. Chapter Overview
The purpose of this short chapter is to discuss the role played by

computer simulation in simulation-based optimization. Simulation-
based optimization revolves around methods that require the max-
imization (or minimization) of the net rewards (or costs) obtained
from a random system. We will be concerned with two types of opti-
mization problems: (1) parametric optimization (also called static
optimization) and (2) control optimization (also called dynamic op-
timization).

2. Parametric Optimization
Parametric optimization is the problem of finding the values of deci-

sion variables (parameters) that maximize or minimize some function
of the decision variables. In general, we can express this problem as:

Maximize or Minimize f(x(1), x(2), . . . , x(N)), where the N deci-
sion variables are: x(1), x(2), . . ., and x(N). It is also possible that
there are some constraints on the values of the decision variables.

In the above, f(.) denotes a function of the decision variables. It is
generally referred to as the objective function. It also goes by other
names, e.g., the performance metric (measure), the cost function, the
loss function, and the penalty function. Now, consider the following
example.
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Example 1. Minimize f(x, y) = (x− 2)2 + (y − 4)2,
where x and y take values in the interval (−∞,∞).

Using calculus, it is not hard to show that the optimal point (x∗, y∗)
is (2, 4). One calculates the partial derivative of the function with
respect to x, and then sets it to 0:

∂f(x, y)

∂x
= 0, i.e., x = 2.

Similarly, y = 4. Finding the optimal point in this case is straightfor-
ward, because the objective function’s closed form is known. Although
the optimization process may not always be this straightforward, the
availability of the closed form often simplifies the optimization process.

We now turn our attention to an objective function with stochastic
elements, i.e., the objective function involves either the probability
mass or density function (pmf or pdf ) or the cumulative distribution
function (cdf ) of one or more random variables.

Example 2.

a. Minimize

f(x(1), x(2)) = 0.2[x(1)− 3]2 + 0.8[x(2)− 5]2.

b. Minimize

f(x) =

∫ ∞

−∞
8[x− 5]−0.3g(x)dx

Assume the objective function in each case to be the expected value
of some random variable, which is associated with a random system.
Let us further assume that 0.2 and 0.8 are the elements of the pmf
(case a) of the random variable and that g is the pdf (case b) of the
random variable.

Example 2 is a non-linear program in which the closed form of the
objective function is known. Hence, it is likely that it can be solved
with standard non-linear programming techniques. Now, consider the
following scenario in which it is difficult to obtain the elements of the
pmf or pdf in the objective function given above, but its value can
be estimated via simulation. In other words, the following holds: (i)
The closed form of f(.) is not known. (ii) It may be difficult or too
time-consuming to obtain the closed form. It is in this scenario that
simulation may be very helpful in optimization.

Why avoid the closed form? The main reason is that in many
real-world stochastic problems, the objective function is too complex
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to be obtained in its closed form. Then, it may be possible to employ
a theoretical model (e.g., renewal theory, Brownian motion, and ex-
act or approximate Markov chains) to obtain an approximate closed
form. In the process of generating a theoretical model, however, it
oftentimes becomes necessary to make simplifying assumptions about
the system, e.g., some system random variable is exponentially dis-
tributed, to keep the model tractable. The model generated may then
turn out to be too simplistic for use in the real world. Clearly, then, if
optimization could be performed without obtaining the closed form, it
would become possible to make realistic assumptions about the system
and still optimize it.

Fortunately, optimization methods exist that only need the numeric
value of the function at any given point, i.e., they do not require the
closed form. They are referred to as numerical methods because they
depend only on the numeric value of the function at any given point.
This is in contrast to analytic methods that need the closed form.
Examples of numerical methods are the simplex method of Nelder and
Mead [216], finite difference gradient descent, and the simultaneous
perturbation method [280].

The advantages of numerical methods lie in their ability to perform
optimization without the closed form. Thus, they can optimize the
function even when the closed form is unknown, but some mechanism
to estimate the function value is available. Consequently, numeri-
cal methods form the natural choice for solving complex stochastic
optimization problems, where the objective function’s closed form is
unknown, but the function can be evaluated numerically.

Simulation’s role: It is often the case that a stochastic system can
be easily simulated, whereas a closed-form mathematical model for
the related objective function is hard to find. From the simulator,
with some effort, the objective function’s value can also be estimated.
Hence simulation in combination with numerical optimization methods
may prove to be an effective tool for attacking difficult optimization
problems. The first part of this book focusses on numerical techniques
that can be combined with simulation.

The role played by simulation can be explained as follows. In many
problems, the objective function is an expected (mean) value of a ran-
dom variable X. Then, simulation can be used to generate samples
of this random variable, X1, X2, . . . , Xn, at any given point in the so-
lution space. These samples can be used to find an estimate of the
objective function at the given point using
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E(X) 	 X1 +X2 + · · · , Xn

n
.

The above follows from the strong law of large numbers (see Theorem
2.1), provided the samples are independent and n is sufficiently large.
This “estimate” plays the role of the objective function value.

Combining simulation with numerical parametric optimization
methods is easier said than done. There are many reasons for this.
First, the estimate of the objective function is not perfect and con-
tains “noise.” Fortunately, the effect of noise can often be minimized.
Second, parametric optimization methods that require a very large
number of function evaluations to generate a good solution may not
be of much use in practice, since even one function evaluation via
simulation usually takes a considerable amount of computer time (one
function evaluation in turn requires several samples, i.e., replications
or batches).

We would like to reiterate that the role simulation can play in para-
metric optimization is limited to estimating the function value. Sim-
ulation on its own is not an optimization technique. But, as stated
above, combining simulation with optimization is possible in many
cases, and this opens an avenue along which many real-life systems
may be optimized. In subsequent chapters, we will deal with a number
of techniques that can be combined with simulation to obtain solutions
in a reasonable amount of computer time.

3. Control Optimization
The problem of control optimization is different than the problem of

parametric optimization in many respects. Hence, considerable work
in operations research has occurred in developing specialized techniques
for control optimization.

A system is defined as a collection of entities (such as people and
machines) that interact with each other. A dynamic system is one
in which the system changes in some way from time to time. To
detect changes in the system, we describe the system using a numerical
attribute called state. Then, a change in the value of the attribute can
be interpreted as a change in the system.

A stochastic system is a dynamic system in which the state changes
randomly. For example, consider a queue that builds up in front of
a counter in a supermarket. Let the state of the system be denoted
by the number of people waiting in the queue. Then, clearly, the
queue is stochastic system because the number of people in the queue
fluctuates randomly. The randomness in the queuing system could be
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due to random inter-arrival times of customers or the random service
times of the servers (the service providers at the counters) or both.

The science of stochastic control optimization deals with methods
that can control a stochastic system such that desirable behavior,
e.g., improved efficiencies and reduced costs, is obtained. The field
of stochastic control optimization in discrete-event systems covers sev-
eral problems in a subset of which the system’s behavior is governed
by a Markov chain. In this book, we will focus on this subset.

In general, in any control optimization problem, the goal is to move
the system along a desirable path, i.e., to move it along a desirable tra-
jectory of states. In most states, one has to select from more than one
action. The actions in each state, essentially, dictate the trajectory
of states followed by the system. The problem of control optimiza-
tion, hence, revolves around selecting the right actions in all the states
visited by the system. The performance metric is a function of the
actions selected in all the states. Let S denote the set of states in the
system and |S| denote the number of states in the system. In general,
the control optimization problem can be mathematically described as:

Maximize or Minimize f(μ(1), μ(2), . . . , μ(|S|)),

where μ(i) denotes the action selected in state i and f(.) denotes the
objective function. In large problems, |S| may be of the order of
thousands or millions.

Dynamic programming is a well-known and efficient technique for
solving many control optimization problems encountered in discrete-
event systems governed by Markov chains. It requires the computation
of a so-called value function for every state.

Simulation’s role: It turns out that every element of the value func-
tion of dynamic programming can be expressed as an expectation of a
random variable. Also, fortunately, it is the case that simulation can
be used to generate samples of this random variable. Let us denote
the random variable by X and its ith sample by Xi. Then, using the
strong law of large numbers (see Theorem 2.1), the value function at
each state can be estimated by using:

E(X) 	 X1 +X2 + . . .+Xn

n
,

provided n is sufficiently large and the samples are independent. As
stated above, simulation can be used in conjunction with dynamic
programming to generate a large number of independent samples of
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the value function. It is important to note that, like in parametric
optimization, the role of simulation here is limited to generating sam-
ples of the value function. For optimization purposes, we need to turn
to methods that are specifically derived for control optimization, e.g.,
dynamic programming.

There are many advantages to using simulation in combination with
dynamic programming. A major drawback of dynamic programming
is that it requires the so-called transition probabilities of the system.
These probabilities are often hard to obtain for complex and large-scale
systems. Theoretically, these transition probabilities can be generated
from the distributions of the governing random variables of the system.
However, in many complex problems with numerous random variables,
this may prove to be a difficult task. Hence, a computational challenge
created by real-world problems is to evaluate the value function with-
out having to compute the transition functions. It is precisely here
that simulation can play a useful role.

One way to use simulation is to first estimate the transition proba-
bilities in a simulator, and then employ classical dynamic programming
using the transition probabilities. However, this is usually an ineffi-
cient approach. In a method called reinforcement learning, simulation
is used to generate samples of the value function, which are then aver-
aged to obtain the expected value of the value function. This bypasses
the need to compute the transition probabilities. Chapters on control
optimization in this book focus on this approach.

Compared to finding the transition probabilities of a complex
stochastic system, simulating the same system is relatively “easy.”
As such, a combination of simulation and dynamic programming can
help us solve problems whose transition probabilities are hard to find.
These problems were considered intractable in the past, before the
advent of reinforcement learning.

A significant volume of the literature in operations research is de-
voted to analytical methods for finding exact expressions of transition
probabilities underlying complex random systems. Expressions for the
transition probabilities can get mathematically involved with multiple
integrals and complicated algebra (see e.g., [74]). Furthermore, to keep
the mathematics tractable, sometimes these expressions are obtained
only after making simplifying, but restrictive, assumptions about the
system. Since these transition probabilities are not needed in rein-
forcement learning, many of these assumptions can be easily relaxed.
This is a main strength of reinforcement learning.
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Reinforcement learning can also be elegantly integrated with the so-
called function approximation techniques, e.g., regression and neural
networks, that allow us to store the value function of hundreds of
thousands of states using a few scalars. This addresses the issue of
large dimensionality that plagues many real-world systems with large-
scale state spaces.

In conclusion, reinforcement learning, which works within simula-
tors, provides us with a mechanism to solve complex and large-scale
control problems governed by the Markov property without generat-
ing their transition probabilities. Thus, via reinforcement learning, one
has the ability to solve complex problems for which it is difficult, if not
impossible, to obtain the transition probabilities. Also in conjunction
with function approximators, one can solve large-scale problems.

4. Concluding Remarks
The goal of this chapter was to introduce the reader to two types of

problems that will be solved in this book, namely parametric optimiza-
tion and control optimization (of systems with the Markov property).
We remind the reader that parametric optimization is also popularly
known as static optimization, while control optimization is popularly
known as dynamic optimization.

The book is not written to be a comprehensive source on the topic
of “simulation-based optimization.” Rather, our treatment is aimed at
providing an introduction to this topic with a focus on some important
breakthroughs in this area. In particular, our treatment of parametric
optimization is devoted to model-free methods that do not require any
properties of the objective function’s closed form. In case of control
optimization, we only cover problems related to Markov chain governed
systems whose transition models are hard to obtain.



Chapter 4

PARAMETRIC OPTIMIZATION:

RESPONSE SURFACES AND NEURAL

NETWORKS

1. Chapter Overview
This chapter will discuss one of the oldest simulation-based methods

of parametric optimization, namely, the response surface method
(RSM). While RSM is admittedly primitive for the purposes of sim-
ulation optimization, it is still a very robust technique that is often
used when other methods fail. It hinges on a rather simple idea,
which is to obtain an approximate form of the objective function by
simulating the system at a finite number of points carefully sampled
from the function space. Traditionally, RSM has used regression
over the sampled points to find an approximate form of the objective
function.

We will also discuss a more powerful alternative to regression,
namely, neural networks in this chapter. Our analysis of neural net-
works will concentrate on exploring its roots, which lie in the principles
of steepest gradient descent (or steepest descent for short) and least
square error minimization, and on its use in simulation optimization.

We will first discuss the theory of regression-based traditional
response surfaces. Thereafter, we will present a response surface tech-
nique that uses neural networks that call neuro-response surfaces.

2. RSM: An Overview
The problem considered in this chapter is the “parametric-

optimization problem” discussed in Chap. 3. For the sake of con-
venience, we reproduce the problem statement here.
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Maximize f(�x), subject to some linear or non-linear constraints
involving the vector

�x = (x(1), x(2), . . . , x(N)).

Here f(.) denotes the objective function, which may be a linear or non-
linear function. The elements of vector, �x, which are {x(1), x(2), . . . ,
x(N)}, are the decision variables. In this book, our interest lies in an
objective function with the following traits:

1. It is difficult to obtain an expression for its closed form.

2. The closed form contains elements of pdfs or cdfs, and its value can
be estimated via simulation.

As discussed previously in Chap. 3, usually, the value of such
functions can be estimated at any given point using simulation. Hence,
not surprisingly, simulation can prove to be a useful tool for optimiz-
ing such functions—via optimization techniques that rely solely on
function evaluation. Although, no attempt is made to find the exact
closed form in RSM (we will try to do without the exact closed form
throughout this entire book), we will make a guess of the structure
of the closed form. This guess is usually called the metamodel.
The metamodel is a term that distinguishes the guessed form from
the term “closed form.”

We explain this idea with an example. If we assume the structure of
the objective function to be linear in one independent variable—x, the
decision variable, the metamodel assumes the equation of a straight
line, which is:

y = a+ bx.

Here a and b are unknowns that define the metamodel. We will try to
estimate their values using the available data related to the function.
This is essentially what RSM is all about.

The strategy underlying RSM consists of the following three steps:

1. Select a finite number of points, and evaluate the function at a
finite number of points.

2. Assume a metamodel for the objective function, and use regres-
sion (or some other approach) to fit the metamodel equation to the
data; the data is comprised of the selected points and their function
values.

Using statistical tests, determine whether the assumed metamodel
is acceptable.
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3. If the assumed metamodel is acceptable, use it to determine the
optimal point; otherwise, go back to the second step.

Remark: We hope that once we estimate the values of the unknowns
in the metamodel (e.g., a and b in the straight line), what we have
in the metamodel is a good approximation of the actual closed form
(which is unknown).

Let us, next, look at some more examples of metamodels. If the
function is linear with two decision variables (x, y), the metamodel
assumes the equation of a plane: z = ax+ by + c.

The function could be non-linear (a very large number of real-world
problems tend to have non-linear objective functions) with one decision
variable, and the metamodel could be: y = a + bx2, or it could be:
y = a + bx + cx2, and so on. Clearly, there exist an infinite number
of metamodels for a given non-linear objective function, and therefore
when the closed form is unknown, the structure of the metamodel
is also unknown. Fortunately, there are statistical tests that can be
used to determine whether an assumed metamodel is acceptable. One
should always use a statistical test to determine if the metamodel used
is acceptable.

However, notice that the third step in the RSM strategy may reveal
that the metamodel assumed in the second step was incorrect. When
this happens, one has to guess another metamodel, based on the
knowledge of the function, and get back to work! This means that
the method may need several iterations if the third step keeps showing
that the assumed metamodel is, in fact, not acceptable.

Now, this does not sound very exciting, but it turns out that in
practice, very often, we can make pretty good guesses that can closely
approximate the actual closed form. Moreover, oftentimes, there are
multiple metamodels that are acceptable, and it is sufficient to discover
one of them. In Sect. 4, we will develop a neural network based response
surface method that does not need the knowledge of the metamodel.

3. RSM: Details
As stated above, RSM consists of several steps. In what follows, we

will discuss each step in some detail.

3.1. Sampling
Sampling of points (data pieces) from the function space is an

issue that has been studied by statisticians for several years [213].
Proper sampling of the function space requires a good design of
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experiment. In simulation optimization, the experiment has to be
designed properly. The reason is obtaining the function value, at even
one point, can be time consuming. As a consequence, one must make
an economic choice of the number of points to be sampled.

A rough guideline for sampling is as follows: Divide the solution
space into a finite number of zones, and select the corner points
(or points very close to the corner points) of each zone as samples.
Additional samples may be collected from the central points in each
zone. Fishing for other points by sampling uniformly in between the
corner points is a frequently used strategy when nothing is known
about the function. Tutorials on designing the experiment for an
RSM-based experiment in simulation and optimization can be found
in [281, 172, 161]. The reader is also referred to an excellent article
by Sanchez [261] for further reading.

3.2. Function Fitting
Regression is usually used to fit a function when the coordinates and

function values of some points are known. To use standard regression,
one must assume the metamodel of the function to be known. We will
begin with the simplest possible example, and then move on to more
complicated scenarios.

3.2.1 Fitting a Straight Line

The problem of fitting a straight line belongs to �2 space. In other
words, the data related to the linear function in one variable is available
in the form of (x, y) pairs (or data pieces), where y is the objective
function value and x is the decision variable. The metamodel is hence:

y = a+ bx, (4.1)

with unknown a and b. See Fig. 4.1.
Regression is one of the many ways available to fit a straight line

to given (x, y) pairs for obtaining the values of a and b. Some other
methods are: Chebyshev fitting, minimax error fitting, absolute mean
error fitting, etc. We will not pursue these topics here; we will limit
our discussion to regression.

Regression, in comparison to most of the other methods mentioned
above, happens to have a low computational burden. It is important to
understand the mechanism of regression to appreciate the philosophy
underlying RSM and neural networks.

Regression minimizes the the total squared error between the actual
data and the data predictions from the model (metamodel equation)
assumed. For instance, we assumed above that the model is linear.
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Figure 4.1. Fitting a straight line

Then using regression, we can come up with values for a and b to
predict the value of y for any given value of x. Clearly, the predicted
value may differ from the actual value unless the data is perfectly
linear. In regression, our objective is to find those values of a and b
that minimize the sum of the square of these differences. Let us state
this in more formal terms.

Let (xp, yp), p = 1, 2, . . . , n represent n data-pairs available to us.
The xp values are selected by the analyst from the optimization space
and the corresponding yp values are the objective function values
obtained from simulation. Let us define ep as the error term for the
pth data piece. It is the difference between the actual value of the ob-
jective function, which is yp, and the predicted value, which is a+ bxp.
Hence

ep = yp − (a+ bxp). (4.2)

As stated above, the goal in regression is to find the values of a and
b that minimize the sum of the squares of the ep terms. We will denote
this sum by SSE. In other words, the goal is to

minimize SSE ≡
∑n

p=1(ep)
2.

Now, using Eq. (4.2), we have that

SSE ≡
n∑

p=1

(ep)
2 =

n∑

p=1

(yp − a− bxp)
2.
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To find a value of a that minimizes SSE, we can find the partial
derivative of SSE with respect to a and then equate it to 0, as shown
next.

∂

∂a
(SSE) = 0.

Calculating the partial derivative, the above becomes:

2
n∑

p=1

(yp − a− bxp)(−1) = 0, which simplifies to:

na+ b
n∑

p=1

xp =
n∑

p=1

yp, noting that
n∑

p=1

1 = n. (4.3)

Like in the preceding operations, to find the value of b that minimizes
SSE, we can calculate the partial derivative with respect to b and then
equate it to 0. Thus

∂

∂b
(SSE) = 0 which implies that: 2

n∑

p=1

(yp − a− bxp)(−xp) = 0,

which simplifies to a
n∑

p=1

xp + b
n∑

p=1

x2p =
n∑

p=1

xpyp. (4.4)

Equations (4.3) and (4.4) can be solved simultaneously to find the
values of a and b. We illustrate the use of these two equations with an
example.

Example A. Consider the four pieces of data (xp, yp) shown below.
The goal is to fit a straight line. The values of xp have been chosen by
the analyst and the values of yp have been obtained from simulation
with decision variable xp. The values are

(50, 12), (70, 15), (100, 21), and (120, 25).

Then
∑4

p=1 xp = 340,
∑4

p=1 yp = 73,
∑4

p=1 xpyp = 6,750,
∑4

p=1 x
2
p =

31,800. Then using Eqs. (4.3) and (4.4), we have:

4a+ 340b = 73 and 340a+ 31,800b = 6,750

which when solved yield a = 2.2759, and b = 0.1879. Thus the meta-
model is: y = 2.2759 + 0.1879x.
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3.2.2 Fitting Planes and Hyper-Planes

When we have data from �N spaces, where N ≥ 4, it is not possible
to visualize what a linear form (or any form for that matter) will look
like. When N = 3, a linear form is a plane:

φ = a+ bx+ cy. (4.5)

A linear form in a space where N ≥ 4 is called a hyper-plane. When
we have three or more decision variables and a linear metamodel to
tackle, it is the hyper-plane that needs to be fitted. An example of a
hyper-plane with three decision variables is: φ = a+ bx+ cy + dz.

In a manner analogous to that shown in the previous section, the
following four equation can be derived.

na+ b

n∑

p=1

xp + c
n∑

p=1

yp + d
n∑

p=1

zp =
n∑

p=1

φp,

a
n∑

p=1

xp + b
n∑

p=1

x2p + c
n∑

p=1

xpyp + d
n∑

p=1

xpzp =
n∑

p=1

xpφp,

a
n∑

p=1

yp + b
n∑

p=1

ypxp + c
n∑

p=1

y2p + d
n∑

p=1

ypzp =
n∑

p=1

ypφp,

and

a
n∑

p=1

zp + b
n∑

p=1

zpxp + c
n∑

p=1

zpyp + d
n∑

p=1

z2p =
n∑

p=1

zpφp.

Here, as before, n denotes the number of data-pieces. In general, a
hyper-plane with N decision variables needs (N + 1) linear equations
since it is defined by (N + 1) unknowns. The plane with N = 3 is a
special case of the hyper-plane.

3.2.3 Piecewise Regression

Sometimes, the objective function is non-linear, but we wish to
approximate it by a piecewise linear function. A piecewise linear func-
tion is not a continuous function; rather, it is defined by a unique
linear function in each domain (piece). See Fig. 4.2. When we have
a non-linear function of this kind, we divide the function space into
finite areas or volumes or hyper-spaces (depending on the dimension
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of the space), and then fit, respectively, a straight line, a plane, or a
hyper-plane in each. For example, consider a function, in �2 space,
defined by:

y = 6x+ 4 when 0 ≤ x ≤ 4,

y = 2x+ 20 when 4 < x ≤ 7,

y = −2x+ 48 when 7 < x ≤ 10, and

y = −11x+ 138 when x > 10.
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Figure 4.2. Fitting a piecewise linear function

Fitting this function would require the obtaining of a straight-line fit
in each of the four zones: (0, 4], (4, 7], (7, 10], and (10,∞). In piecewise
regression, one can also use non-linear pieces such as quadratics or
higher-order non-linear forms. (Please note that Fig. 4.2 represents a
similar function.)

3.2.4 Fitting Non-linear Forms

In this section, we address the issue of how to tackle a non-linear
form using regression. Regardless of the form of the objective function,
our mechanism is analogous to what we have seen above.

Consider the function given by:

y = a+ bx+ cx2. (4.6)

This form can be expressed in the form of a plane

y = a+ bx+ cz, by setting: z = x2.
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With this replacement, the equations of the plane can be used for
the metamodel. See Fig. 4.3 for a non-linear form with one indepen-
dent variable and Fig. 4.4 for a non-linear form with two independent
variables. Other non-linear forms can be similarly obtained by using
the mechanism of regression explained in the case of a straight line or
plane.
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Figure 4.3. Fitting a non-linear equation with one independent variable
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3.3. How Good Is the Guessed Metamodel?
An important issue in RSM is to determine whether the guessed

metamodel is indeed a good fit. Testing whether the fit is reliable
has deep statistical ramifications. We will not discuss these issues in
detail here but refer the reader to any standard text on statistics, e.g.
[209]. Here, we will restrict ourselves to enumerating some standard
concepts.

A parameter that is often used in a preliminary test for the
goodness of a fit in regression goes by the name: coefficient of
determination. Its use may be extended to neural network models.
It is defined as follows:

r2 = 1− (SSE/SST ),

where SST is given by: SST =
n∑

p=1

(yp − ȳ)2,

and SSE is defined as: SSE =
n∑

p=1

(yp − ypredictedp )2.

In the above, ȳ is the mean of the yp terms and ypredictedp is the value
predicted by the model for the pth data piece. We have defined SSE
during the discussion on fitting straight lines and planes. Note that
those definitions were special cases of the definition given here.

Now, r2, denotes the proportion of variation in the data that is
explained by the metamodel assumed in calculating SSE. Hence a
large value of r2 (i.e., a value close to 1) usually indicates that the
metamodel assumed is a good fit. In a very rough sense, the reliability
of the r2 parameter increases with the value of n. However, the r2

parameter can be misleading if there are several variables and hence
should be used cautiously. The reader is also refereed to [173] for
further reading on this topic.

3.4. Optimization with a Metamodel
Once a satisfactory metamodel is obtained, it is usually easy to

find the optimal point on the metamodel. With most metamodels one
can use calculus to find the minima or maxima. When a piecewise
linear form is used, usually the endpoints of each piece are candidates
for minima or maxima. The following example should serve as an
illustration.

Example B. Consider a function that has been fitted with four lin-
ear functions. The function is to be maximized. The metamodel is
given by:
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y = 5x+ 6 when 0 ≤ x ≤ 5,

y = 3x+ 16 when 5 < x ≤ 10,

y = −4x+ 86 when 10 < x ≤ 12, and

y = −3x+ 74 when x > 12.

It is not hard to see that the peak is at x = 10 around which the
steepest (slope) changes its sign. Thus x = 10 is the optimal point.

The approach used above is quite crude. It can be made more
sophisticated by adding a few stages to it. The response surface
method is often used in a bunch of stages to make it more effective.
One first uses a rough metamodel (possibly piecewise linear) to get
a general idea of the region in which the optimal point(s) may lie
(as shown above via Example B). Then one zeroes in on that region
and uses a more non-linear metamodel in that region. In Example B,
the optimal point is likely to lie in the region close to x = 10. One
can now take the next step, which is to use a non-linear metamodel
around 10. This form can then be used to find a more precise location
of the optimum. It makes a lot of sense to use more replications in
the second stage than in the first. A multi-stage approach can become
quite time-consuming, but more reliable.

Remark: Regression is often referred to as a model-based method
because it assumes the knowledge of the metamodel for the objective
function.

In the next section, we will study a model-free mechanism for
function-fitting—the neural network. Neural networks are of two
types—linear and non-linear. It is the non-linear neural network that
is model-free.

4. Neuro-Response Surface Methods
One of the most exciting features of the non-linear neural network is

its ability to approximate any given function. It is for this reason that
neural networks are used in a wide range of areas ranging from cutting
force measurement in metal-cutting to cancer diagnosis. No matter
where neural networks are used, they are used for function fitting.

Neural networks are used heavily in the area of pattern recognition.
In many pattern recognition problems, the basic idea is one of function
fitting. Once one is able to fit a function to data, a “pattern” is said to
have been recognized. This idea can be generally extended to a large
number of scenarios. However, just because a problem has a pattern
recognition flavor but does not need function fitting, neural networks
should not be used on it.
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The open literature reports the failure of neural networks on many
problems. Usually, the reasons for this can be traced to the misuse of
the method in some form. For example, as mentioned above, neural
networks should not be used simply because the problem under con-
sideration has a pattern recognition flavor but has nothing to do with
function fitting.

As we will see shortly, the theory of neural networks is based on
very sound mathematics. It is, in fact, an alternative way of doing
regression. It makes clever use of the chain rule of differentiation and a
well-known non-linear programming technique called steepest descent.
In what follows, we will first discuss linear neural networks—also
called neurons and then non-linear neural networks, which use
the famous backpropagation algorithm.

4.1. Linear Neural Networks
The linear neural network (also called a neuron) is not model-free;

it is model-based and assumes a linear model. The neuron is run
by an algorithm that performs linear regression without solving
any linear systems of equations. Convergence of this algorithm to an
optimal solution can be proved. Also, there is strong empirical backing
for this algorithm. Although the algorithm has several names such as
delta, adaline, and least mean square, we will call it the Widrow-Hoff
algorithm in honor of its inventors [323]. We will, next, derive the
Widrow-Hoff (WH) algorithm.

Recall that the goal underlying a regression problem for a hyper-
plane of the order N is to obtain a fit for the linear equation of the
form:

y = w(0) + w(1)x(1) + w(2)x(2) + · · ·+ w(N)x(N).

To obtain a straight line, we would have to set N = 1. Recall the
definitions of a and b from Eq. (4.1). Then, w(0) would correspond to a
and w(1) to b. Similarly, for the plane, N = 2, w(2) would correspond
to c in Eq. (4.5).

We will now introduce a subscript in the following terms: x(i) and y.
The notation xp(i) will denote the value of x(i) in the pth data piece.
Similarly, yp will denote the function value in the pth data piece. Now,
using this notation, the SSE can be written as:

SSE ≡
n∑

p=1

[yp − w(0)− w(1)xp(1)− w(2)xp(2)− · · · − w(N)xp(N)]2.

(4.7)
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For obtaining neural network algorithms, we minimize SSE/2
rather than minimizing SSE. The reason will be clear shortly. It
amounts to the same thing since minimization of one clearly ensures
the minimization of the other.

Now, the WH algorithm is essentially a non-linear programming
algorithm in which the function to be minimized is SSE/2 and the
decision variables are the w(i) terms, for i = 0, 1, . . . , N . The topic of
non-linear programming will be discussed in more detail in Chap. 5.
Here, we present an important and popular steepest-based algorithm
for solving a non-linear program. If the non-linear programming prob-
lem is described as follows:

Minimize f(�x) where �x = {x(1), x(2), . . . , x(N)} is an N -dimensional
vector,

then the main transformation in the steepest-descent algorithm is
given by:

x(i) ← x(i)− μ
∂f(�x)

∂x(i)
, for each i, (4.8)

where μ is a step size that diminishes to 0.
Thus to derive a steepest-descent algorithm for SSE/2, we need to

find the partial derivatives of SSE/2 with respect to each of the w(i)
terms. This is precisely what Widrow and Hoff [323] did. Let us see
how it was done.

Now, using Eq. (4.7), we have

∂E

∂w(i)
=

1

2

n∑

p=1

∂

∂w(i)
[yp − w(0)xp(0)− w(1)xp(1)− · · · − w(N)xp(N)]2

=
1

2

n∑

p=1

2 (yp − op)
∂

∂w(i)
[yp − w(0)xp(0)

−w(1)xp(1)− · · · − w(N)xp(N)] [setting op ≡ w(0)xp(0)

+w(1)xp(1) + · · ·+ w(N)xp(N)]

=

n∑

p=1

(yp − op) [−xp(i)] = −
n∑

p=1

(yp − op) [xp(i)].
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Thus
∂E

∂w(i)
= −

n∑

p=1

(yp − op)xp(i). (4.9)

Using Eq. (4.9) and transformation (4.8), the WH algorithm be-
comes:

w(i) ← w(i) + μ
n∑

p=1

(yp − op)xp(i), (4.10)

where op = w(0)xp(0) + w(1)xp(1) + · · ·+ w(N)xp(N).

Advantages of the WH Algorithm. The advantages of the WH
algorithm over regression are not immediately obvious. First and
foremost, one does not have to solve linear equations unlike regres-
sion. For hyper-planes with large values of N , this can mean consid-
erable savings in the memory needed for the computer program. For
instance, to obtain a regression fit for a problem with 100 variables,
one would have to set up a matrix of the size of 101×101 and then use
a linear equation solving algorithm, whereas the WH algorithm would
need to store only 101 w(i) terms. The WH algorithm is guaranteed
to converge as long as μ is sufficiently small.

As we will see later, the WH algorithm can also be used for incre-
mental purposes—that is, when the data pieces become available one
by one and not at the same time. This is seen in reinforcement learning
(control optimization). In other words, (4.10) can be used with n = 1.
We will see this shortly.

We must note here that regression too can be done incrementally
and if the order of the hyper-plane is not big, (i.e., for small N), the
Widrow-Hoff algorithm does not seem to possess any advantage over
regular regression discussed in previous sections.

We next present a step-by-step description of the Widrow-Hoff
algorithm.

4.1.1 Steps in the Widrow-Hoff Algorithm

Let us assume that n data pieces are available. Some termina-
tion criterion has to be used for stopping the algorithm. One termi-
nation criterion assumes that if the absolute value of the difference
between the values of SSE computed in successive iterations is “neg-
ligible,” the algorithm has converged. How small is negligibly small
is left to the user. This quantity is usually referred to as tolerance.
Another possible termination criterion runs the algorithm till the step
size becomes negligibly small.
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Step 1: Set all the w(i) terms (for i = 0, 2, . . . , N) to small random
numbers (preferably between 0 and 1). Set SSEold to a large
number. The available data for the pth piece is (yp, �xp) where �xp is
a vector with N components. Set xp(0) = 1 for all p. Set tolerance
to a small value. Set m = 0.

Step 2: Compute op for p = 1, 2, . . . , n using

op =
k∑

j=0

w(j)xp(j).

Step 3: Update each w(i) for i = 0, 1, . . . , N using:

w(i) ← w(i) + μ

n∑

p=1

(yp − op)xp(i).

Step 4: Increment m by 1. Calculate SSEnew using

SSEnew =
n∑

p=1

(yp − op)
2 .

Update μ using m (see below for updating rules). If |SSEnew −
SSEold| < tolerance, STOP. Otherwise, set SSEold = SSEnew, and
then go back to Step 2.

Updating rules for step-size: The step-size μ should decay with m.
Some popular rules are:

μ =
A

B +m
and μ =

log(m)

m
,

where A and B are scalars, e.g., A = 500 and B = 1,000. Another rule
that is quite popular is the Darken-Chang-Moody rule [71]. Chapter 7
discusses step-size rules in more detail.

4.1.2 Incremental Widrow-Hoff

As discussed in Sect. 4.1, an incremental version of the Widrow-
Hoff algorithm is sometimes useful. The algorithm presented in the
previous subsection is usually called a batch algorithm because it uses
the entire batch of data simultaneously. The incremental algorithm is
obtained from the batch algorithm. This is done by replacing the sum
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over all values of p by just one quantity. The incremental algorithm is
also convergent as long as we use small values for the step size μ. We
present a step-by-step description, next.

Step 1: Set all the w(i) terms (for i = 0, 2, . . . , N) to small random
numbers (between 0 and 1). The available data for the pth piece
is (�xp, yp) where �xp is a vector with N components. Set xp(0) = 1
for all values of p. Set mmax to the max number of iterations for
which the algorithm is to be run. Set tolerance to a small value,
and set m to 0.

Step 2: For each value of p from 1 to n, execute the following steps.

Step 2a: Compute op using

op =
N∑

j=0

w(j)xp(j).

Step 2b: Update each w(i) for i = 0, 1, . . . , N using:

w(i) ← w(i) + μ (yp − op)xp(i).

Input
Nodes

Output Node

x(i) w(i)

x(1)

x(2)

x(0)=1

Figure 4.5. A linear network—a neuron with three input nodes and one output
node: The approximated function is a plane with two independent variables: x(1)
and x(2). The node with input x(0) assumes the role of the constant a in regression

Step 3: Increment m by 1. Update μ using m as discussed above.
If m < mmax, return to Step 2. Otherwise, STOP.
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The neuron can be represented pictorially as shown in Fig. 4.5.
The circles denote the nodes. There is one node for each independent
variable and one node for the constant term—the term a in regression
(See Eq. (4.1)). The input to the ith node is denoted by x(i).

Input
Nodes

w(i,h)

Hidden
Nodes

x(h)
Output Node

Figure 4.6. A non-linear neural network with an input layer, one hidden layer
and one output node: The term w(i, h) denotes a weight on the link from the ith
input node to the hth hidden node. The term x(h) denotes the weight on the link
from the hth hidden node to the output node

4.2. Non-linear Neural Networks
In this section, we will discuss the backpropagation (often abbrevi-

ated as backprop) algorithm that helps us perform function fitting
for non-linear metamodels. To visualize how a non-linear neural net-
work works, consider Fig. 4.6. It shows a neural network with three
layers—an input layer, a hidden layer and an output layer. The output
layer contains one node. The input nodes are connected to each of the
nodes in the hidden layer, and each node in the hidden layer is con-
nected to the output node. All connections are made via unidirectional
links.

Neural networks with more than one output node are not needed
for regression purposes. In artificial intelligence, we must add here,
neural networks with more than one output are used regularly, but
their scope is outside of regression. We stick to a regression viewpoint
in this book, and therefore avoid multiple outputs. One output in a
neural network implies that only one function can be fitted with that
neural network.

Neural networks with multiple hidden layers have also been pro-
posed in the literature. They make perfect mathematical sense.
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Multiple hidden layers are often needed to model highly non-linear
functions. We do not discuss their theory. We would also like to add
that multiple hidden layers increase the computational burden of the
neural network and make it slower.

4.2.1 The Basic Structure

The input layer consists of a finite number of nodes. One input
node is usually associated with each independent variable. Hence,
the number of nodes usually equals the number of variables in the
function-fitting process.

Usually, we also use one extra node in the input layer. This is called
the bias node. It takes care of the constant term in a metamodel. It
is directly connected to the output node. In our discussion in this
section, we will not take this node into consideration. We will deal
with it in Sect. 4.2.4.

There is no fixed rule on how to select the number of nodes in the
hidden layer. In a rough sense, the more non-linear the function to
be fitted, the larger the number of hidden nodes needed. As we will see,
the hidden layer is the entity that makes a neural network non-linear.

Before understanding how the neural network implements the back-
prop algorithm, we must understand how it predicts function values
at any given point after the backprop algorithm has been used on it.
We also need to introduce some notation at this point.

The connecting arrows or links have numbers associated with them.
These scalar values are called weights (see Fig. 4.6). The neural net-
work backprop algorithm has to derive the right values for each of
these weights. Let us denote by w(i, h) the weight on the link from
the ith input node to the hth hidden node. Each input node is fed with
a value equal to the value of the associated independent variable at
that point. Let us denote the value fed to the jth input node by u(j).
Then the raw value of the hth hidden node is given by:

v∗(h) =
I∑

j=1

w(j, h)u(j),

where I denotes the number of input nodes.
However, this is not the actual value of the hidden node that the

backprop algorithm uses. This raw value is converted to a so-called
“thresholded” value. The thresholded value lies between 0 and 1, and
is generated by some function. An example of such a function is:

Thresholded value =
1

1 + e− Raw value
.
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The above function goes by the name sigmoid function. There are
other functions that can be used for thresholding. We will understand
the role played by functions such as these when we derive the backprop
algorithm.

Thus the actual value of the hth hidden node, v(h), using the sig-
moid function, is given by:

v(h) =
1

1 + e−v∗(h) .

Let x(h) denote the weight on the link from the hth hidden node to
the output node. Then the output node’s value is given by:

o =
H∑

h=1

x(h)v(h), (4.11)

where v(h) denotes the actual (thresholded) value of the hth hidden
node and H denotes the number of hidden nodes. Now we will demon-
strate these ideas with a simple example.

Example C: Let us consider a neural network with three input nodes,
two hidden nodes, and one output node, as shown in Fig. 4.7. Let the
input values be: u1 = 0.23, u2 = 0.43, and u3 = 0.12. Let the weights
from the input node to the hidden nodes be: w(1, 1) = 1.5, w(1, 2) =
4.7, w(2, 1) = 3.7, w(2, 2) = 8.9, w(3, 1) = 6.7 and w(3, 2) = 4.8. Let
the weights from the hidden nodes to the output node be x(1) = 4.7
and x(2) = 8.9. Then using the formulas given above:

v∗(1) =
3∑

i=1

w(i, j)u(i) = (1.5)(0.23)+(3.7)(0.43)+(0.67)(0.12) = 2.74

Similarly, v∗(2) = 5.484. Then:

v(1) =
1

1 + e−v∗(1) =
1

1 + e−2.74
= 0.9393.

Similarly, v(2) = 0.9959. Then:

o = x(1)v(1) + x(2)v(2) = (4.7)(0.9393) + (8.9)(0.9959) = 13.2782.

Remark 1. From the above example, one can infer that large values
for inputs and the w(i, h) terms will produce v(h) values that are very
close to 1. This implies that for large values of inputs (and weights),
the network will lose its discriminatory power. It turns out that even
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Figure 4.7. Deriving the value of the output for given values of inputs and weights

for values such as 50, we have 1
1+e−50 ≈ 1. If all data pieces are in this

range, then all of them will produce the same output o for a given set
of weights. And this will not work. One way out of this problem is to
use the following trick. Normalize the raw inputs to values between
0 and 1. Usually the range of values that the input can take on is
known. So if the minimum possible value for the ith input is a(i) and
the maximum is b(i) then we should first normalize our data using the
following principle:

u(i) =
uraw(i)− a(i)

b(i)− a(i)
.

So for example, if values are: uraw(1) = 2, a(1) = 0, and b(1) = 17,
then the value of u(1) to be fed into the neural network should be:

u(i) =
2− 0

17− 0
= 0.117647.

Remark 2. An alternative way to work around this difficulty is to
modify the sigmoid function as shown below:

v =
1

1 + e−v∗/M , where M > 1.

This produces a somewhat similar effect but then one must choose M
carefully.

M = max
i

b(i)−min
i

a(i) works in practice.
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Remark 3. The w(i, h) terms should also remain at small values for
retaining the discriminatory power of the neural network. As we will
see later, these terms are in the danger of becoming too large. We will
discuss this issue later again.

The subscript p will be now used as an index for the data piece.
(If the concept of a “data piece” is not clear, we suggest you review
Example A in Sect. 3.2.1.) Thus yp will denote the function value of
the pth data piece obtained from simulation. For the same reason,
vp(h) will denote the value of the hth hidden node when the pth data
piece is used as an input to the node. So also, up(i) will denote the
value of the input for the ith input node when the pth data piece is
used as input to the neural network. The notations w(i, h) and x(h),
however, will never carry this subscript because they do not change
with every data piece.

4.2.2 The Backprop Algorithm

Like in regression, the objective of the backprop algorithm is to
minimize the sum of the squared differences between actual function
values and the predicted values. Recall that in straight line fitting, the
regression error was defined as:

ep = yp − (a+ bxp). (4.12)

Now, in the context of backprop, we assume that we do not know the
model. So clearly, we do not have access to quantities such as a+ bxp
in the equation given above. Notice that this quantity is the predicted
value of the function. Hence we will replace it by a variable op. Hence
the error term, regardless of what function is to be fitted, can be
expressed as:

ep = yp − op. (4.13)

We repeat: the reason for using the term op instead of the actual
form is: we want to fit the function without assuming any metamodel.

Therefore SSE becomes:

SSE =
n∑

p=1

(yp − op)
2 (4.14)

where n is the total number of data pieces available. For the backprop
algorithm, instead of minimizing SSE, we will minimize SSE/2. (If
SSE/2 is minimized, SSE will be minimized too.) In the following
section, we will discuss the derivation of the backprop algorithm.

The following star-marked section can be skipped without loss of
continuity in the first reading.



58 SIMULATION-BASED OPTIMIZATION

4.2.3 Deriving Backprop ∗

The backprop algorithm is essentially a non-linear programming
algorithm in which the function to be minimized is SSE/2 and the de-
cision variables of the non-linear program are the weights—the w(i, h)
and x(h) terms. If the non-linear programming problem is described
as follows:

Minimize f(�x) where �x = {x(1), x(2), . . . , x(N)} is an N -dimensional
vector,

then the main transformation in a steepest-descent algorithm is
given by:

x(i) ← x(i)− μ
∂f(�x)

∂x(i)
, for all i, (4.15)

where μ denotes a step size that diminishes to 0. For the backprop algo-
rithm, f(�x) is SSE/2, and �x is made up of the w(i, h) and x(h) terms.
Using the transformation defined in (4.15), for the w(i, h) terms, we
have:

w(i, h) ← w(i, h)− μ
∂

∂w(i, h)
(SSE/2), (4.16)

and for the x(h) terms we have:

x(h) ← x(h)− μ
∂

∂x(h)
(SSE/2). (4.17)

We will denote SSE/2 by E. We now need to derive expressions for

the partial derivatives:
∂E

∂x(h) and
∂E

∂w(i,h) in Eqs. (4.17) and (4.16)

respectively. This is what we do next.
Using Eq. (4.14), we have

∂E

∂x(h)
=

1

2

n∑

p=1

∂

∂x(h)
(yp − op)

2

=
1

2

n∑

p=1

2 (yp − op)
∂

∂x(h)
(yp − op)

=
n∑

p=1

(yp − op)

(
− ∂op
∂x(h)

)

= −
n∑

p=1

(yp − op) (vp(h)).
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The last equation follows from the fact that op =
∑H

i=1 x(i)vp(i),
where H is the number of hidden nodes. Thus we can conclude that:

∂E

∂x(h)
= −

n∑

p=1

(yp − op) vp(h). (4.18)

Similarly, the derivative with respect to w(i, h) can be derived as
follows:

∂E

∂w(i, h)
=

1

2

n∑

p=1

∂

∂w(i, h)
(yp − op)

2

=
1

2

n∑

p=1

2 (yp − op)
∂ (yp − op)

∂w(i, h)

=
n∑

p=1

(yp − op)

(
− ∂op
∂w(i, h)

)

=
n∑

p=1

(yp − op)

(
− ∂op
∂vp(h)

.
∂vp(h)

∂w(i, h)

)

= −
n∑

p=1

(yp−op)

(
x(h).

∂vp(h)

∂w(i, h)

)
since op =

H∑

i=1

x(i)vi(p)

= −
n∑

p=1

(yp − op)

(
x(h).

∂vp(h)

∂v∗p(h)
.
∂v∗p(h)
∂w(i, h)

)

= −
n∑

p=1

(yp − op)x(h)vp(h) (1− vp(h))up(i).

The last equation follows from that facts that

v∗p(h) =
I∑

j=1

w(j, h)up(j) implies
∂v∗p(h)
∂w(i, h)

= up(i);

vp(h) =
1

1 + e−v∗p(h)
implies

∂vp(h)

∂v∗p(h)
= vp(h)[1− vp(h)].

Thus in conclusion,

∂E

∂w(i, h)
= −

n∑

p=1

[yp − op]x(h)vp(h)[1− vp(h)]up(i). (4.19)
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The backprop algorithm can now be defined by the following two
main transformations.

1. Transformation (4.17), which can now be written, using Eq. (4.18),
as:

x(h) ← x(h) + μ
n∑

p=1

(yp − op) vp(h). (4.20)

2. And transformation (4.16), which can now be written, using
Eq. (4.19), as:

w(i, h) ← w(i, h) + μ
n∑

p=1

(yp − op)x(h)vp(h) (1− vp(h))up(i).

(4.21)

Remark 1: A nice thing about this algorithm is that closed form
expressions for the partial derivatives could be derived.

Remark 2: Any steepest-descent algorithm can only be guaranteed to
converge to local optima. If multiple optima exist, convergence to the
global optimum cannot be ensured with a steepest-descent algorithm.
Naturally, backprop, being a steepest-descent algorithm, suffers from
this drawback. However, in practice, the problem of getting trapped
in local optima has not been found to be too menacing. Furthermore,
there are ways of working around this problem.

Remark 3: The algorithm derived above uses a sigmoid function for
thresholding. Another function that has also been used by researchers
is the tanh function.

We next discuss how we can deal with a bias node in the backprop
algorithm.

4.2.4 Backprop with a Bias Node

The idea underlying the so-called bias node is to assume that the
function has a constant term—a term that corresponds to the term,
a, in regression theory, which can be found in Eqs. (4.1) or (4.5). (It is
always acceptable to do so because if the true function to be fitted
does not have such a term, the weight associated with the bias node
will converge to 0.) This is taken care of by assuming that there is an
extra node—the bias node—that is connected directly to the output
node. See Fig. 4.8.

Let us denote the bias weight by b. The input to the bias node is
always 1 or some constant value. Hence the output node o should
now be defined as:
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Input
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w(i,h)
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x(h)
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b

Figure 4.8. A neural network with a bias node: The topmost node is the bias
node. The weight on the direct link to the output node is b

o = (b)(1) +
H∑

h=1

x(h)v(h). (4.22)

The following star-marked section can be skipped without loss of
continuity in the first reading.

4.2.5 Deriving Backprop with a Bias Node ∗

We will next derive a steepest-descent transformation for the bias
weight. Notice the difference between Eqs. (4.22) and (4.11). Change

in the definition of o will not alter
∂E

∂x(h) that we have derived earlier.

Of course
∂E

∂w(i,h) will not change either. Now,
∂E
∂b can be derived in

a manner identical to that of
∂E

∂x(h) . We will show the details, next.

∂E

∂b
=

1

2

n∑

p=1

∂

∂b
(yp − op)

2

=
1

2

n∑

p=1

2 (yp − op)
∂

∂b
(yp − op)
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=
n∑

p=1

(yp − op)

(
−∂op

∂b

)

= −
n∑

p=1

(yp − op) 1.

The last equation follows from the fact that op = b+
∑H

i=1 x(i)vp(i).
Thus,

∂E

∂b
= −

n∑

p=1

(yp − op) . (4.23)

The steepest-descent transformation for the bias weight, which is
given by

b ← b− μ
∂E

∂b
,

can be written, using (4.23), as:

b ← b+ μ
n∑

p=1

(yp − op) . (4.24)

The backprop algorithm with a bias node is defined by three transfor-
mations: (4.20), (4.21), and (4.24). In the next section, we present a
step-by-step description of a version of the backprop algorithm that
uses the sigmoid function.

4.2.6 Steps in Backprop

The backprop algorithm is like any other iterative steepest-descent
algorithm. We will start with arbitrary values for the weights—usually
small values close to 1. Then we will use the transformations defined
by (4.20), (4.21), and (4.24) repeatedly till the SSE is minimized to
an acceptable level. One way to terminate this iterative algorithm is
to stop when the difference in the value of SSE obtained in successive
iterations (step) becomes negligible.

What we present below is also called the “batch-updating” version
of the algorithm. The reason underlying this name is that all the data
pieces are simultaneously (batch mode) used in the transformations.
When we use a transformation and change a value, we can think of
the change as an update of the value. The step-by-step description is
presented below.

Let us define some quantities and recall some definitions. H will
denote the number of hidden nodes, and I will denote the number of
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input nodes. (Note that I will include the bias node.) The algorithm
will be terminated when the absolute value of the difference between
the SSE in successive iterations is less than tolerance—a pre-specified
small number, e.g., 0.001.

Step 1: Set all weights—that is, w(i, h), x(h), and b for i = 1, 2, . . . , I,
and h = 1, 2, . . . , H, to small random numbers between 0 and 0.5.
Set the value of SSEold to a large value. The available data for the
pth piece is (�up, yp) where �up denotes a vector with I components.
Set m to 0.

Step 2: Compute each of the v∗p(h) terms for h = 1, 2, . . . , H and
p = 1, 2, . . . , n using

v∗p(h) =
I∑

j=1

w(j, h)up(j).

Step 3: Compute each of the vp(h) terms for h = 1, 2, . . . , H and
p = 1, 2, . . . , n using

vp(h) =
1

1 + e−v∗p(h)
.

Step 4: Compute each of the op terms for p = 1, 2, . . . , n where n is
the number of data pieces using

op = b+
H∑

h=1

x(h)vp(h).

Step 5:

Update b using: b ← b+ μ
∑n

p=1 (yp − op).

Update each w(i, h) using:

w(i, h) ← w(i, h) + μ
n∑

p=1

(yp − op)x(h)vp(h) (1− vp(h))up(i).

Update each x(h) using

x(h) ← x(h) + μ
n∑

p=1

(yp − op) vp(h).
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Step 6: Increment m by 1. Calculate SSEnew using SSEnew =∑n
p=1 (yp − op)

2 . Update the value of μ using m as discussed

above. If |SSEnew − SSEold| < tolerance, STOP. Otherwise, set
SSEold = SSEnew, and then return to Step 2.

Remark 1: If one wishes to ignore the bias node, b should be set to 0
in Step 4, and the first transformation in Step 5 should be disregarded.

Remark 2: Clearly, the value of tolerance should not very low; oth-
erwise, the algorithm may require a very large number of iterations.

Remark 3: Setting a very low value for tolerance and running the
algorithm for too many iterations can cause overfitting, i.e., the fit
predicts the function over the training data too closely. This is unde-
sirable as it can lead to a fit that works well for the data over which
the function has been fitted, but predicts poorly at points at which
the function is unknown.

Remark 4: The parameter r2 (see Sect. 3.3) used to evaluate the
goodness of a fit can be computed in the case of a neural network too.

4.2.7 Incremental Backprop

Like in the case of the linear neural network, we will also discuss
the incremental variant of the backprop algorithm. The incremental
algorithm uses one data piece at a time. We will present the necessary
steps in the incremental version. The behavior of the incremental
version can be shown to become arbitrarily close to that of the batch
version. Incremental backprop is usually not used for response surface
optimization. It can be useful in control optimization. We will refer
to it in the chapters related to reinforcement learning.

The incremental version is obtained from the batch version, pre-
sented in the previous section, by removing the summation over all
data pieces. In other words, in the incremental version, the quantity
summed in the batch version is calculated for one data piece at a time.
The relevant steps are shown next.

Step 1: Set all weights—that is, w(i, h), x(h), and b, for i=1, 2, . . . , I,
h = 1, 2, . . . , H, to small random numbers. The available data for
the pth piece is (�up, yp) where �up denotes a vector with I compo-
nents. Set m to 0 and mmax to the maximum number of iterations
for which the algorithm is to be run.
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Step 2: For each value of p, i.e., for p = 1, 2, . . . , n, execute the
following steps.

1. Compute v∗p(h) for h = 1, 2, . . . , H using

v∗p(h) =
I∑

j=1

w(j, h)up(j).

2. Compute vp(h) for h = 1, 2, . . . , H using

vp(h) =
1

1 + e−v∗p(h)
.

3. Compute op using op = b+
∑H

h=1 x(h)vp(h).

4. Update b using: b ← b+ μ (yp − op) .

Update each w(i, h) using:

w(i, h) ← w(i, h) + μ (yp − op)x(h)vp(h) (1− vp(h))up(i).

Update each x(h) using x(h) ← x(h) + μ (yp − op) vp(h).

Step 3: Increment m by 1, and update the value of μ as discussed
above.

Step 4: If m < mmax, go back to step 2; otherwise stop.

The advantage of incremental backprop over batch backprop lies in
its lower computational burden. Since many quantities are summed
over n points in batch backprop, the calculations can take considerable
amount of computer time. However, with present-day computers, this
is not much of an issue. The gradient in the incremental version is
not accurate, as it is not summed over all the n data pieces. However,
with a small enough value for the step size μ, the incremental
version should closely approximate the behavior of the batch version.

Some neural network tricks:

1. In practice, the bias node is placed in the hidden layer and an
additional bias node (virtual bias node) is placed in the input layer.
It is connected to all the other nodes in the hidden layer. The bias
node does not have any connection to the input layer. However, it
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Figure 4.9. Actual implementation with a bias node

is connected to the output node. The input to each bias node is 1.
This trick makes the net stable. See Fig. 4.9 for a picture. The
online C codes [121] use this idea.

2. Since backprop is a steepest-descent algorithm and the error func-
tion, SSE, may contain multiple optima, getting trapped in
local optima cannot be ruled out. This is a commonly experi-
enced difficulty with steepest descent. One way around this is to
start at a new point when the net does not perform well. This is
a well-known trick. In the case of a neural network, the starting
point is generated by the random values (between 0 and 1, typi-
cally) given to all the weights. Hence one should use a different
SEED (see Chap. 2), and generate new values for the weights.

3. Choice of the number of hidden nodes needs some experimentation.
Any arbitrary choice may not yield the best results. It is best to
start with a small number of hidden nodes.

4. After performing the backprop for a very long time, the weights
can become large. This can pose a problem for the net. (It loses
its discriminatory power). One way out of this is to multiply each
weight in each iteration by (1− μγ

2 ), where γ is another step size less
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than 1. This update should be performed after the regular backprop
update. This idea has good theoretical backing; see Mitchell [205]
for more on this.

Example D: Let us next consider a function the closed form of
which is known. We will generate 10 points on this function and then
use them to generate a neuro-response surface. Since the function is
known, it will help us test the function at any arbitrary point.

Consider the function: y = 3 + x21 + 5x1x2.
We generate 10 points on this function. The points are tabulated

below.
Point x1 x2 y
1 0.000783 0.153779 3.000602
2 0.560532 0.865013 5.738535
3 0.276724 0.895919 4.316186
4 0.704462 0.886472 6.618693
5 0.929641 0.469290 6.045585
6 0.350208 0.941637 4.771489
7 0.096535 0.457211 3.230002
8 0.346164 0.970019 4.798756
9 0.114938 0.769819 3.455619
10 0.341565 0.684224 4.285201

A neural network with backpropagation was trained on this data.
Three hidden nodes were used and a bias node along with a virtual
bias node (in the input layer) was used. See Fig. 4.9 to see how a vir-
tual bias node is placed in a neural network. We will denote the weight
on the link connecting the virtual bias node to the hth hidden node
by vb(h). As before, x(h) will denote the weight from the hth hidden
node to the output node and w(i, h) will denote the weight from the
ith input to the hth hidden node. The bias nodes have inputs of 1
and b will denote the bias weight (the weight on the link from the bias
node in the hidden layer to the output node—see Fig. 4.9). The neural
network was trained for 500 iterations. The best SSE was found to
be 0.785247. The codes are provided at [121]. The w(i, h) values are:

i h w(i, h)
1 1 2.062851
1 2 2.214936
1 3 2.122674
2 1 0.496078
2 2 0.464138
2 3 0.493996
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The x(h) and the vb(h) weights are:

h x(h) vb(h)
1 2.298128 −0.961674
2 2.478416 −1.026590
3 2.383986 −0.993016

The bias weight is 0.820535. Since the function form is known, we
can test how well the function has been approximated by the backprop
algorithm. Some comparisons are tabulated below.

Point x1 x2 y ypredicted

1 0.2 0.5 3.54 3.82
2 0.3 0.9 4.44 4.54
3 0.1 0.9 3.46 3.78

Note that we have tested the function on input values between 0
and 1. As discussed previously, before training, it is best to normalize
the input values to the range (0, 1).

4.2.8 Neural Network Validation

Like in the case of regression-based response surface methods, it is
important to “validate” the weights generated by the neural network—
that is, check if the network predicts well on the data that was not used
in generating the weights. Unless validation is performed, there is no
guarantee of the network’s performance. Unlike regression-based mod-
els, parameters such as r2 may not be sufficient, and more sophisticated
validation tests are needed.

In a commonly-used strategy, called data splitting, a data set of n
points at which simulation has been performed is split into 2 sets—S1

and S2. S1 is used to generate the neural network weights and S2 is
used to test the ability of the net to predict well. Then the absolute
error, which is reflective of the net’s performance, can be calculated as:

Absolute Error ≡ max
i∈S2

|yi − ypredictedi |.

Several other statistical tests have been described in the literature
[302]. Some of these tests are called: re-substitution, cross-validation,
and jackknife. (These tests can also be used in testing the validity
of regression metamodels.) In many of these tests, the absolute error
between the value predicted by the net and the actual value (defined
above) is used, instead of the squared error discussed previously.
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4.2.9 Optimization with a Neuro-RSM Model

The neuro-RSM model, once generated and proved to be satis-
factory, can be used to evaluate the function at any given point.
Then, it may be combined with any numerical non-linear algorithm
to find the optimal solution. (Note that the word “optimal” here im-
plies near-optimal since the response surface approach itself introduces
considerable approximations.)

5. Concluding Remarks
The chapter was meant to serve as an introduction to the technique

of response surfaces in simulation-based optimization. A relatively
new topic of combining response surfaces with neural networks was
also introduced. The topic of neural networks will surface one more
time in this book in the context of control optimization.

Bibliographic Remarks: The technique of response surfaces is now widely used
in the industry. The method was developed around the end of the Second World
War. For a comprehensive survey of RSM, the reader is referred to [213]. For
RSM-based simulation optimization, the reader is referred to [281, 172, 19]. The
so-called kriging methodology [149], which is based on interpolation rather than
function fitting (e.g., least-squares minimization), has also been used in simula-
tion metamodeling: see [174, 9]. Use of neural networks in RSM is a relatively
recent development (see e.g., [165, 259, 220, 230, 231, 12, 87, 194, 202]). A more
recent development in the field of neural networks include radial basis functions;
see [210, 199].

The idea of neural networks, however, is not very new. Widrow and Hoff’s work
[323] on linear neural networks appeared in 1960. Research in non-linear neural
networks was triggered by the pioneering work of Werbös [313]—a Ph.D. disser-
tation in the year 1974. See also [257] in 1986, which explained the methodology
in details. Since then countless papers have been written on the methodology and
uses of neural networks. The textbooks [132, 199] also contains excellent discus-
sions. Our account in this chapter follows Law and Kelton [188] and Mitchell [205].
Neural networks remain, even today, a topic of ongoing research. We end with a
simple exercise that the reader is urged to carry out.

Exercise: Evaluate the function f(x) at the following 20 points.

x = 2 + 0.4i, where i = 1, 2, . . . , 20, where

f(x) = 2x2 +
ln(x3)

x− 1
, where 1 ≤ x ≤ 10.

Now, using this data, train the batch version of backprop. Then, with the trained
network, predict the function at the following points.

x = 3 + 0.3i where i = 1, 2, . . . , 10.

Test the difference between the actual value and the value predicted by the network.
(Use codes from [121].)



Chapter 5

PARAMETRIC OPTIMIZATION:

STOCHASTIC GRADIENTS

AND ADAPTIVE SEARCH

1. Chapter Overview
This chapter focusses on simulation-based techniques for solving

stochastic problems of parametric optimization, also popularly called
static optimization problems. Such problems have been defined in
Chap. 3.

At the very outset, we would like to state that our discussion will
be limited to model-free techniques, i.e., techniques that do not
require structural properties of the objective function. By structural
properties, we mean the availability of the analytical closed form of
the objective function, the availability of the distribution (or density)
functions of random variables in the objective function, or the ability
to manipulate the integrals and derivatives within the analytical form
of the objective function. As stated previously, our interest in this
book lies in complex stochastic optimization problems with large-scale
solution spaces. For such problems, it is usually difficult to obtain
the kind of structural properties typically needed by model-based
techniques, such as likelihood ratios or score functions (which require
the distributions of random variables within the objective function)
and infinitesimal perturbation analysis. Model-based techniques have
been studied widely in the literature; see [91, 253] and Chap. 15 of
Spall [281] for an extensive coverage.

Model-free techniques are sometimes also called black-box tech-
niques. Essentially, most model-free techniques are numeric, i.e.,
they rely on the objective function’s value and not on its closed
form. Usually, when these techniques are used, one assumes that it
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is possible to estimate the true value of the objective function at any
given point in the solution space by averaging the objective function
values obtained from numerous simulation runs at the same point.
This approach is also called a sample path approach.

We will first discuss techniques for continuous parametric optimiza-
tion. The main technique that we will cover is based on stochastic gra-
dient descent. For the discrete case, we will cover meta-heuristics and
a number of stochastic adaptive search techniques [333]. Convergence
of some of these techniques is discussed in Chap. 10.

2. Continuous Optimization
The problem of continuous parametric optimization can be de-

scribed formally as:

Minimize f(x(1), x(2), . . . , x(N)),

where x(i) denotes the ith decision variable, N denotes the number
of decision variables, and f(.) denotes the objective function. (Any
maximization problem can be converted to a minimization problem by
reversing the sign of the objective function f(.), i.e., maximize f(x) ≡
minimize −f(x).)

As discussed in Chap. 3, we are interested in functions with
stochastic elements, whose analytical expressions are unknown be-
cause it is difficult to obtain them. As a result, simulation may have
to be used to find estimates of the function value. Now, we will present
an approach that uses the gradient of the function for optimization.

2.1. Steepest Descent
The method of steepest descent is often used to solve parametric

optimization (non-linear programming) problems. Outside of steepest
descent, there are techniques, such as Newton’s method and the con-
jugate gradients method, which use the gradient in the optimization
process. In this book, we will, however, focus on classical steepest
descent, which requires only the first derivative. Although it is not
the most effective technique when the objective function’s closed form
is known, it requires only the first derivative and hence imposes a
minimal computational burden in model-free optimization. The first
derivative (gradient or slope) can often be numerically estimated even
when the closed form is unknown.
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The steepest-descent method operates according to the following
simple rule when proceeding from one iteration to the next:

x(i) ← x(i)− μ
∂f(�x)

∂x(i)
, for i = 1, 2, . . . , N,

when the function f(.) is to be minimized. In the above:

∂f(�x)
∂x(i) denotes the partial derivative of f(.) with respect to x(i),

and its value when evaluated at �x is used in the rule above.

μ, a positive scalar, is called the step size.

In case of maximization (also called hill climbing), the rule becomes:

x(i) ← x(i) + μ
∂f(�x)

∂x(i)
for i = 1, 2, . . . , N.

Classical steepest descent is due to Cauchy [59] from 1847. This
algorithm forms one of the early applications of step sizes in opti-
mization theory. Although simple, it has given birth to the field of
“stochastic gradient descent” in modern times. We have already seen
this rule in the context of neural networks.

In what follows, we present a step-by-step description of the
steepest-descent method. We will assume for the time being that
the analytical form of the function is known. The goal is to minimize
the function. We will use the following notation frequently:

∂f(�x)

∂x(i)

∣∣∣∣
�x=�a

,

which denotes the scalar numeric value of the partial derivative when
�x = �a.

Steps in steepest descent. Set m, the number of iterations in
the algorithm, to 1. Let �xm denote the solution vector at the mth
iteration. Initialize �x 1 to an arbitrary feasible solution (point).

Step 1. For i = 1, 2, . . . , N , obtain the closed-form expression for the
partial derivative:

∂f(�x)

∂x(i)
.

Step 2. For i = 1, 2, . . . , N , update xm(i), using the following rule:

xm+1(i) ← xm(i)− μ
∂f(�x)

∂x(i)

∣∣∣∣
�x=�xm

. (5.1)
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Step 3. If all the partial derivatives equal zero or are sufficiently close
to zero, STOP. Otherwise increment m by 1, and return to Step 2.

In practice, to ensure that the derivatives are sufficiently close to 0,
one can test if the Euclidean norm of the partial derivative vector is
less than ε, a pre-specified value.

When the partial derivative becomes zero, it is clear from Eq. (5.1)
that the algorithm fails to update the relevant decision variable any
further. Now, all the partial derivatives are zero in what is called a
stationary point which could be a local optimum. This is why, it is often
said that the steepest-descent method gets “trapped” in local optima.
The global optimum is a point which is not only a local optimum but
in addition the function there is at its optimal value. If there is only
one local optimum for a function, clearly, it is also the global optimum
as well. Otherwise, however, we have no way of knowing if the local
optimum reached is also a global optimum, and unfortunately, steepest
descent, because of its design via Eq. (5.1), cannot escape out of a local
optimum.

The next example is provided as a simple reminder (from your
first course in calculus) of how the derivative can be used directly
in optimization.

A simple example. Let the function to be minimized be:

f(x, y) = 2x2 + 4y2 − x− y − 4.

We compute its partial derivatives and set them to zero:

∂f(x, y)

∂x
= 4x− 1 = 0;

∂f(x, y)

∂y
= 8y − 1 = 0,

yielding x = 1/4 and y = 1/8.
Now that we know a local optimum for this problem, we will show

how the same local optimum can be obtained using steepest descent.
Let the starting point for the method be (x = 2, y = 3). We will use 0.1
for the value for μ. The step size will not be changed. The expressions
for the partial derivative are already known. The results obtained from
using steepest descent are summarized below:
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Iteration x y function value
1 1.300000 0.700000 −0.660000
2 0.880000 0.240000 −3.340800
3 0.628000 0.148000 −3.899616
. . . .
. . . .
. . . .
30 0.250000 0.125000 −4.187500

The above demonstrates that the steepest-descent method yields the
same local optimum, i.e., x = 1/4 and y = 1/8.

Intuition suggests that increasing the step size should accelerate the
rate of convergence of this procedure. But notice what happens with
μ = 0.9!

Iteration x y function value
1 −4.3 −17.700000 1,308.14
2 12.08 110.64 49,129.97
3 80.22 4,248.32 72,201,483.88
. . . .
. . . .
. . . .

As is clear, the method diverges, failing to reach the local optimum.
This can be attributed to the step size being too large. It turns out
that the step size has to be “sufficiently small” for this method to
converge (reasons to be discussed in Chap. 10). Thus, arbitrarily large
values for the step size may not work.

When the closed form is unknown, an upper limit for μ can be found
with some experimentation. In practice, however, μ is often guessed
to be a small positive fixed number such as 0.1 or a number that starts
at a small positive value and gradually decays with every algorithm
iteration to 0.

The steepest-descent method is guaranteed to reach the optimal
solution only when (i) the step size is sufficiently small and (ii) the
function satisfies certain conditions related to convexity, continuity,
and differentiability of the function. These conditions will be discussed
in Chap. 10 and can be found in any standard text on non-linear pro-
gramming. Unfortunately, in the absence of the closed form, conditions
such as these cannot usually be verified.

We now discuss an important issue regarding local and global op-
tima. As defined above, the local optimum is a point where the partial
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derivatives are zero, while the global optimum is a local optimum
at which the function is optimized. The word optimum is replaced
by minimum in case of minimization and by maximum in case of
maximization. A so-called non-convex (non-concave) function contains
multiple local minima (maxima)—in any one of which the steepest-
descent method can get trapped. Thus, with non-convex functions,
the steepest descent method may yield a local minimum which may in
fact be far away from the global optimum.

The steepest-descent method starts from an arbitrary point in the
solution space. It then moves (i.e., changes the value of �x) from one
point to another in its attempt to seek better points where the function
has better values. When it reaches an “optimum” (local or not), it
stops moving. See Fig. 5.1 for a pictorial representation of a function
containing multiple local optima. As stated above, when a function has
multiple optima, the steepest-descent algorithm can get stuck in any
one optimum depending on where it started.

X

Y
Z

X, Y, and Z are local optima.  
Y is the global optimum.

Function Minimization

Figure 5.1. A surface with multiple minima

Multi-starts. One way to circumvent the difficulty of getting trapped
in local optima is to run the algorithm a number of times, restarting
the algorithm at a different point in the solution space each time [335].
The best local optimum obtained from all the starts is declared to be
the solution. This approach is called the multi-start approach (or
multiple starts) in optimization theory. While it does not guarantee
the generation of the optimal solution, it is frequently the best we can
do in practice to obtain the global optimum. The approach of multi-
starts should be used in conjunction with any algorithm that has the
property of getting stuck in the local optima. This property is also
called local convergence as opposed to global convergence, which is the
property of reaching the global optimum.



Parametric Optimization 77

2.1.1 Simulation and Steepest Descent

In this book, we are interested in functions that have (a) stochastic
elements and (b) unknown closed forms. With unknown closed forms
(closed forms that cannot be expressed in analytical expressions), it
is difficult to verify if conditions such as convexity, continuity, and
differentiability are satisfied. In simulation optimization, these condi-
tions can be rarely verified. In fact, we use simulation optimization
when the closed form is not available. If it were available, we would
use other techniques, which are likely to be far more effective and
less time consuming. Hence this is an issue that we must live with.
Furthermore, since the function form is unknown in simulation opti-
mization, the derivative, if it is to be calculated, must be calculated
numerically.

Now, a classical definition of the derivative is:

df(x)

dx
= lim

h→0

f(x+ h)− f(x− h)

2h
,

which, of course, you know from your first course in calculus. This
suggests the following formula for calculating the derivative numerically.
Using a “small” value for h,

df(x)

dx
≈ f(x+ h)− f(x− h)

2h
. (5.2)

The above is called the central differences formula. Classically, the
derivative can also be defined as:

df(x)

dx
= lim

h→0

f(x+ h)− f(x)

h
,

which suggests using the following with a “small” value for h:

df(x)

dx
≈ f(x+ h)− f(x)

h
. (5.3)

The above is called the forward differences formula. Formulas in
both (5.2) and (5.3) yield approximations of the actual value of the
derivative. The true value is obtained in the limit with h tending
to zero.

Note that, in the context of simulation, f(x+h), f(x), and f(x−h)
will have to be estimated by simulation. Simulation-based estimates
themselves have errors, and therefore this approach is approximate;
one has to live with this error in simulation-based optimization.

We now state two important facts about derivative evaluations for
simulation optimization. (1) There is empirical evidence to suggest
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(see [8] and references therein) that Eq. (5.2) (central differences) has
statistical properties superior to those of Eq. (5.3); i.e., the error pro-
duced due to the approximation of h by a positive quantity is less
with the central differences formula. (We will prove this in Chap. 10.)
(2) The function evaluations at (x+h) and (x−h) must be performed
using common random numbers. This means that both function eval-
uations should use the same set of random numbers in the replica-
tions. For instance, if a set of random numbers is used in replication
3 of f(x + h), then the same set should be used in replication 3 of
f(x − h). Using common random numbers has been proven to be a
“good” strategy—through the viewpoint of statistics. See [8] for addi-
tional details.

A simple example is now used to illustrate the numerical computing
of a derivative. The derivative of the function

f(x) = 2x3 − 1 with respect to x is 6x2.

Therefore the actual value of the derivative when x = 1 is 6. Now
from Eq. (5.2), using h = 0.1, the derivative is found to be:

[2(6 + 0.1)3 − 1]− [2(6− 0.1)3 − 1]

(2)(0.1)
= 6.02,

and using h = 0.01, the derivative is found to be:

[2(6 + 0.01)3 − 1]− [2(6− 0.01)3 − 1]

(2)(0.01)
= 6.0002.

As h becomes smaller, we approach the value of the derivative. The
above demonstrates that the value of the derivative can be approx-
imated with small values for h. When the analytic function is un-
available, as is the case with objective functions of complex stochastic
systems, one may use numerical approximations such as these for com-
puting derivatives.

The so-called “finite difference” formula for estimating the deriva-
tive is the formula in Eq. (5.2) or Eq. (5.3). In problems with many
decision variables, the finite difference method runs into trouble
since its computational burden becomes overwhelming. Here is why.
Consider the case with N decision variables:

x(1), x(2), . . . , x(N).

In each iteration of the steepest-descent algorithm, one then has to
calculate N partial derivatives of the function. Note that the general
expression using central differences is:
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∂f(�x)

∂x(i)
=
f(x(1), x(2), . . . , x(i)+h, . . . , x(N))−f(x(1), x(2), . . . , x(i)−h, . . . , x(N))

2h
.

The ith partial derivative requires two function evaluations:

One evaluation is at (x(1), x(2), . . . , x(i) + h, . . . , x(N))

and the other is at (x(1), x(2), . . . , x(i)− h, . . . , x(N)).

This implies that in each iteration of the steepest-descent algorithm,
one would require 2k function evaluations, i.e., 2 evaluations per
decision variable. Since each function evaluation is via simulation,
each function evaluation in turn needs several replications. The
computational time taken for just one replication can be significant.
Clearly, as N increases, the number of simulations needed increases,
and consequently just one iteration of steepest descent may take a
significant amount of time. This is a major stumbling block. Is there
a way out?

The answer is yes, sometimes. A major breakthrough was provided
by the work of Spall [280] via what is known as the simultaneous
perturbation method. Spall showed that regardless of the number of
decision variables, an approximate but useful estimate of the deriva-
tive could be estimated via only two function evaluations. Now, we
note that one cannot tamper with the definition of the derivative.
The significance of Spall’s work hence lies in the fact that although
his derivative’s estimate strays from that of the classical definition, his
estimate can be used in a steepest-descent method to find the local
optimum! In other words, the derivative itself is inaccurate, but the
resulting steepest-descent method, which is really of interest to us,
converges. We will discuss this method now.

2.1.2 Simultaneous Perturbation

The word “perturbation” is related to the fact that the function is
evaluated at (x−h) and (x+h). In other words, the function is moved
slightly (perturbed) from x, which is the point at which the derivative
is desired. This, of course, is the central idea underlying numerical
evaluation of a derivative, and this stems from the classical definition
of a derivative.

In simulation optimization, this idea can be found possibly for the
first time in Kiefer and Wolfowitz [164]. The idea is elementary in the
sense that it stems from foundational ideas in calculus (from Newton
(1642–1727) and Leibniz (1646–1716)). Much of the early work in
gradient-based simulation optimization is essentially an application
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of the fundamental definition of a derivative from the seventeenth
century. It is Spall’s work [280] that actually, for the first time, breaks
away from this idea and paves the way for an efficient method for
numerical non-linear optimization.

When used in a steepest-descent algorithm, Spall’s definition for a
derivative provides us with a mechanism that is not only very effi-
cient in terms of function evaluations needed, but also one that has
been shown to converge. As such, it is not surprising that the method
is extremely attractive for problems in which the objective function’s
analytical form is unknown, function estimation can be done via simu-
lation, and the number of decision variables is large. Examples of such
problems, as mentioned previously, are optimization problems related
to complex stochastic systems. Simulation optimization is clearly a
fertile ground for application.

In the finite difference method, when calculating a partial derivative
with respect to a variable x(i), it is x(i) that is perturbed—in other
words, we evaluate the function at x(i) + h and x(i)− h, keeping the
other variables unchanged. To illustrate this idea, we present the case
with two variables: x(1) and x(2). Then:

∂f(�x)

∂x(1)
=

f(x(1) + h, x(2))− f(x(1)− h, x(2))

2h
and

∂f(�x)

∂x(2)
=

f(x(1), x(2) + h)− f(x(1), x(2)− h)

2h
.

The above should make it clear that each variable is perturbed (with h)
separately, and as a result, one needs to evaluate the function 4 times.
The four evaluations in the two preceding expressions are:
(i) f(x(1)+h, x(2)), (ii) f(x(1)−h, x(2)), (iii) f(x(1), x(2)+h), and
(iv) f(x(1), x(2)− h).

In the simultaneous perturbation method, we perturb all variables
simultaneously. So in the above 2-variable example, using simultane-
ous perturbation, we would need to evaluate the function at only two
points. The function evaluations needed would be

(i) f(x(1) + h(1), x(2) + h(2)), and (ii) f(x(1)− h(1), x(2)− h(2)).

These two evaluations would then be used to find the two partial
derivatives. It is perhaps clear now that regardless of the number of
variables, we will only need two evaluations. The formula for this esti-
mate of the derivative is provided formally in Step 3 of the algorithm
description that follows.
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Steps in simultaneous perturbation. Set m, the iteration num-
ber, to 1. Let N denote the number of decision variables. Initialize �x 1

to an arbitrary feasible point. We will terminate the algorithm when
the step size μ becomes smaller than μmin, a user-specified value. See
Remark 1 below for rules for selecting μ.

Step 1. Assume that H(i) for every i = 1, 2, . . . , N is a Bernoulli-
distributed random variable, whose two permissible, equally likely,
values are 1 and −1. Using this distribution, assign values to Hm(i)
for i = 1, 2, . . . , N . Then compute hm(i) for every value of i using

hm(i) = Hm(i)cm, (5.4)

where cm is the so-called perturbation coefficient. An example is:
cm = C/mt where C = 0.1 and t = 1/6. See Remark 1 below for
more on this.

Step 2. Calculate F+ and F− using the following formulas:

F+ = f(xm(1) + hm(1), xm(2) + hm(2), . . . , xm(N) + hm(N));

F− = f(xm(1)− hm(1), xm(2)− hm(2), . . . , xm(N)− hm(N)).

Step 3. For i = 1, 2, . . . , N , obtain the value for the partial derivative
using

∂f(�x)

∂x(i)

∣∣∣∣
�x=�xm

≈ F+ − F−

2hm(i)
.

Step 4. For each i, update xm(i) using the following rule.

xm+1(i) ← xm(i)− μ
∂f(�x)

∂x(i)

∣∣∣∣
�x=�xm

.

Notice that, in the above, one needs the values of the derivatives,
which were obtained in Step 3.

Step 5. Increment m by 1 and update μm using some step size de-
caying rule (discussed below). If μm < μmin then STOP; otherwise,
return to Step 1.

Remark 1. Rules for μm and cm: Spall [281] provides the following
guidelines for updating the step size and the perturbation coefficient:

μm =
A

(B +m)l
and cm =

C

mt
.
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Theoretically valid values in the above rules are: l = 0.602 and
t = 0.101. However, the reader is warned that these rules only form
guidelines and may not be reliable for every application [281]. Some
values that this author has used in his experiments with the rules
above are: l = 1, A = 10, B = 100, C = 0.1 and t = 0.5. The values
for both μm and cm should be small in general. If μm is too small,
however, updating will be discouragingly slow. Trial and error is used
in practice to identify the best possible updating rule.
Remark 2. The formula used above for estimating the derivative is
evidently different from the classical finite difference formula. The dif-
ference should become clearer from the discussion below on the finite
difference approach.
Remark 3. The algorithm, as mentioned above, is not guaranteed
to find the global optimum. Hence it is best to run the algorithm a
few times starting at a different point in each run, i.e., with multiple
starts.
Remark 4. Using common random numbers to estimate F+ and F−
is recommended to reduce the effect of simulation noise.
Remark 5. If the solution space is constrained, then one can convert
the problem into one of unconstrained minimization by using a so-
called penalty function. An alternative is to “project” the solution
onto the feasible region. The latter implies that when the algorithm
suggests a solution outside the feasible region, the solution is adjusted
so that it lies just inside the boundary.

A finite difference version. If one were to use a finite difference
estimate instead of the simultaneous perturbation estimate, some steps
in the description given above would change. In Step 1, h(i) for i =
1, 2, . . . , N would be assigned to a constant small value. The other
changes would be:

Step 2. Calculate F+(i) and F−(i) for each i = 1, 2, . . . , N via:

F+(i)=f(xm(1)+h(1)I(i=1), xm(2)+h(2)I(i=2), . . . , xm(N)+h(N)I(i=N));

F−(i)=f(xm(1)−h(1)I(i=1), xm(2)−h(2)I(i=2), . . . , xm(N)−h(N)I(i=N)).

Here I(.) is an identity function that equals 1 when the condition
inside the round brackets is satisfied and equals 0 otherwise.

Step 3. For each i = 1, 2, . . . , N , obtain the value for the partial
derivative using:

∂f(�x)

∂x(i)

∣∣∣∣
�x=�xm

≈ F+(i)− F−(i)
2h(i)

.
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The true values of the derivatives (finite differences and simultaneous
perturbation) can be quite different from the estimates produced by
these techniques; in other words, there is an error or noise (or bias)
in these estimates. As mentioned earlier, we will discuss these is-
sues in Chap. 10 where we present a convergence analysis. Codes for
simultaneous perturbation are provided at [121].

Since the finite difference and simultaneous perturbation methods
contain noise in their derivatives (gradients), they belong to the fam-
ily called stochastic gradient methods. We have presented only two
model-free methods in this family. We will conclude our discussion
on continuous optimization with a model-free method that does not
require derivatives. An important fact that we would like to under-
score here is that both finite difference and simultaneous perturbation
are locally convergent. While this does not ensure reaching the global
optimum, it is still a rather attractive feature in the world of simula-
tion optimization because it can be combined with multiple starts in
practice.

2.2. Non-derivative Methods
The method we discuss here is known as the Nelder-Mead algorithm

[216]. It goes by other names such as downhill simplex and flexible
polygon search. This method is immensely popular because it has
been widely used in the real world with considerable success. Because
it does not have satisfactory convergence properties (not even local
convergence), it is regarded as a heuristic; see however [186].

It is a natural candidate for simulation optimization because it only
needs numeric values of the function [20]. It needs to perform at
least (N +1) evaluations of the function per iteration. The philosophy
underlying this method is quite simple. One starts with a set of feasible
solutions; the set is referred to as a “simplex” or a “polygon.” In
every iteration, a poor solution in the simplex is dropped in favor of a
superior solution. (This method is not to be confused with the simplex
method, which is used for solving linear programs.)

We now provide the steps in the algorithm. The algorithm is written
in terms of minimizing the objective function value. In the description
below and in some other algorithms in this chapter, we will use the
following notation frequently:

�a ← �b.

The above implies that if �a and �b are N -dimensional,

a(j) ← b(j) for j = 1, 2 . . . , N.
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Steps in the Nelder-Mead method. Let N denote the number of
decision variables. Arbitrarily select (N + 1) solutions in the feasible
solution space. We denote the ith solution by �x(i) and the set of these
solutions by P. These solutions together form a so-called polygon or a
simplex.

Step 1. From the set P, select the following three solutions: the solu-
tion with the maximum objective function value, to be denoted by
�xmax, the solution with the second largest objective function value,
to be denoted by �xsl, and the solution with the lowest objective
function value, to be denoted by �xmin. Now compute the so-called
centroid as follows:

�xc ←
1

N

[
−�xmax +

N+1∑

i=1

�x(i)

]
.

(The above is a centroid of all the points except for �xmax.) Then
compute the so-called reflected point as follows:

�xr ← 2�xc − �xmax.

Step 2. Depending on the value of f(�xr), we have three choices:

If f(�xmin) > f(�xr), go to Step 3.

If f(�xsl) > f(�xr) ≥ f(�xmin), go to Step 4.

If f(�xr) ≥ f(�xsl), (i.e., either f(�xr) ≥ f(�xmax) or f(�xmax) >
f(�xr) ≥ f(�xsl)), go to Step 5.

Step 3. We come here if the reflected point is better than the best
point in P. The operation performed here is called expansion.
The idea is to determine if a point even better than the reflected
point can be obtained. Compute the expanded solution as follows:

�xexp ← 2�xr − �xc.

If f(�xexp) < f(�xr), set �xnew ← �xexp. Otherwise, set �xnew ← �xr. Go
to Step 6.

Step 4. We come here if the reflected point is better than �xsl. Set
�xnew ← �xr, and go to Step 6.

Step 5. We come here if the reflected point is worse than �xsl. The op-
eration performed here is called contraction.

If f(�xmax) > f(�xr) ≥ f(�xsl), set �xnew ← 0.5(�xr + �xc), and go
to Step 6.
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Otherwise, compute: �xnew ← 0.5(�xmax + �xc), and go to Step 6.

Step 6. Remove the old �xmax from the polygon, i.e., set �xmax ← �xnew
and return to Step 1.

The algorithm can be run for a user-specified number of iterations.
See [239] for a description that differs from the above. The algorithm
works well only on problems with up to 10 decision variables [29].
Another non-derivative method, which we do not discuss, is that of
Hooke and Jeeves [143].

3. Discrete Optimization
Discrete parametric optimization is actually harder than continu-

ous parametric optimization since the function may have gaps, and
hence derivatives may be of little use. Even when the function can
be evaluated exactly, discrete parametric optimization leads to a diffi-
cult problem, unless the problem has a special structure. Without the
closed form, structure is hard to find, and the structure is hence not
available in the model-free context.

We will make the following important assumption regarding discrete
parametric optimization problems. We will assume that the solution
space is finite (although possibly quite large). Like in the continuous
case, we assume that it is possible to estimate the function at any
given point using simulation, although the estimate may not be exact,
i.e., it may contain some noise/error.

Now, if the solution space is manageably small, say composed of 100
points, then the problem can often be solved by an exhaustive search
of the solution space. An exhaustive search should be conducted only
if it can be performed in a reasonable amount of time. Generally, in an
exhaustive search, one evaluates the function with a pre-determined
number of replications (samples) at all the points in the solution space.
What constitutes a manageably small space may depend on how com-
plex the system is. For an M/M/1 queuing simulation written in C (see
[188] for a computer program), testing the function even at 500 points
may not take too much time, since M/M/1 is a simple stochastic sys-
tem defined by just two random variables. However, if the simulation
is more complex, the time taken to evaluate the function at even one
point can be significant, and hence the size of a “manageable” space
may be smaller. With the increasing power of computers, this size is
likely to increase.

If the solution space is large, i.e., several thousand or more points,
it becomes necessary to use algorithms that can find good solutions



86 SIMULATION-BASED OPTIMIZATION

without having to search exhaustively. Under these circumstances,
one can turn to the so-called meta-heuristic and stochastic adaptive
search techniques. These techniques have emerged in the literature to
solve combinatorial optimization problems of the discrete nature where
the objective function’s value can be estimated but no structure is
available for the form of the objective function.

In general, meta-heuristics work very well in practice but their con-
vergence properties are unknown, while stochastic adaptive search
techniques tend to have well-understood convergence properties, usu-
ally global convergence properties, in addition to being practically use-
ful. We will cover these methods in Sects. 3.2 (meta-heuristic) and 3.3
(stochastic adaptive search).

When we have a search space of a manageable size, we have the
luxury of using a variable number of replications (samples) in func-
tion evaluation during the search for the optimal solution. This can
be done via the ranking and selection methods [106] or the multi-
ple comparison procedure [139]. These methods are likely to be more
efficient than an exhaustive search with a pre-determined number of
replications.

Ranking and selection methods have strong mathematical backing
and serve as robust methods for comparison purposes. As we will
see later, they can also be used in combination with other methods.
We begin this section with a discussion on ranking and selection.

3.1. Ranking and Selection
Ranking and selection methods are statistical methods designed to

select the best solution from among a set of competing candidates.
They have a great deal of theoretical (statistical theory) and empirical
backing and can be used when one has up to 20 (candidate) solutions.
In recent times, these methods have been used effectively on larger
(solution space size �20) problems.

A useful feature of ranking and selection is that if certain conditions
are met, one can guarantee that the probability of selecting the best
solution from the candidate set exceeds a user-specified value. These
methods are also useful in a careful statistical comparison of a finite
number of solutions.

We will discuss two types of ranking and selection methods, namely,
the Rinott method and the Kim-Nelson method. The problem consid-
ered here is one of finding the best solution from a set of candidate



Parametric Optimization 87

solutions. We may also want to rank the solutions. We will discuss
the comparison problem as one in which the solution with the greatest
value for the objective function is declared to be the best. We begin
with some notation.

r: the total number of solutions to be evaluated and compared.

X(i, j): the jth independent observation from the ith solution. This
needs some explanation. Recall from Chap. 2 that to estimate steady-
state (or long-run) performance measures, it becomes necessary to
obtain several independent observations of the performance measure
under consideration. (Usually, these observations are obtained from
the independent replications of the system.) In our context, the perfor-
mance measure is the objective function. If we have r solutions to com-
pare, then clearly, i takes values from the set {1, 2, . . . , r}. Similarly,
j takes values from the set {1, 2, . . . ,m}, where m denotes the total
number of independent observations.

X̄(i,m): the sample mean obtained from averaging the first m samples
from the ith solution. Mathematically:

X̄(i,m) =

∑m
j=1X(i, j)

m
.

δ: the so-called “indifference zone” parameter. If the absolute value of
the difference in the objective function values of two solutions is less
than δ, we will treat the two solutions to be equally good (or poor),
i.e., we will not distinguish between those two solutions. Clearly, δ
will have to be set by the user.

α: the significance level in the comparison. In defining δ above, we
can state that a ranking and selection method will guarantee with a
probability of (1− α) that the solution selected by it as the best does
have the largest mean, if the true mean of the best solution is at least
δ better than the second best.

We will assume throughout the discussion on ranking and selec-
tion methods that the values of X(i, j) for any given i are normally
distributed and that their mean and variance are unknown.

3.1.1 Steps in the Rinott Method

After reviewing the notation defined above, select suitable val-
ues for α, δ, and the sampling size, m, where m ≥ 2. For each
i = 1, 2, . . . , r, simulate the system associated with the ith solution.
Obtain m independent observations of the objective function value for
every system. X(i, j), as defined above, denotes the jth observation
(objective function value) of the ith solution.
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Step 1. Find the value of Rinott’s constant hR using the tables in
[325] or from the computer program in [22]. This value depends
on m, r,and α. For each i = 1, 2, . . . , r, compute the sample mean
using:

X̄(i,m) =

∑m
j=1X(i, j)

m
,

and the sample variance using:

S2(i) =
1

m− 1

m∑

j=1

[
X(i, j)− X̄(i,m)

]2
.

Step 2. Compute, for each i = 1, 2, . . . , r,

Ni = max

(
m,

[
h2RS

2(i)

δ2

]+)
,

where [a]+ denotes the smallest integer greater than a. If m ≥
maxiNi, declare the solution with the maximum X̄(i,m) as the
best solution. STOP.

Otherwise, obtain max(0,Ni − m) additional independent obser-
vations of the objective function value for the ith solution, for
i = 1, 2, . . . , r. Then declare the solution(s) with the maximum
value for X̄(i,Ni) as the best.

We now discuss the Kim-Nelson method [166], which may require
fewer observations in comparison to the Rinott method [246].

3.1.2 Steps in the Kim-Nelson Method

After reviewing the notation defined above, select suitable val-
ues for α, δ, and the sampling size, m, where m ≥ 2. For each
i = 1, 2, . . . , r, simulate the system associated with the ith solution.
Obtain m independent observations of the objective function value for
every system. X(i, j), as defined above, denotes the jth observation
(objective function value) of the ith solution.

Step 1. Find the value of the Kim-Nelson constant using:

h2KN =
[
[2{1− (1− α)1/(r−1)}]−2/(m−1) − 1

]
[m− 1].

Step 2. Let I = {1, 2, . . . , r} denote the set of candidate solutions.
For each i = 1, 2, . . . , r compute the sample mean as:

X̄(i,m) =

∑m
j=1X(i, j)

m
.
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For all i = l, i ∈ I, l ∈ I, compute:

S2(i, l) =
1

m− 1

m∑

j=1

[X(i, j)−X(i, l) + X̄(l,m)− X̄(i,m)]2.

Step 3. Compute:

N̆il =

(
h2KNS

2(i, l)

δ2

)−
,

where (a)− denotes the largest integer smaller than a. Let Ni =

maxi �=l N̆il.

If m ≥ (1+maxi Ni), declare the solution with the maximum value
for X̄(i,m) as the best solution, and STOP.

Otherwise, set p ← m, and go to the next step.

Step 4.

Let Is = {i : i ∈ I and X̄(i, p) ≥ X̄(l, p)−Wil(p) ∀l ∈ I, l �= i}, where

Wil(p) = max

(
0,

δ

2p

[
h2KNS(i, l)

δ2
− p

])
.

Then set: I ← Is.

Step 5. If |I| = 1, declare the solution whose index is still in I as the
best solution, and STOP. Otherwise, go to Step 6.

Step 6. Take one additional observation for each system in I and set
p ← p + 1. If p = 1 + maxi Ni, declare the solution whose index is
in I and has the maximum value for X̄(i, p) as the best solution,
and STOP. Otherwise, go to Step 4.

3.2. Meta-heuristics
When we have several hundred or several thousand solutions in

the solution space, neither ranking and selection methods nor ex-
haustive enumeration can be used directly. We may then resort to
using meta-heuristics. Since it becomes difficult to use a variable
number of replications, as needed in ranking and selection, with meta-
heuristics, one usually uses a large, but fixed, pre-determined number
of replications (samples) in evaluating the function at any point in
the solution space. As stated above, meta-heuristics do not have sat-
isfactory convergence properties, but often work well in practice on
large-scale discrete-optimization problems. In this subsection, we will
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cover two meta-heuristic techniques: the genetic algorithm and tabu
search. The genetic algorithm appears to be the oldest meta-heuristic
in the literature.

Simulated annealing, another meta-heuristic, has now been ana-
lyzed extensively for its convergence properties. Because of this, it
is nowadays said to belong to a class of techniques called stochastic
adaptive search (SAS). Hence, we will discuss it in the next subsec-
tion with other SAS techniques, focusing on the genetic algorithm and
tabu search in this subsection. We do note that the line between meta-
heuristics and SAS is rather thin because if shown to be convergent
a meta-heuristic may be called an SAS technique, and we use this
demarcation only to help us in organizing our discussion.

Meta-heuristics rely on numeric function evaluations and as such can
be combined with simulation. On large-scale problems, it is difficult to
obtain the optimal solution. Therefore, usually, the meta-heuristic’s
performance (on a large problem) cannot be calibrated with reference
to that of an optimal solution. The calibration has to be done with
other available heuristic methods or, as we will see later, with pure
random search. Also, one must remember that meta-heuristics are
not guaranteed to produce optimal solutions, but only good solutions;
further they produce good solutions in a reasonable amount of time on
the computer. In particular, we note that most meta-heuristics do not
even guarantee local convergence, as opposed to global convergence
guaranteed by many SAS techniques.

Before plunging into the details, we discuss what is meant by a
“neighbor” of a solution. We will explain this with an example.

Example. Consider a parametric optimization problem with two
decision variables, both of which can assume values from the set:

{1, 2, . . . , 10}.

Now consider a solution (3, 7). A neighbor of this solution is (4, 6),
which is obtained by making the following changes in the solution
(3, 7).

3 −→ 4 and 7 −→ 6.

It is not difficult to see that these changes produced a solution—
(4, 6)—that lies in the “neighborhood” of a given solution (3, 7).
Neighbors can also be produced by more complex changes.

Clearly, the effectiveness of the meta-heuristic algorithm will depend
on the effectiveness of the neighbor generation strategy. Almost all the
algorithms that we will discuss in the remainder of this chapter will
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require a neighbor generation strategy. The idea behind the so-called
hit-and-run strategy originates from [279]. An in-depth discussion of
this strategy and its variants which select improving neighbors can be
found in Chap. 6 of [333]. We now discuss this strategy in some detail.

Hit-and-run strategy. The underlying idea is similar to that used
in simultaneous perturbation. Let �x = (x(1), x(2), . . . , x(N)) be the
current solution with N decision variables. Assume that every H(i),
for i = 1, 2, . . . , N , is itself a Bernoulli-distributed random variable,
whose two permissible, equally likely, values are 1 and −1. Using this
distribution, assign values to H(i) for i = 1, 2, . . . , N . Let c(i) denote
the step size for the ith decision variable. Then, a new solution, �y, i.e.,
a neighbor, is generated as follows: For i = 1, 2, . . . , N ,

y(i) ← x(i) +H(i)c(i),

where the value of c(i) is the least increment permitted for the ith
decision variable. Thus, for instance, if the ith decision variable
assumes values from an equally spaced set, {2, 4, 6, 8, . . . , 20}, then
c(i) is clearly 2. Obviously, this definition of c(.) is appropriate for de-
cision variables that have equally spaced values. For variables that do
not take values from equally spaced sets, one must select c(.) in a way
such that y(.) becomes a feasible solution for every c(.) selected. We
also note that c(.) does not have to be the least increment permitted.
For variables assuming values from equally spaced sets, c(.) can be
any integer multiple of the least increment. We now illustrate the
hit-and-run strategy with an example.

Example. Consider a parametric optimization problem with two
decision variables, both of which can assume values from the set:

{1, 2, . . . , 10}.

Now consider a solution �x = (1, 7). We use the Bernoulli distribution
to generate random values for H(.). Assume that our random number
generator leads us to: H(1) = −1 and H(2) = 1. Let c(i) = 1 for
i = 1, 2. Then, a new solution should be:

�y = (1− 1, 7 + 1) = (0, 8).

The above solution is not feasible, since it does not belong to the
solution space. Hence, we perform one more attempt to generate a
neighbor. Let us assume that on this occasion, the random number
generator produces the following values: H(1) = 1 and H(2) = 1.
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Then, the new solution should be:

�y = (1 + 1, 7 + 1) = (2, 8),

which is a feasible solution. Thus, it is clear that this hit-and-run-based
strategy may not yield a feasible neighbor in every attempt, and when
that happens, one should keep attempting to generate neighbors until
a feasible neighbor is generated. If one gets stuck in a point for which
no feasible neighbor exists, one should restart the search at a randomly
selected different point.

3.2.1 The Genetic Algorithm

The genetic algorithm is a very popular meta-heuristic inspired by
evolutionary phenomena that favor reproduction of individuals with
certain traits. The algorithm has been applied extensively in the in-
dustry with a good deal of success. For expositionary purposes, we
will first present a highly simplified version of the algorithm, and then
discuss some more refined variants.

Steps in the genetic algorithm. Letm denote the iteration number
in the algorithm. Let mmax denote the maximum number of iterations
to be performed. This number has to be pre-specified, and there is no
rule to find an optimal value for it. Usually, mmax is dictated by the
permissible amount of computer time.

Step 1. Set m = 1. Select r initial solutions, where r > 1. The value
of r is specified by the user. Ideally, all the r solutions should be
relatively “good,” although this is not a requirement.

Step 2. Identify the best and the worst among the r solutions (for
minimization, the best solution is the one with the minimum ob-
jective function value and the worst is the one with the maximum
objective function value). Denote the best by �xbest and the worst by
�xworst. Randomly select a neighbor of �xbest, and call it �xnew. Now,
replace the worst solution by the new solution. In other words:
�xworst ← �xnew. Do not change any other solution and go to Step 3.
Note that the solution set of r solutions has now changed.

Step 3. Increment m by 1. If m = mmax, return �xbest as the best
solution and STOP. Otherwise, go back to Step 2.

The value of r depends on the size of the problem. Intuition suggests
that a large value for r may lead to better performance. A practical
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modification of Step 2 is to check if the new solution is better than
the worst. If it is, the new solution should replace the worst; if not,
one should return to Step 2 and generate a new neighbor of the best
solution.

The format described above for the genetic algorithm is one out of
a very large number of variants proposed in the literature. Shortly, we
will discuss some refined variants of this format.

We now discuss why this algorithm is called a “genetic” algorithm.
Survival of the fittest is a widely believed theory in evolution. It is
believed that the reproduction process favors the fittest individual;
in other words, the fittest individual reproduces more. As such, the
fittest individuals get more opportunities—via mating—to pass their
genes to the next generation. And an accepted belief is that this, in
the next generation, produces individuals who are especially capable of
reproduction. In other words those genes are passed that can produce
healthy individuals capable of reproduction. Because the algorithm
uses a number of solutions within each iteration, it is also called a
population-based algorithm.

In each generation (iteration) of the algorithm, one has a set of
individuals (solutions). The algorithm allows only the fit individuals
to reproduce. Fitness, in our context, is judged by how good the
objective function is. The algorithm also assumes that a good solution
(read a potential parent with strong reproductive features) is likely to
produce a good or a better neighbor (read a child that has good or
even a better capability of reproducing).

In Step 2, the algorithm selects the best solution (the individual
fittest to reproduce), selects its neighbor (allows it to reproduce and
produce a child), and then replaces the worst solution (the individual
least fit for reproduction dies) by the selected neighbor (child of a
fit individual). In the process, in the next iteration (generation), the
individuals generated are superior in their objective function values.
This continues with every iteration producing a better solution.

Example. We next show the steps in the genetic algorithm via a
simple example with two decision variables which assume values from
the set {1, 2, . . . , 10}. We wish to minimize the function.

Step 1. Set m = 1. Let us set r, the population size, to 4. Let us
select the 4 solutions to be: (2, 4), (1, 5), (4, 10), and (3, 2), and
assume the respective function values to be: 34, 12, 45, and 36.
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Step 2. Clearly: �xbest = (1, 5) and �xworst = (4, 10). Let the ran-
domly selected neighbor (�xnew) of the best solution be (2, 6).
Replacing the worst solution by the new solution, our new popula-
tion becomes:

(2, 4), (1, 5), (2, 6), and (3, 2).

Then we go back to Step 2, and then perform additional iterations.

Refined variants. The texts [227, 281] discuss a number of variants
of the algorithm described above. We discuss a few below.

Ranking : In one variant, in Step 2, the worst and the second worst
solutions are replaced by neighbors of the best and the second best
solutions respectively. In general, one can rank all the r solutions
(possibly using the ranking and selection procedures discussed above).
Then, in Step 2, one can replace the kth worst solution by a neighbor
of the kth best solution for k = 1, 2, . . . , n, where

the maximum value of n =

{
( r2 + 1)− if r is even
( r2)

− if r is odd

where (l)− is the largest integer smaller than l. Thus, if r = 6, (r/2 +
1)− = 3, while if r = 5, (r/2)− = 2.

Cross-over and mutation: A more refined version of the genetic algo-
rithm uses the notions of cross-over and mutation to produce neigh-
bors. In a “cross-over,” �xnew is generated by combining the best and
the second best solutions; the underlying motive is that the two “par-
ents” are the best and the second best while the new solution is the
“child” that inherits the best traits. The combining mechanism works
as follows. Each solution is assumed to be composed of “genes.” So in
(a, b), a is the first gene and b the second. An example of a cross-over-
generated child, whose parents are (2, 4) and (1, 5), is (1, 4). In this
child, the first gene, i.e., 1, comes from the second parent, while the
second, i.e., 4, comes from the first. In a so-called mutation, some so-
lution (often the best) is “mutated” by swapping “genes.” An example
of a mutant of (1, 5) is (5, 1). In one variant of the genetic algorithm
[133], several mutant and cross-over-generated children are produced,
and much of the older generation (ninety percent) is replaced by the
progeny.

Coding and fitness functions : In yet another strategy, the actual deci-
sion space is converted into a string of binary numbers, which are then
used to determine which strings lead to superior objective function
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values. These strings are treated as the genes of the cross-over and
mutation strategy, and then combined to produce superior progeny.
See [281] for a detailed coverage of this topic.

3.2.2 Tabu Search

The tabu search algorithm, which originated from the work in [100],
has emerged as a widely-used meta-heuristic. It has been adapted to
solve a large number of combinatorial-optimization problems. It has
already appeared in some commercial simulation-optimization pack-
ages, e.g., OPTQUEST [103]. A distinctive feature of the tabu search
algorithm is the so-called tabu list. This is a list of mutations that are
prohibited in the algorithm. Let us illustrate the idea of mutations in
the context of tabu search with a simple example.

As is perhaps clear from our discussion of the genetic algorithm,
in a meta-heuristic, we move from one solution to another. Thus, if a
problem with 2 decision variables is considered, in which both decision
variables can assume values from the set {1, 2, 3}, a possible move is:

(2, 1)
to−→ (3, 2).

In the above move, for the first decision variable, the “mutation”

is 2
to−→ 3, and for the second decision variable, the “mutation” is

1
to−→ 2.
The tabu list is a finite-sized list of mutations that keeps chang-

ing over time. We now present step-by-step details of a tabu search
algorithm. The algorithm is presented in terms of minimization of the
objective function value.

Steps in tabu search. Let m denote the iteration number in the
algorithm. Let mmax denote the maximum number of iterations to be
performed. Like in the genetic algorithm, mmax has to be pre-specified,
and there is no rule to find an optimal value for it. Also, as stated
earlier, this number is based on the available computer time to run
the algorithm.

Step 1. Set m = 1. Select an initial solution �xcurrent randomly. Set:

�xbest ← �xcurrent,

where �xbest is the best solution obtained so far. Create N empty
lists. Fix the maximum length of each of these lists to r. Both N
and r are pre-specified numbers. One list will be associated with
each decision variable.
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Step 2. Select a neighbor of �xcurrent arbitrarily. Call this neigh-
bor �xnew. If all the tabu lists are empty, go to Step 4. Otherwise,
go to Step 3.

Step 3. Consider the move �xcurrent
to−→ �xnew. For this move, there

is one mutation associated with each decision variable. Check if
any of these mutations is present in its respective tabu list. If the
answer is no, go to Step 4. Otherwise, the move is considered tabu
(illegal); go to Step 5.

Step 4. Enter each mutation associated with �xcurrent
to−→ �xnew at the

top of the respective tabu list. Then push down, by one position, all
the entries in each list. If the tabu list has more than r members, as
a result of this addition, delete the bottommost member. Then set

�xcurrent ← �xnew.

If the new solution is better than the best obtained so far, replace
the best obtained so far by the current. That is if

f(�xcurrent) < f(�xbest), set �xbest ← �xcurrent.

Step 5. Increment m by 1. If m = mmax, STOP, and return �xbest as
the solution. Otherwise, go to Step 2.

The tabu list is thus a list of mutations that have been made re-
cently. Maintaining the list avoids the re-evaluation of solutions that
were examined recently. This is perhaps a distinguishing feature of this
algorithm. It must be added, however, that in simulation optimization
even if a solution is re-examined, it is not necessary to re-simulate the
system. All the evaluated solutions can be stored in a so-called binary
tree, which is a computer programming construct. Once a solution is
simulated, its objective function value can be fetched every time it is
needed from the binary tree, making re-simulation unnecessary.

Examples of tabu lists. Consider a problem with two decision vari-
ables: s and q, where each decision variable can assume values from:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
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Then the following listing is an example of what gets stored in a tabu
list of length 3. Each element in this list is a move.

s q

2
to−→ 3 11

to−→ 12

4
to−→ 3 2

to−→ 3

3
to−→ 2 7

to−→ 8

At this point, if the mutation, 3
to−→ 2, is generated for s in Step 3,

it will not get stored since it is already in the tabu list. On the other

hand, the mutation 3
to−→ 4, is not tabu, and hence the new list for s

will be:
s

3
to−→ 4

2
to−→ 3

4
to−→ 3

We need to make a few additional remarks.
Remark 1. An alternative interpretation of what is tabu—an in-
terpretation commonly found in the literature—is to store the entire
move as a mutation. In such an implementation, only one tabu list is
maintained for the entire problem, and the entire move is treated as a
mutation. An example of a tabu list for this implementation is:

(3, 4)
to−→ (4, 5)

(2, 6)
to−→ (3, 1)

(4, 2)
to−→ (2, 5)

Remark 2. In yet another interpretation of what is tabu, whenever
a move is selected, the reverse move is entered in the tabu list. For

instance, if the algorithm makes the following move (3, 4)
to−→ (4, 5),

then the move (4, 5)
to−→ (3, 4), is stored in the tabu list. This prevents

cycling.
Remark 3. Our strategy for declaring a move to be tabu (in Step
3) may be overly restrictive. One way to work around this is to add
a so-called aspiration criterion. A simple aspiration criterion, cited in
[133], determines if the selected neighbor is actually better than the
best solution so far. If the answer is yes, the tabu list consultation
steps are skipped, the newly selected neighbor is treated as �xcurrent,
and then one goes to Step 5. This would require a slight modification
of Step 2, as shown below.
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Step 2. Select a neighbor of �xcurrent arbitrarily. Call this neighbor
�xnew.

If f(�xnew) < f(�xbest) set:

�xbest ← �xnew, and �xcurrent ← �xnew,

and go to Step 5.

Otherwise, check to see if all the tabu lists are empty. If yes, go to
Step 4 and if no, go to Step 3.

Of course, the aspiration criterion could be less strong. For instance,
an aspiration criterion could determine how many of the new mutations
are in their respective tabu lists. If this number is less than N, we could
consider the new neighbor as non-tabu and accept it.
Remark 4. The length of the tabu list, r, should be a fraction of
the problem size. In other words, for larger problems, larger tabu lists
should be maintained. Very small tabu lists can cause cycling, i.e.,
the same solution may be visited repeatedly. Very large tabu lists can
cause the algorithm to wander too much!

As is perhaps obvious from these remarks, there are various ways of
implementing tabu search. There is a voluminous literature on tabu
search, and the interested reader is referred to [104] for more details.

3.3. Stochastic Adaptive Search
This subsection is devoted to a number of stochastic adaptive search

(SAS) techniques that (i) have proven global convergence properties
and (ii) tend to “adapt” in the search process [333]. The implication
of global convergence, as discussed above, is that the technique is
guaranteed in the limit to generate the global optimum. The idea
of adapting implies that new solutions are generated on the basis of
past experience with previous solutions. As the name suggests, the
technique uses a stochastic/probabilistic mechanism of some kind to
generate new solutions.

We will begin our discussion with a simple search technique, called
pure random search, that uses a stochastic mechanism in its search but
does not adapt. The idea is to show how SAS techniques differ from
a search technique that uses stochastic search but fails to adapt to
results from previous iterations. The other motivation for discussing
it is that pure random search can be used as the much needed bench-
mark against existing and newly developed meta-heuristic and SAS
techniques. Obviously, if a technique takes more time (or iterations)
than pure random search, then its worth is questionable. Unfortu-
nately, both the genetic algorithm [255] and tabu search do not have
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guarantees of outperforming pure random search. Having said that,
both are known to work well in practice and are hence regarded as
meta-heuristics, probably implying that they defy logic and work in
their own mysterious ways!

Pure random search. Pure random search selects every solution in
the solution space with the same probability. The algorithm selects
a solution randomly in every iteration. If the new solution is better
than the best solution selected thus far, i.e., the current best, the new
solution replaces the current best. This process is repeated a large
number of times (theoretically infinitely many times). We now present
a formal description in terms of maximizing the objective function.

Steps in pure random search. Let (x(1), x(2), . . . , x(N)) denote N
decision variables, where x(i) assumes values from the finite set A(i).
Thus A(i) denotes the finite set of values that are permitted for the
ith decision variable. Let p(i, a) denote the probability of selecting the
value a for the ith decision variable. We define it as:

p(i, a) =
1

|A(i)| for i = 1, 2, . . . , N, and a ∈ A(i), (5.5)

where |A(i)| denotes the number of elements (cardinality) in the set
A(i). Set Rbest to a small value that is smaller than the lowest possible
value for the objective function. Set mmax to the maximum number
of iterations permitted and m, the number of iterations, to 1.

Step 1. For i = 1, 2, . . . , N , select a value x(i) from the set A(i) with
probability p(i, x(i)). Let the solution be denoted by �x. Evaluate
the objective function at that point, i.e., f(�x), via simulation.

Step 2. If f(�x) > Rbest, set �xbest ← �x and Rbest ← f(�x). Go to
Step 3.

Step 3. Increment m by 1. If m < mmax return to Step 1. Otherwise,
STOP.

We illustrate the above with a simple example.

Example. Consider a problem with two decision variables, where the
first decision variable (i = 1) can assume three values, numbered 1, 2,
and 3, while the second (i = 2) can assume two values, numbered 1
and 2. Thus, we have a problem with six different solutions. Then,
using Eq. (5.5), we have:

p(1, a) =
1

3
for a = 1, 2, 3 and p(2, a) =

1

2
for a = 1, 2.
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Step 1. We now generate random numbers, U1 and U2, from the
uniform distribution Unif(0, 1) to select the values of the decision
variables x(1) and x(2). If U1 < 1/3, set x(1) = 1; if 1/3 ≤ U1 < 2/3,
set x(1) = 2; and otherwise, set x(1) = 3. If U2 < 1/2, set x(2) = 1;
else set x(2) = 2. After generating the solution, evaluate its objective
function value via simulation.
Perform Steps 2 and 3.

It should be clear from the above that in every iteration a solution
is randomly selected and that the probability of selecting any solu-
tion in any iteration is the same. The probability of selecting any
solution in the above case is 1

3 · 1
2 = 1/6 for each of the six solutions.

In the limit, i.e., as m tends to infinity, the algorithm is guaranteed to
visit every solution and hence also the global optimum.

Since the probability of selecting a solution does not change in the
algorithm, pure random search is essentially non-adaptive. In contrast,
all the remaining algorithms in this section will be adaptive, i.e., the
probability of selecting a solution in any given iteration will change,
directly or indirectly depending on what the algorithm has experienced
in previous iterations. This perspective will be useful to the reader
in viewing the motivation for any SAS technique and for judging its
worth.

3.3.1 A Learning Automata Search Technique

We now discuss an SAS technique based on the theory of the so-
called “common payoff” automata games in which the probability of
selecting a solution is stored like in pure random search but is updated
on the basis of the algorithm’s experience with objective function val-
ues encountered. The technique was developed by [298] in 1987. We
refer to it as the Learning Automata Search Technique (acronym
LAST).

LAST begins like pure random search by setting probabilities for
selecting values for every decision variable. But with every iteration,
it starts adapting to the function surface, eventually zeroing in on the
global optimum. The process of adapting is achieved by updating the
probabilities of selecting values. The objective function value of the so-
lution selected in the iteration is used to update the probabilities in
that iteration.

The scheme underlying the updating mechanism is quite simple.
Decision variable values that produce “good” objective function values
are rewarded via an increase in their probabilities of getting selected in
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the future, while those that produce “poor” objective function values
are punished by a reduction in their probabilities. We now present a
formal description of the underlying mechanism.

Let (x(1), x(2), . . . , x(N)) denote N decision variables (parameters),
where x(i) takes values from the finite set A(i). Thus, A(i) denotes
the finite set of values that are permitted for decision variable i. Let
pm(i, a) denote the probability of selecting the value a for the ith
decision variable in the mth iteration of the algorithm. As stated
above, the algorithm starts as a pure random search. Mathemati-
cally, this implies that: p1(i, a) = 1

|A(i)| for i = 1, 2, . . . , N, and every

a ∈ A(i). The updating scheme of the algorithm that we will see below
has to ensure that:

∑
a∈A(i) p

m(i, a) = 1 for all (i, a)-pairs and every
m. Since the probabilities are updated using the objective function
values, the objective function value has to be normalized to a value
between 0 and 1. This is achieved via:

F =
R−Rmax

Rmax −Rmin
, (5.6)

where R denotes the actual (or raw) objective function value, F
denotes the normalized objective function value, Rmax denotes the
maximum value for the actual objective function, and Rmin denotes
the minimum value for the actual objective function. Knowledge of
Rmax and Rmin is necessary for this algorithm. If these values are not
known, one must use guessed estimates.

The best normalized objective function value, obtained thus far
in the algorithm, will be denoted by B(i, a) for i = 1, 2, . . . , N and
a ∈ A(i). We will need a constant step size, to be denoted by μ, in
the updating. In general, μ ∈ (0, 1); e.g., μ = 0.1. We present the
algorithm in terms of maximizing the objective function value.

Steps in LAST.

Step 1. Set the number of iterations, m, to 1. Let N denote the num-
ber of decision variables. Set pm(i, a) = 1/|A(i)| and B(i, a) = 0 for
i = 1, 2, . . . , N and every a ∈ A(i). The upper limit on the num-
ber of iterations to be performed will be denoted by mmax. Assign
suitable values to μ, Rmax, Rmin, and mmax. Set Fbest = 0.

Step 2. For i = 1, 2, . . . , N , select a value x(i) from A(i) with prob-
ability pm(i, x(i)). Let the new solution be denoted by �x.
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Step 3. Evaluate the objective function value associated with �x. Let
the value obtained be denoted by R. Calculate the normalized
objective function value, F , using Eq. (5.6). If F > Fbest, set

�xbest ← �x and Fbest ← F.

Step 4. Set i = 1.

Step 5. For a = 1, 2, . . . , |A(i)|, do:
If B(i, a) < B(i, x(i)), set

pm+1(i, a) ← pm(i, a)− μ[B(i, x(i))−B(i, a)]pm(i, a).

If B(i, a) > B(i, x(i)), set

pm+1(i, a) ← pm(i, a)+μ[B(i, a)−B(i, x(i))]
[1−pm(i, a)]pm(i, x(i))

|A(i)|−1
.

Step 6. Set

pm+1(i, x(i)) ← 1−
a=|A(i)|∑

a �=x(i);a=1

pm+1(i, a).

If i < k, increment i by 1, and go back to Step 5. Otherwise,
increment m by 1, and go to Step 7.

Step 7. If m < mmax, go to Step 8; otherwise STOP returning �xbest
as the solution.

Step 8. (Updating B) For i = 1, 2, . . . , N , do:

If F > B(i, x(i)), set B(i, x(i)) ← F.

Step 9. Return to Step 2.

Remark 1. LAST is likely to revisit the same solution a number of
times, which may imply repeated simulation of the same solution. This
difficulty can be circumvented, like in the case of tabu search, by main-
taining a dynamic memory structure, e.g., binary tree, which stores
all the solutions that were evaluated in the past. Whenever a solution
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that was tried previously is re-visited, its objective function’s value
is fetched from the memory, thereby avoiding re-simulation. When
a newly generated solution is identical to the solution in the previ-
ous iteration, it is clearly unnecessary to re-simulate the new solution.
Hence, even if a dynamic memory structure is not maintained, the
optimization problem should always check for this before simulating a
new solution.
Remark 2. The size of the B matrix and the number of probabilities
are very small compared to the solution space. For instance, in a
problem with 10 decision variables with 2 values for each variable, the
solution space is 210, but the number of elements in the B matrix is
only (10)(2) = 20, and the number of probabilities is also 20. Further,
the matrix B can also be stored as a binary tree, thereby reducing the
memory requirements. This is possible because as long as a pair (i, a)
is not tried, its value is 0, and hence the matrix is sparse.
Remark 3. The problem of requiring the storage of a large number of
many probabilities in large-scale problems can sometimes be overcome
by using the so-called parameter dependence network [262], which uses
Bayesian learning theory. The network can be integrated within the
simulator to adaptively search the decision variable space.
Remark 4. Rmin and Rmax should actually be the greatest lower
bound (GLB) and the lowest upper bound (LUB), respectively, for the
objective function value in case of maximization. If these bounds are
not known, any conservative values for the upper and lower bounds can
be used. What is essential is that the value of the objective function
value is restrained to the interval (0, 1). We note, however, that if
as a result of guessing, Rmin � GLB and Rmax � LUB, updating
can become very slow. Hence, these values should be chosen carefully,
making sure that updating is not unacceptably slow.
Remark 5. In LAST, a new solution is not necessarily “near” the cur-
rent solution. Rather, it can be anywhere in the solution space. Thus,
the search is not sequential but geared towards searching the entire
feasible space, which helps in the quest for the global optimum.

Example. Consider a small problem with two decision variables where
each decision variable has three values, numbered 1, 2, and 3. We join
the “learning process” afterm iterations. As a result, theBmatrix will
not be empty. Let us assume that the B matrix after m iterations is:

[
0.1 0.2 0.4
0.1 0.3 0.4

]
.
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Let the value of �x selected in the (m+1)th iteration be (2, 1). In other
words, for the first decision variable a = 2 was selected and for the
second a = 1 was selected. Let the objective function value, F , be 0.1.
Fbest, it should be clear from the B matrix, is assumed to be 0.4.
We now show all the calculations to be performed at the end of this
iteration.

Now from Step 5, since B(1, 1) < B(1, 2), p(1, 1) will decrease and
will be updated as follows.

pm+1(1, 1) = pm(1, 1)− μ[B(1, 2)−B(1, 1)]pm(1, 1).

The probability p(1, 3) will increase, since B(1, 3) > B(1, 2), and the
updating will be as follows:

pm+1(1, 3) = pm(1, 3) + μ[B(1, 3)−B(1, 2)]
[1− pm(1, 3)]pm(1, 2)

3− 1
.

And finally from Step 6, p(1, 2) will be updated as follows:

pm+1(1, 2) = 1− pm+1(1, 1)− pm+1(1, 3).

Similarly, we will update the probabilities associated with the second
decision variable. Here both p(2, 2) and p(2, 3) will increase, since both
B(2, 2) and B(2, 3) are greater than B(2, 1). The updating equations
are as follows:

pm+1(2, 2) = pm(2, 2) + μ[B(2, 2)−B(2, 1)]
[1− pm(2, 2)]pm(2, 1)

3− 1
and

pm+1(2, 3) = pm(2, 3) + μ[B(2, 3)−B(2, 1)]
[1− pm(2, 3)]pm(2, 1)

3− 1
.

The third probability will be normalized as follows:

pm+1(2, 1) = 1− pm+1(2, 2)− pm+1(2, 3).

Since both B(1, 2) and B(2, 1) are greater than F , the new response
will not change the B matrix. Thus the new B matrix will be identical
to the old. And then we conduct the (m + 2)th iteration, and the
process continues

3.3.2 Simulated Annealing

This algorithm has been often hailed as a breakthrough in this field.
It was first formally presented in 1983 in the work of [169]. The mecha-
nism of simulated annealing is straightforward. An arbitrary solution
is selected to be the starting solution. It helps to start at a good
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solution, but this is not necessary. In each iteration, the algorithm
tests one of the neighbors of the current solution for its function value.
If the neighbor is better than (or equally good as) the current solu-
tion (in terms of its objective function value), the algorithm moves
to the neighbor. If the neighbor is worse, the algorithm stays at the
current solution with a high probability but moves to it with a “low”
probability. Moving to a worse solution is also called exploration.

Several iterations of the algorithm are typically needed. As the
algorithm progresses, the probability of exploration is reduced. The
algorithm terminates when the probability of moving to a worse neigh-
bor approaches zero. At each iteration, the best solution obtained
thus far is stored separately. As a result, the best of all the solutions
encountered is never lost from the memory and is eventually returned
as the “best” solution discovered by the algorithm.

Empirically, simulated annealing has been shown to return an
optimal solution on small problems in many well-publicized tests;
remember on small problems, one can determine the optimal solution
by an exhaustive evaluation of the solution space, and hence it is
possible to determine whether the algorithm can return the optimal.
On large-scale problems, however, this is usually not feasible. In
many empirical tests on large-scale problems, the algorithm has been
reported to outperform other heuristics. More importantly, conver-
gence proofs have been developed which show that the algorithm has
the potential to return the optimal solution asymptotically (i.e., as
the number of iterations tends to infinity) provided the probability of
moving into a worse neighbor is decreased “properly.”

Is simulated annealing an SAS technique? It will be evident from
the description below that (i) the algorithm’s behavior depends on
the objective function values from previous iterations and (ii) it uses
a probabilistic mechanism to generate new solutions. In addition, as
stated above, it has mathematical proofs of convergence. Hence, it is
appropriately considered to be an SAS technique.

The simulated annealing algorithm is so named because of its simi-
larity with the “annealing” process in metals. This annealing process
in metals requires that the metal’s temperature be raised and then
gradually lowered so that it acquires desirable characteristics related
to hardness. The simulated annealing algorithm’s behavior is analo-
gous to this metallurgical process because it starts with a relatively
high probability (read temperature) of moving to worse neighbors but
the probability is gradually reduced. The analogy can be taken a little
further. At high temperatures, the atoms in metals have significant
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vibrations. The vibrations gradually reduce with the temperature.
Similarly, at the start, the algorithm has a significant ability to move
out to what appear to be poor solutions, but this ability is reduced
(or rather should be reduced) as the algorithm progresses.

Although this analogy serves to help our intuition, it will be pru-
dent to caution the reader about such analogies because associated
with them is an inherent danger of overlooking the actual reason for
the success (or failure) of an algorithm. Ultimately, mathematical ar-
guments have to be used to determine if the method is guaranteed
to converge. Fortunately, for simulated annealing, there is increasing
evidence of the mathematical kind.

Steps in simulated annealing. Let f(�x) denote the value of the
objective function at �x. Choose an initial solution and denote it by
�xcurrent. Let �xbest denote the best solution thus far. Set: �xbest ←
�xcurrent. Set T , the “temperature,” to a pre-specified value.

The temperature is gradually reduced. But at each temperature,
Steps 2 and 3 are performed for a number of iterations. This is called a
phase in the algorithm. This implies that each phase consists of several
iterations. The number of iterations in each phase should generally
increase with the number of phases. The steps below are written for
minimizing the objective function.

Step 1. Set P , the number of phases conducted thus far, to 0.

Step 2. Randomly select a neighbor of the current solution. Selection
of neighbors is discussed below in Remark 1. Denote the neighbor
by �xnew.

Step 3. If f(�xnew) < f(�xbest), then set: �xbest ← �xnew.

Let Δ = f(�xnew)− f(�xcurrent).

If Δ ≤ 0, set:
�xcurrent ← �xnew.

Otherwise, that is, if Δ > 0, generate a uniformly distributed
random number between 0 and 1, and call it U . If

U ≤ exp(−Δ

T
), set: �xcurrent ← �xnew; else keep �xcurrent unchanged.

Step 4. One execution of Steps 2 and 3 constitutes one iteration of a
phase. Repeat Steps 2 and 3 until the maximum number of itera-
tions permitted for the current phase are performed. See Remark 2
for the maximum number permitted. When these iterations are
performed, go to Step 5.
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Step 5. Increment the phase number P by 1. If P < Pmax, then
reduce T (temperature reduction schemes will be discussed below
in Remark 2) and go back to Step 2 for another phase. Otherwise,
terminate the algorithm and declare �xbest to be the best solution
obtained.

Remark 1. In general, the neighbor selection strategy affects the
amount of time taken to produce a good solution. The hit-and-run
strategy discussed above is one possible strategy for generating neigh-
bors. Other strategies have been discussed in [154, 55, 43, 291].
Remark 2. The issue of temperature reduction has generated a great
deal of debate leading to valuable research. It is well-known that the
algorithm can perform poorly when the temperature is not reduced
at an appropriate rate. Furthermore, finding the right strategy for
temperature reduction may need experimentation. Two issues are rel-
evant here.

i. What should the number of iterations in one phase (remember, in
each phase, the temperature is kept at a constant value) be?

ii. How should the temperature be reduced?

The answer to the first question can lead to two different categories
of algorithms. We have named them impatient and patient.

1. Impatient : In the impatient category, a fixed number of iterations
is associated with each phase, where the number may depend on
the phase number. Once the number of iterations associated with
a phase are complete, the algorithm moves to the next phase and
reduces the temperature. The number of iterations does not depend
on whether the algorithm has actually found a point better than the
current point, i.e., the algorithm does not wait for the objective
function to improve, but once its quota of iterations per phase is
complete, it moves on to the next phase. For instance, one may
choose to perform mmax iterations per phase, where mmax does
not depend on P with mmax ranging from 1 to any large number.
Another strategy is to use a mmax that increases with P . A simple
linear rule that accomplishes this is: mmax(P ) = A+ B · P, where
A ≥ 1 and B ≥ 0 are user-specified integers. A quadratic rule to-
wards the same goal would be as follows: mmax(P ) = A+B · P 2.

2. Patient : This strategy was proposed in [248, 249], where one does
not terminate a phase until a better solution is found. Thus the
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number of iterations per phase may be very large or very small
depending on how the algorithm performs. In practice, the number
of iterations will likely be a random variable that changes with every
phase. It is possible that the actual number of iterations required
per phase may actually increase in practice with the phase number,
P , like in the increasing functions of the impatient variety, but the
number will depend on the function, unlike the arbitrary number
imposed in the impatient variety.

To answer the second question, a general temperature-reduction
strategy is to make the temperature a decreasing function of P . Many
rules have been proposed in the literature to this end. We present three
categories of rules that can be employed: logarithmic, geometric, and
rational.

1. Logarithmic: A logarithmic rule (see e.g., [99, 130]) is

T (P ) =
C

ln(2 + P )
, (5.7)

where T (P ) is the temperature for phase P , P starts at 0, and
C is a user-specified positive constant. The value of C is usually
determined empirically. Small values of C can cause the tempera-
ture to decay very quickly (reducing hopes of reaching the global
optimum).

2. Geometric: A geometric rule (see e.g., [169]) is

T (P + 1) = λT (P ), (5.8)

in which 0 < λ < 1 (e.g., λ = 0.99) and T (0) = C, where C > 0 is
user-specified. An equivalent rule [333] is T (P ) = C(λ)P .

3. Rational : A rule based on a rational function is (also used in neural
networks and reinforcement learning)

T (P ) =
C

B + P
, (5.9)

where C and B are user-specified positive constants, e.g., C = 1
and B = 0 [291]; C > 1 and B > C (used typically in rein-
forcement learning, see e.g., [113]). Another rule is from [193]:
T (P ) = T (0)/(1 +B · T (0) · P ), where B � 1.

Remark 3. The expression exp(−Δ
T ) with which U (the random

number between 0 and 1) is compared needs to be studied carefully.
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For small positive values of T , this expression also assumes small pos-
itive values. When the expression is small, so is the probability of
accepting a worse solution. A general rule of simulated annealing is
that T should decrease as the number of phases increases. Thus, for
instance if the rules discussed above are used for temperature decay, C
(and other relevant constants) should be chosen in a manner such that
when P is zero, exp(−Δ

T ) is significantly larger than zero. Otherwise
the probability of selecting a worse solution will be very small at the
start itself, which can cause the algorithm to get trapped in the nearest
local optimum, essentially negating the idea of exploring. Note also
that if the temperature starts at a high value and is never reduced,
and in addition, the number of iterations per phase keeps increasing,
the algorithm essentially becomes a “wanderer,” which is equivalent
to a pure random search. Thus, one should start with a sufficiently
high temperature and decay the temperature.
Remark 4. When we use simulated annealing with a simulator, we
assume that the estimate produced by the simulator is “close” to the
actual function value. In reality, there is some noise/error. Fortu-
nately, as long as the noise is not too “large,” the algorithm’s behavior
is not impacted (see Chap. 10). It may be a good idea, however, to
increase the accuracy of the function estimation process, by increasing
the number of replications, as the algorithm progresses.
Remark 5. The reason for allowing the algorithm to move to worse
solutions is to provide it with the opportunity of moving away from
a local optimum and finding the global optimum. See Fig. 5.1 (see
page 76). A simulated annealing algorithm that finds X in Fig. 5.1
may still escape from it and go on to find the global optimum, Y .
Remember that if the algorithm moves out of a local optimum and that
local optimum happens to be a global optimum, the global optimum is
not lost because the best solution is always retained in the algorithm’s
memory; such algorithms are called memory-based.
Remark 6. Finally, an important question is: how many phases
(Pmax) should be performed? The answer depends on how the tem-
perature is reduced. When the temperature approaches small values
at which no exploration occurs, the algorithm should be stopped. The
rate at which the temperature is reduced depends on how much time
is available to the user. Slower the decay the greater the chance of
exploring the entire solution space for finding the global optimum.

Example. We will demonstrate a few steps in the simulated annealing
algorithm with an example. The example will be one of minimization.
Consider a problem with two decision variables, x and y, each taking
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values from the set: {1, 2, 3, 4, 5, 6}. We will assume that one iteration
is allowed per phase. The temperature is decayed using the following
rule: T (P ) = 100/ln(2 + P ). Let the current solution be: �xcurrent =
(3, 4). The same solution is also the best solution currently; in other
words: �xbest = (3, 4). Let f(�xcurrent) be 1,400.

Step 1. P is equal to 0. Hence, T = 100/ln(2) = 144.27.

Step 2. Let the selected neighbor of the current solution be: �xnew =
(2, 5), where f(�xnew) = 1,350.

Step 3. Since f(�xnew) < f(�xbest),

�xbest = �xnew = (2, 5).

Now: Δ = f(�xnew)− f(�xcurrent) = 1,350− 1,400 = −50.

Since Δ < 0, set: �xcurrent = �xnew = (2, 5).

Step 4. Since only one iteration is to be done per phase, we move to
Step 5.

Step 5. Increment P to 1. Since P < Pmax, re-calculate T to be
2/ln(3) = 91.02.

Step 2. Let the selected neighbor of the current solution be �xnew =
(1, 6), where f(�xnew) = 1,470.

Hence Δ = f(�xnew)−f(�xcurrent) = 1,470−1,350 = 120.

Since Δ > 0, generate U , a uniformly distributed random number
between 0 and 1. Let U be 0.1. Now:

exp(−Δ

T
) = exp(−120/91.2) = 0.268.

Since U = 0.1 < 0.268, we will actually move into the worse solution.
Hence, �xcurrent = �xnew = (1, 6) and so on.

3.3.3 Backtracking Adaptive Search

BacktrackingAdaptive Search, abbreviated asBAS, is due to [182].
Its convergence properties (e.g., the ability to generate the global op-
timum) are better understood than those of simulated annealing. Like
simulated annealing, this algorithm moves to worse solutions with
some probability, but unlike simulated annealing, this probability does
not depend on a decaying temperature. The probability depends only
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on the values of the objective function of the current point and the
point to which a move is being considered by the algorithm. Also, the
neighbor-generating strategy will use a stochastic generator matrix
that we first discuss.

Stochastic generator matrix. Consider a simple problem where
there are three solutions, which are indexed as 1, 2, and 3. Now
consider the following matrix:

G =

⎡

⎣
0 0.2 0.8
0.3 0 0.7
0.1 0.9 0

⎤

⎦ .

The sum of elements in any row of this matrix sum to 1, which means
that it is a so-called stochastic matrix. Such matrices will be covered
extensively from the next chapter onwards in the control optimization
setting. Here it is sufficient for the reader to view this matrix as
an entity that can randomly generate a new solution from a current
solution. The generation mechanism works as follows: If the algorithm
is currently in a solution indexed by i, then the probability with which
it be moved to a solution indexed by j is given by G(i, j). We consider
an example next.

Assume that the algorithm is in the solution indexed by 2. Then,
the probability that it will move to the solution with index i is given
by G(2, i). Thus, it will move to the solution indexed as 1 with a
probability of G(2, 1) = 0.3 and to the solution indexed as 3 with
a probability of G(2, 3) = 0.7. In order to achieve the move, one
generates a uniformly distributed random number, U , between 0 and 1.
If U ≤ 0.3, the neighbor (new solution) is the solution indexed as 1,
while if U > 0.3, the solution indexed as 3 becomes the neighbor. Note
that we have assumed the diagonal elements in G to be 0 above, since
it will be clearly inefficient in simulation optimization to consider the
same point again as a neighbor.

Steps in BAS. Set the number of iterations, m, to 1. Let f(�x)
denote the value of the objective function (obtained via simulation)
at �x. Select a solution randomly from the feasible space and denote
it by �xcurrent. Let �xbest denote the best solution so far. Set �xbest ←
�xcurrent. Initialize values to the stochastic generator matrix G. Also
initialize mmax, the maximum number of iterations permitted. The
algorithm is written for minimizing the objective function.

Step 1. Generate a neighbor of the current solution using the stochas-
tic matrix G. Denote the neighbor by �xnew.
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Step 2. Set �xcurrent ← �xnew with a probability of A(current, new),
where current and new denote the indices of the current and the
new solutions respectively. See Remark 1 below for more on how
the probability A(current, new) is computed.This probability is 1
if the new solution is equally good or better than the current solu-
tion. With a probability of 1−A(current, new), do not change the
solution. If f(�xnew) < f(�xbest), set �xbest ← �xnew. Otherwise, if the
new solution is not better than the best, do not change the best
solution.

Step 3. Increment m by 1. If m < mmax, return to Step 1. Otherwise
terminate the algorithm and declare �xbest to be the best solution
obtained.

Remark 1. The acceptance probability, A(current, new), as stated
above, is the probability of accepting a new solution indexed by new
when the current solution is indexed by current. We will always
assume, in accordance with the original description [182, 333], that
this probability will equal 1 if the new solution is as good as or bet-
ter than the current solution. When the new solution is worse than
the current solution, this probability will depend on the values of the
objective function at the current and the new solutions. For instance,
we could define the acceptance probability as:

A(current, new) =

{
1 if f(�xnew) ≤ f(�xcurrent)

exp(− f(�xnew)−f(�xcurrent)
T ) otherwise

,

(5.10)

where T > 0 does not depend on the iteration, but may depend on the
values of the objective function. Hence here T should not necessarily
be viewed as the temperature of simulated annealing. In general T is a
function of f(�xnew) and f(�xcurrent). Other mechanisms for generating
the matrix A can also be used as long as A(current, new) equals 1
when the function finds an improved/equally good point.
Remark 2. Stopping criteria other than mmax can also be used.
Essentially, the value of mmax depends on the time available to the an-
alyst. In global optimization, unless the algorithm has the opportunity
to sample the entire solution space, the chances of finding the global
optimum are low. Hence, higher this value, the better the performance
is likely to be.
Remark 3. The algorithm follows the format of simulated an-
nealing with an important difference: The exploration/backtracking
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probability in BAS does not depend on the iteration number but only
on the objective function values of the current and the new solution.
In simulated annealing, the exploration probability depends, in addi-
tion to the objective function values, on the “temperature,” which in
turn depends on the number of iterations the algorithm has performed
thus far. Also, the convergence properties of the two algorithms are
markedly different, which we will discuss in Chap. 10.
Remark 4. Note that we did not define stochastic generator matrices
in simulated annealing or LAST, because it was not necessary to store
them explicitly in the computer’s memory. However, intrinsically, such
generators exist underlying all SAS techniques. In simulated anneal-
ing, we discussed the hit-and-run strategy. Parameters underlying the
hit-and-run strategy can in fact be used to compute this matrix. In
LAST, we can generate this matrix from the probabilities used in the
solution. For instance, in a three-solution problem assume that in a
given iteration, the probabilities of selecting the solutions, indexed 1,
2, and 3, are 0.2, 0.3 and 0.5 respectively. Then, the stochastic gener-
ator matrix in LAST for that iteration is:

G =

⎡

⎣
0.2 0.3 0.5
0.2 0.3 0.5
0.2 0.3 0.5

⎤

⎦ ,

where every row is identical. Also, note that in every iteration of
LAST, this matrix changes.

The remaining two techniques that we discuss have features designed
for simulation optimization. The techniques we discussed above were
designed for global optimization of deterministic problems.

3.3.4 Stochastic Ruler

The stochastic ruler was probably one of the first discrete optimiza-
tion techniques designed for simulation optimization. The original
stochastic ruler is from [329]. Here, we present a modified version from
[6], which is often called the modified stochastic ruler. The algorithm
relies on a stochastic generator matrix (discussed above), which has to
be generated in a specific manner that we discuss below. In general,
the generator matrix is defined as follows in [6]:

G(i, j) = G′(i, j)/W (i),

where i and j are solution indices, W (i) > 0 for all i, and G′(i, j) ≥ 0
for all i, j. Further

∑
j G(i, j) = 1 for every i. The generator can

be defined in numerous ways (see [6]). We will discuss one specific
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mechanism, which we call the uniformly distributed mechanism, for
illustration purposes. Before introducing it, we need some notation.

Let N (i) denote the set of neighbors of the solution indexed by i.
This set may or may not include all the points (solutions) in the so-
lution space, however, it must include at least one point other than i.
Note that it is not necessary for it to include i.

Under the uniformly distributed mechanism, the generator ma-
trix is:

G(i, j) =

{ 1
|N (i)| if j ∈ N (i)

0 otherwise
.

Here, G′(i, j) = 1 for every (i, j)-pair when j ∈ N (i) and G′(i, j) = 0
otherwise; also W (i) = |N (i)|. We illustrate the mechanism with a
simple example.

Example for the G matrix. Assume that we have four solutions
in the solution space, which are indexed as 1, 2, 3, and 4. Further,
assume that N (1) = {1, 2}; N (2) = {1, 2, 3}; N (3) = {2, 3, 4}; and
N (4) = {3, 4}. Then, |N (1)| = 2; |N (2)| = 3; |N (3)| = 3; and
|N (4)| = 2. Then,

G =

⎡

⎢⎢⎣

1/2 1/2 0 0
1/3 1/3 1/3 0
0 1/3 1/3 1/3
0 0 1/2 1/2

⎤

⎥⎥⎦ .

When W (i) = |N (i)|, we will refer to W (i) as the friendliness coef-
ficient of i, indicating that it is a measure of how many candidate
solutions (neighbors) can be generated from a solution.

The basic idea in the stochastic ruler is straightforward. Assume
that a and b are the lower and upper bounds, respectively, of the
objective function, which we wish to minimize. Further assume that
both bounds are known. Clearly then, the value of the objective func-
tion at the optimal solution is a or a value very close to a. Now if we
generate random numbers from the distribution Unif(a, b), then the
probability that a generated random number will exceed a solution’s
objective function value should equal 1 when the solution is the opti-
mal solution. However, if the solution is not optimal, this probability
should be less than 1. Also, if the solution is at its worst point (where
the objective function value is b), this probability should be 0. The
stochastic ruler essentially seeks to maximize this probability, striving
to move the solution to points where this probability is increased. In
the limit, it reaches a point where this probability is maximized, which
should clearly be the optimal solution.
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The working mechanism of the algorithm is simple. One starts with
any randomly selected solution as the current solution. A candidate
(neighbor of a current solution) is chosen to determine if it is bet-
ter than the current solution. To this end, replications of the can-
didate solution are performed via simulation. The ith replication is
compared to the random number, Ui, generated from the distribution
Unif(a, b). A maximum of I (a pre-determined number) replications
are performed. If Ui exceeds the value of the replication in each of the
I occasions, then the new solution replaces the current solution, and
the search continues. If Ui turns out to be smaller in any of the repli-
cations, the candidate is immediately rejected, performing no further
replications. Also, the current solution is kept unchanged, and a new
candidate is selected using the current solution.

We are now ready to present this algorithm formally. We present it
in terms of minimizing the objective function value.

Steps in the modified stochastic ruler.

Step 1. Let the number of visits to a solution �x be denoted by V (�x).
Set V (�x) to 0 for all solutions. Set m, the number of iterations,
to 1. Choose any solution to be the starting solution, and denote
it by �xcurrent. Let �x∗ denote the estimated optimal solution. Set
�x∗ ← �xcurrent. Assign suitable values for a, b, mmax, and I, the
maximum number of replications performed for a solution in a given
iteration. Select G and W (.).

Step 2. Using the generator matrix G generate a neighbor. Denote
the neighbor by �xnew. Set i, the replication number, to 0.

Step 3. Increment i by 1.

Step 4. Perform a replication of the solution �xnew and denote its
value by fi(�xnew). Generate a random number, Ui, from the distri-
bution Unif(a, b).

If Ui < fi(�xnew): the implication is that in all likelihood there
exist solutions that are better than the new solution, indicating
that this (new) solution should be discarded. Hence, do not
change the current solution and go to Step 5.

Otherwise if Ui ≥ fi(�xnew): the implication is that the new
solution may be better than the current solution. Hence, check
to see if i = I. If yes, accept the new solution, i.e., set �xcurrent ←
�xnew, and go to Step 5. Otherwise return to Step 3 to perform
one more replication.
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Step 5. Set V (�xcurrent) ← V (�xcurrent) + 1. If

V (�xcurrent)

W (�xcurrent)
>

V (�x∗)
W (�x∗)

,

set �x∗ ← �xcurrent. Increment m by 1. If m = mmax, STOP; other-
wise return to Step 2.

Note that �x∗ will be returned as the estimated optimal solution from
the algorithm. The optimal solution is estimated using the ratio test in
Step 5, which constitutes a significant difference between the algorithm
presented above and the original version of [329]. We can explain the
intuition underlying this ratio test as follows whenever the friendliness
coefficient, W (.), is proportional to |N (.)|: The friendliness coefficient
in the denominator of the ratio is proportional to how many times
the algorithm leaves the solution, while the numerator in the ratio
is an indicator of how many times the algorithm enters the solution.
Hence, a high value for the ratio is a measure of the attractiveness of
a solution for the algorithm. After all, by its design, the algorithm has
the highest incentive (probability) to visit the optimal and the least
incentive to leave it. The ratio will therefore be the highest for the
optimal solution.

The values of I and mmax depend on the availability of computa-
tional time. Clearly, large values are preferred for mmax. Also, it
is very unusual in simulations to use values less than 4 for I, but a
larger value is likely to improve the efficacy of the algorithm. I is of-
ten increased with m to improve the accuracy as one approaches the
optimal solution, like the number of iterations per phase is increased
as the temperature falls in simulated annealing.

A special feature of this algorithm is that it is likely to discard a
poor solution quickly without performing too many replications. This
feature should on the average save a great deal of time in simula-
tion optimization. In the algorithms preceding the stochastic ruler,
we have assumed that all required replications are performed for a
candidate (neighbor) when its objective function value is determined.
The stochastic ruler is perhaps the first algorithm to utilize this aspect
of simulation in optimization. Using a small value of I in the early
iterations can also lead to significant time savings without sacrificing
accuracy.

3.3.5 Nested Partitions

We conclude our discussion on discrete optimization with the
nested partitions algorithm [273, 274, 275] that has had a significant



Parametric Optimization 117

influence on the field. The algorithm is somewhat unique in its strat-
egy of exploring the solution space of a problem. It seeks to group
solutions together into clusters called regions. The region is hence a
set of solutions. Regions are formed in a way such that the union of all
the regions forms the entire feasible solution space. In every iteration
of the algorithm, each region is sampled for solutions, which are then
simulated using one replication per solution. The region that yields
the best value for the objective function is used to generate a so-called
promising region for the next iteration. In the next iteration, one fur-
ther partitions (divides) the promising region into sub-regions, and the
process continues until one identifies a region carrying a single solution
that is visited most frequently by the algorithm. Asymptotically, this
region is guaranteed to be an optimal solution.

The partitioning approach has similarities with the notion of search
used in a binary tree, which however divides the space it considers
into only two regions at a time. However, nested partitions provides
a more general framework to exhaustively explore the solution space.
The precise mechanism to partition the solution space is left to the
analyst however. We will now define some terms and notation that
we will need.

S: The entire feasible solution, i.e., the set of all the solutions in
the problem.

A singleton set, i.e., a set with just one solution.

S0: The set of all singleton sets in the problem.

An empty set: A set that has no solutions.

A region: A set whose elements are one or more of the solutions.

Consider a small discrete-optimization problem with five solutions,
indexed by 1, 2, 3, 4 and 5. Then, S = {1, 2, 3, 4, 5}. Further, using
our definitions above, a set such as {1, 3} will be considered to be a
region consisting of the solutions indexed by 1 and 3. Also each of the
sets {1}, {2}, {3}, {4}, and {5} will be considered to be singleton sets.
Thus, for this problem,

S0 = {{1}, {2}, {3}, {4}, {5}}.

The so-called “promising” region will be the region that is likely on
the basis of the algorithm’s computations to contain the global opti-
mum. The promising region will be updated in every iteration based
on the information obtained by the algorithm as it makes progress.
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The algorithm will eventually repeatedly identify a singleton set as
the promising region, which will be returned as the optimal solution.

In what follows, we present a version of the algorithm described in
[274]. We present the algorithm in terms of minimizing the objective
function value.

Steps in nested partitions.

Step 1. Set m, the number of iterations, to 1. Let F(m) denote
the promising region in the mth iteration. Set F(m) = S where S
denotes the entire feasible region for the problem. S0 will denote the
set of the singleton sets in the problem. For every singleton set, X ,
in the problem, set V (X ) to 0. Here, V (X ) will denote the number
of times the algorithm has selected (visited) the singleton set X as
a promising region. Set X ∗, the estimated optimal solution, to any
singleton set in the problem. Assign a suitable value for mmax, the
maximum number of iterations permitted.

Step 2. If F(m) is a singleton, i.e., F(m) ∈ S0, then set M = 1 and
Y1 = F(m). Otherwise, partition F(m) into M sub-regions, called
Y1,Y2, . . . ,YM , where M can depend on the contents of the region
F(m) but not on the iteration number m. Note that these sub-
regions are disjoint subsets and that their union must equal F(m).

Step 3. If F(m) = S, i.e., the promising region is the entire feasible
region, then setK = M . Otherwise, aggregate (combine) the region
surrounding F(m), i.e., S\F(m), into one region, call that region
YM+1, and set K = M + 1.

Step 4. Use a random sampling strategy to select L(Yi) indepen-
dent solutions (singleton sets) from each sub-region Yi for i =
1, 2, . . . ,K, where L(Yi) is a randomly generated positive inte-
ger for each i. Simulate the objective function at each of these
solutions. For each sub-region, find the minimum (maximum in
case of maximization) objective function value. Set the minimum
objective function value for the ith sub-region to equal φ(Yi) for
i = 1, 2, . . . ,K. Now select the sub-region that contains the best
objective function as follows:

i∗ ∈ argmin
i∈{1,2,...,K}

φ(Yi),

where any ties that occur are broken randomly. Then, Yi∗ contains
the best objective function value.
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Step 5. If F(m) = S, set F(m+ 1) = Yi∗ ; else set

F(m+ 1) =

{
Yi∗ if i∗ < K
S otherwise

.

Step 6. If F(m + 1) is a singleton set, then increment its selection
counter by 1, i.e., V (F(m+ 1)) ← V (F(m+ 1)) + 1. If V (F(m+
1)) > V (X ∗), set X ∗ ← F(m+ 1).

Step 7. Increment m by 1. If m < mmax, return to Step 2; otherwise
return X∗ as the optimal solution and STOP.

Remark 1. The value of mmax has to be sufficiently large such that
the algorithm repeatedly visits at least one singleton set. In the end,
the singleton set with the highest value for the selection counter is re-
turned as the optimal solution, because asymptotically, the algorithm
is guaranteed to visit the optimal solution infinitely many times.
Remark 2. In Step 5, the algorithm retracts (referred to as “back-
tracks” in the original work, but since we have used backtracking to
mean moving to a worse solution in the context of BAS, we prefer
using the word “retracts”) to the entire feasible region if the best sub-
region is identified to be the surrounding region S\F(m). In another
version of this algorithm from [274] that we do not consider here, the
algorithm retracts to a “super-region” of the most feasible region. The
super-region could be a superset of the surrounding region.
Remark 3. In the algorithm, K denotes the number of regions in
which sampling is performed. The algorithm is an SAS technique pri-
marily because it randomly samples a number of points in each region
for function evaluation. This is a unique feature of this algorithm. The
method of partitioning, like neighbor selection in simulated annealing
and BAS, is left to the user. For the algorithm to be effective, one
must use a practically efficient strategy for partitioning.
Remark 4. In practice, it is not necessary to store the selection
counter, V (.), for every singleton set. It is sufficient to store it only for
the singleton sets visited by the algorithm. This can be accomplished
using a dynamic memory structure in the computer program.

We now present some examples to illustrate Steps 3 and 4 in the
algorithm.

Example 1. Consider the scenario where the promising region, F(m),
is neither a singleton and nor is it the entire feasible region S. Assume
that M = 3 in Step 2, and hence we partition the promising region
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into three sub-regions, Y1, Y2, and Y3, such that Y1∪Y2∪Y3 = F(m).
Then, the surrounding region, i.e., S\F(m), is defined to be Y4. Here,
K = M + 1 = 4. Now assume that we randomly generate: L(Y1) = 4,
L(Y2) = 10, L(Y3) = 2, and L(Y4) = 5. Then, in the ith sub-region,
we sample L(Yi) number of solutions, and then we set the minimum
objective function for the ith sub-region to be φ(Yi). Now, if

2 = argmin
i∈{1,2,...,4}

φ(Yi),

then Y2 is likely to contain the best solution. Hence, F(m+ 1) = Y2.

Example 2. Suppose in the above example it turns out that

4 = argmin
i∈{1,2,...,4}

φ(Yi),

then the algorithm retracts to the entire feasible region in the next
iteration, i.e., F(m+ 1) = S, and essentially starts all over again.

Example 3. Assume that the promising region in the mth iteration is
a singleton set, T . Then, M = 1 and K = M + 1 = 2. Then, Y1 = T ,
and the surrounding region, i.e., S\T , equals Y2.

Example 4. Assume that the promising region in the mth iteration
is the entire feasible region S. Let M = 2. Then, we construct a total
of K = M = 2 sub-regions, such that Y1 ∪ Y2 = S.

4. Concluding Remarks
Our discussion in this chapter was restricted by design to model-

free search techniques. Our discussion for the continuous case was
limited to finite differences, simultaneous perturbation, and the down-
hill simplex. In discrete optimization, we covered two meta-heuristics,
namely the genetic algorithm and tabu search, and five SAS tech-
niques, namely simulated annealing, BAS, LAST, the stochastic ruler,
and nested partitions. A number of other techniques that we were
unable to cover include meta-heuristics, such as scatter search [105],
ant colony optimization [80], and particle swarm optimization [163],
and SAS techniques, such as GRASP [84], MRAS [146], and COM-
PASS [142]. MRAS is a recent development that needs special mention
because MRAS generates solutions from an “intermediate probabilistic
model” [146] on the solution space, which is updated iteratively after
each function evaluation and may lead to an intelligent search like in
the case of LAST.



Parametric Optimization 121

It is very likely that the field of model-free static simulation
optimization will expand in the future because of its ability to at-
tack problems that cannot be solved with analytical, model-based
methods. Use of multiple meta-heuristics/SAS techniques on the
same problem is not uncommon because it is often difficult to rely
on any one algorithm, since one algorithm may behave well for some
instances of a given problem while another may perform well in other
instances. The OPTQUEST package [103] (an add-on feature in
ARENA) utilizes a combination of scatter search and other techniques
like RSM for simulation optimization. A recent interesting paper [207]
presents an “interacting particle” algorithm in which the notion of
temperature is used within a genetic algorithm, and the temperature
itself is optimized, within a control optimization setting, to obtain
desirable convergence properties.

Bibliographic Remarks. Some good references for review material on simulation
optimization are Andradóttir [8], Fu [90, 89], Carson and Maria [58], and Kleijnen
[171, 172]. The material presented in this chapter comes from a large number of
sources. Due to our focus on model-free techniques and other reasons, we are not
able to discuss a number of important related works in simulation optimization:
sample path optimization [232, 77], ordinal optimization [138], stochastic compar-
isons [107], perturbation analysis [137], weak derivative estimation [226], the score
function method [253], sensitivity analysis [10], the frequency domain method for
estimating derivatives [152], and retrospective approximation [222].

Three noteworthy works that we have not been able to cover include MRAS
[146, 62], COMPASS [142], and BEESE [240]. Both MRAS and COMPASS can be
used in constrained parametric optimization, which is a topic beyond the scope of
this text. However, the reader is referred to these works and references therein for
material on constrained optimization.

For a detailed account on simultaneous perturbation [280], which is a remark-
able development, the reader is referred to the text of Spall [281]. Simultaneous
perturbation has been extended to discrete parameter optimization [98] and con-
strained optimization [311]. A significant body of work from Bhatnagar and his
colleagues, which we are not able to cover, uses simultaneous perturbation and
other schemes on multiple time scales for simulation optimization [37, 39, 40, 41].
We also could not discuss continuous optimization methods based on SAS, which
have been covered extensively in [333, 334].

For a general discussion on meta-heuristics, a nice text is Pham and Karaboga
[227]. A unified and comprehensive treatment of SAS can be found in the text by
Zabinsky [333]. Other texts that cover SAS and meta-heuristics include Spall [281]
and Gendreau and Potvin [97].

The genetic algorithm originated from the work of Holland [140], while tabu
search was conceived by Glover [100]. Simulated annealing has its origins in the
work of Metropolis et al. [203] in the 1950s, but it was only in the 1980s that it was
used as an optimization method in Kirkpatrick et al. [169]. A very large number
of papers have resulted from this work, e.g., [88, 5, 96]. An extensive coverage of
simulated annealing can be found in [304, 333, 85]. LAST originated from the work
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of Thathachar and Sastry [298]. The method was presented as an optimization
tool in [262, 297]. BAS was first developed by Kristinsdottir et al. [182]; see also
[333]. The original version of the stochastic ruler is due to Yan and Mukai [329];
the modified version presented here is due to Alrefaei and Andradóttir [6]. The
nested partitions algorithm is from Shi and Olafsson [273, 274, 275].



Chapter 6

CONTROL OPTIMIZATION

WITH STOCHASTIC DYNAMIC

PROGRAMMING

1. Chapter Overview
This chapter focuses on a problem of control optimization, in

particular the Markov decision problem (or process). Our discussions
will be at a very elementary level, and we will not attempt to prove
any theorems. The central aim of this chapter is to introduce the
reader to classical dynamic programming in the context of solving
Markov decision problems. In the next chapter, the same ideas will be
presented in the context of simulation-based dynamic programming.
The main concepts presented in this chapter are (1) Markov chains,
(2) Markov decision problems, (3) semi-Markov decision problems,
and (4) classical dynamic programming methods.

2. Stochastic Processes
We begin with a discussion on stochastic processes. A stochastic

(or random) process, roughly speaking, is an entity that has a prop-
erty which changes randomly with time. We refer to this changing
property as the state of the stochastic process. A stochastic process
is usually associated with a stochastic system. Read Chap. 2 for a
definition of a stochastic system. The concept of a stochastic process
is best understood with an example.

Consider a queue of persons that forms in a bank. Let us assume
that there is a single server (teller) serving the queue. See Fig. 6.1.
The queuing system is an example of a stochastic system. We need
to investigate further the nature of this queuing system to identify
properties, associated with the queue, that change randomly with time.
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Let us denote

The number of customers in the queue at time t by X(t) and

The number of busy servers at time t by Y (t).

Then, clearly, X(t) will change its value from time to time and so
will Y (t). By its definition, Y (t) will equal 1 when the teller is busy
serving customers, and will equal 0 when it is idle.

Server
Customers
in the queue

Customer being
served

Figure 6.1. A single-server queue

Now if the state of the system is recorded after unit time, X(t)
could take on values such as: 3, 3, 4, 5, 4, 4, 3 . . . The set {X(t)|t =
1, 2, · · · ,∞}, then, defines a stochastic process. Mathematically, the
sequence of values that X(t) assumes in this example is a stochastic
process.

Similarly, {Y (t)|t = 1, 2, · · · ,∞} denotes another stochastic process
underlying the same queuing system. For example, Y (t) could take on
values such as 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, . . .

It should be clear now that more than one stochastic process may be
associated with any given stochastic system. The stochastic processes
X and Y differ in their definition of the system state. For X, the
state is the number of customers in the queue and for Y , the state is
the number of busy servers.

An analyst selects the stochastic process that is of interest to
him/her. E.g., an analyst interested in studying the utilization of
the server (i.e., proportion of time the server is busy) will choose Y ,
while the analyst interested in studying the length of the queue will
choose X. See Fig. 6.2 for a pictorial explanation of the word “state.”

In general, choosing the appropriate definition of the state of a
system is a part of “modeling.” The state must be defined in a manner
suitable for the optimization problem under consideration. To under-
stand this better, consider the following definition of state. Let Z(t)
denote the total number of persons in the queue with black hair. Now,
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ServerCustomers

State = 3

State = 2

Customers Server

Customers Server

Figure 6.2. A queue in two different states: The “state” is defined by the number
in the queue

although Z(t) is a mathematically perfect example of a stochastic pro-
cess, this definition may contain very little information of use, when it
comes to controlling systems in a cost-optimal manner!

We have defined the state of a stochastic process. Now, it is time to
closely examine an important stochastic process, namely, the Markov
process.

3. Markov, Semi-Markov, and Decision
Processes

A Markov process is of special interest to us because of its
widespread use in studying real-life systems. In this section, we
will study some of its salient features.

A stochastic process, usually, visits more than one state. We will
assume throughout this book that the set of states visited by the
stochastic process is a finite set denoted by S.

1

2

Figure 6.3. Schematic of a two-state Markov chain, where circles denote states

An important property of a Markov process is that it jumps regu-
larly. In fact, it jumps after unit time. (Some authors do not use
the “unit time” convention, and we will discuss this matter in detail
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later.) Hence, after unit time, the system either switches (moves) to
a new state or else the system returns to the current state. We will
refer to this phenomenon as a state transition.

To understand this phenomenon better, consider Fig. 6.3. The figure
shows two states, which are denoted by circles, numbered 1 and 2.
The arrows show the possible ways of transiting. This system has
two states: 1 and 2. Assuming that we first observe the system when
it is in state 1, it may for instance follow the trajectory given by:
1, 1, 2, 1, 1, 1, 2, 2, 1, 2, . . .

A state transition in a Markov process is usually a probabilistic, i.e.,
random, affair. Consider the Markov process in Fig. 6.3. Let us further
assume that in its first visit to state 1, from state 1 the system jumped
to state 2. In its next visit to state 1, the system may not jump to
state 2 again; it may jump back to state 1. This should clarify that
the transitions in a Markov chain are “random” affairs.

We now need to discuss our convention regarding the time needed
for one jump (transition). In a Markov process, how much time is spent
in one transition is really irrelevant to its analysis. As such, even if the
time is not always unity, or even if it is not a constant, we assume it
to be unity for our analysis. If the time spent in the transition becomes
an integral part of how the Markov chain is analyzed, then the Markov
process is not an appropriate model. In that case, the semi-Markov
process becomes more appropriate, as we will see below.

When we study real-life systems using Markov processes, it usu-
ally becomes necessary to define a performance metric for the real-life
system. It is in this context that one has to be careful with how the
unit time convention is interpreted. A common example of a perfor-
mance metric is: average reward per unit time. In the case of a Markov
process, the phrase “per unit time” in the definition of average reward
actually means “per jump” or “per transition.” (In the so-called semi-
Markov process that we will study later, the two phrases have different
meanings.)

Another important property of the Markov process needs to be
studied here. In a Markov process, the probability that the process
jumps from a state i to a state j does not depend on the states vis-
ited by the system before coming to i. This is called the memoryless
property. This property distinguishes a Markov process from other
stochastic processes, and as such it needs to be understood clearly.
Because of the memoryless property, one can associate a probability
with a transition from a state i to a state j, that is,

i −→ j.



Dynamic Programming 127

We denote the probability of this transition by P (i, j). This idea is
best explained with an example.

Consider a Markov chain with three states, numbered 1, 2, and 3.
The system starts in state 1 and traces the following trajectory:

1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, . . .

Assume that: P (3, 1) = 0.2 and P (3, 2) = 0.8. When the system visits
3 for the first time in the above, it jumps to 2. Now, the probability of
jumping to 2 is 0.8, and that of jumping to 1 is 0.2. When the system
revisits 3, the probability of jumping to 2 will remain at 0.8, and that
of jumping to 1 at 0.2. Whenever the system comes to 3, its probability
of jumping to 2 will always be 0.8 and that of jumping to 1 be 0.2. In
other words, when the system comes to a state i, the state to which
it jumps depends only on the transition probabilities: P (i, 1), P (i, 2)
and P (i, 3). These probabilities are not affected by the sequence of
states visited before coming to i. Thus, when it comes to jumping to a
new state, the process does not “remember” what states it has had to
go through in the past. The state to which it jumps depends only on
the current state (say i) and on the probabilities of jumping from that
state to other states, i.e., P (i, 1), P (i, 2) and P (i, 3). In general, when
the system is ready to leave state i, the next state j depends only on
P (i, j). Furthermore, P (i, j) is completely independent of where the
system has been before coming to i.

We now give an example of a non-Markovian process. Assume that
a process has three states, numbered 1, 2, and 3. X(t), as before,
denotes the system state at time t. Assume that the law governing
this process is given by:

P{X(t+ 1) = j|X(t) = i,X(t− 1) = l} = f(i, l, j), (6.1)

where f(i, l, j) denotes a probability that depends on i, l, and j. This
implies that if the process is in state i at time t (notice that X(t) = i in
the equation above is supposed to mean exactly this), and if it was in
state l at time (t − 1), then the probability that the next state (i.e.,
the state visited at time (t+1)) will be j is a function of i, l, and j. In
other words, at any point of time, the past (i.e., X(t− 1)) will affect
its future course.

Thus the process described above is not a Markov process. In this
process, the state of the process at time (t−1) does affect the probabil-
ities of going to other states at time (t+1). The path of this stochastic
process is thus dependent on its past, not the entire past, but some of
its past.
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The Markov process, on the other hand, is governed by the follow-
ing law:

P{X(t+ 1) = j|X(t) = i} = f(i, j), (6.2)

where f(i, j) is the probability that the next state is j given that the
current state is i. Also f(i, j) is a constant for given values of i and j.

Carefully note the difference between Eqs. (6.2) and (6.1). Where
the process resides one step before its current state has no influence on
a Markov process. It should be obvious that in the Markov process,
the transition probability (probability of going to one state to another
in the stochastic process in one step) depends on two quantities:
the present state (i) and the next state (j). In a non-Markovian pro-
cess, such as the one defined by Eq. (6.1), the transition probability
depended on the current state (i), the next state (j), and the previous
state (l). An implication is that even if both the processes have the
same number of states, we will have to deal with additional probabil-
ities in the two-step stochastic process.

The quantity f(i, j) is an element of a two-dimensional matrix. Note
that f(i, j) is actually P (i, j), the one-step transition probability of
jumping from i to j, which we have defined earlier.

All the transition probabilities of a Markov process can be conve-
niently stored in a matrix. This matrix is called the one-step tran-
sition probability matrix or simply the transition probability ma-
trix, usually abbreviated as TPM. An example of a TPM with three
states is:

P =

⎡

⎣
0.7 0.2 0.1
0.4 0.2 0.4
0.6 0.1 0.3

⎤

⎦ . (6.3)

P (i, j) here denotes the (i, j)th element of the matrix, P, i.e., the
element in the ith row and the jth column of P. In other words, P (i, j)
denotes the one-step transition probability of jumping from state i to
state j. Thus, for example, P (3, 1), which is 0.6 above, denotes the
one-step transition probability of going from state 3 to state 1.

We will also assume that a finite amount of time is taken in any
transition and that no time is actually spent in a state. This is one
convention (there are others), and we will stick to it in this book. Also,
note that by our convention, the time spent in a transition is unity (1).

In summary, a Markov process possesses three important properties:
(1) the jumpy property, (2) the memoryless property, and (3) the unit
time property (by our convention).
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3.1. Markov Chains
A Markov chain can be thought of as an entity that accompanies a

stochastic process. Examples of stochastic processes accompanied by
Markov chains that we will consider are the Markov process and the
semi-Markov process.

We associate a unique TPM with a given Markov chain. It should be
kept in mind that the Markov chain (not the Markov process) contains
no information about how much time is spent in a given transition.

Example 1. Consider Fig. 6.4. It shows a Markov chain with two
states, shown by circles, numbered 1 and 2. The arrow indicates a
possible transition, and the number on the arrow denotes the proba-
bility of that transition. The figure depicts the following facts. If the
process is in state 1, it goes to state 2 with a probability of 0.3, and
with a probability of 0.7, it stays in the same state (i.e., 1). Also, if
the process is in state 2, it goes to state 1 with a probability of 0.4 and
stays in the same state (i.e., 2) with a probability of 0.6. The TPM of
the Markov chain in the figure is therefore

P =

[
0.7 0.3
0.4 0.6

]
.

1

2

0.7

0.4

0.3

0.6

Figure 6.4. Schematic of a two-state Markov chain, where circles denote states,
arrows depict possible transitions, and the numbers on the arrows denote the prob-
abilities of those transitions

Figures 6.5 and 6.6 show some more examples of Markov chains
with three and four states respectively. In this book, we will consider
Markov chains with a finite number of states.

Estimating the values of the elements of the TPM is often quite
difficult. This is because, in many real-life systems, the TPM is
very large, and evaluating any given element in the TPM requires
the setting up of complicated expressions, which may involve multiple
integrals. In subsequent chapters, this issue will be discussed in depth.
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1

2

3

Figure 6.5. Schematic of a Markov chain with three states

1

2

3

4

Figure 6.6. Schematic of a Markov chain with four states

n-step transition probabilities. The n-step transition probability
of going from state i to state j is defined as the probability of starting at
state i and being in state j after n steps (or jumps/transitions). From
the one-step transition probabilities, it is possible to construct the two-
step transition probabilities, the three-step transition probabilities,
and the n-step transition probabilities, in general. The n-step transi-
tion probabilities are very often of great importance to the analyst.

The so-called Chapman-Kolmogorov theorem helps us find these
probabilities. The theorem states that the n-step transition proba-
bilities can be obtained by raising the one-step transition probability
matrix to the nth power. We next state the theorem without proof.

Theorem 6.1 If P denotes the one-step transition probability matrix
of a Markov chain and S = Pn, where Pn denotes the matrix P raised
to the nth power, then S(i, j) denotes the n-step transition probability
of going from state i to state j.

Basically, the theorem states says that the nth power of a TPM
is also a transition probability matrix, whose elements are the n-step
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transition probabilities. Let us illustrate the meaning of this result
with an example. Consider the TPM given by:

P =

[
0.7 0.3
0.4 0.6

]
.

Now,

P2 =

[
0.7 0.3
0.4 0.6

] [
0.7 0.3
0.4 0.6

]
=

[
0.61 0.39
0.52 0.48

]
.

Here the value of P 2(1, 1) is 0.61. The theorem says that P 2(1, 1)
equals the two-step transition probability of going from 1 to 1. Let us
verify this from the basic principles of probability theory. Let Cx−y−z

denote the probability of going from state x to state z in two transitions
with y as the intermediate state. Consider the event of going from state
1 to state 1 in two steps. Then, clearly, the probability of this event
should equal:

C1−1−1 + C1−2−1.

From the values of P, C1−1−1 = (0.7)(0.7) and C1−2−1 = (0.3)(0.4),
and therefore the required probability should equal:

(0.7)(0.7) + (0.3)(0.4) = 0.61,

which is equal to P 2(1, 1). The verification is thus complete.

3.1.1 Regular Markov Chains

A regular Markov chain is one whose TPM satisfies the following
property: There exists a finite positive value for n, call it n∗, such that
for all n ≥ n∗, and all i and j:

Pn∗(i, j) > 0.

In other words, by raising the TPM of a regular Markov chain to some
positive power, one obtains a matrix in which each element is strictly
greater than 0. An example of a regular Markov chain is:

P =

⎡

⎣
0.7 0.0 0.3
0.4 0.6 0.0
0.2 0.7 0.1

⎤

⎦ .

It is not hard to verify that P can be raised to a suitable power to
obtain a matrix in which each element is strictly greater than 0. An ex-
ample of a Markov chain that is not regular is:

P =

[
0 1
1 0

]
.
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This is not regular because:

Pn =

[
0 1
1 0

]
for odd n and Pn =

[
1 0
0 1

]
for even n.

3.1.2 Limiting Probabilities

If one raises the TPM of a regular Markov chain to higher powers,
the elements in any given column start converging to (that is,
approaching) the same number. For example, consider P of the
previous section, raised to the 8th power:

P8 =

[
0.5715 0.4285
0.5714 0.4286

]
.

The elements of a given column in Pn start approaching each other,
as we increase the power n, and notice that by n = 8, the elements are
very close to each other. It can be proved that for a regular Markov
chain as the power n tends to infinity, for every j, Pn(i, j) starts
converging to a unique finite number. In other words, for every value
of j,

lim
n→∞Pn(i, j) exists and is unique.

In the example under consideration, the limit appears to be 0.57 for
state 1 and 0.43 for state 2. We will denote the limit for state j by
Π(j). Mathematically,

Π(j) ≡ lim
n→∞Pn(i, j).

The quantity Π(j) will also be referred to as the limiting or steady-
state or invariant probability of the state j.

Now, Π(j), it must be understood, is the long-run probability of
entering the state j from any given state. For instance, in the
example given above, regardless of which state the Markov chain is
in, the long-run (that is, when n → ∞) probability of entering state 1
is 0.57. Similarly, the long-run probability of entering state 2 is 0.43.
From this, we can make an important inference:

Since the transitions are assumed to take unit time, 57% of the
time will be spent by the process in transitions to state 1 and
43% of the time in transitions to state 2.

For the Markov process, the time taken in any transition is equal,
and hence the limiting probability of a state also denotes the propor-
tion of time spent in transitions to that particular state.
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We will now show how we can obtain the limiting probabilities from
the TPM without raising the TPM to large powers. The following
important result provides a very convenient way for obtaining the
limiting probabilities.

Theorem 6.2 Let Π(i) denote the limiting probability of state i, and
let S denote the set of states in the Markov chain. Then the limiting
probabilities for all the states in the Markov chain can be obtained
from the transition probabilities by solving the following set of linear
equations:

|S|∑

i=1

Π(i)P (i, j) = Π(j), for every j ∈ S (6.4)

and

|S|∑

j=1

Π(j) = 1, (6.5)

where |S| denotes the number of elements in the set S.

Equations (6.4) and (6.5) are often collectively called the invariance
equation, since they help us determine the invariant (limiting) proba-
bilities. Equation (6.4) is often expressed in the matrix form as:

[Π(1),Π(2), . . . ,Π(|S|)]P = [Π(1),Π(2), . . . ,Π(|S|)],

or in the following abbreviated form: �ΠP = �Π, where �Π is a row vector
of the limiting probabilities.

Although we do not present its proof, the above is an important
result from many standpoints. If you use the equations above to find
the limiting probabilities of a Markov chain, you will notice that there
is one extra equation in the linear system of equations defined by the
theorem. You can eliminate any one equation from the system defined
by (6.4), and then solve the remaining equations to obtain a unique
solution. We demonstrate this idea with the TPM given in (6.3).

From equations defined by (6.4), we have:

For j = 1 : 0.7Π(1) + 0.4Π(2) + 0.6Π(3) = Π(1). (6.6)

For j = 2 : 0.2Π(1) + 0.2Π(2) + 0.1Π(3) = Π(2). (6.7)

For j = 3 : 0.1Π(1) + 0.4Π(2) + 0.3Π(3) = Π(3). (6.8)

With some transposition, we can re-write these equations as:

− 0.3Π(1) + 0.4Π(2) + 0.6Π(3) = 0. (6.9)
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0.2Π(1)− 0.8Π(2) + 0.1Π(3) = 0. (6.10)

0.1Π(1) + 0.4Π(2)− 0.7Π(3) = 0. (6.11)

Now from Eq. (6.5), we have:

Π(1) + Π(2) + Π(3) = 1. (6.12)

Thus we have four Equations: (6.9)–(6.12) and three unknowns:
Π(1),Π(2), and Π(3). Notice that the system defined by the three
Eqs. (6.9)–(6.11) actually contains only two independent equations
because any one can be obtained from the knowledge of the other
two. Hence we select any two equations from this set. The two along
with Eq. (6.12) can be solved to find the unknowns. The values are:
Π(1) = 0.6265,Π(2) = 0.1807, and Π(3) = 0.1928.

Remark. The history-independent property of the Markov chain is
somewhat misleading. You can incorporate as much history as you
want into the state space, by augmenting the state space with histori-
cal information, to convert a history-dependent process into a Markov
process. Obviously, however, this comes with a downside in that the
size of the state space in the synthesized Markov process is much larger
than that in the history-dependent process. Usually, trying to incor-
porate all the relevant history to transform the stochastic process into
a Markov process can produce an unwieldy stochastic process that is
difficult to analyze.

3.1.3 Ergodic Markov Chains

A state in a Markov chain is said to be recurrent if it is visited
repeatedly (again and again). In other words, if one views a Markov
chain for an infinitely long period of time, one will see that a recurrent
state is visited infinitely many times. A transient state is one which
is visited only a finite number of times in such an “infinite viewing.”

An example of a transient state is one to which the system does not
come back from any recurrent state in one transition. In Fig. 6.7, 1 is
a transient state because once the system enters 2 or 3, it cannot come
back to 1.

There may be more than one transient state in a Markov chain. In
Fig. 6.8, 1a and 1b are transient states. If the system starts in any
one of these two states, it can visit both but once it goes to 2, it can
never come back to 1a or 1b. A state that is not transient is called
a recurrent state. Thus 2 and 3 are recurrent states in both Figs. 6.7
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and 6.8. Another type of state is the absorbing state. Once the system
enters any absorbing state, it can never get out of that state and it
remains there.

An ergodic Markov chain is one in which all states are recurrent
and no absorbing states are present. Ergodic chains are also called
irreducible chains. All regular Markov chains are ergodic, but the
converse is not true. (Regular chains were defined in Sect. 3.1.1.) For
instance, a chain that is not regular may be ergodic. Consider the
Markov chain with the following TPM:

[
0 1
1 0

]
.

This chain is not regular, but ergodic. It is ergodic because both states
are visited infinitely many times in an infinite viewing.

1
2

3

Transient State

Recurrent State

Figure 6.7. A Markov chain with one transient state

We will now discuss the semi-Markov process.

3.2. Semi-Markov Processes
A stochastic process that spends a random amount of time (which

is not necessarily unity) in each transition, but is otherwise simi-
lar to a Markov process, is called a semi-Markov process. Conse-
quently, underlying a semi-Markov process, there lurks a Markov chain



136 SIMULATION-BASED OPTIMIZATION

1a

2

3

Transient State

Recurrent State

1b

Figure 6.8. A Markov chain with two transient states

called the embedded Markov chain. The main difference between the
semi-Markov process and the Markov process lies in the time taken in
transitions.

In general, when the distributions for the transition times are
arbitrary, the process goes by the name semi-Markov. If the time in
every transition is an exponentially distributed random variable, the
stochastic process is referred to as a continuous time Markov process.

Some authors refer to what we have called the continuous time
Markov process as the “Markov process,” and by a “Markov chain,”
they mean what we have referred to as the Markov process.

There is, however, a critical difference between the Markov chain
underlying a Markov process and that underlying a semi-Markov pro-
cess. In a semi-Markov process, the system jumps, but not necessarily
after unit time, and when it jumps, it jumps to a state that is different
than the current state. In other words, in a semi-Markov process, the
system cannot jump back to the current state. (However, in a semi-
Markov decision process, which we will discuss later, jumping back to
the current state is permitted.) In a Markov process, on the other
hand, the system can return to the current state after one jump.

If the time spent in the transitions is a deterministic quantity, the
semi-Markov process has a transition time matrix analogous to the
TPM, e.g.,
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[
− 17.2
1 −

]
.

For an example of the most general model in which some or all of the
transition times are random variables from any given distributions,
consider the following transition time matrix:

[
− unif(5, 6)

expo(5) −

]
,

where unif(min,max) denotes a random number from the uniform
distribution with parameters, min and max, and expo(μ) denotes the
same from the exponential distribution with parameter μ.

When we analyze a semi-Markov process, we begin by analyzing
the Markov chain embedded in it. The next step usually is to analyze
the time spent in each transition. As we will see later, the semi-
Markov process is more powerful than the Markov process in modeling
real-life systems, although very often its analysis can prove to be more
complicated.

3.3. Markov Decision Problems
We will now discuss the topic that forms the central point of control

optimization in this book. Thus far, we have considered Markov chains
in which the transition from one state to another is governed by only
one transition law, which is contained in the elements of the TPM.
Such Markov chains are called uncontrolled Markov chains, essentially
because in such chains there is no external agency that can control the
path taken by the stochastic process.

We also have systems that can be run with different control mech-
anisms, where each control mechanism has its own TPM. In other
words, the routes dictated by the control mechanisms are not the
same. The control mechanism specifies the “action” to be selected
in each state. When we are faced with the decision of choosing from
more than one control mechanism, we have what is called a Markov
decision problem, which is often abbreviated as anMDP. The MDP
is also commonly called the Markov decision process.

The MDP is a problem of control optimization. In other words, it
is the problem of finding the optimal action to be selected in each
state. Many real-world problems can be set up as MDPs, and before
we discuss any details of the MDP framework, let us study a simple
example of an MDP.
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Example. Consider a queuing system, such as the one you see in
a supermarket, with a maximum of three counters (servers). You
have probably noticed that when queues become long, more counters
(servers) are opened. The decision-making problem we will consider
here is to find the number of servers that should be open at any given
time.

The people who function as servers also have other jobs to perform,
and hence it does not make business sense to have them wait on the
counters when there are no customers at the counters. At the same
time, if very long queues build up but more counters are not opened
when there is capacity, customers do not feel very happy about it,
and may actually go elsewhere the next time. Hence in this situation,
one seeks an optimal strategy (i.e., a control mechanism) to control
the system. Next, we will discuss the idea of control mechanisms or
policies with some examples.

Consider a system which has a maximum of three counters. Let us
assume that the state of this system is defined by the number of people
waiting for service. Let us further assume that associated with this
state definition, a Markov process exists. (See Fig. 6.9 for a picture of
the underlying Markov chain.) Thus when the system enters a new
state of the Markov chain, one out of the following three actions can
be selected:

{Open 1 counter, Open 2 counters, and Open 3 counters.}

One possible control mechanism (or policy) in this situation would
look like this:

State = Number waiting for service Action
0 Open 1 counter
1 Open 1 counter
2 Open 1 counter
3 Open 1 counter
4 Open 2 counters
5 Open 2 counters
6 Open 2 counters
7 Open 3 counters
8 Open 3 counters
. Open 3 counters
. Open 3 counters
. Open 3 counters
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.............1 2 30

Figure 6.9. A Markov chain underlying a simple single-server queue

Another possible control mechanism could be:

State = Number waiting for service Action
0 Open 1 counter
1 Open 1 counter
2 Open 1 counter
3 Open 1 counter
4 Open 1 counter
5 Open 1 counter
6 Open 2 counters
7 Open 2 counters
8 Open 3 counters
. Open 3 counters
. Open 3 counters
. Open 3 counters

Note that the two control mechanisms are different. In the first,
two counters are opened in state 4, while in the second, the same is
done in state 6. From these two examples, it should be clear that there
are, in fact, several different control mechanisms that can be used, and
the effect on the system—in terms of the net profits generated—may
differ with the control mechanism used. This because:

A control mechanism that allows big queues to build up may lead
to a cost reduction in some sense, since fewer employees may be
necessary to run the system. But it may also lead to reduced profits,
because in the future customers may choose to go elsewhere where
queues are shorter.

On the other hand, a control mechanism which is over-designed
with a large number of servers (where customers hardly ever have
to wait) may be expensive to maintain, because of the costs incurred
in hiring a large number of servers. Eventually the high costs of
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running this system will be transmitted to the customers through
higher-priced products. The latter is also likely to drive customers
away.

It naturally makes business sense to use the control mechanism
that produces the greatest net profits. Formulation of this problem
as a Markov decision problem will help us identify the best control
mechanism.

From our discussion above, we can conclude that each control
mechanism is likely to have unique costs and profits. Further, since
the system considered above is stochastic, associated with each con-
trol mechanism, a distinctive pattern of behavior is likely to emerge.
Finally, the problem is one of finding the right control mechanism.
The Markov decision framework is a sophisticated operations research
model designed to solve this problem. We now provide details.

3.3.1 Elements of an MDP

The Markov decision framework is designed to solve the so-called
Markov decision problem (MDP). The framework is made up of five
important elements. They are: (1) A decision maker, (2) policies,
(3) transition probability matrices, (4) transition reward matrices, and
(5) a performance metric (objective function).

Decision maker. The decision maker is an entity that selects the
control mechanism. It is also called the agent or controller.

Policies. The control mechanism is usually referred to as a policy.
A policy for an MDP with n states is an n-tuple. Each element of
this n-tuple specifies the action to be selected in the state associated
with that element. For example, consider a 2-state MDP in which two
actions are allowed in each state. An example of a policy for this MDP
is: (2, 1). This means that by adhering to this policy, the following
would occur: In state 1, action 2 would be selected, and in state 2,
action 1 would be selected. Thus in general, if μ̂ denotes a policy, the
ith element of μ̂, that is, μ(i), denotes the action selected in the ith
state for the policy μ̂.

In this book, unless otherwise stated, the word “policy” will imply a
stationary, deterministic policy. The word stationary means that
the policy does not change with time. This implies that if a policy
dictates an action a be taken in a state x, then no matter how long
the system has been operating, every time the system visits state x, it
is action a that will be selected.
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The word deterministic implies that in any given state, we can
choose only one (1) action (out of the multiple actions allowed).
In other words, with a probability of 1, a given action is selected. We
will deal with stochastic policies in the context of learning automata
and actor critics in Chap. 8 for control optimization. However, in this
chapter, we will primarily consider stationary, deterministic policies.

We will assume throughout this book that the set of actions allowed
in each state is a finite set. The set of actions allowed in state i will be
denoted by A(i). We will also assume the set of states in the system
to be a finite set, which will be denoted by S.

Since the number of actions allowed in each state and the number
of states themselves are finite quantities, we must have a finite number
of policies. For instance in an MDP with two states and two actions
allowed in each state, we have 22 = 4 policies, which are:

(1, 1), (1, 2), (2, 1), and (2, 2).

An MDP, let us reiterate, revolves around finding the most suitable
policy.

A few more words about the term “state” are in order. We may
encounter systems in which decisions are not made in every state. In
other words, in some states, there is only one allowable action. As such,
there is no decision making involved in these states. These states are
called non-decision-making states. A state in which one has to choose
from more than one action is hence called a decision-making state. In
this book, by “state,” we refer to a decision-making state. When we
have models in which some states are not of the decision-making kind,
we will distinguish between the two by the qualifiers: decision-making
and non-decision-making.

Transition probability matrices. The decision maker executes
the action to be used in each state of an MDP. Associated with
each action, we usually have a transition probability matrix (TPM).
Associated with each policy, also, we have a unique TPM. The TPM
for a policy can be constructed from the TPMs associated with the
individual actions in the policy.

We illustrate this construction with a 2-state MDP that has 2
actions allowed in each state. Let the TPM associated with action a
be denoted by Pa. Let

P1 =

[
0.7 0.3
0.4 0.6

]
, and P2 =

[
0.1 0.9
0.8 0.2

]
.
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Now consider a policy μ̂ = (2, 1). The TPM associated with this
policy will contain the transition probabilities of action 2 in state 1
and the transition probabilities of action 1 in state 2. The TPM of
policy μ̂ is thus

Pμ̂ =

[
0.1 0.9
0.4 0.6

]
.

0.7          0.3

0.4          0.6

0.1          0.9

0.8          0.2

0.1          0.9

0.4          0.6

P2P1

P u

Construction of the TPM for policy (2,1)
from the TPMs of action 1 and action 2.

Matrix for action 1 Matrix for action 2

Matrix for
policy (2,1)

Figure 6.10. Schematic showing how the TPM of policy (2, 1) is constructed from
the TPMs of action 1 and 2

See Fig. 6.10 for a pictorial demonstration of the construction pro-
cess.

In general, we will use the following notation to denote a transition
probability:

p(i, a, j).

This term will denote the one-step transition probability of going from
state i to state j when action a is selected in state i. Now, if policy μ̂
is followed, then the action selected in state i will be denoted by μ(i),
and as a result the transition probability of going from state i to state
j will be denoted by

p(i, μ(i), j).

Then p(i, μ(i), j) will define the element in the ith row and the jth
column of the matrix Pμ̂—the TPM associated with the policy μ̂.

In this section, we have used the phrase: “a transition probability
under the influence of an action.” The significance of this must
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be noted with care. In our previous discussions, we spoke of transition
probabilities without reference to any action. That was because we
were dealing with uncontrolled Markov chains—which had only one
action in each state. Now, with the introduction of multiple actions in
each state, we must be careful with the phrase “transition probability,”
and must specify the action along with a transition probability.

Now, as stated previously, the MDP is all about identifying the
optimal policy (control mechanism). The TPM, we will see shortly,
will serve an important purpose in evaluating a policy and will be
essential in identifying the best policy. The other tool that we need
for evaluating a policy is discussed in the next paragraph.

Transition reward matrices. With each transition in a Markov
chain, we can associate a reward. (A negative value for the reward is
equivalent to a cost.) We will refer to this quantity as the immediate
reward or transition reward. The immediate reward helps us incor-
porate reward and cost elements into the MDP model. The immediate
reward matrix, generally called the transition reward matrix (TRM),
is very similar to the TPM. Recall that the (i, j)th element (the ele-
ment in the ith row and jth column) of the TPM denotes the transition
probability from state i to state j. Similarly, the (i, j)th element of the
TRM denotes the immediate reward earned in a transition from state
i to state j. Just as we have TPMs associated with individual actions
and policies, we have TRMs associated with actions and policies. Let
us examine some examples from a 2-state MDP, next.

Let Ra be the TRM associated with action a, and let:

R1 =

[
11 −4
−14 6

]
and R2 =

[
45 80
1 −23

]
.

Now consider a policy μ̂ = (2, 1). Like in the TPM case, the TRM
associated with this policy will contain the immediate reward of action
2 in state 1 and the immediate rewards of action 1 in state 2. Thus
the TRM of policy μ̂ can be written as

Rμ̂ =

[
45 80
−14 6

]
.

The TPM and the TRM of a policy together contain all the informa-
tion one needs to evaluate the policy in an MDP. In terms of notation,
we will denote the immediate reward, earned in going from state i to
state j, under the influence of action a, by:

r(i, a, j).
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When policy μ̂ is followed, the immediate reward earned in going from
state i to state j will be denoted by:

r(i, μ(i), j)

because μ(i) is the action that will be selected in state i when policy
μ̂ is used.

Performance metric. To compare policies, one must define a perfor-
mance metric (objective function). Naturally, the performance metric
should involve reward and cost elements. To give a simple analogy, in
a linear programming problem, one judges each solution on the basis
of the value of the associated objective function. Any optimization
problem has a performance metric, which is also called the objective
function. In this book, for the most part, the MDP will be studied
with respect to two performance metrics. They are:

1. Expected reward per unit time calculated over an infinitely long
trajectory of system states: We will refer to this metric as the
average reward.

2. Expected total discounted reward calculated over an infinitely long
trajectory of system states: We will refer to this metric as the
discounted reward.

It is the case that of the two performance metrics, average reward
is easier to understand, although the average reward MDP is more
difficult to analyze for its convergence properties. Hence, we will begin
our discussion with the average reward performance criterion. Dis-
counted reward will be defined later.

We first need to define the expected immediate reward of a state
under the influence of a given action. Consider the following scenario.
An action a is selected in state i. Under the influence of this action,
the system can jump to three states: 1, 2, and 3 with probabilities of

0.2, 0.3, and 0.5,

respectively. The immediate rewards earned in these three possible
transitions are, respectively,

10, 12, and − 14.

Then the expected immediate reward that will be earned, when
action a is selected in state a, will clearly be:

0.2(10) + 0.3(12) + 0.5(−14) = −1.4.
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The expected immediate reward is calculated in the style shown
above. (Also see Fig. 6.11). In general, we can use the following exp-
ression to calculate the expected immediate reward.

r̄(i, a) =
∑

j∈S
p(i, a, j)r(i, a, j). (6.13)

i

1

2

3

(0.2,10)

(0.3,12)

(0.5,-14)

Legend:
(x,y)

x= transition probability
y=transition reward

Figure 6.11. Calculation of expected immediate reward

The average reward of a given policy is the expected reward earned
per unit time by running the Markov chain associated with the policy
for an infinitely long period of time. It turns out that there is a very
convenient way for representing the average reward of a policy, which
employs the limiting probabilities associated with the policy. We will
explain this with an example, and then generalize from there to obtain
a generic expression for the average reward.

Consider a 3-state MDP with states numbered 1, 2, and 3. Let us
assume that the system follows a fixed policy μ̂ and that the limiting
probabilities of the three states with respect to this policy are: Πμ̂(1) =
0.3,Πμ̂(2) = 0.5, and Πμ̂(3) = 0.2. Let us further assume that the
expected immediate rewards earned in the three states are:

r̄(1, μ(1)) = 10, r̄(2, μ(2)) = 12, and r̄(3, μ(3)) = 14.

Now from our discussion on limiting probabilities, we know that the
limiting probability of a state denotes the proportion of time spent
in transitions to that particular state in the long run. Hence if we
observe the system over k transitions, kΠμ̂(i) will equal the number
of transitions to state i in the long run. Now, the expected reward
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earned in each visit to state i under policy μ̂ is r̄(i, μ(i)). Then the
total long-run expected reward earned in k transitions for this MDP
can be written as:

kΠμ̂(1)r̄(1, μ(1)) + kΠμ̂(2)r̄(2, μ(2)) + kΠμ̂(3)r̄(3, μ(3)).

Consequently the average reward associated with policy μ̂ can be
written as:

ρμ̂ =
kΠμ̂(1)r̄(1, μ(1)) + kΠμ̂(2)r̄(2, μ(2)) + kΠμ̂(3)r̄(3, μ(3))

k

=

3∑

i=1

Πμ̂(i)r̄(i, μ(i))

Then, in general, the average reward of a policy μ̂ can be written as:

ρμ̂ =
∑

i∈S
Πμ̂(i)r̄(i, μ(i)), where (6.14)

Πμ̂(i) denotes the limiting probability of state i when the system
(and hence the underlying Markov chain) is run with the policy μ̂

S denotes the set of states visited in the system

And r̄(i, a) denotes the expected immediate reward earned in the
state i when action a is selected in state i

In the next section, we will discuss a simple method to solve the
MDP. But before that we conclude this section by enumerating the as-
sumptions we will make about the control optimization problem we will
solve in this book.

Assumption 6.1 The state space S and the action space A(i) for
every i ∈ S is finite (although possibly quite large).

Assumption 6.2 The Markov chain associated with every policy in
the problem is regular.

Assumption 6.3 The immediate reward earned in any state transi-
tion under any action is finite, i.e., for all (i, a, j), |r(i, a, j)| < ∞.
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3.3.2 Exhaustive Enumeration

The method that we will discuss in this section goes by the name
exhaustive enumeration or exhaustive evaluation. Conceptually, this
is the easiest method to understand, although in practice we can use
it only on small problems. The method is based on the following
idea: Enumerate every policy that can possibly be selected, evaluate
the performance metric associated with each policy, and then declare
the policy that produces the best value for the performance metric to
be the optimal policy. We now explain this method with a simple
example of an MDP that has just two states and two actions in each
state. This example will be used repeatedly throughout the remainder
of this book.

Example A. There are two states numbered 1 and 2 in an MDP, and
two actions, which are also numbered 1 and 2, are allowed in each state.
The transition probability matrices (TPM) associated with actions 1
and 2 are:

P1 =

[
0.7 0.3
0.4 0.6

]
and P2 =

[
0.9 0.1
0.2 0.8

]
.

The TRM for actions 1 and 2 are:

R1 =

[
6 −5
7 12

]
and R2 =

[
10 17
−14 13

]
.

Pictorially, the MDP is represented in Fig. 6.12.

In this MDP, there are four possible policies that can be used to
control the system. They are:

μ̂1 = (1, 1), μ̂2 = (1, 2), μ̂3 = (2, 1), and μ̂4 = (2, 2).

The TPMs and TRMs of these policies are constructed from the
individual TPMs and TRMs of each action. The TPMs are:

Pμ̂1 =

[
0.7 0.3
0.4 0.6

]
;Pμ̂2 =

[
0.7 0.3
0.2 0.8

]
;

Pμ̂3 =

[
0.9 0.1
0.4 0.6

]
;Pμ̂4 =

[
0.9 0.1
0.2 0.8

]
.
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The TRMs are

Rμ̂1 =

[
6 − 5
7 12

]
;Rμ̂2 =

[
6 − 5

−14 13

]
,

Rμ̂3 =

[
10 17
7 12

]
;Rμ̂4 =

[
10 17
− 14 13

]
.

1 2

(1,0.7,6)

(2,0.9,10)

(1,0.6,12)

(2,0.8,13)

(2,0.1,17)

(1,0.3,-5)

(1,0.4,7)

(2,0.2,-14)

Legend:
(a,p,r): a = action
            p = transition
     probability
            r = immediate
    reward

Figure 6.12. A two-state MDP

From the TPMs, using Eqs. (6.4) and (6.5), one can find the limiting
probabilities of the states associated with each policy. They are:

Πμ̂1(1) = 0.5714 and Πμ̂1(2) = 0.4286;

Πμ̂2(1) = 0.4000 and Πμ̂2(2) = 0.6000;

Πμ̂3(1) = 0.8000 and Πμ̂3(2) = 0.2000;

Πμ̂4(1) = 0.6667 and Πμ̂4(2) = 0.3333.

We will next find the average reward of each of these four policies.
We first evaluate the average immediate reward in each possible tran-
sition in the MDP, using Eq. (6.13). For this, we need the TPMs and
the TRMs of each policy.
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r̄(1, μ1(1)) = p(1, μ1(1), 1)r(1, μ1(1), 1) + p(1, μ1(1), 2)r(1, μ1(1), 2)

= 0.7(6) + 0.3(−5) = 2.7.

r̄(2, μ1(2)) = p(2, μ1(2), 1)r(2, μ1(2), 1) + p(2, μ1(2), 2)r(2, μ1(2), 2)

= 0.4(7) + 0.6(12) = 10.

r̄(1, μ2(1)) = p(1, μ2(1), 1)r(1, μ2(1), 1) + p(1, μ2(1), 2)r(1, μ2(1), 2)

= 0.7(6) + 0.3(−5) = 2.7.

r̄(2, μ2(2)) = p(2, μ2(2), 1)r(2, μ2(2), 1) + p(2, μ2(2), 2)r(2, μ2(2), 2)

= 0.2(−14) + 0.8(13) = 7.6.

r̄(1, μ3(1)) = p(1, μ3(1), 1)r(1, μ3(1), 1) + p(1, μ3(1), 2)r(1, μ3(1), 2)

= 0.9(10) + 0.1(17) = 10.7.

r̄(2, μ3(2)) = p(2, μ3(2), 1)r(2, μ3(2), 1) + p(2, μ3(2), 2)r(2, μ3(2), 2)

= 0.4(7) + 0.6(12) = 10.

r̄(1, μ4(1)) = p(1, μ4(1), 1)r(1, μ4(1), 1) + p(1, μ4(1), 2)r(1, μ4(1), 2)

= 0.9(10) + 0.1(17) = 10.7.

r̄(2, μ4(2)) = p(2, μ4(2), 1)r(2, μ4(2), 1) + p(2, μ4(2), 2)r(2, μ4(2), 2)

= 0.2(−14) + 0.8(13) = 7.6.

Now, using these quantities, we can now calculate the average
reward of each individual policy. We will make use of Eq. (6.14).
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Thus:
ρμ̂1 = Πμ̂1(1)r̄(1, μ1(1)) + Πμ̂1(2)r̄(2, μ1(2))

= 0.5741(2.7) + 0.4286(10) = 5.83,

ρμ̂2 = Πμ̂2(1)r̄(1, μ2(1)) + Πμ̂2(2)r̄(2, μ2(2))

= 0.4(2.7) + 0.6(7.6) = 5.64,

ρμ̂3 = Πμ̂3(1)r̄(1, μ3(1)) + Πμ̂3(2)r̄(2, μ3(2))

= 0.8(10.7) + 0.2(10) = 10.56, and

ρμ̂4 = Πμ̂4(1)r̄(1, μ4(1)) + Πμ̂4(2)r̄(2, μ4(2))

= 0.6667(10.7) + 0.3333(7.6) = 9.6667.

It is clear that policy μ̂3 = (2, 1) is the best policy, since it produces
the maximum average reward.

Drawbacks of exhaustive enumeration. Clearly, exhaustive enu-
meration can only be used on small problems. Consider a problem
with 10 states and 2 actions in each state. On this, if we were to use
exhaustive enumeration, we would have to evaluate 210 different poli-
cies. As such the computational burden of this method can quickly
overwhelm it. We now turn to dynamic programming, which has a
lower computational burden.

4. Average Reward MDPs and DP
The method of dynamic programming (DP), in the context of

solving MDPs, was developed in the late 1950s with the pioneering
work of Bellman [24] and Howard [144]. Dynamic programming has
a considerably lower computational burden in comparison to exhaus-
tive enumeration. The theory of DP has evolved significantly since
the 1950s, and a voluminous amount of literature now exists on this
topic. DP continues to be a main pillar of control optimization in
discrete-event systems. Although the theory of DP is mathematically
sophisticated, the main algorithms rest on simple systems of equations.
As such, it is very easy to understand its basic principles, which form
the main focus of the remainder of this chapter.

In this chapter and in the next, we will endeavor to present the
main equations underlying DP without worrying about how the equa-
tions were derived. Also, we will present the main algorithms but will
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not attempt to prove that they generate optimal solutions (Chap. 11
presents details of that nature). Links to computer codes can be found
at [121].

The system of equations, to which we were referring above, is often
called the Bellman equation. The Bellman equation has several forms.
In this section, we will concentrate on the average reward MDP, and
in the next, on discounted reward. For both average and discounted
reward, there are two different forms of the Bellman equation, based on
which we have two different DP methods that go by the following
names:

Policy iteration, which uses the Bellman policy equation or the
Poisson equation

Value iteration, which uses the Bellman optimality equation

4.1. Bellman Policy Equation
We have seen above that associated with every given policy, there

exists a scalar called the average reward of the policy. Similarly, associ-
ated with every policy, there exists a vector called the value function
vector for the policy. The dimension of this vector is equal to the num-
ber of elements in S, the set of decision-making states. The values of
this vector’s components can be determined by solving a linear system
of equations, which is collectively called the Bellman equation for a
policy or the Bellman policy equation. This equation, as stated
above, is also sometimes called the Poisson equation.

A natural question at this stage is: what purpose will be served by
finding the values of the elements of this vector? Much of DP revolves
around this vector. The answer is that the values of these elements
can actually help us find a better policy. The Bellman policy equation
in the average reward context is:

hμ̂(i) = r̄(i, μ(i))− ρμ̂ +

|S|∑

j=1

p(i, μ(i), j)hμ̂(j) for each i ∈ S. (6.15)

The above is a system of linear equations in which the number of
equations equals the number of elements in the set S, i.e., |S|. The
unknowns in the equations are the hμ̂ terms. They are the elements
of the value function vector associated with the policy μ̂. The other
terms are defined below:

μ(i) denotes the action selected in state i under the policy μ̂. Since
the policy is known, each μ(i) is known.
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r̄(i, μ(i)) denotes the expected immediate reward in state i under
policy μ̂. Each of these terms can be calculated from the TPMs
and the TRMs.

p(i, μ(i), j) denotes the one-step transition probability of jumping
from state i to state j under the policy μ̂. Again, these terms can
be obtained from the TPMs.

ρμ̂ denotes the average reward associated with the policy μ̂, and it
can be obtained, when the policy is known, from the TPMs and
the TRMs as discussed in the context of exhaustive enumeration.

We will now discuss the celebrated policy iteration algorithm [144]
to solve the average reward MDP.

4.2. Policy Iteration
The basic idea underlying policy iteration is to start with an

arbitrarily selected policy, and then switch to a better policy in every
iteration. This continues until no further improvement is possible.
The advantage of policy iteration over exhaustive enumeration is that
the solution is usually obtained using comparatively fewer iterations.

When a policy is selected, the Bellman policy equation is used to
obtain the value function vector for that policy. This is called the policy
evaluation stage, since in this stage we evaluate the value function
vector associated with a policy. Then the value function vector is used
to find a better policy. This step is called the policy improvement step.

The value function vector of the new (better) policy is then obtained.
In other words, one returns to the policy evaluation step. This contin-
ues until the value function vector obtained from solving the Bellman
policy equation cannot produce a better policy. (If you are familiar
with the simplex algorithm of linear programming, you will see an
analogy. In simplex, we start at a solution (corner point) and then
move to a better point. This continues until no better point can be
obtained.)

4.2.1 Steps in the Algorithm

Step 1. Set k = 1. Here k will denote the iteration number. Let the
set of states be S. Select any policy in an arbitrary manner. Let us
denote the policy selected in the kth iteration by μ̂k. Let μ̂

∗ denote
the optimal policy.
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Step 2. (Policy Evaluation) Solve the following linear system of
equations. For i = 1, 2, . . . , |S|,

hk(i) = r̄(i, μk(i))− ρk +

|S|∑

j=1

p(i, μk(i), j)h
k(j). (6.16)

Here one linear equation is associated with each value of i ∈ S. In
this system, the unknowns are the hk terms and ρk. The number
of unknowns exceeds the number of equations by 1. Hence to solve
the system, one should set any one of the hk terms to 0, and then
solve for the rest of the unknowns. The term ρk should not be set
to 0.

Step 3. (Policy Improvement) Choose a new policy μ̂k+1 such that

μk+1(i) ∈ argmax
a∈A(i)

⎡

⎣r̄(i, a) +
|S|∑

j=1

p(i, a, j)hk(j)

⎤

⎦ for all i ∈ S.

If possible, one should set μk+1(i) = μk(i) for each i. The signifi-
cance of ∈ in the above needs to be understood clearly. There may
be more than one action that satisfies the argmax operator. Thus
there may be multiple candidates for μk+1(i). However, the latter
is selected in a way such that μk+1(i) = μk(i) if possible.

Step 4. If the new policy is identical to the old one, that is, if
μk+1(i) = μk(i) for each i, then stop and set μ∗(i) = μk(i) for
every i. Otherwise, increment k by 1, and go back to the second
step.

Policy iteration on Example A. We used policy iteration on
Example A from Sect. 3.3.2. The results are shown in Table 6.1. The
optimal policy is (2, 1). See also the case study on a preventive main-
tenance problem at the end of the chapter. We will next discuss an
alternative method, called value iteration, to solve the average reward
MDP.

Table 6.1. Calculations in policy iteration for average reward MDPs on Example A

Iteration (k) Policy selected Values ρk

1 μ̂1 = (1, 1) h1(1) = 0 5.83
h1(2) = 10.43

2 μ̂2 = (2, 1) h2(1) = 0 10.56
h2(2) = −1.4
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4.3. Value Iteration and Its Variants
The value iteration algorithm is another very useful algorithm that

can solve the MDP. It uses a form of the Bellman equation that is
different than the form used in policy iteration. The idea of value
iteration is due to Bellman [24].

Another major point of difference between value and policy iteration
is that in value iteration, one does not solve any equations. This
makes it easy to write computer program for the algorithm, which has
contributed to its popularity. However, another advantage of value
iteration will be realized in reinforcement learning, the main topic of
Chap. 7.

We begin by presenting the Bellman optimality equation. A variant
of this will be used in the value iteration and the relative value iteration
algorithms.

J∗(i) = max
a∈A(i)

⎡

⎣r̄(i, a)− ρ∗ +
|S|∑

j=1

p(i, a, j)J∗(j)

⎤

⎦ for each i ∈ S,

(6.17)

where A(i) denotes the set of actions allowed in state i and ρ∗ denotes
the average reward of the optimal policy. The J∗ terms are the
unknowns and are the components of the optimal value function vec-
tor �J ∗. The number of elements in the vector �J ∗ equals the number
of states in the MDP.

Equation (6.17) is the famous Bellman optimality equation for
average reward MDPs. Since the equation contains the max operator,
it cannot be solved using linear algebra techniques such as Gauss elim-
ination. It is considered to be non-linear because of the max operator.

4.3.1 Value Iteration: A Natural Version

Value iteration in its most natural form seeks to use the Bellman
optimality equation in which ρ∗ is forcibly set to zero. Note that ρ∗ is
unknown at the start. We will start with some arbitrary values for the
value function vector. And then we will apply a transformation, i.e., an
updating mechanism, derived from the Bellman optimality equation,
on the vector repeatedly. This mechanism keeps updating (chang-
ing) the elements of the value function vector. The values themselves
will not converge in this algorithm, i.e., the vectors generated in suc-
cessive iterations will not approach each other. Therefore, we need
some mechanism to terminate the algorithm. A suitable termination
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mechanism here employs the span seminorm, also called the span.
We will denote the span seminorm of a vector in this book by sp(.)
and define it as:

sp(�x) = max
i

x(i)−min
i

x(i).

The span of a vector is by definition non-negative (take simple
examples of vectors to verify this), and it denotes the range of values
in the different components of the vector. It is important to inform the
reader that a vector may keep changing in every iteration although its
span may not change! This is because the span measures the range,
and a changing vector may have a constant range. When the span
stops changing, we will terminate our algorithm. We will establish
later in Chap. 11 that the span actually converges to a finite num-
ber under certain conditions. We now present steps in natural value
iteration.

Step 1: Set k = 1. Select any arbitrary values for the elements of a
vector of size |S|, and call the vector �J 1. Specify ε > 0. Typically,
ε is set to a small value such as 0.01.

Step 2: For each i ∈ S, compute:

Jk+1(i) = max
a∈A(i)

⎡

⎣r̄(i, a) +
|S|∑

j=1

p(i, a, j)Jk(j)

⎤

⎦ .

Step 3: If
sp( �J k+1 − �J k) < ε,

go to Step 4. Otherwise increase k by 1, and go back to Step 2.

Step 4: For each i ∈ S, choose

d(i) ∈ argmax
a∈A(i)

⎡

⎣r̄(i, a) +
|S|∑

j=1

p(i, a, j)Jk(j)

⎤

⎦ ,

and stop. The ε-optimal policy is d̂.

The implication of ε-optimality (in Step 4 above) needs to be
understood. The smaller the value of ε, the closer we get to the
optimal policy. Usually, for small values of ε, one obtains policies
very close to optimal. The span of the difference vector ( �J k+1 − �J k)
keeps getting smaller and smaller in every iteration, and hence for a
given positive value of ε, the algorithm terminates in a finite number
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of steps. Also note that in Step 2, we have used a transformation (see
Chap. 1 for a definition) derived from the Bellman equation. Recall
that a transformation takes a vector and produces a new vector from
the vector supplied to it.

Do note that in Step 2 had we used the value of ρ∗ (assuming that
the value of ρ∗ is known) instead of replacing it by zero, we would have
obtained

The same value for the span in Step 3 and

The same sequence of maximizing actions in Step 2.

Together these two facts suggest that value iteration discussed above
should yield the results obtained from using the Bellman transforma-
tion in Step 2. We will show in Chap. 11 that the Bellman transfor-
mation leads one to an optimal solution, and hence, it can be inferred
that the value iteration algorithm above should also lead us to the
optimal policy.

And yet a major difficulty with value iteration presented above is
that the one or more of the values can become very large or very small
during the iterations. This difficulty can be overcome by using relative
value iteration, which we discuss in the next subsection. Before that,
we present some numerical results to show the difficulty encountered
with the value iteration algorithm above.

Value Iteration on Example A. See Table 6.2 for some sample
calculations with value iteration on Example A (from Sect. 3.3.2). Note
that the values gradually become larger with every iteration.

4.3.2 Relative Value Iteration

As discussed above, the major obstacle faced in using value iteration
is that some of the values can become very large or very small. On
problems with a small number of states with a value for ε that is not
very small, one can sometimes use value iteration without running into
this difficulty. However, usually, in larger problems, one of the values
becomes very large or very small, and then the natural form of value
iteration cannot be used. Relative value iteration (RVI), due to White
[320], provides us with an elegant way out of this difficulty that we now
discuss.

If the Markov chain of every policy is regular, which we have
assumed above, we will select any state in S and call it the dis-
tinguished state. The updating mechanism (see Step 3 below) will
use this distinguished state and keep the values from becoming too
large or too small. Recall that in the natural form of value iteration,
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the corresponding updating mechanism (see Step 2 of natural value
iteration) is derived from the Bellman equation by setting ρ∗ = 0. We
now present steps in RVI.

Step 1: Select any arbitrary state from S to be the distinguished state
i∗. Set k = 1, and select arbitrary values for the vector �J 1. Specify
the termination value ε > 0.

Step 2: Compute for each i ∈ S:

Jk+1(i) = max
a∈A(i)

⎡

⎣r̄(i, a) +
|S|∑

j=1

p(i, a, j)Jk(j)

⎤

⎦ .

After calculations in this step for all states are complete, set ρ =
Jk+1(i∗).

Table 6.2. Calculations in value iteration for average reward MDPs: Note that the
values get unbounded but the span of the difference vector gets smaller with every
iteration. We start with J1(1) = J1(2) = 0

k Jk(1) Jk(2) Span
2 10.7 10.0 0.7
3 21.33 20.28 0.35
4 31.925 30.70 0.175
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
153 1,605.40 1,604.00 0.001367
154 1,615.96 1,614.56 0.000684

Step 3: For each i ∈ S, compute:

Jk+1(i) ← Jk+1(i)− ρ.

Step 4: If
sp( �J k+1 − �J k) < ε,

go to Step 5. Otherwise increase k by 1 and go back to Step 2.

Step 5: For each i ∈ S, choose

d(i) ∈ arg max
a∈A(i)

⎡

⎣r̄(i, a) +
|S|∑

j=1

p(i, a, j)Jk(j)

⎤

⎦ ,
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and stop. The ε-optimal policy is d̂; ρ is the optimal reward’s
estimate.

Essentially, the only difference between relative value iteration and
regular value iteration is in the subtraction of a value. And yet, what a
difference a subtraction makes! What is remarkable is that the values
remain bounded (see Table 6.3). We would also like to state without
proof here that:

Remark 1. The algorithm converges to the policy that value iteration
would have converged to.

Remark 2. As k tends to ∞, ρ converges to ρ∗.

Remark 2 implies that when the algorithm converges, the values will
converge to a solution of the Bellman optimality equation. Once J(i∗)
converges to ρ∗, it is clear from Step 3 that one would in fact be using
a transformation based on the Bellman optimality equation. We will
formally show in Chap. 11 that under some conditions, relative value
iteration converges in the span to the optimal solution, i.e., a solution
of the Bellman optimality equation.

Example A and RVI. In Table 6.3, we show the calculations with
using relative value iteration on Example A from Sect. 3.3.2.

4.3.3 Average Reward: A General Expression

It is good to remind the reader here that we have assumed the time
spent in a transition of a Markov process to be unity although the
actual time spent may not be unity. This assumption is perfectly valid
for the MDP where the transition time is not required to measure the
performance metric. But if the time spent in each transition is used to
measure the performance metric, which is the case in the semi-Markov
decision process (SMDP), then this assumption is invalid.

We now present a general expression for the average reward per unit
time in an MDP. Thus far, the expression used for average reward
has used limiting probabilities (assuming regular Markov chains for
all policies). The following expression, although equivalent, will not
contain the limiting probabilities. If the time spent in a transition is
not unity, one can view the expression below as that for the average
reward per jump or transition. If the transition time is unity, per unit
time and per jump are clearly equivalent.

The average reward per unit time calculated over an infinite time
horizon, starting at state i and using a policy μ̂, can be expressed as:

ρ(i) = lim inf
k→∞

E
[∑k

s=1 r(xs, μ(xs), xs+1)|x1 = i
]

k
, where



Dynamic Programming 159

k denotes the number of transitions (or time assuming that each tran-
sition takes unit time) over which the system is observed, xs denotes
the state from where the sth jump or state transition occurs under the
policy μ̂, and E denotes the expectation operator over all trajectories
that start under the condition specified within the square brackets.
If you have trouble understanding why we use lim inf here, you may
replace it by lim at this stage.

It can be shown that for policies with regular Markov chains, the
average reward is independent of the starting state i, and hence, ρ(i)
can be replaced by ρ. Intuitively, the above expression says that the
average reward for a given policy is

the expected sum of rewards earned in a very long trajectory

the number of transitions in the same trajectory
.

In the above, we assume that the associated policy is pursued within
the trajectory. We now discuss the other important performance
metric typically studied with an MDP: the discounted reward.

5. Discounted Reward MDPs and DP
The discounted reward criterion is another popular performance

metric that has been studied extensively by researchers in the con-
text of MDPs. In this section, we will focus on the use of DP methods

Table 6.3. Calculations in Relative value iteration for average reward MDPs: ε =
0.001; ε-optimal policy found at k = 12; J1(1) = J1(2) = 0

Iteration (k) Jk(1) Jk(2) Span ρ
2 0 −0.7 0.7 10.760
3 0 −1.05 0.35 10.630
4 0 −1.225 0.175 10.595
5 0 −1.3125 0.0875 10.578
6 0 −1.35625 0.04375 10.568
7 0 −1.378125 0.021875 10.564
8 0 −1.389063 0.010938 10.562
9 0 −1.394531 0.005469 10.561
10 0 −1.397266 0.002734 10.561
11 0 −1.398633 0.001367 10.560
12 0 −1.399316 0.000684 10.560

to find the policy in an MDP that optimizes discounted reward. Links
to computer codes for some DP algorithms are presented at [121].
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The idea of discounting is related to the fact that the value of money
reduces with time. To give a simple example: a dollar tomorrow is
worth less than a dollar today. The discounting factor is the fraction
by which money gets devalued in unit time. So for instance, if I earn $3
today, $5 tomorrow, $6 the day after tomorrow, and if the discounting
factor is 0.9 per day, then the present worth of my earnings will be:

3 + (0.9)5 + (0.9)26.

The reason for raising 0.9 to the power of 2 is that tomorrow, the
present worth of day-after-tomorrow’s earning will be 0.9(6). Hence
today, the present worth of this amount will be 0.9[0.9(6)] = (0.9)26.

In general, if the discounting factor is λ, and if e(t) denotes the
earning in the tth period of time, then the present worth of earnings
over n periods of time can be denoted by

e(0) + λe(1) + λ2e(2) + · · ·+ λne(n). (6.18)

Note that the discounting factor is in fact defined as follows:

λ =
1

1 + γ
,

where γ is the rate of interest (see any standard text on engineering
economics) expressed as a ratio. Since 0 < γ < 1, we have that λ < 1.
We now define the discounted reward.

5.1. Discounted Reward
By the discounted reward of a policy, we mean the expected total

discounted reward earned in the Markov chain associated with the
policy, when the policy is pursued over an infinitely long trajectory
of the Markov chain. A technical definition for the discounted reward
earned with a given policy μ̂ starting at state i is

vμ̂(i) = lim
k→∞

E

[
k∑

s=1

λs−1r(xs, μ(xs), xs+1)|x1 = i

]
, where (6.19)

λ denotes the discounting factor, k denotes the number of transitions
(or time assuming that each transition takes unit time) over which the
system is observed, xs denotes the state from where the sth jump or
transition of system state occurs under the policy μ, and E denotes
the expectation operator over all trajectories that operate under the
condition specified in the square brackets.
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In Eq. (6.19),

E

[
k∑

s=1

λs−1r(xs, μ(xs), xs+1)|x1 = i

]
=

E
[
r(i, μ(i), x2) + λr(x2, μ(x2), x3) + · · ·+ λk−1r(xk, μ(xk), xk+1)

]
.

This should make it obvious that the discounted reward of a policy is
measured using the format discussed in Eq. (6.18).

5.2. Discounted Reward MDPs
In the discounted reward MDP, we have more than one perfor-

mance metric (objective function), and hence the performance metric
is expressed in the form of a vector. Remember that in the average
reward case, the performance metric is the unique scalar quantity (ρ):
the average reward of a policy. In the discounted problem, associated
with every state, there exists a scalar quantity; we strive to max-
imize each of these quantities. These quantities are the elements of
the so-called value function vector. There is no quantity like ρ in the
discounted problem, rather there are as many quantities as there are
states.

The value function for discounted reward was defined in Eq. (6.19).
The term vμ̂(i) in Eq. (6.19) denotes the ith element of the value func-
tion vector. The number of elements in the value function vector is
equal to the number of states. The definition in Eq. (6.19) is associ-
ated with a policy μ̂. The point to be noted is that the value function
depends on the policy. (Of course it also depends on the discounting
factor, the transition probabilities, and the transition rewards.)

Solving an MDP implies identifying the policy that returns a value
function vector �v ∗ such that

v∗(i) = max
μ̂

vμ̂(i) for each i ∈ S.

The above means that the optimal policy will have a value function
vector that satisfies the following property: each element of the vector
is greater than or equal to the corresponding element of the value
function vector of any other policy. This concept is best explained
with an example.

Consider a 2-state Markov chain with 4 allowable policies denoted
by μ̂1, μ̂2, μ̂3, and μ̂4. Let the value function vector be defined by

vμ̂1(1) = 3; vμ̂2(1) = 8; vμ̂3(1) = −4; vμ̂4(1) = 12;
vμ̂1(2) = 7; vμ̂2(2) = 15; vμ̂3(2) = 1; vμ̂4(2) = 42;
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Now, from our definition of an optimal policy, policy μ̂4 should be the
optimal policy since the value function vector assumes the maximum
value for this policy for each state. Now, the following question should
rise in your mind at this stage. What if there is no policy for which
the value function is maximized for each state? For instance consider
the following scenario:

vμ̂1(1) = 3; vμ̂2(1) = 8; vμ̂3(1) = −4; vμ̂4(1) = 12;
vμ̂1(2) = 7; vμ̂2(2) = 15; vμ̂3(2) = 1; vμ̂4(2) = −5;

In the above setting, there is no one policy for which the value function
is maximized for all the states. Fortunately, it has been proved that
under the assumptions we have made above, there exists an optimal
policy; in other words, there exists a policy for which the value function
is maximized in each state. The interested reader is referred to [30,
270], among other sources, for the proof of this.

The important point that we need to address next is: how does
one find the value function of any given policy? Equation (6.19) does
not provide us with any direct mechanism for this purpose. Like in
the average reward case, we will need to turn to the Bellman policy
equation.

5.3. Bellman Policy Equation
The Bellman policy equation is a system of linear equations in which

the unknowns are the elements of the value function associated with
the policy. The Bellman policy equation (or the Bellman equation for
a given policy) for the discounted reward MDP is

hμ̂(i) = r̄(i, μ(i)) + λ

|S|∑

j=1

p(i, μ(i), j)hμ̂(j) for each i ∈ S. (6.20)

The number of equations in this system is equal to |S|, the number
of elements in the set S. The unknowns in the equation are the hμ̂
terms. They are the elements of the value function vector associated
with the policy μ̂. The other terms are defined below.

μ(i) denotes the action selected in state i under the policy μ̂ (since
the policy is known, each μ(i) is also known).

r̄(i, μ(i)) denotes the expected immediate reward in state i under
policy μ(i).

p(i, μ(i), j) denotes the one-step transition probability of jumping
from state i to state j under the policy μ̂.



Dynamic Programming 163

By solving the Bellman equation, one can obtain the value func-
tion vector associated with a given policy. Clearly, the value function
vectors associated with each policy can be evaluated by solving the
respective Bellman equations. Then, from the value function vectors
obtained, it is possible to determine the optimal policy. This method
is called the method of exhaustive enumeration.

Like in the average reward case, the method of exhaustive enu-
meration is not a very efficient method to solve the MDP, since its
computational burden is enormous. For a problem of 10 states with
two allowable actions in each, one would need to evaluate 210 policies.
The method of policy iteration is considerably more efficient.

5.4. Policy Iteration
Like in the average reward case, the basic principle of policy iter-

ation is to start from any arbitrarily selected policy and then move
to a better policy in every iteration. This continues until no further
improvement in policy is possible.

When a policy is selected, the Bellman equation for a policy
(Eq. (6.20)) is used to find the value function vector for that policy.
This is known as the policy evaluation stage because in this stage
we evaluate the value function vector associated with a policy. Then
the value function vector is used to find a better policy. This step
is called the policy improvement step. The value function vector of
the new policy is then found. In other words, one returns to the
policy evaluation step. This continues until the value function vector
obtained from solving the Bellman equation cannot produce a better
policy.

Steps in policy iteration for MDPs.

Step 1. Set k = 1. Here k will denote the iteration number. Let the
number of states be |S|. Select any policy in an arbitrary manner.
Let us denote the policy selected in the kth iteration by μ̂k. Let μ̂

∗
denote the optimal policy.

Step 2. (Policy Evaluation) Solve the following linear system of
equations for the unknown hk terms. For i = 1, 2, . . . , |S|

hk(i) = r̄(i, μk(i)) + λ

|S|∑

j=1

p(i, μk(i), j)h
k(j). (6.21)
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Step 3. (Policy Improvement) Choose a new policy μ̂k+1 such that

μk+1(i) ∈ argmax
a∈A(i)

⎡

⎣r̄(i, a) + λ

|S|∑

j=1

p(i, a, j)hk(j)

⎤

⎦ for all i ∈ S.

If possible, one should set μ̂k+1 = μ̂k.

Step 4. If the new policy is identical to the old one, i.e., if μk+1(i) =
μk(i) for each i, then stop and set μ∗(i) = μk(i) for every i. Oth-
erwise, increment k by 1, and return to Step 2.

Policy iteration on Example A. We used policy iteration on
Example A from Sect. 3.3.2. The results are shown in Table 6.4. The
optimal policy is (2, 1).

Table 6.4. Calculations in policy iteration for discounted MDPs

k Policy selected (μ̂k) Values
1 (1, 1) h1(1) = 25.026

h1(2) = 34.631
2 (2, 1) h2(1) = 53.03

h2(2) = 51.87

Like in the average reward case, we will next discuss the value
iteration method. The value iteration method is also called the method
of successive approximations (in the discounted reward case). This is
because the successive application of the Bellman operator in the dis-
counted case does lead one to the optimal value function. Recall that
in the average reward case, the value iteration operator may not keep
the iterates bounded. Fortunately this is not the case in the discounted
problem.

5.5. Value Iteration
Like in the average reward case, the major difference between value

iteration and policy iteration is that unlike in policy iteration, in value
iteration, one does not have to solve any equations. This is a big plus—
not so much in solving small MDPs, but in the context of simulation-
based DP (reinforcement learning). We will discuss this issue in more
detail in Chap. 7.

We begin by presenting the Bellman optimality equation for
discounted reward.



Dynamic Programming 165

J∗(i) = max
a∈A(i)

⎡

⎣r̄(i, a) + λ

|S|∑

j=1

p(i, a, j)J∗(j)

⎤

⎦ for each i ∈ S. (6.22)

The notation is similar to that defined for the average reward case.
Equation (6.22), i.e., the Bellman optimality equation for discounted
reward contains the max operator; hence, it cannot be solved using
linear algebra techniques, e.g., Gaussian elimination. However, the
value iteration method forms a convenient solution method. In value
iteration, one starts with some arbitrary values for the value function
vector. Then a transformation, derived from the Bellman optimality
equation, is applied on the vector successively until the vector starts
approaching a fixed value. The fixed value is also called a fixed point.
We will discuss issues such as convergence to fixed points in Chap. 11
in a more mathematically rigorous framework. However, at this stage,
it is important to get an intuitive feel for a fixed point.

If a transformation has a unique fixed point, then no matter what
vector you start with, if you keep applying the transformation repeat-
edly, you will eventually reach the fixed point. Several operations
research algorithms are based on such transformations.

We will now present step-by-step details of the value iteration algo-
rithm. In Step 3, we will need to calculate the max norm of a vector.
See Chap. 1 for a definition of max norm. We will use the notation ||.||
to denote the max norm.

Steps in value iteration for MDPs.

Step 1: Set k = 1. Select arbitrary values for the elements of a vector
of size |S|, and call the vector �J 1. Specify ε > 0.

Step 2: For each i ∈ S, compute:

Jk+1(i) ← max
a∈A(i)

⎡

⎣r̄(i, a) + λ

|S|∑

j=1

p(i, a, j)Jk(j)

⎤

⎦ .

Step 3: If
||( �J k+1 − �J k)|| < ε(1− λ)/2λ,

go to Step 4. Otherwise increase k by 1 and go back to Step 2.

Step 4: For each i ∈ S choose

d(i) ∈ argmax
a∈A(i)

⎡

⎣r̄(i, a) + λ

|S|∑

j=1

p(i, a, j)Jk(j)

⎤

⎦ and stop.
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The reader should note that in Step 2, we have used a transformation
derived from the Bellman equation. Also, to be noted is the fact that
the max-norm of the difference vector ( �J k+1 − �J k) decreases with
every iteration. The reason for the use of the expression ε(1 − λ)/2λ
in Step 3 will be explained in more detail in Chap. 11. Essentially, the
condition in Step 3 ensures that when the algorithm terminates, the
max norm of the difference between the value function vector returned
by the algorithm and the optimal value function vector is ε. Since the
max norm is in some sense the “length” of the vector, the implication
here is that the vector generated by the algorithm is different from
the optimal value function vector by a length of ε. Thus by making ε
small, one can obtain a vector that is as close to the optimal vector as
one desires. Finally, unlike the average reward case, the values do not
become unbounded in this algorithm.

Example A and value iteration. Table 6.5 shows the calculations
with using value iteration on Example A from the Sect. 3.3.2. The
discounting factor is 0.8.

5.6. Gauss-Siedel Value Iteration
The regular value iteration algorithm discussed above is slow and

can take many iterations to converge. We now discuss its variant
thatmay work faster: the Gauss-Siedel version. It differs from the

Table 6.5. Calculations in value iteration for discounted reward MDPs: The value
of ε is 0.001. The norm is checked with 0.5ε(1 − λ)/λ = 0.000125. When k = 53,
the ε-optimal policy is found; we start with J(1) = J(2) = 0

k J(1) J(2) Norm
2 10.700 10.000 10.7
3 19.204 18.224 8.504
4 25.984 24.892 6.781
. . . . . . . . . .
. . . . . . . . . .
53 53.032 51.866 0.000121

regular value iteration algorithm in that its updating mechanism
uses current versions of the value function’s elements; this is called
asynchronous updating. This needs to be explained in more detail.

Review value iteration presented above. In Step 2, Jk+1(i) is

obtained using values of the vector �J k. Now, consider a two-state
example. When Jk+1(2) is calculated, one already has the value
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of Jk+1(1). But in Step 2 in the algorithm description we use Jk(1).
This is where the Gauss-Seidel version differs from the regular version.
In Step 2 of Gauss Seidel, we will use Jk+1(1).

In general, we will use Jk+1(i) of every i for which the (k + 1)th
estimate is available. In other words, in the updating of the values,
we will use the latest estimate of the value. The main idea is that the
algorithm is based on the following update:

J(i) ← max
a∈A(i)

⎡

⎣r̄(i, a) + λ

|S|∑

j=1

p(i, a, j)J(j)

⎤

⎦ .

Note that we avoid using the superscript k in the above, essentially
implying that during any update, one should use the latest estimate
of the value function of any state.

Example A and Gauss-Siedel value iteration. Table 6.6 shows
the calculations with Gauss-Seidel value iteration on Example A from
the Sect. 3.3.2. The discounting factor is 0.8. Note that it takes fewer
iterations to converge in comparison to regular value iteration.

6. Bellman Equation Revisited
The validity of the Bellman equation will be proved using math-

ematical arguments in Chap. 11. However, in this section, we will
motivate the Bellman equation in an intuitive manner. The intuitive
explanation will throw considerable insight on the physical meaning of
the value function.

We consider the Bellman policy equation (i.e., Bellman equation
for a given policy) in the discounted case. The value function of a
given policy for a given state is the expected total discounted reward
earned over an infinitely long trajectory, if the given policy is adhered

Table 6.6. Gauss-Siedel value iteration for discounted reward MDPs: Here ε =
0.001; the norm is checked with 0.5ε(1 − λ)/λ = 0.000125; the ε-optimal is found
at k = 33; we start with J1(1) = J1(2) = 0

k J(1) J(2) Norm
2 12.644 18.610 18.612500
3 22.447 27.906 9.803309
. . . . . . . . . .
. . . . . . . . . .
33 39.674 43.645 0.000102
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to in every state visited. Keeping this in mind, let us strive to obtain
an expression for the value function of a given state i for a policy d̂.
Denoting this element by vd̂(i), we have that the vd̂(i) must equal
the immediate reward earned in a transition from i plus the value
function of the state to which it jumps at the end of the transition.
For instance, if you were measuring the total reward along a trajectory
and you encounter two states i and j along the trajectory—i first and
then j—then the reward earned from i to the end of the trajectory
would be the sum of (1) the immediate reward earned in going from
i to j and (2) the total discounted reward earned from j to the end
of the trajectory. See also Fig. 6.13. This is the basic idea underlying
the Bellman equation.

r(i,d(i),j)

i j

v(i)

v(j)

Figure 6.13. Total discounted reward calculation on an infinitely long trajectory

Let us next discuss what happens when the state transitions are
probabilistic and there is a discounting factor λ. When the system
is in a state i, it may jump to any one of the states in the system.
Consider Fig. 6.14.

i j

r(i,d(i),j)

Figure 6.14. Immediate reward in one transition

So when the policy is d̂, the expected total discounted reward earned
from state i, which is vd̂(i), can now be expressed as the sum of

a. The immediate reward earned in going to state j and

b. λ times the value function of the state j.

This is because the value function of state j denotes the expected
total discounted reward from j onwards. But this quantity (that is
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the value function of state j) must be multiplied by λ, since it is
earned one time step after leaving i. We assume that the immediate re-
ward is earned immediately after state i is left. Hence the immediate
reward is not multiplied by λ. However, j can actually be any one of
the states in the Markov chain. Hence, in our calculation, we have to
use an expectation over j. Thus, we have that

vd̂(i) =

|S|∑

j=1

p(i, d(i), j)
[
r(i, d(i), j) + λvd̂(j)

]
,

which turns out to be the Bellman equation for a policy (d̂) for state i.
We hope that this discussion has served as an intuitive basis for the
Bellman policy equation.

The Bellman optimality equation has a similar intuitive explanation:
In each transition, to obtain the optimal value function at the current
state, i, one seeks to add the maximum over the sum of immediate
reward to the next state j and the “best” (optimal) value function from
state j. Of course, like in the policy equation, we must compute an
expectation over all values of j. We now discuss semi-Markov decision
problems.

7. Semi-Markov Decision Problems
The semi-Markov decision problem or process (SMDP) is a

more general version of the Markov decision problem (or process) in
which the time spent in each state is an important part of the model.
In the SMDP, we assume that the time spent in any transition of the
Markov chain is not necessarily unity; in fact the time spent could
be different for each transition. Furthermore, the time could be a
deterministic quantity or a random variable. It should be clear now
that the MDP is a special case of the SMDP in which the time of
transition is always one.

One may think of an SMDP as a problem very like an MDP with
the difference that every transition can take an amount of time that is
not necessarily equal to 1 unit. Our discussions on the SMDP will be
based on this argument. The Markov chain associated to any policy
(or any action) in the SMDP is called the embedded Markov chain.

Since the transition time from one state to another depends on the
state pair in question, it is common practice to store the expected tran-
sition times in matrices. We will first treat the case of deterministic
transition times.
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In the case of deterministic transition times, the transition time is
fixed for a given state-state pair and for a given action. The tran-
sition time of going from state i to state j under the influence of
action a can then be denoted by t̄(i, a, j) in a manner similar to the
notation of the immediate reward (r(i, a, j)) and the transition prob-
ability (p(i, a, j)). Also, each value of t̄(i, a, j) can then be stored in a
matrix—the transition time matrix (TTM). This matrix would be very
like the transition reward matrix (TRM) or the transition probability
matrix (TPM). An SMDP in which the time spent in any transition
is a deterministic quantity will be referred to as a deterministic time
semi-Markov decision problem (DeTSMDP).

When the transition times are random variables from any general
(given) distribution, we have what we will call the generalized SMDP.
The DeTSMDP is, of course, a special case of the generalized SMDP.
When the distribution is exponential, we have a so-called continuous
time Markov decision problem (CTMDP). Thus, we have three types of
SMDPs: (i) generalized SMDPs, (ii) CTMDPs, and (iii) DeTSMDPs.

For the generalized SMDP, we will treat the term t̄(i, a, j) to be the
expected transition time from i to j under action a. These times can
also be stored within a matrix, which will be referred to as the TTM.
For solving the SMDP, via dynamic programming, in addition to the
TPMs and TRMs, we need the TTMs.

The exponential distribution (the distribution for transition times
in CTMDPs) is said to have a memoryless property. This memoryless
property is sometimes also called the Markov property, but the reader
should not confuse this with the Markov property of the MDPs that we
have discussed before. In fact, the Markov property of the exponential
distributions for the transition times of a CTMDP does not allow us to
treat the CTMDP as an MDP. Via a process called uniformization,
however, one can usually convert a CTMDP into an MDP. The “uni-
formized” CTMDP can be treated as an MDP; but note that it has
transition probabilities that are different from those of the original
CTMDP. Thus, the CTMDP in its raw form is in fact an SMDP and
not an MDP. We will not discuss the process of uniformization here.
For this topic, the reader is referred to other texts, e.g., [30].

By a process called discretization, which is different than the uni-
formization mentioned above, we can also convert a generalized SMDP
into an MDP. We will discuss discretization later in the context of
average reward SMDPs. We now illustrate the notion of transition
times with some simple examples.
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Assume that the SMDP has two states numbered 1 and 2. Also,
assume that the time spent in a transition from state 1 is uniformly
distributed with a minimum value of 1 and a maximum of 2 (Unif(1,2)),
while the same from state 2 is exponentially distributed with a mean
of 3 (EXPO(3)); these times are the same for every action. Then, for
generating the TTMs, we need to use the following values. For all
values of a,

t̄(1, a, 1) = (1 + 2)/2 = 1.5; t̄(1, a, 2) = (1 + 2)/2 = 1.5;

t̄(2, a, 1) = 3; t̄(2, a, 2) = 3.

Obviously, the time could follow any distribution. If the distributions
are not available, we must have access to the expected values of the
transition time, so that we have values for each t̄(i, a, j) term in the
model. These values are needed for solving the problem via dynamic
programming.

It could also be that the time spent depends on the action. Thus
for instance, we could also represent the distributions within the TTM
matrix. We will use Ta to denote the TTM for action a. For a 2-state,
2-action problem, consider the following data:

T1=

[
Unif (5, 6) 12
Unif (14, 16) Unif (5, 12)

]
;T2=

[
Unif (45, 60) Unif (32, 64)
Unif (14, 16) Unif (12, 15)

]
.

In the above, the random values denoted by the distributions should
be replaced by their mean values when performing calculations. We
need to clarify that the distributions in a given TTM need not belong
to the same family, and some (or all) entries in the TTM can also be
constants.

7.1. Natural and Decision-Making Processes
In many MDPs and most SMDPs, we have two stochastic processes

associated with every Markov chain. They are:

1. The natural process (NP).

2. The decision-making process (DMP).

Any stochastic process keeps track of the changes in the state of
the associated system. The natural process keeps track of every state
change that occurs. In other words, whenever the state changes, it gets
recorded in the natural process. Along the natural process, the system
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does not return to itself after one transition. This implies that the
natural process remains in a state for a certain amount of time and
then jumps to a different state.

The decision process has a different nature. It records only those
states in which an action needs to be selected by the decision-maker.
Thus, the decision process may come back to itself after one transition.
A decision-making state is one in which the decision-maker makes a
decision. All states in a Markov chain may not be decision-making
states; there may be several states in which no decision is made. Thus
typically a subset of the states in the Markov chain tends to be the set
of decision-making states. Clearly, as the name suggests, the decision-
making process records only the decision-making states.

For example, consider a Markov chain with three states numbered
1, 2, 3, and 4. States 1 and 2 are decision-making states while 3 and
4 are not. Now consider the following trajectory:

1, 3, 4, 3,2, 3,2, 4,2, 3, 4, 3, 4, 3, 4, 3, 4,1.

In this trajectory, the NP will look identical to what we see above.
The DMP however will be:

1,2,2,2,1.

This example also explains why the NP may change several times
between one change of the DMP. It should also be clear that the DMP
and NP coincide on the decision-making states (1 and 2).

We need to calculate the value functions of only the decision-making
states. In our discussions on MDPs, when we said “state,” we meant
a decision-making state. Technically, for the MDP, the non-decision-
making states enter the analysis only when we calculate the imme-
diate rewards earned in a transition from a decision-making state to
another decision-making state. In the SMDP, calculation of the tran-
sition rewards and the transition times needs taking into account the
non-decision-making states visited. This is because in the transition
from one decision-making state to another, the system may have vis-
ited non-decision-making states multiple times, which can dictate (1)
the value of the immediate reward earned in the transition and (2) the
transition time.

In simulation-based DP (reinforcement learning), the issue of iden-
tifying non-decision-making states becomes less critical because the
simulator calculates the transition reward and transition time in tran-
sitions between decision-making states; as such we need not worry
about the existence of non-decision-making states. However, if one
wished to set up the model, i.e., the TRM and the TPM, careful
attention must be paid to this issue.
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In SMDPs, the time spent in the different transitions of the Markov
chain is not necessarily the same. In the MDP, the time is irrelevant,
and as such, in the calculation of the performance metric, we as-
sume the time spent to be unity. This means that the average reward
per unit time for an MDP is actually average reward per transition
(jump) of the underlying Markov chain. For the SMDP, however, one
must be careful in this respect. In the SMDP, average reward per
unit time cannot be substituted by average reward per unit transition
because the two quantities are different. In the SMDP, the average
reward per transition will not mean the same thing.

In the next two subsections, we will discuss the average reward and
the discounted reward SMDPs. Our discussions will be centered on
algorithms that can be used to solve these problems.

7.2. Average Reward SMDPs
We first need to define the average reward of an SMDP. The average

reward of an SMDP is a quantity that we want to maximize. Recall
that t̄(i, a, j) is the mean transition time from state i to state j un-
der the influence of action a. Now, the average reward, using a unit
time basis, starting from a state i and following a policy μ̂, can be
mathematically expressed as:

ρμ̂(i) ≡ lim inf
k→∞

E[
∑k

s=1 r(xs, μ(xs), xs+1)|x1 = i]

E[
∑k

s=1 t̄(xs, μ(xs), xs+1)|x1 = i]

where xs is the state from where the sth jump (or state transition)
occurs. The expectation is over the different trajectories that may be
followed under the conditions within the square brackets.

The notation inf denotes the infimum (and sup denotes the supre-
mum). An intuitive meaning of inf is minimum and that of sup is
maximum. Technically, the infimum (supremum) is not equivalent to
the minimum (maximum); however at this stage you can use the two
interchangeably. The use of the infimum here implies that the average
reward of a policy is the ratio of the minimum value of the total reward
divided by the total time in the trajectory. Thus, it provides us with
lowest possible value for the average reward.

It can be shown that the average reward is not affected by the state
from which the trajectory of the system starts. Therefore, one can get
rid of i in the definition of average reward. The average reward on
the other hand depends on the policy used. Solving the SMDP means
finding the policy that returns the highest average reward.
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7.2.1 Exhaustive Enumeration

Like in the MDP case, for the SMDP, exhaustive enumeration is
not an attractive proposition from the computational angle. How-
ever, from the conceptual angle, it is an important method to be first
understood. Hence we now discuss it briefly.

We begin by defining the average time spent in a transition from
state i under the influence of action a as follows:

t̄(i, a) =

|S|∑

j=1

p(i, a, j)t̄(i, a, j),

where t̄(i, a, j) is the expected time spent in one transition from state
i to state j under the influence of action a. Now, the average reward
of an SMDP can also be defined as:

ρμ̂ =

∑|S|
i=1Πμ̂(i)r̄(i, μ(i))

∑|S|
i=1Πμ̂(i)t̄(i, μ(i))

(6.23)

where

r̄(i, μ(i)) and t̄(i, μ(i)) denote the expected immediate reward
earned and the expected time spent, respectively, in a transition
from state i under policy μ̂ and

Πμ̂(i) denotes the limiting probability of the underlying Markov
chain for state i when policy μ̂ is followed.

The numerator in the above denotes the expected immediate reward
in any given transition, while the denominator denotes the expected
time spent in any transition. The above formulation (see e.g., [30])
is based on the renewal reward theorem (see Johns and Miller [155]),
which essentially states that

ρ = average reward per unit time =
expected reward earned in a cycle

expected time spent in a cycle
. (6.24)

Example B. The example discussed next is similar to the Example A
in Sect. 3.3.2 as far as the TPMs and the TRMs are considered. What
is new here is the TTM (transition time matrix). There are two states
numbered 1 and 2 in an MDP and two actions, also numbered 1 and
2, are allowed in each state. The TTM for action a is represented by
Ta. Similarly, the TPM for action a is denoted by Pa and the TRM
for action a by Ra.
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T1 =

[
1 5
120 60

]
;T2 =

[
50 75
7 2

]
.

P1 =

[
0.7 0.3
0.4 0.6

]
;P2 =

[
0.9 0.1
0.2 0.8

]
.

R1 =

[
6 −5
7 12

]
;R2 =

[
10 17
−14 13

]
.

There are 4 possible policies that can be used to control the system:

μ̂1 = (1, 1), μ̂2 = (1, 2), μ̂3 = (2, 1), and μ̂4 = (2, 2).

The TTMs of these policies are constructed from the individual
TTMs of each action. The TTMs are:

Tμ̂1 =

[
1 5

120 60

]
;Tμ̂2 =

[
1 5
7 2

]
;Tμ̂3 =

[
50 75
120 60

]
;Tμ̂4 =

[
50 75
7 2

]
.

The TPMs and TRMs were calculated in Sect. 3.3.2. The value of
each t̄(i, μ(i)) term can be calculated from the TTMs in a manner
similar to that used for calculation of r̄(i, μ(i)). The values are:

t̄(1, μ1(1)) = p(1, μ1(1), 1)t̄(1, μ1(1), 1) + p(1, μ1(1), 2)t̄(1, μ1(1), 2)

= 0.7(1) + 0.3(5) = 2.20;

t̄(2, μ1(2))=84; t̄(1, μ2(1))=2.20; t̄(2, μ2(2))=3.00; t̄(1, μ3(1))=52.5;

t̄(2, μ3(2)) = 84.0; t̄(1, μ4(1)) = 52.5; and t̄(2, μ4(2)) = 3.00.

The corresponding r̄ terms, needed for computing ρ, were calculated
before; see Sect. 3.3.2. Then, using Eq. (6.23), the average rewards of
all the policies are as follows:

ρμ̂1 = 0.1564, ρμ̂2 = 2.1045, ρμ̂3 = 0.1796, and ρμ̂4 = 0.2685.

Clearly, policy μ̂2 is an optimal policy. The optimal policy here is
different from the optimal policy for the MDP (in Sect. 3.3.2), which
had the same TPMs and TRMs. Thus, although it is perhaps obvious,
we note that the time spent in each state makes a difference to the
average reward per unit time. Hence, it is the SMDP model rather
than the MDP model that will yield the optimal solution, when time is
used for measuring the average reward. We will now discuss the more
efficient DP algorithms for solving SMDPs.
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7.2.2 Policy Iteration

Policy iteration of average reward MDPs has a clean and nice
extension to SMDPs. This is unlike value iteration which for average
reward does not extend easily from MDPs to SMDPs. We will begin
by presenting the Bellman equation for a given policy in the context
of average reward SMDPs.

The Bellman policy equation in the average reward context for
SMDPs is:

hμ̂(i) = r̄(i, μ(i))− ρμ̂t̄(i, μ(i)) +

|S|∑

j=1

p(i, μ(i), j)hμ̂(j) for each i ∈ S.

(6.25)

In the above, notation is as usual; ρμ̂ denotes the average reward per
unit time generated by policy μ̂. The only difference between the above
equation and the Bellman policy equation for average reward MDPs
lies in the time term, i.e., the t̄(i, μ(i)) term. The MDP version can be
obtained by setting the time term to 1 in the above. Like in the MDP
case, the above is a system of linear equations in which the number
of equations is equal to the number of elements in the set S. The
unknowns in the equation are the hμ̂ terms. They are the elements of
the value function vector associated with the policy μ̂.

Steps in policy iteration for SMDPs.

Step 1. Set k = 1. Here k will denote the iteration number. Let the
number of states be |S|. Select any policy in an arbitrary manner.
Let us denote the policy selected by μ̂k. Let μ̂

∗ denote the optimal
policy.

Step 2. (Policy Evaluation) Solve the following linear system of
equations.

hk(i) = r̄(i, μk(i))− ρk t̄(i, μk(i)) +

|S|∑

j=1

p(i, μ(i), j)hk(j). (6.26)

Here one linear equation is associated to each value of i. In this
system, the unknowns are the hk terms and ρk. Any one of the hk

terms should be set to 0.
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Step 3. (Policy Improvement) Choose a new policy μ̂k+1 so that
for all i ∈ S

μk+1(i) ∈ argmax
a∈A(i)

⎡

⎣r̄(i, a)− ρk t̄(i, a) +

|S|∑

j=1

p(i, a, j)hk(j)

⎤

⎦ .

If possible, one should set μ̂k+1 = μ̂k.

Step 4. If the new policy is identical to the old one, i.e., if μk+1(i) =
μk(i) for each i, then stop, and set μ∗(i) = μk(i) for every i. Oth-
erwise, increment k by 1, and go back to the second step.

Policy iteration on Example B. We will show the use of policy
iteration on generic example from Sect. 7.2.1. The results are shown
in Table 6.7. The optimal policy is (2, 1).

7.2.3 Value Iteration

Recall that value iteration for MDPs in the average reward context
poses a few problems. For instance, the value of the average reward
(ρ∗) of the optimal policy is seldom known beforehand, and hence
the Bellman optimality equation cannot be used directly. Let us first
analyze the Bellman optimality equation for average reward SMDPs.

J∗(i) = max
a∈A(i)

⎡

⎣r̄(i, a)− ρ∗t̄(i, a) +
|S|∑

j=1

p(i, a, j)J∗(j)

⎤

⎦ for each i ∈ S.

(6.27)
The following remarks will explain the notation.

The J∗ terms are the unknowns. They are the components of the
optimal value function vector �J ∗. The number of elements in the
vector �J ∗ equals the number of states in the SMDP.

The term t̄(i, a) denotes the expected time of transition from state
i when action a is selected in state i.

The term ρ∗ denotes the average reward associated with the optimal
policy.

Now in an MDP, although ρ∗ is unknown, it is acceptable to replace
ρ∗ by 0 (which is the practice in regular value iteration for MDPs),
or to replace it by the value function associated with some state of
the Markov chain (which is the practice in relative value iteration
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for MDPs). In the MDP, this replacement is acceptable, because it
does not affect the policy to which value iteration converges (although
it does affect the actual values of the value function to which the
algorithm converges). However, in the SMDP, such a replacement
violates the Bellman equation. This is the reason we have difficulties
in developing a regular value iteration algorithm for the average reward
SMDP. We now illustrate this difficulty with an example.

7.2.4 Regular Value Iteration

Our example will show that naive application of value and relative
value iteration will not work in the SMDP. Let us define W (i, a) as
follows:

W (i, a) ≡ r̄(i, a)− ρ∗t̄(i, a) +
|S|∑

j=1

p(i, a, j)Jk(j)

for all (i, a) pairs, where Jk(i) denotes the estimate of the value func-
tion element for the ith state in the kth iteration of the value iteration
algorithm.Let us define W ′(i, a), which deletes the ρ∗ and also the time

Table 6.7. Calculations in policy iteration for average reward SMDPs (Example B)

Iteration (k) Policy selected (μ̂k) Values ρ
1 (1, 1) h1(1) = 0 0.156

h1(2) = −7.852
2 (2, 2) h2(1) = 0 0.2685

h2(2) = 33.972
3 (1, 2) h3(1) = 0 2.1044

h3(2) = 6.432

term (t̄(., .)), as follows:

W ′(i, a) ≡ r̄(i, a) +

|S|∑

j=1

p(i, a, j)Jk(j)

for all (i, a) pairs.
Provided the value of ρ∗ is known in advance (this is not the case

in practice, but let us s assume this to be the case for a minute), a
potential value iteration update with the Bellman equation will be:

Jk+1(i) ← max
a∈A(i)

⎡

⎣r̄(i, a)− ρ∗t̄(i, a) +
|S|∑

j=1

p(i, a, j)Jk(j)

⎤

⎦ . (6.28)
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Now, consider an SMDP with two actions in each state, where t̄(i, 1) =
t̄(i, 2). For this case, the above value iteration update can be writ-
ten as:

Jk+1(i) ← max{W (i, 1),W (i, 2)}. (6.29)

If regular value iteration, as defined for the MDP, is used here, one
must not only ignore the ρ∗ term but also the time term. Then, an
update based on a regular value iteration for the SMDP will be (we
will show below that the following equation is meaningless):

Jk+1(i) ← max
a∈A(i)

⎡

⎣r̄(i, a) +
|S|∑

j=1

p(i, a, j)Jk(j)

⎤

⎦ , (6.30)

which can be written as:

Jk+1(i) ← max{W ′(i, 1),W ′(i, 2)}. (6.31)

Now, since t̄(i, 1) = t̄(i, 2), it is entirely possible that using (6.29), one
obtains Jk+1(i) = W (i, 1), while using (6.31), one obtains Jk+1(i) =
W ′(i, 2).

In other words, the update in (6.31) will not yield the same maxi-
mizing action as (6.29), where (6.29) is based on the Bellman equation,
i.e., Eq. (6.28). (Note that both will yield the same maximizing action
if all the time terms are equal to 1, i.e., in the MDP). Thus regu-
lar value iteration, i.e., (6.31), which is based on Eq. (6.30), is not
an acceptable update for the SMDP in the manner shown above. It
should be clear thus that Eq. (6.28) cannot be modified to eliminate
ρ∗ without eliminating t̄(., .) at the same time; i.e., Eq. (6.30) has no
validity for SMDPs! And herein lies the difficulty with value iteration
for SMDPs. There is, however, a way around this difficulty, which we
now discuss.

7.2.5 Discretization for Generalized SMDPs

For circumventing the difficulty described above, one recommended
procedure is to “discretize” the SMDP and thereby convert it into
an MDP. This process transforms the SMDP into an MDP by con-
verting the immediate rewards to rewards measured on a unit time
basis. The “discretized” Bellman optimality equation is:

J∗(i) = max
a∈A(i)

⎡

⎣r̄ϑ(i, a)− ρϑ∗ +

|S|∑

j=1

pϑ(i, a, j)J∗(j)

⎤

⎦ , for all i ∈ S,

(6.32)



180 SIMULATION-BASED OPTIMIZATION

where the replacements for r̄(i, a) and p(i, a, j) are denoted by r̄ϑ(i, a)
and pϑ(i, a, j), respectively, and are defined as:

r̄ϑ(i, a) = r̄(i, a)/t̄(i, a);

pϑ(i, a, j) =

{
ϑp(i, a, j)/t̄(i, a) if i = j
1 + ϑ[p(i, a, j)− 1]/t̄(i, a) if i = j

In the above, ϑ is chosen such that:

0 ≤ ϑ ≤ t̄(i, a)/(1− p(i, a, j)) for all a, i and j.

That the above Bellman optimality equation in Eq. (6.32) is perfectly
valid for the average reward SMDP and is equivalent to using Eq. (6.27)
for value iteration purposes is proved in [30], amongst other sources.
The advantage of Eq. (6.32) for value iteration is that unlike Eq. (6.27)
it contains the term ρϑ∗ without time as a coefficient.

It is now possible to use natural value iteration using this trans-
formed Bellman equation to solve the SMDP after setting ρϑ∗ to 0
like in the MDP (note that the resulting equation will be different
than Eq. (6.30) because of the differences in the transition rewards
and probabilities). It is also possible to use the relative value iteration
algorithm just as in the MDP. Before moving on to the next topic, we
note that the discretization procedure changes the transition proba-
bilities of the Markov chain. Also, very importantly, the transformed
Bellman equation has transition time encoded within the transformed
transition probabilities and rewards. We do not present additional de-
tails of this topic, however, because in the simulation-based context
(as we will see in the next chapter), a discretization of this nature can
be avoided.

7.3. Discounted Reward SMDPs
Our attention in this subsection will be focussed on the DeTSMDP

under an additional structural assumption on how the rewards are
earned. This is done to keep the analysis simple. In the next chap-
ter that considers a simulation-based approach, which is after all the
focus of this book, we will cover a more general model (the generalized
SMDP) for discounting without these assumptions.

We begin with the definition of an appropriate discounting factor
for the SMDP in discounting. From standard engineering economics,
we know that the present value and future value share a relationship
due to the rate of interest (or inflation). If a fixed rate of interest is
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used that is compounded after a fixed time τ (e.g., typically, annually
in our engineering economics problems), the relationship is:

Present Value =
1

(1 + γ)τ
Future Value,

where γ is the rate of return or rate of interest. In the above formula, γ
should be expressed as a fraction (not in percent, although we usually
think of rate of interest in percentages). If τ = 1, i.e., transition time
in the process is equal to 1, we have an MDP. Then λ, which we used
to denote the discounting factor, is:

λ =
1

1 + γ
.

If γ > 0, we have that 0 < λ < 1. (Note that in average reward
problems, we assume γ = 0.) Now, let us consider the case of contin-
uously compounded interest, where the time period can be small
(as opposed to fixed time period above). The discount factor λ will
now be raised to τ , which leads to:

λτ =

(
1

1 + γ

)τ

≈
(
e−γ
)τ

= e−γτ .

The above exponential approximation based on the exponential series,
which is true when γ is small, has been well-known in the operations
research community because the principle is widely used in the engi-
neering economics community, where it is used to relate the present to
the future value:

Present Value = e−γτFuture Value.

In other words, to obtain the present value (worth) the future value is
multiplied by e−γτ , which, in a rough sense, becomes the discounting
factor here. Here, we have continuously compounded rates, since the
rewards are earned over time continuously. The Bellman equations
must hence account for this new discounting factor. We now make
two assumptions about the SMDP that we first study.

Assumption 6.4 The discounted SMDP is a DeTSMDP.

Assumption 6.5 The immediate reward is earned in a lump sum im-
mediately after the transition starts.

Assumption 6.5 implies that the immediate reward term, r(i, a, j),
will denote the reward earned as soon as action a is selected in state
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i, i.e., as soon as the transition begins. Hence, we assume that no
reward is earned after that instant during that transition, and that
all the reward associated with a transition is earned as a lump sum
at the start of the transition. This assumption is not needed in the
average reward problem. The reasons are as follows. In the average
reward problem, since there is no discounting, the immediate reward
earned at any time during the transition can simply be lumped to-
gether into r(i, a, j). However, in the discounted SMDP, if a part of
the immediate reward is earned during the transition, then since we as-
sume continuous compounding, that portion of the immediate reward
earned during the transition must be properly discounted. This can
be done by a suitable modification of the Bellman equation that we
will discuss at the end of this subsection. For the time being, in order
to keep the analysis simple, we assume that the immediate reward is
earned as soon as the transition starts.

Under Assumptions 6.4 and 6.5, the Bellman equation for a policy
is given by:

hμ̂(i) = r̄(i, μ(i)) +

|S|∑

j=1

e−γt̄(i,μ(i),j)p(i, μ(i), j)hμ̂(j)

for each i ∈ S. The role of the discounting factor here is played by
e−γt̄(i,μ(i),j).

7.3.1 Policy Iteration

In what follows, we present a discussion on the use of policy iteration
in solving discounted reward SMDPs under Assumptions 6.4 and 6.5.
The policy iteration algorithm is very similar to that used for MDPs.
The discounting factor accommodates the time element.

Step 1. Set k = 1. Here k will denote the iteration number. Let
the set of states be denoted by S. Select a policy in an arbitrary
manner. Let us denote the policy selected by μ̂k. Let μ̂∗ denote
the optimal policy.

Step 2. (Policy Evaluation) Solve the following linear system of
equations. For i = 1, 2, . . . , |S|,

hk(i) = r̄(i, μk(i)) +

|S|∑

j=1

e−γt̄(i,μk(i),j)p(i, μ(i), j)hk(j). (6.33)
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Step 3. (Policy Improvement) Choose a new policy μ̂k+1 such that

μk+1(i) = argmax
a∈A(i)

⎡

⎣r̄(i, a) +
|S|∑

j=1

e−γt̄(i,a,j)p(i, a, j)hk(j)

⎤

⎦ .

If possible one should set μ̂k+1 = μ̂k.

Step 4. If the new policy is identical to the old one, i.e., if μk+1(i) =
μk(i) for each i, then stop, and set μ∗(i) = μk(i) for every i. Oth-
erwise, increment k by 1, and go back to the second step.

7.3.2 Value Iteration

Value iteration can be carried out on discounted reward SMDPs
under Assumptions 6.4 and 6.5.

Step 1: Set k = 1. Select arbitrary values for the elements of a vector
of size |S|, and call the vector �J 1. Specify ε > 0.

Step 2: For each i ∈ S, compute:

Jk+1(i) ← max
a∈A(i)

⎡

⎣r̄(i, a) +
|S|∑

j=1

e−γt̄(i,a,j)p(i, a, j)Jk(j)

⎤

⎦ .

Step 3: If
sp( �J k+1 − �J k) < ε,

go to Step 4. Otherwise increase k by 1, and go back to Step 2.

Step 4: For each i ∈ S, choose

d(i) ∈ argmax
a∈A(i)

⎡

⎣r̄(i, a) +
|S|∑

j

e−γt̄(i,a,j)p(i, a, j)Jk(j)

⎤

⎦ ,

and stop.

7.3.3 Generalized SMDPs Without Assumptions 6.4
and 6.5

We now develop the Bellman equations for the generalized SMDP
where Assumptions 6.4 and 6.5 are not needed, i.e., the time spent in
a transition need not be deterministic and the reward can be earned
any time during the transition. This is the most general case that
requires a suitable modification of the model presented above for the
discounted SMDP.
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Since we will assume that the transition time can be random, we
need to introduce its distribution function. Also, we now need to
distinguish between the immediate reward earned at start, which we
call the lump sum reward, and the reward earned continuously over
the transition. We present some notation needed to set up the Bellman
equations. Let fi,a,j(.) denote the pdf of the transition time from i to
j under the influence of action a, rC(i, a, j) denote the continuous rate
of reward (e.g., in dollars per hour) from state i to j under action a,
and rL(i, a, j) denote the immediate reward (e.g., in dollars) earned
from i immediately after action a is taken and the system goes to j
(lump sum reward). The Bellman equation for a policy μ̂ is: For every
i ∈ S, Jμ(i) =

∑

j∈S

p(i, μ(i), j)rL(i, μ(i), j) +R(i, μ(i)) +
∑

j∈S

[∫ ∞

0

e−γτfi,μ(i),j(τ)Jμ(j)dτ

]
,

where R(i, a) =
∑

j∈S

[∫ ∞

0
rC(i, a, j)

1− e−γτ

γ
fi,a,j(τ)dτ

]

and lim
τ→∞ fi,a,j(τ) = p(i, a, j).

The Bellman optimality equation is given by: For every i ∈ S, J(i) =

max
a∈A(i)

[
∑

j∈S

p(i, a, j)rL(i, a, j) +R(i, a) +
∑

j∈S

[∫ ∞

0

e−γτfi,a,j(τ)J(j)dτ

]]
.

These equations involve integrals, and in order to use them within
policy and value iteration, one must perform these integrations, which
is possible when the pdfs are available. In a simulation-based context,
however, these integrations can be avoided; we will see this in Chap. 7.
Since our focus is on simulation-based solutions in this book, we bypass
this topic. See [242, 30] for additional details.

8. Modified Policy Iteration
An approach outside of value and policy iteration goes by the name

modified policy iteration. It combines advantages of value iteration
and policy iteration and in some sense is devoid of the disadvantages
of both. At this point, a discussion on the relative merits and demerits
of both approaches is in order.

Policy iteration converges in fewer iterations than value iteration,
but forces us to solve a system of linear equations in every iteration.
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Value iteration is slower (computer time) than policy iteration, but
does not require the solution of any system of equations.

Solving linear equations is not difficult if one has a small system of
linear equations. But in this book, we are interested in models which
can work without transition probabilities, and as such formulating a
linear system is to be avoided. The real use of this algorithm will
therefore become obvious in simulation-based approaches to DP. We
will discuss this algorithm for MDPs only.

Modified policy iteration uses value iteration in the policy evalua-
tion stage of policy iteration; thereby it avoids having to solve linear
equations. Instead of using Gauss elimination or some other linear
equation solver, the algorithm uses value iteration to solve the system.
However, it uses the scheme of policy iteration of searching in policy
space. In other words, it goes from one policy to another in search of
the best doing value iteration in the interim.

An interesting aspect of the modified policy iteration algorithm is
that the policy evaluation stage can actually be an incomplete value
iteration. We now present details for the discounted MDP.

8.1. Steps for Discounted Reward MDPs
Step 1. Set k = 1. Here k will denote the iteration number. Let the

set of states be denoted by S. Assign arbitrary values to a vector �J k

of size |S|. Choose a sequence {mk}∞k=0 where the elements of this
sequence take non-decreasing integer values, e.g., {5, 6, 7, 8, . . .}.
Specify ε > 0.

Step 2. (Policy Improvement) Choose a policy μ̂k+1 such that

μk+1(i) ∈ argmax
a∈A(i)

⎡

⎣r̄(i, a) + λ

|S|∑

j=1

p(i, a, j)Jk(j)

⎤

⎦ .

If possible one should set μ̂k+1 = μ̂k when k > 0.

Step 3. (Partial Policy Evaluation)

Step 3a. Set q = 0 and for each i ∈ S, compute:

W q(i) ← max
a∈A(i)

⎡

⎣r̄(i, a) + λ
∑

j

p(i, a, j)Jk(j)

⎤

⎦ .
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Step 3b. If
||( �W q − �J k)|| < ε(1− λ)/2λ,

go to Step 4. Otherwise go to Step 3c.

Step 3c. If q = mk, go to Step 3e. Otherwise, for each i ∈ S, com-
pute:

W q+1(i) ←

⎡

⎣r̄(i, μk+1(i)) + λ
∑

j∈S
p(i, μk+1(i), j)W

q(j)

⎤

⎦ .

Step 3d. Increment q by 1, and return to Step 3c.

Step 3e. For each i ∈ S, set:

Jk+1(i) ← Wmk
(i),

increment k by 1 and return to Step 2.

Step 4. The policy μ̂k+1 is the ε-optimal policy.

Remark 1: A Gauss-Seidel version of the value iteration performed in
Step 3a and Step 3c can be easily developed. This can further enhance
the rate of convergence.

Remark 2: The algorithm generates an ε-optimal policy, unlike
regular policy iteration.

Remark 3: The algorithm can be shown to converge for any values
of the sequence {mk}∞k=0. However, the values of the elements can
affect the convergence rate. The choice of the elements in the sequence
{mk}∞k=0 naturally affects how complete the policy evaluation is. An
increasing sequence, such as {5, 6, 7, . . .}, ensures that the evaluation
becomes more and more complete as we approach the optimal policy.
In the first few iterations, a very incomplete policy evaluation should
not cause much trouble.

8.2. Steps for Average Reward MDPs
Step 1. Set k = 1. Here k will denote the iteration number. Let the

set of states be denoted by S. Assign arbitrary values to a vector �Jk

of size |S|. Choose a sequence {mk}∞k=0 where the elements of this
sequence take non-decreasing integer values, e.g., {5, 6, 7, 8, . . .}.
Specify ε > 0.
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Step 2. (Policy Improvement) Choose a policy μ̂k+1 such that

μk+1(i) ∈ argmax
a∈A(i)

⎡

⎣r̄(i, a) +
|S|∑

j=1

p(i, a, j)Jk(j)

⎤

⎦ .

If possible, one should set μ̂k+1 = μ̂k, when k > 0.

Step 3. (Partial Policy Evaluation)

Step 3a. Set q = 0, and for each i ∈ S, compute:

W q(i) = max
a∈A(i)

⎡

⎣r̄(i, a) +
∑

j∈S
p(i, a, j)Jk(j)

⎤

⎦ .

Step 3b. If
sp( �W q − �J k) ≤ ε,

go to Step 4. Otherwise go to Step 3c.

Step 3c. If q = mk, go to Step 3e. Otherwise, for each i ∈ S, com-
pute:

W q+1(i) =

⎡

⎣r̄(i, μk+1(i)) +
∑

j∈S
p(i, μk+1(i), j)W

q(j)

⎤

⎦ .

Step 3d. Increment q by 1 and return to Step 3c.

Step 3e. For each i ∈ S, set: Jk+1(i) = Wmk
(i), increment k by 1

and return to Step 2.

Step 4. The policy μ̂k+1 is the ε-optimal policy.

Some elements of the value function �W can become very large or
very small, because value iteration for average reward can make the it-
erates unbounded. As a safeguard, one can use relative value iteration
in the policy evaluation step of modified policy iteration.

9. The MDP and Mathematical Programming
It is possible to set up both the average reward and the discounted

reward MDPs as Linear Programs (LPs). The LP is a heavily re-
searched topic in operations research, and efficient methods exist for
solving relatively large LPs. (For an elaborate discussion on LP, see
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any undergraduate text, e.g., [293].) However, when casting even a
small MDP as an LP, one creates large LPs. Hence, it is unclear
whether this is the best approach for solving the MDP. However, the
LP provides us with some interesting insight on the nature of the dy-
namic program. It should be noted that it is a parametric optimization
(static) approach to solving what is essentially a control (dynamic)
problem. We begin with the average reward case.

Average reward MDPs: An LP formulation. We present with-
out proof an LP formulation that exploits the Bellman equation:

Minimize ρ subject to

ρ+ v(i)−
|S|∑

j=1

p(i, μ(i), j)v(j) ≥ r̄(i, μ(i)) for i = 1, 2, . . . , |S| and all μ(i) ∈ A(i).

Here all values of v(j) for j = 1, 2, . . . , |S| and ρ are unrestricted in
sign (URS). The decision variables in the LP are the v(.) terms and ρ.
The optimal policy can be determined from the optimal value of the
vector �v. (See the last step of any value iteration algorithm.)

An alternative LP formulation, which is more popular (although it
is difficult to see its relationship with the Bellman equation), is the
dual of the LP above:

Maximize
∑

i∈S

∑

a∈A(i)

r̄(i, a)x(i, a) such that

for all j ∈ S,
∑

a∈A(j)

x(j, a)−
∑

i∈S

∑

a∈A(i)

p(i, a, j)x(i, a) = 0, (6.34)

∑

i∈S

∑

a∈A(i)

x(i, a) = 1, (6.35)

and x(i, a) ≥ 0 ∀(i, a). (6.36)

In the above, the x(i, a) terms are the decision variables. It can be
proved [251] that a deterministic policy, i.e., a policy that prescribes
a unique action for each state, results from the solution of the above.
The deterministic policy can be obtained as follows from the optimal
solution of the LP. For all i ∈ S and a ∈ A(i), compute:

d(i, a) =
x∗(i, a)∑

b∈A(i) x
∗(i, b)

where x∗(i, a) denotes the optimal value of x(i, a) obtained from solv-
ing the LP above, and d(i, a) will contain the optimal policy. Here
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d(i, a) must be interpreted as the probability of selecting action a in
state i. Since it can be proved that a deterministic optimal policy will
be contained in the d(i, a) terms, it will be the case that d(i, a) will
in fact equal 1 if action a is to be chosen in state i and 0 otherwise.
Thus, the optimal policy can be readily obtained from the values of
d(i, a).

SMDP: For the SMDP, the LP described above can be used after
replacing constraint (6.35) with:

∑

i∈S

∑

a∈A(i)

x(i, a)t̄(i, a) = 1.

Discounted reward MDPs: An LP formulation. It can be shown
that if

v(i) ≥ r̄(i, μ(i)) + λ

|S|∑

j=1

p(i, μ(i), j)v(j)

for all policies μ̂, then v(i) is an upper bound for the optimal value
v∗(i). This paves the way for an LP. The formulation, using the x and
v terms as decision variables, is:

Minimize
∑|S|

j=1 x(j)v(j) subject to∑|S|
j=1 x(j) = 1 and v(i) − λ

∑|S|
j=1 p(i, μ(i), j)v(j) ≥ r̄(i, μ(i)) for i =

1, 2, . . . , |S| and all μ(i) ∈ A(i);
x(j) > 0 for j = 1, 2, . . . , |S|, and v(j) is URS for j = 1, 2, . . . , |S|.

10. Finite Horizon MDPs
In the finite horizon MDP, the objective function is calculated over

a finite time horizon. This is different than the infinite time horizon
we have assumed in all the problems above.

With the finite time horizon, we can think of two objective functions:

1. Total expected reward and

2. Total expected discounted reward.

Note that in the infinite horizon setting, the total expected reward is
usually infinite, but that is the not the case here. As such the total
expected reward is a useful metric in the finite horizon MDP.

In this setting, every time the Markov chain jumps, we will
assume that the number of stages (or time) elapsed since the start
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increases by 1. In each stage, the system can be in any one of the
states in the state space. As a result, the value function depends not
only on the state but also on the stage.

In the infinite horizon MDP, when we visit a state, we do not concern
ourselves with whether it is the first jump of the Markov chain or the
nth jump. Thus, for instance in the infinite horizon problem, state 15
visited in stage 1 is the same thing as state 15 visited in stage 119.
This is because the value function is associated with only the state.
In other words, in the infinite horizon problem, for every state, we
associate a unique element of the value function. In the finite horizon
MDP, on the other hand, we need to associate a unique element of the
value function with a given state-stage pair. Thus state 15 visited in
stage 1 and the same state 15 visited in stage 119 will have different
value functions. Further, in the infinite horizon MDP, we have a unique
transition probability matrix and a unique transition reward matrix for
a given action. In the finite horizon MDP, we have a unique transition
probability matrix and a unique transition reward matrix for a given
stage-action pair.

It should be clear then that the finite horizon problem can become
more difficult than the infinite horizon problem with the same number
of states, if there is a large number of stages. For a small number
of stages, however, the finite horizon problem can be solved easily.
The popular method used for solving a finite horizon problem is called
backward recursion dynamic programming. As we will see below, is
has the flavor of value iteration.

1 2 T

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

Decision Making Stages

Terminal
Stage
(Non-
decision
-making)

T+1

Figure 6.15. A finite horizon MDP

See Fig. 6.15 to obtain a pictorial idea of a finite horizon MDP.
In each of the stages, numbered 1 through T , the system can visit
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a subset of the states in the system. It is entirely possible that in
each stage the set of states visited is a proper subset of the total state
space; that is in each stage, any state in the system may be visited.
Thus in general, we can construct a transition probability matrix and a
transition reward matrix for each action after replacing the state by a
state-stage combination. In each stage, the system has a finite number
of actions to choose from, and the system proceeds from one stage to
the next until the horizon T is met. The goal is to maximize the total
expected reward (or the total expected discounted reward) in the T
transitions.

Our approach is based on the value iteration idea. We will endeavor
to compute the optimal value function for each state-stage pair. We
will need to make the following assumption:

Since there is no decision making involved in the states visited in
the (T +1)th stage, (where the trajectory ends), the value function
in every state in the (T + 1)th stage will have the same value. For
numerical convenience, the value will be 0.

The Bellman optimality equation for the finite horizon problem for
expected total discounted reward is given by:

J∗(i, s) ← max
a∈A(i,s)

⎡

⎣r̄(i, s, a) + λ

|S|∑

j=1

p(i, s, a, j, s+ 1)J∗(j, s+ 1)

⎤

⎦

(6.37)
for i = 1, 2, . . . , |S|, and s = 1, 2, . . . , T with some new notation:

J∗(i, s): the value function for the ith state when visited in the sth
stage of the trajectory

A(i, s): the set of actions allowed in state i when visited in the sth
stage of the trajectory

r̄(i, s, a): the expected immediate reward earned when in state i,
in the sth stage, action a is selected

p(i, s, a, j, s + 1): the transition probability of going from state i
in the sth stage to state j in the (s + 1)th stage when action a is
selected in state i in the sth stage

The optimality equation for expected total reward can be obtained by
setting λ, the discount factor, to 1 in Eq. (6.37). The algorithm that
will be used to solve the finite horizon problem is not an iterative
algorithm. It just makes one sweep through the stages and produces
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the optimal solution. We will now discuss the main idea underlying
the backward recursion technique for solving the problem.

The backward recursion technique starts with finding the values of
the states in the T th stage (the final decision-making stage). For this,
it uses (6.37). In the latter, one needs the values of the states in
the next stage. We assume the values in the (T + 1)th stage to be
known (they will all be zero by our convention). Having determined
the values in the T th stage, we will move one stage backwards, and
then determine the values in the (T − 1)th stage.

The values in the (T − 1)th stage will be determined by using the
values in the T th stage. In this way, we will proceed backward one
stage at a time and find the values of all the stages. During the evalua-
tion of the values, the optimal actions in each of the states will also be
identified using the Bellman equation. We now present a step-by-step
description of the backward recursion algorithm in the context of dis-
counted reward. The expected total reward algorithm will use λ = 1
in the discounted reward algorithm.

A Backward Recursion. Review notation provided for Eq. (6.37).

Step 1. Let T (a positive integer) be the number of stages in the
finite horizon problem. Decision-making will not be made in the
(T +1)th stage of the finite horizon problem. The notation u∗(i, s)
will denote the optimal action in state i when the state is visited
in the sth stage. The stages are numbered as 1, 2, . . . , T + 1. For
i = 1, 2, . . . , |S|, set

J∗(i, T + 1) ← 0.

Step 2a. Set s ← T .

Step 2b. For i = 1, 2, . . . , |S|, choose

u∗(i, s) ∈ argmax
a∈A(i,s)

⎡

⎣r̄(i, s, a) + λ

|S|∑

j=1

p(i, s, a, j, s+ 1)J∗(j, s+ 1)

⎤

⎦ .

Step 2c. For i = 1, 2, . . . , |S|, set

J∗(i, s) ←
⎡

⎣r̄(i, s, u∗(i, s)) + λ

|S|∑

j=1

p(i, s, u∗(i, s), j, s+ 1)J∗(j, s+ 1)

⎤

⎦ .

Step 2d. If s > 1, decrement s by 1 and return to Step 2b; otherwise
STOP.
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11. Conclusions
This chapter discussed the fundamental ideas underlying MDPs and

SMDPs. The focus was on a finite state and action space within
discrete-event systems. The important methods of value and policy
iteration (DP) were discussed, and the two forms of the Bellman equa-
tion, the optimality equation and the policy equation, were presented
for both average and discounted reward. The modified policy iteration
algorithm was also discussed. Some linear programming for solving
MDPs along with finite horizon control was covered towards the end
briefly. Our goal in this chapter was to provide some of the theory
underlying dynamic programming for solving MDPs and SMDPs that
can also be used in the simulation-based context of the next chapter.

Bibliographic Remarks. Much of the material presented in this chapter is clas-
sical and can be found in [250, 242, 30, 270]. For an in-depth discussion on stochas-
tic processes, the reader is referred to [295]. For highly intuitive and accessible
accounts on MDPs and Markov chains, see [134, 293]. Filar and Vrieze [86] present
the MDP as a special case of a game-theoretic problem, thereby tying MDP theory
to the much broader framework of stochastic games. They also discuss several open
research issues of related interest.

Much of the pioneering work in algorithms and DP theory was done by Bellman
[23], Shapley [271] (value iteration, 1953), Howard [144] (policy iteration, 1960),
White [320] (relative value iteration, 1963), and van Nunen [305] (modified pol-
icy iteration, 1976). Shapley [271] made important parallel contributions in game
theory (which are applicable to MDPs) at a very early date (1953). Finally, we
need to point out that in this book we have focussed on the case of discrete-event
systems with finite state and action spaces governed by Markov chains; the theory
of control optimization is much broader in its scope.

Case study on total productive maintenance. Our case study
on total productive maintenance, drawn from [112, 126], is meant to
illustrate the use of DP on a problem larger than Example A. Many
systems fail with an increasing probability as they age, and such sys-
tems can often benefit from preventive maintenance. Well-known ex-
amples of such systems are manufacturing (production) lines, bridges,
roads, and electric power plants.

We consider a production line that deteriorates with time. We make
the following assumptions about it: (1) The line is needed every day,
and every morning the manager must decide whether to continue with
one more production cycle or shut the line down for preventive main-
tenance. (2) If the line fails during the day, the repair takes the re-
mainder of the day; further the line becomes available for production
after repair only the next morning. (3) The preventive maintenance
takes the entire day. (4) After a repair or a maintenance, the line is



194 SIMULATION-BASED OPTIMIZATION

as good as new. (5) Let i denote the number of days elapsed since
the last preventive maintenance or repair (subsequent to a failure);
then the probability of failure during the ith day can be modeled as
1−ξψi+2, where ξ and ψ are scalars in the interval (0, 1), whose values
can be estimated from the data for time between successive failures of
the system.

We will use i to denote the state of the system, since this leads to a
Markov chain. In order to construct a finite Markov chain, we define
for any given positive value of ε ∈ �, īε to be the minimum integer
value of i such that the probability of failure on the īth day is less than
or equal to (1− ε). Since we will set ε to some pre-fixed value, we can
drop ε from our notation. In theory, the line will have some probability
of not failing after any given day, making the state space infinite, but
our definition of ī permits truncation of the infinite state space to a
finite one. The resulting state space will be: S = {0, 1, 2, . . . , ī}. This
means that the probability of failure on the īth day (which is very
close to 1) will be assumed to equal 1.

Clearly, when a maintenance or repair is performed, i will be set
to 0. If a successful day of production occurs, i.e., the line does not
fail during the day, the state of the system is incremented by 1. The
action space is: {produce,maintain}. Cm and Cr denote the cost
of one maintenance and one repair respectively. Then, we have the
following transition probabilities for the system.

For action produce: For i = 0, 1, 2, . . . , ī− 1

p(i, produce, i+ 1) = ξψi+2; p(i, produce, 0) = 1− ξψi+2.

For i = ī, p(i, produce, 0) = 1. For all other cases not specified above,
p(., produce, .) = 0. Further, for all values of i,

r(i, produce, 0) = −Cr; r(i, produce, j) = 0 when j = 0.

For the action maintain: For all values of i, p(i,maintain, 0) = 1
and r(i,maintain, 0) = −Cm. For all other cases not specified above,

p(.,maintain, .) = 0; r(.,maintain, .) = 0.

Numerical Result: We set ξ = 0.99, ψ = 0.96, Cm = 4, Cr = 2, and
ī = 30. Thus, we have 31 states and 2 actions. Our objective function
is average reward, and the optimal policy, which is determined via
policy iteration, turns out to be one with a threshold nature; i.e.,
the action is to produce for i = 0, 1, . . . , 5 and to maintain for all



Dynamic Programming 195

values of i from 6 onwards. The policy iteration algorithm took 3
iterations and generated the following values in the final iteration:

v(0)=0; v(1) = −0.4098; v(2)=−0.7280; v(3)=−0.9701; v(4) = −1.1438;

v(5) = −1.2490; and for all i ≥ 6, v(i) = −1.2757. In policy
iteration, the first policy chooses production in each state. Fur-
ther, ρ1 = −0.7566, ρ2 = −0.7425 and ρ3 = ρ∗ = −0.7243. Note that
all the values are negative, because we use rewards (to be consistent
with our notation in this chapter), whereas we only have costs in this
model.



Chapter 7

CONTROL OPTIMIZATION WITH

REINFORCEMENT LEARNING

1. Chapter Overview
This chapter focuses on a relatively new methodology called

reinforcement learning (RL). RL will be presented here as a form
of simulation-based dynamic programming, primarily used for solving
Markov and semi-Markov decision problems. Pioneering work in the
area of RL was performed within the artificial intelligence commu-
nity, which views it as a “machine learning” method. This perhaps
explains the roots of the word “learning” in the name reinforcement
learning. We also note that within the artificial intelligence commu-
nity, “learning” is sometimes used to describe function approximation,
e.g., regression. Some kind of function approximation, as we will see
below, usually accompanies RL. The word “reinforcement” is linked
to the fact that RL algorithms can be viewed as agents that learn
through trials and errors (feedback).

But other names have also been suggested for RL. Some examples
are neuro-dynamic programming (NDP) (see Bertsekas and Tsitsik-
lis [33]) and adaptive or approximate dynamic programming (ADP)
(coined in Werbös [314]). Although we will stick to the original name,
reinforcement learning, we emphasize that our presentation here will
be through the viewpoint of dynamic programming.

For this chapter, the reader should review the material presented in
the previous chapter. In writing this chapter, we have followed an order
that differs somewhat from the one followed in the previous chapter.
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We begin with discounted reward, and then discuss average reward.
Like in the previous chapter, we discuss finite horizon problems at the
end.

This is a long chapter, and hence a note on how it is organized.
In Sect. 2, we discuss the twin curses of DP and the power of RL
that helps in breaking them. Sect. 3 provides the fundamental ideas
underlying the RL machinery. Sect. 4 focusses on RL methods for
MDPs, while Sect. 5 presents their counterparts for SMDPs. Sect. 6
outlines the main ideas underlying model-building algorithms. Finite
horizon MDPs are discussed in Sect. 7. Function approximation is
presented in Sect. 8. Sect. 9 presents some concluding remarks. Codes
in C can be found in [121].

2. The Twin Curses of DP
It is important to motivate the need for RL at this time. After

all, dynamic programming (DP) is guaranteed to generate optimal
solutions for MDPs (Markov Decision Problems) and SMDPs (semi-
Markov Decision Problems). Obtaining the transition probabilities,
rewards, and times (transition times are needed in SMDPs) is often a
difficult and tedious process that involves complex mathematics. DP
requires the values of all these quantities. RL does not, and despite
this, it can generate near-optimal solutions. Herein lies its power.

The transition probabilities, rewards, and times together constitute
what is known as the theoretical model of a system. Evaluating
the transition probabilities often involves evaluating multiple integrals
that contain the pdfs and/or pmfs of random variables. A complex
stochastic system with many random variables can make this a very
challenging task. It is for this reason that DP is said to be plagued
by the curse of modeling. In Chap. 12, we will discuss examples of
such systems.

Although the MDP model can lead to optimal solutions, it is often
avoided in practice, and inexact or heuristic approaches (also called
heuristics) are preferred. This is primarily because, as stated above,
constructing the theoretical model required for solving an MDP is
challenging for complex systems. Hence, a method that solves an
MDP without constructing its theoretical model is bound to be very
attractive. It turns out that RL is one example of methods of this
kind.

Even for many relatively small real-world stochastic systems with
complex theoretical models, computing the transition probabilities
may be a cumbersome process. Hence the curse of modeling may apply
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even for small problems. For large systems, however, an additional
curse applies, and classical DP is simply ruled out. Consider for in-
stance the following example: an MDP with 1,000 states and 2 actions
in each state. The TPM (transition probability matrix) of each action
would contain 1,0002 = 106 (a million) elements. It is difficult if not
impossible to store such large matrices in our computers. It is thus
clear that in the face of large-scale problems with huge solution spaces
with thousands of states, DP is likely to break down. This difficulty
is often called the curse of dimensionality.

DP is thus doubly cursed—by the curse of dimensionality and the
curse of modeling.

2.1. Breaking the Curses
RL can provide a way out of both of these curses:

1. RL does not need apriori knowledge of the transition probability
matrices. The precise mechanism of avoiding these transition prob-
abilities will be explained below. RL is said to avoid the curse of
modeling, since it does not require the theoretical model. (Note
that it does require the distributions of the governing random
variables, and hence is not a non-parametric approach.)

2. RL does need the elements of the value function of DP, however.
The value function in RL is defined in terms of the so-called
Q-factors. When the MDP has millions of states, it translates into
millions of Q-factors. In RL, one does not store these explicitly,
i.e., instead of reserving one storage space in the computer’s mem-
ory for each Q-factor, one stores the Q-factors in the form of a
handful of scalars, via function-approximation techniques. In other
words, a relatively small number of scalars are stored, which upon
suitable manipulation can provide the value of any Q-factor in the
state-action space. Function approximation thus helps RL avoid
the dimensionality curse.

Heuristics are inexact but produce solutions in a reasonable amount
of computational time, usually without extensive computation. Heuris-
tics typically make some simplifying assumptions about the system.
RL on the other hand is rooted in the DP framework and thereby
inherits several of the latter’s attractive features, e.g., generating high-
quality solutions. Although the RL approach is also approximate, it
uses the Markov decision model and the DP framework, which is quite
powerful, and even near-optimal solutions, which RL is capable of
generating, can often outperform heuristics.
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We now discuss the tradeoffs in using heuristics versus DP methods.
Consider a stochastic decision-making problem that can theoretically
be cast as an MDP (or an SMDP) and can also be solved with heuristic
methods. It may be difficult to solve the problem using the MDP
model, since the latter needs the setting up of the theoretical model.
On the other hand, the heuristic approach to solve the same problem
may require less effort technically. Let us compare the two approaches
against this backdrop.

A DP algorithm is iterative and requires several computations,
thereby making it computationally intensive. In addition, it
needs the transition probabilities—computing which can get very
technical and difficult. But if it manages to produce a solution, the
solution is of a high quality.

A heuristic algorithm usually makes several modeling assumptions
about the system. Further, heuristics have a light computational
burden (unlike DP with its TPM generation and iterative updat-
ing). It is another matter, however, that heuristic solutions may be
far away from the optimal!

See Table 7.1 for a tabular comparison of RL, DP, and heuristics
in terms of the level of modeling effort and the quality of solutions
generated.

To give an example, the EMSR (expected marginal seat revenue)
technique [201] is a heuristic used to solve the so-called seat-allocation
problem in the airline industry. It is a simple model that quickly
provides a good solution. However, it does not take into account sev-
eral characteristics of the real-life airline reservation system, and as
such its solution may be far from optimal. On the other hand, the
MDP approach, which can be used to solve the same problem, yields
superior solutions but is considerably more difficult because one has
to first estimate the transition probabilities and then use DP. In such
cases, not surprisingly, the heuristic is often preferred to the exact
MDP approach in practice. So where is RL in all of this?

RL can generally outperform heuristics, and at the same time, the
modeling effort in RL is lower than that of DP. Furthermore, on
large-scale MDPs, DP breaks down, but RL does not. In summary, for
solving problems whose transition probabilities are hard to estimate,
RL is an attractive near-optimal approach that may outperform heuris-
tics.

The main “tool” employed by RL is simulation. It uses simulation
to avoid the computation of the transition probabilities. A simulator
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Table 7.1. A comparison of RL, DP, and heuristics: Note that both DP and RL
use the MDP model

Method Level of modeling effort Solution quality
DP High High
RL Medium High

Heuristics Low Low

does need the distributions of the random variables that govern the
system’s behavior. The transition rewards and the transition times
are automatically calculated within a simulator. The avoidance of
transition probabilities is not a miracle, but a fact backed by simple
mathematics. We will discuss this issue in great detail.

To summarize our discussion, RL is a useful technique for large-scale
MDPs and SMDPs on which DP is infeasible and heuristics provide
poor solutions. In general, however, if one has access to the transition
probabilities, rewards, and times, DP should be used because it is
guaranteed to generate optimal solutions, and RL is not necessary
there.

2.2. MLE and Small MDPs
Since obtaining the TPM (transition probability matrix) may serve

as a major obstacle in solving a problem, one way around it is to
simulate the system and generate the TPM and TRM from the sim-
ulator. After the transition probabilities and the transition rewards
are obtained, one can then use the classical DP algorithms discussed
in the previous chapter. We will now discuss how exactly this task
may be performed. We remind the reader of an important, although
obvious, fact first.

To simulate a stochastic system that has a Markov chain
underlying it, the transition probabilities of the system are
not needed. For simulation, however, one does need distribu-
tions of the input random variables (that govern the system’s
behavior).

For example, consider a queuing system, e.g., M/M/1 system, that
can be modeled as a Markov chain. For simulation, the transition
probabilities of the underlying Markov chain are not needed. It is
sufficient to know the distributions of the inter-arrival time and the
service time.
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To estimate transition probabilities via simulators, one can employ
a relatively straightforward counting procedure, which works as fol-
lows: Suppose we want to calculate the transition probability p(i, a, j).
Recall that this is the one-step transition probability of going from
state i to state j when action a is selected in state i. In the simulation
program, we will need to keep two counters, V (i, a) and W (i, a, j),
both of which are initialized to 0. Whenever action a is selected in
state i in the simulator, the counter V (i, a) will be incremented by 1.
When, as a result of this action, the system goes to j from i in one
step, W (i, a, j) will be incremented by 1. From the definition of prob-
abilities (see Appendix), then it follows that:

p(i, a, j) 	 W (i, a, j)

V (i, a)
.

The above is obviously an estimate, which tends to the correct value
as V (i, a) tends to infinity. This implies that in order to obtain good
estimates of the TPM, each state-action pair should be tried infinitely
often in the simulator. The expected immediate rewards can also be
obtained in a similar fashion. The process described above for estima-
tion is also called a Maximum Likelihood Estimation (MLE) and
is a well-studied topic in statistics.

After generating estimates of the TPMs and the expected immediate
rewards, one can solve the MDP via DP algorithms. This, unfortu-
nately, is rarely efficient, because it takes a long time (many samples)
to generate good estimates of the TPMs and the expected immedi-
ate rewards in the simulator. However, there is nothing inherently
wrong in this approach, and the analyst may certainly want to try
this for small systems (whose transition probabilities are difficult to
find theoretically) as an alternative to RL. A strength of this approach
is that after the TPMs and the expected immediate rewards are gener-
ated, DP methods, which we know are guaranteed to generate optimal
solutions, can be employed.

For those small systems where the curse of modeling applies and it
is tedious to theoretically determine the transition probabilities, this
method may be quite suitable. But for large systems with several
thousand states, it is ruled out because one would have to store each
element of the TPM and the expected immediate rewards. It may be
possible then to use a “state-aggregation” approach in which several
states are combined to form a smaller number of “aggregate” states;
this will lead to an approximate model with a manageable number of
states. However, state aggregation is not always feasible, and even
when it is, it may not yield the best results. Hence, we now present
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RL in which the computation of the TPM and the immediate rewards
can be avoided altogether.

3. Reinforcement Learning: Fundamentals
At the very outset, we need to state the following:

RL is an offshoot of DP. It provides a way of performing dynamic
programming (DP) within a simulator.

We have used this perspective throughout the book, so that RL
does not come across as a heuristic tool that magically works well in
practice. Furthermore, we will describe RL algorithms in a manner
that clearly exposes their roots in the corresponding DP algorithms.
The reassuring fact about this is that we know DP algorithms are
guaranteed to generate optimal solutions. Therefore, as much as is
possible, we will derive RL algorithms from their DP counterparts;
however, detailed mathematical analysis of optimality for RL has been
relegated to Chap. 11.

          Inputs:
Distributions of
Governing Random
Variables

Reinforcement
Learning

Classical
Dynamic
Programming

Reinforcement
Learning
Algorithm in a 
Simulator

Generate the
transition
probability and
reward matrices

Optimal Solution
Near-Optimal
Solution

Dynamic
Programming
Algorithm

Figure 7.1. A schematic highlighting the differences in the methodologies of RL
and DP

The main difference between the RL and DP philosophies has been
depicted in Fig. 7.1. Like DP, RL needs the distributions of the random
variables that govern the system’s behavior. In DP, the first step is
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to generate the TPMs and TRMs, and the next step is to use these
matrices in a suitable algorithm to generate a solution. In RL, we
do not estimate the TPM or the TRM but instead simulate the sys-
tem using the distributions of the governing random variables. Then,
within the simulator, a suitable algorithm (clearly different than the
DP algorithm) is used to obtain a solution.

In what follows in this section, we discuss some fundamental
RL-related concepts. A great deal of RL theory is based on the
Q-factor, the Robbins-Monro algorithm [247], and step sizes, and on
how these ideas come together to help solve MDPs and SMDPs within
simulators. Our discussion in this chapter will be geared towards
helping build an intuitive understanding of the algorithms in RL.
Hence, we will derive the algorithms from their DP counterparts to
strengthen our intuition. More sophisticated arguments of convergence
and existence will be dealt with later (in Chap. 11).

For the reader’s convenience, we now define the following sets again:

1. S: the set of states in the system. These states are those in which
decisions are made. In other words, S denotes the set of decision-
making states. Unless otherwise specified, in this book, a state will
mean the same thing as a decision-making state.

2. A(i): the set of actions allowed in state i.

Both types of sets, S and A(i) (for all i ∈ S), will be assumed to
be finite in our discussion. We will also assume that the Markov chain
associated with every policy in the MDP (or the SMDP) is regular.
Please review the previous chapter for a definition of regularity.

3.1. Q-Factors
RL algorithms (for the most part) use the value function of DP. In

RL, the value function is stored in the form of the so-called Q-factors.
Recall the definition of the value function associated with the optimal
policy for discounted reward MDPs. It should also be recalled that
this value function is defined by the Bellman optimality equation,
which we restate here:

J∗(i) = max
a∈A(i)

⎛

⎝
|S|∑

j=1

p(i, a, j) [r(i, a, j) + λJ∗(j)]

⎞

⎠ for all i ∈ S, where

(7.1)

J∗(i) denotes the ith element of the value function vector associated
with the optimal policy
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A(i) is the set of actions allowed in state i

p(i, a, j) denotes the one-step transition probability of going from
state i to state j under the influence of action a

r(i, a, j) denotes the immediate reward earned in state i when
action a is selected in it and the system transitions to state j as a
result

S denotes the set of states in the Markov chain

λ stands for the discounting factor

In DP, we associate one element of the value function vector with a
given state. In RL, we associate one element of the so-called Q-factor
vector with a given state-action pair. To understand this idea, consider
an MDP with three states and two actions allowed in each state. In
DP, the value function vector �J∗ would have three elements as shown
below.

�J∗ = (J∗(1), J∗(2), J∗(3)) .

In RL, we would have six Q-factors because there are six state-action
pairs. Thus if Q(i, a) denotes the Q-factor associated with state i and
action a, then

�Q = (Q(1, 1), Q(1, 2), Q(2, 1), Q(2, 2), Q(3, 1), Q(3, 2)) .

Now, we present the important definition of a Q-factor (also called
Q-value or the state-action value). For a state-action pair (i, a),

Q(i, a) =

|S|∑

j=1

p(i, a, j) [r(i, a, j) + λJ∗(j)] . (7.2)

Now, combining Eqs. (7.1) and (7.2), one has that

J∗(i) = max
a∈A(i)

Q(i, a). (7.3)

The above establishes the important relationship between the value
function of a state and the Q-factors associated with the state. Then,
it should be clear that, if the Q-factors are known, one can obtain
the value function of a given state from Eq. (7.3). For instance, for
a state i with two actions if the two Q-factors are Q(i, 1) = 95 and
Q(i, 2) = 100, then

J∗(i) = max{95, 100} = 100.
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Using Eq. (7.3), Eq. (7.2) can be written as:

Q(i, a) =

|S|∑

j=1

p(i, a, j)

[
r(i, a, j) + λ max

b∈A(j)
Q(j, b)

]
. (7.4)

for all (i, a). Equation (7.4) is an extremely important equation. It can
be viewed as the Q-factor version of the Bellman optimality equation
for discounted reward MDPs. This equation leads us to a Q-factor
version of value iteration. This version can be used to determine the
optimal Q-factors for a given state and forms the Q-factor counterpart
of the value iteration algorithm of DP. We now present its step-by-step
details.

3.2. Q-Factor Value Iteration
It is important to note that we are still very much in the DP arena;

i.e., we have not made the transition to RL yet, and the algorithm
we are about to present is completely equivalent to the regular value
iteration algorithm of the previous chapter.

Step 1: Set k = 1, specify ε > 0, and select arbitrary values for the
vector �Q0, e.g., set for all i ∈ S and a ∈ A(i), Q0(i, a) = 0.

Step 2: For each i ∈ S and a ∈ A(i), compute:

Qk+1(i, a) ←
|S|∑

j=1

p(i, a, j)

[
r(i, a, j) + λ max

b∈A(j)
Qk(j, b)

]
.

Step 3: Calculate for each i ∈ S:

Jk+1(i) = max
a∈A(i)

Qk+1(i, a) and Jk(i) = max
a∈A(i)

Qk(i, a).

Then, if ||( �Jk+1 − �Jk)|| < ε(1 − λ)/2λ, go to Step 4. Otherwise
increase k by 1, and return to Step 2.

Step 4: For each i ∈ S, choose d(i) ∈ argmaxb∈A(i)Q(i, b), where d̂
denotes the ε-optimal policy, and stop.

It should be noted that the updating rule in Step 2 is derived from
Eq. (7.4). The equivalence of this algorithm to regular value itera-
tion, which estimates the value function, is then easy to see. In-
stead of estimating the value function, this algorithm estimates the
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Q-factors; we call the algorithm: Q-factor value iteration. The con-
ceptual significance of this algorithm needs to be emphasized because
we will derive RL algorithms from it. In RL, like the algorithm above,
we estimate Q-factors, but the updating rule is different than the one
shown in Step 2. Now, to make the transition to RL, we need to
introduce the Robbins-Monro algorithm.

3.3. Robbins-Monro Algorithm
The Robbins-Monro algorithm is a widely-used and popular algo-

rithm invented in the 1950s [247] that can help us estimate the mean
of a random variable from its samples. The idea underlying it is very
simple. We know that the mean of a random variable can be estimated
from the samples of the random variable by using a straightforward
averaging process. Let us denote the ith independent sample of a ran-
dom variable X by xi and the expected value (mean) by E(X). Then
with probability 1, the estimate produced by

∑k
i=1 xi
k

tends to the real value of the mean as k → ∞. (This follows from
the strong law of large numbers (Theorem 2.1)). In other words, with
probability 1,

E[X] = lim
k→∞

∑k
i=1 xi
k

.

The samples, it should be understood, can be generated in a simu-
lator. Now, we will derive the Robbins-Monro algorithm from this
simple averaging process. Let us denote the estimate of X in the kth
iteration—i.e., after k samples have been obtained—by Xk. Thus:

Xk =

∑k
i=1 xi
k

. (7.5)

Now, Xk+1 =

∑k+1
i=1 xi
k + 1

=

∑k
i=1 xi + xk+1

k + 1

=
Xkk + xk+1

k + 1
(using Eq. (7.5))

=
Xkk +Xk −Xk + xk+1

k + 1
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=
Xk(k + 1)−Xk + xk+1

k + 1

=
Xk(k + 1)

k + 1
− Xk

k + 1
+

xk+1

k + 1

= Xk − Xk

k + 1
+

xk+1

k + 1

=
(
1− αk+1

)
Xk + αk+1xk+1 if αk+1 = 1/(k + 1),

i.e., Xk+1 =
(
1− αk+1

)
Xk + αk+1xk+1. (7.6)

The above is called the Robbins-Monro algorithm. When αk+1 =
1/(k + 1), it should be clear from the above that the Robbins-Monro
algorithm is equivalent to direct averaging. However, rules other than
1/(k + 1) are more commonly used for α, also called step size or the
learning rate (or learn rate). We will discuss a number of step-size rules
below. Further, note that we will use the Robbins-Monro algorithm
extensively in RL.

3.4. Robbins-Monro and Q-Factors
It turns out that the Robbins-Monro algorithm can in fact be used to

estimate Q-factors within simulators. Recall that value iteration seeks
to estimate the optimal value function. Similarly, from our discussion
on the Q-factor version of value iteration, it should be obvious that the
Q-factor version of value iteration should seek to estimate the optimal
Q-factors.

It can be shown that every Q-factor can be expressed as an average
of a random variable. Recall the definition of the Q-factor in the
Bellman equation form (that is Eq. (7.4)):

Q(i, a) =

|S|∑

j=1

p(i, a, j)

[
r(i, a, j) + λ max

b∈A(j)
Q(j, b)

]
(7.7)

= E

[
r(i, a, j) + λ max

b∈A(j)
Q(j, b)

]
(7.8)

= E[SAMPLE], (7.9)

where the quantity in the square brackets of (7.8) is the random
variable of which E[·] is the expectation operator. Thus, if samples
of the random variable can be generated within a simulator, it is pos-
sible to use the Robbins-Monro scheme for evaluating the Q-factor.
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Instead of using Eq. (7.7) to estimate the Q-factors (as shown in the
Q-factor version of value iteration), we could instead use the Robbins-
Monro scheme in a simulator. Using the Robbins-Monro algorithm
(see Eq. (7.6)), Eq. (7.7) becomes:

Qk+1(i, a) ← (1− αk+1)Qk(i, a) + αk+1

[
r(i, a, j) + λ max

b∈A(j)
Qk(j, b)

]

(7.10)

for each (i, a) pair.
Perhaps, the most exciting feature of the above is that it is devoid

of the transition probabilities! I.e., we do not need to know the tran-
sition probabilities of the underlying Markov chain in order to use the
above in an algorithm. All we will need is a simulator of the system.
Thus, the mechanism shown in (7.10) enables us to avoid transition
probabilities in RL. An algorithm that does not use (or need) tran-
sition probabilities in its updating equations is called a model-free
algorithm.

What we have derived above is the main update in the Q-learning
algorithm for discounted MDPs. This was first invented by Watkins
[312]. The above discussion was provided to show that the Q-Learning
algorithm can be derived from the Bellman optimality equation for
discounted reward MDPs.

3.5. Asynchronous Updating and Step Sizes
Using the Q-learning algorithm in a simulator creates a few diffi-

culties. Since there is more than one state, it becomes necessary to
simulate a trajectory of the Markov chain within a simulator. Now,
in regular DP (or in the Q-factor version of value iteration), one pro-
ceeds in a synchronous manner for updating the value function (or the
Q-factors). For instance, if there are three states, one updates the
value function (or the Q-factors) associated with state 1, then that of
state 2, then that of state 3, then returns to state 1 and so on. In a
simulator, it is difficult to guarantee that the trajectory is of a nice
1, 2, 3, 1, 2, 3, . . . form. Instead the trajectory can take the following
form:

1, 3, 1, 3, 2, 3, 2, 2, 1, 3, 3, 1 . . .

The above is just one example of what a trajectory could look like.
Along this trajectory, updating occurs in the following way. After
updating some Q-factor in state 1, we visit state 3, update a Q-factor
there and return to state 1, then update a Q-factor in state 1, and
so on. When a Q-factor of a state is updated, the updating equation
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usually needs Q-factors from some other state, and the latest estimate
of these Q-factors from the other state need to be used in this scenario.
It is to be understood that in such a haphazard style of updating, at
any given time, at any given time, it is usually the case the different
Q-factors get updated with differing frequencies.

Updating in this style is called asynchronous updating. In asyn-
chronous updating, the Q-factors used within an update may not have
been updated in the past with the same frequency. Fortunately, it
can be shown that under suitable conditions on the step size and
the algorithm, even with asynchronism, the algorithm can produce
an optimal solution.

Now, thus far, we have defined the step size as

αk = 1/k

where k is the number of samples generated. A prime difficult with this
rule is that 1/k decays rapidly with the value of k, and in only a few
iterations, the step size can become too small to perform any updating.
Hence, other step-size rules have been suggested in the literature. One
such rule, given in Darken et al. [71], is:

αk+1 =
T1

1 + k2

1+T2

, (7.11)

where T1 is the starting value for α and k2 denotes k raised to 2.
Possible values for T1 and T2 are 0.1 and 106 respectively. Another
popular (simpler) rule of which a special case is the 1/k rule is:

αk = A/(B + k)

with e.g., A = 5 and B = 10. With suitable values for scalars A and
B (the tuning parameters), this rule does not decay as fast as 1/k and
can potentially work well. However, for it to work well, it is necessary
to determine suitable values for A and B. Finally, a rule that does not
have any scalar parameters to be tuned and does not decay as fast as
1/k is the following log-rule:

αk =
log(k)

k
,

where log denotes the natural logarithm. Experiments with these rules
on small problems have been conducted in Gosavi [113].

It is necessary to point out that to obtain convergence to optimal
solutions, it is essential that the step sizes follow a set of conditions.
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Two well-known conditions from this set are:

∞∑

k=1

αk = ∞ and
∞∑

k=1

(
αk
)2

< ∞.

Some of the other conditions needed are more technical, and the reader
is referred to [46]. Fortunately, the A/(B + k) rule and the log rule
satisfy the two conditions specified above and those in [46]. Under
the standard mathematical analysis in the literature, convergence of
the algorithm to optimality can be ensured when all of these conditions
are satisfied by the step sizes. We will assume in this chapter that the
step sizes will be updated using one of the rules documented above.

A constant is an attractive choice for the step size since it may
ensure rapid convergence if its value is close to 1. However, a constant

step size violates the second condition above, i.e.,
∑∞

k=1

(
αk
)2

< ∞,
which is why in RL, constant step sizes are usually not used.

4. MDPs
In this section, we will discuss simulation-based RL algorithms for

MDPs in detail. This section forms the heart of this chapter, and
indeed of the part of the book devoted to control optimization. We
will build upon the ideas developed in the previous section. We will
first consider discounted reward and then average reward.

4.1. Discounted Reward
Our discussion here is based on value and policy iteration. The first

subsection will focus on value iteration and the second will focus on
policy iteration.

4.1.1 Value Iteration

As discussed previously, value iteration based RL algorithms are
centered on computation of the optimal Q-factors. The Q-factors in
value iteration are based on the Bellman equation.

A quick overview of “how to incorporate an RL optimizer within a
simulator” is in order at this point. We will do this with the help of
an example.

Consider a system with two Markov states and two actions allowed
in each state. This will mean that there are four Q-factors that need
to be evaluated:

Q(1, 1), Q(1, 2), Q(2, 1), and Q(2, 2),
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where Q(i, a) denotes the Q-factor associated with the state-action
pair (i, a). The bottom line here is that we want to estimate the values
of these Q-factors from running a simulation of the system. For the
estimation to be perfect, we must obtain an infinite number of samples
for each Q-factor. For this to happen, each state-action pair should be,
theoretically, tried infinitely often. A safe strategy to attain this goal
is to try each action in each state with equal probability and simulate
the system in a fashion such that each state-action pair is tried a large
number of times. However, other strategies are also acceptable as long
as each state-action pair is tried infinitely often.

The job of the RL algorithm, which should be embedded within the
simulator, is to update the values of the Q-factors using the equation
given in (7.10). The simulator moves the system from one state to
another selecting each action with equal probability in each state. The
simulator is not concerned with what the RL algorithm does as long
as each action is selected infinitely often. We now discuss the scheme
used in updating the Q-factors in a more technical manner.

Let us assume (consider Fig. 7.2) that the simulator selects action
a in state i and that the system goes to state j as a result of the
action. During the time interval in which the simulator goes from
state i to state j, the RL algorithm collects information from within
the simulator; the information is r(i, a, j), which is the immediate
reward earned in going from state i to state j under the influence of
action a.

When the simulator reaches state j, it uses r(i, a, j) to generate a
new sample of Q(i, a). See Eq. (7.8) to see what is meant by a sample
of Q(i, a) and why r(i, a, j), among other quantities, is needed to find
the value of the sample. Then Q(i, a) is updated via Eq. (7.10), with
the help of the new sample. Thus, the updating for a state-action
pair is done after the transition to the next state. This means that
the simulator should be written in a style that permits updating of
quantities after each state transition.

In what follows, we will present a step-by-step technical account of
simulation-based value iteration, which is also called Q-learning.

Steps in Q-Learning.

Step 1. Initialize the Q-factors. In other words, set for all (l, u) where
l ∈ S and u ∈ A(l): Q(l, u) = 0. Set k, the number of state
transitions, to 0. We will run the algorithm for kmax iterations,
where kmax is chosen to be a sufficiently large number. Start system
simulation at any arbitrary state.
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Select an action a,
simulate it, and go to j

Extract the 
value of r(i,a,j)

i

j

next
state

Update Q(i,a), simulate
an action, and go to next
state

Figure 7.2. The updating of the Q-factors in a simulator: Each arrow denotes
a state transition in the simulator. After going to state j, the Q-factor for the
previous state i and the action a selected in i, that is, Q(i, a), is updated

Step 2. Let the current state be i. Select action a with a probability
of 1/|A(i)|.

Step 3. Simulate action a. Let the next state be j. Let r(i, a, j)
be the immediate reward earned in the transition to state j from
state i under the influence of action a. The quantity r(i, a, j) will
be determined by the simulator. Increment k by 1. Then update
α suitably, using one of the rules discussed above (see Sect. 3.5).

Step 4. Update Q(i, a) using the following equation:

Q(i, a) ← (1− α)Q(i, a) + α

[
r(i, a, j) + λ max

b∈A(j)
Q(j, b)

]
.

Step 5. If k < kmax, set i ← j, and go to Step 2. Otherwise, go to
Step 6.

Step 6. For each l ∈ S, select

d(l) ∈ argmax
b∈A(l)

Q(l, b).

The policy (solution) generated by the algorithm is d̂. Stop.

Please make note of the following.

1. Notation: The term maxb∈A(j)Q(j, b) in the main updating equa-
tion for the Q-factors represents the maximum Q-factor in state j.
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Also, argmaxb∈A(j)Q(j, b) denotes the action associated with the
maximum Q-factor in state j.

2. Look-up tables: The algorithm presented above is for the so-called
look-up table implementation in which all Q-factors are stored
explicitly in the computer’s memory. This implementation is possi-
ble only when we have a manageable number of state-action pairs,
e.g., up to 10,000. All the RL algorithms that appear in the follow-
ing pages (unless specified otherwise) will be presented in a look-up
table format. We will discuss function approximation, in which all
the Q-factors are not stored explicitly, in Sect. 8.

RL: A Learning Perspective. RL was developed by researchers
in the artificial intelligence (AI) community. In the AI community, RL
was viewed as a machine “learning” technique. We now explain this
viewpoint.

We can view the decision maker in an MDP as a learning agent. The
“task” assigned to this agent is to obtain the optimal action in each
state of the system. The operation of an RL algorithm can be described
in the following manner. The algorithm starts with the same value
for each Q-factor associated with a given state. All possible actions
are simulated in every state. The actions that produce good immediate
rewards are rewarded and those that produce poor rewards are punished.
The agent accomplishes this in the following manner. For any given
state i, it raises the values of the Q-factors of the good actions and
diminishes the values of the Q-factors of the bad actions.

We have viewed (earlier) the updating process in RL as the use
of the Robbins-Monro algorithm for the Q-factor, and the definition
of the Q-factor was obtained from the Bellman equation. Although the
two viewpoints are essentially equivalent, it is considered instructive to
understand this intuitive idea underlying RL; the idea is to reward the
good actions, punish the bad actions, and in general learn from trial-
and-error in the simulator. See Fig. 7.3 for a schematic.

Trial and error is a fundamental notion underlying any learning
algorithm. We also note that “learning” is used to describe any kind
of function approximation, e.g., regression, in the machine learning
community. Since function approximation is usually an integral part
of any application of RL on a large-scale problem, RL is also called a
“learning” technique.

It is invariably interesting to determine whether the learning agent
can learn (improve its behavior) within the simulator during the run
time of the simulation. Since the discounted reward problem has a
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Action
a

Feedback
r(i,a,j)

Simulator
(environment)

RL Algorithm
(Agent)

Figure 7.3. Trial and error mechanism of RL: The action selected by the RL agent
(algorithm) is fed into the simulator. The simulator simulates the action, and the
resultant feedback (immediate reward) obtained is fed back into the knowledge-
base (Q-factors) of the agent. The agent uses the RL algorithm to update its
knowledge-base, becomes smarter in the process, and then selects a better action

large number of performance metrics (the value function of each state
is a performance metric for the discounted MDP), it is difficult to
determine a trend when the simulation is running. In the average
reward case, however, this can be done since the performance metric
is unique (the average reward).

The performance of an algorithm is, however, best judged after
the learning. To evaluate the performance, as mentioned above, we
can re-simulate the system using the policy learned. This, of course, is
done after the learning phase is complete in the phase called the frozen
phase. The word “frozen” refers to the fact that the Q-factors do not
change during this phase.

On-Line and Off-Line. The word “learning” makes a great deal of
sense in robotic problems [299]. In these problems, the robot improves
its behavior on a real-time basis like a human. For numerous reasons,
in the field of robotics, learning in simulators is not considered to be
as effective as learning in real time. In most problems that we will
be considering in this book, it will be sufficient to learn in simulators.
This is primarily because we will assume that the distributions of the
random variables that govern the system’s behavior are available, i.e.,
we can simulate the system, and hence there is no need to learn on a
real-time basis.

In this book for the most part, we will work within a simulator before
implementing the solution in the real-life system. As a result, the word
“learning” may not apply to problems for which good simulators are
available. In industrial problems (in the manufacturing and service
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industry), learning in real time can be extraordinarily costly, and in
fact, simulations are preferred because they do not disturb the actual
system.

Within the machine learning community, RL algorithms are often
described as either being on-line or off-line algorithms—causing a great
deal of confusion to the beginner. Algorithms can be run off-line or
on-line with respect to separate qualifiers, which are: (1) the imple-
mentation of the algorithm on an application and (2) the internal
updating mechanism of the algorithm.

The implementation aspect: In an off-line implementation, the algo-
rithm is run within the simulator before the solution is implemented
on the real system. On the other hand, in an on-line implementa-
tion, the algorithm does not use a simulator, but rather operates on a
real-time basis within the real system. Now, all the model-free algo-
rithms that we will discuss in this book can be implemented in either
an off-line or an on-line sense.

The updating aspect: This is an internal issue of the algorithm. Most
algorithms discussed in this book update the Q-factor of a state-action
pair immediately after it is tried. Such an update is called an on-line
update. Now, there are some algorithms that update Q-factors after
a finite number of state transitions, e.g., some so-called TD(λ̄) (where
λ̄ is a decaying factor) algorithms work in this fashion. Examples of
these can be found in [285, 224, 123]. This kind of updating is often
referred to as an off-line update and has nothing to do with an off-line
implementation.

An algorithm with an on-line updating mechanism may have an off-
line implementation. All four combinations are possible. In this book,
we will for the most part focus on the algorithms that are implemented
off-line and updated on-line. We must point out that algorithms that
require off-line updates are less elegant, since from the perspective of
writing the computer code, they require the storage of values from mul-
tiple previous decision instants. However, this is only a programming
aspect that carries no mathematical significance.

Exploration. In general, any action-selection strategy can be
described as follows: When in state i, select action u with a probabil-
ity of pk(i), where k denotes the number of state transitions that have
occurred thus far.

If pk(i) = 1/|A(i)|, one obtains the strategy that we have discussed
all along, one in which every action is tried with the same probability.
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In the Robbins-Monro algorithm, for the averaging process in the
Robbins-Monro algorithm to take place, each Q-factor must be tried
infinitely often (theoretically); one way to ensure this is to select each
action with equal probability, i.e., pk(i) = 1/|A(i)| for all i. Although
this strategy is quite robust, it can be quite time-consuming in prac-
tice. Hence, other strategies have been suggested in the literature. We
now discuss one such strategy, namely the exploratory strategy.
Exploratory strategy: In the exploratory strategy, one selects the action
that has the highest Q-factor with a high probability and the other
actions with low, non-zero probabilities. The action(s) that has the
highest Q-factor is called the greedy action. The other actions are
called the non-greedy actions. Consider a scenario with two actions.
In the kth iteration of the algorithm, select an action u in state i with
probability pk, where

u = argmax
b∈A(i)

Q(i, b) and pk = 1− Bk

k
, (7.12)

and select the other action with probability Bk/k, where e.g., Bk = 0.5
for all k. It is clear that when such an exploratory strategy is pur-
sued, the learning agent will select the non-greedy (exploratory) action
with probability Bk/k. As k starts becoming large, the probability of
selecting the non-greedy (exploratory) action diminishes. At the end,
when k is very large, the action selected will clearly be a greedy ac-
tion. As such, at the end, the action selected will also be the action
prescribed by the policy learned by the algorithm. Another example
for decaying the exploration would be as follows:

pk = pk−1A with A < 1, or via any scheme for decreasing step sizes.

GLIE strategy: We now discuss an important class of exploration

that is required for some algorithms such as SARSA and R-SMART.
In the so-called GLIE (greedy in the limit with infinite exploration)
policy [277], the exploration is reduced in a manner such that in the
limit, one obtains a greedy policy and still all the state-action pairs
are visited infinitely often. An example of such a policy is one that
would use the scheme in (7.12) with Bk = A/V̄ k(i) where 0 < A < 1
and V̄ k(i) denotes the number of times state i has been visited thus
far in the simulator. That a policy of this nature satisfies the GLIE
property can be shown (see [277] for proof and other such schemes).
It is important to note, however, that this specific example of a GLIE
policy will need keeping track of an additional variable, V̄ k(i), for each
state.
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One potential benefit of using an exploratory action-selection
strategy is that the run time of the algorithm can be reduced. This
is because as k increases, the non-greedy Q-factors are evaluated with
decreasing frequencies. One hopes that with time the non-greedy
Q-factors are not optimal, and that their “perfect” evaluation does
not serve any purpose. Note, however, that this may lead to an im-
perfect evaluation of many Q-factors, unless we use GLIE exploration,
and this in turn can cause the solution to deviate from optimality
(after all, the values of the Q-factors are inter-dependent via the
Bellman equation). In addition, theoretically, any action selection
strategy should ensure that each Q-factor is updated infinitely often.
This is essential, because for the Robbins-Monro scheme to work (i.e.,
averaging to occur), an infinitely large number of samples must be
collected.

A Worked-Out Example for Q-Learning. We next show some
sample calculations performed in a simulator using Q-Learning.
We will use Example A (see Sect. 3.3.2 of Chap. 6). We repeat the
problem details below. The TPM associated with action a is Pa and
the associated TRM is Ra.

P1 =

[
0.7 0.3
0.4 0.6

]
;P2 =

[
0.9 01
0.2 0.8

]
;R1 =

[
6 −5
7 12

]
;R2 =

[
10 17
−14 13

]
.

The performance metric is discounted reward with λ = 0.8. In
what follows, we show step-by-step calculations of Q-Learning along
one trajectory. Let us assume that the system starts in state 1.

State 1. Set all the Q-factors to 0:

Q(1, 1) = Q(1, 2) = Q(2, 1) = Q(2, 2) = 0.

The set of actions allowed in state 1 is A(1) = {1, 2} and that
allowed in state 2 is A(2) = {1, 2}. Clearly |A(i)| = 2 for i = 1, 2.
Let the step size α be defined by A/(B+ k), where A = 5, B = 10,
and k denotes the number of state transitions.

Select an action with probability 1/|A(1)|. Let the selected action
be 1. Simulate action 1. Let the next state be 2.

State 2. The current state (j) is 2 and the old state (i) was 1. The
action (a) selected in the old state was 1. So we now have to update
Q(1, 1). Now: k = 0;α = 5/10 = 0.5.

r(i, a, j) = r(1, 1, 2) = −5;
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max
b

Q(j, b) = max
b

Q(2, b) = max{0, 0} = 0;

Q(1, 1) ← (1− α)Q(1, 1) + α[−5 + λ(0)]

= 0.5(0) + 0.5[−5 + 0] = −2.5.

Select an action with probability 1/|A(2)|. Let the selected action
be 2. Simulate action 2. Let the next state be 2.

State 2 (again). The current state (j) is 2 and the old state (i) was
also 2. The action (a) selected in the old state was 2. So we now
have to update Q(2, 2). Now: k = 1;α = 5/(10 + 1) = 0.454.

r(i, a, j) = r(2, 2, 2) = 13;

max
b

Q(j, b) = max
b

Q(2, b) = max{0, 0} = 0;

Q(2, 2) ← (1− α)Q(2, 2) + α[13 + λ(0)]

= 0.546(0) + 0.454[13] = 5.902.

Select an action with probability 1/|A(2)|. Let the selected action
be 1. Simulate action 1. Let the next state be 1.

State 1 (again). The current state (j) is 1 and the old state (i) was 2.
The action (a) selected in the old state was 1. So we now have to
update Q(2, 1). Now: k = 2;α = 5/(10 + 2) = 0.416.

r(i, a, j) = r(2, 1, 1) = 7;

max
b

Q(j, b) = max
b

Q(1, b) = max{−2.5, 0} = 0;

Q(2, 1) ← (1− α)Q(2, 1) + α[7 + λ(0)]

= (1− 0.416)0 + 0.416[7] = 2.912.

Select an action with probability 1/|A(1)|. Let the selected action
be 2. Simulate action 2. Let the next state be 2.

State 2 (a third time). The current state (j) is 2 and the old state
(i) was 1. The action (a) selected in the old state was 2. So we
now have to update Q(1, 2). Now: k = 3;α = 5/(10 + 3) = 0.386.

r(i, a, j) = r(1, 2, 2) = 17;
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max
b

Q(j, b) = max
b

Q(2, b) = max{2.912, 5.902} = 5.902;

Q(1, 2) ← (1− α)Q(1, 2) + α[17 + λ(1.3)]

= (1− 0.386)(0) + 0.386[17 + λ5.902] = 8.384.

Select an action with probability 1/|A(2)|. Let the selected action
be 2. Simulate action 2. Let the next state be 1.

State 1 (a third time). The current state (j) is 1 and the old state
(i) was 2. The action (a) selected in the old state was 2. So we
now have to update Q(2, 2). Now: k = 4;α = 5/(10 + 4) = 0.357;

r(i, a, j) = r(2, 2, 1) = −14;

max
b

Q(j, b) = max
b

Q(1, b) = max{−2.5, 8.384} = 8.384;

Then Q(2, 2) ← (1−0.357)5.902+0.357[−14+λ(8.384)]=1.191,

and so on.

Table 7.2. The table shows Q-factors for Example A with a number of different
step-size rules. Here pk = 1/|A(i)|

Method Q(1, 1) Q(1, 2) Q(2, 1) Q(2, 2)

Q-factor-value iteration 44.84 53.02 51.87 49.28

Q-Learning with α = 150/(300 + k) 44.40 52.97 51.84 46.63

Q-Learning with α = 1/k 11.46 18.74 19.62 16.52

Q-Learning with α = log(k)/k 39.24 47.79 45.26 42.24

Q-Learning with α(i, a) = 1/V (i, a) 38.78 49.25 44.64 41.45

Step-Size Rules and Their Impact. We now present the results
of using a number of different step-size rules on the above problem and
compare those to the results obtained from Q-factor value iteration
(see Sect. 3.2) which are guaranteed to be optimal. It is clear that our
aim is to produce results that approach those produced by Q-factor
value iteration. Table 7.2 presents the numerical results, most of which
are from [113].

An inspection of the results in Table 7.2 indicates that the step-size
rule α = A/(B+k) produces the best results, since the Q-factor values
produced by it are closest to the values obtained from Q-factor value
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iteration. Note that all the step-size rules produce the optimal policy:
(2, 1). The rule α = 1/k produces the optimal policy, but the values
stray considerably from the optimal values generated by the Q-factor
value iteration. This casts some doubt on the usefulness of the 1/k
rule, which has been used by many researchers (including this author
before [113] was written). Note that 1/k decays very quickly to 0,
which can perhaps lead to computer round-off errors and can cause
problems. One advantage of the 1/k rule (other than its theoretical
guarantees) is that it does not have any tuning parameters, e.g., A
and B. The log-rule (log(k)/k starting at k = 2) has an advantage in
that it does not need any tuning parameters, unlike the A/(B+k), and
yet produces values that are better than those of the 1/k rule. Finally,
in the last row of the table, we present the results of an algorithm in
which we use the rule 1/k separately for each state-action pair. In
other words, a separate step-size is used for each Q(i, a), and the step-
size is defined as 1/V (i, a), where V (i, a) is the number of times the
state-action pair (i, a) was tried. This works well, as is clear from the
table, but requires a separate V (i, a) for each state-action pair. In
other words, this rule increases the storage burden of the algorithm.
In summary, it appears that the log-rule not only works well, but also
does not need tuning of parameters.

4.1.2 Policy Iteration

In this section, we will pursue an RL approach based on policy
iteration for solving discounted reward MDPs. Direct policy iteration
is usually ruled out in the context of RL because in its policy eval-
uation phase, one has to solve linear equations, which requires the
transition probabilities. Then, modified policy iteration (see Chap. 6)
becomes worth pursuing because in it the policy evaluation phase does
not require solving of any equations; in the policy evaluation phase of
modified policy iteration, one performs a value iteration (to determine
the value function vector of the policy being evaluated). Since value
iteration can be done in a simulator using Q-factors, it is possible to
derive a policy iteration algorithm based on simulation.

The idea underlying the usage of policy iteration in RL is quite
simple. We start with an arbitrary policy; and then we evaluate
the Q-factors associated with that policy in the simulator. There-
after, we perform the policy improvement step, which leads to a new
policy. Then we return to the simulator to evaluate the new policy.
This continues until no improvement is obtained. We discuss this idea
in more detail below.
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Q-Factor Policy Iteration. We need to define a Q-factor here in
terms of the policy. For a state-action pair (i, a), for a policy μ̂, where
a ∈ A(i),

Qμ̂(i, a) =

|S|∑

j=1

p(i, a, j) [r(i, a, j) + λJμ̂(j)] , (7.13)

where �Jμ̂ is the value function vector associated with the policy μ̂.
Notice the difference with the definition of the Q-factor in value iter-
ation, which is:

Q(i, a) =

|S|∑

j=1

p(i, a, j) [r(i, a, j) + λJ∗(j)] , (7.14)

where �J∗ denotes the value function vector associated with the optimal
policy.

Using the definition in Eq. (7.13), we can develop a version of policy
iteration in terms of Q-factors. Now, from the Bellman equation for a
given policy μ̂, which is also called the Poisson equation, we have that:

Jμ̂(i) =

|S|∑

j=1

p(i, μ(i), j) [r(i, μ(i), j) + λJμ̂(j)] , ∀i. (7.15)

From Eqs. (7.15) and (7.13), one has that

Jμ̂(i) = Qμ̂(i, μ(i)), ∀i. (7.16)

Using Eq. (7.16), Eq. (7.13) can be written as:

Qμ̂(i, a) =

|S|∑

j=1

p(i, a, j) [r(i, a, j) + λQμ̂(j, μ(j))] , ∀i, a ∈ A(i).

(7.17)
It is clear that Eq. (7.17) is a Q-factor version of the equation used
in the policy evaluation phase of policy iteration and is thus useful in
devising a Q-factor version of policy iteration, which we present next.
It is a critical equation on which much of our subsequent analysis is
based. It is in fact the Q-factor version of the Bellman policy equation
for discounted reward.
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Steps in the Q-Factor Version of Regular Policy Iteration.

Step 1: Set k = 1. Select a policy, μ̂k, arbitrarily.

Step 2: For the policy, μ̂k, obtain the values of �Qμ̂k
by solving the

system of linear equations given below:

Qμ̂k
(i, a)=

|S|∑

j=1

p(i, a, j) [r(i, a, j)+λQμ̂k
(j, μk(j))] for all (i, a)-pairs.

Step 3: Generate a new policy μ̂k+1, using the following relation:

μk+1(i) ∈ argmax
u∈A(i)

Qμ̂k
(i, u).

If possible, set μ̂k+1 = μ̂k.

Step 4: If the policy μ̂k+1 is identical to policy μ̂k, the algorithm
terminates. Otherwise, set k ← k + 1, and go back to Step 2.

How Step 3 is equivalent to policy improvement in classical DP
will be explained below in the context of the RL algorithm based on
these ideas. Linear algebra methods, e.g., Gauss-Jordan elimination,
are needed in Step 2 of the above algorithm. Instead, one can use
the method of successive approximations (value iteration) to solve for
the Q-factors. In such a method, one starts with arbitrary values
for the Q-factors and then uses an updating scheme derived from the
Bellman equation repeatedly until the Q-factors converge. Clearly, the
updating scheme, based on the equation in Step 2, would be:

Qμ̂k
(i, a) ←

|S|∑

j=1

p(i, a, j) [r(i, a, j) + λQμ̂k
(j, μk(j))] . (7.18)

But the Q-factor can be expressed as an expectation as shown below:

Qμ̂k
(i, a) = E[r(i, a, j) + λQμ̂k

(j, μk(j))] (7.19)

= E[SAMPLE].

Then, using the Robbins-Monro scheme (see (7.6)), Eq. (7.18) can
be written, for all state-action pairs (i, a), as:

Qμ̂k
(i, a) ← (1− α)Qμ̂k

(i, a) + α[SAMPLE]

= (1− α)Qμ̂k
(i, a) + α[r(i, a, j) + λQμ̂k

(j, μk(j))],
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where the last relationship follows from Eq. (7.19). Thus:

Qμ̂k
(i, a) ← (1− α)Qμ̂k

(i, a) + α[r(i, a, j) + λQμ̂k
(j, μk(j))]. (7.20)

What we have derived above is an RL scheme to evaluate the Q-factors
associated with a policy within a simulator. We now discuss how policy
iteration may be carried out in a simulator in an iterative style.

We begin with an arbitrary policy. Then we use a simulator to
estimate the Q-factors associated with the policy. This, of course, is
the policy evaluation phase. We refer to each policy evaluation as an
episode. When an episode ends, we carry out the policy improve-
ment step. In this step, we copy the Q-factors into a new vector
called P -factors, and then destroy the old Q-factors. Thereafter a new
episode is started to determine the new Q-factors associated with the
new policy. The P -factors define the new policy to be evaluated and
as such are needed in evaluating the new Q-factors.

Steps in Q-P -Learning. We will next present the step-by-step
details of Q-P -Learning, which is essentially an RL algorithm based
on policy iteration.

Step 1. Initialize all the P -factors, P (l, u) for all l ∈ S and u ∈
A(l), to arbitrary values. Set k, the number of episodes, to 1.
Let n denote the number of state transitions (iterations) within an
episode. Initialize kmax and nmax to large numbers.

Step 2 (Policy Evaluation). Start fresh simulation. Set all the
Q-factors, Q(l, u), to 0. Let the current system state be i. Set n,
the number of iterations within an episode, to 1.

Step 2a. Simulate action a ∈ A(i) with probability 1/|A(i)|.
Step 2b. Let the next state encountered in the simulator be j. Let

r(i, a, j) be the immediate reward earned in the transition from
state i to state j. Update α. Then update Q(i, a) using:

Q(i, a) ← (1−α)Q(i, a)+α

[
r(i, a, j) + λQ

(
j, argmax

b∈A(j)
P (j, b)

)]
.

(7.21)

Step 2c. Increment n by 1. If n < nmax, set i ← j and return to
Step 2a. Otherwise go to Step 3.

Step 3 (Policy Improvement). Set for all l ∈ S, u ∈ A(l),

P (l, u) ← Q(l, u).
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Then increment k by 1. If k equals kmax, go to Step 4. Otherwise,
go to Step 2.

Step 4. For each l ∈ S, select d(l) ∈ argmaxb∈A(l)Q(l, b). The policy

(solution) generated by the algorithm is d̂. Stop.

A number of important remarks are in order here.

Remark 1: The update in Step 2b and that in (7.20) appear differ-
ent on first glance, although they are supposed to be the same. The
update in (7.20) was derived from the Q-factor version of the Bellman
equation, via the Robbins Monro algorithm. We now show that the
updates in Step 2b and (7.20) are equivalent. If the policy evaluated
in Step 2b is μ̂, then

μ(j) = argmax
b∈A(j)

P (j, b), from which it follows that:

Qμ̂

(
j, argmax

b∈A(j)
P (j, b)

)
= Qμ̂(j, μ(j)); and so the two are identical.

We need to mention that a well-known class of algorithms in the litera-
ture goes by the name approximate policy iteration (API) [30, 31],
and it is closely related to Q-P -Learning. The main equation that con-
nects Q-P -Learning to API is in fact:

Qμ̂(i, a) =

|S|∑

j=1

p(i, a, j) [r(i, a, j) + λJμ̂(j)] . (7.22)

Note also that since, Qμ̂(j, μ(j)) ≡ Jμ̂(j), we have that (7.22) above
and the equation underlying Q-P -Learning, i.e., Eq. (7.17), are in fact
the same. We will discuss a version of API below.

Remark 2: The policy improvement step in the policy iteration
algorithm of classical DP is given by:

μk+1(i) ∈ argmax
a∈A(i)

⎡

⎣
∑

j∈S
p(i, a, j) [r(i, a, j) + λJμ̂k

(j)]

⎤

⎦ .

We can show that our policy improvement in Step 3 above is equiv-
alent to this, as long as the Q-factors reach their correct values. In
Q-P -Learning, the new policy is selected according to the P -factors,
which are essentially the Q-factors of the previous episode, i.e., the
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policy in the newly generated Q-factors at the end of the episode is in
fact the improved policy. Note that

μk+1(i) ∈ argmax
a∈A(i)

⎡

⎣
∑

j∈S
p(i, a, j) [r(i, a, j) + λJμ̂k

(j)]

⎤

⎦

= argmax
a∈A(i)

⎡

⎣
∑

j∈S
p(i, a, j) [r(i, a, j) + λQμ̂k

(j, μk(j))]

⎤

⎦

= argmax
a∈A(i)

[Qμ̂k
(i, a)] (7.23)

Equation (7.23) follows from Eq. (7.17) as long as Q-P -Learning con-
verges to the solution of Eq. (7.17). We thus showed that using the
policy in the newly generated Q-factors is equivalent to performing the
policy improvement step in classical DP.

Remark 3: In Q-P -Learning, exploration has to be carried out at
its maximum rate, i.e., every action has to be tried with the same
probability. Without this, there is danger of not identifying an im-
proved policy at the end of an episode. Since the algorithm evaluates
a given policy in one episode, it would be incorrect to bias the explo-
ration in favor of that policy. This is because (i) the definition of the
Q-factor does not have any such bias and (ii) with such a bias, we may
never explore the actions that could potentially become optimal at a
later stage; the latter can lead to sub-optimal values of the Q-factors.
It is perhaps evident from Remark 2 that incorrect Q-factors, which
could result from inadequate exploration, will corrupt the policy im-
provement step.

Remark 4: A word about the number of iterations within an episode,
i.e., nmax, is appropriate here. This quantity obviously needs to be
large although finite. But how large should it be? Unless this num-
ber is large enough, inaccuracies in the Q-factors estimated in a given
episode can lead to a new policy that is actually worse than the cur-
rent policy. This phenomenon is part of what is called chattering (or
oscillation), which can be undesirable [33]. Setting nmax to 1 or some
other very small integer may cause severe chattering and has also been
observed in the case of an algorithm called ambitious API [33].

Remark 5: In comparison to Q-Learning, Q-P -Learning will require
additional time (especially with large values of nmax), since in each
episode, Q-P -Learning performs a Q-Learning-like evaluation. In
other words, every episode resembles an independent application
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of Q-Learning. This difference in computational time may become
especially acute in the look-up table case. However, policy iteration
is known to be more stable with function approximation, which is
needed when the number of state-action pairs is very large. Therefore,
it appears that there is a significant amount of interest in algorithms
based on the Bellman policy equation [31].

SARSA. The Modified Q-Learning algorithm of Rummery and
Niranjan [258], also called SARSA [288, 277], is also based on pol-
icy iteration but uses an updating equation different than that of
Q-P -Learning. Two versions of SARSA can be found in the literature.
The first is from [288] (where it is said to follow generalized policy
iteration (GPI) in [288]); we will call it the episodic version in which
a policy (although exploratory) is evaluated within an episode. The
exploration is gradually decayed to zero. The second version will be
called non-episodic because it will not employ the notion of episodes;
in this version also, one employs an exploratory policy whose explo-
ration is gradually decayed to zero. The non-episodic version has been
analyzed for convergence in [277].

In SARSA (both versions), in order to update a Q-factor of a state,
one must not only know the action selected in that state but also the
action selected in the next state. Thus, when an action a is selected
in a state i and one transitions to state j as a result, one must know
which state was visited immediately prior to i and which action was
selected in that state. Let the state visited before i be s and let w
be the action that was selected in s. Then, after we transition from
i to j, we update Q(s, w). Since the convergence properties of the
non-episodic version are clearly understood, we restrict our discussion
to the non-episodic version.

Non-episodic-SARSA. In this algorithm, we will not employ the
notion of episodes, and thus the algorithm will resemble Q-Learning in
how it functions, although it will still be based on the Bellman policy
equation at the start.

Step 1. Initialize the Q-factors, Q(l, u), for all (l, u) pairs. Let n
denote the number of state transitions (iterations) of the algorithm.
Initialize nmax to a large number. Start a simulation. Set n = 1.

Step 2. Let the current system state in the simulation be i. Set s to
any state from S, and set w to any action fromA(s). Let rimm = 0.
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Step 2a. Simulate action a ∈ A(i) in state i using an exploratory
policy in which the exploration must be decayed gradually after
every iteration.

Step 2b. Let the next state encountered in the simulator be j. Let
r(i, a, j) be the immediate reward earned in the transition from
state i to state j. Update α. Then update Q(s, w) using:

Q(s, w) ← Q(s, w) + α [rimm+ λQ(i, a)−Q(s, w)] I(n = 1),
(7.24)

where I(.), the indicator function, equals 1 when the condition
inside the brackets is satisfied and 0 otherwise.

Step 2c. Set w ← a, s ← i, and rimm ← r(i, a, j).

Step 2d. Increment n by 1. If n < nmax, set i ← j and return to
Step 2a. Otherwise go to Step 3.

Step 3. For each l ∈ S, select d(l) ∈ argmaxb∈A(l)Q(l, b). The policy

(solution) generated by the algorithm is d̂. Stop.

s

i

j

w
rimm

a

r(i,a,j)

Figure 7.4. A schematic showing the updating in SARSA: The quantity above
the arrow is the action selected and that below is the immediate reward earned
in the transition. Note that we update Q(s, w) after the transition from i to j is
complete

A Note About the Delayed Updating in SARSA. Figure 7.4
is a schematic that should help you understand how the updating in
SARSA works. It is important to realize that in SARSA, the up-
dating of a Q-factor occurs after two state transitions have occurred
(this is unlike the one-step updating we see in Q-Learning and in most
algorithms in the book, where the updating occurs after one state tran-
sition). The indicator function in Eq. (7.24) ensures that in the first
iteration (n = 1), no updating is performed. This is because the up-
dating is performed two state transitions later, and the second state
transition has not occurred yet. The notation via the special variables,
s and w, allows us to express the update of a Q-factor that occurs after
two state transitions.
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It is worthwhile pointing out here that the exploration is decayed
after every state transition and should tend to zero in the limit. This
intuitively suggests that the algorithm update which is at the start
based on a given policy (Bellman policy equation) tends to that based
on the optimal policy (Bellman optimality equation).

SARSA and Q-P -Learning. One aspect in which SARSA (both
epsidoic and non-episodic versions) differs significantly from
Q-P -Learning is that in the latter, exploration is never decayed. The
other major difference of SARSA (both versions) with Q-P -Learning
is that the Q-factor of the next state in any update in SARSA is
the Q-factor of the next state associated with the action selected by
the current exploratory policy, while in Q-P -Learning, we use the
Q-factor of the action defined by the policy being evaluated, i.e., the
policy stored in the P -factors, which is fixed (and unchanged) within
an episode.

CAP-I: Conservative Approximate Policy Iteration. We now
present a member from a large class of algorithms loosely referred to
in the literature as Approximate Policy Iteration (API). The specific
algorithm that we present will be called Conservative API (CAP-I).
The name “conservative” is used to distinguish it from its more well-
known, but adventurous, cousin, which we call “ambitious” API. The
traditional version of ambitious API (AAP-I) does not appear to have
satisfactory convergence properties [33]. For a discussion on conver-
gence properties of API in general, see Bertsekas and Tsitsiklis [33,
pgs. 231-7] where ambitious API is called “partially optimistic TD(0),”
used under the noisy conditions of a simulator. The discussion there
also refers to a version called “optimistic TD(0),” which should not be
confused with ambitious API; optimistic TD(0) is an algorithm of only
academic interest, because it requires the transition probabilities and
is not intended for simulation-based setting (see however [34, 35] for a
more recent version of A-API that is convergent). Hence, we focus on
CAP-I (which is called ordinary or modified policy iteration in [33])
that appears to be slow, but steady and convergent.

CAP-I has three stages in each iteration. In the first stage, it evalu-
ates the value function for each state; this is performed by simulating
the policy being evaluated. In the second stage, the algorithm evalu-
ates the Q-factors for the policy being evaluated using the value func-
tion generated in the first stage. In the third stage, policy improvement
is performed. Each of the first two stages requires long simulations,
and as such, this algorithm will be slower than Q-P -Learning. Our
description is taken from [120].
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Steps in CAP-I. We will now present the step-by-step details.

Step 1. Initialize kmax, nmax, and mmax to large numbers. Let the
number of algorithm iterations be denoted by k. Set k = 1. Select
any policy arbitrarily and call it μ̂k.

Step 2 (Policy Evaluation: Estimating Value Function.) Start
fresh simulation. Initialize J(l) = 0 for all l ∈ S. Let the current
system state be i. Set n, the number of iterations within the policy
evaluation episode, to 1.

Step 2a. Simulate action a = μk(i) in state i.

Step 2b. Let the next state encountered in the simulator be j. Let
r(i, a, j) be the immediate reward earned in the transition from
state i to state j. Update α. Then update J(i) using:

J(i) ← (1− α)J(i) + α [r(i, a, j) + λJ(j)] where a = μk(i).

Step 2c. Increment n by 1. If n < nmax, set i ← j and return to
Step 2a. Otherwise go to Step 3.

Step 3 (Q-factor evaluation). Start fresh simulation. SetQ(l, u) =
0 for l ∈ S, u ∈ A(l). Let the current system state be i. Set m, the
number of iterations within an episode for Q-factor evaluations,
to 1.

Step 3a. Simulate action a ∈ A(i) with probability 1/|A(i)|.

Step 3b. Let the next state encountered in the simulator be j. Let
r(i, a, j) be the immediate reward earned in the transition from
state i to state j. Update β. Then update Q(i, a) using:

Q(i, a) ← (1− β)Q(i, a) + β [r(i, a, j) + λJ(j)] .

Step 3c. Increment m by 1. If m < mmax, set i ← j and return to
Step 3a. Otherwise go to Step 4.

Step 4 (Policy Improvement). Increment k by 1. Set for all i ∈ S,
μk(i) ∈ argmaxa∈A(i)Q(i, a). If k equals kmax, declare μ̂k to be an
optimal policy and stop. Otherwise, go to Step 2.

The reader should note that the value of the J(.) function used in
Step 3 is that obtained at the end of Step 2. Also, note that the need
for Q-factor evaluation (Step 3) arises from the fact that since the tran-
sition probabilities are unknown, it is not possible to perform policy
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improvement (see policy improvement step in dynamic programming
from Chap. 6) on the basis of the value function (J(.)) alone. This is
why any model-free API algorithm based on the value function must
have the follow-up step (Step 3) of evaluating the Q-factors, since
otherwise, it is not possible to perform policy improvement. In the
literature, one finds that in the discussion on API, this step is of-
ten skipped, because it is assumed. But, as stated above, this step
requires another long simulation, making this algorithm slower than
many other algorithms based on the Bellman policy equation.

Some additional remarks about the algorithm’s specifics are nec-
essary. Both α and β can use the same updating rules. Further,
both nmax and mmax should be set to large numbers, but since in the
Q-factor evaluation stage, we do not use a recursive equation (in that
we use a fixed value of J(.) on the right hand side), it is quite possible
for mmax to be significantly smaller than nmax. (Clearly, kmax must
always be large enough.)

AAP-I. If we set nmax to 1 or some small integer, we generate the
class of algorithms loosely called ambitious API (AAP-I). It is not
hard to see that such an algorithm will be faster than CAP-I, but as
stated above, its convergence is questionable. Note that even if nmax

is set to a small value, for any reasonable algorithm, mmax must be
sufficiently high to perform a credible policy improvement.

4.2. Average Reward
This section will discuss DP-based RL algorithms for average reward

MDPs. Like in the discounted case, we will divide this section into two
parts: one devoted to value iteration and the other to policy iteration.

We first present the Q-factor version of the Bellman equation for
average reward. For all (i, a) pairs:

Q(i, a) =

|S|∑

j=1

p(i, a, j)

[
r(i, a, j)− ρ∗ + max

b∈A(j)
Q(j, b)

]
, (7.25)

where ρ∗ denotes the optimal average reward. The algorithms in this
section will strive to solve the equation above. Now, using the notions
of Robbins-Monro, like in the case of discounted reward, we can derive
a Q-Learning algorithm of the following form:

Q(i, a) ← (1− α)Q(i, a) + α

[
r(i, a, j)− ρ∗ + max

b∈A(j)
Q(j, b)

]
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for all (i, a) pairs. The only difficulty with this algorithm is that ρ∗ is
not known in advance! Like in DP, we will use the notion of relative
value iteration to circumvent this difficulty.

4.2.1 Relative Value Iteration

The notions of relative value iteration in classical DP can be
extended to RL. The main idea is to select a state-action pair arbi-
trarily at the start of the algorithm. This pair will be denoted by
(i∗, a∗) and called the distinguished state-action pair. Then each
Q-factor will be updated via the following rule:

Q(i, a) ← (1− α)Q(i, a) + α

[
r(i, a, j) + max

b∈A(j)
Q(j, b)−Q(i∗, a∗)

]
.

The above algorithm will be called Relative Q-Learning in this book.
It has been analyzed in [2], and it is shown there that Q(i∗, a∗) will
converge to ρ∗; as a result, the algorithm will converge to the optimal
solution of the Bellman equation for average reward (see Eq. (7.25)).
We now present steps in this algorithm.

Steps in Relative Q-Learning. The steps are identical to those of
Q-Learning for discounted reward (see Sect. 4.1.1) with the following
critical differences. Step 1 needs to perform the following in addition:

Step 1: Select any one state-action pair to be the distinguished pair
(i∗, a∗). Step 4 is as follows:

Step 4: Update Q(i, a) using the following:

Q(i, a) ← (1− α)Q(i, a) + α

[
r(i, a, j) + max

b∈A(j)
Q(j, b)−Q(i∗, a∗)

]
.

It is important to note the following. Relative value iteration (which
is a DP algorithm) can diverge asynchronously and produce a sub-
optimal solution, i.e., under asynchronous updating within a DP set-
ting, e.g., in a Gauss-Seidel version. However, interestingly, Relative
Q-Learning, which is also asynchronous, generates optimal solutions
under appropriate conditions [2].

The value of the average reward produced by the algorithm’s
solution can also be easily measured within a simulator by re-running
the simulator using the policy after the learning is complete. This is
oftentimes called the frozen phase in RL. The following routine shows
how to determine the average reward of a given policy. The simulation
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must be run for a sufficiently long time to obtain a good estimate, or
else one must perform numerous replications using the same policy
but different seeds (see Chap. 2).

Average Reward Calculation.

Step 1. Set TR, the total reward (cumulative) reward, to 0 and k,
the number of transitions, to 0. Set kmax to a large number.

Step 2. Let the current state be i. Select action a where a ∈
argmaxu∈A(i)Q(i, u) i.e., choose the action associated with the
maximum Q-factor for that state.

Step 3. Simulate action a. Let the next state be j. Update as follows:

TR ← TR+ r(i, a, j); k ← k + 1.

Step 4. If k < kmax, set i ← j, and go to Step 2. Otherwise, go to
Step 5.

Step 5. Calculate the average reward of the policy via ρ = TR/k,
and stop.

Relative Q-Learning and Example A. Results from Example A
(see Sect. 3.3.2 of Chap. 6) with Relative Q-Learning are as follows.
We used (i∗, a∗) = (1, 1). The Q-factors obtained are:

Q(1, 1) = 10.07, Q(1, 2) = 18.25, Q(2, 1) = 17.24, and Q(2, 2) = 14.99.

As a result, the policy learned is (2, 1). When this policy is run in a
simulator, the average reward obtained is 10.56. Note that Q(1, 1) =
10.07 	 10.56.

4.3. R-SMART and Other Algorithms
A number of other convergent algorithms exist for solving the aver-

age reward MDP. When the transitions occur between adjacent states
or the transition probability matrix is sparse, the Relative Q-Learning
algorithm (discussed above) can produce disappointing results. There
are at least three alternatives: the R-SMART algorithm [119], dis-
cussed below in Sect. 5.2.1 (see Remarks in that section) and known
to have robust behavior, an SSP-based Q-Learning algorithm, (reader
should study [2]), and Q-P -Learning, based on policy iteration.
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Policy iteration An average reward RL algorithm based on policy
iteration can be developed in a manner analogous to the derivation of
Q-P -Learning for the discounted case. In the average reward problem,
instead of using the Q-Learning algorithm in the policy evaluation
phase, we will need to use the Relative Q-Learning algorithm. The
algorithm’s steps differ from those for the discounted reward case in
the following ways.

1. In Step 1, also select any one state-action pair to be the distin-
guished pair (i∗, a∗).

2. In Step 2b, update Q(i, a) using: Q(i, a) ← (1− α)Q(i, a)+

α
[
r(i, a, j)−Q(i∗, a∗) +Q

(
j, argmaxb∈A(j) P (j, b)

)]
.

5. SMDPs
In this section, we will first discuss the discounted reward case

for solving the generalized semi-Markov decision problems (SMDPs),
using RL, and then discuss the average reward case. We remind the
reader that the SMDP is a more powerful model than the MDP, be-
cause it explicitly models the time spent in a transition. In the MDP,
the time spent is the same for every transition. The RL algorithms for
SMDPs use extensions of Q-Learning and Q-P -Learning for MDPs.
Please refer to value and policy iteration for SMDPs and also review
definitions from Chap. 6.

5.1. Discounted Reward
The discounted reward SMDP can be solved using either a value-

iteration-based approach or else a policy-iteration-based approach.
We would like to remind the reader that in the generalized SMDP

(see Chap. 6), we will assume that some of the immediate reward is
earned immediately after action a is selected, i.e., at the start of the
transition from i to j. This is called the lump sum reward and is
denoted by rL(i, a, j), where the subscript L denotes lump sum. In
addition, one can earn reward continuously during the transition at
the rate rC(i, a, j), where the subscript C denotes continuous.

5.1.1 Steps in Q-Learning: Generalized SMDPs

The steps are similar to those in Q-Learning for MDPs with the
following exception. In Step 4, update Q(i, a) via: Q(i, a) ← (1 −
α)Q(i, a)+
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α

[
rL(i, a, j) +

1− e−γt(i,a,j)

γ
rC(i, a, j) + e−γt(i,a,j) max

b∈A(j)
Q(j, b)

]
,

(7.26)
where t(i, a, j) is the possibly random amount of time it takes to tran-
sition from i to j under a and γ is the rate of return or rate of interest.
A version of this algorithm without the lump sum reward appears in
[52], while the version with the lump sum reward and a convergence
proof appears in [119].

5.1.2 Steps in Q-P -Learning: Generalized SMDPs

The steps are similar to those ofQ-P -Learning for discounted reward
MDPs with the following difference in Step 2b.

In Step 2b, update Q(i, a) using: Q(i, a) ← (1− α)Q(i, a)+

α

[
rL(i, a, j) +

1− e−γt(i,a,j)

γ
rC(i, a, j) + e−γt(i,a,j)Q

(
j, argmax

b∈A(j)
P (j, b)

)]
.

This algorithm is described in [118].

5.2. Average Reward
Solving average reward SMDPs via RL is perhaps more difficult than

all the other problems discussed above. The reasons will be explained
below. However, many real-world problems, including those arising in
queueing networks, tend to be SMDPs rather than MDPs. As such, it
is important that we develop the theory for it.

We remind the reader that in the average reward MDPs, one can by-
pass the need to estimate ρ∗, the optimal average reward, via relative
value iteration (and Relative Q-Learning in RL). However, in SMDPs,
this does not work in value iteration. For an illustration of the difficul-
ties posed by ρ∗ in SMDPs, see the Example in Sect. 7.2.4 of Chap. 6.
One way out of this difficulty is via discretization of the SMDP to
an MDP, discussed in the previous chapter. But, the discretization
requires the transition probabilities. Since we do not have the access
to transition probabilities in RL, unlike in DP, we must find ways to
circumvent this difficulty without discretization. One approach that
we will focus on here is to use the two-time-scale framework of Borkar
[45] to develop a value iteration algorithm that will estimate Q-factors
on one time scale using a learning rate α and the average reward on
the other using a learning rate β, where α and β are different and must
satisfy some conditions.
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We begin by presenting a Q-factor version of the Bellman equation
for average reward SMDPs, which can be derived in a manner similar
to that for the discounted MDP. For all (i, a) pairs:

Q(i, a) =

|S|∑

j=1

p(i, a, j)

[
r(i, a, j)− ρ∗t̄(i, a, j) + max

b∈A(j)
Q(j, b)

]
. (7.27)

This suggests a value iteration algorithm of the form:

Q(i, a) ←
|S|∑

j=1

p(i, a, j)

[
r(i, a, j)− ρ∗t̄(i, a, j) + max

b∈A(j)
Q(j, b)

]
∀(i, a).

Unfortunately, this cannot be used directly to derive an RL algorithm,
since the value of ρ∗ is unknown. One approach is to use the following
update instead

Q(i, a) ← (1−α)Q(i, a)+α

[
r(i, a, j)− ρt(i, a, j) + max

b∈A(j)
Q(j, b)

]
, ∀(i, a) (7.28)

where ρ here denotes a guessed estimate of ρ∗ updated gradually, and
one hopes that it will converge to ρ∗. The mechanism to update ρ that
we will use is:

ρ ← (1− β)ρ+ β

[
TR

TT

]
, (7.29)

where the TR and TT denote the total accumulated reward and
the total accumulated time, respectively, in the system during the
state transitions triggered by greedy actions chosen by the algorithm.
These updating equations are the basis for the R-SMART family of
algorithms [110, 119] that we will focus on. As we will see below, the
update in Eq. (7.28) can pose some numerical difficulties, and must be
further modified.

It is important to note that in the update defined in Eq. (7.28),
t(i, a, j) denotes the possibly random transition time in going from i
to j under a’s influence. The notation t̄(i, a, j), which is used in the
updates that involve the transition probabilities, denotes the mean
transition time in going from i to j under a’s influence. The two terms
are related as follows:

t̄(i, a, j) = E[t(i, a, j)] =

∫ ∞

0
τfi,a,j(τ)dτ,

where fi,a,j(.) is the pdf of the transition time from i to j under a’s
influence.
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5.2.1 R-SMART for SMDPs

In this subsection, we discuss a class of algorithms collectively
referred to as R-SMART (Relaxed-Semi-Markov Average Reward
Technique). As the name suggests, this class of algorithms is designed
to solve average reward SMDPs; the prefix “Relaxed” indicates that
the algorithm uses the so-called “two time scale” version. We will dis-
cuss the framework of two time scales later. We discuss two versions
of R-SMART algorithms, the first version being called the CF-version,
while the second the SSP-version.

CF-Version of R-SMART. This version of R-SMART needs an
assumption that we discuss now. Consider the Q-factor version of
the following variant of the Bellman optimality equation for average
reward SMDP.

Q(i, a) =

|S|∑

j=1

p(i, a, j)

[
r(i, a, j)− ρt̄(i, a, j) + η max

b∈A(j)
Q(j, b)

]
,

(7.30)

where η is a scalar that satisfies 0 < η < 1. For any given value of ρ,
it can be shown that the above equation has a unique solution; this is
because it behaves like the Bellman equation for the discounted reward
MDP with its immediate reward altered to r(i, a, j)− ρt̄(i, a, j).

We will call η the contraction factor (CF), because if ρ is fixed, it
makes the transformation defined in Eq. (7.30) a so-called contractive
transformation, which has some nice convergence properties. We will
discuss contractive transformations in detail in Chap. 9. The algorithm
that we present below will seek to solve the Bellman equation presented
in Eq. (7.30).

Do note that the true version of the Bellman optimality equation for
average reward SMDPs will have η = 1 and ρ = ρ∗. The assumption
needed by the CF-version of R-SMART is as follows:

Assumption 7.1 There exists a value η̄ in the open interval (0, 1)
such that for all η ∈ (η̄, 1), the unique solution of Eq. (7.30) obtained

after setting ρ = ρ∗ produces a policy d̂ whose average reward equals ρ∗.

Note that Assumption 7.1 implies that the policy d̂ will produce
for each i ∈ S, an action d(i) ∈ argmaxa∈A(i)Q(i, a), where Q(i, a)
denotes the unique solution of Eq. (7.30) when solved with ρ = ρ∗.
Essentially, what Assumption 7.1 assures us is that for a sufficiently
large value of η (i.e., η sufficiently close to 1), a solution of Eq. (7.30)
with ρ = ρ∗ will yield the optimal policy.
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We now derive an RL algorithm based on this idea and call it the
contracting factor (CF) version of R-SMART. The algorithm will use
an update based on Eq. (7.30) while ρ will be updated via Eq. (7.29)
under the so-called two time scale condition that we now explain.

Using two time scales means having one class of iterates, e.g.,
Q-factors, that is updated using one step size, α, and another class of
iterates, e.g., the scalar ρ, that is updated using a different step size,
β, such that α and β share the following relationship:

lim
k→∞

βk

αk
= 0; (7.31)

note that the superscript, k, used above with α and β, indicates that
the step sizes are functions of k. The superscript has been suppressed
elsewhere to increase clarity. Step-size rules such as αk = log(k)/k and
βk = A/(B + k) (with suitable values of A and B) satisfy Eq. (7.31);
other rules that satisfy the relationship can also be identified in prac-
tice. The condition in Eq. (7.31) is a defining feature of the two-time-
scale framework. Whenever two time scales are used, the two step
sizes must satisfy this condition.

Steps in CF-Version of R-SMART.

Step 1. Set for all l ∈ S, u ∈ A(l), Q(l, u) = 0. Set k, the number of
state transitions, to 0. We will run the algorithm for kmax iterations,
where kmax is chosen to be a sufficiently large number. Start system
simulation at any arbitrary state. Set TR, TT , and ρ to 0.

Step 2. Let the current state be i. Select action a via an exploratory
strategy, where the rate of exploration is decayed with iterations.
If a ∈ argmaxu∈A(i)Q(i, u), set φ = 0. Otherwise set φ = 1.

Step 3. Simulate action a. Let the next state be j. Let r(i, a, j) be
the immediate reward earned in the transition to state j from state
i under the influence of action a. Let t(i, a, j) denote the time spent
in the same transition. Increment k by 1 and update α.

Step 4a. Update Q(i, a) via:

Q(i, a) ← (1−α)Q(i, a)+α

[
r(i, a, j)− ρt(i, a, j) + η max

b∈A(j)
Q(j, b)

]
;

(7.32)

Step 4b. If φ equals 0 (i.e., a is a greedy action), update the following.

TR ← TR+ r(i, a, j);TT ← TT + t(i, a, j).
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Then, update ρ via Eq. (7.29) in which β is another step-size that
must share the relationship defined in Eq. (7.31) with α.

Step 5. If k < kmax, set i ← j, and then go to Step 2. Otherwise, go
to Step 6.

Step 6. For each l ∈ S, select d(l) ∈ argmaxb∈A(l)Q(l, b). The policy

(solution) generated by the algorithm is d̂. Stop.

It is not difficult to see that the update defined in Eq. (7.32) seeks
to solve the version of the Bellman equation given in Eq. (7.30).

We now present some important remarks.

Remark 1: The above algorithm can be used to solve an MDP by
setting t(·, ·, ·) = 1, i.e., the time of each transition is set to 1.

Remark 2: Unfortunately, it is not possible to guess η̄, and hence we
must use a value for η that is sufficiently close to 1. If our value for
η turns out to be below η̄, Assumption 7.1 is violated, and we may
not obtain the optimal solution. In practice, hence, the user must
guesstimate η, and if the solutions produced are worse than those
produced by the competition (e.g., a problem-specific heuristic), one
must increase η’s value. It has been found empirically that even with
the value of η = 1, this algorithm frequently converges to the optimal
solution.

SSP-Version of R-SMART. We now present another version of
R-SMART. For this version, we first need to present some background
related to solving an average reward MDP using a technique different
than Relative Q-learning. We will follow this discussion by how this
technique for MDPs can be then extended for solving SMDPs.

Associated with an average reward MDP with all Markov chains
regular, one can construct an SSP (stochastic shortest-path problem)
that has the same solution as the original MDP. The motivation for
constructing it is, of course, that it may be more convenient to solve
the SSP instead of the original MDP [30, 32]. We will not attempt
to explain mathematically how an SSP can be exploited to solve the
average reward MDP, but refer the interested reader to Bertsekas [30],
where the idea was introduced. We present an intuitive explanation
of this idea.

The SSP is a problem in which there is an absorbing state(s), and the
goal is to maximize the total (un-discounted) reward earned from the
starting state until the system is absorbed in the absorbing state. Via
an ingenious argument, Bertsekas [30] showed that under some condi-
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tions, one can construct an imaginary SSP from any average reward
MDP easily. This SSP has some nice properties and is easy to solve.
What is interesting is that the solution to this SSP is an optimal so-
lution of the original MDP as well!

The construction of the associated SSP requires that we consider
any state in the MDP (provided that every Markov chain is regu-
lar, an assumption we make throughout) to be the absorbing state;
we call this state the distinguished state and denote it by i∗. In the
associated SSP, if the distinguished state is the next state (j) in a tran-
sition and the Q-factor of the previous state (i) is being updated after
the transition occurs, the value of zero will replace the distinguished
state’s Q-factor. (Remember that when we update a Q-factor, we need
Q-factors from the next state as well.) However, when the turn comes
to update a Q-factor of the distinguished state, it will be updated just
like any other Q-factor. Also, very importantly, the SSP requires that
we replace the immediate reward, r(i, a, j), by r(i, a, j)− ρ∗. Since ρ∗
is unknown at the start, we will update ρ via Eq. (7.29), under the
two-time-scale conditions (discussed previously).

Now, clearly, here, we are interested here in solving the SMDP
rather than the MDP. It was shown in [119] that similar to the MDP,
by using a distinguished (absorbing) state i∗, one can construct an
SSP for an SMDP as well—such that the solution of the SSP is iden-
tical to that of the original SMDP. For the SMDP, solving the asso-
ciated SSP requires that we replace the immediate reward, r(i, a, j),
by r(i, a, j) − ρ∗t̄(i, a, j), where note that we have the time element
(t(i, a, j)) in the modified immediate reward. Then, provided the value
of ρ∗ is known in advance, the following value iteration algorithm can
be used to solve the SSP and hence the SMDP:

Q(i, a) ←
∑

j∈S
p(i, a, j)

[
r(i, a, j)−ρ∗t̄(i, a, j)+I(j = i∗) max

b∈A(j)
Q(j, b)

]
,

(7.33)

where I(.) is an indicator function, and it equals 1 when j = i∗ and
equals 0 when j = i∗. Of course, one must update ρ in a manner such
that it reaches ρ∗ in the limit. We will update ρ on a second time
scale—in a manner identical to that used in the CF-version.

Equation (7.33) thus serves as the basis for deriving a Q-Learning
algorithm (see Eq. (7.34) below). Convergence for the resulting algo-
rithm under certain conditions is shown in [119]. We now present steps
in the algorithm.
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Steps in SSP-Version of R-SMART.

Step 1. Set for all l ∈ S, u ∈ A(l), Q(l, u) = 0. Set k, the number of
state transitions, to 0. We will run the algorithm for kmax iterations,
where kmax is chosen to be a sufficiently large number. Start system
simulation at any arbitrary state. Set TR, TT and ρ to 0. Select
any state in the system to be the distinguished state i∗.

Step 2. Let the current state be i. Select action a via an exploratory
strategy, where the rate of exploration is decayed with iterations.
If a ∈ argmaxu∈A(i)Q(i, u), set φ = 0. Otherwise set φ = 1.

Step 3. Simulate action a. Let the next state be j. Let r(i, a, j) be
the immediate reward earned in the transition to state j from state
i under the influence of action a. Let t(i, a, j) denote the time spent
in the same transition. Increment k by 1 and update α.

Step 4a. Update Q(i, a) via:

Q(i, a) ← (1− α)Q(i, a) + α

[
r(i, a, j)− ρt(i, a, j) + I(j �= i∗) max

b∈A(j)
Q(j, b)

]
.

(7.34)

Step 4b. If φ equals 0 (i.e., a is a greedy action), update the following.

TR ← TR+ r(i, a, j);TT ← TT + t(i, a, j).

Then, update ρ via Eq. (7.29) in which β is another step-size that
must share the relationship defined in Eq. (7.31) with α.

Step 5. If k < kmax, set i ← j, and then go to Step 2. Otherwise, go
to Step 6.

Step 6. For each l ∈ S, select d(l) ∈ argmaxb∈A(l)Q(l, b). The policy

(solution) generated by the algorithm is d̂. Stop.

Remark: The above algorithm can be used to solve an MDP by
setting t(·, ·, ·) = 1, i.e., the time of each transition is set to 1. We
further note that the CF-version produces graceful behavior and can
often be more robust than the SSP version in how theQ-factors behave.

5.2.2 Q-P -Learning for SMDPs

We now discuss an RL approach based on policy iteration for solv-
ing SMDPs. The Q-P -Learning algorithm has a policy evaluation
phase, which is performed via value iteration. For discounted reward
MDPs and SMDPs, regular value iteration (derived from the Bellman
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policy equation) keeps the iterates bounded and also converges. For
average reward MDPs, one uses relative value iteration (derived from
the Bellman policy equation). For average reward SMDPs, we cannot
use relative value iteration without discretization. But, after a suit-
able modification, one can use the Bellman equation for value iteration
for a given policy. The Bellman equation relevant to this case is the
Bellman policy (or Poisson) equation, which can be expressed in terms
of Q-factors as follows.

Q(i, a) =

|S|∑

j=1

p(i, a, j)[r(i, a, j)− ρμ̂t̄(i, a, j) +Q(j, μ(j))].

The above is the Bellman policy equation for the policy μ̂ and in
general does not have a unique solution, which may pose problems in
RL. We now discuss two approaches to bypass this difficulty.

Like in value-iteration-based RL, one approach is to solve the asso-
ciated SSP, and use a variant of the above equation that applies for
the SSP. Hence the first question is, what does the equation look like
for the SSP? Using the notion of a distinguished state i∗, we have the
following Bellman policy equation:

Q(i, a) =

|S|∑

j=1

p(i, a, j)[r(i, a, j)− ρμ̂t̄(i, a, j) + I(j = i∗)Q(j, μ(j))].

(7.35)

Now, the second question is how does one obtain the value of ρμ̂?
This can be resolved as follows: Before updating the Q-factors using
this equation, one estimates the average reward of the policy μ̂ in a
simulator. Thus, in Step 2, we estimate the average reward of the
policy, whose Q-factors are evaluated later in Step 3 using an update
based on Eq. (7.35).

The second approach is to use the CF-version. We will discuss that
later. We first present steps in the SSP-version of Q-P -Learning for
average reward SMDPs.

Steps in the SSP-Version.

Step 1: Initialize the vector P (l, u) for all states l ∈ S and all u ∈ A(l)
to arbitrary value. Set k = 1 (k denotes the number of episodes)
and initialize kmax and nmax to large numbers. Set any state in the
system to i∗, the distinguished state.

Step 2: Set Q(l, u) = 0 for all l ∈ S and all u ∈ A(l). Simulate the
system for a sufficiently long time using in state m, the action given
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by argmaxb∈A(m) P (m, b). At the end of the simulation, divide
the total of immediate rewards by the total of immediate times to
obtain an estimate of the average reward ρ. Use averaging with
several replications to obtain a good estimate of ρ. Set n, the
number of iterations within an episode, to 1.

Step 3 (Policy evaluation) Start fresh simulation. Let the current
system state be i ∈ S.

Step 3a: Simulate action a ∈ A(i) with probability 1/|A(i)|.

Step 3b: Let the next decision-making state encountered in the sim-
ulator be j. Also, let t(i, a, j) be the transition time (from state i
to state j) and let r(i, a, j) be the immediate reward.

Step 3c: Calculate α using the step-size rules discussed above. Then
update Q(i, a) using: Q(i, a) ← (1− α)Q(i, a)+

α

[
r(i, a, j)− ρt(i, a, j) + I(j = i∗)Q

(
j, argmax

b∈A(j)
P (j, b)

)]
.

Step 3d: Increment n by 1. If n < nmax set current state i to new
state j and then go to Step 3a; else go to Step 4.

Step 4: (Q to P conversion – policy improvement) Set P (l, u) ←
Q(l, u) for all l and u ∈ A(l). Set k ← k + 1. If k equals kmax

go to Step 5; else go back to step 2.

Step 5. For each l ∈ S, select d(l) ∈ argmaxb∈A(l)Q(l, b). The policy

(solution) generated by the algorithm is d̂. Stop.

The above description is based on [118, 109].

Steps in the CF-Version. The CF-version is based on using the
contraction factor, η, where 0 < η < 1. For this, we will need a coun-
terpart of Assumption 7.1 for a given policy. We state that assumption
next. First we present the CF-version of the Bellman equation for a
given policy (Poisson equation), μ̂, in an average reward SMDP.

Q(i, a) =

|S|∑

j=1

p(i, a, j) [r(i, a, j)− ρt̄(i, a, j) + ηQ(j, μ(j))] , (7.36)

where η is a scalar that satisfies 0 < η < 1. For any given value of ρ,
it can be shown that the above equation has a unique solution; this is
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because it behaves like the discounted reward Bellman equation for a
given policy with its immediate reward altered to r(i, a, j)−ρt(i, a, j).

Assumption 7.2 There exists a value η̄ in the open interval (0, 1)
such that for all η ∈ (η̄, 1), the unique solution of Eq. (7.36) obtained

after setting ρ = ρμ̂ produces a policy d̂ whose average reward equals ρμ̂.

Essentially, what Assumption 7.2 assures us is that for a sufficiently
large value of η (i.e., η sufficiently close to 1), a solution of Eq. (7.36)
with ρ = ρμ̂ will yield the policy μ̂.

The steps in the algorithm will be identical to those above except
that there would be no need to select a distinguished state in Step 1
and that the update in Step 3c would be: Q(i, a) ← (1− α)Q(i, a)+

α

[
r(i, a, j)− ρt(i, a, j) + ηQ

(
j, argmax

b∈A(j)
P (j, b)

)]
.

In practice, setting η = 1 also appears to work, but then the conver-
gence arguments require that boundedness of the Q-factors is assumed
apriori. It is to be noted that both of these versions of Q-P -Learning
can be used to solve MDPs by setting t(·, ·, ·) = 1, i.e., the time of each
transition is set to 1.

6. Model-Building Algorithms
Scattered in the literature on RL, one finds some papers that discuss

a class of algorithms called model-based algorithms. These algorithms
actually build the transition probability model in some form and at-
tempt to use the Bellman equation in its original form, i.e., with its
transition probabilities intact. At the beginning of the chapter, we
have discussed a mechanism to first build the transition probability
model within the simulator and then use DP. Model-based algorithms
are similar in spirit, but they do not wait for the model to be built.
Rather, they start updating the value function, or the Q-factors, while
the model is being simultaneously built. The question that arises is
this: What is the advantage underlying taking the additional step
of building the model when we already have the model-free Bellman
equation in terms of Q-factors (which we have used all along)? The
answer is that oftentimes model-free algorithms exhibit unstable be-
havior, and their performance also depends on the choice of the step-
size. Model-based algorithms hold the promise of being more stable
than their model-free counterparts [324].
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We will call these algorithms model-building algorithms to reflect
the fact they build, directly or indirectly, the transition probability
model, while the algorithm works, i.e., during its run time. Strictly
speaking, only DP is model-based, because it requires the knowledge
of the model before the algorithm starts working. We emphasize that
model-building algorithms do not require the transition-probability
model (loosely referred to as a “model” here); like the model-free
algorithms of the previous sections, all they need is a simulation model
of the system.

We have already discussed how to construct the transition-
probability model within a simulator in Sect. 2.2. The same prin-
ciple will be applied here. As stated above, model-building algorithms
do not wait for the model to be built but start updates within the
simulator even as the model is being built. The number of times each
state-action pair is tried in the simulator can be kept track of; we will
call this quantity the visit factor. V (i, a) will denote the visit factor
for the state-action pair (i, a).

6.1. RTDP
We first present model-building algorithms that compute the value

function rather than the Q-factors. The central idea here is to estimate
the immediate reward function, r̄(i, a), and the transition probability
function, p(i, a, j). While this estimation is being done, we use a step-
size-based asynchronous DP algorithm. The estimates of the immedi-
ate reward and transition probabilities will be denoted by r̃(i, a) and
p̃(i, a, j), respectively.

The following algorithm, called RTDP (Real Time Dynamic Pro-
gramming), is based on the work in [17]. It is designed for discounted
reward MDPs.

Step 1. Set for all l,m ∈ S and u ∈ A(l),

h(l) ← 0, V (l, u) ← 0,W (l, u,m) ← 0, and r̃(l, u) ← 0.

Set k, the number of state transitions, to 0. We will run the algo-
rithm for kmax iterations, where kmax is chosen to be a sufficiently
large number. Start system simulation at any arbitrary state.

Step 2. Let the state be i. Select an action in state i using some
action selection strategy (see comment below for action selection).
Let the selected action be a.

Step 3. Simulate action a. Let the next state be j.
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Step 4. Increment both V (i, a) and W (i, a, j) by 1.

Step 5. Update r̃(i, a) via: r̃(i, a)←r̃(i, a)+ [r(i, a, j)−r̃(i, a)] /V (i, a).

Step 6. Calculate for all l ∈ S, p̃(i, a, l) ← W (i, a, l)/V (i, a).

Step 7. Update h(i) using the following equation:

h(i) ← max
u∈A(i)

[
r̃(i, u) + λ

∑

l∈S
p̃(i, u, l)h(l)

]
.

Step 8. Increment k by 1. If k < kmax, set i ← j, and go to Step 2.
Otherwise go to Step 9.

Step 9. For each m ∈ S, select

d(m) ∈ argmax
u∈A(m)

[
r̃(m,u) + λ

∑

l∈S
p̃(m,u, l)h(l)

]
.

The policy (solution) generated by the algorithm is d̂. Stop.

6.2. Model-Building Q-Learning
We now present model-building algorithms of the Q-Learning type,

which estimate Q-factors rather than the value function. We begin
with the discounted reward case. It has two notable differences with
RTDP and H-Learning. (1) It computes Q-factors instead of comput-

ing the value function vector (�h) and (2) it uses a step sizes.

Step 1. Set for all l,m ∈ S and u ∈ A(l),

Q(l, u) ← 0, V (l, u) ← 0 and r̃(l, u) ← 0, and W (l, u,m) ← 0.

Set the number of state transitions, k, to 0. We will run the algo-
rithm for kmax iterations, where kmax is chosen to be a sufficiently
large number. Start system simulation at any arbitrary state.

Step 2. Let the current state be i. Select action u ∈ A(i) with prob-
ability 1/|A(i)|. Let the selected action be a.

Step 3. Simulate action a. Let the next state be j. Increment k by
1. Increment both V (i, a) and W (i, a, j) by 1.

Step 4. Update r̃(i, a) via: r̃(i, a) ← r̃(i, a)+[r(i, a, j)−r̃(i, a)]/V (i, a).

Step 5. Calculate for all l ∈ S, p̃(i, a, l) ← W (i, a, l)/V (i, a).
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Step 6. Update Q(i, a) using the following equation:

Q(i, a) ← (1− α)Q(i, a) + α

[
r̃(i, a) + λ

∑

l∈S
p̃(i, a, l) max

b∈A(l)
Q(l, b)

]
.

Step 7. Increment k by 1. If k < kmax, set i ← j and go to Step 2.
Otherwise go to Step 8.

Step 8. For each m ∈ S, select d(m) ∈ argmaxb∈A(m)Q(m, b). The

policy (solution) generated by the algorithm is d̂. Stop.

The step size, α, can be decayed as in regular Q-Learning. A similar
algorithm for the average reward case works as follows. The steps
will be identical to those above with the exception of Step 6, where
we will use the idea of Relative Q-Learning:

Step 6. Update Q(i, a) using the following equation:

Q(i, a) ← (1− α)Q(i, a) + α

[
r̃(i, a) +

∑

l∈S
p̃(i, a, l) max

b∈A(l)
Q(l, b)−Q(i∗, a∗)

]
.

6.3. Indirect Model-Building
We now discuss some model-building algorithms from [115] that

do not require the storage of the V terms of the W terms. These
algorithms will seek to build the model indirectly, i.e., the transition
probabilities will not be sought to be estimated. Rather, the algorithm
will estimate the r̃ terms and also estimate the expected value of the
next Q-factor.

Step 1. Set for all (l, u), where l ∈ S and u ∈ A(l), Q(l, u) ← 0,
r̃(l, u) ← 0, and Qn(l, u) ← 0. Note that Qn(l, u) will denote the
estimate of the maximum Q-factor for the next state when action
u is chosen in state l. Set k, the number of state changes, to 0. Set
kmax, which denotes the maximum number of iterations for which
the algorithm is run, to a sufficiently large number; note that the
algorithm runs iteratively between Steps 2 and 6. Select step sizes
α and β using the two-time-scale structure discussed previously.
Start system simulation at any arbitrary state.

Step 2. Let the current state be i. Select action a with a probability
of 1/|A(i)|.

Step 3. Simulate action a. Let the next state be j. Increment k by 1.
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Step 4. Update Q(i, a) using the following equation:

Q(i, a) ← (1− α)Q(i, a) + α [r̃(i, a) + λQn(i, a)] .

Step 5. Update Qn(i, a) and r̃(i, a) as follows:

Qn(i, a) ← (1−β)Qn(i, a)+β max
b∈A(j)

Q(j, b); r̃(i, a) ← (1−β)r̃(i, a)+βr(i, a, j).

Step 6. If k < kmax, set i ← j and then go to Step 2. Otherwise, go
to Step 7.

Step 7. For each l ∈ S, select d(l) ∈ argmaxb∈A(l)Q(l, b). The policy

(solution) generated by the algorithm is d̂. Stop.

Note that the update in Step 5 uses samples; but Step 4 uses es-
timates of the expected immediate reward and the expected value of
the Q-factor of the next state, making the algorithm model-based. Its
critical feature is that it avoids estimating the transition probabilities
and also computing the expectation with it. The steps for the average
reward case are same with the following changes: Any one state-action
pair, to be denoted by (i∗, a∗), is selected in Step 1, and the update in
Step 4 is changed to the following:

Q(i, a) ← (1− α)Q(i, a) + α [r̃(i, a) +Qn(i, a)−Qn(i
∗, a∗)] .

7. Finite Horizon Problems
Finite horizon problems can be solved using an extension of

Q-Learning discussed for infinite horizon problems. The reader is
advised to read the section on finite horizon in Chap. 6.

We will assume that the problem has a unique starting state. One
would have to associate a Q-factor with the following triple: (i, a, s),
where i denotes the state, a the action and s the stage. Thus, the
Q-factor for choosing action a in the state-stage combination (i, s)
will be denoted by Q(i, s, a). Also, the immediate reward earned when
action a is selected in (i, s) and the system transitions to (j, s+1) will
be denoted by r(i, s, a, j, s+ 1).

We will assume that decision making is to be made in T stages
with T < ∞; also, we define T = {1, 2, . . . , T}. When the system
reaches the terminal stage, (T + 1), we will reset the system, within
the simulator, to the starting state, which we assume to be unique
(or known with certainty). For the starting state, s = 1. The stage,
s, will be incremented by 1 after very state transition. The problem
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solution methodology will be similar in every other manner to the
infinite horizon problem. The main step in the total discounted reward
(over a time horizon of T stages) algorithm would be:

Q(i, s, a) ← (1− α)Q(i, s, a) + α

[
r(i, s, a, j, s+ 1) + λ max

b∈A(j,s+1)
Q(j, s+ 1, b)

]
.

(7.37)

Note that Q(j, T + 1, b) = 0 for all j ∈ S and b ∈ A(j, T + 1).
For total expected reward, one should set λ = 1. The algorithm can

be analyzed as a special case of the SSP (see [116]; see also [94]). We
present a step-by-step description below.

Step 1. Set k, the number of iterations, to 0. Initialize the Q-factors,
Q(i, s, a) for all i ∈ S, all s ∈ T and all a ∈ A(i, s), to 0. Also
set Q(j, T + 1, b) = 0 for all j ∈ S and b ∈ A(j, T + 1). The
algorithm will be run for kmax iterations, where kmax is chosen
to be a sufficiently large number. Start system simulation at the
starting state, which is assumed to be known with certainty. Set
s = 1.

Step 2. Let the current state be i and the current stage be s. Select
action a with a probability of 1/|A(i, s)|. Simulate action a. Let the
next state be j. The next stage will be (s+1). Let r(i, s, a, j, s+1)
be the immediate reward earned in transiting to (j, s+1) from (i, s)
under a’s influence.

Step 3. Update the Q(i, s, a) via Eq. (7.37). Then, increment k by
1. Increment s by 1, and if the new value of s equals (T + 1), set
s = 1. If k < kmax, set i ← j and return to Step 2. Otherwise, go
to Step 4.

Step 4. For each l ∈ S and each s ∈ T , select d(l, s) ∈ argmaxb∈A(l,s)

Q(l, s, b). The policy (solution) generated by the algorithm is d̂.
Stop.

With this, we end our discussion on RL algorithms using look-up
tables. In the next section, we will discuss some function approxima-
tion strategies that can be used to solve problems with a large number
of state-action pairs.

8. Function Approximation
In a look-up table, each Q-factor is stored individually in a table

in the computer’s memory. As stated in the beginning of the chapter,
for large state-action spaces which require millions of Q-factors to be



250 SIMULATION-BASED OPTIMIZATION

stored, look-up tables are ruled out. This, we remind the reader, is
called the curse of dimensionality.

Consider an MDP with a million state-action pairs. Using model-
free algorithms, one can avoid the huge transition probability matrices
associated to the MDP. However, one must still find some means of
storing the one million Q-factors. We will now discuss some strategies
that allow this.

8.1. State Aggregation
State aggregation means lumping several states together. This is

usually the first strategy tried for dealing with the curse of dimension-
ality. With aggregation of states, one may obtain a relatively smaller
number of state-action pairs for which one can store Q-factors individ-
ually, making look-up tables feasible.

When states are lumped together, we may lose the Markov property,
the DP solution is not guaranteed to be optimal, and consequently the
procedure becomes heuristic. However, empirical evidence suggests
that despite this, a DP approach on a lumped state space often out-
performs other heuristic procedures.

Under some situations, it is even possible to combine states with-
out losing the Markov property (via the lumpability result [162]), but
it cannot be guaranteed that the solution obtained from the lumped
(reduced) state space is identical to that obtained without lumping.
In other words, even here, optimality cannot be guaranteed. Still,
however, state aggregation is a robust approach for breaking the curse
of dimensionality and is often tried as the first attempt at function
approximation. A general rule that we have used in our computa-
tional experiments is to combine states with “similar” characteristics
together. The next example illustrates this idea. We will use �s to
denote the state in this section.

Example 1: The state of the Markov chain is defined by �s =
(s(1), s(2), s(3)), where s(1), s(2) and s(3) are integers that take values
from {0, 1, 2, . . . , 49}. Without aggregation, one has 503 states here.
Let us assume that the attributes s(1) and s(2) are more important
than s(3). (How does one know which attribute is more important?
Often, the problem’s structure can help us answer this question. For
instance, in problems associated with failure due to aging of systems,
the age of the system is usually more important than other attributes.)
Then, one way to aggregate states is to treat all the values of s(3)
ranging from 0 to 24 as one value and the values ranging from 25
to 49 as another. For the other two attributes, s(1) and s(2), which
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are more important, we use a so-called bucketing scheme of a fixed
length, say 5. With such a scheme, for our example, the values in the
following groups are treated as one value:

(0 ≤ s(1) ≤ 4); (5 ≤ s(1) ≤ 9); · · · ; (45 ≤ s(1) ≤ 49).

Thus, for instance any value for s(1) that satisfies 5 ≤ s(1) ≤ 9 is
treated as the same value. A similar strategy will be used for s(2).
This will reduce our state space to only (10)(10)(2) = 200 states.

In the above example, states with similar values, or values in a given
range of a state parameter, were combined. However, “similar” could
also mean similar in terms of transition rewards and times. Exploiting
similarity in terms of transition rewards can help us successfully ex-
tract the information hidden in a state space. Hence, states with very
dissimilar transition rewards should not be combined. Since the TRMs
(and TPMs) are unavailable, identifying states with similar transition
rewards is usually not possible. However, from the nature of the prob-
lem, one can often identify the “good” states, which if entered result
in high profits, and the “bad” states, which if entered result in losses.
(The “ugly” states are those that are rarely visited! But for the time
being, we will assume there are not too many of them, and that their
effect on the overall performance of the policy can be disregarded).
If it is possible to make such a classification, then aggregation should
be done in a manner such that the good and bad states remain sep-
arate as much as is possible. Furthermore, sometimes, it is possible
to devise a scheme to generate an entire spectrum of values such that
its one end is “good” and the other “bad.” The following example
illustrates this idea.

Example 2. The state space is defined as in Example 1. But, we now
define a scalar feature as follows:

φ = 2s(1) + 4s(2) + 8s(3), (7.38)

where φ is a scalar. Let us assume that from the structure of the
problem, we know that large values of φ imply good states and small
values imply bad states. What we now have is a transformed state
space into one defined in terms of φ. We will call the space generated
by features the feature space. The process of creating a feature is
called encoding in the neural network community. For an example of a
feature in RL that identifies good and bad states in terms of rewards
and losses, see [109].

A scheme such as the one shown above also aggregates states, but
not necessarily in a geometric sense, as suggested in Example 1. In a
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geometric lumping, neighboring states are lumped together. Since
geometric lumping can lump states with dissimilar transition rewards
together, it is not always the best approach.

It is important to note that in the above example, via Eq. (7.38), we
have mapped a 3-dimensional state space into a new state space (really
a feature space) that has a lower dimension of one. Such mapping of
state-spaces into lower dimensions is often very convenient in many
forms of function approximation.

Feature-generating functions can be much more complicated than
that above, and as a rule, they do not carry us from higher to a
dimension of one. Consider the following functions that generate two
features:

φ(1) = 2s2(1) + 4s(2) + 5s(3);φ(2) = 4s(1) + 2s2(2) + 9s(3); (7.39)

where φ(l) denotes the feature in the lth dimension (or the lth feature)
and is a scalar for every l. The ideas of feature creation are useful in
all methods of function approximation, not just state aggregation. We
will explore them further below.

Features and architecture. We now seek to generalize the ideas
underlying feature creation. From here onwards, our discussion will
be in terms of Q-factors or state-action values, which are more com-
monly needed than the value function in simulation-based optimiza-
tion. Hence, the basis expression will denoted in terms of the feature
and the action: φ(l, a) for l = 1, 2, . . . , n and for every action a, where
n denotes the number of features. We will assume that the state has
d dimensions. Then, in general, the feature extraction map can be
expressed as:
⎡

⎢⎢⎢⎢⎣

Fa(1, 1) Fa(1, 2) · · Fa(1, d)
Fa(2, 1) Fa(2, 2) · · Fa(2, d)

· · · · ·
· · · · ·

Fa(n, 1) Fa(n, 2) · · Fa(n, d)

⎤

⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎣

s(1)
s(2)
·
·

s(d)

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

φ(1, a)
φ(2, a)

·
·

φ(n, a)

⎤

⎥⎥⎥⎥⎦
,

where the matrix, whose elements are Fa(., .), denotes the feature ex-
traction map for action a; the feature extraction map converts the state
space to the feature space. Then the above matrix representation for
Eq. (7.38) is:

[
2 4 8

]
·

⎡

⎣
s(1)
s(2)
s(3)

⎤

⎦ = φ;
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Assuming that the representation in Eq. (7.39) is for some action a,
the matrix representation for it will be:

[
2s(1) 4 5
4 2s(2) 9

]
·

⎡

⎣
s(1)
s(2)
s(3)

⎤

⎦ =

[
φ(1, a)
φ(2, a)

]
.

Basis functions. In the literature, the elements of the feature matrix,
φ(., .), go by the name basis functions. Thus, the features are essen-
tially equivalent to the so-called basis functions. Although commonly
called basis functions, it is important to recognize that these functions
are fixed at the very beginning, to be never changed, and thus they are
in reality fixed expressions. We will also call them basis expressions.
Further, since they are expressions involving the state variables, their
values depend on the values of the state variables involved.

It is common practice to first identify the expressions to be used
for these so-called basis functions. A so-called “architecture” is then
selected for the Q-factor-function. The architecture is an attempt to
express the Q-factor as a function (usually linear) of the basis func-
tions. The coefficients of basis functions in the architecture are the
so-called weights of the architecture. While the weights change as
the Q-function changes, the basis functions do not change. Hence, the
basis functions have to be rich enough to capture the shape of the
Q-function even as it changes. The weights and the basis expressions
together define what is known as the architecture of the function ap-
proximator. We now illustrate this idea with what constitutes a typical
linear architecture:

Q�w(�s, a) = w(1, a)φ(1, a) + w(2, a)φ(2, a) + · · ·+ w(n, a)φ(n, a)

=
n∑

l=1

w(l, a)φ(l, a), (7.40)

where w(l, a) denotes the lth weight for action a. In the above, the
weights are the only unknowns (remember the basis expressions are
known) and must be estimated (and updated) via some approach (usu-
ally neurons or regression). If the architecture, such as the one above,
fits the actual Q-function well, then instead of storing all the Q-factors,
one now needs only n scalars for each action. Typically, n should be
chosen so that it is much smaller than the size of the state space.
Herein lies the power of function approximation. Function approxi-
mation enables us to replicate the behavior of look-up tables without
storing all the Q-factors. Of course, this is easier said than done,
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because in practice, there are a number of challenges associated to it
that we will discuss below. See Fig. 7.5 for a pictorial representation
of the ideas underlying generation of an architecture.

With such a representation, any time the Q-factor of a state-action
pair is to be updated, one determines the values of the basis expres-
sions associated to the state-action pair, and then plugs them into the
equation, e.g., Eq. (7.40), to obtain the Q-factor’s value. When the
value is updated, the change is transmitted back to update the terms
of the weights (the w(., .)-terms). Ideally, the updating of the weights
should ensure that every time the Q-factor’s value is evaluated via
the equation above, the value returned is approximately equal to the
value a look-up table would have produced. Whether this actually
happens depends on (i) how suitable the architecture chosen was and
(ii) how appropriate the updating of weights was. Clearly, there are
no guarantees on either aspects.

A linear architecture in feature space is popular for many reasons,
including mathematical simplicity. It can also capture a non-linear
Q-function. Our next example illustrates this idea.

Example 3. For an MDP with 2 actions in each state, for state i ∈ S,

Q�w(i, 1) = F(i) and Q�w(i, 2) = G(i).

Feature
Space

Function
Architecture

Feature
Extraction
Map

State-Action
Space

Weights

Figure 7.5. Generating the architecture: The state-action space is transformed
into the feature space, which, together with the weights, defines the function’s
architecture

Assuming i to be a scalar, we use the following functions to approx-
imate the Q-factors:

F(i)=w(1, 1)+w(2, 1)i+w(3, 1)i2; G(i)=w(1, 2)+w(2, 2)i+w(3, 2)i2+w(4, 2)i3,
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where ik denotes i raised to the kth power. Here, we will assume that
to obtain n features, the one-dimensional state i will be written as:

�s = [i 0 0 . . . 0]T , with (n− 1) zeroes.

As stated above, the non-linear state space of the approximation in
the example above can be represented in terms of linear features. And
here is how we do it for this example: For F(.), we can write as follows:

⎡

⎣
1
i 0 0
1 0 0
i 0 0

⎤

⎦ ·

⎡

⎣
i
0
0

⎤

⎦ =

⎡

⎣
φ(1, 1)
φ(2, 1)
φ(3, 1)

⎤

⎦ ,

i.e., φ(1, 1) = 1; φ(2, 1) = i; φ(3, 1) = i2.

A similar representation is possible for G(.). The above leads to a
linear architecture in terms of features:

F(i) = w(1, 1)φ(1, 1) + w(2, 1)φ(2, 1) + w(3, 1)φ(3, 1).

Thus, a linear feature space may hide a non-linear Q-function.
Obtaining a linear feature space from a non-linear state space is
often advantageous from the computational perspective. Another
approach for capturing a non-linear function within a linear feature
space is the use of the so-called radial basis function in RL (see e.g.,
[267]).

8.2. Function Fitting
We must now employ a method for fitting the function with the

architecture and feature space selected, i.e., determine the values of
the weights. In general, we have two choices for the method: regression
or neural networks. Each method has its advantages and drawbacks.
We have already discussed these topics in some depth in Chap. 4.

If the Q-function is linear or approximately linear in the feature
space, it may be approximated either by incremental linear regression
or a neuron. There is no way of knowing apriori if the Q-function is lin-
ear. If it is indeed linear, a linear function approximation should lead
us to good results with our RL algorithm. If the results produced turn
out to be inferior to those from some other benchmarking heuristic,
it is an indication that perhaps the features identified are unsuitable
or else the Q-function is non-linear. Then, one should attempt to find
either a new definition for features or a non-linear approximation.

Approximating a non-linear Q-function can be done in any one of
the following ways:
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1. Using one non-linear neural network over the entire state space
with backpropagation as our main tool.

2. Using a pre-specified non-linear function to approximate the state
space, e.g., Example 3, using regression as the main tool.

3. Using a piecewise linear function to approximate the state space
with a neuron or linear regression within each piece. Example 4
(presented later) will illustrate this approach.

4. Using a piecewise non-linear function to approximate the state
space with a non-linear neural network within each piece. This
will amount to using several non-linear neural networks.

In general for function approximation to be successful, it must repro-
duce the behavior that RL with look-up tables would have produced
(when the state space is large, think of an imaginary look-up table).
In other words, any given Q-factor must remain at roughly the same
value that look-up tables would have produced. The solution with the
look-up tables, remember, is an optimal or a near-optimal solution.

Difficulties. We now describe the main challenges faced in function
fitting.

1. Changing Q-functions: The Q-factors keep changing with every
iteration (i.e., are non-stationary) in the look-up table. This implies
that the weights must also change. Thus, it is not as though, if we
somehow obtain the values of these weights during one iteration, we
can then use them for every subsequent iteration. In fact, we must
keep changing them appropriately as the algorithm progresses. In
RL, whenever a Q-factor is updated, one data piece related to the
value function (Q-function) becomes available. Recall from Chap. 4
that to approximate a function, whose data become available piece
by piece, one can use incremental regression or incremental neural
network methods. However, it is the case that for these incremen-
tal methods to work, all the data pieces must come from the same
function. Unfortunately, the Q-function in RL keeps changing (get-
ting updated) and the data pieces that we get are not really from
the same function. Unfortunately, the structure or architecture of
the value function is never known beforehand, and hence the data
pieces arrive from a changing function.

2. Spill over effect: The spill-over effect arises from the fact that
instead of updating Q(i, a) (the look-up table case), we update
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the weights that represent Q(i, a). E.g., consider Eq. (7.40). The
Q-factor is thus a function of the weights. When a state-action pair
(i, a) is visited, the weights get updated. Unfortunately, since every
Q-factor is a function of the weights, the update in weights causes
all Q-factors to change, not just the (i, a)-th pair that was visited.
Hence the new (updated) Q-factors may not equal the Q-factors
that would have been produced by a look-up table, which would
have changed only the (i, a)th Q-factor.

We refer to this kind of behavior, where the updates in one area of
the state space spill over into areas where they are not supposed
to, as the spill-over effect. With a look-up table, on the other
hand, only one Q-factor changes in a given iteration, and the others
remain unchanged. A function-approximation-coupled algorithm is
supposed to imitate that coupled with a look-up table and should
change only one Q-value in one iteration, leaving the others un-
changed, at least approximately.

3. Noise due to single sample: In model-free RL, we use a sin-
gle sample, instead of using the expectation, that tends to create
noise in the updating algorithm. While this poses no problems
with look-up tables, the noise can create a significant difficulty
with function fitting (see [326, 317]). Unless a model is available
apriori, this kind of noise cannot be avoided; see, however, [115]
for some model-building algorithms that can partially avoid this
noise. With the incremental least squares (regression) algorithm
that we will discuss below, Bertsekas and Tsitsiklis [33] state that
for Q-Learning, convergence properties are unknown. We also note
that in general non-linear neural networks can get trapped in local
optima and may display unstable behavior.

Incremental least squares and Bellman error. Incremental least
squares or regression methods have always been popular in function
approximation and are closely related to the incremental versions
of Widrow-Hoff and backpropagation. We only present the central
(heuristic) idea here.

Review the Q-factor version of the Bellman equation, i.e., Eq. (7.4).
It is then clear that if Q(i, a) is to be updated using function approx-
imation, we would use the following definition for Q(i, a):

Q(i, a) =

|S|∑

j=1

p(i, a, j)

[
r(i, a, j) + λ max

b∈A(j)
Q�w(j, b)

]
.
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Now, the so-called Bellman error, BE, is defined to be the following:

BE =
1

2

∑

i∈S,a∈A(i)

[Q(i, a)−Q�w(i, a)]
2 .

Clearly, the Bellman error denotes the sum of the squared differences
between the actual Q-factors obtained from a look-up table and those
given by the function approximator. Now, using the above definition
of the Q-factor in the Bellman-error expression, we will compute the
partial derivative of the Bellman error with respect to the weights.
For easing notation, we will assume that the weights, which essentially
form a matrix, can be stored in a vector, which will be denoted by �w.
Thus, a Q-factor expressed in terms of this vector of weights will be
denoted by Q�w(., .). Then, we will use the derivative in a steepest-
descent algorithm.

∂BE

∂w(l, a)
= −∂Q�w(i, a)

∂w(l, a)
·
∑

i,a

[Q(i, a)−Q�w(i, a)]

= −∂Q�w(i, a)

∂w(l, a)
×

∑

i,a

⎡

⎣
|S|∑

j=1

p(i, a, j)

[
r(i, a, j) + λ max

b∈A(j)
Q�w(j, b)

]
−Q�w(i, a)

⎤

⎦

= −∂Q�w(i, a)

∂w(l, a)
×

∑

i,a

⎡

⎣
|S|∑

j=1

p(i, a, j)

[
r(i, a, j) + λ max

b∈A(j)
Q�w(j, b)−Q�w(i, a)

]⎤

⎦ .

We can now remove the terms p(i, a, j) that need summation over j,
thereby replacing an expectation with a single sample; this is similar
to the use of Robbins-Monro algorithm for deriving Q-Learning. The
end result is the following definition for the partial derivative:

∂BE

∂w(l, a)
= −

(
∂Q�w(i, a)

∂w(l, a)

∑

i,a

[
r(i, a, j) + λ max

b∈A(j)
Q�w(j, b)−Q�w(i, a)

])
.

The above will lead to a batch-updating algorithm that requires sam-
ples over all the Q-factors. If we use an incremental approach, where
we use only one Q-factor, we can further simply this to:

∂BE

∂w(l, a)
= −

(
∂Q�w(i, a)

∂w(l, a)

[
r(i, a, j) + λ max

b∈A(j)
Q�w(j, b)−Q�w(i, a)

])
.

(7.41)
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Now, the above can be combined with the following steepest descent
algorithm:

w(l, a) ← w(l, a)− β
∂BE

∂w(l, a)
for all (l, a), (7.42)

where β is the step size. For using the above, we must determine the

expressions for ∂Q�w(i,a)
∂w(l,a) , which can be done easily from the architecture.

In general,

∂Q�w(i, a)

∂w(l, a)
= φ(l, a),

and herein lies the convenience of defining an architecture linear in
terms of the weights. In other words, the derivatives equal the basis
functions, whose values are readily calculable. For example, in Exam-

ple 3, we will obtain the following expressions for ∂Q�w(i,a)
∂w(l,a) for a = 1:

∂Q�w(i, a)

∂w(1, a)
= 1;

∂Q�w(i, a)

∂w(2, a)
= i;

∂Q�w(i, a)

∂w(3, a)
= i2.

The combination of Eqs. (7.41) and (7.42) is a popular algorithm in
function approximation for RL. The central idea under the above
derivation is to minimize the Bellman error, which is from Werbös
[314] (see also [315]), where it was presented for a single policy for
policy iteration. The above formula (7.41) is closely related to that
found in [13, 51], where it is based on temporal difference formula in
[285]—the so-called least squares temporal difference (LSTD) formula
for one-step updates. The framework of temporal differences can be
extended from one-step updates to multi-step updates. An example
of an algorithm that employs a single-step update is Q-Learning in
which the immediate reward from a single step is used for updating
purposes. Multi-step updates have not been covered in this book, and
hence we do not pursue this topic any further, but refer the reader to
[285, 33] for extensions of the above formula to multi-step updates.

It should be clear that the equations above can be easily adapted
for average reward, Q-P -Learning, and SMDP algorithms. For exam-
ple, for the CF-version of R-SMART, the term λmaxb∈A(j)Q�w(j, b) in
Eq. (7.41) should be replaced by

η max
b∈A(j)

Q�w(j, b)− ρt(i, a, j),
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where ρ is a separate scalar updated as shown in R-SMART’s steps.
For the CF-version of Q-P -Learning for average reward SMDPs, the
same term would be replaced by

ηQ

(
j, argmax

b∈A(j)
P�w′(j, b)

)
− ρt(i, a, j);

where �w′ denotes the weights of the P -factors and ρ denotes aver-
age reward of the policy contained in the P -factors and is computed
prior to updating the Q-factors. Similarly, for the discounted reward
Q-P -Learning algorithm for MDPs, that term would be replaced by

λQ

(
j, argmax

b∈A(j)
P�w′(j, b)

)
,

where, again, �w′ denotes the weights of the P -factors.

Q-Learning coupled with function fitting.The mechanism used
to couple a neural network or incremental regression with an RL
algorithm will now be illustrated with the Q-Learning algorithm (for
discounted MDPs). For other algorithms, it is very analogous to what
we present below. The reader should review the material related to
neural networks from Chap. 4 at this stage.

If the feature is defined as an n-tuple, a neural network or the incre-
mental regression method needs n inputs and one additional input for
the bias. In the following discussion, although we will refer to the state
or feature as i or j, it will be understood to be an n-tuple whenever
needed.

Remark: It is preferable in practice to use a separate function approx-
imator for each action. Also, usually, an incremental style of updating
is used, since the information for the Q-factor becomes available one
data piece at a time.

We now discuss the steps that have to be followed in general for
using RL in combination with a neural network. Following the steps,
we provide a simple example to illustrate those steps.

Step 1. Initialize the weights of the neural network for any given ac-
tion to small random numbers. Initialize the corresponding weights
of all the other neural networks to identical numbers. (This ensures
that all the Q-factors for a given state have the same value initially.)
Set k, the number of state transitions, to 0. Start system simulation
at any arbitrary state.
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Step 2. Let the state be i. Simulate action a with a probability of
1/|A(i)|. Let the next state be j.

Step 3. Determine the output of the neural network for i and a. Let
the output be called Qold. Also find, using state j as the input, the
outputs of all the neural networks of the actions allowed in state j.
Call the maximum of those outputs: Qnext.

Step 3a. Update Qold as follows (this is the standard Q-Learning
algorithm).

Qnew ← (1− α)Qold + α [r(i, a, j) + λQnext] .

Step 3b. Then use Qnew and Qold to update the weights of the neu-
ral network associated with action a via an incremental algorithm.
In the neural network, Qnew will serve as the “target” value (yp in
Chap. 4), Qold as the output (op in Chap. 4), and i as the input.

Step 4. Increment k by 1. If k < kmax, set i ← j; then go to Step 2.
Otherwise, go to Step 5.

Step 5. The policy learned is stored in the weights of the neural net-
work. To determine the action associated with a state, find the
outputs of the neural networks associated with the actions that are
allowed in that state. The action(s) with the maximum value for
the output is the action dictated by the policy learned. Stop.

We reiterate that the neural network in Step 3b is updated in an
incremental style. Sometimes in practice, just one (or two) iteration(s)
of training is sufficient in the updating process of the neural network.
In other words, when a Q-factor is to be updated, only one iteration
of updating is done within the neural network. Usually too many it-
erations in the neural network can lead to “over-fitting.” Over-fitting
implies that the Q-factor values in parts of the state space other than
those being trained are incorrectly updated (spill-over effect). It is im-
portant that training be localized and limited to the state in question.

Steps with incremental regression. Here the steps will be similar
to the steps above with the understanding that the weights of the
neural network are now replaced by those of the regression model;
Step 3a will not be needed Step 3b will be different. In Step 3b, we
will first compute the values of the Q-factors for (i, a) and those for all
actions associated to state j by plugging in the input features into the
regression model. Then a combination of Eqs. (7.41) and (7.42) will
be used to update the weights.
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Simple example with a neuron. We now discuss a simple example
of Q-Learning coupled with a neuron using incremental updating on
an MDP with two states and two actions. We will use n = 2 where for
both actions: φ(1, a) = 1, and φ(2, a) will equal the state’s value;

i.e., conceptually Q�w(i, 1)=w(1, 1)+w(2, 1)i; Q�w(i, 2)=w(1, 2)+w(2, 2)i.

Remember that the above (basis function) representation is conceptual;
we do not store Q�w(i, 1) or Q�w(i, 2) in the computer’s memory. Only
four scalars will be stored in the memory: w(1, 1), w(2, 1), w(1, 2), and
w(2, 2).

Step 1. Initialize the weights of the neuron for action 1, i.e., w(1, 1)
and w(2, 1), to small random numbers, and set the corresponding
weights for action 2 to the same values. Set k, the number of state
transitions, to 0. Start system simulation at any arbitrary state.
Set kmax to a large number.

Step 2. Let the state be i. Simulate action a with a probability of
1/|A(i)|. Let the next state be j.

Step 3. Evaluate the Q-factor for state-action pair, (i, a), which we
will call Qold, using the following:

Qold = w(1, a) + w(2, a)i.

Now evaluate the Q-factor for state j associated to each action, i.e.,

Qnext(1) = w(1, 1) + w(2, 1)j; Qnext(2) = w(1, 2) + w(2, 2)j.

Now set Qnext = max {Qnext(1), Qnext(2)} .

Step 3a. Update the relevant Q-factor as follows (via Q-Learning).

Qnew ← (1− α)Qold + α [r(i, a, j) + λQnext] . (7.43)

Step 3b. The current step in turn may contain a number of steps and
involves the neural network updating. Set m = 0, where m is the
number of iterations used within the neural network. Set mmax, the
maximum number of iterations for neuronal updating, to a suitable
value (we will discuss this value below).

Step 3b(i). Update the weights of the neuron associated to action a
as follows:

w(1, a) ← w(1, a) +μ(Qnew−Qold)1; w(2, a) ← w(2, a) +μ(Qnew−Qold)i.

(7.44)
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Step 3b(ii). Increment m by 1. If m < mmax, return to Step 3b(i);
otherwise, go to Step 4.

Step 4. Increment k by 1. If k < kmax, set i ← j; then go to Step 2.
Otherwise, go to Step 5.

Step 5. The policy learned, d̂, is virtually stored in the weights. To
determine the action prescribed in a state i where i ∈ S, compute
the following:

d(i) ∈ argmax
a∈A(i)

[w(1, a) + w(2, a)i] .

Some important remarks need to be made in regards to the algo-
rithm above.
Remark 1. Note that the update in Eq. (7.44) is the update used
by an incremental neuron that seeks to store the Q-factors for a given
action.
Remark 2. The step-size μ is the step size of the neuron, and it can
be also be decayed with every iteration m (see Chap. 4).
Remark 3. The value of mmax equals the number of iterations for
which the neuron should be run after each iteration of the Q-Learning
algorithm. One should not set very large values for mmax in order to
avoid overfitting (see Chap. 4). In practice, mmax can be as low as 2.
Remark 4. It is strongly recommended that the state’s value (i or
j) be normalized to the interval (0, 1) in all the calculations above.
Remark 5. We used the linear architecture in which n = 1 in
Eq. (7.40) with f(1) = i. It is certainly possible to use a more in-
volved function approximation architecture in the above.
Remark 6. Note that Eq. (7.43) yields

Qnew −Qold = α
[
r(i, a, j) + λQnext −Qold

]
,

i.e., μ
[
Qnew −Qold

]
= μα

[
r(i, a, j) + λQnext −Qold

]
.

If we set β = μα, the update in (7.44) becomes equivalent to that
in Eqs. (7.41) and (7.42), providing yet another perspective on the
Bellman error update: a link between the incremental neuron and the
Bellman error update.

Unfortunately, function fitting (i.e., neural networks or regression)
has not always worked well in a number of well-publicized experiments
in RL; see e.g., [50]. We will now discuss an alternative to function
fitting.

Example with incremental regression. We now present show how
incremental regression (or Bellman error) can be used on the same



264 SIMULATION-BASED OPTIMIZATION

simple example studied above in which the basis functions for a state
i are: φ(1, a) = 1 and φ(2, a) = i for both actions. This implies that:

∂Q�w(i, a)

∂w(1, a)
= 1;

∂Q�w(i, a)

∂w(2, a)
= i (7.45)

The steps will be similar to those described for the neuron with the
following difference in Step 3.

Step 3. Evaluate Qold and Qnext as discussed above in Step 3 of the
neuron-based algorithm. Then, update the weights as follows:

w(1, a) ← w(1, a) + μ
(
r(i, a, j) + λQnext −Qold

)
1;

w(2, a) ← w(2, a) + μ
(
r(i, a, j) + λQnext −Qold

)
i.

Remark: It is to be noted that the above update is derived from
using the definition of the basis functions in (7.45) in combination
with Eqs. (7.41) and (7.42).

Some final thoughts. We conclude this section with some advice
based on our limited computational experience. We have found the fol-
lowing strategy to be robust for function approximation. First, identify
a suitable feature space. Divide the feature space into compartments,
and place a neuron (or a non-linear neural network) within each com-
partment. (See Fig. 7.6.) Even with neurons, this will most likely
lead to a non-linear approximation of the Q-function, which is actu-
ally piecewise linear, of the feature space. Because of the separation,
updating is localized to within the compartment, thus minimizing the
damage produced by the spill-over effect. Choosing the size of the com-
partment requires trial and error. The following example illustrates
these ideas.

Example 4. Consider a one-dimensional state space defined by i
where i ∈ {1, . . . , 9}. We now use a very simple partitioning of the
state space into two compartments for action a. Then, a piecewise lin-
ear representation with two compartments separated at i = 5 would be

Q(i, a)=w1(1, a)+w1(2, a)i for i ≤ 5; Q(i, a)=w2(1, a)+w2(2, a)i for i > 5,

where wc(., a) denotes the weight in the cth compartment for action a.
The training for points in the zone i ≤ 5 would not spill over into
the training for points in the other zone. Clearly, one can construct
multiple compartments, and compartments do not have to be of the
same size.
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Figure 7.6. A feature extraction mapping that transforms the actual 2-dimensional
state space (bottom) into a more regular feature space: Within each compartment
in the feature space, a neuron can be placed

9. Conclusions
This chapter was meant to serve as an introduction to the funda-

mental ideas related to RL. Many RL algorithms based on Q-factors
were discussed. Their DP roots were exposed and step-by-step de-
tails of some algorithms were presented. Some methods of function
approximation of the Q-function were discussed. Brief accounts of
model-building algorithms and finite horizon problems were also pre-
sented

At this point, we summarize the relationship between RL algorithms
and their DP counterparts. The two main algorithms of DP, value
and policy iteration, are based on the Bellman equation that contains
the elements of the value function as the unknowns. One can, as
discussed in this chapter, derive a Q-factor version of the Bellman
equation. Most RL algorithms, like Q-Learning and Q-P -Learning, are
based on theQ-factor version of the Bellman equation. Table 7.3 shows
the DP roots of some of the RL algorithms that we have discussed in
this chapter.

Bibliographic Remarks: In what follows, we have attempted to cite some im-
portant references related to research in RL. In spite of our best efforts, we fear
that this survey is incomplete in many respects, and we would like to apologize to
researchers whom we have not been able to acknowledge below.

Early works. Barto et al. [18], Barto and Anandan [16], Watkins [312], Werbös
[314], and Rummery and Niranjan [258] are some of the initial works in RL. The
work of Werbös [314] and Sutton [285] played an influential role in formulating the
ideas of policy iteration, function approximation, and temporal differences within
RL. The history can be traced to earlier works. The idea of learning can be found
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Table 7.3. The relationship between DP and RL

DP RL
Bellman optimality equation Q-Learning
(Q-factor version)
Bellman policy equation Q-P -Learning
(Q-factor version)
Value iteration Q-Learning
Relative value iteration Relative Q-Learning
Modified policy iteration Q-P -Learning and CAP-I

in Samuel [260] and Klopf [176]. Holland [140] is also an early work related to
temporal differences. Some other related research can be found in Holland [141]
and Booker [44].

Textbooks. Two textbooks that appeared before the one you are reading and laid
the foundation for the science of RL are [33] and [288].

Neuro-dynamic programming (NDP) [33], an outstanding book, strengthened
the connection between RL and DP. This book is strongly recommended to the
reader for foundational concepts on RL. It not only discusses a treasure of algorith-
mic concepts likely to stimulate further research in coming years, but also presents
a detailed convergence analysis of many RL algorithms. The name NDP is used
to emphasize the connection of DP-based RL with function approximation (neural
networks).

The book of Sutton and Barto [288] provides a very accessible and intuitive intro-
duction to reinforcement learning, including numerous fundamental ideas ranging
from temporal differences, through Q-Learning and SARSA, to actor-critics and
function approximation. The perspective of machine learning, rather than opera-
tions research, is used in this text, and the reader should find numerous examples
from artificial intelligence for illustration.

The reader is also referred to Chapter 6 in Vol II of Bertsekas [30], which focusses
on Approximate Dynamic Programming (ADP) and discusses a number of recent
advances in this field, particularly in the context of function approximation and
temporal differences. The acronym ADP, which is also used to mean Adaptive
Dynamic Programming, is often used to refer to simulation-based DP and RL
schemes for solving MDPs that employ regression-based function approximators,
e.g., linear least squares. It was coined in Werbös [318] and is being used widely in
the literature now.

More recently, a number of books have appeared on related topics, and we sur-
vey a subset of these. Chang et al. [62] discuss a number of recent paradigms,
including those based on stochastic policy search and MRAS for simulation-based
solutions of MDPs. Szepesvári [289] presents a very crisp and clear overview of
many RL algorithms. Numerous other books contain related material, but em-
phasize specific topics: function approximation [56], stochastic approximation [48],
sensitivity-based learning [57], post-decision-making [237], and knowledge-gradient
learning [238].
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Reinforcement Learning. The Q-Learning algorithm for discounted reward
MDPs is due to Watkins [312]. This work appears to have established the link
between DP and RL for the first time in the context of value iteration. However,
Werbös [314] had argued for this in an interesting earlier work in 1987 in the con-
text of policy iteration. Indeed, the work in [314] was influential in that it led to
widespread use of the gradient within RL function approximation for RL and also
to approximate policy iteration.

Modified Q-Learning for discounted reward has its origins in the algorithm of
Rummery and Niranjan [258]. A closely related algorithm is known as SARSA
[287]; see also Sutton and Barto [288] where the policy evaluation phase (episode) of
SARSA is imbedded within a so-called generalized policy iteration and hence may
be composed of many iterations of value iteration. These ideas been formalized
and made mathematically rigorous in the treatment given in [33], where it is called
approximate policy iteration. Our presentation of Q-P -Learning for discounted
reward [118] is consistent with the description in [33] when Q-factors are used.
The Relative Q-Learning algorithm for average reward MDPs is due to Abounadi
et al. [2]. The Q-P -Learning algorithm for average reward MDPs, which uses
relative value iteration in the policy evaluation phase, is new material in this book.

R-SMART was first presented in Gosavi [110] (see also A. Gosavi, An algorithm
for solving semi-Markov decision problems using reinforcement learning: conver-
gence analysis and numerical results. Ph.D. dissertation, Department of Industrial
and Management Systems Engineering, University of South Florida, Tampa, 1999,
Unpublished). The SSP and CF versions presented here are however from Gosavi
[119]. SMART, which does not use learning rates for updating ρ, is due to [72].
R-Learning, one of the first algorithms in average reward RL, is due to Schwartz
[268]. An overview of early RL algorithms can be found in [157, 195]. Some recent
reviews can be found in Gosavi [114, 122].

A SMDP algorithm based on value iteration that uses a continuous rate of
reward and disregards lump sum reward can be found in Bradtke and Duff [52].
Our discussion here includes the lump sum reward and is based on Gosavi [119].
Q-P -Learning for average reward SMDPs first appeared in Gosavi [109]. However,
the algorithms presented here for the SSP-version (average reward case) and the
discounted reward case (that considers both the lump sum and continuous reward
rate) are from Gosavi [118].

The model-building RTDP algorithm for discounted reward and its average re-
ward counterpart (called h-Learning) can be found in [17] and Tadepalli and Ok
[292], respectively. Other works on model building include [286, 211, 160, 53, 283,
79, 307]. Model-building algorithms of the Q-Learning variety (which learn Q-
factors rather than the value function) presented in this book were new material in
the first edition; they are now covered in Gosavi [115, 117]; see also Gosavi et al.
[125] for a model-building adaptive critic. Model-building algorithms have been
used for robotic soccer [324], helicopter control [218, 1, 179], function magnetic
imaging resonance (fMRI) studies of brain [331, 150], and vision [204].
Function Approximation. A number of papers related to function approxima-
tion with classical DP are: [25, 301, 156, 228]. For function approximation in RL
and ADP, see [314, 13, 51, 50, 75, 219, 322, 196, 321]. For a general (not including
the RL context) discussion on function approximation schemes, including near-
est neighbor methods, kernel methods, and neural networks, see [131, 78]. In the
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context of RL, function approximation based on neural networks requires encod-
ing; see Hinton [135] (coarse coding), Albus [4] (CMAC coding), and Kanerva [158]
(kanerva coding).
Stochastic Adaptive Search. Recently, there has been much interest in using
static optimization techniques, based on stochastic adaptive search/meta-heuristics,
to solve MDPs via simulation. Some noteworthy works include [63, 64, 61, 145]
(based on simulated annealing, genetic algorithms and learning automata, etc.)
and [146, 147] (based on MRAS). Much of this work has been summarized in [62].
Other references. Some other works related to RL are the work of Jalali and Fer-
guson [153], temporal differences in value iteration [312, 224, 51, 123], and temporal
differences in policy iteration [187].

Finally, we must cite some work that laid the foundation of RL. The pioneering

early work of Robbins and Monro [247] forms the underlying basis for almost all RL

algorithms. The Robbins-Monro algorithm has been combined with value iteration

(the work of Bellman [24]) to derive Q-Learning and with policy iteration (Howard

[144]) and modified policy iteration (van Nunen [305]) to derive approximate policy

iteration or Q-P -Learning.

Case study on total productive maintenance. This case study
has been described at the end of Chap. 6. Here we illustrate the use of
the CF-version of R-SMART using the same case study. The following
values were used in the simulator: η = 0.99; αk = 1,000

5,000+k ; βk =
1,000

k(5,000+k) , where k ≥ 1. The action selection probability was defined

as shown below for all i:

pk(i) = 0.5
log(k + 1)

k + 1
where k ≥ 1.

The system was simulated for 200,000 days. From the Q-factors, one
can identify the policy delivered by the algorithm. The algorithm
always generated the optimal solution of producing for values of i less
than or equal to 5 and maintaining from there onwards.

Note that to identify the policy delivered by the algorithm, one is
only interested in the lowest value of i at which the algorithm selects
the maintain action. If we denote this value of i by i∗, the algorithm
will not permit the system to enter any state beyond that, i.e., any
value of i > i∗. Hence, actions selected for states i > i∗ are not of
any interest to us when examining the Q-factors generated by the RL
algorithm. In the example above, i∗ turned out to be 6.



Chapter 8

CONTROL OPTIMIZATION WITH

STOCHASTIC SEARCH

1. Chapter Overview
In this chapter, we discuss an approach for solving Markov decision

problems (MDPs) and Semi-Markov decision problems (SMDPs) using
an approach that employs the so-called action-selection probabilities
instead of the Q-factors required in reinforcement learning (RL). The
underlying philosophy of this approach can be explained as follows.
The action-selection probabilities, which are stored in some form either
directly or indirectly, are used to guide the search. As a result, we have
a stochastic search in which each action is considered to be equally
good at the start, but using feedback from the system about the eff-
ectiveness of each action, the algorithm updates the action-selection
probabilities—leading the system to the optimal policy at the end. It
should be clear to the reader that like RL, this approach also uses
feedback from the system, but unlike RL, it stores action-selection
probabilities.

The two methods in the class of “stochastic search” that we cover
are widely known as learning automata (or automata theory) and
actor critics (or adaptive critics). Automata theory for solving
MDPs/SMDPs will be referred to asMarkovChainAutomataTheory
(MCAT) in this book. MCAT does not use the Bellman equation of
any kind, while actor critics use the Bellman policy equation (Poisson
equation). In Sect. 2, we discuss MCAT, and in Sect. 3, we discuss
actor critics, abbreviated as ACs. MCAT will be treated for average
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reward MDPs and SMDPs, while ACs will be treated for discounted
and average reward MDPs and average reward SMDPs. It is recom-
mended that the reader become familiar with the basics of MDPs and
SMDPs from Chap. 6 before reading this chapter.

2. The MCAT Framework
MCAT provides a simulation-based methodology to solve MDPs and

SMDPs; furthermore, as stated above, it does not use the dynamic
programming framework, unlike RL.

We will focus on one specific type of MCAT algorithm that is used to
solve average reward MDPs and SMDPs. We introduce some standard
notation now.

One associates with each state-action pair, (i, a), the so-called
action-selection probability to be denoted by p(i, a). Let A(i) denote
the set of actions allowed in state i. The set of states is denoted by S.

As mentioned above, in the beginning of the learning process, each
action is equally likely. Hence, for each i ∈ S and each a ∈ A(i),

p(i, a) =
1

|A(i)| ,

where |A(i)| denotes the number of actions allowed in state i. The
updating process employs the following intuitive idea. The simula-
tor simulates a trajectory of states. In each state, actions are selected
using the action-selection probabilities. If the performance of an action
is considered to be good based on the rewards generated, the proba-
bility of that action is increased. Of course, this “updating” scheme
must always ensure that the sum of the probabilities of all the actions
in a given state is 1, i.e.,

∑

a∈A(i)

p(i, a) = 1 i ∈ S.

Under some conditions on the MDP/SMDP, the probability of one
action, the optimal action, converges to 1, while that of each of the
other actions converges to 0. If m actions are optimal, the probability
of each of the optimal actions should converge to 1/m.

We now provide an overview of the feedback mechanism. Details
are provided in the steps of the algorithm. For the algorithm to work,
each state must be visited infinitely often. Consider the scenario in
which state i has been revisited, i.e., it was visited at least once before.
The algorithm needs to know the value of the average reward earned
by the system since its last visit to i. This value is also called the
response of the system to the action selected in the last visit to state i.
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The response, as we will see later, is used to generate the feedback used
to update the action selection probabilities. The response is calculated
as the total reward earned since the last visit to i divided by the
number of state transitions since the last visit to i. Thus, for MDPs,
the response for state i is given by

s(i) =
R(i)

N(i)
,

where R(i) denotes the total reward earned since the last visit to state
i and N(i) denotes the number of state transitions that have occurred
since the last visit to i. For the SMDP, N(i) is replaced by T (i), where
T (i) denotes the total time spent in the simulator since the last visit
to i. Thus, for SMDPs, the response for state i is:

s(i) =
R(i)

T (i)
.

The response is then normalized to convert it into a scalar quantity
that lies between 0 and 1. The normalized response is called feedback.
The normalization is performed via:

φ(i) =
s(i)− smin

smax − smin
, (8.1)

where smin is the minimum response possible in the system and smax

is the maximum response possible in the system.
As stated above, the feedback is used to update the action-selection

probability p(i, x) where x denotes the action selected in the last visit
to i. Without normalization, we will see later, the updated action-
selection probabilities can exceed 1 or become negative.

Many schemes have been suggested in the literature to update the
action-selection probabilities. All schemes are designed to punish the
bad actions and reward the good ones. A popular scheme, known
as the Reward-Inaction scheme, will be covered in detail because it
appears to be one of the more popular ones [215].

Reward-Inaction Scheme. As discussed above, a trajectory of
states is simulated. An iteration is said to be performed when one
transitions from one state to another. Consider the instant at which
the system visits a state i. At this time, the action-selection probabil-
ities for state i are updated. To this end, the feedback φ(i) has to be
computed as shown in Eq. (8.1). Let L(i) denote the action taken in
the last visit to state i and α denote the step size or learning rate. Let
pk(i, x) denote the action-selection probability of action x in state i in
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the kth iteration of the algorithm. For the sake of simplicity, let us
assume for the time being that no more than two actions per state are
allowed. At the very beginning, before starting the simulation, one sets
x to any of the two actions. The value of x is not changed later during
the algorithm’s progress. Then, using the Reward-Inaction scheme,
the action-selection probability of an action x is updated via the rule
given below:

pk+1(i, x) ← pk(i, x) + αφ(i)I(L(i) = x)− αφ(i)pk(i, x), (8.2)

where I(.) in the indicator function that equals 1 if the condition inside
the brackets is satisfied and is 0 otherwise. Note that the above scheme
is used to update an action x out of the two actions numbered 1 and 2.
Clearly, after the above update, the other action will have to be set to(
1− pk+1(i, x)

)
.

The reward-inaction scheme is so named because a good action’s
effects are rewarded while those of a poor action are ignored (inac-
tion). How this is ensured can be explained as follows. Assume that x
is the action that was selected in the last visit to i. Then, the change
in the value of p(i, x) will equal φ × α[1 − p(i, x)]. Thus, if the re-
sponse is strong (feedback close to 1), the probability will be increased
significantly, while if the response is weak (feedback close to 0), the
increase will not be very significant. Likewise, if the action x was not
selected in the last visit, the change will equal −φ × αp(i, x). Hence,
if the action was not selected, but the response was strong, its prob-
ability will be reduced significantly, but if the response was weak, its
probability will not see a significant change.

Now, we present step-by-step details of an MCAT algorithm.

2.1. Step-by-Step Details of an MCAT
Algorithm

Before presenting the steps, we would like to make the following
comments. Our presentation is for average reward SMDPs using the
reward-inaction scheme. The MDP is a special case of the SMDP; one
can replace time spent in each transition by 1 in the SMDP to obtain
the MDP. The algorithm description presented below assumes that
there are two possible actions in each state. We will discuss a gener-
alization to multiple actions later. Also, we will drop the superscript
k from pk(i, x) to increase clarity.

Steps. Set the number of iterations, k, to 0. Initialize action proba-
bilities p(i, a) = 1

|A(i)| for all i ∈ S and a ∈ A(i). Set the cumulative

reward earned and the cumulative time spent until the last visit to i,
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Cr(i) and Ct(i), respectively, to 0 for all i ∈ S. Also, initialize to 0 the
following quantities: the total reward earned in system from the start,
TR, and the total time spent in the system from the start, TT . Initial-
ize smin and smax as described above. Set x to any action allowed in
the system. The value of x is never changed. Start system simulation.
Let the starting state be denoted by i. Select a small (suitable) value
for α.

1. If this is the first visit to state i, go to Step 3. Otherwise, compute
R, the total reward earned in the system since the last visit to i,
and T , the total time spent in the system since the last visit to i,
as follows:

R = TR− Cr(i); T = TT − Ct(i).

Then, compute the response and feedback as follows:

s =
R

T
; φ =

s− smin

smax − smin
.

2. Let L(i) denote the action that was selected in the last visit to i.
Update p(i, x) using:

p(i, x) ← p(i, x) + αφI(L(i) = x)− αφp(i, x),

where I(.) is the indicator function that equals 1 when the con-
dition within brackets is satisfied and equals 0 otherwise. Then,
update the other action (action other that x) so that sum of the
probabilities of actions for state i is 1.

3. With probability p(i, a), select an action a from the set A(i).

4. Set L(i) ← a, Cr(i) ← TR, and Ct(i) ← TT. Then, simulate
action a. Let the next system state be j. Also let t(i, a, j) denote
the (random) transition time, and r(i, a, j) denote the immediate
reward earned in the transition resulting from selecting action a in
state i.

5. Set TR ← TR+ r(i, a, j); TT ← TT + t(i, a, j).

6. Set i ← j and k ← k+1. If k < MAX STEPS, return to Step 1;
otherwise STOP.

Remark 1. The algorithm requires knowledge of smax and smin, which
can sometimes be obtained from those values of the transition reward
matrix that are known. When these values are unknown, one must
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come up with conservative estimates of bounds. Unfortunately, if
the bounds used are too conservative, the rate of updating is slowed
down since the resulting feedback values are far from 1 even when the
response is good, or from 0 when the response is weak.
Remark 2. Termination criterion: One can run the algorithm until
all the probabilities have converged to 0 or 1 if one is certain that
there is a unique optimal action. This may take a very long time,
however. A second approach is to run the algorithm until one of the
probabilities in each state exceeds a pre-fixed “safe” value, e.g., 0.9.
This action is then declared to be the optimal action for that state.
A third approach, popular in practice, runs the algorithm for a large
number of iterations and selects the most likely action as the optimal
in each state.
Remark 3. The step size (learning rate), α, is fixed and need not
be diminished with iterations. This is a remarkable feature of this
algorithm. Convergent constant step size algorithms [319] are rare in
stochastic approximation.
Remark 4. Selection of x: Note that in the description above, we use
the same value of x for every state. However, it is acceptable to have
a different x for each state. Then, x would be replaced by x(i). Thus
for instance in a system with two actions in each state, one could have
x(1) = 2; and x(2) = 1.

2.2. An Illustrative 3-State Example
In this section, we will show how the MCAT algorithm, discussed

above, works on a simple 3-state SMDP. The example comes from
Gosavi et al. [124]. For the sake of simplicity, we will first assume that
each state has two possible actions.

Obviously, we will not require the values of the transition probabil-
ities of the underlying Markov chain; a simulator of the system will be
sufficient. Using the simulator, a trajectory of states is generated, and
updating is performed for a state when the simulator visits it. Let the
first few states in the trajectory be defined as:

2 → 1 → 3 → 1 → 2.

We will now show how updating is done for these states. In the begin-
ning, all the action probabilities are supposed to be equal. Since there
are two actions in each state, we set

p(1, 1) = p(1, 2) = p(2, 1) = p(2, 2) = p(3, 1) = p(3, 2) = 0.5.

The updating required by the algorithm is performed (within thesimu-
lator), and the action chosen is simulated. The next state is generated
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by the simulator. Again, an action is chosen in the next state, the
necessary updates are performed, and we move on to the next state.
This continues until the termination criterion for the algorithm is met.

We begin by setting Cr(i) = 0 and Ct(i) = 0, ∀i. We also set TR
and TT to 0. Also, we will assume that x = 1, smax = 10, smin = −5,
and α = 0.1. The updating calculations performed in each state are
listed below.

State 2: This is the first visit to state 2. Hence the action prob-
abilities are not updated. Let the action selected, a, be 1. Then,
following Step 4, we set L(2) = 1, Cr(2) ← TR(= 0) and Ct(2) ←
TT (= 0). The next state is 1. Here r(i, a, j) = 4.5 and t(i, a, j) =
2.34 for i = 2, j = 1. (Notice that both values, 4.5 and 2.34, are
generated by the simulator.) Next, following Step 6, we update
TR and TT . New values for these variables are: TR = 4.5 and
TT = 2.34. We are now in state 1.

State 1: This is the first visit to state 1, and the calculations
performed will be similar to those shown above. Let the action
selected be 2. So, following Step 4, we set L(1) = 2, Cr(1) ←
TR(= 4.5) and Ct(1) ← TT (= 2.34). The next state is 3. From
the simulator, r(i, a, j) = 3.5, and t(i, a, j) = 0.11 for i = 1, j = 3.
Following Step 6, next we must update TR and TT . The new values
for these variables are: TR = 4.5+3.5 = 8 and TT = 2.34+0.11 =
2.45. We are now in state 3.

State 3: This is the first visit to state 3 and once again the cal-
culations performed will be similar to those shown above. Let the
action selected be 2. Again, following Step 4, we set L(3) = 2,
Cr(3) ← TR(= 8) and Ct(3) ← TT (= 2.45). The next state
is 1. From the simulator, r(i, a, j) = −1, and t(i, a, j) = 1.55
for i = 3, j = 1. We next update TR and TT following Step
6. The new values for these variables are: TR = 8 − 1 = 7 and
TT = 2.45 + 1.55 = 4. We are now in state 1.

State 1 (again): This is a re-visit (second visit) to state 1. There-
fore, we first need to execute Step 1. We compute: R = TR −
Cr(1) = 7 − 4.5 = 2.5; T = TT − Ct(1) = 4 − 2.34 = 1.66,;
s = R/T = 2.5/1.66 = 1.5060; φ = s−smin

smax−smin
= 1.5060+5

10+5 = 0.4337.

Now, L(1) = 2; but since L(1) = x = 1, we update p(1, 1):

p(1, 1) ← p(1, 1)− αφp(1, 1) = 0.5− 0.1(0.4337)(0.5) = 0.4783

Let the action selected in this state be 1. Therefore, L(1) = 1,
Cr(1) = 7, and Ct(1) = 4. From the simulator, r(i, a, j) = 2.4,
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and t(i, a, j) = 1.23, for i = 3, j = 1. The new values are: TR =
7 + 2.4 = 9.4 and TT = 4 + 1.23 = 5.23. We are now in state 2.

State 2 (again): This is a re-visit (second visit) to state 2. Hence
we first execute Step 1. We set R = TR − Cr(2) = 9.4 − 0 = 9.4;
T = TT − Ct(2) = 5.23− 0 = 5.23; s = R/T = 9.4/5.23 = 1.7973;
φ = s−smin

smax−smin
= 1.7973+5

10+5 = 0.4531. Now, L(2) = 1; but since

L(2) = x = 1, we update p(2, 1):

p(2, 1) ← p(2, 1)+αφ(1−p(2, 1))=0.5+0.1(0.4531(1−0.5)) = 0.5226.

Let the action selected in this state be 2. Then, L(2) = 2, Cr(2) =
9.4, and Ct(2) = 5.23. Let the next state be 3. From the simulator,
r(i, a, j) = −1.9 and t(i, a, j) = 4.8, where i = 2, j = 3. The new
values are: TR = 9.4− 1.9 = 7.5 and TT = 5.23 + 4.8 = 10.03.

Updating will continue in this fashion for a large number of iterations.
The most likely action (the action with the largest probability) in each
state will be considered to be the best action for that state.

2.3. Multiple Actions
Note that so far we have assumed that only two actions are allowed

in each state. A number of ways have been suggested in the literature
to address the case with more than two actions. We will describe one
approach below.

If state i is the current state, update p(i, x) as described earlier
for the case with two actions. Now, let us denote the change in the
probability, p(i, x), by Δ, which implies that:

Δ = pk+1(i, x)− pk(i, x).

Clearly, Δ may be positive or negative. Now, if the total number of
actions in state i is m, where m > 2, then update all probabilities
other than p(i, x) using the following rule:

pk+1(i, a) ← pk(i, a)− Δ

m− 1
, where a = x.

Unfortunately, this penalizes or rewards several actions equally, which
is a deficiency. More intelligent schemes have also been suggested in
the literature (see [215]).

3. Actor Critics
Actor critics (ACs), also called adaptive critics, have a rather long

history [328, 18, 316]. Like MCAT, ACs use action-selection proba-
bilities to guide the search, but like RL, they also use the Bellman
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equation—the Bellman policy equation (Poisson equation) in particu-
lar. For each state-action pair, (i, u), one stores H(i, u), a surrogate
for the action-selection probability. An action a is selected in state i
with the probability p(i, a) where

p(i, a) =
eH(i,a)

∑
b∈A(i) e

H(i,b)
. (8.3)

The above is called the Gibbs softmax method of action selection.
The terms H(., .) hence dictate the action-selection probabilities. Like
in MCAT, H(i, a) is updated on the basis of the feedback from the
system related to choosing action a in state i, but unlike in MCAT and
like in RL, the feedback exploits a Bellman equation. Unfortunately,
H(i, a) can become unbounded, and since it is used as the power of
an exponential in the Gibbs softmax method, it cannot be allowed to
become too large, since its exponential can cause computer overflow.
In practice, one keeps these values artificially bounded by projection
onto the interval [−H̄, H̄] where H̄ > 0. The concept of projection is
explained below Eq. (8.5). The value of H̄ should be greatest possible
value such that the computer does not overflow when it attempts to
compute eH̄. It is recommended that the reader be familiar with RL
before reading any further.

3.1. Discounted Reward MDPs
We now present AC algorithm from [18, 178]. The algorithm will

use the two timescale framework that was discussed in the context of
R-SMART and the SSP-version of Relative Q-Learning. In addition
to the H(, ., ) terms that dictate the action selection, the algorithm
also needs the value function, J(i), for each state i ∈ S.
Step 1. Initialize all J-values and H-values to 0, i.e., for all l, where

l ∈ S and u ∈ A(l), set J(l) ← 0 and H(l, u) ← 0. Set k, the num-
ber of iterations, to 0. The algorithm will be run for kmax iterations,
where kmax is chosen to be sufficiently large. Set a computer-
permissible large positive value to H̄ (as discussed above). Start
system simulation at any arbitrary state.

Step 2. Let the current state be i. Select action a with a probability
of p(i, a) defined in Eq. (8.3).

Step 3. (Critic Update) Simulate action a. Let the next state be
j. Let r(i, a, j) be the immediate reward earned in going to j from
i under a. Update J(i) via the following equation using the step-
size, α:

J(i) ← (1− α)J(i) + α [r(i, a, j) + λJ(j)] . (8.4)
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Step 4. (Actor Update) Update H(i, a) using a step size, β:

H(i, a) ← H(i, a) + β [r(i, a, j) + λJ(j)− J(i)] . (8.5)

IfH(i, a) > H̄, setH(i, a) ← H̄. IfH(i, a) < −H̄, setH(i, a) ← −H̄.

Step 5. If k < kmax, increment k by 1, set i ← j, and then go to
Step 2. Otherwise, go to Step 6.

Step 6. For each l ∈ S, select d(l) ∈ argmaxb∈A(l)H(l, b). The policy

(solution) generated by the algorithm is d̂. Stop.

In the above, the step sizes, α and β, should be updated in a style
such that they satisfy the two time scale condition, i.e.,

lim
k→∞

βk

αk
= 0; note that we suppressed superscript k above for clarity’s sake.

An example of step size rules that satisfy the above condition is:

αk =
log(k)

k
; βk =

A

B + k
.

Note that β converges to 0 faster than α, and hence the time scale
that uses β is called the slower time scale while the time scale that
uses α is called the faster time scale. Since β converges to 0 faster, it
is as if the faster time scale sees the slower time scale as moving very
slowly, i.e., as if the values on the slower time scale are fixed.

3.2. Average Reward MDPs
We now discuss how the actor critic may be used to solve the average

reward MDP. Remember that Relative Q-Learning (average reward)
was an extension ofQ-Learning (discounted reward), and the extension
needed a distinguished state, i∗, to be set at the start. In an analogous
manner, the average reward actor critic for the MDP follows from
its discounted reward counterpart. The differences in the steps are
described next.

Step 1: Choose any state from the S to be the distinguished state i∗.

Step 3: Use the following equation to update J(i):

J(i) ← (1− α)J(i) + α [r(i, a, j)− J(i∗) + J(j)] .

Step 4: Update H(i, a) using the following equation:

H(i, a) ← H(i, a) + β [r(i, a, j) + J(j)− J(i)− J(i∗)] .
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IfH(i, a) > H̄, setH(i, a) ← H̄. IfH(i, a) < −H̄, setH(i, a) ← −H̄.

Convergence results assure us that the value of J(i∗) should converge
at the end to the vicinity of ρ∗, the optimal average reward.

3.3. Average Reward SMDPs
We now present an extension of the discounted reward algorithm

that for the average reward SMDP under Assumption 7.1 of Chap. 7.
We call this algorithm S-MACH (Semi-Markov Actor Critic Heuristic).
Consider the following equation: For all i ∈ S, if ρ∗ denotes the optimal
average reward of the SMDP:

J(i) = max
a∈A(i)

⎡

⎣r̄(i, a)− ρt̄(i, a) + η
∑

j∈S
p(i, a, j)J(j)

⎤

⎦ , where ρ = ρ∗.

(8.6)

Note that in the discounted reward Bellman equation for MDPs, if we
replace (i) the immediate reward, r(i, a, j), by r(i, a, j) − ρ∗t̄(i, a, j)
and (ii) λ by η, we obtain the above equation. Under Assumption 7.1
from Chap. 7, it can be shown that the unique solution of the above
equation will yield an optimal solution to the average reward SMDP
when η ∈ (η̄, 1). Hence, our next algorithm (from [183]) seeks to
solve the above equation in order to solve the SMDP. To this end,
the algorithm will use three time scales: J(.) and H(., .) terms will be
updated on the fastest and medium time scales, respectively, while ρ
will be updated on the slowest time scale. It is shown in [183] that
under suitable conditions, ρ will converge to ρ∗, and we will obtain the
optimal solution in the limit. The updates on the faster time scales
can be obtained directly from those of the AC presented above for
discounted reward MDPs. The algorithm differs from the discounted
reward AC in the following ways:

Step 1: Set ρ = 0. Also, set both TR and TT , the total reward and
the total time spent in the simulator, respectively, to 0. Select a
positive value for η that is large enough but less that 1.

Step 3: If t(i, a, j) denotes the random transition time, update J(i)
via:

J(i) ← (1− α)J(i) + α [r(i, a, j)− ρt(i, a, j) + ηJ(j)] .

Step 4: Update H(i, a) using the following equation:

H(i, a) ← H(i, a) + β [r(i, a, j)− ρt(i, a, j) + ηJ(j)− J(i)] .
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IfH(i, a) > H̄, setH(i, a) ← H̄. IfH(i, a) < −H̄, setH(i, a) ← −H̄.
Then update ρ, TR and TT as follows:

TR ← TR+ r(i, a, j); TT ← TT + t(i, a, j); ρ ← (1− γ̄)ρ+ γ̄R/T ;

where γ̄ is the step size on the slowest time scale. The step

sizes must satisfy the following two rules: limk→∞ γ̄k

βk = 0 and

limk→∞ βk

αk = 0. Selecting a suitable value for η may need experi-
mentation (see [183]).

In conclusion, we would like to note that ACs have a noteworthy
drawback: they need to compute the exponential of a term that can get
unbounded. Large powers for the exponential lead to unpleasant com-
puter overflows and numerical instability. Also, the forcible bounding
of the H(., .) terms leads to only ε-convergence [178]; an unfortunate
consequence of this is that one may often obtain sub-optimal policies
in practice.

4. Concluding Remarks
This short chapter was meant to introduce you to solving MDPs/

SMDPs via stochastic search, i.e., stochastic policies in which the
action selection probabilities (or their surrogates) are directly updated.
Our discussion was limited to some of the earliest advances, i.e., learn-
ing automata and actor critics. We discuss some of the more recent
developments in the bibliographic remarks.

Bibliographic Remarks. MCAT is due to Wheeler and Narendra [319]. Narendra

and Thathachar [215] discuss these topics in considerable detail. Several other

references are provided in [215]. Our discussion in this chapter, especially that in

the context of SMDPs, follows Gosavi et al. [124]. ACs were studied in [328, 18,

316]. The two time scale framework for the actor critic was introduced in [178]

and ε-convergence was established. A number of other algorithms that bypass the

inconvenient exponential term in the action selection have been proposed in [178].

The SMDP algorithm for average reward is from [183]. Other algorithms that

use action-selection probabilities include policy gradients [21, 278], simultaneous

perturbation [241], and MRAS [62]. See also [327, 167, 168, 225, 217].



Chapter 9

CONVERGENCE: BACKGROUND

MATERIAL

1. Chapter Overview
This chapter introduces some fundamental mathematical notions

that will be useful in understanding the analysis presented in the sub-
sequent chapters. The aim of this chapter is to introduce elements of
the mathematical framework needed for analyzing the convergence of
algorithms discussed in this book. Much of the material presented in
this chapter is related to mathematical analysis, and hence a reader
with a good grasp of mathematical analysis may skip this chapter.
To follow Chap. 10, the reader should read all material up to and in-
cluding Theorem 9.2 in this chapter. All the ideas developed in this
chapter will be needed in Chap. 11.

So far in the book we have restricted ourselves to an intuitive under-
standing of why algorithms generate optimal solutions. In this chapter,
our aim is to make a transition from the nebulous world of intuition
to a more solid mathematical world. We have made every attempt
to make this transition as gentle as possible. Apart from the obvious
fact that an algorithm’s usefulness is doubted unless mathematical
arguments show it, there are at least two other reasons for studying
mathematical arguments related to an algorithm’s ability to generate
optimal solutions: (i) mathematical analysis leads to the identifica-
tion of conditions under which optimal solutions can be generated and
(ii) mathematical analysis provides insights into the working mecha-
nism of the algorithm. The reader not interested in everything in this
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chapter is advised to read ahead, and then come back to this chapter
as and when the proof of a result needs to be understood. We will
begin this chapter with a discussion on vectors and vector spaces.

2. Vectors and Vector Spaces
We assume that you have a clear idea of what is meant by a vector.

We will now attempt to tie this concept to the dependable framework
of vector spaces. We will begin with simple concepts that most readers
are familiar with.

A set is a collection of objects; we refer to these objects as elements.
A set may contain either a finite or an infinite number of elements.
We will use the calligraphic letter (e.g., A,�) to denote a set. A finite
set can be described explicitly i.e., via a definition of each element.
Consider for example:

A = {1, 4, 1969}.
Here A denotes a finite set because it contains a finite number of
elements; note each of the elements, 1, 4, and 1969, is clearly defined
in this definition of the set.

An infinite set is often described using a conditional notation which
can take one of the two equivalent forms:

B = {x : 1 ≤ x ≤ 2} or B = {x|1 ≤ x ≤ 2}.
In this notation, whatever follows “:” or “|” is the condition; the
implication here is that B is an infinite set that contains all real num-
bers between 1 and 2, including 1 and 2. In other words, B = [1, 2] is
a closed interval.

The set � is the set of real numbers—geometrically, it is the real
number line. Algebraically, the idea lifts easily to n dimensions. We
will see how via the following example.

Example 1. A set X which is defined as: X = {1, 2, 7}. There are
three members in this set and each member is actually drawn from the
real line—�. Thus X is a subset of the set �. Now consider the next
example.

Example 2. A set Y which is defined as:

Y = {(1.8, 3), (9.5, 1969), (7.2, 777)}.
Each member of this set is actually a pair of two numbers. If each
number in the pair is drawn from the real line, each pair is said to be
a member of �2. The pair is also called a 2-tuple. Thus each member
of the set Y is a two-tuple. Now consider the following example.
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Example 3. Each member of a set Z assumes the following form:

( x(1), x(2), . . . , x(n) ).

Then each of these members is said to belong to the set �n. Each
member in this case is referred to as an n-tuple. An n-tuple has n
elements.

The n-tuple is said to be an n-dimensional vector if the n-tuple
satisfies certain properties. We use the notation → above a letter to
denote a vector and the notation ∧ to denote the n-tuple. For instance,
�x will denote a vector, but ŷ will denote an n-tuple that may or may
not be a vector.

The properties that an n-tuple should possess to be called a vector
are related to its addition and scalar multiplication. We describe these
properties, next.

Addition Property. The addition property requires that the sum
of the two n-tuples x̂ = (x1, x2, . . . , xn) and ŷ = (y1, y2, . . . , yn) be
defined by

x̂+ ŷ = (x1 + y1, x2 + y2, . . . , xn + yn).

Scalar Multiplication Property. The scalar multiplication prop-
erty implies that a real number c times the n-tuple x̂—denoted by
cx̂—be defined by

cx̂ = (cx1, cx2, . . . , cxn).

These definitions qualify the n-tuples to be called vectors, and many
other properties follow from these two key properties. (See any stan-
dard text on linear algebra for more.)

Let us show some examples to demonstrate these properties. The
sum of â = (1, 2) and b̂ = (4,−7) has to be:

((1 + 4), (2− 7)) = (5,−5),

if â and b̂ are vectors. So also the multiplication of â by a scalar such
as 10 should be given by:

10(1, 2) = (10, 20).

When endowed with these two key properties (addition and scalar mul-
tiplication), we refer to the set �n as a vector space. As mentioned
above, the framework of vector spaces will be very useful in studying
the convergence properties of the algorithms that we have seen in this
book.

Some examples of vector spaces. �2, �132, and �1969.
The next section deals with the important notion of vector norms.
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3. Norms
A norm, in a given vector space V , is a scalar quantity associated

with a given vector in that space. To give a rough geometric inter-
pretation, it denotes the length of a vector. There are many ways
to define a norm, and we will discuss some standard norms and their
properties.

The so-called max norm, which is also called infinity norm or
sup norm, is defined as follows.

||�x||∞ = max
i

|x(i)|.

In the above definition, ||�x||∞ denotes the max norm of the vector
�x, and x(i) denotes the ith element of the vector �x. The following
example will illustrate the idea.

Example. �a = (12,−13, 9) and �b = (10, 12, 14) are two vectors in �3.
Their max norms are:

||�a||∞ = max{|12|, | − 13|, |9|} = 13 and

||�b||∞ = max{|10|, |12|, |14|} = 14.

There are other ways to define a norm. The Euclidean norm, for
instance, is defined as follows:

||�x||2 =
√∑

i

(x(i))2.

It denotes the Euclidean length of a vector. The Euclidean norm of
vectors �a and �b are hence:

||�a||2 =
√
(12)2 + (−13)2 + (9)2 = 19.84943 and

||�b||2 =
√

(10)2 + (12)2 + (14)2 = 20.9761.

Some important properties of norms are discussed next.

3.1. Properties of Norms
A scalar must satisfy the following properties in order to be called

a norm. The notation ||�x|| is a norm of a vector �x belonging to the
vector space V if

1. ||�x|| ≥ 0 for all �x in V , where ||�x|| = 0 if and only if �x = �0.

2. ||a�x|| = |a| ||�x|| for all �x in V and all a.

3. ||�x+ �y|| ≤ ||�x||+ ||�y|| for all �x, �y in V .
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The last property is called the triangle inequality . It is not hard
to show that all the three conditions are true for both max norms and
Euclidean norms. It is easy to verify the triangle inequality in � with
the norm of x (or y) being the absolute value of x (or y).

4. Normed Vector Spaces
A vector space equipped with a norm is called a normed vector

space. Study the following examples.

Example 1. The vector space defined by the set �2 along with the
Euclidean norm. The norm for this space is:

||�x||2 =

√√√√
2∑

i=1

[x(i)]2 if the vector �x is in �2.

Example 2. The vector space defined by the set �69 equipped with
the max norm. The norm for this space is:

||�x||∞ = max
1≤i≤69

|x(i)| where the vector �x is in �69.

We will return to the topic of vector spaces after discussing
sequences.

5. Functions and Mappings
It is assumed that you are familiar with the concept of a function

from high school calculus courses. In this section, we will present some
definitions and some examples of functions.

5.1. Domain and Range
A simple example of a function is: y = x + 5, where x can take

on any real value. We often denote this as: f(x) = x + 5. The rule
f(x) = x + 5 leaves us in no doubt about what the value of y will
be when the value of x is known. A function is thus a rule. You are
familiar with this idea. Now, let us interpret a function as a set of
pairs; one value in the pair will be any legal value of x, and the other
value will be the corresponding value of y. For instance, the function
considered above can be defined as a set of (x, y) pairs; some examples
of these pairs are (1, 6), (1.2, 6.2) etc.

Notice that the values of x actually come from �, the set of real
numbers. And the values of y, as a result of how we defined our
function, also come from the same set �. The set from which the
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values of x come is called the domain of the function, and the set
from which the values of y come is called the range of the function.
The domain and range of a function can be denoted using the following
notation.

f : A → B,

where A is the domain and B is the range. This is read as: “a function
f from A to B.”

The example given above is the simplest form of a function. Let
us consider some more complicated functions. Consider the following
function.

y = 4 + 5x1 + 3x2 (9.1)

in which each of x1 and x2 takes on values from the set �. Now, a
general notation to express this function is y = f(x1, x2). This function
(given in Eq. (9.1)) clearly picks up a vector such as (1, 2) and assigns
a value of 15 to y. Thus, the function (9.1) can be represented as a
set of ordered triples (x1, x2, y)—examples of which are: (1, 2, 15) and
(0.1, 1.2, 8.1), and so on. This makes it possible to view this function
as an operation, whose input is a vector of the form (x1, x2) and whose
output is a scalar. In other words, the domain of the function is �2

and its range is �.
Functions that deal with vectors are also called mappings or maps

or transformations. It is not hard to see that we can define a func-
tion from �2 to �2. An example of such a function is defined by the
following two equations:

x′1 = 4x1 + 5x2 + 9, and

x′2 = 5x1 + 7x2 + 7.

In the context of the above function, consider the vector with x1 = 1
and x2 = 3. It is a member of the set �2. When the function or
transformation is applied on it (i.e., used as an input in the right
hand sides of the equations above), what we get is another vector
belonging to the set �2. In particular, we get the vector x′1 = 28, and
x′2 = 33. One of the reasons why a vector function is also called a
transformation is: a vector function generates a new vector from the
one that is supplied to it.

The function shown above is actually defined by two linear equations.
It is convenient to represent such a function with vector notation.
The following illustrates the idea.

�x′ = A�x+B. (9.2)
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Here

�x = (x1, x2)
T and �x′ = (x′1, x

′
2)

T

are the two-dimensional vectors in question and A and B are the
matrices. (�xT denotes the transpose of the vector �x.) For the example
under consideration, the matrices are:

A =

[
4 5
5 7

]
, and B =

[
9
7

]
.

In general, functions or transformations can be defined from �n1 to
�n2 , where n1 and n2 are positive integers that may or may not be
equal.

5.2. The Notation for Transformations
In general, we will use the following compact notation for transfor-

mations on vectors:

F�a ≡ F (�a).

Here F denotes a transformation (or a mapping or a function) that
transforms the vector �a while F�a denotes the transformed vector.
This implies that F�a is a vector that may be different from �a—the
vector that was transformed by F .

We will be using operators of the form F k frequently in the remain-
der of this book. The meaning of this operator needs to be explained.
Let us examine some examples now.

F 1 will mean the same thing as F . But F 2(�a), in words, is the vector
that is obtained after applying the transformation F to the vector
F (�a). In other words, F 2(�a) denotes the vector obtained after applying
the transformation F two times on the vector �a. Mathematically:

F 2(�a) ≡ F (F (�a)) .

In general, F k means the following:

F k�a ≡ F
(
F k−1(�a)

)
.

We will, next, discuss the important principle of mathematical
induction.

6. Mathematical Induction
The principle of mathematical induction will be used on many

occasions in this book. As such, it is important that you understand
it clearly. Before we present it, let us define J to be the set of



288 SIMULATION-BASED OPTIMIZATION

positive integers, i.e., J = {1, 2, 3, 4, . . .}. The basis for mathematical
induction is the well-ordering principle that we state below without
proof.

Well-ordering principle. Every non-empty subset of J has a mem-
ber that can be called its smallest member.

To understand this principle, consider some non-empty subsets of J .

A = {1, 3, 5, 7, . . .},B = {3, 4, 5, 6}, and C = {34, 1969, 4, 11}.

Clearly, each of these sets is a subset of J and has a smallest mem-
ber. The smallest members of A,B, and C are respectively 1, 3, and 4.

Theorem 9.1 (Principle of Mathematical Induction)
If R(n) is a statement containing the integer n such that

(i) R(1) is true and

(ii) After assuming that R(k) is true, R(k + 1) can be shown to be
true for every k in J ,

then R(n) is true for all n in J .

This theorem implies that the relation holds for R(2) from the fact
that R(1) is true, and from the truth of R(2) one can show the same
for R(3). In this way, it is true for all n in J . All these are intuitive
arguments. We now present a rigorous proof.

Proof We will use the so-called contradiction logic. It is likely that
you have used this logic in some of your first experiences in mathemat-
ics in solving geometry riders. In this kind of a proof, we will begin by
assuming that the result we are trying to prove is false. Using the
falseness of the result, we will go on to show that something else that
we assumed to be true cannot be true. Hence our hypothesis—that
the “result is false”—cannot be true. As such, the result is true.

Let us assume that:

(i) R(1) is true, and

(ii) If R(k) is true, R(k + 1) is true for every k in J .

In addition, let us assume that

(iii) R(n) is not true for some values of n.

Let us define a set S to be a set that contains all values of n for
which R(n) is not true. Then from assumption (iii), S is a non-empty
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subset of J . From the well-ordering principle, one has that S must
have an element that can be described as its smallest element. Let us
say that the value of n for this smallest element is p. Now R(1) is true
and so p must be greater than 1. This implies that (p− 1) > 0, which
means that (p− 1) belongs to J .

Since p is the smallest element of S, the relation R(n) must be true
for (p−1) since (p−1) does not belong to S—the set of all the elements
for which R(n) is false. Thus we have that R(p − 1) is true but R(p)
is not. Now this cannot be right since in (ii) we had assumed that if
R(k) is true then R(k + 1) must be true. Thus setting k = p − 1, we
have a contradiction, and hence our initial hypothesis must be wrong.
In other words, the result must be true for all values of n in J .

Some general remarks are in order here. We have started our journey
towards establishing that the algorithms discussed in previous chap-
ters, indeed, produce optimal or near-optimal solutions. To establish
these facts, we will have to come up with proofs written in the style
used above.

The proof presented above is our first “real” proof in this book.
Any “mathematically rigorous” proof has to be worked out to its last
detail, and if any detail is missing, the proof is not acceptable.

Let us see, next, how the theorem of mathematical induction is used
in practice. Consider the following problem.

Prove that
1 + 3 + 5 + · · ·+ (2p− 1) = (p)2.

(We will use LHS to denote the left hand side of the relation and
RHS the right hand side. Notice that it is easy to use the formulation
for the arithmetic progression series to prove the above, but our intent
here is to demonstrate how induction proofs work.)

Now, when p = 1, LHS = 1 and the RHS = 12 = 1, and thus the
relation (the equation in this case) is true when p = 1.

Next let us assume that it is true when p = k, and hence

1 + 3 + 5 + · · ·+ (2k − 1) = k2.

Now when p = (k + 1) we have that:

LHS = 1 + 3 + 5 + · · ·+ (2k − 1) + (2(k + 1)− 1)

= k2 + 2(k + 1)− 1

= k2 + 2k + 2− 1

= (k + 1)2

= RHS when p = k + 1.
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Thus we have proved that the relation is true when n = k+1 if the
relation is true when p = k. Then, using the theorem of mathematical
induction, one has that the relation is true.

As you have probably realized that to prove a relation using
induction, one must guess what the relation should be. But then
the obvious question that arises is: how should one guess? For in-
stance, in the example above, how may one guess that the RHS
should be p2? We will address this question in a moment. But keep in
mind that once we have a guess, we can use induction to prove that
the relation is true (that is if the guess is right in the first place).

We now show some technology that may help in making good
guesses. Needless to say, guessing randomly rarely works. Often,
knowing how a relationship behaves for given values of p comes
in handy and from that it may be possible to recognize a general
pattern. Once a pattern is identified, one can generalize to obtain a
plausible expression. All this is part of rough work that we omit
from the final proof. We will illustrate these ideas using the result
discussed above.

The RHS denotes the sum of the first p terms, which we will denote
by Sp. So let us see what values Sp takes on for small values of p. The
values are:

S1 = 1, S2 = 4, S3 = 9, S4 = 16, S5 = 25, and so on.

You have probably noticed that there is a relationship between

1, 4, 9, 16, 25, . . . .

Yes, you’ve guessed right! They are the squares of

1, 2, 3, 4, 5 . . . .

And hence a logical guess for Sp is Sp = p2. We can then, as we have
done above, use induction to show that it is indeed true. The example
that we considered above is very simple but the idea was to show
you that mathematical results are never the consequence of “divine
inspiration” or “superior intuition” [95] but invariably the consequence
of such rough work.

7. Sequences
It is assumed that you are familiar with the notion of a sequence.

A familiar example of a sequence is:

a, ar, a(r)2, a(r)3, . . .



Convergence: Background Material 291

We associate this with the geometric progression in which a is the
first term in the sequence and r is the common ratio.

A sequence, by its definition, has an infinite number of terms.
We will be dealing with sequences heavily in this book. Our notation
for a sequence is:

{xp}∞p=1.

Here xp denotes the pth term of the sequence. For the geometric
sequence shown above:

xp = (a)p−1.

A sequence can be viewed as a function whose domain is the set
of positive integers (1, 2, . . .) and the range is the set that includes all
possible values that the terms of the sequence can take on.

We are often interested in finding the value of the sum of the first
m terms of a sequence. Let us consider the geometric sequence given
above. The sum of the first m terms of this sequence, it can proved,
is given by:

Sm =
a(1− (r)m)

(1− r)
. (9.3)

The sum itself forms the sequence

{S1, S2, S3, . . . , }

We can denote this sequence by {Sm}∞m=1. We will prove (9.3) using
mathematical induction.

Proof Since the first term is a, S1 should be a. Plugging in 1 for m in
the (9.3), we can show that. So clearly the relation is true for m = 1.
Now let us assume that it is true for m = k; that is,

Sk =
a(1− (r)k)

(1− r)
.

The (k + 1)th term is (from the way the sequence is defined) ark.
Then the sum of the first (k+ 1) terms is the sum of the first k terms
and the (k + 1)th term. Thus:

Sk+1 =
a(1− (r)k)

(1− r)
+ a(r)k

=
a(1− (r)k) + a(r)k(1− r)

1− r

=
a− a(r)k + a(r)k − a(r)k+1

1− r
=

a(1− (r)k+1)

1− r
.
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This proves that the relation is true when m = k+1. Then, as a result
of the theorem of mathematical induction, the relation given in (9.3)
is true.

We will next discuss sequences that share an interesting property—
namely that of convergence.

7.1. Convergent Sequences
Let us illustrate the idea of convergence of a sequence using familiar

ideas. As you probably know, the sum of the GP series converges
if the common ratio r lies in the interval [0, 1). Convergence of a
sequence,{xp}∞p=1, usually, means that as p starts becoming large, the
terms of the sequence start approaching a finite quantity. The reason
why the GP series converges is that the limit of the sum when p tends
to infinity is a finite quantity. This is shown next.

lim
p→∞Sp = lim

p→∞ a(1−(r)p)/(1−r) = a(1−0)/(1−r) = a/(1−r). (9.4)

The above uses the fact that

lim
p→∞(r)p = 0 when 0 ≤ r < 1.

Another simple example of a convergent sequence is one whose pth
term is defined by 1/p. The sequence can be written as:

1

1
,
1

2
,
1

3
, . . . .

It is intuitively obvious that as p increases, the term 1/p keeps getting
smaller. Also, we know from our knowledge of high school calculus
that:

lim
p→∞

1

p
= 0.

From this stage, we will gradually introduce rigor into our discussion
on sequences. In particular, we need to define some concepts such as
convergence and Cauchy sequences. We will use the abbreviation iff to
mean “if and only if.” The implication of ‘iff’ needs to be understood.
When we say that the condition A holds iff B is true, the following is
implied: A is true if B is true and B is true if A is true.

Definition 9.1 A Convergent Sequence: A sequence {ap}∞p=1 is
said to converge to a real number A iff for any ε > 0, there exists a
positive integer N such that for all p ≥ N , we have that

|ap −A| < ε.
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Let us explain this definition with an example. Consider the
sequence whose pth term is given by 1

p . It is not hard to see why this
sequence converges to 0. If you supply us with a value for ε, and if
the sequence indeed converges to 0, then we should be able to come
up with a value for N such that for any integer, p, which is greater
than N , |ap − 0| must be less than ε. For instance, let us assume that
ε = 0.01. Then,

|ap − 0| = |1
p
− 0| = 1

p
< ε.

This implies that

p >
1

ε
=

1

0.01
= 100.

This means that for p ≥ 101, the condition |ap − 0| < ε must be
satisfied. It is not hard to see from this discussion that the value of
N depends on the value of ε, but if the sequence converges, then for
any value of ε, one can come up with a suitable finite value for N .

We next define some special properties of sequences.

7.2. Increasing and Decreasing Sequences
Definition 9.2 A sequence {ap}∞p=1 is said to be decreasing, if for
all p,

ap+1 ≤ ap.

For the same reason, it is called an increasing sequence, if for all p,

ap+1 ≥ ap.

7.3. Boundedness
We next define the concepts of “bounded above” and “bounded

below,” in the context of a sequence. A sequence {ap}∞p=1 is said to be
bounded below, if there exists a finite value L such that:

ap ≥ L

for all values of p. L is then called a lower bound for the sequence.
Similarly, a sequence is said to be bounded above, if there exists

a finite value U such that:

ap ≤ U

for all values of p. U is then called an upper bound for the sequence.
The sequence:

{1, 2, 3, . . .}
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is bounded below, but not above. Notice that 1 is a lower bound for
this sequence and so are 0 and −1 and −1.5. But 1 is the highest lower
bound (often called the infimum).

In the sequence:
{1, 1/2, 1/3, . . .},

1 is an upper bound and so are 2 and 3 etc. Here 1 is the lowest of
the upper bounds (also called the supremum).

A sequence that is bounded both above and below is said to be a
bounded sequence.

We will next examine a useful result related to decreasing (increas-
ing) sequences that are bounded below (above). The result states
that a decreasing (increasing) sequence that is bounded below (above)
converges.

Intuitively, it should be clear that a decreasing sequence, that is, a
sequence in which each term is less than or equal to the previous term,
should converge to a finite value because the values of the terms cannot
go below a finite value M . So the terms keep decreasing and once
they reach a point below which they cannot go, they stop decreasing;
so the sequence should converge. Now, let us prove this idea using
precise mathematics. One should remember that to prove convergence,
one must show that the sequence satisfies Definition 9.1.

Theorem 9.2 A decreasing (increasing) sequence converges if it is
bounded below (above).

Proof We will work out the proof for the decreasing sequence case.
For the increasing sequence case, the proof can be worked out in a
similar fashion. Let us denote the sequence by {ap}∞p=1. Let L be the
highest of the lower bounds on the sequence. Then, for any p, since L
is a lower bound,

ap ≥ L. (9.5)

Choose a strictly positive value for the variable ε. Then ε > 0. Then
L + ε, which is greater than L, is not a lower bound. (Note that L
is the highest lower bound.) Then, it follows that there exists an N ,
such that

aN < L+ ε. (9.6)

Then, for p ≥ N , since it is a decreasing sequence,

ap ≤ aN .

Combining the above, with Inequations (9.5) and (9.6), we have
that for p ≥ N :

L ≤ ap ≤ aN < L+ ε.
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The above implies that for p ≥ N :

L ≤ ap < L+ ε.

Using the above and the fact that L− ε < L, we have that for p ≥ N :

L− ε < ap < L+ ε.

The above means that for p ≥ N : |ap − L| < ε where ε > 0. From
Definition 9.1, this means that {ap}∞p=1 is convergent.

The definition of convergence (Definition 9.1) requires the knowledge
of the limit (A) of the sequence. Next, we discuss a concept that
will lead us to a method that can determine whether a sequence is
convergent without attempting to identify its limit.

Definition 9.3 A Cauchy sequence: A sequence {ap}∞p=1 is called
a Cauchy sequence iff for each ε > 0, there exists a positive integer N
such that if one chooses any m greater than or equal to N and any k
also greater than or equal to N , that is, k,m ≥ N , then

|ak − am| < ε.

This is an important definition that needs to be understood clearly.
What it says is that a sequence is Cauchy if for any given value of
ε, there exists a finite integer N such that the absolute value of the
difference between any two terms of the sequence beyond and including
the Nth term is less than ε. This means that beyond and including
that point N in the sequence, any two terms are ε-close, i.e., the
absolute value of their difference is less than ε. We illustrate this idea
with an example.

Let us assume that {1/p}∞p=1 is a Cauchy sequence. (Every con-
vergent sequence is Cauchy, and so this assumption can be justified.)
Select ε = 0.0125, pick any two terms that are beyond the 79th term
(N = 80 = 1/0.0125 for this situation, and clearly depends on the value
of ε), and calculate the absolute value of their difference. The value
will be less than 0.025. The reason is at the 80th term, the value will
be equal to 1/80 = 0.0125, and hence the difference is bound to be less
than 0.0125. Note that:

1

80
− 1

p
< 0.0125 = ε for a strictly positive value of p.

In summary, the value of N will depend on ε, but the definition says
that for a Cauchy sequence, one can always find a value for N beyond
which terms are ε-close.
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It can be proved that every convergent sequence is Cauchy. Although
this is an important result, its converse is even more important. Hence,
we omit its proof and turn our attention to its converse.

The converse states that every Cauchy sequence is convergent
(we present that as Theorem 9.5 on page 298). The converse will
prove to be a very useful result as it will provide us with a mechanism
to establish the convergence of a sequence. The reason is that by
showing that a given sequence is Cauchy, we will be able to establish
that the sequence is convergent.

To prove this important result, we need to discuss a few important
topics, which are the boundedness of Cauchy sequences, accumulation
points, neighborhoods, and the Bolzano-Weierstrass Theorem. The
next few paragraphs will be devoted to discussing these topics.

For a bounded sequence, each of its terms is a finite quantity. As a
result, the sequence {ap}∞p=1 is bounded if there is a positive number
M such that |ap| ≤ M for all p. This condition implies that:

−M ≤ ap ≤ M.

Theorem 9.3 Every Cauchy sequence is bounded.

This is equivalent to saying that every term of a Cauchy sequence is a
finite quantity. The proof follows.

Proof Assume that {ap}∞p=1 is a Cauchy sequence. Let us set ε = 1.
By the definition of a Cauchy sequence, there exists an N such that,
for all k,m ≥ N , we have |ak−am| < 1. Let m = N . Then for k ≥ N ,

|ak| = |ak − aN + aN |
≤ |ak − aN |+ |aN | < 1 + |aN |.

Since N is finite, aN must be finite. Hence |aN | must be a positive
finite number. Then it follows from the above inequality that |ak| is
less than a positive finite quantity when k ≥ N . In other words, ak

is bounded for k ≥ N . Now, since N is finite, all values of ak from
k = 1, 2, . . . , N are also finite; that is ak is finite for k ≤ N . Thus we
have shown that ak is finite for all values of k. The proof is complete.

In the proof above, if you want to express the boundedness condition
in the form presented just before the statement of this theorem, define
M as

M = max{a1, a2, . . . , aN−1, aN , aN + 1}.
Then |ak| ≤ M for all values of k. Thus |ak| is bounded for all values
of k.
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Definition 9.4 A neighborhood of a real number x with a positive
radius r is the open interval (x− r, x+ r).

An open interval (a, b) is a set that contains infinitely many points
from a to b but the points a and b themselves are not included in it.
Examples are: (2, 4) (neighborhood of 3) and (1.4, 79.2). In the scalar
world, a neighborhood of x is an open interval centered at x.

Definition 9.5 A point x is called the accumulation point of a set S
iff every neighborhood of x contains infinitely many points of S.

Although this is a very elementary concept, one must have a very
clear idea of what constitutes and what does not constitute an accu-
mulation point of a given set.

Example 1. Let a set S be defined by the open interval (1, 2.4). Then
every point in S is an accumulation point. Consider any point in the
interval—say 2. Whichever neighborhood of 2 is chosen, you will find
that one of the following is true:

The neighborhood is a subset of S (for example: if the neighborhood
is the interval (1.8, 2.2))

The neighborhood contains a subset of S (for example: the
neighborhood is the interval (1.2, 2.8))

The set S is a subset of the neighborhood (for example: the neigh-
borhood is the interval (0.5, 3.5)).

In any case, the neighborhood will contain infinitely many points of
the set S.
Example 2. We next consider an example of a point that cannot be
an accumulation point of the interval (1, 2.4). Consider the point 5.
Now, the interval (2, 8) is a neighborhood of 5. This neighborhood
contains infinitely many points of the interval (1, 2.4). Yet, 5 is not
an accumulation point of the interval (1, 2.4), since one can always
construct a neighborhood of 5 that does not contain even a single
point from the interval (1, 2.4). An example of such a neighborhood is
the interval (4, 6).

Notice that the definition of an accumulation point of a set says that
every neighborhood of the set must contain infinitely many points of
the set.

Example 3. Consider the sequence {1
p}∞p=1. Recall that the range of

a sequence is the set of all the different values that the sequence can
assume. The range of this sequence is an infinite set since one can
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keep increasing the value of p to get positive terms that keep getting
smaller. The terms of course approach 0, but we can never find a
finite value for p for which a(p) will equal 0. Hence 0 is not a point
in the range of this sequence. And yet 0 is an accumulation point of
the range. This is because any neighborhood of 0 contains infinitely
many points of the range of the sequence.

We are now at a point to discuss the famous Bolzano-Weierstrass
theorem. We will not present its proof, so as to not distract the reader
from our major theme which is the convergence of a Cauchy sequence.
The proof can be found in any undergraduate text on mathematical
analysis such as Gaughan [95] or Douglass [81]. This theorem will be
needed in proving that Cauchy sequences are convergent.

Theorem 9.4 (Bolzano-Weierstrass Theorem:) Every bounded
infinite set of real numbers has at least one accumulation point.

The theorem describes a very important property of bounded infi-
nite sets of real numbers. It says that a bounded infinite set of real
numbers has at least one accumulation point. We will illustrate the
statement of the theorem using an example.

Consider the interval (1, 2). It is bounded (by 1 below and 2 above)
and has infinitely many points. Hence it must have at least one
accumulation point. We have actually discussed above how any point
in this set is an accumulation point.

A finite set does not have any accumulation point because, by
definition, it has a finite number of points, and hence none of its neigh-
borhoods can contain an infinite number of points.

The next result is a key result that will be used in the convergence
analysis of reinforcement learning algorithms.

Theorem 9.5 A Cauchy sequence is convergent.

Proof Let {ap}∞p=1 be a Cauchy sequence. The range of the sequence
can be an infinite or a finite set. Let us handle the finite case first, as
it is easier.

Let {s1, s2, . . . , sr} consisting of r terms denote a finite set repre-
senting the range of the sequence {ap}∞p=1. Now if we choose

ε = min{|si − sj | : i = j; i, j = 1, 2, . . . , r},

then there is a positive integer N such that for any k,m ≥ N we have
that |ak − am| < ε. Now it is the case that ak = sc and am = sd for
some c and some d belonging to the set {1, 2, . . . , r}. Thus:

|sc − sd| = |ak − am| < ε = min{|si − sj | : i = j; i, j = 1, 2, . . . , r}.
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From the above, it is clear that the absolute value of the difference
between sc and sd is strictly less than the minimum of the absolute
value of the differences between the terms. As a result, |ak − am| = 0,
i.e., ak = am for k,m ≥ N . This implies that from some point (N)
onwards, the sequence values are constant. This means that at this
point the sequence converges to a finite quantity. Thus the convergence
of the Cauchy sequence with a finite range is established.

Next, let us assume that the set we refer to as the range of the
sequence is infinite. Let us call the range S. The range of a Cauchy
sequence is bounded by Theorem 9.3. Since S is infinite and bounded,
by the Bolzano-Weierstrass theorem (Theorem 9.4), S must have an
accumulation point; let us call it x. We will prove that the sequence
converges to x.

Choose an ε > 0. Since x is an accumulation point of S, by its
definition, the interval (x− ε

2 , x+
ε
2) is a neighborhood of x that contains

infinitely many points of S. Now, since {ap}∞p=1 is a Cauchy sequence,

there is a positive integer N such that for k,m ≥ N , |ak − am| < ε/2.
Since (x− ε

2 , x+ ε
2) contains infinitely many points of S, and hence

infinitely many terms of the sequence {ap}∞p=1, there exists a t such

that t ≥ N and that at is a point in the interval (x − ε
2 , x + ε

2). The
last statement implies that:

|at − x| < ε/2.

Now, since t > N and by the selection of N above, we have from the
definition of a Cauchy sequence that

|ap − at| < ε/2.

Then, we have that

|ap − x| ≤ |ap − at|+ |at − x| = ε

2
+

ε

2
= ε.

This implies that {ap}∞p=1 converges to x.

7.4. Limit Theorems and Squeeze Theorem
In this section, we provide some important results that will be used

in the book. We begin with the algebraic limit theorem, which we
state without proof. The reader is referred to any text on analysis
(e.g., [81]) for a proof.

Theorem 9.6 (Algebraic Limit Theorem) Consider two sequences
{ap}∞p=1 and {bp}∞p=1 such that limp→∞ ap = A and limp→∞ bp = B.
Then,
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(i) limp→∞Cap = CA for all C ∈ �;

(ii) limp→∞(ap + bp) = A+B;

(iii) limp→∞(apbp) = AB;

(iv) limp→∞(ap/bp) = A/B provided B = 0.

We now present an important theorem that will be used on several
occasions in Chap. 11.

Theorem 9.7 (Order Limit Theorem) Consider two sequences
{ap}∞p=1 and {bp}∞p=1 such that limp→∞ ap = A and limp→∞ bp = B.
Then,

(i) If ap ≥ 0 for all p ∈ J , then A ≥ 0.

(ii) If ap ≤ bp for all p ∈ J , then A ≤ B.

(iii) If there exists a scalar C ∈ � for which C ≤ bp for all p ∈ J ,
then C ≤ B. In a similar manner, if ap ≤ C for all p ∈ J , then
A ≤ C.

Proof (i) We use contradiction logic. Assume that A < 0. From
the definition of convergence we have that for any ε > 0, there
exists an N such that for all p ≥ N , |ap − A| < ε. If ε = |A|,
then we have that |ap − A| < |A|, which implies that aN < 0.
But the sequence is defined so that aN ≥ 0, and hence we have a
contradiction. Therefore A ≥ 0.

(ii) Since ap ≤ bp, we have that bp − ap ≥ 0. Theorem 9.6 implies
that the sequence {bp − ap}∞p=1 converges to B − A. Using part
(i) of this theorem, we have that B −A ≥ 0, i.e., A ≤ B.

(iii) Assume that every element of the sequence {ap}∞p=1 equals C, i.e.,
ap = C for all p ∈ J . Then applying part (ii) of this theorem, we
have the result. The other part can be proved similarly.

We now present another important result that will be used later in
the book.

Theorem 9.8 (Squeeze Theorem) Consider three sequences
{xp}∞p=1, {yp}∞p=1, and {zp}∞p=1 such that xp ≤ yp ≤ zp for all p ∈ J .
Now if limp→∞ xp = limp→∞ zp = A, then limp→∞ yp = A as well.

Proof Applying, Theorem 9.7 for the sequences {xp}∞p=1 and {yp}∞p=1,
we have that A ≤ limp→∞ yp. Similarly, applying Theorem 9.7 for
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the sequences {yp}∞p=1 and {zp}∞p=1, we have that limp→∞ yp ≤ A.
Together the two bounds on limp→∞ yp imply that limp→∞ yp = A.

8. Sequences in �n

Thus far, our discussions have been limited to scalar sequences.
A scalar sequence is one whose terms are scalar quantities. Scalar
sequences are also called sequences in �. The reason for this is that
scalar quantities are members of the set �.

A sequence in �n is a sequence whose terms are vectors. We will
refer to this sequence as a vector sequence. For example, consider
a sequence {�a p}∞p=1 whose pth term is defined as:

�a p = (
1

p
, p2 + 1).

This sequence, starting at p = 1, will take on the following values:

{(1, 2), (1
2
, 5), (

1

3
, 10), . . .}.

The above is an example of a sequence in �2. This concepts nicely
extends to any dimension. Each of the individual scalar sequences in
such a sequence is called a coordinate sequence. Thus, in the example
given above, {1

p}∞p=1 and {p2 + 1}∞p=1 are the coordinate sequences

of {�a p}∞p=1.

Remark. We will use the notation ap(i) to denote the pth term of the
ith coordinate sequence of the vector sequence {�a p}∞p=1. For instance,
in the example given above,

�a p = {ap(1), ap(2)},
where

ap(1) =
1

p
and ap(2) = p2 + 1.

We will next define what is meant by a Cauchy sequence in �n.

9. Cauchy Sequences in �n

The concept of Cauchiness also extends elegantly from sequences in
� (where we have seen it) to sequences in �n. The Cauchy condition
in �n is defined next.

Definition 9.6 A sequence in �n, denoted by {�a p}∞p=1, is said to be
a Cauchy sequence in �n, if for any given ε > 0, there exists an N
such that for any m, k ≥ N , ||�a k − �am|| < ε, where ||.|| denotes any
norm.
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You’ve probably noticed that the definition of Cauchiness in �n uses a
norm whereas the same in � uses the absolute value of the difference
between two points. The definition of Cauchiness for � is of course
a special case of Definition 9.6. We next state a result that relates
the Cauchiness of the individual coordinate sequences within a vector
sequence to the Cauchiness of the parent (vector) sequence.

Lemma 9.9 If a vector sequence {�a p}∞p=1 in �n is Cauchy, then each
coordinate sequence in the vector sequence is a Cauchy sequence in �.
In other words, if the vector sequence is Cauchy, then for any given
ε > 0, there exists an N such that for all k,m ≥ N ,

|am(i)− am(i)| < ε

for i = 1, 2, . . . , n.

Proof We will prove the result for the max norm. The result can be
proved for any norm. Since {�a p}∞p=1 is Cauchy, we have that for a
given value of ε > 0, there exists an N such that for any m, k ≥ N ,

||�a k − �am|| < ε.

From the definition of the max norm, we have that for any k,m ≥ N ,

||�a k − �am|| = max
i

|ak(i)− am(i)|.

Combining the information in the preceding equation and the in-
equation before it, one has that for any k,m ≥ N ,

max
i

|ak(i)− am(i)| < ε.

Now in this equation, the < relation holds for maxi in the left hand
side. Hence the result must be true for all i. Thus, for any k,m ≥ N ,

|ak(i)− am(i)| < ε

is true for all i. This implies that each coordinate sequence is Cauchy
in �.

We next need to understand an important concept that plays a
central role in the convergence of discounted reinforcement learning
algorithms. It is important that you digest the main idea around
which the next section revolves.
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10. Contraction Mappings in �n

This section is about a special type of mapping (or transformation)—
a so-called contractionmapping or contractive mapping. Let us begin
with some geometric insight into this idea. To this end, consider two
distinct vectors, �a and �b, in �2 space. Let us define �c as follows:

�c = �a−�b.

Then �c denotes a difference of the two vectors. Now apply a mapping
F to both �a and�b. We will be applying this transformation repeatedly.

Let us define the notation to be used when the mapping F is applied
repeatedly. We will use �x k to denote the vector obtained after k
applications of F to the vector �x. As such �a 0 will stand for �a, �a 1

will stand for F�a 0, �a 2 will stand for F 2�a 0, and so on. The difference
between the transformed vectors �a k and �b k will be denoted by �c k.
Thus:

�c 1 ≡ F (�a)− F (�b), and �c 2 ≡ F 2(�a)− F 2(�b), and so on.

If the length (norm) of the vector �c 1 is strictly smaller than that of �c 0,
then the difference vector can be said to have become smaller. In other
words, the difference vector can be said to have “shrunk.” If this is true
of every occasion the mapping is applied, then we go on to declare that
the mapping is contractive in that space. What is more interesting
is that the vectors �a and �b keep approaching each other with every
application of such a mapping. This happens because the difference
between the two vectors keeps getting smaller and smaller. Eventually,
the vectors will become identical. This vector—that will be obtained
ultimately—is called a fixed point of the mapping. Essentially, this
implies that given any vector (�a or �b or any other vector), if one keeps
applying the transformation F , one eventually obtains the same vector.
(The final vector obtained in the limit is usually called the fixed point.)
We next provide a technical definition of a fixed point.

Definition 9.7 �x is said to be a fixed point of the transformation F if

F�x = �x.

Note that the definition says nothing about contractions, and in fact,
F may have a fixed point even if it is not contractive.

Let us illustrate the idea of generating a fixed point with a contrac-
tive mapping using an example. Consider the following vectors.

�a 0 = (4, 2), and �b 0 = (2, 2).
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We will apply the transformation G in which xk(i) will denote the ith
component of the vector �x k. Let us assume that G is contractive (this
can be proved) and is defined as:

xk+1(1) = 5 + 0.2xk(1) + 0.1xk(2),

xk+1(2) = 10 + 0.1xk(1) + 0.2xk(2).

Table 9.1 shows the results of applying transformation G repeatedly.
A careful observation of the table will reveal the following. With every
iteration, the difference vector �c k becomes smaller. Note that when
k = 12, the vectors �a k and�b k have become one, if one ignores anything
beyond the fifth place after the decimal point. The two vectors will
become one, generally speaking, when k = ∞. In summary, one starts
with two different vectors but eventually goes to a fixed point which,
in this case, seems to be very close to (7.936507, 13.492062).

What we have demonstrated above is an important property of a
contractive mapping. One may start with any vector, but successive
applications of the mapping transforms the vector into a unique vector.

See Figs. 9.1–9.3 to get a geometric feel for how a contraction map-
ping keeps “shrinking” the vectors in �2 space, and carries any given
vector to a unique fixed point. The figures are related to the data
given in Table 9.1. The contraction mapping is very much like a dog
that carries every bone (read vector) that it gets to its own hidey hole
(read a unique fixed point), regardless of the size of the bone or where
the bone has come from.

Let us now examine a more mathematically precise definition of a
contraction mapping.

Definition 9.8 A mapping (or transformation) F is said to be a con-
traction mapping in �n if there exists a λ such that 0 ≤ λ < 1 and

||F�v − F�u|| ≤ λ||�v − �u||

for all �v, �u in �n.

As is clear from the definition, the norm represents what was referred
to as “length” in our informal discussion on contraction mappings.

By applying F repeatedly, one obtains a sequence of vectors. Con-
sider a vector �a on which the transformation F is applied repeatedly.
This will form a sequence of vectors, which we will denote by {�a k}∞k=0.
Here �a k denotes the kth term of the sequence. It must be noted that
each term is itself a vector. The relationship between the terms is
given by

�v k+1 = F�v k.



Convergence: Background Material 305

Table 9.1. Table showing the change in values of the vectors �a and �b after repeated
applications of G

k ak(1) ak(2) bk(1) bk(2) ck(1) ck(2)

0 4.000000 2.000000 2.000000 2.000000 2.000000 0.000000

1 6.000000 10.800000 5.600000 10.600000 0.400000 0.200000

2 7.280000 12.760000 7.180000 12.680000 0.100000 0.080000

3 7.732000 13.280000 7.704000 13.254000 0.028000 0.026000

4 7.874400 13.429200 7.866200 13.421200 0.008200 0.008000

5 7.917800 13.473280 7.915360 13.470860 0.002440 0.002420

6 7.930888 13.486436 7.930158 13.485708 0.000730 0.000728

7 7.934821 13.490376 7.934602 13.490157 0.000219 0.000219

8 7.936002 13.491557 7.935936 13.491492 0.000066 0.000066

9 7.936356 13.491912 7.936336 13.491892 0.000020 0.000020

10 7.936462 13.492018 7.936456 13.492012 0.000006 0.000006

11 7.936494 13.492050 7.936492 13.492048 0.000002 0.000002

12 7.936504 13.492059 7.936503 13.492059 0.000001 0.000001

13 7.936507 13.492062 7.936507 13.492062 0.000000 0.000000

Y-Axis

X-Axis

k=0

Figure 9.1. The thin line represents vector �a, the dark line represents the vector
�b, and the dotted line the vector �c. This is before applying G

Thus the sequence can also be denoted as: {�v 0, �v 1, �v 2, . . .}. It is clear
that �v 1 = F�v 0, �v 2 = F�v 1, and so on. Now if ||F�v 0 −F�u 0|| ≤ λ||�v 0 −
�u 0|| for all vectors in �n, then

||F 2�v 0 − F 2�u 0|| ≤ λ||F�v 0 − F�u 0|| ≤ λ2||�v 0 − �u 0||.

Similarly, ||F 3�v 0 − F 3�u 0|| ≤ λ||F 2�v 0 − F 2�u 0||
≤ λ2||F�v 0 − F�u 0|| ≤ λ3||�v 0 − �u 0||.
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X-Axis

Y-Axis

k=1

Figure 9.2. The thin line represents vector �a, the dark line represents the vector
�b, and the dotted line the vector �c. This is the picture after one application of G.
Notice that the vectors have come closer

X-Axis

Y-Axis

k=11

Figure 9.3. This is the picture after 11 applications of G. By now the vectors are
almost on the top of each other, and it is difficult to distinguish between them

In general, ||Fm�v 0−Fm�u 0|| ≤ λm||�v 0−�u 0||. (9.7)

Inequality (9.7) can be proved from Definition 9.8 using induction.
This is left as an exercise.

Remark. Consider F to be a contraction mapping in �n. As such for
any two vectors �x and �y in �n, one has that:

||F�x− F�y|| ≤ λ||�x− �y||. (9.8)
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Now consider a vector sequence {�a k}∞k=0 in which �a 1 = F�a 0,�a 2 =
F�a 1, and so on, where �a k is a member of �n. Then, one has that

||�a 1 − �a 2|| = ||F�a 0 − F�a 1||
≤ λ||�a 0 − �a 1||. (9.9)

Inequality (9.9) follows from Inequality (9.8).

We are now ready to prove a major theorem that will prove very
useful in the convergence analysis of some dynamic programming
algorithms.

Theorem 9.10 (Fixed Point Theorem) Suppose F is a contraction
mapping in �n. Then

There exists a unique vector, which we denote by �v∗, in �n such
that F�v∗ = �v∗ and

For any �v 0 in �n, the sequence {�v k}∞k=0 defined by

�v k+1 = F�v k = F k�v 0 (9.10)

converges to �v∗.

Here �v∗ denotes the fixed point of F .

Proof For any m′ > m,

||�vm − �vm′ || = ||Fm�v 0 − Fm′
�v 0|| (9.11)

≤ λm||�v 0 − �vm′−m|| (9.12)

= λm||�v 0 − �v 1 + �v 1 − �v 2 + . . .

+ . . .+ �vm′−m−1 − �vm′−m||
≤ λm [||�v 0 − �v 1||+ ||�v 1 − �v 2||+ . . .

+ . . .+ ||�vm′−m−1 − �vm′−m||] (9.13)

= λm||�v 0 − �v 1||·
[1 + λ+ λ2 + . . .+ λm′−m−1] (9.14)

= λm||�v 0 − �v 1||
[
1− λm′−m

1− λ

]
(9.15)

< λm||�v 0 − �v 1||
[

1

1− λ

]
(9.16)
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In the above:

Line (9.11) follows from the definition of F (see Eq. (9.10)).

Line (9.12) follows from Inequation (9.7) by setting �u 0 = �vm′−m,
which can be shown to imply that:

Fm�u 0 = Fm′
�v 0.

Line (9.13) follows from Property 3 of norms given in Sect. 3.

Line (9.14) follows from the Remark related to Inequation (9.9).

Line (9.15) follows from the sum of a finite GP series given in
Eq. (9.3).

Line (9.16) follows from the fact that λm′−m > 0 since λ > 0 and
m′ > m.

From (9.16), one can state that by selecting a large enough value for
m, ||�v(m) − �v(m′)|| can be made as small as needed. In other words,
for a given value of ε, which satisfies ε > 0, one can come up with a
finite value for m such that

||�vm − �vm′ || < ε.

Since m′ > m, the above ensures that the vector sequence {�v k}∞k=0
is Cauchy. From Lemma 9.9, it follows that if the vector sequence
satisfies the Cauchy condition (see Definition 9.6), then each coordi-
nate sequence is also Cauchy. From Theorem 9.5, a Cauchy sequence
converges and thus each coordinate sequence converges to a finite num-
ber. Consequently, the vector sequence converges to a finite valued
vector. Let us denote the limit by �v∗. Hence we have that

lim
k→∞

||�v k − �v∗|| = 0. (9.17)

Now we need to show that F�v∗ = �v∗. From norms’ properties
(Sect. 3), it follows that

0 ≤ ||F�v∗ − �v∗||
= ||F�v∗ − �v k + �v k − �v∗||
≤ ||F�v∗ − �v k||+ ||�v k − �v∗||
= ||F�v∗ − F�v k−1||+ ||�v k − �v∗||
≤ λ||�v∗ − �v k−1||+ ||�v k − �v∗|| (9.18)
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From (9.17), both terms of the right hand side of (9.18) can be made
arbitrarily small by choosing a large enough k. Hence

||F�v∗ − �v∗|| = 0.

This implies that F�v∗ = �v∗, and so �v∗ is a fixed point of F .
What remains to be shown is that the fixed point �v∗ is unique.

To prove this, let us assume that there are two vectors �a and �b that
satisfy �x = F�x. Hence

�a = F�a, and �b = F�b.

Then using the contraction property, one has that:

λ||�b− �a|| ≥ ||F�b− F�a||
= ||�b− �a||

which implies that:
λ||�b− �a|| ≥ ||�b− �a||.

Since a norm is always non-negative, and since λ < 1, the above must
imply that ||�b − �a|| = 0. As a result, �a = �b, and uniqueness follows.

11. Stochastic Approximation
Stochastic approximation is the science underlying the usage of

step-size-based schemes that exploit random numbers for estimat-
ing quantities such as means and gradients. Examples of stochastic
approximation schemes are the simultaneous perturbation algorithm
and most reinforcement learning algorithms. In this section, we collect
together some important definitions and an important result related
to stochastic approximation theory. We will first present an impor-
tant idea related to convergence of sequences, which will be needed
subsequently.

11.1. Convergence with Probability 1
The notion of convergence with probability 1 needs to be understood

at this stage. This concept is somewhat different from the idea of
convergence of a sequence discussed above.

Definition 9.9 A sequence {xk}∞k=0 of random variables is said to
converge to a random number x∗ with probability 1 if for a given ε > 0
and a given δ > 0, there exists an integer N such that

P
[
|xk − x∗| < ε

]
> 1− δ for all k ≥ N,
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i.e., P

[
lim
k→∞

xk = x∗
]
= 1.

In the above definition, note that N may depend on both ε and δ.
The definition implies that if a sequence tends to a limit with proba-
bility 1, then you can make δ as small as you want, and still obtain a
finite value for N , at which the sequence is arbitrarily close (ε-close)
to the limit. The definition given above could be extended to a vector
via replacement of |xk − x∗| by the norm ||�x k − �x∗||. This type of
convergence is also called almost sure convergence.

When we have convergence of this kind, for a given value of ε > 0,
the probability with which the absolute value of the difference between
the value of the sequence and its limit is greater than ε can be made
as small as one wants. However, there will always be that small prob-
ability (at most δ) with which the absolute value of the difference may
differ from the limit by a distance greater than ε. Note that in our pre-
vious definition of convergence, there was no such probability. Further
note that in the definition above, the sequence does not necessarily
have to be a sequence of independent random variables. Although
the strong law of large numbers uses this concept of convergence, the
sequence in it has to one of independent random variables.

11.2. Ordinary Differential Equations
It can be shown under certain conditions that underlying a stochas-

tic approximation scheme, e.g., that used in reinforcement learning
and simultaneous perturbation, there exists an ordinary differential
equation (ODE). Before we study the ODE underlying a stochastic
approximation scheme, we need to study some important properties
related to ODEs in general. In this subsection, we will consider prop-
erties that we will need later in the book.

11.2.1 Equilibrium Points

Consider an ODE in two variables x and t:

d�x

dt
= f(�x, t), (9.19)

where f(�x, t) is a function of �x and t, where �x ∈ �n and t ∈ �. We
now present an important definition.

Definition 9.10 The equilibrium point, also called a critical point,
of the ODE in Eq. (9.19) is defined to be a vector �x∗ which satisfies
the following:

f(�x∗, t) = 0.
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In other words, the function f(�x, t) equals 0 at the equilibrium point.
We need to understand that the equilibrium point of an ODE does
not have to be unique, i.e., there may be more than one equilibrium
point for an ODE.

11.2.2 A Ball

We define an open ball in �n that is centered on �x and has a radius
of r ∈ �, where r > 0, to be the following set:

B(�x, r) = {�y ∈ �n : ||�x− �y|| < r},

where ||.|| denotes any norm. For instance, for n = 1, the ball is simply
the open interval: (x− r, x+ r). Similarly, if n = 2, then the ball can
be viewed geometrically as an open circle whose radius is r and center
is �x.

11.2.3 Solution of an ODE

The solution of the ODE in (9.19) will be denoted by �x(t) to indicate
that it is a function of t.

Example: Consider the ODE given by

dx

dt
= − x

1 + t
. (9.20)

By separation of variables, we have that the solution is

x =
x0(1 + t0)

1 + t
,

where x0 and t0 are obtained from the boundary condition to elimi-
nate the constant of integration. Here, we can denote the solution in
general as:

φ(t) =
x0(1 + t0)

1 + t
.

Important note: The function, φ(t), is the solution of the ODE,
and is a very important tool that will be used in our analysis. Notation
employed commonly in the literature on stochastic approximation uses
x(t) to denote the solution, φ(t), and also to denote the variable, x,
itself, but we will refrain from using x(t) in this book—in order to
avoid confusion. In general, when we are dealing with vectors, the
solution will be denoted by �φ(t), while �x will denote the variable.
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11.2.4 Stable Equilibrium

Definition 9.11 An equilibrium point �x∗ is said to be a stable equi-
librium point of the ODE in Eq. (9.19) if and only if for all values of
ε > 0, there exists a scalar r(ε) > 0, where r(ε) may possibly depend

on ε, such that if �φ(0) ∈ B(�x∗, r(ε)), where B(.) is a ball of radius r(ε)

centered on �x∗ and �φ(t) is the solution of the ODE concerned, then for

all t, �φ(t) ∈ B(�x∗, ε).

What this definition implies is that if a stable solution of the ODE
starts at a point close to the equilibrium point (i.e., within a distance
of r(ε) from the equilibrium point), then it always remains ε-close to
the equilibrium point. Thus, when the equilibrium point is stable, if
one starts at a solution close enough to the equilibrium point, then one
remains close to it throughout the trajectory pursued by the solution
(i.e., even when t tends to infinity). It is easy to see that the solution
x = 0 for the ODE in (9.20) is an equilibrium point, and it can also
be shown to be a stable equilibrium.

11.2.5 Asymptotically Stable Equilibrium

Definition 9.12 An equilibrium point �x∗ of the ODE in Eq. (9.19) is
said to be an asymptotically stable equilibrium point if it is stable and
in addition:

lim
t→∞

�φ(t) = �x∗, where �φ(t) denotes the solution of the ODE.

The implication is that the equilibrium point is not only stable but
in addition, eventually the ODE’s solution will converge to the equi-
librium point. In the ODE of Eq. (9.20), where x = 0 is the unique
equilibrium point, it is easy to see that:

lim
t→∞φ(t) = 0,

and hence x = 0 is an asymptotically stable equilibrium.
When the solution �φ(t) converges to �x∗ for any initial condition, the

asymptotically stable equilibrium is called a globally asymptotically
stable equilibrium. For example consider the ODE in Eq. (9.20). For
all values of x0 and t0, the solution φ(t) will converge to 0 (i.e., x = 0,
the equilibrium) as t tends to ∞. Thus, regardless of the initial con-
ditions, the solution converges to the critical point, and hence here,
x = 0 is a globally asymptotically stable equilibrium point for that
ODE.
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11.3. Stochastic Approximation and ODEs
We have already seen the so-called “stochastic approximation”

scheme, which is step-size-based and has random noise in it, in the
context of simultaneous perturbation and reinforcement learning. In
this section, we will study some important mathematical properties of
this scheme under the so-called “synchronous conditions” of updating
(explained below). We will present a framework that captures the
behavior of such a scheme under such conditions. A scheme that is
step-size-based but noise-free can also be analyzed via the framework
that we will present below.

The specific framework that we are interested in here is often called
the ordinary differential equation (ODE) framework of stochastic
approximation. It essentially shows that the behavior of the stochas-
tic approximation scheme (algorithm) can be modeled by an ODE.
We first present some notation that will be useful in describing this
framework.

We begin with some definitions that we need.

Definition 9.13 The function f(x) is said to Lipschitz continuous
on the set X if a finite number K ∈ �, where K ≥ 0, exists such that
for all x1, x2 ∈ X

||f(x2)− f(x1)|| ≤ K||x2 − x1||.

The above also applies when x is replaced by a vector �x. In order to
establish Lipschitz continuity of a function, frequently the following
test is applied. One computes the derivative of the function. If the
derivative can be shown to be bounded, the function is Lipschitz con-
tinuous. Hence all linear functions are Lipschitz continuous. Here is
how we can illustrate this. Consider the function:

f(�x) = 3 + 2x(1)− 9x(2).

It is Lipschitz continuous in �x since ∂f(�x)
∂x(1) = 2 and ∂f(�x)

∂x(2) = −9.

A example of a function that is not Lipschitz continuous is f(x) =
2 + 4x2 where x ∈ �. The derivative is 8x, which is unbounded when
x ∈ �. However, for the case where the domain of x is a bounded set,
e.g., (5, 42), clearly, 8x is bounded, and hence f(x) is Lipschitz over
that domain.

A stochastic approximation scheme (algorithm) that works “syn-
chronously” is defined as follows.

Definition 9.14 Consider the following algorithm in which the val-
ues of �X belonging to �N are updated iteratively. The value of �X



314 SIMULATION-BASED OPTIMIZATION

in the kth iteration of the algorithm will be denoted by �Xk. Then,
the synchronous stochastic approximation (updating) scheme (or algo-
rithm) is given as follows. For l = 1, 2, . . . , N ,

Xk+1(l) = Xk(k) + αk
[
F ( �Xk)(l) + wk(l)

]
, (9.21)

where αk is a positive scalar called step size, whose value is generally
less than 1, F (.) is a continuous function from �N to �N , F ( �X)(l)

denotes the lth component of the vector, F ( �X), and wk(l) denotes the
noise term involved in the kth iteration of the algorithm while updat-
ing xk(l).

The descriptor “synchronous” in the above indicates that when the
lth element of �X k is being updated, all the values used in the up-
date (9.21) belong to the kth iteration. Thus, in the above updating
equation, (9.21), we find that all values in the right-hand side belong
to the kth iteration. For a synchronous algorithm to work, one must
update all elements of �X in a given iteration before moving on to the
next iteration.

Examples: We have seen synchronous algorithms with step sizes in
simultaneous perturbation. In reinforcement learning, we use step
sizes, but the updating is asynchronous. Imagine for the time being
that we are using reinforcement learning in a synchronous manner.
Then, for an example of �Xk, think of the Q-factors in reinforcement
learning. Each Q-factor can then be viewed as a component of the
iterate. Thus, the lth component of �X k, i.e., Xk(l) = Qk(i, a) where
l = (i, a).

Noise: The meaning of the so-called “noise term” will become clearer
when we analyze specific algorithms. For the time being, assume it to
be an additional term that is carried within the algorithm.

In what follows, we will use the term Fk to denote the history of the
algorithm from the first iteration up to and including the kth iteration.
We now define it formally.

Definition 9.15 The history of the stochastic approximation algo-
rithm until and including the kth iteration, Fk, is defined as:

Fk = { �X1, �X2 . . . , �Xk, �w 1, �w 2 . . . , �w k}.

We now make some assumptions about our algorithm before stating
an important result related to it. These assumptions are essentially
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conditions on our algorithm. For the result that we will present below,
all of these conditions should hold.

Assumption 9.11 The function F (.) is Lipschitz continuous.

The precise implication of the following condition will become
clearer later. Essentially what the following condition ensures is that
the effect of the noise vanishes in the limit, i.e., as if it never existed!

Assumption 9.12 For l = 1, 2, . . . , N and for every k, the following
should be true about the noise terms:

E
[
wk(l)|Fk

]
= 0;

E

[(
wk(l)

)2∣∣∣∣F
k

]
≤ z1 + z2|| �Xk||2; (9.22)

where z1 and z2 are scalar constants and ||.|| could be any norm.

It is not hard to see that the first condition within the assumption
above essentially states that the conditional expectation of the noise
(the condition being that the history of the algorithm is known to us)
is 0. The second condition in (9.22) states that the second (conditional)
moment of the noise is bounded by a function of the iterate. If the
iterate is bounded, this condition holds.

Assumption 9.13 The step size αk satisfies the following conditions:

∞∑

k=1

αk = ∞; (9.23)

∞∑

k=1

(
αk
)2

< ∞. (9.24)

The above conditions are the famous tapering size conditions
imposed on all stochastic approximation schemes. When noise is
not present, the condition in (9.24) is not needed.

Assumption 9.14
{
�X k
}∞
k=1

remains bounded with probability 1.

The above condition (i.e., boundedness of the iterates) is almost always
needed in convergence of stochastic approximation. We now present
some background for the last condition.

A major contribution of stochastic approximation theory has been
to establish that underlying each component of the iterate, there ex-
ists a continuous-valued variable. Remember that in reinforcement
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learning and in simultaneous perturbation, the iterate changes values
in discrete steps; the actual change depends on the step size amongst
other factors. For instance, a Q-factor may change from a value of
8.1 to 8.3 in one iteration. The imaginary continuous-valued variable
that lies under the iterate allows us to model a continuous change in
values provided the step sizes are small enough. Further, the theory of
stochastic approximation shows that for the purpose of analysis, the
algorithm can be replaced by an ordinary differential equation (ODE)
involving the continuous-valued variable and that the solution of the
ODE can be used to study the algorithm’s progress.

In mathematically sophisticated language, the sequence of values
{ �Xk}∞k=1 can be replaced by the solution, �φ(t), to an ODE of the form
in Eq. (9.19), in particular:

d�x

dt
= F (�x), where note: (9.25)

The lowercase letter x (or �x in case of vectors) will denote the

continuous-valued variable underlying the iterate X (or �X in case
of vectors).

The scalar variable t in the ODE will play the role of the iteration
number k.

Then, the solution of this ODE, �φ(t), will essentially replace the tra-
jectory of our algorithm, and

lim
t→∞

�φ(t)

will represent the behavior of the algorithm as k tends to infinity (i.e.,
in the long run). The reason for exploiting the ODE should perhaps be
obvious now: the solution of the ODE better be the solution to which
our algorithm should converge! We now present a critical condition
related to the ODE.

Assumption 9.15 The ODE in Eq. (9.25) has a unique asymptoti-
cally stable equilibrium point, which we denote by �x∗.

If the condition above is unclear (especially if you wonder how an
ODE has appeared out of nowhere!), please study the following simple
example.

Example: Consider the following simple algorithm:

Xk+1 ← Xk + αk
[
5Xk

]
, where Xk ∈ � for all k.
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The ODE for this algorithm will be (compare the above to Eq. (9.21)):

dx

dt
= 5x.

Thus, all you need to identify the ODE is the algorithm’s transforma-
tion, F (.).

We are now at a position to present the important result from
[184], which forms the cornerstone of convergence theory of stochastic
approximation schemes via the ODE method.

Theorem 9.16 Consider the synchronous stochastic approximation
scheme defined in Eq. (9.21). If Assumptions 9.11—9.15 hold, then

with probability 1, the sequence
{
�X k
}∞
k=1

converges to �x∗.

The proof of the above is rather deep, and involves some additional
results that are beyond the scope of this text. The result is very
powerful; it implies that if we can show these assumptions to hold, the
algorithm is guaranteed to converge. The implications of the result
are somewhat intuitive, and we will discuss those below. Also, we will
show in subsequent chapters that this result, or some of its variants,
can be used to show the convergence of simultaneous perturbation and
many reinforcement learning algorithms.

We note that the result above also holds in a noise-free setting, i.e.,
when the noise term w(l) = 0 for every l in every iteration of the
algorithm. As stated above, when we have a noise-free algorithm, the
condition in (9.24) in Assumption 9.13 is not needed.

The intuition underlying the above result is very appealing. It im-
plies that the effect of noise in the noisy algorithm will vanish in the
limit if Assumption 9.12 is shown to be true. In other words, it is
as if noise never existed in the algorithm and that we were using the
following update:

Xk+1(l) = Xk(l) + αk
[
F ( �Xk)(l)

]

in which there is no noise. Note that if the above scheme con-
verges to some point, say �Y , we would have that limk→∞Xk+1(l) =
limk→∞Xk(l) ≡ Y (l) for every l, which would lead us to

Y (l) = Y (l) + α[F (�Y )(l)], for every l, which implies that for every l

F (�Y )(l) = 0. (9.26)

In general, in stochastic approximation, we seek the above solution.
In the context of reinforcement learning, the function F (.) will be
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designed in a manner such that (9.26) is the solution of the Bellman
equation, while in the context of simultaneous perturbation, (9.26)
will define a stationary point of the function that we are seeking to
optimize.

Bibliographic Remarks. All the material in this chapter until Sect. 11 is classical,
and some of it is more than a hundred years old. Consequently, most of this material
can be found in any standard text on mathematical analysis. The results that we
presented will be needed in subsequent chapters. Gaughan [95] and Douglass [81]
cover most of the topics dealt with here until Sect. 11. The fixed point theorem can
be found in Rudin [254].

Material in Sect. 11 on ODEs can be found in [54], and Theorem 9.16 is from

Kushner and Clark [184] (see also [185, 48]). Work on ODEs and stochastic ap-

proximation has originated from the work of Ljung [192].



Chapter 10

CONVERGENCE ANALYSIS

OF PARAMETRIC OPTIMIZATION

METHODS

1. Chapter Overview
This chapter deals with some simple convergence results related to

the parametric optimization methods discussed in Chap. 5. The main
idea underlying convergence analysis of an algorithm is to identify
(mathematically) the solution to which the algorithm converges.
Hence to prove that an algorithm works, one must show that the
algorithm converges to the optimal solution. In this chapter, this is
precisely what we will attempt to do with some algorithms of Chap. 5.

The convergence of simulated annealing requires some understanding
of Markov chains and transition probabilities. To this end, it is suf-
ficient to read all sections of Chap. 6 up to and including Sect. 3.1.3.
It is also necessary to read about convergent sequences. For this
purpose, it is sufficient to read all the material in Chap. 9 up to and
including Theorem 9.2. Otherwise, all that is needed to read this
chapter is a basic familiarity with the material of Chap. 5.

Our discussion on the analysis of the steepest-descent rule begins in
Sect. 3. Before discussing the mathematical details, we review defini-
tions of some elementary ideas from calculus and a simple theorem.

2. Preliminaries
In this section, we define some basic concepts needed for understand-

ing convergence of continuous parametric optimization. The material
in this section should serve as a refresher. All of these concepts will
be required in this chapter. Readers familiar with them can skip this
section without loss of continuity.

© Springer Science+Business Media New York 2015
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2.1. Continuous Functions
Definition 10.1 A function f(�x) defined as f : D → � is said to be
continuous on the set D if and only if

lim
�x→�c

f(�x) = f(�c) for every �c ∈ D.

We now illustrate this idea with the following example function from
� to �:

f(x) = 63x2 + 5x.

Note that the function must be continuous since for any c ∈ �,

lim
x→c

f(x) = lim
x→c

(63x2 + 5x) = 63c2 + 5c = f(c).

Now consider the following example. A function f : � → � is
defined as:

f(x) =
x2 − 5x+ 6

x2 − 6x+ 8
when x = 2; f(x) = 90 when x = 2.

Now, at x = 2, we have:

lim
x→2

f(x)= lim
x→2

x2 − 5x+ 6

x2 − 6x+ 8
= lim

x→2

(x− 2)(x− 3)

(x− 2)(x− 4)
= lim

x→2

x− 3

x− 4
=
1

2
= 90.

This implies, from the definition above, that the function is not con-
tinuous at x = 2, and hence the function is not continuous on �.

2.2. Partial Derivatives
Definition 10.2 The partial derivative of a function of multiple vari-
ables (x(1), x(2), . . . , x(k)) with respect to the ith variable, x(i), is
defined as

∂f(x(1), x(2), . . . , x(k))

∂x(i)
≡

lim
h→0

f(x(1), x(2), . . . , x(i) + h, . . .+ x(k))− f(x(1), x(2), . . . , x(k))

h
.

The partial derivative defined here is actually the first partial derivative.

2.3. A Continuously Differentiable Function
Definition 10.3 A function f : D → � is said to be continuously
differentiable if each of its partial derivatives is a continuous function
on the domain (D) of the function f .
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Example: Consider the function

f(x, y) = 5x2 + 4xy + y3.

Then,
∂f(x, y)

∂x
= 10x+ 4y, and

∂f(x, y)

∂y
= 4x+ 3y2.

It is not hard to show that both partial derivatives are continuous
functions. Hence, the function must be continuously differentiable.

2.4. Stationary Points and Local
and Global Optima

Definition 10.4 A stationary point of a function is the point (vector)
at which the first partial derivative has a value of 0.

Hence if the function is denoted by f(x(1), x(2), . . . , x(k)), then the
stationary point can be determined by solving the following system of
linear equations (composed of k equations):

∂f(x(1), x(2), . . . , x(k))

∂x(j)
= 0, for j = 1, 2, . . . , k.

Definition 10.5 A local minimum of a function f : �k → � is a
point, �x∗, which is no worse than its neighbors; i.e., there exists an
ε > 0 such that:

f(�x∗) ≤ f(�x), (10.1)

for all �x ∈ �k satisfying the following property:

||�x− �x∗|| < ε, where ||.|| denotes any norm.

Note that the definition does not hold for any ε, but says that there
exists an ε that satisfies the condition above.

Definition 10.6 If the condition in (10.1) of the previous definition
is satisfied with a strict inequality, i.e., if

f(�x∗) < f(�x),

then �x∗ is called a strict local minimum of the function f .
When the definition is satisfied with a ≤ instead of <, �x∗ is still a

local minimum, but it is not a strict local minimum.
If for every neighborhood of �x that does not include �x, f(�x∗)− f(�x)

assumes both negative and positive values, �x∗ is called a saddle point
of the function f .
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Definition 10.7 A global minimum for a function f : �k → � is a
point (vector) which is no worse than all other points in the domain
of the function; that is,

f(�x∗) ≤ f(�x), for all �x ∈ �k.

This means that the global minimum is the minimum of all the local
minima.

The definitions for local and global maxima can be similarly
formulated. See Fig. 10.1 to get geometric intuition for strict local
optima and saddle points. See Fig. 10.2 for an illustration of the
difference between local and global optima.

2.5. Taylor’s Theorem
The Taylor’s theorem is a well-known result (see any elementary

mathematics text, e.g., [181]). It shows that a function can be
expressed as an infinite series involving derivatives if derivatives of

Y

Saddle
Point

X

Strict Local Minimum

Figure 10.1. Strict local optima and saddle points in function minimization

X

Y
Z

X, Y, and Z are local optima.  
Y is the global optimum.

Function Minimization

Figure 10.2. Local and global optima
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all orders exist and if some other conditions hold. A function for
which derivatives of all orders exist is also called a smooth function.
We present this result without proof.

Theorem 10.1 (Taylor Series with one variable) A smooth function
f(x+ h) can be expressed as follows:

f(x+h) = f(x)+h
df(x)

dx
+
(h)2

2!

d2f(x)

dx2
+. . .+

(h)n

n!

dnf(x)

dxn
+. . . (10.2)

We will now prove that a local minimum is a stationary point in
the single variable case. The result can be easily extended to multiple
variables.

Theorem 10.2 A local minimum x∗ of a function f(x) is a stationary
point,

that is
df(x)

dx

∣∣∣∣
x=x∗

= 0.

Proof If |h| in the Taylor’s series is a small quantity, one can ignore
terms with h raised to 2 and higher values. Then setting x = x∗ in
the Taylor’s series, and selecting a sufficiently small value for |h|, one
has that:

f(x∗ + h) = f(x∗) + h
df(x)

dx

∣∣∣∣
x=x∗

. (10.3)

We will use contradiction logic. Let us assume that x∗ is not a sta-
tionary point. Then,

df(x)

dx

∣∣∣∣
x=x∗

= 0, i.e.,

either
df(x)

dx

∣∣∣∣
x=x∗

> 0 or
df(x)

dx

∣∣∣∣
x=x∗

< 0.

In either case, by selecting a suitable sign for h, one can always have
that:

h
df(x)

dx

∣∣∣∣
x=x∗

< 0.

Using the above in Eq. (10.3) one has that

f(x∗ + h) < f(x∗). (10.4)

From the definition of a local minimum, we have that there exists an ε
such that f(x∗ ± ε) ≥ f(x∗). If the value of h that was selected above
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satisfies |h| < ε, we have that: f(x∗ ± |h|) ≥ f(x∗). This implies that:
f(x∗ + h) ≥ f(x∗), which contradicts inequality (10.4). As a result,
the local minimum must be stationary point.

To prove that a stationary point is a local optimum, one has to
establish some additional conditions, which we do not discuss, related
to the derivatives of the function. It needs to be understood that a
stationary point may be local or a global optimum. In other words,
because a point is a local optimum, we have no guarantee that it is a
global optimum. To ascertain whether a local optimum is also a global
optimum, one needs to establish the so-called convexity properties for
the function. Most of these conditions, including the convexity and
derivative tests, are hard to verify in simulation-based optimization
because the closed form of the function is unknown. As such, we will
remain content with analysis related to the first partial derivative.
We will be also assuming, somewhat arbitrarily, that the first partial
derivative exists.

Our analysis of gradient (derivative) methods will be restricted to
showing that the algorithms can reach stationary points of the func-
tion. We will have to hope that by using a multi-start approach, the
algorithms are able to identify the global optima. In summary, it is
very important to realize that if the function does not possess the first
partial derivatives, the algorithm may not converge. Further, even
if the first partial derivatives exist, we cannot be sure that the local
optimum obtained is a global optimum unless we employ convexity
arguments.

3. Steepest Descent
In this book, the principle of steepest descent was discussed in the

context of neural networks and also simultaneous perturbation/finite
differences. Hence, we now present some elementary analysis of this
rule. We will prove that the steepest-descent rule converges to a
stationary point of the function it seeks to optimize under certain
conditions.

The main transformation in steepest descent is:

xm+1(i) = xm(i)− μ
∂f(�x)

∂x(i)

∣∣∣∣
�x=�xm

for i = 1, 2, . . . , k, (10.5)
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where f : �k → �, k denotes the number of decision variables (param-

eters), and μ is the value of the step size. We will need the following

column vector in our analysis below.

∇f(�x) =

⎡

⎢⎢⎢⎢⎢⎣

∂f(�x)
∂x(1)
∂f(�x)
∂x(2)

·
·

∂f(�x)
∂x(k)

⎤

⎥⎥⎥⎥⎥⎦
. (10.6)

We will frequently use the following notation instead of the above to
save space:

∇f(�x) =

[
∂f(�x)

∂x(1)

∂f(�x)

∂x(2)
· · · ∂f(�x)

∂x(k)

]T
.

We now present a result based on basic principles to show convergence
of steepest descent when the step sizes are constant. It essentially
shows that under certain conditions the algorithm converges to a point
at which the gradient is zero, i.e., a stationary point.

Theorem 10.3 Let �xm denote the vector of values (of the parameters)
in the mth iteration of the steepest-descent approach defined in
Eq. (10.5). If the function f is continuously differentiable, is Lipschitz
continuous, i.e.,

||∇f( �a1)−∇f( �a2)|| ≤ L|| �a1 − �a2||, ∀ �a1, �a2,∈ �k, (10.7)

for some finite L > 0, and is bounded below, then for μ < 2/L,

lim
m→∞∇f(�xm) = �0.

Proof In the proof, we will use the Euclidean norm . Hence, || · || will
denote || · ||2. Consider two vectors, �x and �z, in �k and ζ ∈ �. Let

g(ζ) = f(�x+ ζ�z).

Then, from the chain rule, one has that:

dg(ζ)

dζ
= [�z]T∇f(�x+ ζ�z). (10.8)

We will use this below. We have

f(�x+ �z)− f(�x) = g(1)− g(0) follows from the definition of g(ζ)
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=

∫ 1

0

dg(ζ) =

∫ 1

0

dg(ζ)

dζ
dζ

=

∫ 1

0

[�z]T∇f(�x+ ζ�z)dζ from (10.8)

≤
∫ 1

0

[�z]T∇f(�x)dζ+|
∫ 1

0

�zT (∇f(�x+ζ�z)−∇f(�x))dζ|

≤
∫ 1

0

[�z]T∇f(�x)dζ+

∫ 1

0

||�z|| · ||∇f(�x+ζ�z)−∇f(�x)||dζ

≤ [�z]T∇f(�x)

∫ 1

0

dζ + ||�z||
∫ 1

0

Lζ||�z||dζ from (10.7)

= [�z]T∇f(�x)

∫ 1

0

dζ + L||�z||2
∫ 1

0

ζdζ

= [�z]T∇f(�x) · 1 + L||�z||2 · 1
2
.

In the above, setting �x = �xm and �z = −μ∇f(�xm), we obtain:

f(�xm−μ∇�xm)−f(�xm) ≤ −μ[∇f(�xm)]T∇f(�xm)+
1

2
μ2L||∇f(�xm)||2.

The above can be written as:

f(�xm)− f(�xm − μ∇�xm) ≥ μ[∇f(�xm)]T∇f(�xm)− 1

2
μ2L||∇f(�xm)||2

= μ||∇f(�xm)||2 − 1

2
μ2L||∇f(�xm)||2

(10.9)

=
μL

2

(
2

L
− μ

)
||∇f(�xm)||2 (10.10)

≥ 0 if μ < 2/L. (10.11)

Note: (10.9) follows from the fact that for the Euclidean norm

[∇f(�xm)]T∇f(�xm) = ||∇f(�xm)||2.

From inequality (10.11), it follows that if μ < 2/L,

f(�xm)− f(�xm+1) ≥ 0

for any m. In other words, the values of the objective function f(�xm)
for m = 1, 2, 3, . . . form a decreasing sequence. A decreasing sequence
that is bounded below converges (see Theorem 9.2 from Chap. 9) to a
finite number. Hence:

lim
m→∞[f(�xm)− f(�xm+1)] = 0.
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From the above and (10.10), we have that

lim
m→∞

μL

2
(
2

L
− μ)||∇f(�xm)||2 ≤ 0.

In the above, all the quantities in the left hand side are ≥ 0.
Consequently,

lim
m→∞∇f(�xm) = �0.

In order to show that every limit point of the sequence {�xm}∞m=1 is a
stationary point of the function, one needs some additional conditions;
also, under some other additional conditions, one can extend the above
result to decreasing step sizes [30, Chap.3].

4. Finite Differences Perturbation Estimates
In this section, we present an important result which shows why

the central difference formula (Eq. (5.2)) yields a more accurate esti-
mate of the derivative than the forward difference formula (Eq. (5.3)).
This result is not needed for showing convergence of simultaneous

perturbation and can be skipped without loss of continuity.

Theorem 10.4 The forward difference formula (5.3) ignores terms
of the order of h2 and of higher orders, while the central difference
formula (5.2) ignores terms of the order of h3 and of higher orders,
but not the terms of the order of h2.

Proof The forward difference formula assumes that all terms of the
order of h2 and higher orders of h are negligible. If h is small, this is
a reasonable assumption, but it produces an error nevertheless. The
central difference formula on the other hand does not neglect terms of
the order of h2. It neglects the terms of the order of h3 and higher
orders of h. From the Taylor Series, ignoring terms with h2 and higher
orders of h, we have that:

f(x+ h) = f(x) + h
df(x)

dx
.

This, after re-arrangement of terms, yields:

df(x)

dh
=

f(x+ h)− f(x)

h
,

which of course is the forward difference formula given in Eq. (5.3).
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Now, from the Taylor series,

f(x−h) = f(x)−h
df(x)

dx
+

(h)2

2!

d2f(x)

dx2
−· · ·+(−1)n

(h)n

n!

dnf(x)

dxn
+ . . .

(10.12)

Now if we ignore terms of the order of h3 and higher in both
Eqs. (10.2) and (10.12), then subtracting Eq. (10.2) from Eq. (10.12),
we have that:

f(x+ h)− f(x− h) = 2h
df(x)

dx
,

which after re-arrangement yields

df(x)

dx
=

f(x+ h)− f(x− h)

2h
.

The above is the central differences formula of Eq. (5.2), which was
obtained without ignoring terms of the order of h2.

5. Simultaneous Perturbation
Material in this section is devoted to a convergence analysis of

simultaneous perturbation. We will discuss convergence of the algo-
rithm under three progressively weaker sets of conditions. We first
need to define some notation.

1. The shorthand notation f(�xm + �hm) will be used to denote

f(xm(1) + hm(1), xm(2) + hm(2), . . . , xm(k) + hm(k)).

2. Dm(i) will denote the true value of the partial derivative of the
function under consideration with respect to the ith variable at the
mth iteration of the algorithm; the derivative will be calculated at
�x = �xm. Thus mathematically:

Dm(i) ≡ ∂f(�x)

∂x(i)

∣∣∣∣
�x=�xm

. (10.13)

3. Sm
h (i) will denote the simultaneous perturbation estimate of the

derivative in the mth iteration of the algorithm that uses �h for
perturbation. Mathematically, this estimate is defined as:

Sm
h (i) ≡ f(�xm + �hm)− f(�xm − �hm)

2hm(i)
. (10.14)
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The above assumes that exact values of the function are available
in the computation above. In what follows, we will drop h from the
subscript of Sm, but it will be understood that every simultaneous
perturbation estimate will depend on the vector �h. Also, the vector
�h is computed using Eq. (5.4).

4. The update used in the simultaneous perturbation algorithm can
be given by

xm+1(i) = xm(i)− μmSm(i) for i = 1, 2, . . . , k, (10.15)

where Sm(.) is defined in Eq. (10.14).

5. We define a set K = {1, 2, . . . , k}.

We now discuss how this section is organized. In Sect. 5.1, we will
exploit a powerful result related to stochastic gradients. In Sect. 5.2,
we will use an approach based on ODEs (ordinary differential equa-
tions) to show convergence. Finally, in Sect. 5.3, we will state the
conditions used in Spall [280, 281] to establish convergence.

5.1. Stochastic Gradient
We will first consider a stochastic gradient algorithm of which

simultaneous perturbation is a special case. Consider the stochastic
gradient algorithm usually defined as:

xm+1(i) = xm(i)− μm

[
∂f(�x)

∂x(i)

∣∣∣∣
�x=�xm

+ wm(i)

]
for i = 1, 2, . . . , k

(10.16)

where k is the number of decision variables, μm is the value of the step
size in the mth iteration, and wm(i) is a noise term. Note that this
algorithm is called the stochastic gradient algorithm because of the
noise present in what is otherwise the update of the steepest-descent
algorithm. We will now impose some conditions on this algorithm.

Assumption 10.5 The function f : �k → � satisfies the following
conditions:

f(�x) ≥ 0 everywhere.

f(�x) is continuously differentiable, and the function ∇f(�x) is Lip-
schitz continuous , i.e.,

||∇f( �x1)−∇f( �x2)|| ≤ L|| �x1 − �x2||, ∀ �x1, �x2,∈ �k.
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Assumption 10.6 Let the step size satisfy the following conditions:

lim
l→∞

l∑

m=1

μm = ∞; lim
l→∞

l∑

m=1

(μm)2 < ∞. (10.17)

We now define the “history” of the algorithm up to and including the
mth iteration by the set:

Fm =
{
�x 0, �x 1, . . . , �xm, �D 0

s , �D
1
s , . . . , �D

m
s , μ0, μ1, . . . , μm

}
.

The history allows us to impose some further conditions on the noise
in the algorithm.

Assumption 10.7 For some scalars A and B

E [wm(i)|Fm] = 0 for every i (10.18)

and E
[
||�wm||2|Fm

]
≤ A+B||∇f(�xm)||2 (10.19)

We now present a key result without proof.

Theorem 10.8 Consider the algorithm defined in Eq. (10.16). If
Assumptions 10.5—10.7 hold, then, with probability 1,

R1. The sequence {f(�xm)}∞m=1 converges.

R2. limm→∞∇f(�xm) = 0.

The condition R2 essentially implies that the algorithm will converge
with probability 1 to a stationary point, i.e., to a point at which the
gradient will be 0. A more general version of this result can be found
in [33, Prop 4.1; pg 141].

In order to show convergence via Theorem 10.8, we need to prove
that the conditions imposed in Theorem 10.8 hold for simultaneous
perturbation. One of these assumptions is Assumption 10.7 which
will be shown to hold via Lemma 10.11. For the latter, we need the
following elementary result.

Theorem 10.9 (Taylor Series for a function of two variables: x(1)
and x(2)) A smooth function f(x(1) + h(1), x(2) + h(2)) (infinitely
differentiable in both variables) can be expressed as follows if �x =
(x(1), x(2)).

f(x(1) + h(1), x(2) + h(2)) = f(x(1), x(2)) + h(1)
∂f(�x)

∂x(1)
+ h(2)

∂f(�x)

∂x(2)
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+
1

2!

[
[h(1)]2

∂2f(�x)

∂x2(1)
+ 2h(1)h(2)

∂2f(�x)

∂x(1)∂x(2)
+ [h(2)]2

∂2f(�x)

∂x2(2)

]
+ . . .

(10.20)

The proof of the above can be found in any standard calculus text.
We are now at a position to prove Lemma 10.11 from [108].

Assumption 10.10 The function f is smooth (i.e., infinitely differ-
entiable).

Lemma 10.11 If Assumption 10.10 is true of the function defined
in the update in Eq. (10.15), the noise terms in the update satisfy
Assumption 10.7.

Proof We will use the Euclidean norm below, i.e., ||.|| will mean
||.||2. The proof’s road map is as follows: First a relationship is de-
veloped between the simultaneous perturbation estimate and the true
derivative, which helps define the noise—that will be shown to satisfy
Assumption 10.7.

We will assume for the time being that k = 2. From the Taylor series
result, i.e., Eq. (10.20), ignoring terms with h3 and higher orders of h
and suppressing the superscript m, we have that:

f(x(1)+h(1), x(2)+h(2)) = f(x(1), x(2))+h(1)
∂f(�x)

∂x(1)
+h(2)

∂f(�x)

∂x(2)
+

1

2!

[
[h(1)]2

∂2f(�x)

∂x2(1)
+ 2h(1)h(2)

∂2f(�x)

∂x(1)∂x(2)
+ [h(2)]2

∂2f(�x)

∂x2(2)

]
(10.21)

From the same Taylor series, we also have that:

f(x(1)−h(1), x(2)−h(2)) = f(x(1), x(2))−h(1)
∂f(�x)

∂x(1)
−h(2)

∂f(�x)

∂x(2)
+

+
1

2!

[
[h(1)]2

∂2f(�x)

∂x2(1)
+ 2h(1)h(2)

∂2f(�x)

∂x(1)∂x(2)
+ [h(2)]2

∂2f(�x)

∂x2(2)

]
.

(10.22)
Subtracting Eq. (10.22) from Eq. (10.21), we have

f(x(1) + h(1), x(2) + h(2))− f(x(1)− h(1), x(2)− h(2)) =

2h(1)
∂f

∂x(1)
+ 2h(2)

∂f(�x)

∂x(2)
.

From the above, by re-arranging terms, we have:

f(x(1) + h(1), x(2) + h(2))− f(x(1)− h(1), x(2)− h(2))

2h(1)
=
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∂f(�x)

∂x(1)
+

h(2)

h(1)

∂f(�x)

∂x(2)
.

Noting the fact that we had suppressed m in the superscript and
from the definitions of Sm(i) and Dm(i), the above can be written as

Sm(1) = Dm(1) +
hm(2)

hm(1)

∂f(�x)

∂x(2)
. (10.23)

Equation (10.23), using the k-variable version of Eq. (10.20), can be
generalized to:

Sm(i) = Dm(i) +
k∑

j �=i;j=1

hm(j)

hm(i)

∂f(�x)

∂x(j)
for every i ∈ K. (10.24)

If we define the noise in simultaneous perturbation as

wm(i) = Sm(i)−Dm(i) for every i ∈ K, (10.25)

we have that the simultaneous perturbation update in Eq. (10.15) is
of the stochastic descent update defined in Eq. (10.16).

The definition of noise in Eq. (10.25) implies that

wm(i) =
k∑

j �=i;j=1

hm(j)

hm(i)

∂f(�x)

∂x(j)
for every i ∈ K. (10.26)

Let us also define the set of the history of the algorithm up to and
including the mth iteration by:

Fm = {�x 0, �x 1, . . . , �xm, �S0, �S1, . . . , �Sm, μ0, μ1, . . . , μm}.

From Eq. (5.4), we know that for any (i, j) pair where i ∈ K and j ∈ K,

hm(j)

hm(i)
=

Hm(j)

Hm(i)
.

Now, if the history of the algorithm is known, from the Bernoulli
distribution used in computing �H (see algorithm description in Chap. 5
and Eq. (5.4)), it follows that for any given (i, j) pair, where i ∈ K and
j ∈ K,

E

[
hm(j)

hm(i)

∂f(�x)

∂x(j)

∣∣∣∣F
m

]
= E

[
Hm(j)

Hm(i)

∂f(�x)

∂x(j)

∣∣∣∣F
m

]

= [(0.5)(−1)+(0.5)(1)]E

[
1

Hm(i)

∂f(�x)

∂x(j)

∣∣∣∣F
m

]

= 0.



Convergence: Parametric Optimization 333

From the above equation and from Eq. (10.26), it follows that for every
i ∈ K ,

E[wm(i)|Fm] =
k∑

j �=i;j=1

0 = 0,

thereby proving Eq. (10.18) in Assumption 10.7. Condition (10.19) in
the same assumption will now be shown.

Remember from the algorithm description in Chap. 5 that for any
(i, j) pair, where i ∈ K and j ∈ K,

h(j)

h(i)
= 1 or − 1.

Hence for any i, j ∈ K,

[
h(j)

h(i)

]2
= 1 and

∣∣∣∣
h(j)

h(i)

∣∣∣∣ = 1. (10.27)

Then, it can be shown that:

||�wm||2 = [wm(1)]2 + [wm(2)]2 + · · ·+ [wm(k)]2

=
k∑

i=1

⎛

⎝
k∑

j �=i;j=1

hm(j)

hm(i)

∂f(�x)

∂x(j)

⎞

⎠
2

= (k − 1)||∇f(�xm)||2 +A.

The above follows from noting that A represents the sum of products
within the square of each wm(.); the above also employs the Euclidean
norm and exploits (10.27) and the fact that each of the partial deriva-
tives is bounded.

We note that in the proof above, the noise did not represent the noise
induced by simulation; rather it is the noise in the derivative due to
Spall’s formula. Remember that Spall’s formula does not compute
the exact derivative. We now show the convergence of simultaneous
perturbation.

Theorem 10.12 The simultaneous perturbation algorithm converges
to a stationary point of the objective function, f(�x), with probability
1 if (i) Assumption 10.10 is true and (ii) Assumptions 10.5 and 10.6
are true.
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Proof This follows from a combination of Theorem 10.8 and
Lemma 10.11.

Note that smoothness, continuous differentiability, and Lipschitz
continuity of the first derivative are conditions that can be only shown
when the closed form of the function is available. This is rarely the
case in simulation-based optimization. In fact, simulation-based op-
timization is used when the closed form is not available; when the
closed form is available, simulation optimization is rarely the pre-
ferred method. Hence Spall refers to showing these conditions as an
“abstract ideal” [281]. Nonetheless, it is important to know if there
are certain conditions under which the algorithm can converge. The
first condition in Assumption 10.5, which allows the function to take
on only non-negative values, can certainly be verified. The condition
on the step sizes (Assumption 10.6) can be shown to be true for a large
number of step-size rules (see Spall [281] for a detailed discussion).
A simple rule that satisfies these conditions is A/(B + m) where A
and B are non-negative scalars.

In the next subsection, we will show convergence under a slightly
weaker set of conditions, which do not require that the function assume
only non-negative values.

5.2. ODE Approach
We will now show convergence under conditions milder than the

ones imposed in the previous subsection on the function. In partic-
ular, we note that we will not need to assume that the function f
has to be non-negative everywhere, which is a rather strong condition
that may not hold generally. We will use the result on ODEs (ordi-
nary differential equations) presented as Theorem 9.16 in the previous
chapter. We make the following assumptions on the function f(.) used
in the update defined in Eq. (10.15).

But, first remember that in the context of ODEs, we represent the
iterates using upper-case letters (X) and the continuous-valued process
underlying them by the lower-case letter (x). Thus, the update will
be represented using the following notation here:

Xm+1(i) = Xm(i)− μmSm
h (i) for i = 1, 2, . . . , k, where Sm

h (.)

(defined in Eq. (10.14)), using our uppercase notation, is:

Sm
h (i)≡f( �Xm+�hm)−f( �Xm−�hm)

2hm(i)
; see algorithm for definition of �hm.
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Assumption 10.13 The function ∇f(.) is Lipschitz continuous.

Assumption 10.14 The function f(.) is Lipschitz continuous.

We now consider the ODE defined as follows:
d�x

dt
= F (�x).

If we define F (�x) for Theorem 9.16 as

F (�x) = ∇f(�x),

then any local minimum of the function f(.) is an equilibrium point
for the ODE since the local minimum is defined as

∇f(�x) = �0, while an equilibrium point is
d�x

dt
= 0.

We now make two additional assumptions.

Assumption 10.15 A local minimum of the function f(�x) is a unique
asymptotically stable equilibrium point for the ODE

d�x

dt
= F (�x) = ∇f(�x).

Assumption 10.16 The iterate �Xm remains bounded with probabil-
ity 1.

We now state convergence under conditions weaker than those
needed in the previous subsection.

Theorem 10.17 The simultaneous perturbation algorithm converges
to a local minimum of the objective function, f(.), with probability 1,
if Assumptions 10.6, 10.10, and 10.13–10.16 are true.

For the proof, we will use Theorem 9.16 from Chap. 9. The reader
should review this result at this point.

Proof In order to invoke Theorem 9.16, we must show that conditions
required for convergence in Theorem 9.16 hold here. Assumption 10.6
≡ Assumption 9.13; Assumption 10.13 implies that Assumption 9.11
is true for F (.) = ∇f(.); Assumption 10.15 ≡ Assumption 9.15;
Assumption 10.16 ≡ Assumption 9.14.

We now show that Assumption 9.12 also holds. From Lemma 10.11,
Assumption 10.10 implies that condition (10.18) of Assumption 10.7
must hold, i.e., the first condition of Assumption 9.12 must hold. From
Assumption 10.14, we have that the derivative of f(.) is bounded, and
hence the conditional mean of the square of the noise in (10.19) must be
bounded. Since the iterates are also bounded (by Assumption 10.16),
the second condition (see (9.22)) in Assumption 9.12 must hold. Then,
the result follows from Theorem 9.16.
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5.3. Spall’s Conditions
Spall [280] showed convergence of simultaneous perturbation under

conditions weaker than those described above. While we do not present
all the details of his ODE-based convergence analysis and refer the
interested reader to the text [281], we note the following: Instead
of the strong Assumption 10.10, he needs only the following weaker
condition:

Assumption 10.18 The function f(.) is bounded and is three times
continuously differentiable.

Some of the other conditions needed in [280] are Assumptions 10.6,
10.15, and 10.16.

6. Stochastic Adaptive Search
The convergence theory for many Stochastic Adaptive Search (SAS)

techniques relies on Markov chains. The reader not familiar with
Markov chains is hence advised to read material in Chap. 6 until and
including Sect. 3.1. In particular, we will need concepts related to
transition probabilities and properties such as recurrence, ergodicity,
and regularity. We now present some fundamental concepts that will
be needed throughout this section.

Underlying Markov chain. We use i and j to denote indices of
solutions encountered by the technique (algorithm). Let P (i, j) denote
the probability that the next solution be j when the current solution
is i. If this probability depends only on i, then clearly we have a
Markov chain underlying the algorithm’s transitions, i.e., if we think of
a solution as a state in the Markov chain, the trajectory of the solutions
generated by the algorithm can be viewed as a Markov chain. P (i, j),
the element in the ith row and jth column of P, will then denote the
(one-step) transition probability of the underlying Markov chain.

In many SAS algorithms described in Chap. 5, we have used the
notion of the generator matrix, G, where G(i, j) denotes the probabil-
ity that a solution indexed by j will be generated as a candidate for
the solution in the next iteration given that the solution in the current
iteration is indexed by i. Of course, a candidate may or may not be
accepted, depending on how the algorithm works. (If the current solu-
tion is generated as a candidate, it is accepted by default.) This idea
can be mathematically captured by the notion of acceptance proba-
bility, A(i, j), which denotes the probability that a candidate solution
indexed by j is accepted by the algorithm provided the current solution
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is the solution indexed by i. This leads to the following model for the
transition probability of the underlying Markov chain:

P (i, j) =

{
G(i, j)A(i, j) when i = j;
G(i, i)A(i, i) +

∑
i �=j G(i, j)(1−A(i, j)),

(10.28)

where A(i, i) = 1. Note that in the above, the expression for P (i, j)
with i = j follows from elementary product rule of probabilities, while
the same for P (i, i) follows from the fact that the algorithm remains
in the same solution either if it is generated again and accepted, or if
some other solution is generated but rejected. Note that A(i, i) must
equal 1 for the probabilities to be well-defined.

In some SAS algorithms, we will have a unique Markov chain that
will define its behavior. In some algorithms, however, the Markov
chain will change with every iteration or after a few iterations. When
the Markov chain does not change with iterations, it will be called a
stationary or homogenous Markov chain, while if it changes with iter-
ations, it will be called a non-stationary or non-homogenous Markov
chain. These ideas will be clarified further in the context of every
algorithm that we will analyze.

Convergence metrics. To analyze the convergence of any SAS tech-
nique, we will be interested in answering the following three questions:

1 Does the algorithm reach the global optimum in the limit
(asymptotically)?

2 How many iterations are needed to first strike or hit the optimal
solution?

3 Does the algorithm settle down into the optimal solution in the
limit?

The first question is related to whether the algorithm will ever reach
the global optimum and is the most fundamental of questions we ask
of any optimization algorithm. The second question revolves around
how long the first hitting time will be. The last question is regard-
ing whether the algorithm will eventually be absorbed into the global
optimum.

For some algorithms, as we will see below, it is possible to answer all
three questions. But, for any SAS technique, we would like to have at
the very least an answer to the first question. Answers to the second
question may provide information about the rate of convergence of
the algorithm. The reader should note that an affirmative response
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to the first question does not imply that the algorithm will take fewer
iterations than exhaustive search. All it ensures is that eventually, we
will visit the global optimum. But there is nothing specified about
how long that might take! Hence, one must also answer the second
question and hopefully establish that the rate of convergence is faster
than that of exhaustive search. Finally, an affirmative answer to the
third question assures us that in the limit the algorithm in some sense
converges to the optimal solution.

It should be clear now that if the algorithm converges to the optimal
solution in the limit (answer to the third question), then the answer to
the first question is yes. However, producing an answer to the second
question is more important from the practical standpoint since it gives
us an idea of how long an algorithm may take before identifying an
optimal solution. Oftentimes answering this question is the hardest
task.

We also note that the number of iterations to first strike/hit the
optimal is likely to be a random variable in an SAS technique. There-
fore, one is interested in the mean and also in the variance (and pos-
sibly higher order moments) of this number. Finally, we note that in
algorithms where the “best solution thus far” is maintained, the num-
ber of iterations to first strike the optimal is sufficient to measure the
rate of convergence. But in algorithms like the nested partitions and
stochastic ruler, where one does not keep this in memory, one may have
to use other ways to measure the rate of convergence. We will explore
answers to these questions for some stochastic search algorithms now.
We begin with pure random search where our discussion follows [333].

6.1. Pure Random Search
Let m denote the iteration number in pure random search and let X

denote the set of solutions in the problem. We now state the following
result.

Theorem 10.19 Pure random search strikes the global optimum
almost surely as m → ∞.

Proof Let q(j), where q(j) > 0 for every j, denote the probability

of selecting the solution indexed by j such that
∑|X |

j=1 q(j) = 1. Then
the transitions from one solution to another in the algorithm can be
modeled by a stationary Markov chain whose transition probabilities
are defined as: P (i, j) = q(j) for every i. Clearly then, the Markov
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chain is regular, and hence ergodic. Hence, every state, including the
global optimal solution, will be visited infinitely often in the limit, and
we are done.

We now present a result (see e.g., [333]) that computes the mean
and variance of the number of iterations needed for the first strike at
the global optimum for any pure random search.

Theorem 10.20 Let q∗ denote the probability of selecting the global
optimum, and let M denote the number of iterations needed to first
strike the global optimum. For pure random search,

E[M ] =
1

q∗
and Var[M ] =

1− q∗

(q∗)2
.

Proof If we associate “success” with striking the global optimum, M
will have the geometric distribution (see Appendix), whose probability
of success is q∗. The result follows from the expressions for the mean
and variance of the geometric distribution.

The implication is that for pure random search, we can expect
the algorithm to first strike the global optimal in an average of 1/q∗
iterations. Note that typically since the structure of the problem is un-
known, one uses the algorithm in which every solution is selected with
the same probability. (If the structure is known, one may design the
algorithm such that the probability of selecting solutions in the area
where the global optimum is likely to be is higher than 1/|X |.) Thus,
if we have 1,000 solutions, q∗ = 1/1,000 = 0.001, i.e., we will strike
the global optimal in an average of 1,000 iterations. If we perform an
exhaustive search instead, we are guaranteed to reach the optimal in
1,000 iterations. In fact, with pure random search, we reach the global
optimum in an average of 1,000 iterations and the actual value may
be much larger since the variance is (1−0.001)/(0.001)2 = 999,000. In
other words, there is a large amount of variability in the performance
of this algorithm. Clearly, the expectation and variance will be smaller
for smaller problems, but for small problems, we are better served by
exhaustive enumeration.

Finally, we note that the algorithm will not be absorbed into any
state (solution), since we have a regular Markov chain. Its limiting
probabilities (q(.)) will satisfy q(j) > 0 for every state j. Hence, the
answer to the third question will be in the negative.

One reason for presenting the results above was to demonstrate the
limitations of pure random search. The results also provide us with
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some insights on how stochastic search techniques work if they fail to
adapt. As should be clear by now, the performance of a stochastic
search technique can be rather discouraging if it fails to adapt. Also
very importantly, Theorem 10.20 provides us with a benchmark with
which to compare (theoretically or empirically) the performance of
any other (existing or newly developed) SAS algorithm. Obviously,
any algorithm that does not require fewer (average) iterations than
pure random search will be of questionable value, since pure random
search is usually easier to program and execute than most algorithms.
And as we saw above, pure random search is itself of questionable
value in discrete optimization.

Before moving on to the next technique, we relate the transition
probabilities to the generator matrix of pure random search. For pure
random search, the two matrices are identical, i.e., P (i, j) = G(i, j)
for every (i, j) pair.

6.2. Learning Automata Search Technique
We now present a result in regards to the convergence of LAST

(Learning Automata Search Technique). Unlike pure random search,
LAST is an adaptive technique where one hopes that the algorithm
will eventually settle down on the global optimum. Before presenting
a result along those lines, we discuss its underlying Markov chain.

For any given iteration, we can define the transition probabilities as
follows. Let qm(l) be the probability of selecting a solution indexed by
l in the mth iteration. (In describing the algorithm, we used pm(i, a)
to denote the probability of selecting the value a for the ith decision
variable. Clearly then, if we set l ≡ (i, a), pm(i, a) = qm(l).) For the
mth iteration, we then have a Markov chain whose transition probabil-
ities are defined by Pm(r, l) = qm(l) for every r. But the probabilities
qm(l) change with every iteration, and thus we have a new transi-
tion probability matrix Pm+1(r, l) = qm+1(l) during iteration m + 1.
A Markov chain of this kind is called a non-stationary Markov chain,
which is usually harder to analyze than its stationary counterpart. We
can relate the transition probability matric to the generator matrix:
Gm(r, l) ≡ Pm(r, l), where Gm(r, l) denotes the generator matrix for
the mth iteration.

We now present a convergence result for LAST from [298] without
proof. Recall that pm(i, a) was defined as the probability of selecting
the ath value for the ith decision variable in the mth iteration. Let
a∗(i) denote the optimal value for the ith decision variable. Further
recall that μ was defined as the step size (learning rate) in LAST for
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all the decision variables. For the convergence result, we consider a
more general case where the step size may in fact be different for each
of the k decision variables. The step size for the ith decision variable
will hence be defined as μ(i) for i = 1, 2, . . . k.

Theorem 10.21 [298] Assume that the discrete optimization problem
has a unique global optimum, which is denoted by x(i, a∗(i)) for every
i = 1, 2, . . . k. Then for any ε > 0 and any δ > 0, there exists a scalar
μ∗ > 0 and an integer M0 < ∞ such that for every i = 1, 2, . . . k and
for every m > M0,

Pr (|pm(i, a∗(i))− 1| < ε) > (1− δ) if μ(i) ∈ (0, μ∗).

In other words, there exists a finite value, M0, for the number of itera-
tions such that if the algorithm is run for more than M0 iterations, for
any given δ > 0, the probability defined by Pr(|pm(i, a∗(i)) − 1| < ε)
will be greater than (1 − δ). Clearly by choosing a sufficiently small
value for δ, we can ensure that this probability will be sufficiently
close to 1. Since the probability is that of the algorithm selecting
the optimal value for a decision variable, the result essentially implies
that by choosing sufficiently small values for each μ(i), LAST can de-
termine the global optimum with an arbitrarily high probability. The
above result also implies that eventually the algorithm will converge
to the global optimum (third question). Note however that the result
does not say anything about the number of iterations needed for the
first strike at the global optimal.

6.3. Backtracking Adaptive Search
We now present a convergence analysis of BAS (Backtracking

Adaptive Search) under a structural assumption on the generator
matrix. The reader interested in a more comprehensive analysis under
a more general assumption is referred to the original work in [333].
The motivation for presenting our analysis is to highlight the basic
structure of the Markov chain underlying it. Towards the end of this
subsection, we will comment on how this analysis in many ways unifies
the theory of some SAS techniques.

The transition probabilities, the acceptance probabilities, and the
elements of the generator matrix will follow the model defined in
Eq. (10.28). The acceptance probabilities are defined as shown in
Eq. (5.10). We make the following structural assumption about the
generator matrix.

Assumption 10.22 Every element of the generator matrix, G, is
non-zero.
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Theorem 10.23 Under Assumption 10.22, BAS converges to the
global optimum almost surely as m → ∞.

Proof From Eq. (5.10), we have that A(i, j) > 0 for every (i, j)-pair.
Hence, P (i, j) > 0 for every (i, j)-pair, which implies that P is regular,
and hence ergodic. Then, every state can be visited from every other
state, which implies that regardless of where the algorithm starts, it is
almost surely guaranteed to visit the global optimum eventually.

The above line of analysis is similar to that used for pure random
search. However, one should note that on the average, BAS, un-
like pure random search, seeks improving points. We now present
a result that computes the mean number of iterations needed for the
first strike at the global optimum. We first need an elementary result
from Markov chain theory.

Lemma 10.24 Consider an ergodic Markov chain whose transition
probability matrix is defined by P. Let E[M(i)] denote the expected
number of transitions needed to first reach a distinguished state i1 in
the chain given that the initial state is i. Then, we have the following
linear system of equations:

E[M(i)] = 1 +
∑

j �=i1

P (i, j)E[M(j)] for every i in the chain.

Proof The result can be found in any text on Markov chains, e.g.,
[251].

Let i∗ denote the index of the global optimum from the finite set of
solutions denoted by X .

Theorem 10.25 Let M(i) denote the number of iterations needed for
the first strike at the global optimum provided the algorithm starts at
solution i. Under Assumption 10.22, we have that the mean number of
iterations for the first strike can be computed by solving the following
system of linear equations. For i = 1, 2, . . . , |X |,

E[M(i)] = 1 +
∑

j∈X
j �=i∗

P (i, j)E[M(j)].

Proof Since P is a regular Markov chain, it is ergodic, and hence the
result is immediate from Lemma 10.24.

The above provides a mechanism to compute the mean number of
iterations needed for the first strike at the global optimum provided
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we start at any state. It does need the elements of the underlying
transition probability matrix, however, and those values may be rather
difficult to obtain for large problems. Nonetheless, we are assured of
convergence almost surely in a finite number of iterations. In practice,
one may wish to compare the average number of iterations needed with
the corresponding number for pure random search.

Under conditions weaker than Assumption 10.22, we may not have
an underlying ergodic Markov chain. Under weaker conditions, one can
still show convergence to a global optimum, via the remarkable analysis
in [182, 333]. This analysis is beyond our scope here, but we explain
their main ideas. Consider the trajectory of solutions pursued by the
algorithm. Every time the algorithm accepts a non-improving point,
one should assume that a new sub-trajectory begins. Thus, the actual
trajectory is divided into sub-trajectories such that within in each
sub-trajectory only improving points are accepted. Then, associated
with each sub-trajectory of the algorithm, one can construct a Markov
chain with an absorbing state. The algorithm can then be viewed
as one that progresses through a sequence of Markov chains, which
can be analyzed to (i) show that the system is eventually absorbed
into the global optimum and (ii) determine the mean and variance
of the number of iterations needed for the first strike at the global
optimum.

The reader also needs to note that with Assumption 10.22, the
algorithm is a form of pure random search in which improving points
are accepted with a high probability. Further, simulated annealing in
which the temperature, T , depends only on the function values at the
current and the next iteration can also be described with BAS. In this
sense, BAS is a remarkable SAS algorithm because its convergence
theory provides insights on that of random search in general and a
specific form of simulated annealing.

6.4. Simulated Annealing
Recall that we studied two categories of algorithms in simulated

annealing: one used a fixed temperature within a phase which con-
sisted of multiple iterations and the other changed the temperature
after every iteration (i.e., the phase consisted of only one iteration). It
turns out that for a given temperature, one can construct a stationary
Markov chain. However, as soon as we change the temperature, we
have a new Markov chain. The second category in which the Markov
chain changes in every iteration can be modeled as a non-stationary
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Markov chain. We will analyze the first category, where the Markov
chain is stationary, in detail and provide references for the analysis of
the second category to the interested reader.

We begin with a simple result, often called the time reversibility
result of a Markov chain, that we will need later.

Lemma 10.26 Consider a regular Markov chain. Let the transition
probability of transitioning from state i to state j in the chain be
denoted by P (i, j). If a vector �y satisfies the following relations:

∑

i

y(i) = 1 and (10.29)

y(i)P (i, j) = y(j)P (j, i) (10.30)

for all (i, j)-pairs, then �y is the limiting (steady-state) probability vec-
tor of the Markov chain.

Proof Equation (10.30), when summed over i, yields for any j:

∑

i

y(i)P (i, j) = y(j)
∑

i

P (j, i) = y(j)1 = y(j),

which together with Eq. (10.29) implies from elementary Markov chain
theory that �y is the limiting probability vector of the Markov chain.

We now introduce the notion of symmetric neighborhood gener-
ation. Recall that neighbors are generated using generator matrices.
We assume that a neighborhood generation scheme is symmetric when
the following is true. If a point �y is a neighbor of a point �x, then �x
must be an equally likely neighbor of �y. This implies that if the algo-
rithm generates �y as a neighbor of �x with a probability of q, then �x is
generated as a neighbor of �y with an equal probability (q). We will
state this assumption formally now.

Assumption 10.27 The generator matrix, G, is symmetric.

We will need two additional assumptions for our convergence proof:
Assumption 10.22 and

Assumption 10.28 The global optimum is unique.

We now present the main result related to the convergence of simulated
annealing from [193] in which the temperature is fixed for multiple
iterations within a phase. (We note that the proof in [193] assumes
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that the matrix, G, is irreducible, which is a weaker condition than
that imposed by our Assumption 10.22.) We will assume that we are
minimizing the objective function.

Theorem 10.29 Let �x (m,Tm) denote the vector of decision variables
in the mth iteration of the phase in which the temperature is Tm. Let �x∗
denote the optimal solution. Then, under Assumptions 10.22, 10.27,
and 10.28, almost surely:

lim
T↓0

[
lim

m→∞
Tm≡T

�x (m,Tm) = �x∗

]
.

Proof We will first show that for a fixed temperature, a regular
Markov chain can be associated the algorithm and then develop an ex-
pression for the limiting probability (steady-state) vector that involves
the invariance equations. Thereafter, we will show that as T tends to
0, an absorbing Markov chain, whose absorbing state is the global
optimum, results in the limit.

Assume the temperature to be fixed at T . The associated transition
probability of going from i to j will be denoted by PT (i, j). Let X
denote the set of states (solutions). We assume that the states are
numbered as follows: 1, 2, 3, . . . , |X | such that i < j if f(�xi) < f(�xj).
Using this ordering,

f(�x1) = f(�x∗).

When in solution �xi, the algorithm generates a neighbor �xj with prob-
ability G(i, j). From Assumption 10.27 (symmetric neighborhoods),
we have that

G(i, j) = G(j, i) for all i, j.

The probability of accepting a neighbor �xj when in solution �xi, which
depends on the temperature, will be denoted by AT (i, j). Clearly, be-
cause of our ordering and because a better solution is always accepted:

AT (i, j) = 1 for all j ≤ i, while if j > i, 0 < AT (i, j) < 1.

From the above definitions and the model in (10.28), it follows that:

PT (i, j) = G(i, j)AT (i, j) when j = i. (10.31)

We note that for simulated annealing:

AT (i, j) =

{
exp
(
f(�xj)−f(�xi)

T

)
if f(�xj) > f(�xi),

1 if f(�xj) ≤ f(�xi).
(10.32)
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Now, for any s ∈ (0, 1], we define a vector,

�πT ≡ (s, s AT (1, 2), s aT (1, 3), . . . , s aT (1, |X |)), (10.33)

and then claim that �πT is the limiting probability (steady-state) vector
of the Markov chain whose transition probability from state i to state
j equals PT (i, j). To prove this claim, some work is needed, which we
now present.

Case 1: 1 < j < i.

From (10.32), it is not hard to show that if l < j < i for any l,
including 1,

AT (l, j)AT (j, i) = exp

(
f(�xj)− f(�xl)

T

)
exp

(
f(�xi)− f(�xj)

T

)

= exp

(
f(�xi)− f(�xl)

T

)
= AT (l, i). (10.34)

When 1 < j < i,

πT (i)PT (i, j) = (s AT (1, i))(AT (i, j)G(i, j))

(from Eqs. (10.33) and (10.31))

= s AT (1, i)G(i, j) (since A(i, j) = 1 when j < i)

= s AT (1, j)AT (j, i)G(i, j)

(by setting l = 1 in Equation (10.34))

= (s AT (1, j))(AT (j, i)G(j, i)) (from Assumption 10.27)

= πT (j)PT (j, i) (from Eqs. (10.33) and (10.31)).

Thus, from the above, one can conclude that when 1 < j < i,

πT (i)PT (i, j) = πT (j)PT (j, i).

Case 2: i = j. This case is trivial since the left- and right-hand sides
of the above are identical.

Case 3: 1 < i < j: This can be shown in a manner analogous to
Case 1.

Then since πT (i)PT (i, j) = πT (j)PT (j, i) is true for all (i, j)-pairs, from
Lemma 10.26, we conclude that the vector �πT is the limiting probabil-
ity vector of the Markov chain. Now, we consider what happens as T
tends to 0.



Convergence: Parametric Optimization 347

From Eq. (10.32), it follows that

lim
T→0

AT (1, j) = 0 for j = 1. (10.35)

From Eq. (10.33), we can write:

lim
T→0

�πT = (s, s lim
T→0

AT (1, 2), s lim
T→0

AT (1, 3), . . . , s lim
T→0

AT (1, |X |))

= (s, 0, 0, . . . , 0) (using Eq. (10.35))

= (1, 0, 0, . . . , 0) (since the limiting probabilities sum to 1).

We thus have a regular Markov chain for any temperature T , but in
the limit as T tends to 0, we have an absorbing Markov chain whose
absorbing state is the solution numbered 1, i.e., the optimal solution,
and we are done.

It is important to note that at each temperature the algorithm needs
to allow a sufficient number of iterations so that the proportion of time
spent in the different states “resembles the equilibrium (limiting prob-
ability) distribution” [85] of the Markov chain for that temperature.
In other words, this line of argument works only when the algorithm
performs a sufficiently large number of iterations at all values of T .

We further note that the assumption of symmetric neighborhoods
can be relaxed to obtain a slightly different result (see [193]), and that
Assumptions 10.22 and 10.28 can also be relaxed [85].

The analysis of the simulated annealing algorithm in which the
temperature changes in every iteration, as stated above, relies on con-
structing a non-stationary Markov chain [206, 67]. Unfortunately, the
analysis of the non-stationary Markov chain relies on a number of other
results and is beyond our scope here. See [85] for a clear account on
this topic.

Simulation-induced noise. The simulation-induced noise may pro-
duce an effect on the behavior of simulated annealing, and, hence we
present a simple analysis of this effect [108].

Proposition 10.30 With probability 1, the version of simulated
annealing algorithm that uses simulation-based function estimates can
be made to mimic the version that uses exact function values (noise-
free version) as long as one selects a sufficiently large number of
replications in the simulation-based function estimation.

Proof There are two issues with introducing simulation-induced noise
in the algorithm. Recall that in Step 3 of the noise-free version, we
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defined: Δ ≡ f(�xnew) − f(�xcurrent). Two possible scenarios can be
associated with Step 3: Case 1 for which Δ ≤ 0 and Case 2 for which
Δ > 0. Now if define Δ̃ ≡ f̃(�xnew) − f̃(�xcurrent), then clearly unless
the following holds the noisy algorithm will stray from the noise-free
version:

Δ̃ ≤ 0 when Δ ≤ 0, (10.36)

and Δ̃ > 0 when Δ > 0. This is the first step needed to show the result.
The second step involves analyzing what happens to the exploration
probability in the limit with the noisy estimates. We begin with the
first step. Let us consider Case 1 first.

Case 1: We denote the simulation estimate of the function at �x by
f̃(�x) and the exact value by f(�x). Then, f̃(�x) = f(�x) + η where
η ∈ � denotes the simulation-induced noise that can be positive or
negative. Then we can write f̃(�xcurrent) = f(�xcurrent)+ηcurrent and
f̃(�xnew) = f(�xnew) + ηnew. Now if η1 = |ηnew| and η2 = |ηcurrent|,
then we have four scenarios:

Scenario 1: f̃(�xnew) = f(�xnew) + η1 and f̃(�xcurrent) = f(�xcurrent) + η2

Scenario 2: f̃(�xnew) = f(�xnew) + η1 and f̃(�xcurrent) = f(�xcurrent)− η2

Scenario 3: f̃(�xnew) = f(�xnew)− η1 and f̃(�xcurrent) = f(�xcurrent) + η2

Scenario 4: f̃(�xnew) = f(�xnew)− η1 and f̃(�xcurrent) = f(�xcurrent)− η2

From the strong law of large numbers (see Theorem 2.1), η1 and
η2 can be made arbitrarily small, i.e., for a given value of ε > 0, a
sufficiently large number of replications (samples) can be selected
such that with probability 1, η1 ≤ ε and η2 ≤ ε. By choosing
ε = −Δ

2 , we have that the following will be true with probability 1:

η1 ≤ −Δ

2
and η2 ≤ −Δ

2
. (10.37)

To prove that our result holds for Case 1, we need to show that the
relationship in (10.36) is satisfied. Let us first consider Scenario 1.
What we show next can be shown for each of the other scenarios
in an analogous manner.

f̃(�xnew)− f̃(�xcurrent) = f(�xnew)− f(�xcurrent) + η1 − η2 (Scenario 1)

= Δ+ η1 − η2

≤ Δ− Δ

2
− η2 (from (10.37))

=
Δ

2
− η2 ≤ 0 (from (10.37) since η2 ≥ 0)
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Case 2: Using arguments very similar to those used above, we can
show that by selecting a suitable number of replications, we can
ensure that:

Δ̃ ≡ f̃(�xnew)− f̃(�xcurrent) > 0 (10.38)

when Δ > 0.

We now consider the second step in the proof. We now study the
probability of selecting a worse neighbor (exploration) and what hap-
pens to it in the limit. Remember, this probability converges to 0 as
m → ∞ in the noise-free version. In the noisy version, we need to
show that the algorithm exhibits the same behavior. The probability
corrupted by noise is:

exp

(
f̃(�xnew)− f̃(�xcurrent)

T

)
. (10.39)

From inequality (10.38), the numerator in the power of the exponential
term will always be strictly positive. As a result,

lim
T→0

exp

(
f̃(�xnew)− f̃(�xcurrent)

T

)
= 0.

6.5. Modified Stochastic Ruler
Like BAS, the modified stochastic ruler has a stationary Markov

chain underlying it. The reader is urged to review the steps and
terminology associated with the stochastic ruler from Chap. 5.

We now define the following probability:

P (�xnew, a, b) = Pr(f(�xnew, ω) ≤ U(ω)),

where f(�x, ω), a random variable, is the random value obtained of the
function f(�x) from one replication (sample) and U(ω) is a random
value obtained from the uniform distribution Unif(a, b). Note that
�xnew is itself a random variable since the candidate is generated using
the generator matrix G. Then, from the steps in the algorithm, it is
clear that the transition probabilities of the Markov chain underlying
the modified stochastic ruler can be described as:

P (i, j) =

{
[P (�xnew, a, b)]

I if i = j

1− [P (�xnew, a, b)]
I if i = j

It is not hard to see that when the current solution is the global opti-
mum, P (�xnew, a, b) will equal zero for any �xnew. Hence from the above,
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at the global optimum, �x∗, we will have that P (�x∗, �x∗) = 1, i.e., the
Markov chain will be an absorbing one in which the global optimum is
the absorbing state, assuming we have a unique global optimum. This
implies that eventually, the system will be absorbed into the global
optimum. The reader is referred to [6] for additional analysis and
insights.

7. Concluding Remarks
Our goal in this chapter was to present a subset of the results in

the convergence theory of model-free parametric optimization tech-
niques. Our goal in this chapter was not very ambitious in that
we restricted our attention to results that can be proved without us-
ing very complicated mathematical arguments. The initial result on
the steepest-descent rule was presented because it is repeatedly used
throughout this book in various contexts. Overall, we presented some
preliminary analysis related to the convergence of steepest descent and
some SAS techniques. The bibliographic remarks mention several ref-
erences to additional works that cover this topic in greater depth.

Bibliographic Remarks. Classical steepest-descent theory can be found in [29].
In Theorem 10.8, result R1 was shown by [233] and result R2 can be found
in [33]. The convergence of simultaneous perturbation in the presence of noise
was first established in Spall [280]. Our account here using stochastic gradients
(Lemma 10.11 and Theorem 10.12) follows from Gosavi [108]. The ODE analysis
in Sect. 5.2 is new, while the material in Sect. 5.3 is from Spall [281].

Simulated annealing was first analyzed in Lundy and Mees [193]. Some other

papers that also study its convergence properties are Fox and Heine [88], Gelfand

and Mitter [96], and Alrefaei and Andradóttir [5]. For the use of non-stationary

Markov chains in convergence of simulated annealing, see Fielding [85], Cohn and

Fielding [67], and Mitra et al. [206]. Our analysis studying the effect of simulation

noise is based on Gosavi [108]. Tabu search [102], the genetic algorithm [256],

LAST [298], BAS [182], stochastic ruler [329, 6], and nested partitions [273] have

also been treated for convergence analysis in the literature. The text of Zabinsky

[333] provides a sophisticated treatment of the topic of SAS techniques for global

optimization.



Chapter 11

CONVERGENCE ANALYSIS

OF CONTROL OPTIMIZATION

METHODS

1. Chapter Overview
This chapter will discuss the proofs of optimality of a subset of

algorithms discussed in the context of control optimization. The
chapter is organized as follows. We begin in Sect. 2 with some defini-
tions and notation related to discounted and average reward Markov
decision problems (MDPs). Subsequently, we present convergence
theory related to dynamic programming (DP) for MDPs in Sects. 3
and 4. In Sect. 5, we discuss some selected topics related to semi-
MDPs (SMDPs). Thereafter, from Sect. 6, we present a selected
collection of topics related to convergence of reinforcement learning
(RL) algorithms.

For DP, we begin by establishing that the Bellman equation can
indeed be used to generate an optimal solution. Then we prove that the
classical versions of value and policy iteration can be used to generate
optimal solutions. It has already been discussed that the classical
value-function-based algorithms have Q-factor equivalents. For RL, we
first present some fundamental results from stochastic approximation.
Thereafter, we use these results to prove convergence of the algorithm.
The reader will need material from Chap. 9 and should go back to
review material from there, as and when it is required.

2. Dynamic Programming: Background
We have seen the Bellman equation in various forms thus far. For

the sake of convergence analysis, we need to express the Bellman
equation in the form of a “transformation.” The value function can
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then be viewed as a vector that gets transformed every time the Bell-
man transformation is applied on it.

We will first define a couple of transformations related to the
discounted reward problem, and then define the corresponding trans-
formations for the average reward problem.

The transformation T , you will recognize, is the one that we use
in the value iteration algorithm for discounted reward (of course, it is
derived from the Bellman optimality equation). T is defined as:

TJ(i) = max
a∈A(i)

⎡

⎣r̄(i, a) + λ

|S|∑

j=1

p(i, a, j)J(j)

⎤

⎦ for all i ∈ S, (11.1)

where TJ(i) denotes the ith component of the vector T ( �J). Although
all the terms used here have been defined in previous chapters, we
repeat the definitions for the sake of your convenience.

The symbols i and j stand for the states of the Markov chain and
are members of S—the set of states. The notation |S| denotes the
number of elements in this set.

a denotes an action and A(i) denotes the set of actions allowed in
state i.

λ stands for the discounting factor.

p(i, a, j) denotes the probability of transition (of the Markov chain)
in one step from state i to state j when action a is selected in state i.

r̄(i, a) denotes the expected immediate reward earned in a one-
step transition (of the Markov chain) when action a is selected in
state i. The term r̄(i, a) is defined as shown below:

r̄(i, a) =

|S|∑

j=1

p(i, a, j)r(i, a, j), (11.2)

where r(i, a, j) is the immediate reward earned in a one-step tran-
sition (of the Markov chain) when action a is selected in state i and
the next state happens to be j.

J(i) denotes the ith component of the vector �J , which is the vector
that is transformed by T .

Important note: The summation notation of (11.2) will also be at
times denoted by

∑
j∈S . Further note that the transformation T can

be also be viewed as a function T (.) where T : �|S| → �|S|.
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The next important transformation that we define is the one
associated with the Bellman equation for a given policy. It is denoted
by Tμ̂ and is defined as:

Tμ̂J(i) = r̄(i, μ(i)) + λ

|S|∑

j=1

p(i, μ(i), j)J(j) for all i ∈ S. (11.3)

Here μ(i) denotes the action to be taken in state i when policy μ̂ is
followed.

By setting λ = 1 in T , one obtains L. Similarly, by setting λ = 1 in
Tμ̂, one obtains Lμ̂. Thus, Lμ̂ and L are the average reward operators
corresponding to Tμ̂ and T respectively. We note, however, that in
average reward algorithms, we often use modifications of L and Lμ̂.
For the sake of completeness, we next define the transformations L
and Lμ̂, where L(�x) and Lμ̂(�x) will denote vectors, while Lx(i) and
Lμ̂x(i) will denote their ith components respectively.

For all i ∈ S, LJ(i) = max
a∈A(i)

⎡

⎣r̄(i, a) +
|S|∑

j=1

p(i, a, j)J(j)

⎤

⎦ ; (11.4)

Lμ̂J(i) = r̄(i, μ(i)) +

|S|∑

j=1

p(i, μ(i), j)J(j). (11.5)

All the relevant terms have been defined in the context of T and Tμ̂.
Some more notation and definitions are needed:

2.1. Special Notation
Let F denote a dynamic programming operator (such as T or Lμ̂).

Then the notation F k has a special meaning, which has been explained
in the previous chapter. We quickly explain it here again.

T 2
μ̂
�J will denote the mapping Tμ̂ (see Eq. (11.3)) applied to the vec-

tor Tμ̂( �J). In other words, the definition is:

T 2
μ̂J(i) = r̄(i, μ(i)) + λ

∑

j∈S
p(i, μ(i), j)Tμ̂J(j) for all i ∈ S.

In general, for any k = 2, 3, 4, . . .,

T k
μ̂ (

�J) = Tμ̂

(
T k−1
μ̂ ( �J)

)
.
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Similarly, T 2 will denote the following:

T 2J(i) = max
a∈A(i)

⎡

⎣r̄(i, a) + λ
∑

j∈S
p(i, a, j)TJ(j)

⎤

⎦ for all i ∈ S,

where T has been defined in (11.1). The meaning of the notations Lk

and Lk
μ̂ follows in an analogous manner. We now discuss an important

property of monotonicity that will be needed later.

2.2. Monotonicity of T, Tµ̂, L, and Lµ̂

The monotonicity of a transformation F implies that given two
vectors �J and �J ′, which satisfy the relationship:

J(i) ≤ J ′(i)

for all values of i, the following is true for every positive value of k:

F kJ(i) ≤ F kJ ′(i) for all values of i.

We will establish this monotonicity result for T and Tμ̂. The mono-
tonicity result can be established for L and Lμ̂ by setting λ = 1 in the
respective results for T and Tμ̂.

Let us consider the result for T . We will use an induction argument.
A(i) will denote the set of actions allowable in state i. Now for all
i ∈ S,

TJ(i) = max
a∈A(i)

⎡

⎣r̄(i, a) + λ
∑

j∈S
p(i, a, j)J(j)

⎤

⎦

≤ max
a∈A(i)

⎡

⎣r̄(i, a) + λ
∑

j∈S
p(i, a, j)J ′(j)

⎤

⎦

= TJ ′(i).

Thus, the relation is true when k = 1. Next, we assume that the
result holds when k = m. Thus if J(i) ≤ J ′(i) for all values of i, then
Tm(J(i)) ≤ Tm(J ′(i)).

Now, for all i ∈ S, Tm+1J(i) = max
a∈A(i)

[
r̄(i, a) + λ

∑

j∈S
p(i, a, j)TmJ(j)

]

≤ max
a∈A(i)

[
r̄(i, a) + λ

∑

j∈S
p(i, a, j)TmJ ′(j)

]

= Tm+1J ′(i), completing the induction.
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Next, we will show that the result holds for Tμ̂, i.e., for policy μ̂. The
proof is similar to the one above.

Since for all i ∈ S, Tμ̂J(i) =

⎡

⎣r̄(i, μ(i)) + λ
∑

j∈S
p(i, μ(i), j)J(j)

⎤

⎦

≤

⎡

⎣r̄(i, μ(i)) + λ
∑

j∈S
p(i, μ(i), j)J ′(j)

⎤

⎦

= Tμ̂J
′(i), the result must hold for k=1.

Now assuming that the result is true when k = m,

J(i) ≤ J ′(i) for all i ∈ S will imply that Tm
μ̂ (J(i)) ≤ Tm

μ̂ (J ′(i)).

Then for all i ∈ S, Tm+1
μ̂ J(i) =

[
r̄(i, μ(i)) + λ

∑

j∈S
p(i, μ(i), j)Tm

μ̂ J(j)

]

≤
[
r̄(i, μ(i)) + λ

∑

j∈S
p(i, μ(i), j)Tm

μ J ′(j)

]

= Tm+1
μ̂ J ′(i), completing the induction.

2.3. Key Results for Average
and Discounted MDPs

We will now present some useful lemmas for discounted and average
reward. These results will be used for proving the optimality of the
Bellman equation and can be found (without the proofs) in Vol II of
[30]. Lemma 11.1 is related to discounted reward and Lemma 11.2 is
related to average reward.

Lemma 11.1 Given a bounded function h : S → �, if r(xs, a, xs+1)
denotes the immediate reward earned in the sth jump of the Markov
chain under the influence of action a and μ̂ denotes the policy used to
control the Markov chain, then, for all values of i ∈ S:

T k
μ̂h(i) = Eμ̂

[
λkh(xk+1) +

k∑

s=1

λs−1r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]
, where

xs denotes the state from which the sth jump of the Markov chain
of the policy occurs, λk equals λ raised to the kth power, and Eμ̂,
the expectation over the trajectory of states produced by policy μ̂, is
defined as follows:
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Eμ̂

[
λkh(xk+1) +

k∑

s=1

λs−1r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]

≡
∑

x2∈S
p(x1, μ(x1), x2)[r(x1, μ(x1), x2)] +

∑

x2∈S
p(x1, μ(x1), x2)×

∑

x3∈S
p(x2, μ(x2), x3)[λr(x2, μ(x2), x3)]+· · ·+

∑

x2∈S
p(x1, μ(x1), x2)×

∑

x3∈S
p(x2, μ(x2), x3)× · · · ×

∑

xk+1∈S
p(xk, μ(xk), xk+1)×

[
λk−1r(xk, μ(xk), xk+1) + λkh(xk+1)

]
.

(11.6)

We now present a simple proof for this, but the reader can skip it
without loss of continuity.

Proof We will use induction on k. From the definition of Tμ̂ in
Eq. (11.3), for all i ∈ S,

Tμ̂h(i) =
∑

j∈S
p(i, μ(i), j) [r(i, μ(i), j) + λh(j)]

= Eμ̂

[
λh(x2)+

1∑

s=1

[r(xs, μ(xs), xs+1)]

∣∣∣∣∣x1=i

]
, when j=x2,

and thus the result holds for k = 1. We must now show that the result
holds for k = m+ 1. Assuming the result to hold for k = m, we have:

For all i ∈ S, Tm
μ̂ h(i) = Eμ̂

[
λmh(xm+1) +

m∑

s=1

λs−1r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]

which implies that if x2 = i (instead of x1 equaling i):

Tm
μ̂ h(i) = Eμ̂

[
λmh(xm+2) +

m+1∑

s=2

λs−2r(xs, μ(xs), xs+1)

∣∣∣∣∣x2 = i

]
,

i.e., Tm
μ̂ h(x2) = Eμ̂

[
λmh(xm+2) +

m+1∑

s=2

λs−2r(xs, μ(xs), xs+1)

]
.

(11.7)
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Now, Tm+1
μ̂ h(x1) = Tμ̂(T

m
μ̂ h(x1))

=
∑

x2

p(x1, μ(x1), x2)
[
r(x1, μ(x1), x2) + λTm

μ̂ h(x2)
]

(11.8)

=
∑

x2

p(x1, μ(x1), x2)

[
r(x1, μ(x1), x2) + λ×

Eμ̂

[
λmh(xm+2) +

m+1∑

s=2

λs−2r(xs, μ(xs), xs+1)

]]
(11.9)

= Eμ̂

[
λm+1h(xm+2) +

m+1∑

s=1

λs−1r(xs, μ(xs), xs+1)

]
, (11.10)

where (11.8) follows from Eq. (11.3), (11.9) follows from Eq. (11.7), and
(11.10) follows from the definition of Eμ̂ in (11.6). Then, for x1 = i,
we have that for all i ∈ S:

Tm+1
μ̂ h(i) = Eμ

[
λm+1h(xm+2) +

m+1∑

s=1

r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]
.

The following lemma can be obtained by setting λ = 1 in the
previous lemma.

Lemma 11.2 Given a bounded function h : S → �, if r(xs, a, xs+1)
denotes the immediate reward earned in the sth jump of the Markov
chain under the influence of action a and μ̂ denotes the policy used to
control the Markov chain, then, for all values of i ∈ S:

Lk
μ̂h(i) = Eμ̂

[
h(xk+1) +

k∑

s=1

r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]
.

The implication of Lemma 11.1 (Lemma 11.2) is that if one selects
any |S|-dimensional bounded vector and applies the mapping Tμ̂ (Lμ̂)
upon it k times, one obtains the expected total discounted reward (total
reward) earned in a finite trajectory of k jumps (of the Markov chain)
starting at state i and using the policy μ̂.

Before starting a discussion on analysis of DP algorithms, we
would like to emphasize that throughout the book, we have made the
following assumptions:

1. All immediate rewards are finite, i.e.,

|r(xs, μ(xs), xs+1)| ≤ M1 for all s for some positive value of M1.



358 SIMULATION-BASED OPTIMIZATION

2. All transition times are finite, i.e.,

|t(xs, μ(xs), xs+1)| ≤ M2 for all s for some positive value of M2.

3. The state space and the action space in every problem (MDP or
SMDP) are finite. Further, the Markov chain of any policy in the
MDP/SMDP is regular (regularity is discussed in Chap. 6).

3. Discounted Reward DP: MDPs
This section will deal with the analysis of the convergence of

algorithms used for the (total) discounted reward criterion. This
section will only discuss some classical dynamic programming methods.

3.1. Bellman Equation for Discounted Reward
The Bellman equation for discounted reward was motivated in a

heuristic sense in previous chapters. We will now discuss its optimal-
ity, i.e., show that a solution of the Bellman equation identifies the
optimal solution for a discounted reward MDP. We first provide some
key definitions.

Definition 11.1 The value function vector associated with a given
policy μ̂ for the discounted reward case is defined as:

Jμ̂(i) ≡ lim
k→∞

Eμ̂

[
k∑

s=1

λs−1r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]
for all i ∈ S.

(11.11)

In this definition, xs is the state from where the sth transition occurs
in the Markov chain. The definition implies that Jμ̂(i) is the total
discounted reward earned along an infinitely long trajectory (sequence)
of states by starting at state i and following policy μ̂ at every state
encountered. So in other words, we control the Markov chain with a
policy μ̂, and observe the rewards over an infinitely large number of
jumps (transitions). Of course, future rewards are discounted with a
factor of λ. The expectation operator is used in the definition above
because xs+1 is a stochastic element. (Remember there is no unique
xs+1 associated with a given xs because of the stochastic nature of
the transitions). The expectation is over all the trajectories.

Admissible policies. Thus far, by policy, we have meant a station-
ary, deterministic policy. A deterministic policy is one in which one
always selects a single action in a given state; this is opposed to a
so-called stochastic policy in which every action allowed in that state
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is selected with some probability less than or equal to 1. Thus, the
notion of a stochastic policy is more general than that of a determin-
istic policy. Every deterministic policy can be viewed as a special case
of a stochastic policy in which in every state the probability of select-
ing one action equals 1 while the probabilities of selecting the other
actions equal 0.

In a stationary policy, the probability of selecting a given action
(which could equal 1 or 0) in a state is the same regardless of which
jump the state is encountered in. In a non-stationary policy, on
the other hand, this probability could be different in every jump
for any and every state. In general, a so-called admissible policy is
non-stationary, possibly composed of different stationary, stochastic
policies, μ̂1, μ̂2, . . ., associated to each jump. Thus, in each jump, we
could have action selection being performed according to a different
stationary, stochastic policy.

We now present a very important definition, that of the optimal
value function.

Definition 11.2 The optimal value function vector for the discounted
MDP is defined as:

J∗(i) ≡ max
all σ

Jσ(i) for each i ∈ S, (11.12)

where σ = {μ̂1, μ̂2 . . .} is an admissible policy in which policy μ̂s is
selected in the sth jump of the Markov chain, and for each i ∈ S,

Jσ(i) ≡ lim
k→∞

Eσ

[
k∑

s=1

λs−1r(xs, μs(xs), xs+1)

∣∣∣∣∣x1 = i

]
.

What is important to note is that via Eq. (11.12), we define an optimal
solution over all admissible policies. In other words, the value function
of the optimal policy is one that maximizes the value function over all
admissible policies. Note also that we drop the hat .̂ symbol over the
policy’s name to indicate that it is an admissible policy. Thus, Jσ
denotes the value function of an admissible policy σ, while Jd̂ denotes

the value function of a stationary deterministic policy d̂.
We now prove an important property of the transformation un-

derlying the Bellman equation, namely, the contraction property.
This property will help in showing that the Bellman equation has a
unique solution. The property will also be helpful later in showing the
ε-convergence of value iteration. To proceed any further, one should
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become familiar with the notion of contraction mappings and the
Fixed Point Theorem (Theorem 9.10 on page 307)—both topics are
discussed in detail in Chap. 9.

Proposition 11.3 The mapping T , i.e., the Bellman operator for
discounted reward, is contractive with respect to the max norm. In
other words, given two vectors, �J and �J ′ in S, we have that:

||T �J − T �J ′|| ≤ ς|| �J − �J ′||,

where ||.|| is the max-norm, ς ∈ (0, 1), and ς equals λ, the discounting
factor.

Proof Let state space S = S1 ∪ S2 where S1 and S2 will be defined
below.

Case 1: Assume that for all i ∈ S1, TJ(i) ≥ TJ ′(i).

Case 2: Assume that TJ ′(i) ≥ TJ(i) for all i ∈ S2.

We first consider Case 1.

Now, define for every i ∈ S1, a(i) ∈ argmax
u∈A(i)

⎡

⎣r̄(i, u) + λ
∑

j∈S
p(i, u, j)J(j)

⎤

⎦ .

In other words, a(i) denotes an action in the ith state that will maxi-
mize the quantity in the square brackets above. This implies that:

TJ(i) =

⎡

⎣r̄(i, a(i)) + λ
∑

j∈S
p(i, a(i), j)J(j)

⎤

⎦ for every i ∈ S1.

Similarly, let b(i) ∈ argmax
u∈A(i)

⎡

⎣r̄(i, u) + λ
∑

j∈S
p(i, u, j)J ′(j)

⎤

⎦

for all i ∈ S1, which will imply that:

TJ ′(i) =

⎡

⎣r̄(i, b(i)) + λ
∑

j∈S
p(i, b(i), j)J ′(j)

⎤

⎦ for every i ∈ S1.

Since action b(i) maximizes the quantity in the square brackets above,

for every i ∈ S1, TJ ′(i) ≥

⎡

⎣r̄(i, a(i)) + λ
∑

j∈S
p(i, a(i), j)J ′(j)

⎤

⎦ .
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Then, for every i ∈ S1, − TJ ′(i) ≤ −
[
r̄(i, a(i)) + λ

∑

j∈S
p(i, a(i), j)J ′(j)

]
.

Combining this with the definition of TJ(i) and the fact that TJ(i) ≥
TJ ′(i) for all i ∈ S1, we have that for every i ∈ S1:

0 ≤ TJ(i)− TJ ′(i)

≤

⎡

⎣r̄(i, a(i)) + λ
∑

j∈S
p(i, a(i), j)J(i)

⎤

⎦−

⎡

⎣r̄(i, a(i)) + λ
∑

j∈S
p(i, a(i), j)J ′(i)

⎤

⎦

= λ
∑

j∈S
p(i, a(i), j)[J(i)− J ′(j)]

≤ λ
∑

j∈S
p(i, a(i), j)max

j
|J(j)− J ′(j)|

= λmax
j

|J(j)− J ′(j)|

⎛

⎝
∑

j∈S
p(i, a(i), j)

⎞

⎠

= λmax
j

|J(j)− J ′(j)|(1) = λ|| �J − �J ′||.

Thus, for all i ∈ S1: TJ(i)− TJ ′(i) ≤ λ|| �J − �J ′||. (11.13)

Case 2: Using logic similar to that used above, one can show that:

TJ ′(i)− TJ(i) ≤ λ||�J ′ − �J || = λ|| �J − �J ′|| for all i ∈ S2. (11.14)

Together (11.13) and (11.14) imply that:

|TJ(i)− TJ ′(i)| ≤ λ|| �J − �J ′|| for all i ∈ S. (11.15)

This follows from the fact that the LHS of each of the inequalities
(11.13) and (11.14) has to be positive. Hence, when the absolute value
of the LHS is selected, both (11.13) and (11.14) will imply (11.15).

Since inequality (11.15) holds for any i ∈ S, it also holds for the
value of i ∈ S that maximizes |TJ(i)− TJ ′(i)|. Therefore:

max
i

|TJ(i)−TJ ′(i)| ≤ λ|| �J − �J ′||; i.e., ||T �J −T �J ′|| ≤ λ|| �J − �J ′||.
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The next result shows that the property also holds for the mapping
associated with a given policy.

Proposition 11.4 The mapping Tμ̂, i.e., the dynamic programming
operator associated with a policy μ̂ for discounted reward, is contrac-
tive. In particular we will prove that given two vectors �J and �J ′,

||Tμ̂
�J − Tμ̂

�J ′|| ≤ λ|| �J − �J ′||,

where ||.|| is the max-norm and λ ∈ (0, 1) is the discounting factor.

Proof The proof is very similar to that above. Let state space S =
S1 ∪ S2 where S1 and S2 will be defined below.

Case 1: Assume that for all i ∈ S1, Tμ̂J(i) ≥ Tμ̂J
′(i).

Case 2: Assume that for all i ∈ S2, Tμ̂J
′(i) ≥ Tμ̂J(i).

We consider Case 1 first. Using arguments similar to that in Case 1
for the proof above, we have that for every i ∈ S1:

0 ≤ Tμ̂J(i)− Tμ̂J
′(i)

=

⎡

⎣r̄(i, μ(i)) + λ
∑

j∈S
p(i, μ(i), j)J(i)

⎤

⎦−

⎡

⎣r̄(i, μ(i)) + λ
∑

j∈S
p(i, μ(i), j)J ′(i)

⎤

⎦

= λ
∑

j∈S
p(i, μ(i), j)[J(i)− J ′(j)]

≤ λ
∑

j∈S
p(i, μ(i), j)max

j
|J(j)− J ′(j)|

= λmax
j

|J(j)− J ′(j)|

⎛

⎝
∑

j∈S
p(i, a(i), j)

⎞

⎠

= λmax
j

|J(j)− J ′(j)|(1) = λ|| �J − �J ′||.

Thus, for all i ∈ S1: Tμ̂J(i)− Tμ̂J
′(i) ≤ λ|| �J − �J ′||.

The Case 2 can be argued as in the proof above, and the result follows
using very similar arguments.



Convergence: Parametric Optimization 363

We will now present two key results, Propositions 11.5 and 11.6, that
will help in analyzing the Bellman optimality and the Bellman policy
equation, respectively.

Proposition 11.5 (i) For any bounded function h : S → �, the
following limit exists:

lim
k→∞

T kh(i) for all i ∈ S.

(ii) Furthermore, this limit equals the optimal value function.

The proposition implies that if any vector (say �h) with finite values
for all its components is selected and the transformation T is applied
infinitely many times on it, one obtains the optimal discounted reward
value function vector (i.e., �J∗).

Proof Part (i): Proposition 11.3 implies that T is contractive, and
hence Theorem 9.10 implies that the limit exists. Part (ii): We skip
this proof; the reader is referred to Prop. 1.2.1 from [30].

We now present the key result related to Tμ̂.

Proposition 11.6 Consider the value function vector, �Jμ̂, associated
to a policy, μ̂, which was defined in Definition 11.1. Then, for any
bounded function h : S → �, the following equation applies:

Jμ̂(i) = lim
k→∞

T k
μ̂h(i) for all i ∈ S.

Proof The proof is somewhat long and is organized as follows. First,
we will express the value function as a sum of two parts: one part
constitutes of the reward earned in the first P (where P is any finite
integer) steps of the trajectory and the second constitutes of the same
earned over the remainder of the trajectory. Then, we will use bounds
on the function h(.) to develop an inequality containing the value func-
tion. Finally, this inequality will be used to show that the value func-

tion vector is sandwiched between the limiting value of
{
T k
μ̂ (
�h)
}∞
k=1

and will hence equal the limit.
Via Eq. (11.11):

Jμ̂(i) = lim
k→∞

Eμ̂

[
k∑

s=1

λs−1r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]

= lim
k→∞

Eμ̂

[
P∑

s=1

λs−1r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]
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+ lim
k→∞

Eμ̂

[
k∑

s=P+1

λs−1r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]

= Eμ̂

[
P∑

s=1

λs−1r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]

+ lim
k→∞

Eμ̂

[
k∑

s=P+1

λs−1r(xs, μ(xs), xs+1)

∣∣∣∣∣x1=i

]
(11.16)

Throughout this book, we assume that all immediate rewards are fi-
nite, i.e.,

|r(xs, μ(xs), xs+1)| ≤ M for all s for some positive value of M.

Hence

∣∣∣∣∣ limk→∞
Eμ̂

[
k∑

s=P+1

λs−1r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]∣∣∣∣∣

≤ lim
k→∞

[
k∑

s=P+1

λs−1M

]
= M

∞∑

s=P+1

λs−1

= M
λP

1− λ
(sum of infinite GP series (see Eq. (9.4))).

Denoting lim
k→∞

Eμ̂

[
k∑

s=P+1

λs−1r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]
by A,

we have from the above that, |A| ≤ MλP

1− λ

which implies that: − MλP

1− λ
≤ A ≤ MλP

1− λ
.

Multiplying the above inequations by −1, we have that

MλP

1− λ
≥ −A ≥ −MλP

1− λ
.

Adding Jμ̂(i) to each side, we have:

Jμ̂(i) +
MλP

1− λ
≥ Jμ̂(i)−A ≥ Jμ̂(i)−

MλP

1− λ
.

Using (11.16), the above can be written as:

Jμ̂(i) +
MλP

1− λ
≥ Eμ̂

[
P∑

s=1

λs−1r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]
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≥ Jμ̂(i)−
MλP

1− λ
. (11.17)

Now, for any bounded function h(.), we have that maxj∈S |h(j)| ≥
h(j) for any j ∈ S. Hence, it follows that

−max
j∈S

|h(j)| ≤ Eμ̂[h(xP+1)|x1 = i] ≤ max
j∈S

|h(j)|

where Eμ̂ [. |x1 = i] is used as defined in Eq. (11.6). Then, since λ > 0,
one has that:

max
j∈S

|h(j)|λP ≥ Eμ̂[λ
Ph(xP+1)

∣∣x1 = i] ≥ −max
j∈S

|h(j)|λP . (11.18)

Adding (11.17) and (11.18), it follows that

Jμ̂(i) +
MλP

1− λ
+max

j∈S
|h(j)|λP ≥

Eμ̂

[
P∑

s=1

λk−1r(xs, μ(xs), xs+1)

∣∣∣∣∣x1 = i

]
+ Eμ̂[λ

Ph(xP+1)|x1 = i] ≥

Jμ̂(i)−
MλP

1− λ
−max

j∈S
|h(j)|λP .

Using Lemma 11.1, the above becomes:

Jμ̂(i)+
MλP

1− λ
+max

j∈S
|h(j)|λP ≥ TP

μ̂ h(i) ≥ Jμ̂(i)−
MλP

1− λ
−max

j∈S
|h(j)|λP .

(11.19)

We take the limit with P → ∞; since limP→∞ λP = 0, we then have
from Theorem 9.7 that

Jμ̂(i) ≥ lim
P→∞

TP
μ̂ h(i) ≥ Jμ̂(i). (11.20)

Clearly (11.20) implies from Theorem 9.8 that:

lim
P→∞

TP
μ̂ h(i) = Jμ̂(i) for all i ∈ S.

The result implies that associated with any policy μ̂, there is a value
function vector denoted by �Jμ̂ that can be obtained by applying the
transformation Tμ̂ on any given vector infinitely many times. Also
note the following:

The ith element of this vector denotes the expected total discounted
reward earned over an infinite time horizon, if one starts at state i
and follows policy μ̂.
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In contrast, the ith element of the vector �J∗ denotes the expected
total discounted reward earned over an infinite time horizon, if one
starts at state i and follows the optimal policy.

We now formally present the optimality of the Bellman equation.

Proposition 11.7 Consider the system of equations defined by:

h(i) = max
a∈A(i)

⎡

⎣r̄(i, a) + λ
∑

j∈S
p(i, a, j)h(j)

⎤

⎦ for all i ∈ S, (11.21)

where �h ∈ �|S|. Using the shorthand notation introduced previously,
the equation can be expressed as:

h(i) = Th(i) for all i ∈ S .

The optimal value function vector, �J∗, which is defined in Defini-
tion 11.2, is a solution of this equation. Furthermore, �J∗ is the unique
solution of this equation.

Proof The proof is immediate from Proposition 11.5

Note that in the system of equations presented above, the h terms
are the unknowns. Hence, finding the solution to this equation holds
the key to finding the optimal solution to the MDP. The above result
implies that a policy, μ̂, which satisfies

Tμ̂
�h = T�h,

for any given vector, �h, is an optimal policy.
We now formalize the result related to the Bellman policy equation.

Proposition 11.8 The Bellman equation for discounted reward for
a given policy, μ̂, is a system of linear equations defined by:

h(i) = r̄(i, μ(i)) + λ
∑

j∈S
p(i, μ(i), j)h(j) for all i ∈ S, (11.22)

where h : S → � is a bounded function. Using our shorthand notation,
introduced previously,

h(i) = Tμ̂h(i) for all i ∈ S .

The value function vector associated to policy μ̂, �Jμ̂, which is defined
in Definition 11.1, is in fact a solution of the Bellman equation given
above. Furthermore, �Jμ̂ is the unique solution.
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Proof Proposition 11.4 implies that Tμ̂ is contractive, which means
from Theorem 9.10 that the solution is unique, and that the solution
must equal limk→∞ T k

μ , which from Proposition 11.6 must be �Jμ̂.

3.2. Policy Iteration
In this subsection, we will prove that policy iteration for discounted

reward generates the optimal solution to the MDP. For details of
the policy iteration algorithm, the reader should review Sect. 5.4 of
Chap. 6. We present the core of the algorithm below since we use
slightly different notation here.

Step 2. Policy Evaluation: Solve the following linear system of
equations.

vk(i) = r̄(i, μk(i)) + λ

|S|∑

j=1

p(i, μk(i), j)v
k(j).

Here one linear equation is associated with each value of i. In this
system, the unknowns are the vk terms.

Step 3. Policy Improvement: Choose a new policy μ̂k+1 such that

μk+1(i) ∈ argmax
a∈A(i)

⎡

⎣r̄(i, a) + λ

|S|∑

j=1

p(i, a, j)vk(j)

⎤

⎦ .

If possible, one should set μ̂k+1 = μ̂k.

Proposition 11.9 The policy iteration algorithm described above
generates an optimal solution in a finite number of iterations.

Proof (Convergence of Policy Iteration) The equation in Step 2
of the algorithm can be written as:

vk(i) = Tμ̂k
vk(i) (11.23)

for all i. A careful examination of Step 3 will reveal that

Tμ̂k+1
vk(i) = Tvk(i) (11.24)

for all i. Thus for every i,

vk(i) = Tμ̂k
vk(i) (from Eq. (11.23))

≤ Tvk(i) (follows from the fact that T is a max operator)
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= Tμ̂k+1
vk(i) (from Eq. (11.24)).

Thus, for every i, vk(i) ≤ Tμ̂k+1
vk(i). Then for every i, using the

monotonicity result from Sect. 2.2, it follows that

Tμ̂k+1
vk(i) ≤ T 2

μ̂k+1
vk(i)

which implies that:

vk(i) ≤ Tμ̂k+1
vk(i) ≤ T 2

μ̂k+1
vk(i).

Repeatedly applying Tμ̂k+1
, one has that for all i,

vk(i) ≤ Tμ̂k+1
vk(i) ≤ T 2

μ̂k+1
vk(i) ≤ . . . ≤ TP

μ̂k+1
vk(i).

Since the above is also true when P → ∞, one has that for all i,

vk(i) ≤ lim
P→∞

TP
μ̂k+1

vk(i).

From Proposition 11.6, we know that limP→∞ TP
μ̂k+1

vk(i) exists and

equals Jμ̂k+1
(i), where Jμ̂k+1

(.) is the value function of policy μ̂k+1.
Hence

vk(i) ≤ Jμ̂k+1
(i) for all i. (11.25)

Now, by Proposition 11.8, Jμ̂k+1
(i) satisfies

Jμ̂k+1
(i) = Tμ̂k+1

Jμ̂k+1
(i) for all i. (11.26)

But from Step 2 of the algorithm it follows that:

vk+1(i) = Tμ̂k+1
vk+1(i) for all i. (11.27)

From Eqs. (11.26) and (11.27), it is clear that both vectors �v k+1 and
�Jμ̂k+1

satisfy the equation
�h = Tμ̂

�h.

But the solution of this equation is unique by Proposition 11.8. Hence:

�v k+1 = �Jμ̂k+1
.

Therefore, from (11.25), one can now write that:

vk(i) ≤ vk+1(i) for all i. (11.28)
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This means that in each iteration (k) the value of the vector (�v k)
either increases or does not change. This iterative process cannot go
on infinitely as the total number of policies is finite (since the number
of states and the number of actions are finite). In other words, the
process must terminate in a finite number of steps. When the policy
repeats, i.e., when μk(i) = μk+1(i) for all i, it is the case that one has
obtained the optimal solution. Here is why:

vk(i) = Tμ̂k
vk(i) = Tμ̂k+1

vk(i) = Tvk(i)

for all i. The first equality sign follows from (11.23) and the last
equality sign follows from (11.24). Thus: vk(i) = Tvk(i) for all i.
In other words, the Bellman optimality equation has been solved.
By Proposition 11.7, we have that μ̂k is the optimal policy.

This proof can be found in Vol II of [30] and is as clever as the
algorithm itself. Convergence of policy iteration has been established
in many different ways in the literature. The proof presented above is
relatively “easy” but perhaps rather long.

3.3. Value Iteration
Unlike policy iteration, value iteration, the way we have described

it, takes an infinite number of iterations to converge in theory. Fortu-
nately, there is a way to work around this. For all practical purposes,
it can generate a policy that is very close to optimal. In this context,
we will define a so-called ε-optimal policy, which is the best we can
do with our version of value iteration.

A straightforward argument that can be used to prove the so-called
ε-convergence of value iteration stems from Proposition 11.5. It implies
that if you can take any finite-valued vector and use the mapping T on
it an infinite number of times, you have the optimal value function vec-
tor. Once we have the “optimal” value function vector, since we know
it satisfies the Bellman optimality equation, we can find the maximiz-
ing action in each state by using the Bellman optimality equation; the
latter is the last step in value iteration. Thus, one way to show the
convergence of value iteration is to use Proposition 11.5. However,
the fact is that we can run our algorithm in practice for only a finite
number of times, and as such we analyze this issue further.

We will prove that value iteration can produce a policy which can be
as close to the optimal policy as one wishes. One way to determine how
close is close enough is to use the norm of the difference of the value
function vectors generated in successive iterations of the algorithm.
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The norm of the difference vector is an estimate of how close the
two vectors are. When we have performed infinitely many iterations,
we have that the vectors generated in two successive iterations are
identical. (Because �J∗ = T �J∗.)

To prove the ε-convergence of value iteration, we need Proposi-
tion 11.3, which showed that the Bellman transformation is contractive.
At this point, the reader should review steps in the value iteration
algorithm for discounted reward MDPs in Sect. 5.5 of Chap. 6.

Proposition 11.10 (Convergence of Value Iteration:) The
value iteration algorithm generates an ε-optimal policy; i.e., for any
ε > 0, if �Jd̂ denotes the value function vector associated with the policy

(solution) d̂ generated at the end of value iteration, and �J∗ denotes the
optimal reward vector, then:

|| �Jd̂ − �J∗|| < ε.

Proof �Jd̂ denotes the vector associated with the policy d̂. Note that
this vector is never really calculated in the value iteration algorithm.
But it is the reward vector associated with the solution policy returned
by the algorithm. From Proposition 11.6, we know that limP→∞ Td̂

�h

converges for any �h ∈ �|S| and that the limit is �Jd̂. From Proposi-
tion 11.8, we know that

Td̂
�Jd̂ = �Jd̂. (11.29)

Now from Step 4, from the way d̂ is selected, it follows that for any
vector �h,

Td̂
�h = T�h. (11.30)

We will use this fact below. It follows from the properties of norms
(see Sect. 3 of Chap. 9) that:

|| �Jd̂ − �J∗|| ≤ || �Jd̂ − �J k+1||+ || �J k+1 − �J∗||. (11.31)

Now, || �Jd̂ − �J k+1|| = ||Td̂
�Jd̂ − �J k+1|| using (11.29)

= ||Td̂
�Jd̂ − T �J k+1 + T �J k+1 − �J k+1||

≤ ||Td̂
�Jd̂ − T �J k+1||+ ||T �J k+1 − �J k+1||

using a property of a norm

≤ ||Td̂
�Jd̂ − T �J k+1||+ ||T �J k+1 − T �J k||

= ||T �Jd̂ − T �J k+1||+ ||T �J k+1 − T �J k|| using (11.30)

≤ λ|| �Jd̂ − �J k+1||+ λ|| �J k+1 − �J k||
using the contraction property of T .
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Rearranging terms, || �Jd̂ − �J k+1|| ≤ λ

1− λ
|| �J k+1 − �J k||. (11.32)

Similarly,

|| �J k+1 − �J∗|| ≤ || �J k+1 − T �J k+1||+ ||T �J k+1 − �J∗||
using a standard norm property

= ||T �J k − T �J k+1||+ ||T �J k+1 − �J∗||
≤ λ|| �J k − �J k+1||+ ||T �J k+1 − �J∗||
≤ λ|| �J k − �J k+1||+ ||T �J k+1 − T �J∗|| since T �J∗ = �J∗

≤ λ|| �J k − �J k+1||+ λ|| �J k+1 − �J∗||.

Rearranging terms, || �J k+1 − �J∗|| ≤ λ

1− λ
|| �J k+1 − �J k||. (11.33)

Using (11.32) and (11.33) in (11.31), one has that || �Jd̂ − �J∗|| ≤
2 λ
1−λ || �J k+1 − �J k|| < ε; the last inequality in the above stems from

Step 3 of the algorithm. Thus: || �Jd̂ − �J∗|| < ε.

4. Average Reward DP: MDPs
In this section, we will present a number of results related to average

reward in the context of classical dynamic programming. Our discus-
sion will be more or less consistent with the approach used in the
discounted reward sections. We will begin with the optimality of
the Bellman equation and then go on to discuss the convergence of
value and policy iteration methods.

4.1. Bellman Equation for Average Reward
We have defined the “average reward” of a policy heuristically in

Chap. 6, and have also expressed it in terms of the steady-state (lim-
iting) probabilities of the underlying Markov chain. We now present
a more technical definition.

Definition 11.3 The average reward of a policy μ̂ is defined as:

ρμ̂(i) ≡ lim inf
k→∞

Eμ̂

[∑k
s=1 r(xs, μ(xs), xs+1)

∣∣∣x1 = i
]

k

for any i ∈ S, when i is the starting state in the trajectory.

Note that in the above definition, the average reward is defined in
terms of the starting state i. Fortunately, when the Markov chain
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of the policy μ̂ is regular, the average reward is the same for every
starting state, and then, we have that:

ρμ̂ ≡ ρμ̂(i) for any i ∈ S.

It is thus important to recognize that when the Markov chain of the
policy is regular, we have a unique value for its average reward that
does not depend on the starting state. The maximum attainable value
for the average reward over all admissible policies is the optimal aver-
age reward, denoted by ρ∗. We now turn our attention to the Bellman
equation.

The Bellman equations for average reward were used without proof
in previous chapters. Our first result below is a key result related to
the Bellman equations: both the optimality and the policy versions.
Our analysis will be under some conditions that we describe later. The
first part of the result will prove that if a solution exists to the Bellman
policy equation for average reward, then the scalar ρ in the equation
will equal the average reward of the policy in question. The second part
will show that if a solution exists to the Bellman optimality equation,
then the unknown scalar in the equation will equal the average reward
of the optimal policy and that the optimal policy will be identifiable
from the solution of the equation.

Note that we will assume that a solution exists to the Bellman
equation. That solutions exist to these equations can be proved, but it
is beyond our scope here. The interested reader is referred to [30, 242]
for proofs.

Proposition 11.11 (i) If a scalar ρ and a |S|-dimensional vector �hμ̂,
where |S| denotes the number of elements in the set of states in the
Markov chain, S, satisfy

ρ+ hμ̂(i) = r̄(i, μ(i)) +

|S|∑

j=1

p(i, μ(i), j)hμ̂(j), i = 1, 2, . . . , |S|,

(11.34)
then ρ is the average reward associated to the policy μ̂ defined in
Definition 11.3.

(ii) Assume that one of the stationary, deterministic policies is optimal.

If a scalar ρ∗ and a |S|-dimensional vector �J∗ satisfy

ρ∗+J∗(i) = max
u∈A(i)

⎡

⎣r̄(i, u) +
|S|∑

j=1

p(i, u, j)J∗(j)

⎤

⎦ , i = 1, 2, . . . , |S|,

(11.35)
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where A(i) is the set of allowable actions in state i, then ρ∗ equals
the average reward associated to the policy μ̂∗ that attains the max
in the RHS of Eq. (11.35). Further, the policy μ̂∗ is an optimal
policy.

Note that the assumption we made above in part (ii)—that one of
the optimal policies is stationary and deterministic—is quite strong.
But analysis without this condition is beyond our scope; again, for
that, the interested reader is referred to [242, 30].

Proof Equation (11.34) can be written in vector form as:

ρ�e+ �hμ̂ = Lμ̂(�hμ̂), (11.36)

where Lμ̂ is a mapping associated with policy μ̂ and �e is an |S|-
dimensional vector of ones; that is each component of �e is 1. In other
words, �e is ⎡

⎢⎢⎢⎢⎢⎢⎣

1
1
.
.
.
1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

We will first prove that

Lk
μ̂hμ̂(i) = kρ+ hμ̂(i) (11.37)

for i = 1, 2, . . . , |S|.
The above can be written in the vector form as:

Lk
μ̂

(
�hμ̂

)
= kρ�e+ �hμ̂. (11.38)

We will use an induction argument for the proof. From Eq. (11.36),
the above is true when k = 1. Let us assume that the above is true
when k = m. Then, we have that

Lm
μ̂

(
�hμ̂

)
= mρ�e+ �hμ̂.

Using the transformation Lμ̂ on both sides of this equation, we have:

Lμ̂

(
Lm
μ̂

(
�hμ̂

))
= Lμ̂

(
mρ�e+ �hμ̂

)

= mρ�e+ Lμ̂

(
�hμ̂

)
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= mρ�e+ ρ�e+ �hμ̂ (using Eq. (11.36))

= (m+ 1)ρ�e+ �hμ̂.

Thus Eq. (11.38) is established using induction on k.
Using Lemma 11.2, we have for all i:

Lk
μ̂hμ̂(i) = Eμ̂

[
A+

k∑

s=1

r(xs, μ(xs), xs+1)|x1 = i

]
,

where xs is the state from where the sth jump of the Markov chain
occurs and A is a finite scalar.

Using the above and Eq. (11.37), we have that:

Eμ̂

[
A+

k∑

s=1

r(xs, μ(xs), xs+1)|x1 = i

]
= kρ+ hμ̂(i).

Therefore,

Eμ̂[A]

k
+

Eμ̂[
∑k

s=1 r(xs, μ(xs), xs+1)|x1 = i]

k
= ρ+

hμ̂(i)

k
.

Taking limits as k → ∞, we have:

lim
k→∞

Eμ̂[
∑k

s=1 r(xs, μ(xs), xs+1)|x1 = i]

k
= ρ.

(The above follows from the fact that limk→∞X/k = 0, if X ∈ � is
finite.) In words, this means from the definition of average reward that
the average reward of the policy μ̂ is indeed ρ, and the first part of the
proposition is thus established.

Now for the second part. Using the first part of the proposition,
one can show that a policy, let us call it μ̂∗, which attains the max in
the RHS of Eq. (11.35), produces an average reward of ρ∗.

We will now show that any stationary and deterministic policy that
deviates from μ̂∗ will produce an average reward lower than or equal
to ρ∗. This will establish, under our assumption that one of the sta-
tionary deterministic policies has to be optimal, that the policy μ̂∗
will generate the maximum possible value for the average reward and
will therefore be an optimal policy. Thus, all we need to show is that
a policy, μ̂, which does not necessarily attain the max in Eq. (11.35),
produces an average reward less than or equal to ρ∗.

Equation (11.35) can be written in vector form as:

ρ∗�e+ �J∗ = L( �J∗). (11.39)
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We will first prove that:

Lk
μ̂

(
�J∗
)
≤ kρ∗�e+ �J∗. (11.40)

As before, we use an induction argument. Now, from Eq. (11.39)

L( �J∗) = ρ∗�e+ �J∗.

But we know that

Lμ̂( �J∗) ≤ L( �J∗),

which follows from the fact that any given policy may not attain the
max in Eq. (11.35). Thus:

Lμ̂

(
�J∗
)
≤ ρ∗�e+ �J∗. (11.41)

This proves that Eq. (11.40) holds for k = 1. Assuming that it holds
when k = m, we have that:

Lm
μ̂

(
�J∗
)
≤ mρ∗�e+ �J∗.

Using the fact that Lμ̂ is monotonic from the results presented in
Sect. 2.2, it follows that

Lμ̂

(
Lm
μ̂

(
�J∗
))

≤ Lμ̂

(
mρ∗�e+ �J∗

)
(11.42)

= mρ∗�e+ Lμ̂

(
�J∗
)

≤ mρ∗�e+ ρ∗�e+ �J∗ (using Eq. (11.41))

= (m+ 1)ρ∗�e+ �J∗.

This establishes Eq. (11.40). The following bears similarity to the proof
of the first part of this proposition. Using Lemma 11.2, we have for
all i:

Lk
μ̂J

∗(i) = Eμ̂

[
A+

k∑

s=1

r(xs, μ(xs), xs+1)|x1 = i

]
,

where xs is the state from which the sth jump of the Markov chain
occurs and A is a finite scalar. Using this and Eq. (11.40), we have
that:

Eμ̂

[
A+

k∑

s=1

r(xs, μ(xs)), xs+1|x1 = i

]
≤ kρ∗ + J∗(i).
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Therefore,

Eμ̂[A]

k
+

Eμ̂[
∑k

s=1 r(xs, μ(xs), xs+1)|x1 = i]

k
≤ ρ∗ +

J∗(i)
k

.

Taking the limits with k → ∞, we have:

lim
k→∞

Eμ̂[
∑k

s=1 r(xs, μ(xs), xs+1)|x1 = i]

k
≤ ρ∗.

(As before, the above follows from limk→∞X/k = 0 for finite X.)
In words, this means that the average reward of the policy μ̂ is less
than or equal to ρ∗. This implies that the policy that attains the max
in the RHS of Eq. (11.35) is indeed the optimal policy since no other
policy can beat it.

4.2. Policy Iteration
In this subsection, we will prove that policy iteration can generate

an optimal solution to the average reward problem. We will assume
that all states are recurrent under every allowable policy.

To prove the convergence of policy iteration under the condition of
recurrence, we need Lemmas 11.12 and 11.13. Lemma 11.12 is a
general result related to the steady-state (limiting) probabilities of a
policy to its transition probabilities in the context of any function on
the state space. This lemma will be needed to prove Lemma 11.13,
which in turn will be needed in our main result.

Lemma 11.12 Let Πμ̂(i) denote the limiting probability of the ith state
in a Markov chain run by the policy μ̂. If p(i, μ(i), j) denotes the
element in the ith row and jth column of the transition probability
matrix of the Markov chain underlying policy μ̂

|S|∑

i=1

Πμ̂(i)

⎡

⎣
|S|∑

j=1

p(i, μ(i), j)h(j)− h(i)

⎤

⎦ = 0,

where �h is any finite-valued, |S|-dimensional vector.

Proof From Theorem 6.2 on page 133, �ΠP = �Π one can write that
for all j ∈ S: ∑

i∈S
Πμ̂(i)p(i, μ(i), j) = Πμ̂(j),

which can be written as:
∑

i∈S
Πμ̂(i)p(i, μ(i), j)−Πμ̂(j) = 0.
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Hence:
∑

i∈S
Πμ̂(i)p(i, μ(i), j)h(i)−Πμ̂(j)h(i) = 0 for all i, j ∈ S.

Then summing the LHS of the above equation over all j, one obtains:

∑

j∈S

[
∑

i∈S
Πμ̂(i)p(i, μ(i), j)h(i)−Πμ̂(j)h(i)

]
= 0. (11.43)

Now Eq. (11.43), by suitable rearrangement of terms, can be written as:

∑

i∈S
Πμ̂(i)

∑

j∈S
p(i, μ(i), j)h(j)−

∑

i∈S
Πμ̂(i)h(i) = 0.

This establishes Lemma 11.12. If the last step is not clear, see the
Remark below.

Remark. The last step in the lemma above can be verified for a
two-state Markov chain. From �ΠP = �Π, if P denotes the transition
probability matrix for policy μ̂, we have that:

Π(1)P (1, 1) + Π(2)P (2, 1) = Π(1);

Π(1)P (1, 2) + Π(2)P (2, 2) = Π(2).

(Note that in the above, P (i, j) ≡ p(i, μ(i), j).) Multiplying both sides
of the first equation by h(1) and those of the second by h(2) and then
adding the resulting equations one has that:

Π(1)P (1, 1)h(1)+Π(2)P (2, 1)h(1)+Π(1)P (1, 2)h(2)+Π(2)P (2, 2)h(2)

= Π(1)h(1) + Π(2)h(2).

This can be written, after rearranging the terms, as:

Π(1)P (1, 1)h(1)+Π(1)P (1, 2)h(2)+Π(2)P (2, 1)h(1)+Π(2)P (2, 2)h(2)

−Π(1)h(1)−Π(2)h(2) = 0,

which can be written as:

2∑

i=1

Π(i)

2∑

j=1

p(i, μ(i), j)h(j)−
2∑

i=1

Π(i)h(i) = 0.

This should explain the last step of the proof of Lemma 11.12.
The reader should now review the steps in policy iteration on

page 152. We now present Lemma 11.13 which will be used directly in
our main result that proves the convergence of policy iteration. It will
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show that the average reward in every iteration of policy iteration is
non-diminishing.

Lemma 11.13 If ρk denotes the average reward (determined using the
policy evaluation step) in the kth iteration of the policy iteration algo-
rithm, then

ρk+1 ≥ ρk.

Proof We know from our discussions in Chap. 6 that the average
reward of a policy μ̂ can be written as:

∑

i∈S
Πμ̂(i)r̄(i, μ(i))

where �Πμ̂ denotes the limiting probability vector of the Markov chain
associated with the policy μ̂.

From Proposition 11.11, we know that the term ρ in the Bellman
equation for a policy μ̂ denotes the average reward associated with the
policy. Hence we can write an expression for the average reward in the
(k + 1)th iteration of policy iteration as:

ρk+1 =
∑

i∈S
Πμ̂k+1

(i)r̄(i, μk+1(i)) (11.44)

= ρk − ρk +
∑

i∈S
Πμ̂k+1

(i)r̄(i, μk+1(i))

= ρk +
∑

i∈S
Πμ̂k+1

(i)[r̄(i, μk+1(i))− ρk]

= ρk +
∑

i∈S
Πμ̂k+1

(i)[r̄(i, μk+1(i))− ρk]

+
∑

i∈S
Πμ̂k+1

(i)

⎡

⎣
∑

j∈S
p(i, μk+1(i), j)h

k(j)− hk(i)

⎤

⎦

(using Lemma 11.12)

= ρk +
∑

i∈S
Πμ̂k+1

(i)×
⎡

⎣r̄(i, μk+1(i))− ρk +
∑

j∈S
p(i, μk+1(i), j)h

k(j)− hk(i)

⎤

⎦ .
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Now, from the policy improvement step, it is clear that μ̂k+1 is
chosen in a way such that:

r̄(i, μk+1(i))+
∑

j∈S
p(i, μk+1(i), j)h

k(j)≥r̄(i, μk(i))+
∑

j∈S
p(i, μk(i), j)h

k(j)

(11.45)

which implies that for each i:

r̄(i, μk+1(i)) +
∑

j∈S
p(i, μk+1(i), j)h

k(j)− ρk − hk(i) ≥

r̄(i, μk(i)) +
∑

j∈S
p(i, μk(i), j)h

k(j)− ρk − hk(i).

But the policy evaluation stage of the policy iteration algorithm
implies that the RHS of the above inequality equals 0. Thus for each i:

r̄(i, μk+1(i)) +
∑

j∈S
p(i, μk+1(i), j)h

k(j)− ρk − hk(i) ≥ 0. (11.46)

Since, Π(i) ≥ 0 for any policy and i, we can write from the above that:

Πμ̂k+1
(i)

⎡

⎣r̄(i, μk+1(i)) +
∑

j∈S
p(i, μk+1(i), j)h

k(j)− ρk − hk(i)

⎤

⎦ ≥ 0.

Summing over all values of i ∈ S and then adding ρk to both sides of
the resulting inequation, we have:

ρk+
∑

i∈S
Πμ̂k+1

(i)

⎡

⎣r̄(i, μk+1(i))+
∑

j∈S
p(i, μk+1(i), j)h

k(j)−ρk−hk(i)

⎤

⎦≥ ρk,

which using the last equation in (11.44) leads to: ρk+1 ≥ ρk.

The next proposition will establish the convergence of policy
iteration under the assumption of recurrence.

Proposition 11.14 The policy μ̂∗ generated by the policy iteration
algorithm for average reward MDPs is an optimal policy if all states
are recurrent.

Proof From Lemma 11.13, the sequence of average rewards is a
strictly increasing sequence until a policy repeats if all states are
recurrent. This is because notice that if the policy chosen in in the
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policy improvement step is different from the previous policy, then
the ≥ in (11.45) is replaced by >; since Π(i) > 0 for every i if all
states are recurrent, this will lead to ρk+1 > ρk. Since the number of
states and actions is finite, there is a finite number of policies, and
the convergence criterion μ̂k+1 = μ̂k must be satisfied at a finite value
of k. When the policy repeats, we have that μ̂k+1 = μ̂k which means
from the policy improvement and the policy evaluation steps that the
policy μ̂k satisfies the Bellman equation. From Proposition 11.11, this
implies that μ̂k is the optimal policy.

4.3. Value Iteration
Convergence analysis of value iteration for average reward is more

complicated than its counterpart for discounted reward because
the Bellman optimality equation cannot be used directly; this is
because ρ∗, the average reward of the optimal policy, is not known
in advance (since obviously the optimal policy is not known in ad-
vance). A way to work around this difficulty is to set ρ∗ to 0 or some
constant. It is okay to do this in MDPs since the values that the
resulting Bellman optimality equation (with a replaced ρ∗) generates
differ from those generated by the actual Bellman optimality equation
by a constant value, and this allows one to generate the policy that
would have been obtained by using the Bellman optimality equation
(with the true value of ρ∗).

A major difficulty with average reward value iteration, as discussed
in previous chapters, is that due to the lack of a discounting factor,
the associated mapping is not contractive, and hence, the max norm
cannot be used for stopping the algorithm. In addition, some of the
iterates (or values) become unbounded, i.e., they converge to nega-
tive or positive infinity. One way around this is to subtract a pre-
determined element of the value vector in Step 2 of value iteration.
This ensures that the values themselves remain bounded. The result-
ing algorithm is called relative value iteration.

A function called the span seminorm (or simply the span) can
become very useful in identifying the ε-optimal policy in this situa-
tion. Convergence of regular value iteration using a span semi-norm
has been presented under a specific condition in [242, Theor. 8.5.2;
pp. 368]. An elegant proof for convergence of relative value iteration
under a different condition can be found in Vol II of [30], but it uses
a norm (not a semi-norm). In this book, we will present a proof from
[119] for the convergence of regular value iteration and relative value
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iteration using the span semi-norm, under yet another condition on
the transition probability matrices involved.

In value iteration for discounted reward MDPs, we had conver-
gence in the norm, i.e., with successive iterations of the algorithm, the
norm of the so-called “difference vector” became smaller and smaller.
In value iteration for average reward, we will not be able to show that.
Instead, we will show convergence in the span seminorm, i.e., the span
semi-norm of the “difference vector” will become smaller and smaller
with every iteration. First, we quickly review the definition of the span
seminorm and regular and relative value iteration algorithms.

Span semi-norm. The span semi-norm (or span) of the vector �x,
denoted by sp(�x), is defined as:

sp(�x) = max
i

x(i)−min
i

x(i).

Example: �a = (9, 2) and �b = (−3, 8, 16). Then sp(�a) = 7 and

sp(�b) = 19.

Steps in value iteration for average reward. The presentation is
from Chap. 6.

Step 1: Set k = 1 and select an arbitrary vector �J 1. Specify ε > 0.

Step 2: For each i ∈ S, compute:

Jk+1(i) = max
a∈A(i)

⎡

⎣r̄(i, a) +
∑

j∈S
p(i, a, j)Jk(j)

⎤

⎦ .

Step 3: If
sp( �J k+1 − �J k) < ε,

go to Step 4. Otherwise increase k by 1 and go back to Step 2.

Step 4: For each i ∈ S choose

d(i) ∈ arg max
a∈A(i)

⎡

⎣r̄(i, a) +
∑

j∈S
p(i, a, j)Jk(j)

⎤

⎦ (11.47)

and stop. The ε-optimal policy is d̂.

Steps in Relative value iteration. We present the steps in a format
that makes it easier to analyze the algorithm’s convergence.
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Step 1: Set k = 1, choose any state to be a distinguished state, i∗,
and select an arbitrary vector �W 1. Specify ε > 0 and set �v 1 =
�W 1 −W 1(i∗)�e, where �e is a column vector of ones.

Step 2: For each i ∈ S, compute:

W k+1(i) = max
a∈A(i)

⎡

⎣r̄(i, a) +
∑

j∈S
p(i, a, j)vk(j)

⎤

⎦ .

Then for each i ∈ S, set vk+1(i) = W k+1(i)−W k+1(i∗).

Step 3: If sp(�v k+1 − �v k) < ε, go to Step 4; else increase k by 1 and
return to Step 2.

Step 4: For each i ∈ S choose

d(i) ∈ argmax
a∈A(i)

⎡

⎣r̄(i, a) +
∑

j∈S
p(i, a, j)vk(j)

⎤

⎦ .

The convergence of regular and relative value iteration will hinge on
the following fundamental result, which we state without proof.

Theorem 11.15 Suppose F is an M -stage span contraction mapping;
that is, for any two vectors �x and �y in a given vector space, for some
positive, finite, and integral value of M ,

sp(FM�x− FM�y) ≤ η sp(�x− �y) for 0 ≤ η < 1. (11.48)

Consider the sequence {�z k}∞k=1 defined by: �z k+1 = F�z k = F k+1�z 0.
Then, there exists a vector �z ∗

for which sp(F�z ∗ − �z ∗) = 0 (11.49)

and lim
k→∞

sp(�z k − �z ∗) = 0. (11.50)

Also, given an ε > 0, there exists an N such that for all k ≥ N :

sp(�z kM+1 − �z kM ) < ε. (11.51)

To prove the convergence of regular value iteration, we need to prove
two critical results: Lemmas 11.16 and 11.17. But, first, we need to
define the delta coefficients for which we first present some notation.

Let R be a matrix with non-negative elements such that the
elements in each of its rows sum to 1. Let W denote the number
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of rows in the matrix and C the number of columns; additionally we
define two sets: W = {1, 2, . . . ,W} and C = {1, 2, . . . , C}. Now, we
define:

bR(i, j, l) = min
l∈C

{R(i, l), R(j, l)} for every (i, j) ∈ W ×W,

where R(i, j) denotes the element of the ith row and the jth column
in R. Further, we define

BR(i, j) =

C∑

l=1

bR(i, j, l) for every (i, j) ∈ W ×W.

Definition 11.4 The delta-coefficient of a matrix, R, described
above, is defined as:

αR ≡ 1− min
(i,j)∈W×W

BR(i, j). (11.52)

Note that the matrix R above could be composed of two matrices
stacked over each other. For example, consider the following example:

R =

[
P1

P2

]
,

where P1 and P2 are two matrices. For instance consider these cases:

P1 =

⎡

⎣
0.2 0.1 0.7
0.3 0.4 0.3
0.8 0.1 0.1

⎤

⎦ ;P2 =

⎡

⎣
0.5 0.4 0.1
0.2 0.3 0.5
0.4 0.4 0.2

⎤

⎦

Then: R =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.2 0.1 0.7
0.3 0.4 0.3
0.8 0.1 0.1
0.5 0.4 0.1
0.2 0.3 0.5
0.4 0.4 0.2

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Here bR(1, 2, 1)=min{0.2, 0.3}=0.2; bR(1, 2, 2)=min{0.1, 0.4}=0.1;

and bR(1, 2, 3) = min{0.7, 0.3} = 0.3, which implies that BR(1, 2) =
0.2 + 0.1 + 0.3 = 0.6. In this fashion, all the BR(, ., ) terms can be
calculated to compute αR using Eq. (11.52).

We now present the first of the two critical lemmas that will be
essential in showing the convergence of value iteration.
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Lemma 11.16 Let �x be any arbitrary column vector with C compo-
nents and R be a matrix defined in Definition 11.4. Then, sp(R�x) ≤
αR sp(�x).

The proof presented below is from Seneta [269, Theor. 3.1; pp 81].

Proof Let �R′ = R�x. Since �x is a column vector with C rows, it is
clear that R�x is a column vector with as many rows as R. Then for
any (i, j) ∈ C × C:

R′(i)−R′(j) =
∑

l∈C
R(i, l)x(l)−

∑

l∈C
R(j, l)x(l)

=
∑

l∈C
[R(i, l)−bR(i, j, l)]x(l)−

∑

l∈C
[R(j, l)−bR(i, j, l)]x(l)

≤
∑

l∈C
[R(i, l)−bR(i, j, l)]max

l∈C
x(l)−

∑

l∈C
[R(j, l)−bR(i, j, l)]min

l∈C
x(l)

=

[
1−
∑

l∈C
bR(i, j, l)

] [
max
l∈C

x(l)−min
l∈C

x(l)

]

=

[
1−
∑

l∈C
bR(i, j, l)

]
sp(�x) ≤

[
1−min

i,j

∑

l∈C
bR(i, j, l)

]
sp(�x)=αRsp(�x).

From the above, one can summarize that for any (i, j) ∈ C × C:

R′(i)−R′(j) ≤ αRsp(�x).

But max
i∈C

R′(i)−min
i∈C

R′(i) ≤ R′(i)−R′(j), which implies that

max
i∈C

R′(i)−min
i∈C

R′(i) ≤ αRsp(�x) i.e., sp( �R′) ≤ αRsp(�x).

We will now present the second of the two critical lemmas. But before
that, we provide some necessary notation and definitions. If trans-
formation L is applied m times on vector �z k ∈ �|S|, the resulting
vector will be �z k+m. Further, Lk+1�z ≡ L

(
Lk�z
)
. Also, d̂xk will denote

a deterministic policy, associated with vector �x k ∈ �|S|, which will
prescribe actions that are determined as follows:

For every i ∈ S, dxk(i) ∈ argmax
a∈A(i)

⎡

⎣r̄(i, a) +
∑

j∈S
p(i, a, j)xk(j)

⎤

⎦ .

(11.53)
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Thus, if �y k is a vector in �|S|, using the definition of Lμ̂ in Eq. (11.5),

Ld
xk
yk(i) =

⎡

⎣r̄(i, dxk(i)) +
∑

j∈S
p(i, dxk(i), j)yk(j)

⎤

⎦ for every i ∈ S.

This implies that for every i ∈ S and any vector �x k ∈ �|S|, using the
definition of L in Eq. (11.4),

Lxk(i) ≡ Ld
xk
xk(i). (11.54)

Lemma 11.17 Let M be any positive, finite integer. Consider any two
vectors �x 1 and �y 1 that have |S| components. Using Pμ to denote the
transition probability matrix associated with deterministic policy μ̂, we
define two matrices:

AM
x ≡ Pd

xM
Pd

xM−1
. . .Pdx1

and AM
y ≡ Pd

yM
Pd

yM−1
. . .Pdy1

.

Then, sp(LM�y 1 − LM�x 1) ≤ αA sp(�y 1 − �x 1), where A ≡
[
AM

y

AM
x

]
.

Proof Let states s∗ and s∗ be defined as follows:

s∗ = argmax
s∈S

{LMy1(s)−LMx1(s)}; s∗ = argmin
s∈S

{LMy1(s)−LMx1(s)}.

For any i ∈ S, LMx1(i) = Ld
xM

Ld
xM−1

. . . Ldx2
Ldx1

x1(i). (11.55)

We can show that LMy1(i) ≥ Ld
xM

Ld
xM−1

. . . Ldx2
Ldx1

y1(i) ∀i.
(11.56)

The above can be proved as follows. From definition, for all i ∈ S,
Ly1(i) ≥ Ldx1

y1(i). Since L is monotonic, for all i ∈ S, L
(
Ly1(i)

)
≥

L
(
Ldx1

y1(i)
)
. From definition of L, for all i ∈ S, L

(
Ly1(i)

)
≥

Ldx2

(
Ldx1

y1(i)
)
. From the preceding inequalities, for all i ∈ S,

L
(
Ly1(i)

)
≥ Ldx2

(
Ldx1

y1(i)
)
. In this way, by repeatedly using the

monotonicity property, we can establish (11.56). From (11.55) and
(11.56), it follows that

LMy1(s∗)− LMx1(s∗)

≥ [Ld
xM

Ld
xM−1

. . . Ldx1
y1(s∗)]− [Ld

xM
Ld

xM−1
. . . Ldx1

x1(s∗)]

= [r̄(s∗, dx1(s∗)) + r̄(s∗, dx2(s∗)) + · · ·+ r̄(s∗, dxM (s∗))+

Pd
xM

Pd
xM−1

. . .Pdx1
y1(s∗)]−

[r̄(s∗, dx1(s∗)) + r̄(s∗, dx2(s∗)) + · · ·+ r̄(s∗, dxM (s∗))+

Pd
xM

Pd
xM−1

. . .Pdx1
x1(s∗)] = AM

x (y1 − x1)(s∗).
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Thus: LMy1(s∗)− LMx1(s∗) ≤ AM
x (y1 − x1)(s∗). (11.57)

Using logic similar to that used above:

LMy 1(s∗)− LMx 1(s∗) ≤ AM
y (y1 − x1)(s∗). (11.58)

Then sp(LM�y 1 − LM�x 1)

= {LMy1(s∗)− LMx1(s∗)} − {LMy1(s∗)− LMx1(s∗)}
≤ AM

y (y1 − x1)(s∗)−AM
x (y1 − x1)(s∗) (from (11.57) and (11.58))

≤ max
s∈S

AM
y (y1 − x1)(s)−min

s∈S
AM

x (y1 − x1)(s)

≤ max
s∈S

[
AM

y

AM
x

]
(y1 − x1)(s)−min

s∈S

[
AM

y

AM
x

]
(y1 − x1)(s)

= sp

([
AM

y

AM
x

]
(
�y 1 − �x 1

)
)

≤ αA sp(�y 1 − �x 1) (from Lemma 11.16).

The following result from [119] presents the convergence of regular
and relative value iteration under a specific condition on the transition
probability matrices associated to the MDP.

Assumption 11.18 Consider two sequences of M deterministic poli-
cies, S1 = {μ1, μ2, . . . μM} and S2 = {ν1, ν2, . . . νM} where M is a
positive finite integer. Further, consider the stacked matrix:

AS1,S2 ≡
[
Pμ1 ·Pμ2 · · ·PμM

Pν1 ·Pν2 · · ·PνM

]
. (11.59)

Assume that there exists an integral value for M ≥ 1 such that for
every possible pair, (S1, S2), the delta coefficient of AS1,S2 for the MDP
is strictly less than 1.

Theorem 11.19 Assumption 11.18 holds. Then

(a) The value iteration converges in the limit to an ε-optimal solution.

(b) Further, assume that �W 1 = �J 1. Then, value and relative value
iteration algorithms choose the same sequence of maximizing ac-
tions and terminate at the same policy for any given value of ε,
where ε is strictly positive and is used in Step 3 of the algorithms.

Proof(a) Consider the sequence of vectors �J k in value iteration.

Then: �J k+1 = L�J k, for allk = 1, 2, . . . where L is the transforma-
tion used in Step 2 of value iteration. The delta-coefficient condition
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in the assumption above implies that Lemma 11.17 can be used,
from which one has that Theorem 11.15 holds for L. It follows
from (11.49) then that there exists a �J∗ such that L�J∗ = �J∗ + ψ1�e
for some scalar ψ1. The above implies from Proposition 11.11 that
�J∗ is an optimal solution of the MDP. However, from (11.50), we

know that limk→∞ �J k = �J∗+ψ2�e for some scalar ψ2. From (11.47),

then one has that �J∗ and ( �J∗ +ψ2�e) will result in the same policy.
Then, it follows from (11.51) that a finite termination rule can be
developed with a user-specified value of ε.

(b) Let �v k denote the iterate vector in the kth iteration of relative
value iteration. We will first show that:

�v k = �J k −
k∑

l=1

ζ l�e, (11.60)

where �J k denotes the iterate vector of value iteration and ζ l is
some scalar constant, whose value will depend on iteration l, and
�e is a vector of ones. This will help us show that the span of the
difference vector in each algorithm is the same. Further, it will
also establish that both algorithms choose the same sequence of
maximizing actions.
We will use induction on k to show (11.60). Since, �W 1 = �J 1, it is

clear from Step 1 of relative value iteration that: �v 1 = �J 1−ζ1�e, where
ζ1 = J1(i∗), and hence (11.60) is true for k = 1. Assuming it is true
for k = m, we have that:

�vm = �J m −
m∑

l=1

ζ l�e. (11.61)

Now, from Step 2 of relative value iteration, by setting ζm+1 =
Wm+1(i∗), we have that for all i ∈ S,:

vm+1(i) = max
j∈S

⎛

⎝
∑

j∈S
p(i, a, j) [r(i, a, j) + vm(j)]

⎞

⎠− ζm+1

= max
j∈S

⎛

⎝
∑

j∈S
p(i, a, j)

[
r(i, a, j) + Jm(j)−

m∑

l=1

ζ l

]⎞

⎠

−ζm+1 (from (11.61))
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= max
j∈S

⎛

⎝
∑

j∈S
p(i, a, j) [r(i, a, j) + Jm(j)]

⎞

⎠−
m+1∑

l=1

ζ l

= Jm+1(i)−
m+1∑

l=1

ζ l (from Step 2 of value iteration),

from which the induction is complete.
Then, the span of the difference vector in any iteration of both

algorithms will be equal, since: sp
(
�v k+1 − �v k

)

= sp
(
�J k+1 − �J k − ζk+1�e

)
(from (11.60))

= sp
(
�J k+1 − �J k

)
.

The two algorithms will choose the same sequence of maximizing
actions (see Step 4 in each) since:

argmax
j∈S

⎡

⎣
∑

j∈S
p(i, a, j)

[
r(i, a, j) + vk(j)

]
⎤

⎦

= argmax
j∈S

⎡

⎣
∑

j∈S
p(i, a, j)

[
r(i, a, j) + Jk(j)−

k∑

l=1

ζ l

]⎤

⎦

= argmax
j∈S

⎡

⎣
∑

j∈S
p(i, a, j)

[
r(i, a, j) + Jk(j)

]
⎤

⎦ .

Thus, since the difference vectors have the same span in both algo-
rithms and both algorithms choose the same sequence of maximizing
actions, we have that both algorithms terminate at the same policy
for a given value of ε.

Note that this convergence proof relies on the condition provided in
Assumption 11.18. This condition can be easy to show for M = 1
in the MDP, but can be difficult to show in practice for larger values
of M . However, it is the first result to show convergence of relative
value iteration under the span semi-norm, which is often faster than
convergence in the norm.

Further, note that we have not proved that the iterates (the elements
of the value function vector) will themselves converge; all we have
shown is that both the regular and relative versions of the algorithm
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will terminate with ε-optimal solutions when using the span criterion.
But, it has been seen in practice that relative value iteration also keeps
the iterates bounded, which indicates that relative value iteration will
not only terminate with an ε-optimal solution but will also be numer-
ically stable.

5. DP: SMDPs
Discounted reward SMDPs were only briefly covered in the context

of dynamic programming under the general assumption. Hence, we
will not cover discounted reward SMDPs in this section; we will discuss
them in the context of RL algorithms later. In this section, we focus
on average reward SMDPs. We first define average reward of a policy
in an SMDP. Thereafter, we present the main result related to the
Bellman equations.

Definition 11.5 The average reward of a policy μ̂ in an SMDP is
defined as:

ρμ̂(i) ≡ lim inf
k→∞

Eμ̂

[∑k
s=1 r(xs, μ(xs), xs+1)

∣∣∣x1 = i
]

Eμ̂

[∑k
s=1 t(xs, μ(xs), xs+1)

∣∣∣x1 = i
]

for any i ∈ S, when i is the starting state in the trajectory.

Like in the MDP case, when the Markov chain of the policy μ̂ is regular,
the average reward is the same for every starting state, and then, we
have that:

ρμ̂ ≡ ρμ̂(i) for any i ∈ S.
We now present the main result for the Bellman equations for average
reward SMDPs. This is the SMDP counterpart of Proposition 11.11,
and it is presented without proof (the interested reader can find the
proof in [30, 242]).

Proposition 11.20 (i) If a scalar ρ and a |S|-dimensional vector �hμ̂,
where |S| denotes the number of elements in the set of states in the
Markov chain, S, satisfy

ρt̄(i, μ(i))+hμ̂(i)=r̄(i, μ(i))+

|S|∑

j=1

p(i, μ(i), j)hμ̂(j), i=1, 2, . . . , |S|,

(11.62)

then ρ is the average reward associated to the policy μ̂ defined in
Definition 11.5.
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(ii) Assume that one of the stationary, deterministic policies is optimal.

If a scalar ρ∗ and a |S|-dimensional vector �J∗ satisfy

J∗(i) = max
u∈A(i)

⎡

⎣r̄(i, u)− ρ∗ t̄(i, u) +
|S|∑

j=1

p(i, u, j)J∗(j)

⎤

⎦ , i = 1, 2, . . . , |S|,

(11.63)

where A(i) is the set of allowable actions in state i, then ρ∗ equals
the average reward associated to the policy μ̂∗ that attains the max
in the RHS of Eq. (11.63). Further, the policy μ̂∗ is an optimal
policy.

6. Asynchronous Stochastic Approximation
RL (reinforcement learning) schemes are derived from dynamic

programming schemes, and yet they need a separate convergence
analysis because mathematically the two schemes are quite different.
One difference is in the use of the step size in RL, which is absent in
the DP schemes. The use of the step size makes any RL scheme belong
to the class called “stochastic approximation.” The other difference is
that RL schemes tend to be “asynchronous,” a concept that we will
discuss later.

We will discuss the convergence concepts in this section via the
ordinary (deterministic) differential equation (ODE) method. It can
be shown that many stochastic approximation schemes, e.g., RL algo-
rithms, are tracked by ODEs. In other words, it can be shown that
we can derive ODEs associated with many stochastic approximation
schemes. Properties of the associated ODE can be exploited to study
convergence properties of the RL algorithm.

6.1. Asynchronous Convergence
We first discuss the difference between a synchronous and an asyn-

chronous algorithm. The difference is best explained with an example.
Consider a problem with three states, which are numbered 1

through 3. In a synchronous algorithm, one would first go to state
1, update value(s) associated with it, then go to state 2, update its
value(s), and then go to state 3 and update its value(s). Then one
would return to state 1, and this would continue. In asynchronous
updating, the order of updating is haphazard. It could be for instance:

1 → 3 → 1 → 2 → 1 → · · ·
On the other hand, in synchronous updating, the order is always as
follows:

1 → 2 → 3 → 1 → 2 → 3 · · · .
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Dynamic programming is usually synchronous (note that the Gauss-
Seidel version of value iteration is however an exception and is partially
asynchronous). The asynchronous use of the RL algorithm makes it
quite different from a regular dynamic programming algorithm. There
are in fact two differences:

1. The updating in the RL algorithm follows a haphazard order
dictated by the trajectory of the sample path, whereas the order
used in dynamic programming is not random.

2. When a state is visited, a Q-factor version of a synchronous
dynamic programming algorithm would update all the Q-factors
associated with that state, while an asynchronous RL algorithm
would update only one Q-factor, which is the Q-factor associated
with the action selected in the previous state.

It is also important to understand that in one iteration of the RL
algorithm, we visit one state-action pair and update only one Q-factor
as a result (the Q-factor associated with the state-action pair). Each
Q-factor can be viewed as an iterate in the asynchronous stochastic
approximation algorithm. We will define Θk as index of the state-
action pair visited in the kth iteration of the algorithm.

The reader is encouraged at this point to review Definition 9.14
from Sect. 11.3 in Chap. 9 before reading any further. Then, our asyn-
chronous algorithm can be described formally as: For l = 1, 2 . . . , N ,

Xk+1(l) = Xk(l) + αk(l)
[
F ( �Xk)(l) + wk(l)

]
I(l = Θk), where

(11.64)

N : the (finite) number of iterates (or state-action pairs)

αk(l): the step size for the lth iterate for l = 1, 2, . . . , N

Θk: the index of the iterate updated in the kth iteration

Note that in RL, l ≡ (i, a) and Xk(l) ≡ Qk(i, a). Further note that the
indicator function in Eq. (11.64) implies that in the kth iteration, only
one Q-factor is updated, and that the Q-factor which does get updated
is the one associated to the state-action pair visited in that iteration.
The indicator function will return a 0 for a Q-factor not visited in the
kth iteration, which will imply that the Q-factors not visited in that
iteration will not be updated. Thus,

{Θ1,Θ2, . . .}

will denote the trajectory of state-action pairs visited in the simulator.
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6.1.1 Asynchronous Counterpart of Theorem 9.16

We will now present the asynchronous counterpart of Theorem 9.16
(Chap. 9). Consider the stochastic approximation scheme in Theorem
9.16 but for asynchronous updating. In Theorem 9.16, which applies
only to synchronous updating, convergence was shown under a number
of conditions. Under some additional conditions on the step sizes and
the nature of updating, we will now present a result that establishes
for asynchronous updating the same conclusion as Theorem 9.16, i.e.,
convergence of the stochastic approximation scheme. We will present
all the conditions needed for convergence here (for the reader’s conve-
nience), repeating those needed for synchronous convergence.

Theorem 11.21 Consider the asynchronous stochastic approxima-
tion algorithm defined in Eq. (11.64). Assume that the following
conditions hold:

Condition 1. Lipschitz continuity of F (.): Assumption 9.11 from
Chap. 9: The function F (.) is Lipschitz continuous.

Condition 2. Conditions on noise: Assumption 9.12 from Chap. 9:
For l = 1, 2, . . . , N and for every k, the following should be true
about the noise terms:

E
[
wk(l)|Fk

]
= 0; E

[(
wk(l)

)2∣∣∣∣F
k

]
≤ z1 + z2|| �Xk||2;

where z1 and z2 are scalar constants and ||.|| could be any norm.

Condition 3. Standard step-size conditions of stochastic approxima-
tion: Assumption 9.13 of Chap. 9: The step size αk(l) satisfies the
following conditions for every l = 1, 2, . . . , N :

∞∑

k=1

αk(l) = ∞;
∞∑

k=1

(
αk(l)

)2
< ∞.

Condition 4. Asymptotically stable critical point for ODE: Assump-
tion 9.15 from Chap. 9: Let �x denote the continuous-valued variable
underlying the iterate �Xk (discussed in Chap. 9). Then, ODE

d�x

dt
= F (�x)

has a unique globally asymptotically stable equilibrium point, de-
noted by �x∗.
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Condition 5. Boundedness of iterates: Assumption 9.14 from Chap.
9: The iterate �Xk remains bounded with probability 1.

Condition 6. ITS (ideal tapering sizes) conditions on step sizes: For
every l = 1, 2, . . . , N ,

(i) αk+1(l) ≤ αk(l) for some k onward

(ii) For any z ∈ (0, 1), supk α
[zk](l)/αk(l) < ∞ where [.] denotes “the

integer part of.”

(iii) For any z ∈ (0, 1),

lim
k→∞

∑[zk]+1
m=1 αm(l)
∑k

m=1 α
m(l)

= 1.

Condition 7. EDU (evenly distributed updating) conditions on up-

dating: Let V k(l) =
∑k

m=1 I(l = Θk) for l = 1, 2, . . . , N . Then
with probability 1, there exists a deterministic scalar χ > 0 such
that for all l:

lim inf
k→∞

V k(l)

k
≥ χ.

Further, for any scalar z > 0, we define for every l,

Kk(z, l) ≡ min

{
m > k :

m∑

s=k+1

αs(l) > z

}
.

Then, with probability 1, the following limit must exist for all (l, l′)
pairs, where each of l and l′ assumes values from {1, 2, . . . , N}, and
any z > 0:

lim
k→∞

∑V Kk(z,l)(l)

m=V k(l)
αk(l)

∑V Kk(z,l′)(l′)
m=V k(l′) αk(l′)

.

Then, the sequence { �Xk}∞k=1 converges to �x∗ with probability 1.

The above is a powerful result with a deep proof that we skip.
The interested reader is referred for the proof to Borkar [46] (see also
Chapter 7 in [48], [49, Theorems 2.2 and 2.5], and [136, Theorem 1]).

Fortunately, showing the additional conditions of asynchronous con-
vergence, i.e., Condition 6 (ITS) and Condition 7 (EDU), does not

require additional work in RL: Standard step sizes, e.g., A
B+k and log(k)

k ,
satisfy the ITS condition, and when our updating ensures that each
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state-action pair is visited infinitely often in the limit, the EDU con-
dition is satisfied. Usually, a judicious choice of exploration ensures
that each state-action pair is tried infinitely often. Thus, although
these conditions appear formidable to prove, unless one selects non-
standard step sizes or non-standard exploration, they are automati-
cally satisfied.

Conditions 1 and 2 are usually straightforward to show in RL. Con-
dition 1 is usually easy to show for the Q-factor version of the Bellman
equation. Condition 2 is usually satisfied for most standard RL al-
gorithms based on the notion of one-step updates. Condition 3 is
satisfied by our standard step sizes, but note that the condition is de-
fined in terms of a separate step size for each iterate (l) unlike in the
synchronous case. Now, Condition 3 can be easily met with a sep-
arate step size for each iterate, but this would significantly increase
our storage burden. Fortunately, it can be shown (see e.g., Chap. 7
in [48], p. 80) that a single step size for all iterates which is updated
after every iteration (i.e., whenever k is incremented) also satisfies this
condition, although it makes the resulting step size random. That it
becomes random poses no problems in our analysis. This leads to the
following:

Important note: When we will use Theorem 11.21 in analyzing
specific RL algorithms, we will drop l from our notation for the step
size and denote the step size by αk, since we will be assuming that a
single step size is used for all values of l.

It is necessary to point out that showing Condition 4 (asymptotic
stability of the ODE’s equilibrium) and Condition 5 (boundedness
of iterate) usually require additional work and they should never be
assumed to hold automatically. In fact, much of the analysis of an
RL algorithm’s convergence may hinge on establishing these two con-
ditions for the algorithm concerned.

6.1.2 Useful Results for Conditions 4 and 5

We now provide some results that can help us show that Condi-
tions 4 and 5 hold.

A Result for Condition 4. The existence of a unique globally
asymptotically stable equilibrium can be shown for the ODE in
question if the underlying transformation that drives the stochas-
tic approximation scheme is contractive with respect to the weighted
max norm. Contractive transformations were defined in Chap. 9,
and in the Appendix, you will find a definition of contractions with
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weighted max norms. Contraction with the max norm is a special
case of contraction with the weighted max norm in which all weights
equal 1. Formally, the result is as follows.

Theorem 11.22 Consider the transformation F (.) defined above for
the stochastic approximation scheme. Define F ′(.), a continuous func-
tion from �N to �N , such that for any integer value of k,

F
(
�Xk
)
= F ′

(
�Xk
)
− �Xk where �Xk ∈ �N .

If F ′(.) is a contractive transformation with respect to a weighted max
norm, the ODE d�x

dt = F (�x) has a unique globally asymptotically stable
equilibrium point.

The proof of the above is beyond the scope of this text, and the
interested reader is referred to [48, p. 127]. The above is a very useful
condition that will be used if F ′(.) is contractive. When the con-
traction is not present, showing this condition can require significant
additional mathematics.

A Result for Condition 5. We now present an important condition
for boundedness of iterates that can be often shown when Condition 4
is true and some other conditions hold. As such, Condition 4 is a very
critical condition in the analysis. We first need to define a so-called
“scaled” function.

Definition 11.6 Consider a function Λ : �N → �. For any scalar c
where c > 0, the scaled function Λc : �N → � is defined as:

Λc(�x) =
Λ(c�x)

c
where �x ∈ �N .

We provide a simple example to illustrate this idea. Let Λ(x) = 5x+9,
where x ∈ �. Then,

Λc(x) =
Λ(cx)

c
=

5cx+ 9

c
= 5x+

9

c
.

We now define a limit for this scaled function. Assuming that

lim
c→∞Λc(�x) exists, we will name the limit as follows: Λ∞(�x) ≡ lim

c→∞Λc(�x).

Then, in the example above, Λ∞(x) = limc→∞
(
5x+ 9

c

)
= 5x.

We now provide the condition needed for showing boundedness.
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Theorem 11.23 Assume that Conditions 1–3 hold for the stochastic
approximation scheme concerned. Consider the scaled function Fc(.)
derived from F (.) for c > 0. Now assume that the following limit exists
for the scaled function: F∞(.). Further assume that the origin in �N

is the globally asymptotically stable equilibrium for the ODE:

d�x

dt
= F∞(�x). (11.65)

Then, with probability 1, the iterates �Xk remain bounded.

The above result turns out to be very useful in showing the bound-
edness of iterates in many RL algorithms. Again, its proof is beyond
our scope here; the interested reader is referred to [49, Theorem 2.1]
or [48, Theorem 7; Chap. 3].

An interesting fact related to the above is that if (i) Condition 4
holds and (ii) the scaled limit F∞(.) exists, then oftentimes in rein-
forcement learning, the ODE in Eq. (11.65) does indeed have the origin
as the globally asymptotically stable equilibrium, i.e., Condition 5 also
holds. However, all of this needs to be carefully verified separately for
every algorithm.

6.2. Two-Time-Scale Convergence
The analysis in this subsection will be useful in showing convergence

of R-SMART. Readers not interested in R-SMART can skip this sub-
section without loss of continuity.

We will now consider a more involved setting for stochastic approx-
imation in which we have two classes of iterates, and each class uses
a different step-size rule. If the two step-size rules satisfy some con-
ditions, in addition to a host of other conditions that the updating
schemes for the two classes of iterates must satisfy, we have conver-
gence of both classes of iterates. It is important to note that the fate
of the two classes is inter-twined. This is because the updating scheme
for each class uses values of iterates from the other class. Of course, if
they were independent of each other, their convergence could be stud-
ied separately, but that is not the case here.

The question that arises naturally is as follows: what is to be gained
by separating the iterates into two classes and selecting different step
size rules for each class? The answer is with two separate step sizes,
one may potentially obtain convergence for both classes, which may be
difficult to attain otherwise.

One class of iterates operates under a step size that converges to
zero faster than the other. The one that converges to zero faster is
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said to belong to the slower time scale, while the other is said to
belong to the faster time scale.

The framework described above is called the two-time-scale frame-
work. It has been popular in electrical engineering for many years.
However, it was a result from Borkar [45] that established conditions
for convergence and provided it with a solid footing. This framework
is useful for showing convergence of R-SMART. In what follows, we
will present the framework more formally.

Let �Xk denote the vector (class) of iterates on the faster time scale

and �Y k that on the slower time scale. We will assume that we have N1

iterates on the faster time scale and N2 iterates on the slower time
scale. Further, we assume that the underlying random process in the
system generates within the simulator two trajectories,

{Θ1
1,Θ

2
1, . . .} and {Θ1

2,Θ
2
2, . . .},

where Θk
1 denotes the iterate from the faster time scale updated in the

kth iteration while Θk
2 denotes the iterate from the slower time scale

updated in the kth iteration. Thus for k = 1, 2, . . .:

Θk
1 ∈ {1, 2, . . . , N1} and Θk

2 ∈ {1, 2, . . . , N2}.

The two-time-scale algorithm under asynchronous updating can now
be described as: For l = 1, 2 . . . , N1 and l2 = 1, 2, . . . , N2:

Xk+1(l1) = Xk(l1) + αk(l1)
[
F
(
�Xk, �Y k

)
(l1) + wk

1(l1)
]
I(l1 = Θk

1);

Y k+1(l2) = Y k(l2) + βk(l2)
[
G
(
�Xk, �Y k

)
(l2) + wk

2(l2)
]
I(l2 = Θk

2);

(11.66)

where

αk(.) and βk(.) are the step sizes for the faster and slower time-scale
iterates respectively

F (., .) and G(., .) denote the transformations driving the faster and
slower time-scale updates respectively

�wk
1 and �wk

2 denote the noise vectors in the kth iteration on the
faster and slower time scales respectively

Note that F (., .) is a function of X and Y , and the same is true of
G(., .). Clearly, hence, the fates of the iterates are intertwined (or cou-
pled) because their values are inter-dependent.
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We now present the conditions of convergence and the convergence
result more formally. The conditions will follow the format used in
Theorem 11.21.

Theorem 11.24 Consider the two-time-scale asynchronous algorithm
defined in Eq. (11.66). Assume that the following conditions hold:

Condition 1. Lipschitz continuity of the underlying transformations:
The functions F (., .) and G(., .) are Lipschitz continuous.

Condition 2. Conditions on noise: For l1 = 1, 2, . . . , N1, l2 =
1, 2, . . . , N2, and for every k, the following should be true about the
noise terms:

E
[
wk
1(l1)|Fk

]
=0; E

[(
wk
1(l1)

)2∣∣∣∣F
k

]
≤ z1+z2|| �Xk||2 + z3||�Y k||2;

E
[
wk
2(l2)|Fk

]
=0; E

[(
wk
2(l2)

)2∣∣∣∣F
k

]
≤ z′1+z′2|| �Xk||2 + z′3||�Y k||2;

where z1, z2, z3, z
′
1, z

′
2, and z′3 are scalar constants and ||.|| could

be any norm.

Condition 3. Step-size conditions of stochastic approximation: The
step sizes satisfy the usual tapering size conditions for every l1 =
1, 2, . . . , N1 and l2 = 1, 2, . . . , N2:

∞∑

k=1

αk(l1) = ∞;
∞∑

k=1

(
αk(l1)

)2
< ∞;

∞∑

k=1

βk(l2) = ∞;

∞∑

k=1

(
βk(l2)

)2
< ∞;

In addition, the step sizes must satisfy the following condition for
every (l1, l2) pair:

lim sup
k→∞

βk(l2)

αk(l1)
= 0; (11.67)

Condition 4a. ODE condition: For any fixed value of �y ∈ �N2,
the ODE

d�x

dt
= F (�x, �y) (11.68)

has a globally asymptotically stable equilibrium point which is a
function of �y and will be denoted by Ω(�y), where Ω : �N2 → �N1.
Further, the function Ω(�y) has to be Lipschitz continuous in �y.
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Condition 4b. ODE condition: The following ODE

d�y

dt
= G (Ω(�y), �y) (11.69)

has a globally asymptotically stable equilibrium �y∗.

Condition 5. Boundedness of iterates: The iterates �Xk and �Y k

remain bounded with probability 1.

Condition 6. ITS Condition: The step sizes satisfy Condition 6
(ITS) of Theorem 11.21.

Condition 7. EDU Condition: The updating of all components of
the X- and the Y -iterates is evenly distributed as discussed in
Condition 7 of Theorem 11.21.

Then, with probability 1, the sequence of iterates
{
�Xk, �Y k

}∞
k=1

con-

verges to (Ω(�y∗), �y∗).

While the result appears formidable, the underlying intuition can
be roughly summarized as follows. Assume the following:

(i) The step sizes obey the following condition:

lim
k→∞

βk

αk
= 0;

(ii) If the values of the Y -iterates are frozen (i.e., fixed at any vector),
the X-iterates converge (to a solution that is Lipschitz continuous

in �Y );

(iii) The Y -iterates converge.

Then, if all the iterates remain bounded, the sequence { �Xk, �Y k}∞k=1
will converge.

Essentially, what the above implies is that under suitable conditions
on the step sizes and the updating (read exploration), which can clearly
be controlled by the compute program, if one can show that the faster
iterate (Xk) converges when the slower iterate (Y k) is fixed and the
slower iterate can be shown to converge to some value, then we can
hope for convergence of the slower and the faster iterates.

It is important to note that the conditions that distinguish two-time-
scale behavior from the one-time-scale setting of the previous subsec-
tion are Conditions 4a and 4b, and the condition on the step sizes
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in Eq. (11.67). To gain additional insight into the relation between
one time-scale and two-time-scale convergence, note that if you fix
�y, the result above essentially becomes equivalent to Theorem 11.21,
i.e., that for one-time-scale convergence. Finally, note that like in the
one-time-scale setting, we will drop l1 and l2 from the step sizes when
we use the result above, since we will use one step size (αk) for all
the faster iterates and one (βk) for the slower iterates (this implies
that αk and βk are updated whenever k is incremented). Like in the
case of one-time-scale convergence, this makes the step sizes random
but since the random step sizes satisfy all our conditions on step sizes,
they pose no difficulties to us. (As stated above, using separate step
sizes for each iterate is something to be avoided because that would
immensely increase our computational burden.)

7. Reinforcement Learning: Convergence
Background

In this section, we shall establish some fundamental results on which
the convergence theory of many RL algorithms rests. These results are
essentially the Q-factor versions of the basic results related to the Bell-
man optimality and the Bellman policy (Poisson) equations. These re-
sults will be needed in the sections that follow in showing convergence
of RL algorithms based on the Bellman optimality and policy equa-
tions. We will first cover the Q-factor results for discounted reward
MDPs, then those for average reward MDP, followed by those for dis-
counted reward SMDPs, and then finally those for average reward
SMDPs.

Important Note. In what follows in this chapter, although the
Q-factors are essentially stored in matrices, we will assume that the
matrix will be converted into a column vector after suitable mapping.
This can always be done. We will refer to the resulting column vector
as �Q, the Q-vector. For instance, consider the Q-matrix:

Q =

[
Q(1, 1) Q(1, 2)
Q(2, 1) Q(2, 2)

]
.

We can write the above as a vector, e.g.,

�Q =

⎡

⎢⎢⎣

Q(1, 1)
Q(1, 2)
Q(2, 1)
Q(2, 2)

⎤

⎥⎥⎦ .

We will assume that each Q-factor is assigned a unique index in the
vector �Q.
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7.1. Discounted Reward MDPs
In this section, we will present the Q-factor versions of the Bellman

optimality and policy equations for discounted reward MDPs. We first
cover the Bellman optimality equation.

Bellman optimality equation. Consider Eq. (11.21) in Proposi-
tion 11.7. Now, we define the Q-factors as follows: For all (i, a) pairs,

Q(i, a) =

⎡

⎣r̄(i, a) + λ
∑

j∈S
p(i, a, j)J∗(j)

⎤

⎦ , (11.70)

where �J∗ ∈ �|S| and �J∗ is the unique solution of Equation (11.21).
Then, from Eq. (11.21), we have that for any i ∈ S:

J∗(i) = max
a∈A(i)

Q(i, a), which from Eq. (11.70) implies that

for all (i, a) pairs, Q(i, a) =
∑

j∈S
p(i, a, j)

[
r(i, a, j) + λ max

b∈A(j)
Q(j, b)

]
.

The above is a Q-factor version of the Bellman optimality equation in
(11.21). Thus the above equation can be replaced in Proposition 11.7
to obtain the following result.

Proposition 11.25 Consider the system of equations defined as
follows. For all i ∈ S and a ∈ A(i):

Q(i, a) =
∑

j∈S
p(i, a, j)

[
r(i, a, j) + λ max

b∈A(j)
Q(j, b)

]
.

The vector �Q∗ that solves this equation is the optimal Q-factor vector,
i.e., if for all i ∈ S, μ∗(i) ∈ argmaxa∈A(i)Q

∗(i, a), then μ̂∗ denotes an
optimal policy.

Bellman policy equation. Now, we will consider the Bellman policy
(Poisson) equation. Consider a policy μ̂ and the following definition
for the Q-factor: We define the Q-factors as follows: For all (i, a) pairs,

Q(i, a) =

⎡

⎣r̄(i, a) + λ
∑

j∈S
p(i, a, j)Jμ̂(j)

⎤

⎦ , (11.71)

where �Jμ̂ ∈ �|S| and �Jμ̂ is the unique solution of the linear
Equation (11.22). From Eq. (11.22), then we have that for any i ∈ S:

Jμ̂(i) = Q(i, μ(i)), which from Eq. (11.71) implies that
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for all (i, a) pairs, Q(i, a) =
∑

j∈S
p(i, a, j) [r(i, a, j) + λQ(j, μ(j))] .

The above is a Q-factor version of the Bellman policy equation in
(11.22). Thus the above equation can be replaced in Proposition 11.8
to obtain the following result.

Proposition 11.26 Consider a policy μ̂ and the system of equations
defined as follows. For all i ∈ S and a ∈ A(i):

Q(i, a) =
∑

j∈S
p(i, a, j) [r(i, a, j) + λQ(j, μ(j))] . (11.72)

Then, there exists a unique solution, �Qμ̂, to the above equation.
Further, if

Jμ̂(i) = Qμ̂(i, μ(i)) for all i ∈ S,

then the vector �Jμ̂ equals the vector that can be obtained by applying
transformation Tμ̂ on any finite-valued vector infinitely many times,

i.e., �Jμ̂ is the value-function vector associated to policy μ̂.

7.2. Average Reward MDPs
In this section, we will present the Q-factor versions of the Bellman

optimality and policy equations for average reward MDPs. We first
cover the Bellman optimality equation.

Bellman optimality equation. Consider Proposition 11.11 and the
vector �J∗ and the scalar ρ∗ associated to Eq. (11.35). We can write
Eq. (11.35) as: For all i ∈ S:

J∗(i) = max
a∈A(i)

⎡

⎣r̄(i, a) +
∑

j∈S
p(i, a, j)J∗(j)− ρ∗

⎤

⎦ . (11.73)

Now, if we define Q(i, a) as follows:

Q(i, a) =

⎡

⎣r̄(i, a) +
∑

j∈S
p(i, a, j)J∗(j)− ρ∗

⎤

⎦ ,

where �J∗ and ρ∗ together solve Eq. (11.35), then, we have from the
above and Eq. (11.73) that for any i ∈ S:

J∗(i) = max
A(i)

Q(i, a), which from Eq. (11.73) implies that
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for all (i, a) pairs, Q(i, a)=

⎡

⎣r̄(i, a) +
∑

j∈S
p(i, a, j) max

b∈A(j)
Q(j, b)− ρ∗

⎤

⎦ .

The above is a Q-factor version of the Bellman optimality equation
in (11.35). The above equation can be replaced in the second part of
Proposition 11.11 to obtain the following result.

Proposition 11.27 Consider the following system of equations
defined as follows. For all i ∈ S and a ∈ A(i), and for any scalar
ρ ∈ �:

Q(i, a) =
∑

j∈S
p(i, a, j)

[
r(i, a, j) + max

b∈A(j)
Q(j, b)− ρ

]
. (11.74)

If there exist a vector �Q∗ and a scalar ρ∗ ∈ � that together satisfy the
above equation, then ρ∗ is the average reward of the policy μ̂∗, where
for all i ∈ S, μ∗(i) ∈ argmaxa∈A(i)Q

∗(i, a). Further, μ̂∗ denotes an
optimal policy.

Bellman policy equation. Consider Proposition 11.11, a policy μ̂,
a vector �hμ̂ ∈ �|S|, and a scalar ρ. Now, if we define Q(i, a) as follows:

Q(i, a) =

⎡

⎣r̄(i, a) +
∑

j∈S
p(i, a, j)hμ̂(j)− ρ

⎤

⎦ ,

where �hμ̂ and ρ are solutions of Equation (11.34), then, we have from
the above and Eq. (11.34) that for any i ∈ S:

hμ̂(i) = Q(i, μ(i)), which from the equation above implies that

for all (i, a) pairs, Q(i, a) =

⎡

⎣r̄(i, a) +
∑

j∈S
p(i, a, j)Q(j, μ(j))− ρ

⎤

⎦ .

The above is a Q-factor version of the Bellman policy equation in
(11.34). The above equation can be replaced in the first part of Propo-
sition 11.11 to obtain the following result.

Proposition 11.28 Consider a policy μ̂. Further, consider the
following system of equations defined as follows. For all i ∈ S and
a ∈ A(i), and for any scalar ρ ∈ �:

Q(i, a) =
∑

j∈S
p(i, a, j) [r(i, a, j) +Q(j, μ(j))− ρ] .

If there exist a vector, �Qμ̂, and a scalar ρ ∈ � that satisfy the above
equation, then ρ is the average reward of the policy μ̂.
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8. Reinforcement Learning for MDPs:
Convergence

In this section, we shall apply results from the previous section
to analyze a subset of RL algorithms for solving MDPs that we
have covered in Chap. 7. This will include algorithms belonging to
the Q-Learning, Q-P -Learning, non-optimistic API and R-SMART
classes. This section is rather long, and each subsection is devoted to
the analysis of one algorithm.

8.1. Q-Learning: Discounted Reward MDPs
We will now prove that Q-Learning for discounted reward MDPs

converges under asynchronous conditions. The core of the Q-Learning
algorithm can be expressed by the following transformation:

Qk+1(i, a) ← Qk(i, a) + α

[
r(i, a, ξk) + λ max

b∈A(ξk)
Qk(ξk, b)−Qk(i, a)

]
,

(11.75)

where ξk is a random variable that depends on (i, a) and k. Notice
that in the past, we have used j in place of ξk. The reason for using
more technically correct notation here is that ξk is a random variable.
Let the policy generated in the kth iteration be defined by:

μk(i) ∈ argmax
a∈A(i)

Qk(i, a) for all i ∈ S.

Let the optimal policy be denoted by μ̂∗. The convergence result for
Q-Learning is as follows.

Proposition 11.29 When the step sizes and action selection used
in the algorithm satisfy Conditions 3, 6, and 7 of Theorem 11.21,
with probability 1, the sequence of policies generated by the Q-Learning
algorithm, {μ̂k}∞k=1, converges to μ̂∗.

Proof In order to invoke Theorem 11.21, we first need to show that
this algorithm is of the form described in that result. To this end, we
first need to define some transformations.

We define the transformations F (.) and F ′(.) on the vector �Qk as
follows:

F
(
�Qk
)
(i, a) =

|S|∑

j=1

p(i, a, j)

[
r(i, a, j) + λ max

b∈A(j)
Qk(j, b)

]
−Qk(i, a);

F ′
(
�Qk
)
(i, a) =

|S|∑

j=1

p(i, a, j)

[
r(i, a, j) + λ max

b∈A(j)
Qk(j, b)

]
;
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which implies that for all (i, a) pairs,

F
(
�Qk
)
(i, a) = F ′

(
�Qk
)
(i, a)−Qk(i, a). (11.76)

We further define a transformation f ′(.) as follows (roughly speaking,
the transformation f ′(.) contains the sample of which F ′(.) computes
the expectation):

f ′
(
�Qk
)
(i, a) =

[
r(i, a, ξk) + λ max

b∈A(ξk)
Qk(ξk, b)

]
.

Now, if we define the noise term as:

wk(i, a) = f ′
(
�Qk
)
(i, a)− F ′

(
�Qk
)
(i, a), (11.77)

then, we can write the updating transformation in our algorithm
(Eq. (11.75)) as:

Qk+1(i, a) = Qk(i, a) + αk
[
f ′
(
�Qk
)
(i, a)−Qk(i, a)

]
.

Now, using the relation defined in Eq. (11.76), we can re-write the
above:

Qk+1(i, a) = Qk(i, a) + αk
[
F
(
�Qk
)
(i, a) + wk(i, a)

]
,

which is of the same form as the updating scheme defined for
Theorem 11.21 (replace Xk by Qk and l by (i, a)). Then, we can
invoke the following ODE as in Condition 4 of Theorem 11.21:

d�q

dt
= F (�q), (11.78)

where �q denotes the continuous-valued variable underlying the iter-
ate Q. We now need to evaluate the conditions of Theorem 11.21 in
order to determine whether Q-Learning converges.

Condition 1. Lipschitz continuity of F (.) can be shown from the fact

that the partial derivatives F ( �Qk) with Qk(i, a) are bounded. See
Definition 9.13 and the related discussion on page 313.

Condition 2. From its definition it is intuitively clear that the noise
term wk(., .) is the difference between a random value and a condi-
tional mean of the value. Using rigorous mathematical arguments
that are beyond our scope here the noise term can be shown to
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be a martingale, whose conditional mean is zero. Its (conditional)
second moment can be bounded by a function of the square of the
iterate.

Condition 3. These conditions can be proved for a step size such as
A/(B + k). (See any standard undergraduate analysis text such as
Rudin [254] for a proof.)

Condition 4. To show this condition, we will exploit Theorem 11.22.
Consider two vectors �Qk

1 and �Qk
2 in �N . From the definition of

F ′(.) above, it follows that:

F ′
(
�Qk
1

)
(i, a)−F ′

(
�Qk
2

)
(i, a)=λ

|S|∑

j=1

p(i, a, j)

[
max

b∈A(j)
Qk

1(j, b)− max
b∈A(j)

Qk
2(j, b)

]
.

From this, we can write that for any (i, a) pair:

∣
∣
∣F ′

(

�Qk
1

)

(i, a)− F ′
(

�Qk
2

)

(i, a)
∣
∣
∣ ≤ λ

|S|
∑

j=1

p(i, a, j)

∣
∣
∣
∣
max

b∈A(j)
Qk

1(j, b)− max
b∈A(j)

Qk
2(j, b)

∣
∣
∣
∣

(from triangle inequality; page 285)

≤ λ

|S|
∑

j=1

p(i, a, j) max
b∈A(j)

|Qk
1(j, b)−Qk

2(j, b)|

≤ λ

|S|
∑

j=1

p(i, a, j) max
j∈S,b∈A(j)

|Qk
1(j, b)−Qk

2(j, b)|

= λ

|S|
∑

j=1

p(i, a, j)|| �Qk
1 − �Qk

2 ||∞

= λ|| �Qk
1 − �Qk

2 ||∞
|S|
∑

j=1

p(i, a, j) = λ|| �Qk
1 − �Qk

2 ||∞ · 1.

(11.81)

Thus for any (i, a) : |F ′
(
�Qk
1

)
(i, a)−F ′

(
�Qk
2

)
(i, a)|≤λ|| �Qk

1− �Qk
2||∞.

Since the above holds for all values of (i, a), it also holds for the
values that maximize the left hand side of the above. Therefore

||F ′ �Qk
1 − F ′ �Qk

2||∞ ≤ λ|| �Qk
1 − �Qk

2||∞.

Since λ < 1, F ′(.) is contractive with respect to the max norm.
Then, from Theorem 11.22, the ODE in Eq. (11.78) must have a
unique globally asymptotically stable equilibrium.

Condition 5. This is the boundedness condition. We will now
show boundedness using a proof based on basic principles from
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Gosavi [111]. We will later present two other proofs that exploit
Theorem 11.23. The boundedness argument is next provided as a
separate lemma.

Lemma 11.30 In Q-Learning (for discounted reward MDPs), under
synchronous and asynchronous updating, the iterate Qk(i, a) for any
state-action pair (i, a) in its kth update remains bounded, as long as
we start with some finite starting values for the Q-factors, where λ ∈
[0, 1).

Proof We first claim that for every state-action pair (i, a):

|Qk(i, a)| ≤ M(1 + λ+ λ2 + · · ·+ λk), (11.79)

where λ is the discounting factor and M is a positive finite number
defined as follows:

M = max

{
rmax, max

i∈S,a∈A(i)
Q1(i, a)

}
, (11.80)

where rmax = max
i,j∈S,a∈A(i)

|r(i, a, j)|. (11.81)

Since the immediate rewards are finite by definition, rmax must be a
finite scalar. Since we start with finite values for the Q-factors, thenM
too has to be finite. Then, from the above claim (11.79), boundedness
follows since if k → ∞,

lim sup
k→∞

|Qk(i, a)| ≤ M
1

1− λ

for all i ∈ S and a ∈ A(i), since 0 ≤ λ < 1. (In the above, we have
used the formula for a convergent infinite geometric series.) The right
hand side of the above is a finite scalar, and so Qk(i, a) will always be
finite, thus establishing the result. Thus, all we need to do is to prove
our claim in (11.79). We will use an induction argument.

Note that in asynchronous updating, in one iteration of the
algorithm, the Q-factor for only one state-action pair is updated,
and the other Q-factors remain unchanged. Hence, in general, in the
kth iteration of the asynchronous algorithm, the update for Qk(i, a)
is either according to Case 1 or Case 2.

Case 1: The state-action pair is updated in the kth iteration:

Qk+1(i, a) = (1− α)Qk(i, a) + α

[
r(i, a, j) + λ max

b∈A(j)
Qk(j, b)

]
.
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Case 2: The state-action pair is not updated in the kth iteration:

Qk+1(i, a) = Qk(i, a).

Now, if the update is carried out as in Case 1:

|Q2(i, a)| ≤ (1− α)|Q1(i, a)|+ α|r(i, a, j) + λ max
b∈A(j)

Q1(j, b)|

≤ (1− α)M + αM + αλM (from (11.81) and (11.80))

≤ (1− α)M + αM + λM (from the fact that α ≤ 1)

= M(1 + λ)

Now, if the update is carried out as in Case 2:

|Q2(i, a)| = |Q1(i, a)|
≤ M ≤ M(1 + λ).

From the above, our claim in (11.79) is true for k = 1. Now assuming
that the claim is true when k = m, we have that for all (i, a) ∈
(S ×A(i)).

|Qm(i, a)| ≤ M(1 + λ+ λ2 + · · ·+ λm). (11.82)

Now, if the update is carried out as in Case 1:

|Qm+1(i, a)| ≤ (1− α)|Qm(i, a)|+ α|r(i, a, j) + λ max
j∈A(j)

Qm(j, b)|

≤ (1− α)M(1 + λ+ λ2 + · · ·+ λm)

+αM + αλM(1 + λ+ λ2 + · · ·+ λm) (from (11.82))

= M(1 + λ+ λ2 + · · ·+ λm)

−αM(1 + λ+ λ2 + · · ·+ λm)

+αM + αλM(1 + λ+ λ2 + · · ·+ λm)

= M(1+λ+λ2+ · · ·+ λm)

−αM(1 + λ+ λ2 + · · ·+ λm)

+αM + αM(λ+ λ2 + · · ·+ λm+1)

= M(1 + λ+ λ2 + · · ·+ λm)

−αM(1 + λ+ λ2 + · · ·+ λm) + αM

+αM(λ+ λ2 + · · ·+ λm) + αMλm+1

= M(1+λ+λ2+ · · ·+λm)−αM(1+λ+λ2+ · · ·+λm)

+αM(1 + λ+ λ2 + · · ·+ λm) + αMλm+1

= M(1+λ+ λ2+ · · ·+λm)+αMλm+1
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≤ M(1+λ+λ2+ · · ·+λm)+Mλm+1 (since 0<α ≤ 1)

= M(1 + λ+ λ2 + · · ·+ λm + λm+1)

Now, if the update is carried out as in Case 2:

|Qm+1(i, a)| = |Qm(i, a)|
≤ M(1 + λ+ λ2 + · · ·+ λm)

≤ M(1 + λ+ λ2 + · · ·+ λm + λm+1)

From the above, the claim in (11.79) is proved for k = m+ 1.

Conditions 6 and 7. These conditions are ensured with appropriate
step sizes and by appropriate exploration, as discussed above.

Then, by Theorem 11.21, we have convergence with probability 1
to the unique globally asymptotically stable equilibrium of the ODE
in Eq. (11.78); denote the equilibrium by �Q∞. From the definition of
equilibrium (see Definition 9.10 from Chap. 9), it should be clear that
the iterates converge with probability 1 to the solution of the following:
For all (i, a) pairs,

F
(
�Q∞
)
(i, a) = 0, or F ′

(
�Q∞
)
(i, a) = Q∞(i, a).

But by Proposition 11.25, the above is the optimal solution (solution
of the Q-factor version of the Bellman optimality equation), and we
are done.

8.1.1 Alternative Proofs for Boundedness

It is important to note that Lemma 11.30 holds for any sample
path chosen in the simulator. We will now show boundedness of the
Q-factors in Q-Learning via two other techniques, but these results
will be true with probability 1. The first one will be based on the
eigenvalues of an associated matrix, while the second is the most gen-
eral of proofs, and all it needs is the contraction property underlying
the transformation. Both results will rely on using Theorem 11.23.

Eigenvalue Proof. For this proof, we need a basic result from ODEs
(see Theorem 4.1 on page 151 of [54]), which is as follows.

Theorem 11.31 Consider the ODE:

d�x

dt
= A�x, where A is a real constant square matrix.
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The critical (equilibrium) point of the ODE must be asymptotically
stable if all the eigenvalues of A have strictly negative, real parts.

In order to invoke this result, we need some work. We first compute
the scaled function (see Definition 11.6) for the Q-Learning transfor-
mation as follows: For all (i, a) pairs and any c > 0,

Fc

(
�Qk
)
(i, a) =

|S|∑

j=1

p(i, a, j)

[
r(i, a, j)

c
+ λ max

b∈A(j)
Qk(j, b)

]
−Qk(i, a).

(11.83)
The above implies that for all (i, a) pairs:

F∞
(
�Qk

)
(i, a) ≡ lim

c→∞
Fc

(
�Qk

)
(i, a) =

|S|∑

j=1

p(i, a, j)

[
λ max

b∈A(j)
Qk(j, b)

]
−Qk(i, a).

Then, from simple matrix algebra, it can be shown that we can write

the matrix F∞
(
�Qk
)
as follows:

F∞
(
�Qk
)
= λL �Qk − �Qk, (11.84)

where L is a square matrix of size N × N of which each element is
either a transition probability (p(i, a, j) term) or 0. The above will be
useful in our result below.

Lemma 11.32 In Q-Learning (for discounted reward MDPs), under

synchronous and asynchronous updating, the sequence { �Qk}∞k=1 re-
mains bounded with probability 1.

Proof We re-write Eq. (11.84) as: F∞
(
�Qk
)
= (λL− I) �Qk, where I

is the identity matrix of size N . Since λ < 1, we have that ||λL||∞ < 1
(where ||.||∞ is the max norm of a matrix; see Appendix for matrix
norms, eigenvalues and spectral radii), and hence ν(λL) ≤ ||λL||∞ <
1, where ν(.) denotes the spectral radius of a matrix. If ψs denotes
the sth eigenvalue of λL, then the definition of spectral radius im-
plies: 0 < |ψs| < 1 for all s. Now, the eigenvalue of λL − I must
equal the eigenvalue of λL minus 1 (see spectral shift property in Ap-
pendix), and hence every eigenvalue of λL−Imust be strictly negative.

Then, Theorem 11.31 implies that the ODE d�q
dt = F∞(�q) must have

an asymptotically stable equilibrium. But, since the origin is the only
equilibrium for this ODE, applying Theorem 11.23, we are done.

Note that it may be tempting to use the result for the case λ = 1.
But when λ = 1, the eigenvalues will not be strictly non-negative, and
hence it is not possible to show boundedness via the approach above.
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Contraction Property Proof. The proof we now present will in-
voke the contraction property of the transformation F ′(.). Again, it
will establish boundedness with probability 1.

Lemma 11.33 In Q-Learning (for discounted reward MDPs), un-

der synchronous and asynchronous updating, the sequence { �Qk}∞k=1
remains bounded with probability 1.

Proof It has been shown in proving Condition 4 in the proof of Propo-
sition 11.29 that F ′(.) is contractive with respect to the max norm
(a special case of that same with respect to the weighted max norm).
Then, Theorem 11.22 implies that the ODE in Eq. (11.78) must have
a unique globally asymptotically stable equilibrium.

Now if we compute the scaled function Fc(.), as defined in Defini-
tion 11.6, we can show (see Eq. (11.83) and its accompanying discus-
sion) that:

F∞
(
�Qk
)
(i, a) = lim

c→∞Fc

(
�Qk
)
(i, a)

= λ

|S|∑

j=1

p(i, a, j)

[
max
b∈A(j)

Qk(j, b)

]
−Qk(i, a);

it is not hard to see that F∞(.) is a special case of the transformation
F (.) with the immediate reward set to 0, i.e., r(i, a, j) = 0 for all i ∈ S,
j ∈ S, and a ∈ A(i). Thus, the ODE d�q

dt = F∞(�q) must have a globally
asymptotically stable equilibrium. But note that the origin is the only
equilibrium point for this ODE. Then, Theorem 11.23 implies that the
iterates must be bounded with probability 1.

8.1.2 Finite Convergence of Q-Learning

A feature of the convergence analysis above that we cannot overlook
is the attainment of convergence after an infinite number of iterations.
The question that naturally arises now is: is there is a finite number
of iterations after which the algorithm will generate the optimal solu-
tion? The other question is how many samples should be collected (or
iterations performed) for the estimates of the iterates to be ε-close to
their limiting values.

We will now prove using analysis from [109] that it is possible to
terminate Q-Learning in a finite number of iterations to obtain the
optimal solution. Our analysis, however, will not place a bound on
the number of samples needed for convergence; for that the inter-
ested reader is referred to [47, 83]. The analysis follows from the fact
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that Q-factors converge and should hold whenever convergence can be
shown in an algorithm with probability 1.

We first provide some notation needed for our analysis. For each
state i ∈ S, let Q∗

1(i) and Q∗
2(i) denote the highest value (maximum

value) and the second-highest value (value lower than the maximum
but higher than all of the other values) of the Q-factors, respectively,
which are obtained from running the Q-Learning algorithm for an in-
finite number of iterations; i.e., these are the optimal values of the
Q-factors obtained theoretically in the limit. That these limiting (op-
timal) values exist with probability 1 is a consequence of Proposi-
tion 11.29. (Note that the case where all actions are equally good is
trivial and is not considered.)

Further, for each i ∈ S, let

M1(i) = argmax
c∈A(i)

Q∗(i, c),

where Q∗(i, c) denotes the limiting Q-factor for the state-action pair
(i, c). Thus, the set M1(i) contains all the actions that maximize the
optimal Q-factor in state i. Similarly, for each i ∈ S, let

M2(i) = arg2maxc∈A(i)Q
∗(i, c),

where the set M2(i) contains all the actions that produce the second-
highest value for the limiting Q-factor in state i. These sets will be
non-empty (provided we have at least two actions, which we assume to
be true) and can be possibly singletons. (For the sake of simplicity, the
reader may assume these sets to be singletons and generalize later).

Now, for any state i ∈ S and for any a1 ∈ M1(i), let Q̃
k
1(i, a1) denote

the value of the Q-factor of state i and action a1 in the kth iteration.
Similarly, for each state i ∈ S and for a2 ∈ M2(i), let Q̃

k
2(i, a2) denote

the value of the Q-factor of state i and action a2 in the kth iteration.
Note that here a1 and a2 assume values from the sets defined above.
Let J be the set of positive integers and let k ∈ J .

Proposition 11.34 With probability 1, there exists a positive integer
K such that for k ≥ K, for each i ∈ S, and for every (a1, a2)-pair,

Q̃k
1(i, a1) > Q̃k

2(i, a2),where a1 ∈ M1(i) and a2 ∈ M2(i). (11.85)

The above implies that the algorithm can be terminated in a finite
number of iterations with probability 1. This is because when for every
state, the estimate of what is the highest Q-factor starts exceeding that
of what is the second-highest Q-factor, the algorithm should generate
the optimal policy.
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Proof We will first assume that we are working with one specific
(a1, a2)-pair. This allows us to conceal a1 and a2 from the notation
thereby easing the latter. Thus, Q̃k

1(i, a1) will be replaced by Q̃k
1(i)

and Q̃k
2(i, a2) will be replaced by Q̃k

2(i). The result can be shown to
hold for every such pair.

We first define the absolute value of the difference between the lim-
iting value and the estimate in the kth iteration. To this end, for each
i ∈ S, let

ek1(i) = |Q̃k
1(i)−Q∗

1(i)|, and ek2(i) = |Q̃k
2(i)−Q∗

2(i)|.

From the above, it is easy to see that we can have four different cases
for the values of the estimates, depending on the value of the difference:

Case 1: Q̃k
1(i) = Q∗

1(i)− ek1(i), and Q̃k
2 = Q∗

2(i) + ek2(i);

Case 2: Q̃k
1(i) = Q∗

1(i)− ek1(i), and Q̃k
2 = Q∗

2(i)− ek2(i);

Case 3: Q̃k
1(i) = Q∗

1(i) + ek1(i), and Q̃k
2 = Q∗

2(i) + ek2(i);

Case 4: Q̃k
1(i) = Q∗

1(i) + ek1(i), and Q̃k
2 = Q∗

2(i)− ek2(i).

Let D(i) ≡ Q∗
1(i)−Q∗

2(i) for all i ∈ S.

D(i) > 0 for all i ∈ S because of the following. By its definition,
D(i) >= 0 for any i, but D(i) = 0 for the situation in which all
actions are equally good for the state in question, in which case there
is nothing to be proved.

We will now assume that there exists a value K for k such that for
each i, both ek1(i) and ek2(i) are less than D(i)/2 when k ≥ K. We
will prove later that this assumption holds in Q-Learning. Thus, our
immediate goal is to show inequality (11.85) for each case, under this
assumption.

We first consider Case 1.

Q̃k
1(i)− Q̃k

2(i)

= Q∗
1(i)−Q∗

2(i)− ek2(i)− ek1(i) from Case 1.

= D(i)− (ek1(i) + ek2(i)) > D(i)−D(i) = 0.

Then, Q̃k
1(i) > Q̃k

2(i) ∀i, k ≥ K, proving inequality (11.85). The
rest of the cases should be obvious from drawing a simple figure, but
we present details. Like in Case 1, for Case 4, we can show that
Q̃k

1(i)− Q̃k
2(i) = D(i) + (ek1(i) + ek2(i)) > 0, since ekl (i) ≥ 0 for l = 1, 2.

For Case 2, since ek2(i) ≥ 0, we have that

D(i)

2
+ ek2(i) ≥

D(i)

2
.
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Also, since ek1(i) <
D(i)
2 , we have that

D(i)

2
− ek1(i) > 0.

Combining the two inequalities above, we have that D(i) − (ek1(i) −
ek2(i)) > D(i)

2 . Then, we have that Q̃k
1(i) − Q̃k

2(i) = D(i) − (ek1(i) −
ek2(i)) >

D(i)
2 > 0. Case 3 can be proved in a manner very similar to

that of Case 2.
What remains to be shown is the assumption we made above. Now,

Proposition 11.29 implies that for every i ∈ S, with probability 1,

lim
k→∞

Q̃k
1(i) = Q∗

1(i) and lim
k→∞

Q̃k
2(i) = Q∗

2(i).

Hence, for any given ε > 0, there exists a value k1 ∈ J for which
|Q̃k

1(i)−Q∗
1(i)| < ε when k ≥ k1. Similarly, for any given ε > 0, there

exists a value k2 ∈ J for which |Q̃k
2(i) − Q∗

2(i)| < ε when k ≥ k2.
Selecting ε = D(i)/2 (that D(i) > 0 has been shown above) and
K ≡ max{k1, k2}, we have that for k ≥ K, with probability 1,

|Q̃k
1(i)−Q∗

1(i)| < ε = D(i)/2, i.e., ek1(i) < D(i)/2.

Similarly, using the same value for ε, one can show that for k ≥ K,
with probability 1, ek2(i) < D(i)/2, which proves our assumption. The
result above did not depend on any specific value of a1 or a2, and can
be similarly shown for every (a1, a2)-pair.

An issue related to the above is: how should the algorithm be ter-
minated? The reader may recall that like Q-Learning, convergence
occurs in the limit for value iteration, i.e., when the number of iter-
ations tends to infinity. In value iteration, however, we can use the
norm of a difference vector to terminate the algorithm. Unfortunately
in RL, this is not true for the following reason: Only one Q-factor
gets updated in each iteration, leading to a situation where the num-
ber of times a state-action pair has been updated thus far (updating
frequency) is unlikely to be the same for all state-action pairs at any
given (algorithm) iteration. Hence, computing the norm or span of
the difference vector is essentially not useful.

In practice, for termination, we run the algorithm for as long as we
can, i.e., for a pre-specified, fixed number of iterations. It makes sense
to use an appropriate step size such that the step size remains reason-
ably large until the pre-specified number of iterations are complete.
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When the step size becomes too small, e.g., 10−6, due to computer-
roundoff errors, the Q-factors cease to change, and there is no point in
continuing further. Another way is to terminate the algorithm if the
policy has not changed in the last several iterations. But this requires
checking the policy after every iteration (or at least after a few iter-
ations), which may be computationally burdensome (and impossible
for huge state-action spaces).

8.2. Relative Q-Learning: Average
Reward MDPs

We will now prove that Relative Q-Learning for average reward
MDPs converges under asynchronous conditions. The core of the Rel-
ative Q-Learning algorithm can be expressed by the following trans-
formation:

Qk+1(i, a) ← Qk(i, a)

+ α

[
r(i, a, ξk) + max

b∈A(ξk)
Qk(ξk, b)−Qk(i, a)

]
−Qk(i∗, a∗),

(11.86)

where ξk is a random variable that depends on (i, a) and k, and
Qk(i∗, a∗) denotes the Q-factor of the distinguished state-action pair
in the kth iteration. Let the policy generated in the kth iteration be
defined by:

μk(i) ∈ argmax
a∈A(i)

Qk(i, a) for all i ∈ S.

Let the optimal policy be denoted by μ̂∗. The convergence result for
algorithm is as follows.

Proposition 11.35 When the step sizes and action selection used
in the algorithm satisfy Conditions 3, 6, and 7 of Theorem 11.21,
with probability 1, the sequence of policies generated by the Relative
Q-Learning algorithm, {μ̂k}∞k=1, converges to μ̂∗.

The proof will be along the lines of that of Q-Learning; how-
ever, showing the existence of the asymptotically stable critical point
(Condition 4) is not as straightforward here, since the associated
transformation F ′(.) is not contractive and hence we may not use
Theorem 11.22. To show Condition 4, we will need a critical result
from [2] (the proof of which is beyond our scope here). The bounded-
ness condition (Condition 5) will be based on Theorem 11.23.
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Proof Like in the proof of Q-Learning, we will first define some of
the underlying transformations and then invoke an ODE. Hence, we
define the transformations F ′(.) on the vector �Qk as follows: For all
(i, a) pairs,

F ′
(
�Qk
)
(i, a) =

|S|∑

j=1

p(i, a, j)

[
r(i, a, j) + max

b∈A(j)
Qk(j, b)

]
−Qk(i∗, a∗).

Then, we can define F (.) via Eq. (11.76). We further define a trans-
formation f ′(.) as follows:

f ′
(
�Qk
)
(i, a) =

[
r(i, a, ξk) + max

b∈A(ξk)
Qk(ξk, b)

]
−Qk(i∗, a∗),

which allows us to define the noise term wk(i, a) as in Eq. (11.77).
Then, like in the case of Q-Learning, we can write the updating trans-
formation in our algorithm, i.e., Eq. (11.86) as:

Qk+1(i, a) = Qk(i, a) + αk
[
F
(
�Qk
)
(i, a) + wk(i, a)

]
,

which is of the same form as the updating scheme defined for
Theorem 11.21 (replace Xk by Qk and l by (i, a)). Then, we can
invoke the following ODE as in Theorem 11.21:

d�q

dt
= F (�q), (11.87)

where �q denotes the continuous-valued variable underlying the iterate
Q. We now need to evaluate the conditions of Theorem 11.21.

Conditions 1, 2, 3, 6, and 7 follow in a manner identical (or very
similar) to that shown for Q-Learning (Theorem 11.29). However,
Conditions 4 and 5 need additional work.

Conditions 4 and 5. To show these conditions, we first define �Q∗
as the solution for Eq. (11.74) generated when ρ in Eq. (11.74) is re-
placed by Q(i∗, a∗), where (i∗, a∗) is some distinguished state-action
pair. That this solution is unique can be shown (see Lemma 3.2 in [2]).

We will now invoke a very useful result (presented as Theorem 3.4
in [2]). We skip the proof because of its involved nature.

Lemma 11.36 �Q∗ is the globally asymptotically stable equilibrium for
the ODE in Eq. (11.87).

The above implies Condition 4.
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To show Condition 5, note that the above theorem also holds for
the special case when all the immediate rewards are set to 0, i.e.,
r(i, a, j) = 0 for all i ∈ S, j ∈ S, and a ∈ A(i). Now if we compute the
scaled function Fc(.), as defined in Definition 11.6, we can show (see
Eq. (11.83) and its accompanying discussion) that:

F∞
(
�Qk
)
(i, a) = lim

c→∞Fc

(
�Qk
)
(i, a)

=

|S|∑

j=1

p(i, a, j)

[
max
b∈A(j)

Qk(j, b)

]
−Qk(i∗, a∗)−Qk(i, a);

it is not hard to see that F∞(.) is a special case of the transformation
F (.) with the immediate reward set to 0. Hence, Lemma 11.36 will

imply that the ODE d�q
dt = F∞(�q) has a globally asymptotically stable

equilibrium. But note that the origin is the only equilibrium point
for this ODE. Then, from Theorem 11.23, it follows that the sequence{
�Qk
}∞
k=1

must be bounded with probability 1 (i.e., Condition 5).

Then, by Theorem 11.21, we have convergence of
{
�Qk
}∞
k=1

with

probability 1 to the unique globally asymptotically stable equilibrium
of the ODE in Eq. (11.87), i.e., �Q∗. But by Proposition 11.27, this
must be the optimal solution (solution of the Q-factor version of the
Bellman optimality equation), and hence the sequence of policies must
converge to the optimal policy with probability 1.

8.3. CAP-I: Discounted Reward MDPs
We remind the reader that conservative approximate policy iteration

(CAP-I) is based on classical policy iteration. It has been already
argued via Eq. (7.23) in Chap. 7 that the policy improvement step in
an RL algorithm that uses the Q-factors of a policy to generate a new
policy is equivalent to that in the classical policy iteration algorithm
(based on the value function and transition probabilities). Hence, our
analysis here will be restricted to the first two stages in the algorithm
and to showing that the algorithm generates the value function vector
and the Q-factors associated to the policy being evaluated, i.e., the
solution of Bellman policy equation (Poisson equation).

Recall that the first stage of CAP-I is geared towards generating the
solution of the Bellman policy equation (value function version) for a
given policy. The core of CAP-I in Step 2b can be expressed by the
following transformation:

Jn+1(i) ← Jn(i) + α [r(i, μ(i), ξn) + λJn(ξn)− Jn(i)] , (11.88)
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where ξn is a random variable that depends on (i, a) and n, the
iteration number within Step 2, and μ denotes the policy being eval-
uated. The next result shows that the sequence of iterates defined
above converges to the solution of Equation (11.22), the Bellman pol-
icy equation.

Proposition 11.37 When the step sizes and the action selection
satisfy Conditions 3, 6, and 7 of Theorem 11.21, with probability 1,
the sequence of iterates generated within Step 2 of the CAP-I algo-
rithm, { �J n}∞n=1, converges to the unique solution of the Bellman policy
equation, i.e., to the value function vector associated to policy μ̂.

Proof The main theme underlying this proof is very similar to that
of Q-Learning. As usual, we first define some transformations: For all
i ∈ S,

F ′
(
�J n
)
(i) =

|S|∑

j=1

p(i, μ(i), j) [r(i, μ(i), j) + λJn(j)] ;

F
(
�J n
)
(i) =

|S|∑

j=1

p(i, μ(i), j) [r(i, μ(i), j) + λJn(j)]− Jn(i);

f ′
(
�J n
)
(i) = [r(i, μ(i), ξn) + λJn(ξn)] ;

which allow us to define the noise term wn(i, μ(i)) as:

wn(i, μ(i)) = f ′
(
�J n
)
(i)− F ′

(
�J n
)
(i).

Then, we can write the updating transformation in our algorithm, i.e.,
Eq. (11.88) as:

Jn+1(i) = Jn(i) + αk
[
F
(
�J n
)
(i) + wn(i, μ(i))

]
,

which is of the same form as the updating scheme defined for
Theorem 11.21 (replace Xn by Jn and l by (i, μ(i))). Then, we
can invoke the following ODE as in Theorem 11.21:

d�j

dt
= F

(
�j
)
, (11.89)

where �j denotes the continuous-valued variable underlying the iter-
ate �J . We now need to evaluate the conditions of Theorem 11.21.
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Conditions 1, 2, 3, 6, and 7 follow in a manner identical (or very
similar) to that shown for Q-Learning (Theorem 11.29). However,
Conditions 4 and 5 need additional work.

Conditions 4 and 5. Note that transformation F ′(.) is contrac-
tive with respect to the max norm (see Proposition 11.4). Hence,
Theorem 11.22 applies, implying that ODE in (11.89) has a unique
globally asymptotically stable equilibrium (i.e., Condition 4 holds).

To show Condition 5, note that the above finding also holds for
the special case when all the immediate rewards are set to 0, i.e.,
r(., ., .) = 0. Now if we compute the scaled function Fc(.), as defined
in Definition 11.6, we can show (see Eq. (11.83) and its accompanying
discussion) that:

F∞
(
�J n
)
(i) = lim

c→∞Fc

(
�J n
)
(i)

= λ

|S|∑

j=1

p(i, μ(i), j) [Jn(j)] ;

it is not hard to see that F∞(.) is a special case of the transforma-
tion F (.) with the immediate reward set to 0, and hence the ODE
d�j
dt = F∞

(
�j
)

must also have a unique globally asymptotically stable

equilibrium. But note that the origin is the only equilibrium point
for this ODE. Then, from Theorem 11.23, it follows that the sequence{
�J n
}∞
n=1

must be bounded with probability 1 (i.e., Condition 5 holds).

Then, by Theorem 11.21, we have convergence of
{
�J n
}∞
n=1

with

probability 1 to the unique globally asymptotically stable equilibrium
of the ODE in Eq. (11.89), which, by the definition of the equilib-
rium point, must be the solution of the Bellman policy equation, i.e.,
Eq. (11.22). Then, by Proposition 11.21, the solution must be the
value function vector associated to the policy μ̂.

We now analyze the convergence of the Q-factors in Step 3 of CAP-I.
The core of Step 3b in CAP-I can be expressed by the following trans-
formation:

Qm+1(i, a) ← Qm(i, a)− αm [Qm(i, a)− r(i, μ(i), ξm)− λJ(ξm)] ,
(11.90)

where ξm is a random variable that depends on (i, a) and m, the

iteration number within Step 3, and the vector �J is a constant. The
goal here is for the Q-factor to estimate the following mean:

∑

j∈S
p(i, a, j) [r(i, a, j) + λJ(j)] ≡ E[Z(i, a)], (11.91)
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where Z(i, a) is a random variable and �J denotes the vector obtained in

Step 2 of the algorithm. Note that since �J is fixed in Step 3, the terms
within the squared brackets in the LHS of the above are constants,
and hence the update in (11.90) becomes a straightforward Robbins-
Monro update in which the mean of a random variable is estimated
from its values. Our main result is as follows:

Proposition 11.38 When the step sizes and the action selection
satisfy Condition 3 of Theorem 11.21 and Qm(i, a) denotes the iterate
for the (i, a)-th pair in the mth iteration of Step 3 in the CAP-
I algorithm, with probability 1, for every state-action pair (i, a),
limm→∞Qm(i, a) = E[Z(i, a)], where [Z(i, a)] is defined in (11.91).

The result implies that the limit point �Q∞ will equal E[Z(i, a)], i.e.,
for all (i, a) pairs:

Q∞(i, a) =
∑

j∈S
p(i, a, j) [r(i, a, j) + λJ(j)] ,

which satisfies the definition of Q-factors in Eq. (11.71) (note: that
�J is the unique solution of the Bellman policy equation has already
been established in Proposition 11.37), and hence from the discussion
accompanying Eq. (11.71), we can claim that the above is the unique
solution of the Q-factor version of the Bellman equation for a given
policy, i.e., Eq. (11.72).

Proof For this proof, we first note that since (i) the update of a given
Q-factor is unrelated to that of any other Q-factor (this is because
the updating equation does not contain any other Q-factor) and (ii)
each state-action pair is tried with the same frequency (this is because
each action is tried with the same probability in every state), we can
analyze the convergence of each Q-factor independently (separately).

For the proof, we will rely on the standard arguments used in the
literature to show convergence of a Robbins-Monro algorithm (see e.g.,
[33]). The latter can be shown to be a special case of the stochastic
gradient algorithm discussed in Chap. 10. As such, the result associ-
ated to stochastic gradients (Theorem 10.8) can be exploited for the
analysis after finding a so-called “potential function” needed in the
stochastic gradient algorithm.

We define the potential function g : �N → � such that for any (i, a)
pair:

g
(
�Qm
)
(i, a) = (Qm(i, a)− E[Z(i, a)])2 /2.
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Then, for any (i, a)-pair,
d
(
g
(
�Qm
)
(i, a)

)

dQm(i, a)
= [Qm(i, a)− E[Z(i, a)]] .

(11.92)
We further define the noise term as follows for every (i, a)-pair:

wm(i, a) =
∑

j∈S
p(i, a, j) [r(i, a, j) + λJ(j)]− [r(i, μ(i), ξm) + λJ(ξm)]

= E[Z(i, a)]− [r(i, μ(i), ξm) + λJ(ξm)] (11.93)

Combining (11.92) and (11.93), we can write the update in (11.90) as:

Qm+1(i, a) ← Qm(i, a)− αm

⎡

⎣
d
(
g
(
�Qm
)
(i, a)

)

dQm(i, a)
+ wm(i, a)

⎤

⎦ ,

which is of the form of the stochastic gradient algorithm considered in
Eq. (10.16). In order to invoke the associated result (Theorem 10.8),
we must show that all the conditions invoked in the theorem (Assump-
tions 10.5–10.7) are satisfied.

From the definition of g(.), it is easy to see that it is non-negative
everywhere. Also, from the first derivative calculated above, it can
be shown to be continuously differentiable; further, the second deriva-
tive is bounded:

d2
(
g
(
�Qm
)
(i, a)

)

d (Qm(i, a))2
= 1;

hence ∇g(.) must be Lipschitz, establishing Assumption 10.5.
The condition in Assumption 10.6 follows from Condition 1 of Theo-

rem 11.21. Note that the condition in (10.18) within Assumption 10.7
follows from the fact that the noise has a conditional zero-mean (in
a manner similar to arguments provided above in other algorithms);
further note that the second moment of the noise for (i, a), i.e.,

E
[
[wm(i, a)]2

∣∣∣Fm
]
,

is finite from its definition in (11.93) (noting that J(.) is a constant).
Now, if the iterates (Qm(., .)) can be shown to be finite, the norm of
the derivative defined in (11.92) must also be finite. Then, it should
be possible to bound the norm of the second moment (a finite scalar)
by a function of the norm of the derivative (another finite scalar), i.e.,
condition in (10.19) will hold. Hence, we now show that the iterates
remain bounded.
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Lemma 11.39 The sequence
{
�Qm
}∞
m=1

remains bounded.

Proof The proof is very similar to that of Lemma 11.30; hence we
present only the main ideas. The claim is that for every state-action
pair (i, a):

|Qm(i, a)| ≤ M,

where M is a positive scalar defined as follows:

M = max

{
max

i,j∈S,a∈A(i)
|r(i, a, j) + λJ(j)|, max

i∈S,a∈A(i)
Q0(i, a)

}
,

Since J(.) is bounded and since clearly since we start with finite val-
ues for the Q-factors, M has to be finite. We will use an induction
argument. We show the case for m = 1 as follows:

|Q1(i, a)| ≤ (1−α)|Q0(i, a)|+α|r(i, a, j)+λJ(j)| ≤ (1−α)M+αM = M

Now assuming that the claim is true when m = P , we have that for
all (i, a): |QP (i, a)| ≤ M . Then,

|QP+1(i, a)| ≤ (1−α)|QP (i, a)|+α|r(i, a, j)+λJ(j)| ≤ (1−α)M+αM=M.

The asynchronous update can be handled as in Lemma 11.30.

Having shown all the conditions in Theorem 10.8, we can invoke R2
in the theorem, which implies that with probability 1, the sequence
of iterates will converge to the zero of the gradient, i.e., from (11.92),
limm→∞Qm(i, a) = E[Z(i, a)] for any (i, a) pair.

8.4. Q-P -Learning: Discounted Reward MDPs
The Q-P -Learning algorithm can be viewed as a Q-factor version of

conservative approximate policy iteration (CAP-I). However, its con-
vergence analysis is different because here Q-factors are evaluated on
their own, unlike in CAP-I where the value function is first estimated
and the Q-factors from the value function. However, the central idea is
similar. In one policy evaluation, one seeks to estimate the Q-factors
for a given policy, which are stored in the P -factors. As argued in the
context of Eq. (7.23) in Chap. 7, if policy evaluation converges to the
solution of the Bellman policy equation, the policy improvement step
performed in Step 3 will behave as it should. Hence, we restrict our
attention to showing that the Q-factors indeed converge to the solu-
tion of the Q-factor version of the Bellman policy equation (Poisson
equation). Our main result is as follows.
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Proposition 11.40 When step sizes and the action selection sat-
isfy Conditions 3, 6, and 7 of Theorem 11.21, with probability 1, the
sequence of iterates generated within Step 2 of the Q-P -Learning algo-
rithm for discounted reward MDPs, { �Qn}∞n=1, converges to the unique
solution of the Q-factor version of the Bellman policy equation, i.e.,
to the value function vector associated to policy μ̂.

Proof The proof will be very similar to that of Q-Learning, since the
policy evaluation phase in Q-P -Learning can essentially be viewed as
Q-Learning performed for a fixed policy. We will use μ̂ to denote the
policy being evaluated. Hence, using the notation of the algorithm,
for all i ∈ S:

μ(i) ∈ argmax
c∈A(i)

P (i, c).

We will use n to denote the iteration within the policy evaluation
phase. As usual, we begin with defining some functions: For all (i, a)
pairs,

F ′
(
�Qn
)
(i, a) =

|S|∑

j=1

p(i, a, j) [r(i, a, j) + λQn(j, μ(j))] .

Then, we can define F (.) via Eq. (11.76). We further define a trans-
formation f ′(.) as follows:

f ′
(
�Qn
)
(i, a) =

[
r(i, a, ξn) + λQk(ξn, μ(ξn))

]
,

which allows us to define the noise term wn(i, a) as in Eq. (11.77).
Then, like in the case of Q-Learning, we can write the updating trans-
formation in our algorithm, i.e., Eq. (7.21), as:

Qn+1(i, a) = Qn(i, a) + αn
[
F
(
�Qn
)
(i, a) + wn(i, a)

]
,

which is of the same form as the updating scheme defined for
Theorem 11.21 (replace Xn by Qn and l by (i, a)). Then, we can
invoke the following ODE as in Theorem 11.21:

d�q

dt
= F (�q), (11.94)

where �q denotes the continuous-valued variable underlying the iter-
ate Q. We now need to evaluate the conditions of Theorem 11.21.

Conditions 1, 2, 3, 6, and 7 follow in a manner identical (or very
similar) to that shown for Q-Learning (Theorem 11.29). As argued in
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the case of Q-Learning, Conditions 4 and 5 will stem from showing
that F ′(.) is contractive, which we next show. Consider two vectors
�Qn
1 and �Qn

2 in �N . From the definition of F ′(.) above, it follows that:

F ′
(
�Qn
1

)
(i, a)− F ′

(
�Qn
2

)
(i, a) = λ

|S|∑

j=1

p(i, a, j) [Qn
1 (j, μ(j))−Qn

2 (j, μ(j))] .

For any (i, a) pair,

∣∣∣F ′
(
�Qn
1

)
(i, a)− F ′

(
�Qn
2

)
(i, a)

∣∣∣ ≤ λ

|S|∑

j=1

p(i, a, j) |Qn
1 (j, μ(j))−Qn

2 (j, μ(j))|

(from triangle inequality; page 285)

≤ λ

|S|∑

j=1

p(i, a, j) max
j∈S,b∈A(j)

|Qn
1 (j, b)−Qn

2 (j, b)|

= λ

|S|∑

j=1

p(i, a, j)|| �Qn
1 − �Qn

2 ||∞

= λ|| �Qn
1 − �Qn

2 ||∞
|S|∑

j=1

p(i, a, j)

= λ|| �Qn
1 − �Qn

2 ||∞ · 1.

Since the above holds for all values of (i, a), it also holds for the values
that maximize the left hand side of the above. Therefore

||F ′ �Qn
1 − F ′ �Qn

2 ||∞ ≤ λ|| �Qn
1 − �Qn

2 ||∞.

9. Reinforcement Learning for SMDPs:
Convergence

In this section, we collect together results applicable to convergence
of a subset of RL algorithms for solving SMDPs. As stated previously,
many real-world problems are SMDPs rather than MDPs, and in many
cases the results from MDPs do not extend naturally to SMDPs.

9.1. Q-Learning: Discounted Reward SMDPs
Discounted reward SMDPs form a special case where the results

from the MDP extend naturally to the SMDP. Hence, we only present
the main ideas.

The core of Q-Learning algorithm in this context for the generalized

SMDP model was presented in Eq. (7.26). We define F ′
(
�Q k
)
(i, a) =

∑

j∈S
p(i, a, j)

[
rL(i, a, j) +

1− e−γt̄(i,a,j)

γ
rC(i, a, j) + e−γt̄(i,a,j) max

b∈A(j)
Qk(j, b)

]
.
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The following result holds the key to showing Conditions 4 and 5 of
Theorem 11.21; the remaining analysis for this algorithm follows in a
manner identical to that of Q-Learning for discounted reward MDPs
and is hence skipped.

Lemma 11.41 The transformation F ′(.) defined above is contractive
with respect to the max norm.

Proof First note that since the time term is always strictly non-
negative (t̄(., ., .) > 0) and since γ > 0, there exists a scalar λ̄ in
the interval (0, 1) such that

max
i,j∈S;a∈A(j)

∣∣∣e−γt̄(i,a,j)
∣∣∣ ≤ λ̄.

Consider two vectors �Qk
1 and �Qk

2 in �N . From the definition of F ′(.)
above, it follows that: F ′

(
�Qk
1

)
(i, a)− F ′

(
�Qk
2

)
(i, a) =

|S|∑

j=1

e−γt̄(i,a,j)p(i, a, j)

[
max
b∈A(j)

Qk
1(j, b)− max

b∈A(j)
Qk

2(j, b)

]
.

From this, we can write that for any (i, a) pair:
∣∣∣F ′
(
�Qk
1

)
(i, a)−

F ′
(
�Qk
2

)
(i, a)

∣∣∣

≤
|S|∑

j=1

p(i, a, j)e−γt̄(i,a,j)

∣∣∣∣ max
b∈A(j)

Qk
1(j, b)− max

b∈A(j)
Qk

2(j, b)

∣∣∣∣

≤ max
i,j∈S;a∈A(j)

∣∣∣e−γt̄(i,a,j)
∣∣∣

|S|∑

j=1

p(i, a, j)

∣∣∣∣ max
b∈A(j)

Qk
1(j, b)− max

b∈A(j)
Qk

2(j, b)

∣∣∣∣

≤ λ̄

|S|∑

j=1

p(i, a, j) max
j∈S,b∈A(j)

|Qk
1(j, b)−Qk

2(j, b)|

= λ̄

|S|∑

j=1

p(i, a, j)|| �Qk
1 − �Qk

2 ||∞ = λ̄|| �Qk
1 − �Qk

2 ||∞
|S|∑

j=1

p(i, a, j) = λ̄|| �Qk
1 − �Qk

2 ||∞ · 1.

Then using standard arguments, ||F ′ �Qk
1 − F ′ �Qk

2||∞ ≤ λ̄|| �Qk
1 − �Qk

2||∞.

9.2. Average Reward SMDPs
In the case of average reward, SMDP algorithms do not always have

direct extensions from the MDP. We will use the stochastic shortest
path and two-time-scale updating extensively here for developing the
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extensions. We first present some basic theory underlying these two
topics. Thereafter, we apply these topics for showing convergence of
RL algorithms based on value- and policy-iteration.

9.2.1 Stochastic Shortest-Path Problem

We begin with a discussion on the stochastic shortest-path prob-
lem (SSP). As stated above, we study the SSP because it forms a
convenient link to the SMDP and the finite horizon problem.

The objective in the SSP is identical to that in a discounted reward
MDP with the following very important differences:

1. There is a reward-free termination state. When the system reaches
this state, it remains there, i.e., the state is absorbing.

2. The discount factor is set to 1.

Thus, the value function vector for the SSP for any given policy
has the same definition as that of the discounted reward MDP (see
Definition 11.1) with the understanding that λ = 1 and that there is a
reward-free termination state into which the system is absorbed when
it reaches the state. The optimal value function vector for the SSP,
similarly, has the same definition as that for the discounted reward
MDP (see Definition 11.2) with the same understanding.

Consistent with our assumption throughout this book, we will
assume that all states in the problem are recurrent under every policy.
In the context of the SSP, this implies that under any policy, the
reward-free termination state is eventually reached with probability
1 regardless of the starting state. (The termination state is also an
absorbing state.) This property is also known as “properness” of the
policy. Thus, we will assume in our analysis that all policies in the
SSP are proper.

Another assumption that we will make throughout in our analysis
of the SSP is that there is a unique starting state, which is the state
from which all trajectories of the SSP begin. From the perspective of
simulations in which trajectories of states must be generated repeat-
edly, after the termination state is reached, the system is restarted at
the starting state.

The following result, which we state without proof, establishes that
the optimal value function vector for the SSP solves a suitable form of
a Bellman optimality equation. We will call this equation the Bellman
optimality equation for the SSP. The following result also relates the
SSP’s value function for a given policy μ̂ to a suitable form of the
Bellman policy equation (Poisson equation).
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Proposition 11.42 [30] When all admissible policies are proper and

the starting state is unique, the optimal value function vector �J∗ for
the SSP satisfies the following equation: For all i ∈ S ′,

J∗(i) = max
a∈A(i)

⎡

⎣r̄(i, a) +
∑

j∈S′
p(i, a, j)J∗(j)

⎤

⎦ , (11.95)

where S ′ = S \ {s∗}, where s∗ denotes the termination (absorbing)
state; the equation has a unique solution.

Further, for any given stationary policy μ̂, there exists a unique
solution to the following equation:

Jμ̂(i)=

⎡

⎣r̄(i, μ(i))+
∑

j∈S′
p(i, μ(i), j)Jμ̂(j)

⎤

⎦ , such that for each i ∈ S ′,

the scalar Jμ̂(i) will equal the expected value of the total reward earned
in a trajectory starting in state i until the termination state is reached.

Note that in the above, the summation in the RHS is over S ′ which
excludes the termination state. The termination state is a part of
the state space S. Because the termination state is not a part of the
summation, we will have that, for one or more i ∈ S,

∑

j∈S′
p(i, μ(i), j) < 1 under any given policy μ̂.

The above implies that the transition probability matrix used in the
Bellman equation is not stochastic, i.e., in at least one row, the ele-
ments do not sum to 1. This is an important property of the SSP’s
transition probabilities that the reader needs to keep in mind.

A Q-factor version of Eq. (11.95) would be as follows:

Q∗(i, a) =

⎡

⎣r̄(i, a) +
∑

j∈S′
p(i, a, j) max

b∈A(j)
Q∗(j, b)

⎤

⎦ . (11.96)

We will now present another remarkable property of the SSP’s tran-
sition probabilities, derived by [30] originally, but adapted in [109] to
the Q-factor setting needed here. The property will be useful later
in showing that the SSP’s main transformation is contractive with
respect to a weighted max norm.
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Lemma 11.43 Define a scalar ϑ as follows:

ϑ ≡ max
i∈S′;a∈A(i)

υ(i, a)− 1

υ(i, a)
, (11.97)

where υ(i, a) for every i ∈ S ′ and a ∈ A(i) is a positive scalar. When
all the stationary policies in an SSP are proper, there exist positive
values for υ(., .) such that ϑ ∈ [0, 1) and the following is true:

∑

j∈S′
p(i, a, j)υ(j, μ(j)) ≤ ϑυ(i, a), where μ̂ is any given stationary policy.

Proof Consider a new SSP in which all the transition probabilities
are identical to our SSP, but all the immediate rewards are set to 1
(except for those to the termination state, which are 0). Let Q̃(., .) be
the optimal Q-factor for this new SSP. Adapting Proposition 2.1(a) in
[33] to Q-factors, we have that for any given policy μ̂ and for all i ∈ S ′
and all a ∈ A(i):

Q̃(i, a) = 1 +
∑

j∈S′
p(i, a, j) max

b∈A(j)
Q̃(j, b)

≥ 1 +
∑

j∈S′
p(i, a, j)Q̃(j, μ(j)).

(11.98)

Now for all (i, a)-pairs, we define υ(i, a) = Q̃(i, a).
From (11.98), we have that υ(i, a) ≥ 1 for all (i, a)-pairs. Clearly

then, 0 ≤ ϑ < 1. Then, for any policy μ̂, we have from (11.98), that

∑

j∈S′
p(i, a, j)Q̃(j, μ(j)) =

∑

j∈S′
p(i, a, j)υ(j, μ(j)) ≤ υ(i, a)− 1 ≤ ϑυ(i, a).

We now present a key result which shows that the average reward
SMDP can be viewed as a special case of the SSP under some con-
ditions. The motivation for this is that the SSP has some attractive
properties that can be used to solve the SMDP.

Transformation of SMDP to a fictitious κ-SSP: Consider any
recurrent state in the SMDP, and number it K. We will call this state
the distinguished state in the SMDP. Define the immediate rewards
for a transition from i to j (where i, j ∈ S) under any action a ∈ A(i)
in the new problem to be:

r(i, a, j)− κt(i, a, j),

where κ is any scalar (the value will be defined later). In this problem,
the distinguished state will serve as the termination state as well as the
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starting state. This implies that once the system enters K, no further
transitions are possible in that trajectory, and hence the above problem
is an SSP. The fictitious SSP so generated will be called a κ-SSP. We
now present the associated result which establishes the equivalence.

Proposition 11.44 Consider an average reward SMDP whose opti-
mal average reward is ρ∗ in which (i) all states are recurrent and (ii)
one of the stationary deterministic policies is optimal. Construct a fic-
titious ρ∗-SSP associated to the SMDP using any one of the recurrent
states as the termination state as well as the starting state. Then, a
solution of the Bellman optimality equation for the ρ∗-SSP will also
solve the Bellman optimality equation for the average reward SMDP.

The implication of this result may not be immediately obvious. What
the result implies is that (somehow) if we knew the value of ρ∗ for the
SMDP, we could solve the SMDP by just solving the associated ficti-
tious ρ∗-SSP. Of course, how one can determine ρ∗ before solving the
SMDP is an important issue, but we will consider that later; for the
time being, assume that there exists a mechanism to reach that value
(i.e., ρ∗). As stated before, there is a strong motivation for solving
the SSP in place of the SMDP: a critical transformation underlying
the SSP is contractive, which leads us to a convergent RL algorithm.

Proof The proof will be presented via a succession of lemmas. We
will first derive the solution of the Bellman optimality equation for a
suitably derived κ-SSP (via Lemma 11.45). Thereafter, we will show
that the solution of this Bellman optimality equation will also solve
the associated SMDP (via Lemma 11.46).

In what follows, we will use the notion of a “cycle” within the SSP,
which is to be understood as a trajectory (sequence) of states starting
from any given state and ending in the first return to the same state.
(Clearly, when the underlying Markov chains have random transitions,
this trajectory will also be random.) Let K be the distinguished state
in the SMDP, used in deriving the SSP, from where the cycle starts
and where it ends. Let K = |S| without loss of generality. Define
S ′ = S \ {K}.

Lemma 11.45 Let RK(μ̂) and TK(μ̂) denote the expected value of the
total reward and the expected value of the total time, respectively, in
one “cycle” from K to K when the policy pursued in the cycle is μ̂.
Further, define

ρ̃ ≡ max
μ̂

RK(μ̂)

TK(μ̂)
. (11.99)
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Now consider the associated κ-SSP where κ = ρ̃. If a bounded func-
tion h : S ′ → � forms the unique solution of the Bellman optimality
equation for this SSP, then h(.) also solves the following equation for
the SMDP: For all i ∈ S, i.e., for i = 1, 2, . . . ,K:

h(i) = max
a∈A(i)

⎡

⎣r̄(i, a)− ρ̃t̄(i, a) +
K∑

j=1

p(i, a, j)h(j)

⎤

⎦ ; h(K) = 0.

(11.100)

Proof Via Proposition 11.42, we have that some bounded func-
tion h(.) solves the Bellman equation for the SSP such that for
i = 1, 2, . . . ,K − 1,

h(i) = max
a∈A(i)

⎡

⎣r̄(i, a)− ρ̃t̄(i, a) +
K−1∑

j=1

p(i, a, j)h(j)

⎤

⎦ . (11.101)

Note that in the RHS of the above, we have omitted h(K) since K
is the termination state for the SSP. Now, for any given policy μ̂, the
value function of the state K in the SSP can be written as:

hμ̂(K) = RK(μ̂)− ρ̃TK(μ̂).

The above follows from the definition of the value function, which says
that it equals the expected value of the sum of the reward function (in
this case r(., ., .) − ρ̃t(., ., .)) starting from K and ending at K. Now,
again by definition,

h(K) ≡ max
μ̂

hμ̂(K)

= max
μ̂

[RK(μ̂)− ρ̃TK(μ̂)]

= max
μ̂

[
RK(μ̂)

TK(μ̂)
− ρ̃

]
TK(μ̂)

= 0 (follows from (11.99))

i.e., h(K) = 0. Then, from Eq. (11.101), for i = 1, 2, . . . ,K, we have
that

h(i) = max
a∈A(i)

⎡

⎣r̄(i, a)− ρ̃t̄(i, a) +
K∑

j=1

p(i, a, j)h(j)

⎤

⎦ . (11.102)
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Lemma 11.46 ρ̃ = ρ∗.

For the proof of this lemma, we need the following fundamental result
[30, 242] (we will use the notation Ak to mean matrix A raised to the
kth power):

Lemma 11.47 Let Pμ̂ denote the transition probability matrix of a
policy μ̂ with n states, where the matrix is stochastic. Then,

lim
m→∞

∑m
k=1P

k
μ̂

m
= P∗∗

μ̂ , where P∗∗
μ̂ is an n× n matrix

such that P ∗∗
μ̂ (i, j) denotes the steady-state probability of being in state

j provided the system started in state i and policy μ̂ is being used in
all states.

For an SMDP where all states are recurrent, each row in the matrix
P∗∗

μ̂ will be identical, and the (i, j)th term in every row of the matrix

will equal Πμ̂(j), i.e., the steady-state probability of being in state j
under μ̂.

Proof (of Lemma 11.46) We now define �J0 = �h, and for some sta-
tionary policy μ̂, using �rμ̂ to denote the vector whose ith element is

r̄(i, μ(i)), we define the sequence
{
�Jk

}∞
k=1

:

�Jk+1 = �rμ̂ +Pμ̂
�Jk, (11.103)

where Pμ̂ denotes the transition probability matrix in the SMDP as-
sociated to the policy μ̂. Note that this matrix is stochastic, and so
is the transition probability matrix underlying any action defined in
Eq. (11.102). Then, if �τμ̂ denotes that vector whose ith element is
t̄(i, μ(i)) for all i ∈ S, we will show via induction that:

ρ̃
m∑

k=1

Pk
μ̂�τμ̂ + �J0 ≥ �Jm. (11.104)

Now, from Eq. (11.102), for any given stationary policy μ̂,

�h ≥ �rμ̂ − ρ̃Pμ̂�τμ̂ +Pμ̂
�h, i.e., �J0 ≥ �rμ̂ − ρ̃Pμ̂�τμ +Pμ̂

�J0

from which we have, using (11.103), ρ̃Pμ̂�τμ̂ + �J0 ≥ �rμ̂ +Pμ̂
�J0 = �J1;

i.e., ρ̂Pμ̂�τμ̂ + �J0 ≥ �J1. (11.105)
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We now assume (11.104) to be true for m = n, multiply both of its
sides by Pμ̂, and then add r̄μ̂ to both sides to obtain:

ρ̃
n∑

k=1

Pk+1
μ̂ �τμ̂ +Pμ̂

�J0 + r̄μ̂ ≥ Pμ̂
�Jn + r̄μ̂, which results in

ρ̃
n∑

k=1

Pk+1
μ̂ �τμ̂ + �J1 ≥ �Jn+1. (11.106)

Adding (11.106) and (11.105), we have ρ̃
∑n+1

k=1 P
k
μ̂�τμ̂ + �J0 ≥ �Jn+1,

which completes the induction. Then dividing both sides of (11.104)
by m and taking the limit as m → ∞, we have from Theorem 9.7:

ρ̃ lim
m→∞

∑m
k=1P

k
μ̂�τμ̂

m
+ lim

m→∞
�J0
m

≥ lim
m→∞

�Jm
m

. (11.107)

Then, using �e to denote a column vector whose every element is 1,

from Lemma 11.47, we have that lim
m→∞

∑m
k=1 P

k
μ̂�τμ̂

m
=

(
∑

i∈S
Πμ̂τμ̂(i)

)
�e ≡ T̄μ̂�e.

Also, note that from its definition Jm(i) denotes the total expected

reward earned starting from state i, and hence limm→∞
�Jm
m = R̄μ̂�e,

where R̄μ̂ denotes the expected reward in one state transition under

policy μ̂. Since J0(i) is bounded for every i, limm→∞
�J0
m = 0�e. Then,

we can write (11.107) as:

ρ̃T̄μ̂�e ≥ R̄μ̂�e, i.e., ρ̃�e ≥ R̄μ̂

T̄μ̂
�e, (11.108)

where T̄μ̂ equals the expected time spent in one transition under μ̂;
the renewal reward theorem (see Eq. (6.23); [155, 251]) implies that
R̄μ̂/T̄μ̂ equals the average reward of the policy μ̂, i.e., ρ̃ ≥ ρμ̂. The
equality in (11.108) applies only when one uses the policy μ̂∗ that uses
the max operator in (11.102); i.e., only when ρ̃ equals the average
reward of that policy in particular. Now, what (11.108) implies is that
the average reward of every policy other than μ̂∗ will be less than ρ̃.
Clearly then μ̂∗ must be optimal, i.e., ρ̃ = ρμ̂∗ = ρ∗.

Equation (11.102) with ρ̃ = ρ∗ is the Bellman equation for the average
reward SMDP with h(K) = 0.

Note that the distinguished state, K, in the SSP is actually a reg-
ular state in the SMDP whose value function may not necessarily
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equal zero. This becomes critical when designing an algorithm. Hence,
we will design an algorithm based on Eq. (11.102)—with the under-
standing that when the value of h(K) is to be used from the RHS of
the equation, it is replaced by zero. Since, one cannot have two values
for h(K) within the same equation, it is convenient to think of a fic-
titious state K̄ as the termination state and its twin K as the actual
state in the SMDP. The value function of K̄, h(K̄), will always equal
zero. In other words, the version of Eq. (11.102) useful in deriving
algorithms will be: For i = 1, 2, . . . ,K:

h(i) = max
a∈A(i)

⎡

⎣r̄(i, a)− ρ̃t̄(i, a) +
K∑

j=1

p(i, a, j)I(j = K)h(j)

⎤

⎦

(11.109)

where I(.), the indicator function, will return a 1 when the condition
inside the brackets is true and a zero otherwise. The attractive fea-
ture of the above is that the associated transformation is fortunately
contractive (with respect to the weighted max norm; which can be
proved) and behaves gracefully in numerical computations.

The following result is the counterpart of Proposition 11.44 for a
given policy.

Proposition 11.48 Consider an average reward SMDP in which all
states are recurrent and the average reward of a policy μ̂ is denoted
by ρμ̂. Construct a fictitious ρμ̂-SSP associated to the SMDP using
any one of the recurrent states as the termination state as well as the
starting state. Then, a solution of the Bellman policy equation for the
ρμ̂-SSP, i.e.,

hμ̂(i) =

⎡

⎣r̄(i, μ(i))− ρμ̂t̄(i, μ(i)) +
∑

j∈S′
p(i, μ(i), j)hμ̂(j)

⎤

⎦ , ∀i,

(11.110)

will also solve the Bellman policy equation for the average reward
SMDP.

Proof The proof is similar to that of Lemma 11.45, using the sec-
ond part of Proposition 11.42. Note that the renewal reward theorem
implies that

ρμ̂ =
RK(μ̂)

TK(μ̂)
.
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Then, as discussed above, hμ̂(K) = RK(μ̂) − ρμ̂TK(μ̂), which from
the definition of ρμ̂ implies that hμ̂(K) = 0. Then, we can write
Eq. (11.110) as follows: For i = 1, 2, . . . ,K:

hμ̂(i) =

⎡

⎣r̄(i, μ(i))− ρμ̂t̄(i, μ(i)) +
K∑

j=1

p(i, μ(i), j)hμ̂(j)

⎤

⎦ .

The version of the Bellman policy equation useful in deriving algo-
rithms will be: For i = 1, 2, . . . ,K:

hμ̂(i) =

⎡

⎣r̄(i, μ(i))− ρμ̂t̄(i, μ(i)) +
K∑

j=1

p(i, μ(i), j)I(j = K)hμ̂(j)

⎤

⎦

(11.111)

9.2.2 Two Time Scales

Two-time-scale algorithms are designed keeping Condition 4a of
Theorem 11.24 in mind, i.e., Condition 4a is usually satisfied (ob-
viously, it still has to be proved). However, showing Condition 4b,
which is related to showing convergence of the iterates on the second
time scale, usually requires significant work. We will now discuss how
Condition 4b holds in a special case.

The conditions of this special case can appear rather restrictive,
but fortunately hold, under a mild assumption, for R-SMART. These
conditions, which will show that Condition 4b in Theorem 11.24 holds,
can be briefly described as follows: (i) there is a single iterate on the
slower time scale, (ii) (lockstep condition) when the slower iterate in
the update on the faster time scale is fixed to some value and the
algorithm is run, the slower iterate converges to the same value, and
(iii) (derivative condition) the partial derivative of G(., .) with respect
to the slower iterate’s value is bounded and is strictly negative in every
iteration.

Essentially, satisfying the lockstep condition ensures that the slower
iterates “march” in a manner that maintains some sort of “order”—
which allows the iterates (fast and slow) to converge gracefully to some
solution (which we desire to be the optimal solution). In particular,
if a fixed value of the slower iterate were used in the faster iterates
(instead of the actual value of the slower iterate), the condition needs
that in the resulting algorithm, the slower iterate converges to that
fixed value. We now present these conditions more formally.
Condition 4b′: This can be used to establish Condition 4b in
Theorem 11.24.

(i) N2 = 1, i.e., there is a single iterate, Y k ∈ �, on the slower time
scale.
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(ii) (Lockstep Condition) There exists a unique value y∗ ∈ � such
that if we set Y k = y∗ in the update on the faster time scale for
every k, i.e., the update of the iterate �Xk in Eq. (11.66), then,
with probability 1,

lim
k→∞

Y k = y∗.

(iii) (Derivative Condition) In every iteration, the partial deriva-
tive of G(., .) with respect to the slower iterate’s value is bounded
and is strictly negative, i.e., for all k,

∂G
(
�Xk, Y k

)

∂Y k
< 0 and

∣∣∣∣∣∣

∂G
(
�Xk, Y k

)

∂Y k

∣∣∣∣∣∣
< ∞, where Y k ∈ �.

Note that the boundedness of the derivative is already ensured
by the Lipschitz continuity of the function G(., .) imposed above;
however, we restate it here to clarify that the derivative cannot
equal negative infinity.

It is important to understand that in evaluating the lockstep con-
dition, the value of the slower iterate is fixed to some value y∗ in the
faster update, while the slower update is updated as usual. Under
these circumstances, the slower iterate should converge to y∗. In gen-
eral, the two time scale algorithm is designed to ensure this, but this
may not be true in general of all two-time-scale algorithms. We now
show how Condition 4b′ leads to 4b.

Proposition 11.49 Consider the two-time-scale asynchronous algo-
rithm defined via Eq. (11.66). Assume all conditions except Condi-
tion 4b in Theorem 11.24 to hold. When Condition 4b′ defined above
holds, Condition 4b also holds and then y∗ is the globally asymptotically
stable equilibrium for the slower ODE in (11.69).

In other words, what this result shows is that when Condition 4b′
holds, we have that the slower iterate converges with probability 1 to
a globally asymptotically stable equilibrium of the ODE in (11.69). In
the proof, we will use the shorthand notation of xk → x∗ when we
mean the sequence

{
xk
}∞
k=1

converges to x∗.

Proof We will drop the iterate index l2 from the notation of the step
size for the unique slower iterate. For the proof, we need the following
limits showed in [235].
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For any non-negative sequence {βn}∞n=1 satisfying Condition 3 of
Theorem 11.24, i.e.,

∑∞
n=1 β

n = ∞, and for any finite integer K,

lim
k→∞

k+1∏

n=K

(1− βn) = 0 for all k > K; (11.112)

further, for any sequence {δk}∞k=1 satisfying limk→∞ δk = 0, we have

lim
k→∞

k+1∑

n=K

(
k∏

m=n+1

(1− βm)

)
βnδn = 0 for all k > K. (11.113)

We set up a sequence {Δk}∞k=1 where Δk = Y k − y∗ so that our
goal becomes to show that Δk → 0. The road-map for our proof is
as follows. We will first define another sequence {δk}∞k=1 and express
Δk in terms of δk. Then, we will develop upper and lower bounds on
the partial derivative of G( �Xk, Y k) with respect to Y k. These bounds,
the sequence {δk}∞k=1, and the limits shown in (11.112)–(11.113) will
together be exploited to show that Δk → 0.

For a given value Y k of the slower iterate, Condition 4a ensures that
with probability 1, the sequence { �Xk}∞k=1 will converge to a globally
asymptotically stable critical point of the ODE in (11.68). Denote this
critical point by x∗

(
Y k
)
, where this point is a function of Y k.

Let δk = G
(
�Xk, Y k

)
−G

(
x∗
(
Y k
)
, Y k
)
. (11.114)

By its definition, Condition 4a ensures that δk → 0, since �Xk →
x∗
(
Y k
)
.

We now express Δk in terms of G(., .) and δk. From the definition
of δk above in Eq. (11.114) and the fact that the update of Y k can be
expressed as follows:

Y k+1 = Y k + βk
(
G
(
�Xk, Y k

))
, (11.115)

we have that Δk+1 = Δk + βkG
(
x∗
(
Y k
)
, Y k
)
+ βkδk. (11.116)

Now the derivative condition, i.e., Condition 4b′(iii), implies that
there exist negative, upper and lower bounds on the derivative, i.e.,
there exist C1, C2 ∈ � where 0 < C1 ≤ C2 such that:

− C2 (Y1 − Y2) ≤ G (x∗ (Y1) , Y1)−G (x∗ (Y2) , Y2) ≤ −C1 (Y1 − Y2)
(11.117)



Convergence: Parametric Optimization 437

for any Y1, Y2 ∈ � if Y1 > Y2. If Y2 > Y1, we will have the following
inequality:

− C2 (Y1 − Y2) ≥ G (x∗ (Y1) , Y1)−G (x∗ (Y2) , Y2) ≥ −C1 (Y1 − Y2) .
(11.118)

We first consider the case Y1 > Y2. Now, the lockstep condition
(Condition 4b′(iii)) implies that if the faster iterates in the algorithm

are updated using Y k ≡ y∗ in F
(
�Xk, Y k

)
, then Y k → y∗. This implies

from (11.115) that G (x∗ (y∗) , y∗) = 0. Thus if, Y2 = y∗ and Y1 = Y k,
inequality (11.117) will lead to:

−C2Δ
k ≤ G

(
x∗
(
Y k
)
, Y k
)
≤ −C1Δ

k.

Because βk > 0, the above leads to:

−C2Δ
kβk ≤ G

(
x∗
(
Y k
)
, Y k
)
βk ≤ −C1Δ

kβk.

The above combined with (11.116) leads to:

(1− C2β
k)Δk + βkδk ≤ Δk+1 ≤ (1− C1β

k)Δk + βkδk. (11.119)

Since, the above is true for any finite integral value of k, we have that
for k = K and k = K + 1,

(1− C2β
K)ΔK + βKδK ≤ ΔK+1; (11.120)

(1− C2β
K+1)ΔK+1 + βK+1δK+1 ≤ ΔK+2. (11.121)

Multiplying both sides of (11.120) by (1 − C2β
K+1) and adding

βK+1δK+1 to both sides, we have:

(1− C2β
K)(1− C2β

K+1)ΔK + (1− C2β
K+1)βKδK + βK+1δK+1 ≤

(1− C2β
K+1)ΔK+1 + βK+1δK+1.

The above in combination with (11.121) leads to:

(1−C2β
K)(1−C2β

K+1)ΔK+(1−C2β
K+1)βKδK+βK+1δK+1 ≤ ΔK+2.

Using similar arguments on the inequality on the other side of Δk+1

of (11.119), we have that

(1− C2β
K)(1− C2β

K+1)ΔK + (1− C2β
K+1)βKδK + βK+1δK+1

≤ ΔK+2 ≤ (1−C2β
K)(1−C2β

K+1)ΔK+(1−C2β
K+1)βKδK+βK+1δK+1.
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In this style, we can also show the above result when the sandwiched
term is ΔK+3,ΔK+4 . . .. In general, then, for any M > K, we obtain:

M+1∏

n=K

(1− C2β
n)ΔK +

M∑

n=K

(
M∏

m=n+1

(1− C2β
m)

)
βnδn ≤ ΔM+1

≤
M+1∏

n=K

(1− C1β
n)ΔK +

M∑

n=K

(
M∏

m=n+1

(1− C1β
m)

)
βnδn.

We now take the limits as M → ∞ on the above. Then, via
Theorem 9.7 and using (11.112) and (11.113), 0 ≤ limm→∞ΔM+1 ≤ 0.
Then, Theorem 9.8 implies that ΔM+1 → 0. Identical arguments can
now be repeated for the case Y2 > Y1, i.e., for (11.118), to obtain the
same conclusion.

9.2.3 R-SMART

We now discuss the convergence properties of R-SMART under some
conditions. R-SMART is a two-time-scale algorithm, and we will use
Theorem 11.24 to establish convergence.

We will first consider the CF-version. The core of the CF-version
of R-SMART can be expressed by the following transformations. On
the faster time scale we have:

Qk+1(i, a) = Qk(i, a)+α

[
r(i, a, ξk)− ρkt(i, a, ξk) + η max

b∈A(ξk)
Qk(ξk, b)−Qk(i, a)

]
,

(11.122)

where ξk is a random variable that depends on (i, a) and k; on the
slower time scale we have:

ρk+1 = ρk + βkI

(
a ∈ argmax

u∈A(i)
Qk(i, u)

)[
TRk

TT k
− ρk

]
;

TRk+1 = TRk + I

(
a ∈ argmax

u∈A(i)
Qk(i, u)

)
r(i, a, ξk);

TT k+1 = TT k + I

(
a ∈ argmax

u∈A(i)
Qk(i, u)

)
t(i, a, ξk);

(11.123)

note that in the above, we use the indicator function in order to account
for the fact that TRk, TT k and ρk are updated only when a greedy
action is chosen in the simulator. We denote the optimal policy by μ̂∗
and that generated in the kth iteration by:

μk(i) ∈ argmax
a∈A(i)

Qk(i, a) for all i ∈ S. (11.124)
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A Note About Assumptions. The policy used for simulations in
R-SMART is an exploratory policy greedy in the limit (GLIE) (dis-
cussed in Chap. 7). With a GLIE policy, in the limit, all state-action
pairs are visited infinitely often; this ensures that the noise in the
updates has a conditional mean of zero and that Condition 7 in The-
orem 11.24 is satisfied. For R-SMART, we will also assume that part
(iii) of Condition 4b′ of Sect. 9.2.2 holds. Further, note that the CF-
version works only when Assumption 7.1 from Chap. 7 is true and
η ∈ (η̄, 1). Finally, all policies produce regular Markov chains (this
is an assumption we make throughout this book and omit from the
statements of theorems).

Before we present the convergence result, we will define some of the
underlying functions necessary to invoke the ODE in question. For all
(i, a) pairs,

F ′
(
�Qk, ρk

)
(i, a) =

|S|∑

j=1

p(i, a, j)

[
r(i, a, j)− ρk t̄(i, a, j) + η max

b∈A(j)
Qk(j, b)

]
.

Then, for all (i, a) pairs, F
(
�Qk, ρk

)
(i, a) = F ′

(
�Qk, ρk

)
(i, a) −

Qk(i, a). We further define the noise term as follows: For all (i, a)
pairs,

wk
1 (i, a) =

[
r(i, a, ξk)− ρkt(i, a, ξk) + η max

b∈A(ξk)
Qk(ξk, b)

]
− F ′

(
�Qk, ρk

)
(i, a).

Then, like in the case of Q-Learning, we can write the updating trans-
formation on the faster time scale in our algorithm, (11.122), as:

Qk+1(i, a) = Qk(i, a) + αk
[
F
(
�Qk, ρk

)
(i, a) + wk

1(i, a)
]
,

which is of the same form as the updating scheme for the faster time
scale defined for Theorem 11.24 (replace Xk by Qk and l by (i, a)).
Then, if we fix the value of ρk to some constant, ρ̆, we can invoke the
following ODE as in Theorem 11.24:

d�q

dt
= F (�q, ρ̆), (11.125)

where �q denotes the continuous-valued variable underlying the iter-
ate Q.

We now define the functions underlying the iterate on the slower
time scale. For all (i, a) pairs,
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G
(
�Qk, ρk

)
(i, a) =

|S|∑

j=1

p(i, a, j)
[
TRk/TT k

]
− ρk;

G′
(
�Qk, ρk

)
(i, a) = G

(
�Qk, ρk

)
(i, a) + ρk;

wk
2(i, a) =

[
TRk/TT k

]
−G′

(
�Qk, ρk

)
(i, a);

the above allows us to express the update on the slower time scale in
the algorithm, Eq. (11.123), as:

ρk+1 = ρk+βkI

(
a ∈ argmax

u∈A(i)
Qk(i, u)

)[
G
(
�Qk, ρk

)
(i, a) + wk

2(i, a)
]
.

We now present our convergence result.

Proposition 11.50 Assume that the step sizes used in the algorithm
satisfy Conditions 3 and 6 of Theorem 11.24 and that GLIE policies
are used in the learning. Further, assume that Assumption 7.1 from
Chap. 7 holds such that η ∈ (η̄, 1). Finally, assume that part (iii) of
Condition 4b′ from Sect. 9.2.2 holds. Then, with probability 1, the se-
quence of policies generated by the CF-version of R-SMART, {μ̂k}∞k=1,
converges to μ̂∗.

Proof We now need to evaluate the conditions of Theorem 11.24.
Condition 1 results from the fact that (i) the partial derivative of
F (., .) with Qk is bounded and (ii) G(., .) is a linear function of ρk.
Conditions 3 and 6 are satisfied by appropriate step-size selection.
The GLIE policies ensure that Conditions 2 and 7 are met. As usual,
Conditions 4 and 5 need additional work.

Condition 5: We show Condition 5 via the following result.

Lemma 11.51 The sequence
{
�Qk, ρk

}∞
k=1

remains bounded with prob-

ability 1.

Proof We will first analyze the iterate on the slower time scale and
claim that:

|ρk| ≤ M for all k, (11.126)

where M , a positive finite scalar, is defined as:

M = max

{
maxi,j∈S,a∈A(i) |r(i, a, j)|
mini,j∈S,a∈A(i) t(i, a, j)

, ρ1
}
.
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We prove the claim for k = 1 as follows:

|ρ2| ≤ (1− β1)|ρ1|+ β1|r(i, a, j)/t(i, a, j)| ≤ (1− β1)M + β1M = M

Now assuming the claim when k = P , we have that |ρP | ≤ M . Then,

|ρP+1| ≤ (1− βP )|ρP |+ βP

∣∣∣∣
TRP

TTP

∣∣∣∣

≤ (1− βP )|ρP |+ βP P maxi,j∈S,a∈A(i) |r(i, a, j)|
P mini,j∈S,a∈A(i) t(i, a, j)

= (1− βP )|ρP |+ βP maxi,j∈S,a∈A(i) |r(i, a, j)|
mini,j∈S,a∈A(i) t(i, a, j)

= (1− βP )M + βP (M) = M.

In the above, we have used: |TRP | ≤ P maxi,j∈S,a∈A(i) |r(i, a, j)| and
1/TTP ≤ 1/(P mini,j∈S,a∈A(i) t(i, a, j)). We now analyze the iterate on

the faster time scale. We first note that when ρk is fixed to any value
ρ̆ ∈ �, the transformation F (., ρ̆) is contractive. When 0 < η < 1,
the proof of this fact follows in a manner very similar to that used in
showing Condition 4 in the proof of Proposition 11.29. When all the
immediate rewards and times are set to 0, i.e., r(i, a, j) = t(i, a, j) = 0
for all i ∈ S, j ∈ S, and a ∈ A(i), the contractive property still
holds. Now if we compute the scaled function Fc(., .), as defined in
Definition 11.6, we can show (see Eq. (11.83) and its accompanying

discussion) that: F∞
(
�Qk, ρk

)
(i, a) = limc→∞ Fc

(
�Qk, ρk

)
(i, a)

= lim
c→∞

|S|∑

j=1

p(i, a, j)

[
r(i, a, j)− ρk t̄(i, a, j)

c
+ η

maxb∈A(j) cQ
k(j, b)

c

]

− lim
c→∞

cQk(i, a)

c

= η

|S|∑

j=1

p(i, a, j)

[
max
b∈A(j)

Qk(j, b)

]
−Qk(i, a) (since ρk is bounded);

it is not hard to see that F∞
(
�Qk, ρk

)
is a special case of the trans-

formation F
(
�Qk, a

)
with the immediate rewards and times set to 0,

where a is any fixed scalar. But F
(
�Qk, a

)
is contractive, and hence via

Theorem 11.22, the ODE d�q
dt = F∞(�q, a) has a globally asymptotically
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stable equilibrium. But note that the origin is the only equilibrium
point for this ODE. Then, from Theorem 11.23, it follows that the

sequence
{
�Qk
}∞
k=1

must be bounded with probability 1.

Condition 4: When ρk is fixed to any scalar ρ̆, we have already
argued that F ′(., ρ̆) is contractive, and hence the ODE in Eq. (11.125)
must have a globally asymptotically stable equilibrium. Further, the
equilibrium solution is:

|S|∑

j=1

p(i, a, j)

[
r(i, a, j)− ρk t̄(i, a, j) + η max

b∈A(j)
Qk(j, b)

]
∀(i, a),

which is clearly Lipschitz in Qk(., .). We have thus shown that Condi-
tion 4a holds.

To show Condition 4b, consider Condition 4b′ of Sect. 9.2.2 setting
y∗ = ρ∗, where ρ∗ is the optimal average reward of the SMDP. Note
that N2 = 1 for our algorithm (part (i) of Condition 4b′). Now, under
Assumption 7.1, when the value of ρk in the faster iterate is fixed to
ρ∗, the faster iterates will converge to �Q∗, a solution of the Bellman
optimality equation. Since the slower iterate updates only when a
greedy policy is chosen, in the limit, the slower iterate must converge
to the average reward of the policy contained in �Q∗, which must be
optimal. Thus, the lockstep condition (part (ii) in Condition 4b′) holds
for y∗ = ρ∗. The derivative condition (part (iii) of Condition 4b′) is
true by assumption. Thus, Condition 4b′ is true for our two-time-scale
algorithm. Then, Proposition 11.49 implies that Condition 4b in The-
orem 11.24 must hold. Theorem 11.24 can now be invoked to ensure
convergence to the optimal solution of the SMDP with probability 1.

We now consider the SSP-version of R-SMART. The main update
on the faster time scale is: Qk+1(i, a) ← (1− α)Qk(i, a)+

α

[
r(i, a, ξk)− ρkt(i, a, ξk) + I(j = i∗) max

b∈A(ξk)
Qk(ξk, b)

]
.

The main transformations related to the faster time scale will be: For
all i ∈ S and a ∈ A(i), F ′

(
�Qk, ρk

)
(i, a)

=
∑

j∈S
p(i, a, j)

[
r(i, a, j)− ρk t̄(i, a, j) + I(j = i∗) max

b∈A(j)
Qk(j, b)

]
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=
∑

j∈S′
p(i, a, j)

[
r(i, a, j)− ρk t̄(i, a, j) + max

b∈A(j)
Qk(j, b)

]
. (11.27)

The definition in (11.27) will be used in our analysis, since by summing
over the set of states S ′ = S \ {i∗}, which excludes the termination
state i∗, we can exploit a contractive property of F ′(.). Also, all i ∈ S
and a ∈ A(i):

F
(
�Qk, ρk

)
(i, a) = F ′

(
�Qk, ρk

)
(i, a)−Qk(i, a).

wk
1 (i, a) =

[
r(i, a, ξk)− ρkt(i, a, ξk) + I(j �= i∗) max

b∈A(ξk)
Qk(ξk, b)

]

− F ′
(
�Qk, ρk

)
(i, a).

Then, like in the case of Q-Learning, we can write the updating trans-
formation on the faster time scale in our algorithm as:

Qk+1(i, a) = Qk(i, a) + αk
[
F
(
�Qk, ρk

)
(i, a) + wk

1(i, a)
]

∀(i, a);

the updates on the slower time scale and the associated functions will
be identical to those for the CF-version. Also, the policy generated by
the algorithm in the kth iteration will be given as in Eq. (11.124). Our
main convergence result is as follows:

Proposition 11.52 Assume that the step sizes used in the algorithm
satisfy Conditions 3 and 6 of Theorem 11.24 and that GLIE policies
are used in the learning. Further assume that part (iii) of Condition 4b′
from Sect. 9.2.2 holds. Then, with probability 1, the sequence of policies
generated by the SSP-version of R-SMART, {μ̂k}∞k=1, converges to μ̂∗.

The result above assumes that all states are recurrent under every
policy and that one of the stationary deterministic policies is optimal.

Proof We will first show (via Lemma 11.53) that the transforma-
tion F ′(.) underlying the faster iterate, as defined in (11.27), is contrac-
tive with respect to a weighted max norm. The rest of the proof will be
very similar to that of Proposition 11.50. Note, however, that because
we use a distinguished state i∗ as an absorbing state in the algorithm,
we will essentially be solving an SSP here; but Proposition 11.44 will
ensure that the SSP’s solution will also solve the Bellman optimality
equation for the SMDP concerned and we will be done. We first show
the contractive property.
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Lemma 11.53 When ρk is fixed to any constant ρ̆ ∈ �, the transfor-

mation F ′
(
�Qk, ρk

)
, as defined in (11.27), is contractive with respect

to a weighted max norm.

Proof Since ρk will essentially be a constant, we will drop ρk from our

notation F ′
(
�Qk, ρk

)
and use F ′

(
�Qk
)
instead. Consider two vectors

�Qk
1 and �Qk

2 in �N . From the definition of F ′(.):

F ′
(
�Qk
1

)
(i, a)− F ′

(
�Qk
2

)
(i, a) =

∑

j∈S′
p(i, a, j)

[
max

b∈A(j)
Qk

1(j, b)− max
b∈A(j)

Qk
2(j, b)

]
.

Then, for any (i, a)-pair:
∣∣∣F ′
(
�Qk
1

)
(i, a)− F ′

(
�Qk
2

)
(i, a)

∣∣∣

≤
∑

j∈S′
p(i, a, j)

∣∣∣∣ max
b∈A(j)

Qk
1(j, b)− max

b∈A(j)
Qk

2(j, b)

∣∣∣∣

≤
∑

j∈S′
p(i, a, j) max

b∈A(j)
|Qk

1(j, b)−Qk
2(j, b)|

≤
∑

j∈S′
p(i, a, j) max

j∈S,b∈A(j)
|Qk

1(j, b)−Qk
2(j, b)|

=
∑

j∈S′
p(i, a, j)υ(j, b)|| �Qk

1 − �Qk
2||υ for any b ∈ A(j)

≤ ϑυ(i, a)|| �Qk
1 − �Qk

2||υ

with 0 ≤ ϑ < 1, where the last but one line follows from the defini-
tion of the weighted max norm (see Appendix) and the last line from
Lemma 11.43 and the definition of ϑ in Eq. (11.97). Then, we have

that
|F ′( �Qk

1)(i,a)−F ′( �Qk
2)(i,a)|

υ(i,a) ≤ ϑ|| �Qk
1 − �Qk

2||υ. Via usual arguments,

||F ′ �Qk
1 − F ′ �Qk

2||υ ≤ ϑ|| �Qk
1 − �Qk

2||υ.

Conditions 1, 2, 3, and 6 and the boundedness of the slower iterate
follow in a manner similar to that used in the previous result. Also, the
contractive property can then be similarly used to show boundedness
of the faster iterate. Since the transformation, F ′(., .) is contractive,
we have that for a fixed value of ρk, the associated ODE has a globally
asymptotically stable equilibrium. Also, it can argued as before that
the equilibrium will be Lipschitz, thus proving Condition 4a.

To show Condition 4a, we will use Condition 4b′. We first note
that the Q-factor version of Eq. (11.109), which is the value-function
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version of the SSP’s Bellman optimality equation, can be derived as
follows when K in the notation of that equation is replaced by i∗:

Qk+1(i, a) = r̄(i, a)− ρ̃t̄(i, a) +
∑

j∈S
p(i, a, j)

[
I(j �= i∗) max

b∈A(i)
Qk(j, b)

]
∀(i, a).

When ρ̃ is fixed to ρ∗ in the faster iterate, it can be argued (as in
the previous result) that the faster iterates will converge to the solu-
tion of the above equation (under the condition that ρ̃ = ρ∗). Via
Proposition 11.44, we know that the solution of the above equation
with ρ̃ = ρ∗ will also generate a solution to the Bellman optimality
equation for SMDPs; consequently the slower iterates will converge
to ρ∗. This establishes the lockstep condition in 4b′. The derivative
condition is true by assumption and N2 = 1. Then, by invoking Propo-
sition 11.49, we have via Theorem 11.24 that ρk converges to ρ∗ with
probability 1. As a result, repeating the argument above, the Q-factors
must converge with probability 1 to their optimal solution.

9.2.4 Q-P-Learning

We now analyze the Q-P -learning algorithm for average reward
SMDPs. As usual, in the case of algorithms based on policy itera-
tion, our analysis will be restricted to the policy evaluation phase. We
begin with analyzing the CF-version. The equation that this algo-
rithm seeks to solve is the η-version of the Bellman policy equation for
a given policy μ̂, i.e., Eq. (7.36).

Proposition 11.54 Assume the step sizes and the action selection
to satisfy Conditions 3, 6, and 7 of Theorem 11.21. Further assume
that Assumption 7.2 (Chap. 7) is true for the SMDP concerned and η
is chosen such that η ∈ (η̄, 1). Then, with probability 1, the sequence
of iterates generated within Step 3 of the CF-version of Q-P -Learning
for average reward SMDPs, { �Qn}∞n=1, converges to the unique solu-
tion of Equation (7.36), i.e., to the value function vector associated to
policy μ̂.

Proof The proof will be very similar to that of Q-P -Learning for
discounted reward MDPs. In Step 2, an estimate of the average reward
of the policy being evaluated, μ̂ (the policy is contained in the current
values of the P -factors), is generated. The transformation F ′(.) for
this algorithm will be as follows:

F ′
(
�Qn
)
(i, a) =

|S|∑

j=1

p(i, a, j) [r(i, a, j)− ρμ̂t̄(i, a, j) + ηQn(j, μ(j))] .
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Now F ′(.) is contractive, using arguments similar to those in the proof
of Proposition 11.40; then, under Assumption 7.2, the rest of this proof
is very similar to that of Proposition 11.40.

In the SSP-version, the algorithm seeks to solve is as follows:

Qn+1(i, a) =
∑

j∈S
p(i, a, j) [r(i, a, j)− ρμ̂t̄(i, a, j) + I(j = i∗)Qn(j, μ(j))]

=
∑

j∈S′
p(i, a, j) [r(i, a, j)− ρμ̂t̄(i, a, j) +Qn(j, μ(j))] ,

(11.128)

where S ′ = S \{i∗}. This is the Q-factor version of the Bellman policy
equation for SMDPs that uses the SSP connection (see Eq. (11.111)).
As usual, we will assume that all states are recurrent.

Proposition 11.55 Assume the step sizes and the action selection to
satisfy Conditions 3, 6, and 7 of Theorem 11.21. Then, with probability
1, the sequence of iterates generated within Step 3 of the CF-version of
Q-P -Learning for average reward SMDPs, { �Qn}∞n=1, converges to the
unique solution of Equation (11.128), i.e., to the value function vector
associated to policy μ̂.

Proof The proof will be along the lines of that for Q-P -Learning for
discounted reward MDPs (see Proposition 11.40). We will first show
that the transformation F ′(.) is contractive. We define F ′(.) as follows:

F ′
(
�Qn
)
=
∑

j∈S′
p(i, a, j) [r(i, a, j)− ρμ̂t̄(i, a, j) +Qn(j, μ(j))] .

The following result shows the contraction property.

Lemma 11.56 The transformation F ′(.) is contractive.

Proof From the definition of F ′(.):

F ′
(
�Qn
1

)
(i, a)−F ′

(
�Qn
2

)
(i, a)=

∑

j∈S′
p(i, a, j) [Qn

1 (j, μ(j))−Qn
2 (j, μ(j))] .

Then, for any (i, a)-pair:
∣∣∣F ′
(
�Qn
1

)
(i, a)− F ′

(
�Qn
2

)
(i, a)

∣∣∣

≤
∑

j∈S′
p(i, a, j) |Qn

1 (j, μ(j))−Qn
2 (j, μ(j))|
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≤
∑

j∈S′
p(i, a, j) max

j∈S,b∈A(j)
|Qn

1 (j, b)−Qn
2 (j, b)|

=
∑

j∈S′
p(i, a, j)υ(j, b)|| �Qn

1 − �Qn
2 ||υ for any b ∈ A(j)

≤ ϑυ(i, a)|| �Qn
1 − �Qn

2 ||υ

with 0 ≤ ϑ < 1, where the last but one line follows from the defini-
tion of the weighted max norm (see Appendix) and the last line from
Lemma 11.43 and the definition of ϑ in Eq. (11.97). Then, we have

that
|F ′( �Qn

1 )(i,a)−F ′( �Qn
2 )(i,a)|

υ(i,a) ≤ ϑ|| �Qn
1 − �Qn

2 ||υ. Via usual arguments,

||F ′ �Qn
1 − F ′ �Qn

2 ||υ ≤ ϑ|| �Qn
1 − �Qn

2 ||υ.

The solution to which the algorithm converges is that of an asso-
ciated SSP, but via Proposition 11.48, we have that the solution also
solves the SMDP’s Bellman policy equation.

10. Reinforcement Learning for Finite Horizon:
Convergence

We will analyze the finite horizon Q-Learning algorithm when the
discounting factor is 1, there is a unique starting state, and all states
are recurrent under every policy. Under these conditions, the finite
horizon problem can be viewed as a special case of the Stochastic
Shortest Path (SSP) problem.

In the finite horizon problem, the so-called stage, s, is incremented
by one after every state transition, and there is a finite number, T , of
stages in the problem. When an action a is chosen in state i at the sth
stage, the core of the algorithm in its kth iteration can be written as:

Qk(i, s, a) ← (1− αk)Qk(i, s, a)

+ αk

[
r(i, s, a, ξk, s+ 1) + max

b∈A(ξk,s+1)
Qk(ξk, s+ 1, b)

]
,

where ξk is the random state to which the system transitions; it de-
pends on i, s and a. Further, note that we have the boundary con-
dition: Qk(i, T + 1, b) = 0 for all i ∈ S and b ∈ A(i, T + 1). Let the
policy generated in the kth iteration be defined by:

μk(i, s) ∈ argmax
a∈A(i,s)

Qk(i, a, s) for all i ∈ S and for s = 1, 2, . . . , T .
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Let the optimal policy be denoted by μ̂∗. For the convergence result,
we define F ′(.) as follows: F ′ (Qk(i, s, a)

)
=

∑

j∈S
p(i, s, a, j, s+ 1)

[
r(i, s, a, j, s+ 1) + max

b∈A(j,s+1)
Qk(j, s+ 1, b)

]
.

where p(i, s, a, j, l) = 0 whenever l = (s + 1). Then, if a fixed point
exists for F ′(�x) = �x, with the boundary condition, we are interested
in obtaining convergence to it, since it should generate an optimal
solution to our problem [30]. The convergence result for finite-horizon
Q-Learning is as follows.

Proposition 11.57 When the step sizes and action selection used in
the algorithm satisfy Conditions 3, 6, and 7 of Theorem 11.21, all the
states in the system are recurrent under every policy, and there is a
unique starting state, with probability 1, the sequence of policies gen-
erated by the finite-horizon Q-Learning algorithm, {μ̂k}∞k=1, converges
to μ̂∗.

Proof The proof will be very similar to that of infinite-horizon
Q-Learning. Conditions 1, 2, 3, 6, and 7 follow in a manner identical
(or very similar) to that shown for Q-Learning (Theorem 11.29). How-
ever, Conditions 4 and 5 need additional work. We now define F (.)

as follows: F
(
�Qk
)
(i, s, a) = F ′

(
�Qk
)
(i, s, a) − Qk(i, s, a), where the

terms Qk(., ., .), we will assume, are mapped to a vector. We further
define a transformation f ′(.) as follows:

f ′
(
�Qk
)
(i, s, a) =

[
r(i, s, a, ξk, s+ 1) + max

b∈A(ξk,s+1)
Qk(ξk, s+ 1, b)

]
.

Now, if we define the noise term as:

wk(i, s, a) = f ′
(
�Qk
)
(i, s, a)− F ′

(
�Qk
)
(i, s, a),

then, we can write the updating transformation in our algorithm as:

Qk+1(i, s, a) = Qk(i, s, a) + αk
[
F
(
�Qk
)
(i, s, a) + wk(i, s, a)

]
,

which is of the standard form. Then, we can invoke the following ODE
as in Condition 4 of Theorem 11.21:

d�q

dt
= F (�q), (11.129)
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where �q denotes the continuous-valued variable underlying the iter-
ate Q.

If we treat the state-stage pair as the state, i.e., I ≡ (i, s) and
J ≡ (j, s+ 1), then the problem can be viewed as a special case of an
SSP problem in which every policy is proper and the starting state is
unique; the transition probability of the SSP will be defined as p (I, a, J)
and the transition reward as r (I, a, J). Setting ρk = 0 in Lemma 11.53,
we have from that result that F ′(.) is contractive (with respect to some
weighted max norm). This implies from Theorem 11.22 that the asso-
ciated ODE in Eq. (11.129) has a unique globally asymptotically stable
equilibrium (Condition 4) and that the equilibrium is Lipschitz; the
existence of the equilibrium can be used to show via Theorem 11.23,
using arguments familiar to the reader by now, that the iterates remain
bounded with probability 1 (Condition 5). Then, we have convergence
to the desired fixed point with probability 1.

11. Conclusions
This chapter was meant to introduce the reader to some basic re-

sults in the convergence theory of DP and RL. While the material
was not meant to be comprehensive, it is hoped that the reader has
gained an appreciation for the formal ideas underlying the convergence
theory. Our goal for DP was to show that the solutions of the Bell-
man equation are useful and that the algorithms of policy and value
iteration converge. In RL, our goal was very modest—only that of pre-
senting convergence of some algorithms via key results from stochastic
approximation theory (based on ODEs and two-time- scale updating).

Bibliographic Remarks. In what follows, we have summarized some references
to convergence analysis of DP and RL theory. The following account is not compre-
hensive. Also, our discussion is heavily borrowed from the literature, and despite
our best efforts, we may have missed some references for which we apologize in
advance.

DP theory. Our accounts, which show that a solution of the Bellman optimality
equation for both discounted and the average reward case is indeed optimal, follow
Vol II of Bertsekas [30]. The convergence of value iteration, via the fixed point
theorem, is due to Blackwell [42]. The convergence proof for policy iteration for
discounted reward, presented in this book, follows from Vol II of Bertsekas [30]
and the references therein. The analysis of policy iteration for average reward
is from Howard [144]. The discussion on span semi-norms and the statement of
Theorem 11.15 is from Puterman [242]. Our account of convergence of value it-
eration and relative value iteration for average reward is based on the results in
Gosavi [119].
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RL theory. For RL, the main result (Proposition 11.21) related to synchronous
conditions follows from [46, 136, 49]; see [48] for a textbook-based treatment of this
topic. Two-time-scale asynchronous convergence result is based on results from
Borkar [45, 46].

Convergence ofQ-Learning has appeared in a number of papers. Some of the ear-
liest proofs can be found in [300, 151, 290]. A proof based on ODEs was developed
later in [49], which used a result from [46]. The ODE analysis requires showing
boundedness of iterates. In our account, the proof based on basic principles for
showing boundedness of Q-Learning is from [111]. See also [300] for yet another
boundedness proof for Q-Learning. The general approach to show boundedness
(that works for many RL algorithm and has been used extensively here) is based
on showing the link between a contraction and a globally asymptotically stable
equilibrium of the ODE concerned (Theorem 11.22 above is from [48]) and a link
between the asymptotically stable equilibrium and boundedness (Theorem 11.23
above is from [49]). The eigenvalue-based analysis for showing boundedness, which
exploits these results, can be found in [119]. The analysis of finite convergence of
Q-Learning is from [109]. The convergence of Relative Q-Learning can be found in
[2, 49].

The “lockstep” condition in Condition 4b′ of Proposition 11.49 is not our original
work; it can be found in many two time scale algorithms, and has been explicitly
used in the proofs of an SSP algorithm in [2] and R-SMART [119]. However, it
was never presented in the general format that we present here, which makes it
a candidate for application in two time scale stochastic approximation algorithms;
when the condition holds, it should further ease the analysis of a two-time-scale
algorithm. The derivative condition in Condition 4b′ was formally used in [119],
but is also exploited (indirectly) in [2].

SSP. The connection between the SSP and the MDP was made via a remark-
able result in Bertsekas [30, vol I]. The result connecting the SSP to the SMDP
(Proposition 11.44), which is the basis of the SSP-versions of R-SMART and Q-
P -Learning, is from Gosavi [119]. The analysis of R-SMART for the SSP-version
and the CF-version can be found in [119]. An analysis which assumed that ρ starts
in the vicinity of ρ∗ can be found in [110]. The convergence of the SSP-versions
and regular versions of Q-P -learning for average reward can be collectively found
in Gosavi [109, 118]. The contraction property of the SSP’s transformation, shown
here via Lemma 11.53 for the Bellman optimality equation and Lemma 11.56 for
the Bellman policy equation, are extensions of results for the value function from
[33] to the Q-factor and are based on [109]. Lemma 11.43 is also a Q-factor exten-
sion of a result in [33], and can be found in [109]. Lemma 11.46 for SMDPs, based
on the renewal reward theorem, is from Gosavi [119]. Our analysis of finite-horizon
Q-Learning, under the conditions of a unique starting state and proper policies, is
based on the contraction argument in Lemma 11.53. See [332] for a more recent
analysis of the SSP in which some of these conditions can be relaxed. See also [38]
for an analysis of the finite horizon algorithm under conditions weaker than those
imposed here.

Miscellaneous. The convergence of API for MDPs (discounted reward) and
Q-P -Learning for MDPs (average and discounted reward) is from [120]. See [33]
and references therein for convergence analysis with function approximation. The
convergence of SARSA has been established in [277].



Chapter 12

CASE STUDIES

1. Chapter Overview
In this chapter, we will describe some case studies related to

simulation-based optimization. We will provide a general description
of the problem and of the approach used in the solution process. For
more specific numeric details, the readers are referred to the references
provided. We present three case studies for model-free simulation
optimization related to airline revenue management, preventive main-
tenance of machines, and buffer allocation in production lines in detail.
We also present a heuristic rule in each case, which can be used for
benchmarking the simulation-optimization performance. Such heuris-
tics are typically problem-dependent and may produce high-quality
solutions. Also, without a benchmark, it is difficult to gage the
performance of the simulation-optimization algorithm on large-scale
problems where the optimal solution cannot be determined. We enu-
merate numerous other case studies, pointing the reader to appropriate
references for further reading.

2. Airline Revenue Management
Revenue management (or yield management) is the science

underlying maximization of profits via selling seats on an airplane in
the most effective manner [212, 229, 294]. Seat allocation and over-
booking are two critical aspects of the revenue management problem,
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and the key to making profit lies in controlling seat allocation and
overbooking properly. Our discussion here will follow [123, 127, 109].

It is known to airlines that not every customer has the same
expectation from the service provided. For instance, some customers
like direct flights, while some are willing to fly with a few stopovers
if it means a cheaper ticket. More importantly, some customers book
tickets considerably in advance of their journey, while some (usually
business related travelers) tend to book a few days before the flight’s
departure. Airline companies take advantage of these differences
by selling seats of a flight at different prices. Thus for instance, a
customer who desires fewer stopovers or arrives late in the booking
process is charged a higher fare. A customer (generally a business
traveler) who needs a ticket that is refundable, usually because of a
higher likelihood of the cancellation of his/her trip, is also charged a
higher fare.

All of the above factors lead to a situation where airlines internally
(without telling the customers) divide passengers into different fare
classes or products based on their needs and the circumstances.
Passengers within the same fare class (or product) pay the same
(or roughly the same) fare.

It makes business sense to place upper limits on the number of seats
to be sold in each fare class. This ensures that some seats are reserved
for higher fare class passengers (that provide higher revenues), who
tend to arrive late in the booking period. Also, it is usually the case
that demand for lower fare classes is higher than that for the higher
fare classes, and unless some limits are imposed, it is likely that the
plane will be primarily occupied by the lower fare-class passengers.
This is an undesirable situation for airline profits. On the other hand,
if the limits imposed are very high, it is quite possible that the plane
will not be full at takeoff. Thus finding the right values for these limits
becomes an important problem for the carrier.

The “overbooking” aspect adds to the complexity of this problem.
Some customers cancel their tickets and some fail to show up at the
flight time (no-shows). As a result, airlines tend to overbook (sell more
tickets than the number of seats available) flights, anticipating such
events. This can minimize the chances of flying planes with empty
seats. It may be noted that a seat in an airplane, like a hotel room
or vegetables in a supermarket, is a perishable item, and loses all its
value as soon as the flight takes off. However, the downside of ex-
cessive overbooking is the risk of not having sufficient capacity for
all the ticket-holders at takeoff. When this happens, i.e., when the
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number of passengers who show up exceeds the capacity because of
overbooking, airlines are forced to deny (bump) boarding request to
the extra ticket-holders and pay a penalty in two ways: directly in the
form of financial compensations to the inconvenienced passengers, and
sometimes indirectly through loss of customer goodwill. Usually loss of
customer goodwill can be avoided by finding volunteers, who are will-
ing to fly on a later flight; nobody is inconvenienced this way, but the
volunteers get monetary benefits and the company loses money. Hence,
a careful choice of overbooking policy that maximizes the revenue is
required.

A major factor used in classification is the time of the request for
reservation. Passengers, who book in advance, get discount fares; in
other words they are made to belong to lower fare classes (nobody
has complaints with this, of course). Those who come later have to
pay higher fares, that is, they get allocated to the higher fare classes.
(Note that a higher fare class does not mean that there is any seating
advantage.) If classification is carried out by the airline company on
the basis of this factor alone, passengers in the the real-world system
should arrive sequentially, i.e., passengers in the lowest classes arrive
first, followed by passengers in the next higher class, and so on. This
is however not necessarily true, and hence our model should account
for concurrent arrivals of different types of passengers.

We now consider another important factor that affects the fare class
(product). To understand how an itinerary-based passenger classifi-
cation works, consider Fig. 12.1, which shows a small hub-and-spoke
network with Chicago as the hub (center) and Miami, Boston, and
Denver as spokes. In such a network, passengers who want to fly from
one spoke city (origin) to another spoke city (destination) take two
flights: one from the origin to the hub and then a second from the
hub to the destination. With larger networks, it is possible that one
may have to take three flights. Each individual flight in the network is
called a leg. Thus in the flight from Chicago to Miami, it is possible
that there are passengers whose origin was Chicago, and there are pas-
sengers whose origin was Denver or Boston. Thus on the same flight,
one may have passengers who are either flying directly from the origin
to their destination and those for whom this is just one leg in their
longer itinerary. Thus, in summary, the number of stop-overs in their
entire journey for passengers on a given leg may not be the same. This
number can affect the fare class (product).

A third factor that can affect the fare class (product) is the abil-
ity of the traveler to cancel a ticket. If a ticket is refundable, which
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means it can be canceled with little or no penalty, it usually costs
more. Thus for instance, for the same origin-destination itinerary, one
traveler may have paid a non-refundable fare of $200 and another may
have paid a refundable fare of $300.

All of these factors are together used to allocate the customer to
a unique fare class (product). The problem faced by the airline is
to determine whether to accept or deny the boarding request when a
customer “arrives.” Usually, this means that the customer logs on to
a web-site, such as Travelocity or the website of the carrier (or calls a
travel agent), and enters data related to time and place of origin and
destination. The web-site, which is backed by a computer program,
then determines the appropriate product that the customer is seeking
and then provides all the available options the customer has.

The computer program that we mention, which is usually a
sophisticated data-base system with a web interface, has access to
the optimal booking limits for each type of product, and it offers
information to the customer based on that. The optimization for the
booking limits is oftentimes performed every night. Of course, since
with every accepted request, the status of the system changes (i.e.,
the number of seats sold of each product), updates of this nature must
be done continuously for the system to work properly.

Simultaneous perturbation was used in [127] to solve the network
problem for booking-limit optimization, while the leg-based problem
was solved via RL in [123, 109]. Other works that use simulation
directly or indirectly include [65, 175, 76, 159, 306, 36]. Comprehensive
overviews of the revenue management problem can be found in the lit-
erature. A recent survey is [66]; see also [201]. This is an area that has
attracted significant research interest in the operations management
community recently. We now discuss some additional aspects of mod-
eling this problem.

An SMDP model. For a control-theoretic (dynamic) RL-based
model to this problem, one must first define the state space prop-
erly. Usually, some kind of approximation of the state space using
appropriate features and basis function is needed (see [109] for one
example). The state space must account for the seats sold for each
product and perhaps the current time in the booking period. (The
booking period is the time during which requests for tickets to a par-
ticular product can be entertained.) The action space is: {Accept,
Deny}. The time horizon for the underlying problem could be finite
and it could equal the booking period. Otherwise, the time horizon
could be infinite in which when the flight takes off, the system reverts
to the start of the booking period. The objective function depends on
the type of time horizon.
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Chicago

Miami

Chicago:  Hub
Denver:   Spoke
Boston:   Spoke
Miami  :   Spoke

Denver

Boston

Figure 12.1. A typical hub-and-spoke network in which Chicago serves as the hub
and Miami, Boston, and Denver serve as the spokes

A Parametric Optimization Model. The seat-allocation prob-
lem can be solved as a parametric-optimization problem. The objec-
tive function is the average revenue per unit time (for infinite time
horizon) or the average revenue per flight (for finite time horizon).
If BLi denotes the booking limiting for the ith fare class, then the
problem is: Maximize f(BLi, BL2, . . . , BLn) where f(.), the objective
function, is estimated using simulation. The simulator is combined
with an optimization algorithm, e.g., some meta-heuristic or simulta-
neous perturbation.

We now present some heuristic algorithms (not based on simulation
optimization) that have been used successfully in the industry to solve
these problems. Naturally, these heuristics form great benchmarks for
simulation-optimization approaches.

EMSR-a. The EMSR (Expected Marginal Seat Revenue) heuristic
was developed in Belobaba [26]. It is rooted in an equation by Little-
wood [190]. This heuristic is widely used in the industry. According
to this heuristic, when a customer requests a ticket, he/she should
be given a reservation only if the number of seats sold in the class
to which he/she belongs is less than a so-called booking limit for that
class. The booking limits for any given class can be obtained by solving
the following equation:

P(Yi > Si
j) = Vj/Vi for j = 1, 2, . . . , n− 1, i = j + 1, j + 2, . . . , n,

where Yi denotes the random number of requests for class i that will
arrive during the booking horizon, Si

j denotes the number of seats to
be protected from class j for a higher class i, Vi and Vj are the fares
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for the classes i and j, respectively, and n is the number of classes.
In order to solve the equation, one must know the distribution of Yi
for i = 1, 2, . . . , n. Examples of distributions here are normal, Poisson,
and Erlang. In order to solve this equation, one may use the inverse of
the cumulative distribution functions (cdfs) of the random variables Yi.

In the equation above, the numbering convention that we have used
implies that if i > j, then Vi > Vj . In other words, higher the number
(index) of the fare class (product), the greater the revenue; some books
adopt the opposite convention.

The unknown quantities in the equation above are the values of Si
j ,

i.e., the protection levels. These protection levels are subsequently
used to compute the booking limits as follows: For j = 1, 2, . . . , n− 1,

BLj = C −
n∑

i=j+1

Si
j and BLn = C,

where C is the capacity of the plane. The booking limit for class n (the
highest class) is C since these customers are always desirable. Can-
cellations and no-shows are accounted for by multiplying the capacity
of the aircraft with an overbooking factor. Thus, if C is the capac-
ity of the flight and Cp is the probability of cancellation, then to
account for that, the modified capacity of the aircraft is calculated
to be C/(1 − Cp), which replaces C in the calculations above. This
is done so that at take-off the expected number of customers present
roughly equals the capacity of the plane.

EMSR-b. A variant of the above heuristic, called EMSR-b (also
credited to Belobaba; see also [27]), is also popular in the literature.
Under some conditions, it can outperform EMSR-a (see [294] for a
comprehensive treatment of this issue). In this heuristic, the attempt
is to convert the n-fare-class problem into one with only two classes
during solution for each class. Let

Ȳi ≡
n∑

j=i

Yj

denote the sum of the random demands of all classes above i and
including i (again note that a higher class provides higher revenue by
our convention). Then, we can define a so-called aggregate revenue for
the ith class to be the weighted mean revenue of all classes above i
and including i as follows:

V̄i =

∑n
j=i VjE[Yj ]∑n
j=i E[Yj ]

.
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Then Littlewood’s equation for EMSR-b is:

V̄i = V̄i+1P
(
Ȳi+1 > Si+1

)

for i = 1, 2, . . . , n−1, where Si denotes the protection level. Note that
here the protection levels are defined differently than in EMSR-a. The
above equation can be solved using the inverse cdf, like in EMSR-a,
to obtain the values of S2, S3, . . . , Sn. There is no protection level for
the lowest class 1. Then, if C denotes the capacity of the plane, the
booking limit for the ith class is calculated to be:

BLi = max{C − Si+1, 0} for i = 1, 2, . . . , n− 1;BLn = C.

Like in EMSR-a, instead of using C above, we could use C/(1− Cp).
EMSR-a and EMSR-b are used to determine booking limits for an

individual leg. However, since the leg is a part of the entire network,
in network problems, ideally, the booking limits on each leg are not
computed in isolation. The following approach, popular in industry,
can be used for the entire network and has been used as a benchmark
for simulation optimization in [127].

DAVN-EMSR-b. DAVN-EMSR-b, as the name suggests, is a com-
bination of DAVN, which stands for Displacement Adjusted Virtual
Nesting, and EMSR-b. In its first step, this approach requires the
solution of a linear program (LP) [101], which we explain below.

Let E[Yj ] denote the expected demand and Vj the revenue respec-
tively for the jth product in the network. Let Dj denote the set of legs
used by product j and Al denote the set of products that need leg l.
Then solve the following LP:

Maximize
n∑

j=1

Vjzj , such that 0 ≤ zj ≤ E[Yj ], for j = 1, 2 . . . , n,

and
∑

j∈Al

zj ≤ C l, l = 1, 2, . . . , L, (12.1)

where C l denotes the capacity of the plane on the lth leg, n denotes
the number of products, and L denotes the total number of legs. The
value of zj , the decision variable, could be used as the booking limit
for product j. However, this value can be significantly improved upon
by combining the results of this LP with EMSR-b, as discussed next.

The Displacement Adjusted REvenue (DARE) for the jth product
that uses leg l, i.e., DAREl

j , is computed as follows. For j = 1, 2, . . . , n
and every l ∈ Dj ,

DAREl
j = Vj −

∑

i �=l;i∈Dj

Bi,
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and Bi denotes the dual (shadow) prices associated with the ith
capacity constraint (see (12.1)) in the LP. ThenDAREl

j can be treated

as the virtual revenue of the product j on leg l, i.e., V l
j = DAREl

j .
Finally, EMSR-b is employed on each leg separately, treating the

virtual revenue as the actual revenue. On every leg, products that are
relevant may have to be re-ordered according to their DARE values;
the higher the DARE value, the higher the class (according to our con-
vention). The demand for each relevant product on every leg has to be
determined from that of individual products. Then EMSR-b is applied
on each leg in the network. If the booking limit for product j on leg l
is denoted by BLl

j , a customer requesting a given product is accepted
if and only if the conditions with respect to all the booking limits
are satisfied, i.e., if at time t in the booking horizon, φj(t) denotes
the number of seats sold for product j, then product j is accepted if
φj(t) < BLl

j for every leg l used by product j. Otherwise that cus-
tomer is rejected. It is thus entirely possible that a customer meets
the above condition for one leg but not for some other leg. However,
if the conditions for all the legs are not met, the customer is rejected.

Computational results. We now present some computational
results. We consider a case with four cities: the hub, A, and three
other cities, denoted by X, Y, and Z (see e.g., Fig. 12.1). Thus, there
are 6 legs: A→X, X→A, A→Y, Y→A, A→Z, and Z→A. Table 12.1
shows the 12 itineraries possible in this setting, along with some other
data, over which we will optimize. For every itinerary, the airline
offers two products (i and j), one that pays a high fare and one that
pays a low fare. Thus, there are 24 products in all. The higher fare
product has a lower cancellation penalty.

Any customer arrives in the booking horizon of 100 days accord-
ing to a non-homogeneous Poisson process with an intensity function
defined as 9 + 0.03t. The arriving customer belongs to the product
i with probability Pr(i) and has a cancellation probability of CP (i).
Vi will denote the fare for the ith product. The cancellation penalty
(paid by the customer to the airline for cancellation) for the higher
fare paying customer is 5 dollars while the same for the lower fare
paying customer is 80 dollars. If a customer has to be bumped, the
following assumption was made. Since the customer is likely to travel
with the same airline although at a later time, the fare is not returned
to the customer (unlike in a cancellation), but a penalty of 500 dollars
is charged to the airline.

The DAVN computations are performed using the LP procedure
described above. For EMSR-b calculations, the non-homogeneous
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Table 12.1. Itineraries in the four-city network

Product (i, j) Itinerary (Pr(i), P r(j)) (CP (i), CP (j)) (Vi, Vj)

(1,13) A → X (0.056,0.014) (0.025,0.3) (350,500)
(2,14) X → A (0.064,0.016) (0.025,0.3) (375,525)
(3,15) A → Y (0.048,0.012) (0.025,0.3) (400,550)
(4,16) Y → A (0.056,0.014) (0.05,0.3) (430,585)
(5,17) A → Z (0.064,0.016) (0.05,0.3) (450,600)
(6,18) Z → A (0.048,0.012) (0.075,0.3) (500,650)
(7,19) X → Y via A (0.08,0.020) (0.125,0.3) (600,750)
(8,20) Y → X via A (0.096,0.024) (0.2,0.3) (610,760)
(9,21) X → Z via A (0.08,0.020) (0.2,0.3) (620,770)
(10,22) Z → X via A (0.072,0.018) (0.225,0.3) (630,780)
(11,23) Y → Z via A (0.08,0.02) (0.2,0.3) (640,790)
(12,24) Z → Y via A (0.056,0.014) (0.2,0.3) (650,800)

Poisson distribution is approximated by a normal distribution (see
[127, 229]) in order to compute the associated booking limits. Then,
the solution from DAVN and EMSR-b combination is simulated to
obtain its average reward.

The expected value of the total reward summed over all legs using
SP (simultaneous perturbation) was obtained to be 229,602.85 dollars,
while DAVN-EMSR-b produced a value of 203,190.75 dollars. The
improvement is 12.99 %. For additional results with SP, see [127],
which also solves single-leg problems. We note that the results from
SP were used as a starting point for a simulated annealing to see if
the solution improved any further; however, in some cases, simulated
annealing did not improve these results any further. RL was used in
[123, 109] for single-leg problems.

3. Preventive Maintenance
Preventive maintenance has acquired a special place in modern

manufacturing management with the advent of the so-called “lean”
philosophy. According to the lean philosophy, an untimely breakdown
of a machine is viewed as source of muda—a Japanese term for waste.
Indeed, an untimely breakdown of a machine can disrupt production
schedules and reduce production rates. If a machine happens to be a
bottleneck, it is especially important that the machine be kept in a
working state almost all the time. Total Productive Maintenance, like
many other management philosophies, relies on the age-old reliability
principle, which states that if a machine is maintained in a preventive
manner the up-time (availability) of the machine is raised.



460 SIMULATION-BASED OPTIMIZATION

Usually, as a machine ages, the probability of its failure increases.
When a machine fails, a repair becomes necessary. On the other
hand, a machine can be maintained before it fails. If one waits too
long, one pays for expensive repairs, while maintenance too early in the
machine’s life can cause maintenance costs to be excessive. As such,
one seeks the optimal time for maintaining the machine. See Fig. 12.2
for a graphical demonstration of this concept.

We will discuss a semi-Markov model for solving the problem based
on the work in Das and Sarkar [74]. Their maintenance model assumes,
as is common in the literature, that after a repair or a maintenance,
the machine is as good as new. Exact expressions for the transition
probabilities have been developed. The problems they solve have a
relatively small state space because of the difficulties in setting up
the same expressions for larger state spaces. Also, their expressions
are evaluated for some specific distributions. Nevertheless, the results
obtained serve as an important source for benchmarking the perfor-
mance of various RL algorithms. On large problems, since optimal
solutions are unavailable, one must turn however to heuristic solutions
for benchmarking.

Consider a production-inventory system, i.e., a machine with a
finished product buffer. See Fig. 12.3. The buffer keeps the prod-
uct until the product is taken away by the customer. The customer
could be the actual customer to whom the product is sold (in case the

Time 

Optimal Time
For
Maintenance

TC

TC: Total Cost (sum of maintenance and repair
costs)

Figure 12.2. The graph shows that there is an optimal time to maintain
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factory has a single machine), or else the next machine could serve as
the customer. The demand, when it arrives, depletes the buffer by 1,
while the machine, when it produces 1 unit, fills the buffer by 1 unit.
There is a limit to how much the buffer can hold. When this limit is
reached, the machine goes on vacation (stops working) and remains on
vacation until the buffer level drops to a predetermined level. The time
for producing a part is a random variable; the time between failures,
the time for a repair, the time between demand arrivals, and the time
for a maintenance are also random variables. The age of the machine
can be measured by the number of units produced since last repair or
maintenance. (The age can also be measured by the time since last
repair or maintenance.)

Machine

Buffer

Demand

Product

Machine fills the buffer, while the
demand empties it

Figure 12.3. A production-inventory system

An SMDP model. The state-space is modeled as: φ̂ = {b, c}, where
c denotes the number of parts produced since last repair or mainte-
nance, and b denotes the number of parts in the buffer. There are two
actions that the decision maker can select from: {Produce, Maintain}.
The action is to be selected at the end of a production cycle, that is,
when one unit is produced.

Value-iteration-based RL approaches to solve this problem can be
found in [72, 110]. RL is able to re-produce the results obtained by
the optimal-seeking approach of the Das and Sarkar model [74]. An
MCAT approach to solve this problem can be found in [124].

A parametric optimization model. A static model based on para-
metric optimization can be set up easily here. Assume that for a given
value of b1, there is a threshold value for c. When the value of c
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exceeds the threshold, maintenance must be performed. For example,
if the threshold level for b = x is 10, the machine must be maintained
when the system state reaches (x, 10), while the system must keep
producing in states (x, n), n < 10. Thus, the problem can be solved
as follows: Minimize f(c0, c1, . . . , ck), where ci denotes the thresh-
old level for maintenance when b = i. Here f(.) denotes the average
cost of running the system using the threshold levels specified inside
the round brackets. The optimality of the threshold policy should
be established in order for the parametric optimization approach to
be useful. Schouten and Vanneste [265] have established the existence
of a structure for the optimal policy under certain conditions that are
different than those in [74].

An Age-Replacement Heuristic. With large-scale problems, on
which optimal solutions are unknown, it is important to benchmark the
performance of simulation-optimization techniques in any setting. An
important framework, which has been used successfully in reliability
applications, goes by the name renewal theory. It provides very robust
heuristics in many areas, including in maintenance theory. We now
describe the age-replacement heuristic based on renewal theory.

The use of renewal reward theory for developing heuristics is often
based on a simple strategy: Identify a cyclical phenomenon in the
system. Determine the expected total cost and the expected total
time associated with one cycle. The expected total cost divided by
the expected total time, according to renewal reward theorem [251],
equals the average cost per unit time in the system. Every time the
machine fails or is maintained, we can assume that a cycle is completed.
Then, an analytical expression for the average cost of maintaining the
machine when its age is T can be derived. Thereafter, one can use
non-linear optimization to find the optimal value of T that minimizes
the average cost [251]. We now obtain the average cost as a function
of T . The average cost, g(T ), can be written as

g(T ) =
E[C]

E[θ]
,

where C is the (random) cost in one (renewal) cycle and θ is the time
consumed by one (renewal) cycle. Let x denote the time for failure of
the machine. E[C] can be written as:

E[C] = (1− F (T ))Cm + F (T )Cr,
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where T is the age of maintenance, F (x) is the cdf of the random
variable X, Cm is the cost of one maintenance and Cr is the cost of
one repair. Now θ can be written as:

E[θ] = TrF (T ) +

∫ T

0
xf(x)dx+ (T + Tm)(1− F (T )),

where f(x) denotes the pdf of the random variable X, Tm denotes the
mean time for maintenance, and Tr denotes the mean time for repair.
The age-replacement heuristic was used as the benchmarking tech-
nique in [72] and [124], because of its robust performance on complex
systems.

Computational results. We now present some computational
results obtained with R-SMART on a small-scale problem. The buffer
uses an (S, s) policy, i.e., when the inventory in the buffer reaches S,
it goes on vacation and remains on vacation until the inventory falls
to s. The production time, the time between failures, and the time for
repair all have the Erlang distribution: Erl(n, λ), whose mean is n/λ
(see Appendix). The time for maintenance has a uniform distribution:
Unif(a, b). The inter-arrival time for the demand has the exponential
distribution: Expo(μ) whose mean equals 1/μ.

We show details for one case: (S, s) = (3, 2). Expo(1/10) for time
between arrivals, Erl(8, 0.08) for time between failures, Erl(2, 0.01) for
time for repair, Erl(8, 0.8) for production time, and Unif(5, 20) for the
maintenance time. Cr = $5, Cm = $2, and profit per unit demand’s
sale is $1. CF version of R-SMART with η = 0.999 produced a near-
optimal solution of ρ = $0.033 per unit time. The policy turns out to
have a threshold nature (concept defined in parametric optimization
model) with the following thresholds: c1 = 5, c2 = 6, and c3 = 7; when
buffer is empty, the action is to produce always. Both R-SMART and
SMART have been tested successfully on this and numerous other
cases [72, 110].

4. Production Line Buffer Optimization
The transfer line buffer optimization problem is, perhaps, one of the

most widely-studied problems in serial production lines—both in the
academic community and in the industry. The driving force behind
this problem is the success attributed to the use of “kanbans” in the
Japanese automotive industry. Kanbans are essentially buffers placed
in between machines in the serial line, also called flow shop. In a
flow shop, unlike a “job shop”, there is little variety in the products
being produced, and all the products maintain a roughly linear flow.
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In other words, products move in a line from one machine to the next.
Kanbans reduce the risk of over production, minimize inventory, and
maximize flow in the production shop.

Consider Fig. 12.4. In between the first and the second machine,
there exists a buffer (kanban) or container. When the machine preced-
ing a buffer completes its operation, the product (essentially a batch
of parts) goes into the buffer. The machine following the buffer gets it
supply from this buffer, i.e., the preceding buffer in Fig. 12.4. The first
machine gets its supply from raw material, which we assume is always
available. In a kanban-controlled system, there is a limit on the buffer
size. When the limit is reached, the previous machine is not allowed
to produce any parts until there is space in the buffer. The previous
machine is then said to be blocked. If a machine suffers from lack of
material, due to an empty buffer, it is said to be starved. A machine
is idle when it is starved or blocked. Idleness in machines may reduce
the throughput rate of the line, i.e., the number of batches produced
by the line in unit time.
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Figure 12.4. A transfer line with buffers

Ideally, starvation and blocking should be minimized. This can be
done by placing large buffers to make up for any differences in the
speeds of the machines. However, large buffers mean high work-in-
process inventory, which should be minimized. This scenario gives
rise to a parametric optimization problem—one of finding the sizes
of the buffers in between the machines so that the throughput rate
is maximized, while the amount of inventory is constrained to a pre-
specified limit.

In the real world, production times on the machines are often
random variables. Machines fail and it takes time to repair them.
Failures and repairs add to the randomness in the system. This cre-
ates a challenging problem, and a semi-Markov process may be needed
to capture its dynamics. [7], Altiok and Stidham set up expressions for
several objective functions using Markov theory, and then optimized
the systems using Hooke and Jeeves algorithm. They had to calculate
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the transition probabilities of the Markov chain underlying the system
towards this end. A popular model is:

Maximize f(�x) such that

k∑

i=1

x(i) = M or

k∑

i=1

x(i) ≤ M (12.2)

where f(.) is the expected throughput, M , a pre-specified number,
denotes a limit on the total amount of inventory in the system, x(i) de-
notes the buffer size or number of kanbans for machine i, and k
denotes the number of buffers. Another model can be mathematically
described as:

Maximize R · f(�x)− h · I(�x) (12.3)

where R is the reward for producing a part, I(.) denotes the average
inventory in the system, and h is the inventory-holding cost. Both
models were considered in [7].

Tezcan and Gosavi [297] simulated a production line taking into
account the randomness in the production times, the failures of ma-
chines, and the repair times. Then the system was optimized for
the model in Eq. (12.3) via LAST (see Chap. 5). For the model in
Eq. (12.2) with the equality constraint, a closed-form approximation
was used for the objective function in Shi and Men[272] (although
simulation can be just as easily used) and optimization was performed
via the nested partitions algorithm. In both studies, near optimal
solutions were obtained with parametric optimization. For a control
optimization approach for a related problem, see [223].

A kanban heuristic. A number of heuristics have appeared for this
problem, since it is so widely prevalent in the industry. A simple
heuristic rule that provides a lower bound on the number of kanbans
is used in many industries [11]. It recommends:

x(i) = L(i)λΩ, (12.4)

where L(i) is the mean lead time (production time on the machine plus
waiting time in the queue in front of the machine) of a batch (which is
made up of one or more parts) on machine i, λ is the rate of demand
for the batch from the line, and Ω ≥ 1 (e.g., Ω = 2) is a factor of
safety.

(In many texts, the phrase “number of kanbans” is used to mean
buffer size. Thus, x(i) denotes the number of kanbans for machine i.
Note that one kanban is generally associated with a batch. Thus if n(i)
denotes the number of parts associated with a kanban on machine i,
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then the number of parts in that buffer is actually equal to x(i)n(i).
We will confine ourselves to determining x(i) assuming that n(i) is a
predetermined number.)

The rate of demand equals the rate of job arrivals at any of the ma-
chines in a kanban-controlled line, provided every machine can produce
at a rate greater than the demand rate. The distributions for inter-
arrival times at subsequent machines and the lead times in each of the
machines can be calculated using queueing approximations; e.g., see
Askin and Goldberg [11]. We now present the details for computing
the lead time of a batch at any given machine. Let μ denote the mean
rate of production at a machine. Let σ2

s denote the variance in the pro-
duction time for one batch on a machine and σ2

a denote the variance in
the inter-arrival time of a batch at a machine. Then, the squared coef-
ficient of variation, which is the variance divided by the mean squared,
for the inter-arrival time and the production time can be given as:

C2
a =

σ2
a

(1/λ)2
; C2

s =
σ2
s

(1/μ)2
.

Using Marchal’s approximation [198], one has that the mean waiting
time in the queue in front of the machine for a batch is:

Wq ≈
ρ2(1 + C2

s )(C
2
a + ρ2C2

s )

2λ(1− ρ)(1 + ρ2C2
s )

, (12.5)

where ρ = λ/μ. The mean lead time in front of a machine then
becomes: L = Wq +

1
μ , since it is the sum of the mean waiting time

in front of the queue and the mean production time on the machine
(1/μ). Marchal’s formula in Eq. (12.5) works approximately for any
given distribution for the inter-arrival and production time (see also
[180] for another popular approximation). Note that when any of these
times are deterministic, their variances should be set to zero in these
formulas.

The inter-arrival time’s distribution for the batch at the first
machine has to be known for any of these models (simulation op-
timization or heuristic). However, in order to use the heuristic, one
must derive the variance and the mean of the inter-arrival time at
subsequent machines in the production line, since the heuristic model
computes the kanban size separately for each machine. The mean
inter-arrival time at every machine can be assumed to the same for
every machine, i.e., 1/λ, provided that the production rate of every
machine is greater than the arrival rate λ. The squared coefficient of
variation for a machine (i + 1) can be calculated using the following
approximation [11]:
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C2
a(i+ 1) ≈ ρ2(i)C2

s (i) + (1− ρ2(i))C2
a(i).

Using the above approximation, one can determine C2 for the inter-
arrival time and the production time for every machine, allowing one
to use Marchal’s approximation to determine the lead time (L(i)) at
the ith machine for each i. Then, Eq. (12.4) yields the buffer size for
the machine concerned.

Computational results.We now present some computational results
from Tezcan and Gosavi [297]. Consider a three-machine production
line with two buffers. This is a problem for which optimal solutions
are available in [7]. We will use Expo(η) to denote the exponential
distribution whose mean is 1/η. The time for production (Expo(α)),
time for repair (Expo(β)), and the time between failures (Expo(γ))
for each machine are all exponentially distributed (note that this is
the assumption in the theoretical model of [7], but not needed for our
simulation-optimization approach). Table 12.2 provides some of the
input parameters for the systems studied. The model in Eq. (12.3)
was used. Table 12.3 compares the results obtained from the optimal
approach and LAST; z denotes the objective function’s value with
LAST, while z∗ denotes the optimal value, and x(i) denotes the LAST
solution for the ith buffer, while x∗(i) denotes the optimal solution.
As is clear, LAST produces near-optimal solutions on the small-scale
problems.

Table 12.2. Input parameters for experiments with LAST

Machine α β γ
1 0.25 0.1 0.01
2 0.2 0.3 0.02
3 0.3 0.5 0.04

Table 12.3. Results with LAST

R h (x∗(1), x∗(2)) z∗ (x(1), x(2)) z
30 0.5 (1, 5) 1.92 (1, 4) 1.90
30 0.2 (3, 8) 2.52 (3, 6) 2.51
14 0.2 (2, 11) 1.62 (2, 10) 1.61
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5. Other Case Studies
In this section, we will provide a brief overview of some other case

studies involving simulation-based optimization. Some of the earlier
case studies (elevator control [70], AGV routing[292], and grid world
problems [288]) were from computer science. Here we provide a brief
introduction to some more recent cases from communications, quality
control, and operations research, and of course, computer science.

Wireless communication. The so-called voice over packet technol-
ogy is an alternative to the older circuit switching technology used
for communicating voice in networks (e.g., over telephones). The
voice over packet technology uses the mechanism of “packets,” which
are used to transfer data. While it offers significant advantages over
the older technology, it requires frequent (dynamic) adjustment of the
capacity of the communicating path (or a pseudo-wire). The problem
of dynamically adjusting the capacity of the path in a voice over packet
network has been set up as an SMDP in Akar and Sahin [3]. They use
dynamic programming for smaller problems and reinforcement learn-
ing for larger problems. They consider two different formulations of
the problem. In the first formulation, there is a cost associated to
changing the capacity, and in the second, there is no cost but a limit
is placed on how many times the capacity can be updated in unit
time. For the first formulation, they use an algorithm based on the
simulation-based asynchronous value iteration algorithm of Jalali and
Ferguson [153], while for the second formulation, they use an algorithm
based on R-SMART [110]. Other applications include [330]

Supply chain management. The field of supply chains covers
numerous computational problems related to raw material ordering,
inventory control, and transportation of raw materials and finished
products [309]. An inventory control problem was studied via neuro-
response surface optimization in [165]. A problem studied in Pontran-
dolfo et al. [236] is that of selecting a vendor (supplier) dynamically
depending on the current inventory levels in the manufacturing plants
and retailer warehouses. An RL-based SMDP model was developed
in [236] and solved using SMART. The well-known beer game in sup-
ply chains that is modeled on the phenomenon of the bull-whip effect
has been studied in [60]. See [245] for a study of optimal disassembly
in remanufacturing and [128, 284] for material dispatching in vendor-
managed inventory systems using SP, neuro-response surfaces, and RL.

Control charts. Control charts are on-line tools used for control-
ling the quality of parts in a manufacturing process and for diagnosing
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problems in the production process. The economic design of a con-
trol chart, which seeks to minimize the average cost of the operation,
requires the optimization of numerous parameters [208]. See [73] for
one example that uses Markov chains to construct the closed form of
the cost function. Because of the complexity of the cost function, it
becomes necessary to use numerical methods of optimization. Fu and
Hu [92] apply perturbation analysis in control chart design. Simulation
has been used in quality control for several years [15], but it appears
that the potential for optimization needed in control charts remains
untapped.

Computer Games and Neuro-Science. A number of computer
games have been modeled as MDPs or agent-based versions of MDPs.
The first reported case study of this nature is that of backgammon
[296], which almost beat the then human world champion. More re-
cently, success with games of Othello [303], which uses a discounted
algorithm in a multi-agent setting, and robotic soccer [324], which
uses a model-building algorithm, has been reported. While these
games are purely for entertainment, it is notoriously difficult to de-
velop a computer program that can play well with a human, since
it requires thinking like a human. Neuro-science attempts to study
the functioning of the brain. Several neuro-science studies in recent
times have used reinforcement learning models. Interestingly, model-
building algorithms appear to have been favored in human brain stud-
ies via fMRI [331, 150].

Stochastic Games. The extension of the MDP to the multi-agent
setting, where there are multiple decision-makers, and the transition
probabilities and rewards depend on actions of all the decision-makers,
is called a stochastic game or a competitive Markov decision process
(see [86] for a comprehensive discussion of this topic). An exciting
branch of RL is devoted to solving stochastic games. A special case
of this stochastic game is related to the famous zero-sum game [308]
for which an RL algorithm can be found in [191]. For the non-zero-
sum game, two of the key algorithms are from Hu and Wellman [148]
for discounted reward and Ravulapati et al. [244] for average reward.
The average reward algorithm and its variants have also been used
in solving the “matrix” version of the stochastic game [214]. The
convergence of these algorithms is an open problem. See Collins [68]
for a game-theoretic RL application in airline pricing.

Miscellaneous. A large number of other case studies of model-free
simulation optimization can be found in the literature. We enumerate
a few.
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Parametric optimization: ground water management [310, 129],
financial portfolio optimization [69], body shop design [282], com-
munication protocol optimization in wireless sensor networks [276],
social security systems [82], and health care [170].

Control optimization: irrigation control [267], re-entrant semi-
conductor manufacturing lines [243], autonomous helicopter control
[218, 1], aircraft taxi-out time prediction [93], sensor placement [28],
vehicle cruise control [197], variable speed-limit control [336], and
ambulance redeployment [200].

6. Conclusions
We conclude with some final thoughts on computational aspects of

both parametric and control optimization.

Parametric optimization. From our review of the literature, the
genetic algorithm appears to be one of the most popular techniques
for discrete problems, although there is no general agreement on which
algorithm is the best. It is the oldest algorithm in this family, and it rel-
atively easy to code, which could be one reason for its popularity. Tabu
search, also, has seen a large number of useful applications. Stochastic
adaptive search techniques [333] have considerable theoretical back-
ing. Although their convergence guarantees are asymptotic (in the
limit) and so they often generate sub-optimal solutions in finite time,
their solutions are usually of good quality. In comparison to classical
RSM, stochastic adaptive search and meta-heuristics sometimes take
less computational time. In the field of continuous optimization, simul-
taneous perturbation appears to be a remarkable development. Com-
pared to finite differences, it usually takes less computational time.
It does get trapped in local optima and may hence require multiple
starts. We must remember that parametric optimization techniques
developed here do require fine-tuning of several parameters, e.g., tem-
perature, tabu-list length, step-sizes, or some other scalars, in order to
obtain the best behavior, which can increase computational time.

Control optimization. In this area, we covered RL and stochastic
policy search techniques. The use of both methods on large-scale prob-
lems started in the late 1980s and continues to grow in popularity. Get-
ting an RL algorithm to work on a real-life case study usually requires
that the simulator be written in a language such as C or MATLAB
so that RL-related functions and function approximation routines can
be incorporated into the simulator. The reason is that in RL, un-
like parametric optimization, the function is not evaluated at fixed
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scenarios; rather RL functions have to be incorporated into simulation
trajectories. Furthermore, each problem has its own unique features.
In some cases, value iteration schemes seem to fare better than policy
iteration schemes, and in some cases the reverse is true. The objective
function in MDPs or SMDPs, usually, cannot be chosen by the analyst
because it depends on how it is measured in the real world setting for
the problem at hand. Choosing the right scheme for function approx-
imation is, however, up to the analyst, and it can often prove to be a
time-consuming task. There also exist numerous ways for function ap-
proximation, e.g., neural networks, local regression, and interpolation.
Each of these approaches require significant amount of trial and error.
A neural network requires testing of several parameters, such as the
number of hidden layers, the number of nodes, the learning rates etc.



APPENDIX

Probability Basics: The probability of an event is a measure of the likelihood of
the event. Typically in statistics, the event is viewed as an outcome of a
statistical experiment. E.g., you inspect a part and it turns out to be defective.
Inspecting the part is an experiment, and obtaining the outcome “defective” is
called an event.
Regardless of the nature of the experiment, in order to determine the probability
of an event, one must make several trials of the related experiment. So if we
conduct m trials of an experiment, and an event A occurs n out of m times in that
particular experiment, the probability of the event A is mathematically defined as:

P(A) = lim
m→∞

n

m
.

In practice, we measure probability with a finite but a large value for m.

Random Variables: Random variables are either discrete or continuous. Let X
denote the random variable in question. Discrete random variables are those for
which the number of values of X belong to a set that is finite or countably
infinite. We say a set is countably infinite if we can put the set into a one-to-one
correspondence with a set of integers. When the set to which the values of X
belong is an interval or a collection of intervals, X is called a continuous random
variable. We denote the value of a random variable called X by x.

Discrete Random Variables: The probability that a discrete random variable,
X, will assume a given value x is called the probability mass function (pmf ). The
pmf is defined as:

f(x) = Pr(X = x).

The cumulative distribution function (cdf ) for a discrete random variable is
defined as:

F (x) = Pr(X ≤ x).

Note that if xi denotes the ith value of the random variable, then

F (x) =
∑

all xi≤x

f(xi).
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The mean of expected or average value of the discrete random variable is
defined as:

E[X] =
∑

all i

xif(xi).

The variance is defined as: Var[X] =
∑

all i

(xi − E[X])2 f(xi).

An alternative approach to calculating the variance is to use the following identity:

Var[X] = E[X2]− [E[X]]2 =
∑

all i

(xi)
2f(xi)−

⎡

⎣
∑

all i

xif(xi)

⎤

⎦
2

.

The positive square root of the variance is called the standard deviation of the
random variable and is often denoted by σ:

σ(X) =
√

Var[X].

Continuous Random Variables: The probability that a continuous random

variable, X, assumes values in the interval (a, b) is defined as:

Pr(a < X < b) =

∫ b

a

f(x)dx,

where f(x) denotes the so-called probability density function or pdf of X. Clearly,
then

Pr(X = xi) =

∫ xi

xi

f(x)dx = 0.

The cumulative distribution function (cdf ) for a continuous random variable is
defined as:

F (x) = Pr(X < x).

Consider a continuous random variable, X, that assumes values from a to b. We
now replace f(x) by f(t) to denote the pdf of X; this replacement is perfectly
legal mathematically. Then the cdf of X can be represented in general as:

F (x) =

∫ x

a

f(t)dt.

As a result, we can obtain the pdf from the cdf by differentiation as follows:

f(x) =
dF (x)

dx
.

The mean of expected or average value of the continuous random variable defined
over an interval (a, b) is defined as:

E[X] =

∫ b

a

xf(x)dx,

while the variance is defined as:

Var[X] =

∫ b

a

(x− E[X])2 f(x)dx.
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An alternative approach to calculating the variance is to use the following identity:

Var[X] = E[X2]− [E[X]]2 =

∫ b

a

x2f(x)dx−
(∫ b

a

xf(x)dx

)2

.

The positive square root of the variance is called the standard deviation of the
random variable and is often denoted by σ:

σ(X) =
√

Var[X].

Discrete Distributions: We first discuss some well-known discrete
distributions. For the following two distributions, assume that a trial results in
either a success or a failure.

Bernoulli: If X = 1 denotes success and X = 0 failure and if P (X = 1) = p and
P (X = 0) = 1− p, then X has the Bernoulli distribution.

E[X] = p; Var[X] = p(1− p).

Geometric: If the random variable denotes the number of trials required until
the first success, where the prob. of success is p, then it is said to have geometric
distribution.

f(x) = (1− p)x−1p; E[X] = 1/p; Var[X] = (1− p)/p2.

Poisson distribution: If a random variable has the Poisson distribution with
parameter λ, it means:

f(x) =
e−λλx

x!
for x = 0, 1, 2, . . . ; E[X] = λ; Var[X] = λ.

Note that the mean and variance of the Poisson distribution are equal.

Continuous Distributions: We now discuss some well-known continuous
distributions.

Uniform: X has Unif(a, b) implies that

f(x) =
1

b− a
if a ≤ x ≤ b and f(x) = 0 otherwise.

If x < a, F (x) = 0, if x > b, F (x) = 1 and if a ≤ x ≤ b, F (x) = x−a
b−a

. Also,

E[X] = (a+ b)/2 and Var[X] = (b− a)2/12.

Normal distribution: Denoted by N(μ, σ2). For −∞ < x < ∞:

f(x) =
1

σ
√
2π

e
− (x−μ)2

2σ2 .

Note that μ and σ are parameters used to define the pdf . It turns out that:

E[X] = μ; Var[X] = σ2.
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Erlang distribution: Erl(n, λ), where n is a positive integer, has the following
properties:

f(x) =
λnxn−1e−λx

(n− 1)!
for x ≥ 0; E[X] =

n

λ
; Var[X] =

n

λ2
.

If n = 1, we have the exponential distribution as a special case.

Exponential distribution: Expo(λ) has the following properties:

f(x) = λe−λx for x ≥ 0; E[X] =
1

λ
; Var[X] =

1

λ2
.

Note that the standard deviation and the mean of the exponential distribution are
equal.

Matrix Max Norms: If A denotes a matrix, the max norm of the matrix is
defined as:

||A||∞ = max
i,j

|A(i, j)|.
Note that the matrix max norm has an important property:

||aA||∞ = |a|||A||∞ where a is any real-valued scalar.

The spectral radius of a square matrix A is defined as

ν(A) = max
i

(|ψi|)

where ψi denotes the ith eigenvalue of A. It has an important relationship with
the max norm.

ν(A) ≤ ||A||∞.

Spectral shift: If eig(A) denotes any eigenvalue of the matrix A, then if
B = C− aI, where a is a scalar, we have that eig(B) = eig(C)− a.

Weighted max norm: The notation ||�x||υ is often used to denote the weighted
max norm of the vector �x with N components and is defined as:

||�x||υ = max
i

|x(i)|
υ(i)

,

where |a| denotes the absolute value of a ∈  and �υ = (υ(1), υ(2), . . . , υ(N))
denotes a vector of weights such that all weights are positive.

Contraction with respect to a weighted max norm: A mapping (or
transformation) F is said to be a contraction mapping in n with respect to a
weighted max norm if there exists a λ where 0 ≤ λ < 1 and a vector �υ of n
positive components such that

||F�v − F�u||υ ≤ λ||�v − �u||υ for all �v, �u in n.
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[240] A.A. Prudius, S. Andradóttir, Balanced explorative and
exploitative search with estimation for simulation optimization.
INFORMS J. Comput. 21, 193–208 (2009)

[241] M. Purohit, A. Gosavi, Stochastic policy search for
semi-Markov variance-penalized control, in Proceedings of the
2011 Winter Simulation Conference, Phoenix (IEEE, 2011)

[242] M.L. Puterman, Markov Decision Processes (Wiley
Interscience, New York, 1994)

[243] J.A. Ramirez-Hernandez, E. Fernandez, A case study in
scheduling re-entrant manufacturing lines: optimal and
simulation-based approaches, in Proceedings of 44th IEEE
Conference on Decision and Control, Seville (IEEE, 2005),
pp. 2158–2163

[244] K.K. Ravulapati, J. Rao, T.K. Das, A reinforcement learning
appraoch to stochastic business games. IIE Trans. 36, 373–385
(2004)

[245] S.A. Reveliotis, Uncertainty management in optimal
disassembly planning through learning-based strategies. IIE
Trans. 39(6), 645–658 (2007)



Bibliography 497

[246] Y. Rinott, On two-stage selection procedures and related
probability-inequalities. Commun. Stat. Theory Methods A7,
799–811 (1978)

[247] H. Robbins, S. Monro, A stochastic approximation method.
Ann. Math. Stat. 22, 400–407 (1951)

[248] H.E. Romeijn, R.L. Smith, Simulated annealing and adaptive
search in Global optimization. Probab. Eng. Inf. Sci 8, 571–590
(1994)

[249] H.E. Romeijn, R.L. Smith, Simulated annealing for constrained
global optimization. J. Global Optim. 5, 101–126 (1994)

[250] S.M. Ross, Introduction to Stochastic Dynamic Programming
(Academic, New York, 1983)

[251] S.M. Ross, Introduction to Probability Models (Academic, San
Diego, 1997)

[252] S.M. Ross, A First Course in Probability, 6th edn. (Academic,
San Diego, 2002)

[253] R.Y. Rubinstein, A. Shapiro, Sensitivity Analysis and
Stochastic Optimization by the Score Function Method (Wiley,
New York, 1983)

[254] W. Rudin, Real Analysis (McGraw Hill, New York, 1964)

[255] G. Rudolph, Convergence of canonical genetic algorithms.
IEEE Trans. Neural Netw. 5, 96–101 (1994)

[256] G. Rudolph, Convergence of evolutionary algorithms in general
search spaces, in Proceedings of the Third IEEE Conference on
Evolutionary Computation (IEEE, Piscataway, 1994), pp. 50–54

[257] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal
representations by error propagation, in Parallel Distributed
Processing: Explorations in the Micro-structure of Cognition,
ed. by D.E. Rumelhart, J.L. McClelland (MIT, Cambridge,
MA, 1986)

[258] G.A. Rummery, M. Niranjan, On-line Q-learning using
connectionist systems. Technical report CUED/F-INFENG/TR
166. Engineering Department, Cambridge University, 1994



498 SIMULATION-BASED OPTIMIZATION

[259] I. Sabuncuoglu, S. Touhami, Simulation metamodeling with
neural networks: an experimental investigation. Int. J. Prod.
Res. 40, 2483–2505 (2002)

[260] A.L. Samuel, Some studies in machine learning using the game
of checkers, in Computers and Thought, ed. by E.A.
Feigenbaum, J. Feldman (McGraw-Hill, New York 1959)

[261] S. Sanchez, Better than a petaflop: the power of efficient
experimental design, in Proceedings of the 2008 Winter
Simulation Conference, Miami (IEEE, 2008), pp. 73–84

[262] S. Sarkar, S. Chavali, Modeling parameter space behavior of
vision systems using Bayesian networks. Comput. Vis. Image
Underst. 79, 185–223 (2000)

[263] B. Schmeiser, Approximation to the inverse cumulative normal
function for use on hand calculators. Appl. Stat. 28, 175–176
(1979)

[264] B. Schmeiser, Batch-size effects in the analysis of simulation
output. Oper. Res. 30, 556–568 (1982)

[265] F.A.V. Schouten, S.G. Vanneste, Maintenance optimization
with buffer capacity. Eur. J. Oper. Res. 82, 323–338 (1992)

[266] L. Schrage, A more portable random number generator. Assoc.
Comput. Mach. Trans. Math. Softw. 5, 132–138 (1979)

[267] N. Schutze, G.H.Schmitz. Neuro-dynamic programming as a
new framework for decision support for deficit irrigation
systems, in International Congress on Modelling and
Simulation, Christchurch, 2007, pp. 2271–2277

[268] A. Schwartz, A reinforcement learning method for maximizing
undiscounted rewards, in Proceeding of the Tenth Annual
Conference on Machine Learning, Amherst, 1993, pp. 298–305

[269] E. Seneta, Non-negative Matrices and Markov Chains
(Springer, New York, 1981)

[270] L.I. Sennott, Stochastic Dynamic Programming and the Control
of Queueing Systems. (Wiley, New York, 1999)

[271] L.S. Shapley, Stochastic games. Proc. Natl. Acad. Sci. 39,
1095–1100 (1953)



Bibliography 499

[272] L. Shi, S. Men, Optimal buffer allocation in production lines.
IIE Trans. 35, 1–10 (2003)

[273] L. Shi, S. Olafsson, Nested partitions method for Global
optimization. Oper. Res. 48(3), 390–407 (2000)

[274] L. Shi, S. Olafsson, Nested partitions method for stochastic
optimization. Methodol. Comput. Appl. Probab. 2(3), 271–291
(2000)

[275] L. Shi, S. Olafsson, Nested Partitions Method, Theory and
Applications (Springer, New York, 2008)

[276] G. Simon, P. Volgyesi, M. Maroti, A. Ledeczi, Simulation-based
optimization of communication protocols for large-scale
wireless networks, in Aerospace Conference Proceedings, Big
Sky (IEEE, 2003), pp. 1339–1346

[277] S. Singh, T. Jaakkola, M. Littman, C. Szepesvari, Convergence
results for single-step on-policy reinforcement-learning
algorithms. Mach. Learn. 39, 287–308 (2000)

[278] S. Singh, V. Tadic, A. Doucet, A policy-gradient method for
semi-Markov decision processes with application to call
admission control. Eur. J. Oper. Res. 178(3), 808–818 (2007)

[279] R.L. Smith, Efficient Monte Carlo procedures for generating
points uniformly distributed over bounded regions. Oper. Res.
32, 1296–1308 (1984)

[280] J.C. Spall, Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation. IEEE
Trans. Autom. Control 37, 332–341 (1992)

[281] J.C. Spall, Introduction to Stochastic Search and Optimization:
Estimation, Simulation, and Control (Wiley, New York, 2003)

[282] S. Spieckermann, K. Gutenschwager, H. Heinzel, S. Voss,
Simulation-based optimization in the automotive industry—a
case study on body shop design. Simulation 75(5), 276–286
(2000)

[283] A.L. Strehl, M.L. Littman, A theoretical analysis of
model-based interval estimation, in Proceedings of the 22th
International Conference on Machine Learning, Bonn, 2005,
pp. 856–863



500 SIMULATION-BASED OPTIMIZATION

[284] Z. Sui, A. Gosavi, L. Lin, A reinforcement learning approach
for inventory replenishment in vendor-managed inventory
systems with consignment inventory. Eng. Manag. J. 22(4),
44–53 (2010)

[285] R.S. Sutton, Learning to predict by the method of temporal
differences. Mach. Learn. 3, 9–44 (1988)

[286] R.S. Sutton, Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming,
in Proceedings of the 7th International Workshop on Machine
Learning, Austin (Morgan Kaufmann, San Mateo, 1990),
pp. 216–224

[287] R.S. Sutton, Generalization in reinforcement learning:
successful examples using sparse coarse coding, in Advances in
Neural Information Processing Systems 8 (MIT, Cambridge,
MA 1996)

[288] R. Sutton, A.G. Barto, Reinforcement Learning: An
Introduction (MIT, Cambridge, MA, 1998)
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